sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
- sglang/bench_one_batch_server.py +340 -34
- sglang/bench_serving.py +340 -159
- sglang/check_env.py +1 -1
- sglang/compile_deep_gemm.py +6 -2
- sglang/global_config.py +1 -25
- sglang/lang/api.py +6 -0
- sglang/lang/backend/runtime_endpoint.py +1 -1
- sglang/lang/interpreter.py +1 -0
- sglang/lang/ir.py +13 -0
- sglang/launch_server.py +9 -2
- sglang/profiler.py +20 -3
- sglang/srt/_custom_ops.py +1 -1
- sglang/srt/batch_invariant_ops/__init__.py +27 -0
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
- sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
- sglang/srt/compilation/backend.py +437 -0
- sglang/srt/compilation/compilation_config.py +20 -0
- sglang/srt/compilation/compilation_counter.py +47 -0
- sglang/srt/compilation/compile.py +210 -0
- sglang/srt/compilation/compiler_interface.py +503 -0
- sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
- sglang/srt/compilation/fix_functionalization.py +134 -0
- sglang/srt/compilation/fx_utils.py +83 -0
- sglang/srt/compilation/inductor_pass.py +140 -0
- sglang/srt/compilation/pass_manager.py +66 -0
- sglang/srt/compilation/piecewise_context_manager.py +40 -0
- sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
- sglang/srt/configs/__init__.py +8 -0
- sglang/srt/configs/deepseek_ocr.py +262 -0
- sglang/srt/configs/deepseekvl2.py +194 -96
- sglang/srt/configs/dots_ocr.py +64 -0
- sglang/srt/configs/dots_vlm.py +2 -7
- sglang/srt/configs/falcon_h1.py +309 -0
- sglang/srt/configs/load_config.py +33 -2
- sglang/srt/configs/mamba_utils.py +117 -0
- sglang/srt/configs/model_config.py +284 -118
- sglang/srt/configs/modelopt_config.py +30 -0
- sglang/srt/configs/nemotron_h.py +286 -0
- sglang/srt/configs/olmo3.py +105 -0
- sglang/srt/configs/points_v15_chat.py +29 -0
- sglang/srt/configs/qwen3_next.py +11 -47
- sglang/srt/configs/qwen3_omni.py +613 -0
- sglang/srt/configs/qwen3_vl.py +576 -0
- sglang/srt/connector/remote_instance.py +1 -1
- sglang/srt/constrained/base_grammar_backend.py +6 -1
- sglang/srt/constrained/llguidance_backend.py +5 -0
- sglang/srt/constrained/outlines_backend.py +1 -1
- sglang/srt/constrained/outlines_jump_forward.py +1 -1
- sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
- sglang/srt/constrained/utils.py +12 -0
- sglang/srt/constrained/xgrammar_backend.py +26 -15
- sglang/srt/debug_utils/dumper.py +10 -3
- sglang/srt/disaggregation/ascend/conn.py +2 -2
- sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
- sglang/srt/disaggregation/base/conn.py +17 -4
- sglang/srt/disaggregation/common/conn.py +268 -98
- sglang/srt/disaggregation/decode.py +172 -39
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
- sglang/srt/disaggregation/fake/conn.py +11 -3
- sglang/srt/disaggregation/mooncake/conn.py +203 -555
- sglang/srt/disaggregation/nixl/conn.py +217 -63
- sglang/srt/disaggregation/prefill.py +113 -270
- sglang/srt/disaggregation/utils.py +36 -5
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
- sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
- sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
- sglang/srt/distributed/device_communicators/pynccl.py +24 -12
- sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
- sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
- sglang/srt/distributed/naive_distributed.py +5 -4
- sglang/srt/distributed/parallel_state.py +203 -97
- sglang/srt/elastic_ep/elastic_ep.py +74 -0
- sglang/srt/entrypoints/context.py +3 -2
- sglang/srt/entrypoints/engine.py +85 -65
- sglang/srt/entrypoints/grpc_server.py +632 -305
- sglang/srt/entrypoints/harmony_utils.py +2 -2
- sglang/srt/entrypoints/http_server.py +169 -17
- sglang/srt/entrypoints/http_server_engine.py +1 -7
- sglang/srt/entrypoints/openai/protocol.py +327 -34
- sglang/srt/entrypoints/openai/serving_base.py +74 -8
- sglang/srt/entrypoints/openai/serving_chat.py +202 -118
- sglang/srt/entrypoints/openai/serving_classify.py +204 -0
- sglang/srt/entrypoints/openai/serving_completions.py +20 -4
- sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
- sglang/srt/entrypoints/openai/serving_responses.py +47 -2
- sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
- sglang/srt/environ.py +323 -0
- sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
- sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
- sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
- sglang/srt/eplb/expert_distribution.py +3 -4
- sglang/srt/eplb/expert_location.py +30 -5
- sglang/srt/eplb/expert_location_dispatch.py +2 -2
- sglang/srt/eplb/expert_location_updater.py +2 -2
- sglang/srt/function_call/base_format_detector.py +17 -18
- sglang/srt/function_call/function_call_parser.py +21 -16
- sglang/srt/function_call/glm4_moe_detector.py +4 -8
- sglang/srt/function_call/gpt_oss_detector.py +24 -1
- sglang/srt/function_call/json_array_parser.py +61 -0
- sglang/srt/function_call/kimik2_detector.py +17 -4
- sglang/srt/function_call/utils.py +98 -7
- sglang/srt/grpc/compile_proto.py +245 -0
- sglang/srt/grpc/grpc_request_manager.py +915 -0
- sglang/srt/grpc/health_servicer.py +189 -0
- sglang/srt/grpc/scheduler_launcher.py +181 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
- sglang/srt/layers/activation.py +11 -7
- sglang/srt/layers/attention/aiter_backend.py +17 -18
- sglang/srt/layers/attention/ascend_backend.py +125 -10
- sglang/srt/layers/attention/attention_registry.py +226 -0
- sglang/srt/layers/attention/base_attn_backend.py +32 -4
- sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
- sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
- sglang/srt/layers/attention/fla/chunk.py +0 -1
- sglang/srt/layers/attention/fla/chunk_o.py +1 -1
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
- sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
- sglang/srt/layers/attention/fla/index.py +0 -2
- sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
- sglang/srt/layers/attention/fla/utils.py +0 -3
- sglang/srt/layers/attention/fla/wy_fast.py +0 -2
- sglang/srt/layers/attention/flashattention_backend.py +52 -15
- sglang/srt/layers/attention/flashinfer_backend.py +357 -212
- sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
- sglang/srt/layers/attention/flashmla_backend.py +9 -7
- sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
- sglang/srt/layers/attention/intel_amx_backend.py +1 -1
- sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
- sglang/srt/layers/attention/mamba/mamba.py +514 -1
- sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
- sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
- sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
- sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
- sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
- sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
- sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
- sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
- sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
- sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
- sglang/srt/layers/attention/nsa/transform_index.py +144 -0
- sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
- sglang/srt/layers/attention/nsa/utils.py +23 -0
- sglang/srt/layers/attention/nsa_backend.py +1201 -0
- sglang/srt/layers/attention/tbo_backend.py +6 -6
- sglang/srt/layers/attention/torch_flex_backend.py +325 -0
- sglang/srt/layers/attention/triton_backend.py +249 -42
- sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
- sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
- sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
- sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
- sglang/srt/layers/attention/utils.py +11 -7
- sglang/srt/layers/attention/vision.py +61 -3
- sglang/srt/layers/attention/wave_backend.py +4 -4
- sglang/srt/layers/attention/xpu_backend.py +1028 -0
- sglang/srt/layers/communicator.py +19 -7
- sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
- sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
- sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
- sglang/srt/layers/dp_attention.py +28 -1
- sglang/srt/layers/elementwise.py +3 -1
- sglang/srt/layers/layernorm.py +47 -15
- sglang/srt/layers/linear.py +30 -5
- sglang/srt/layers/logits_processor.py +161 -18
- sglang/srt/layers/modelopt_utils.py +11 -0
- sglang/srt/layers/moe/cutlass_moe.py +0 -2
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
- sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
- sglang/srt/layers/moe/ep_moe/layer.py +243 -448
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
- sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
- sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
- sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
- sglang/srt/layers/moe/moe_runner/runner.py +3 -0
- sglang/srt/layers/moe/moe_runner/triton.py +3 -1
- sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
- sglang/srt/layers/moe/router.py +51 -15
- sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
- sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
- sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
- sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
- sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
- sglang/srt/layers/moe/topk.py +3 -2
- sglang/srt/layers/moe/utils.py +27 -1
- sglang/srt/layers/parameter.py +23 -6
- sglang/srt/layers/quantization/__init__.py +2 -53
- sglang/srt/layers/quantization/awq.py +183 -6
- sglang/srt/layers/quantization/awq_triton.py +29 -0
- sglang/srt/layers/quantization/base_config.py +20 -1
- sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
- sglang/srt/layers/quantization/fp8.py +86 -20
- sglang/srt/layers/quantization/fp8_kernel.py +55 -10
- sglang/srt/layers/quantization/fp8_utils.py +43 -15
- sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
- sglang/srt/layers/quantization/gptq.py +0 -1
- sglang/srt/layers/quantization/int8_kernel.py +18 -2
- sglang/srt/layers/quantization/marlin_utils.py +12 -0
- sglang/srt/layers/quantization/modelopt_quant.py +141 -81
- sglang/srt/layers/quantization/mxfp4.py +17 -34
- sglang/srt/layers/quantization/petit.py +1 -1
- sglang/srt/layers/quantization/quark/quark.py +3 -1
- sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
- sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
- sglang/srt/layers/quantization/unquant.py +1 -4
- sglang/srt/layers/quantization/utils.py +0 -1
- sglang/srt/layers/quantization/w4afp8.py +51 -24
- sglang/srt/layers/quantization/w8a8_int8.py +45 -27
- sglang/srt/layers/radix_attention.py +59 -9
- sglang/srt/layers/rotary_embedding.py +750 -46
- sglang/srt/layers/sampler.py +84 -16
- sglang/srt/layers/sparse_pooler.py +98 -0
- sglang/srt/layers/utils.py +23 -1
- sglang/srt/layers/vocab_parallel_embedding.py +4 -1
- sglang/srt/lora/backend/base_backend.py +3 -3
- sglang/srt/lora/backend/chunked_backend.py +348 -0
- sglang/srt/lora/backend/triton_backend.py +9 -4
- sglang/srt/lora/eviction_policy.py +139 -0
- sglang/srt/lora/lora.py +7 -5
- sglang/srt/lora/lora_manager.py +33 -7
- sglang/srt/lora/lora_registry.py +1 -1
- sglang/srt/lora/mem_pool.py +41 -17
- sglang/srt/lora/triton_ops/__init__.py +4 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
- sglang/srt/lora/utils.py +7 -5
- sglang/srt/managers/cache_controller.py +83 -152
- sglang/srt/managers/data_parallel_controller.py +156 -87
- sglang/srt/managers/detokenizer_manager.py +51 -24
- sglang/srt/managers/io_struct.py +223 -129
- sglang/srt/managers/mm_utils.py +49 -10
- sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
- sglang/srt/managers/multimodal_processor.py +1 -2
- sglang/srt/managers/overlap_utils.py +130 -0
- sglang/srt/managers/schedule_batch.py +340 -529
- sglang/srt/managers/schedule_policy.py +158 -18
- sglang/srt/managers/scheduler.py +665 -620
- sglang/srt/managers/scheduler_input_blocker.py +1 -1
- sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
- sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
- sglang/srt/managers/scheduler_pp_mixin.py +341 -0
- sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
- sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
- sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
- sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
- sglang/srt/managers/tokenizer_manager.py +462 -226
- sglang/srt/managers/tp_worker.py +217 -156
- sglang/srt/managers/utils.py +79 -47
- sglang/srt/mem_cache/allocator.py +21 -22
- sglang/srt/mem_cache/allocator_ascend.py +42 -28
- sglang/srt/mem_cache/base_prefix_cache.py +3 -3
- sglang/srt/mem_cache/chunk_cache.py +20 -2
- sglang/srt/mem_cache/common.py +480 -0
- sglang/srt/mem_cache/evict_policy.py +38 -0
- sglang/srt/mem_cache/hicache_storage.py +44 -2
- sglang/srt/mem_cache/hiradix_cache.py +134 -34
- sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
- sglang/srt/mem_cache/memory_pool.py +602 -208
- sglang/srt/mem_cache/memory_pool_host.py +134 -183
- sglang/srt/mem_cache/multimodal_cache.py +0 -1
- sglang/srt/mem_cache/radix_cache.py +263 -78
- sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
- sglang/srt/mem_cache/storage/__init__.py +10 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
- sglang/srt/mem_cache/storage/backend_factory.py +223 -0
- sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
- sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
- sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
- sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
- sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
- sglang/srt/mem_cache/swa_radix_cache.py +115 -58
- sglang/srt/metrics/collector.py +113 -120
- sglang/srt/metrics/func_timer.py +3 -8
- sglang/srt/metrics/utils.py +8 -1
- sglang/srt/model_executor/cpu_graph_runner.py +2 -2
- sglang/srt/model_executor/cuda_graph_runner.py +81 -36
- sglang/srt/model_executor/forward_batch_info.py +40 -50
- sglang/srt/model_executor/model_runner.py +507 -319
- sglang/srt/model_executor/npu_graph_runner.py +11 -5
- sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
- sglang/srt/model_loader/__init__.py +1 -1
- sglang/srt/model_loader/loader.py +438 -37
- sglang/srt/model_loader/utils.py +0 -1
- sglang/srt/model_loader/weight_utils.py +200 -27
- sglang/srt/models/apertus.py +2 -3
- sglang/srt/models/arcee.py +2 -2
- sglang/srt/models/bailing_moe.py +40 -56
- sglang/srt/models/bailing_moe_nextn.py +3 -4
- sglang/srt/models/bert.py +1 -1
- sglang/srt/models/deepseek_nextn.py +25 -4
- sglang/srt/models/deepseek_ocr.py +1516 -0
- sglang/srt/models/deepseek_v2.py +793 -235
- sglang/srt/models/dots_ocr.py +171 -0
- sglang/srt/models/dots_vlm.py +0 -1
- sglang/srt/models/dots_vlm_vit.py +1 -1
- sglang/srt/models/falcon_h1.py +570 -0
- sglang/srt/models/gemma3_causal.py +0 -2
- sglang/srt/models/gemma3_mm.py +17 -1
- sglang/srt/models/gemma3n_mm.py +2 -3
- sglang/srt/models/glm4_moe.py +17 -40
- sglang/srt/models/glm4_moe_nextn.py +4 -4
- sglang/srt/models/glm4v.py +3 -2
- sglang/srt/models/glm4v_moe.py +6 -6
- sglang/srt/models/gpt_oss.py +12 -35
- sglang/srt/models/grok.py +10 -23
- sglang/srt/models/hunyuan.py +2 -7
- sglang/srt/models/interns1.py +0 -1
- sglang/srt/models/kimi_vl.py +1 -7
- sglang/srt/models/kimi_vl_moonvit.py +4 -2
- sglang/srt/models/llama.py +6 -2
- sglang/srt/models/llama_eagle3.py +1 -1
- sglang/srt/models/longcat_flash.py +6 -23
- sglang/srt/models/longcat_flash_nextn.py +4 -15
- sglang/srt/models/mimo.py +2 -13
- sglang/srt/models/mimo_mtp.py +1 -2
- sglang/srt/models/minicpmo.py +7 -5
- sglang/srt/models/mixtral.py +1 -4
- sglang/srt/models/mllama.py +1 -1
- sglang/srt/models/mllama4.py +27 -6
- sglang/srt/models/nemotron_h.py +511 -0
- sglang/srt/models/olmo2.py +31 -4
- sglang/srt/models/opt.py +5 -5
- sglang/srt/models/phi.py +1 -1
- sglang/srt/models/phi4mm.py +1 -1
- sglang/srt/models/phimoe.py +0 -1
- sglang/srt/models/pixtral.py +0 -3
- sglang/srt/models/points_v15_chat.py +186 -0
- sglang/srt/models/qwen.py +0 -1
- sglang/srt/models/qwen2.py +0 -7
- sglang/srt/models/qwen2_5_vl.py +5 -5
- sglang/srt/models/qwen2_audio.py +2 -15
- sglang/srt/models/qwen2_moe.py +70 -4
- sglang/srt/models/qwen2_vl.py +6 -3
- sglang/srt/models/qwen3.py +18 -3
- sglang/srt/models/qwen3_moe.py +50 -38
- sglang/srt/models/qwen3_next.py +43 -21
- sglang/srt/models/qwen3_next_mtp.py +3 -4
- sglang/srt/models/qwen3_omni_moe.py +661 -0
- sglang/srt/models/qwen3_vl.py +791 -0
- sglang/srt/models/qwen3_vl_moe.py +343 -0
- sglang/srt/models/registry.py +15 -3
- sglang/srt/models/roberta.py +55 -3
- sglang/srt/models/sarashina2_vision.py +268 -0
- sglang/srt/models/solar.py +505 -0
- sglang/srt/models/starcoder2.py +357 -0
- sglang/srt/models/step3_vl.py +3 -5
- sglang/srt/models/torch_native_llama.py +9 -2
- sglang/srt/models/utils.py +61 -0
- sglang/srt/multimodal/processors/base_processor.py +21 -9
- sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
- sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
- sglang/srt/multimodal/processors/dots_vlm.py +2 -4
- sglang/srt/multimodal/processors/glm4v.py +1 -5
- sglang/srt/multimodal/processors/internvl.py +20 -10
- sglang/srt/multimodal/processors/janus_pro.py +0 -1
- sglang/srt/multimodal/processors/mllama4.py +0 -8
- sglang/srt/multimodal/processors/phi4mm.py +0 -1
- sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
- sglang/srt/multimodal/processors/qwen_vl.py +83 -17
- sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
- sglang/srt/multimodal/processors/step3_vl.py +1 -1
- sglang/srt/parser/conversation.py +41 -0
- sglang/srt/parser/jinja_template_utils.py +6 -0
- sglang/srt/parser/reasoning_parser.py +0 -1
- sglang/srt/sampling/custom_logit_processor.py +77 -2
- sglang/srt/sampling/sampling_batch_info.py +36 -23
- sglang/srt/sampling/sampling_params.py +75 -0
- sglang/srt/server_args.py +1300 -338
- sglang/srt/server_args_config_parser.py +146 -0
- sglang/srt/single_batch_overlap.py +161 -0
- sglang/srt/speculative/base_spec_worker.py +34 -0
- sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
- sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
- sglang/srt/speculative/cpp_ngram/param.h +125 -0
- sglang/srt/speculative/cpp_ngram/queue.h +71 -0
- sglang/srt/speculative/draft_utils.py +226 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
- sglang/srt/speculative/eagle_info.py +786 -0
- sglang/srt/speculative/eagle_info_v2.py +458 -0
- sglang/srt/speculative/eagle_utils.py +113 -1270
- sglang/srt/speculative/eagle_worker.py +120 -285
- sglang/srt/speculative/eagle_worker_v2.py +702 -0
- sglang/srt/speculative/ngram_info.py +433 -0
- sglang/srt/speculative/ngram_worker.py +246 -0
- sglang/srt/speculative/spec_info.py +49 -0
- sglang/srt/speculative/spec_utils.py +641 -0
- sglang/srt/speculative/standalone_worker.py +4 -14
- sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
- sglang/srt/tracing/trace.py +32 -6
- sglang/srt/two_batch_overlap.py +35 -18
- sglang/srt/utils/__init__.py +2 -0
- sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
- sglang/srt/{utils.py → utils/common.py} +583 -113
- sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
- sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
- sglang/srt/{offloader.py → utils/offloader.py} +4 -4
- sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
- sglang/srt/utils/profile_merger.py +199 -0
- sglang/srt/utils/rpd_utils.py +452 -0
- sglang/srt/utils/slow_rank_detector.py +71 -0
- sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
- sglang/srt/warmup.py +8 -4
- sglang/srt/weight_sync/utils.py +1 -1
- sglang/test/attention/test_flashattn_backend.py +1 -1
- sglang/test/attention/test_flashattn_mla_backend.py +0 -1
- sglang/test/attention/test_prefix_chunk_info.py +0 -2
- sglang/test/attention/test_trtllm_mla_backend.py +221 -53
- sglang/test/few_shot_gsm8k_engine.py +2 -4
- sglang/test/get_logits_ut.py +57 -0
- sglang/test/kit_matched_stop.py +157 -0
- sglang/test/longbench_v2/__init__.py +1 -0
- sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
- sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
- sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
- sglang/test/run_eval.py +120 -11
- sglang/test/runners.py +3 -1
- sglang/test/send_one.py +42 -7
- sglang/test/simple_eval_common.py +8 -2
- sglang/test/simple_eval_gpqa.py +0 -1
- sglang/test/simple_eval_humaneval.py +0 -3
- sglang/test/simple_eval_longbench_v2.py +344 -0
- sglang/test/simple_eval_mmmu_vlm.py +441 -0
- sglang/test/test_block_fp8.py +3 -4
- sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
- sglang/test/test_cutlass_moe.py +1 -2
- sglang/test/test_cutlass_w4a8_moe.py +10 -20
- sglang/test/test_deterministic.py +430 -0
- sglang/test/test_deterministic_utils.py +73 -0
- sglang/test/test_disaggregation_utils.py +93 -1
- sglang/test/test_marlin_moe.py +0 -1
- sglang/test/test_programs.py +1 -1
- sglang/test/test_utils.py +432 -16
- sglang/utils.py +10 -1
- sglang/version.py +1 -1
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
- sglang/srt/entrypoints/grpc_request_manager.py +0 -580
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
- sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
- sglang/srt/mem_cache/lora_radix_cache.py +0 -421
- sglang/srt/speculative/build_eagle_tree.py +0 -427
- sglang/test/test_block_fp8_ep.py +0 -358
- /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
- /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
- /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
- /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,286 @@
|
|
|
1
|
+
# Copyright 2025 SGLang Team
|
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
3
|
+
# you may not use this file except in compliance with the License.
|
|
4
|
+
# You may obtain a copy of the License at
|
|
5
|
+
#
|
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
7
|
+
#
|
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
11
|
+
# See the License for the specific language governing permissions and
|
|
12
|
+
# limitations under the License.
|
|
13
|
+
# ==============================================================================
|
|
14
|
+
# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/transformers_utils/configs/nemotron_h.py
|
|
15
|
+
|
|
16
|
+
"""NemotronH model configuration"""
|
|
17
|
+
|
|
18
|
+
import regex as re
|
|
19
|
+
from transformers.configuration_utils import PretrainedConfig
|
|
20
|
+
from transformers.utils import logging
|
|
21
|
+
|
|
22
|
+
from sglang.srt.configs.mamba_utils import Mamba2CacheParams, Mamba2StateShape
|
|
23
|
+
from sglang.srt.layers.dp_attention import get_attention_tp_size
|
|
24
|
+
|
|
25
|
+
logger = logging.get_logger(__name__)
|
|
26
|
+
|
|
27
|
+
MAMBA = "M"
|
|
28
|
+
ATTENTION = "*"
|
|
29
|
+
MLP = "-"
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
class NemotronHConfig(PretrainedConfig):
|
|
33
|
+
r"""
|
|
34
|
+
This is the configuration class to store the configuration of a
|
|
35
|
+
[`NemotronHModel`]. It is used to instantiate a NemotronH model according
|
|
36
|
+
to the specified arguments, defining the model architecture. Instantiating
|
|
37
|
+
a configuration with the defaults will yield a similar configuration to
|
|
38
|
+
that of the NemotronH-v0.1 model.
|
|
39
|
+
Args:
|
|
40
|
+
vocab_size (`int`, *optional*, defaults to 131072):
|
|
41
|
+
Vocabulary size of the NemotronH model. Defines the number of
|
|
42
|
+
different tokens that can be represented by the `inputs_ids`
|
|
43
|
+
passed when calling [`NemotronHModel`]
|
|
44
|
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
|
45
|
+
Whether the model's input and output word embeddings should be
|
|
46
|
+
tied. Note that this is only relevant if the model has an output
|
|
47
|
+
word embedding layer.
|
|
48
|
+
hidden_size (`int`, *optional*, defaults to 4096):
|
|
49
|
+
Dimension of the hidden representations.
|
|
50
|
+
intermediate_size (`int`, *optional*, defaults to 21504):
|
|
51
|
+
Dimension of the MLP representations.
|
|
52
|
+
num_hidden_layers (`int`, *optional*, defaults to 52):
|
|
53
|
+
Number of hidden layers in the Transformer encoder.
|
|
54
|
+
hybrid_override_pattern (`str`, *optional*, defaults to
|
|
55
|
+
`"M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-"`):
|
|
56
|
+
The pattern of the hybrid model. The pattern is a string of
|
|
57
|
+
characters where each character represents
|
|
58
|
+
M: Mamba2, *: Attention, -: MLP
|
|
59
|
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
|
60
|
+
Number of attention heads for each attention layer in the
|
|
61
|
+
Transformer encoder.
|
|
62
|
+
attention_head_dim (`int`, *optional*, defaults to 128):
|
|
63
|
+
Dimension of each attention head.
|
|
64
|
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
|
65
|
+
This is the number of key_value heads that should be used to
|
|
66
|
+
implement Grouped Query Attention. If
|
|
67
|
+
`num_key_value_heads=num_attention_heads`, the model will use
|
|
68
|
+
Multi Head Attention (MHA), if `num_key_value_heads=1` the model
|
|
69
|
+
will use Multi Query Attention (MQA) otherwise GQA is used.
|
|
70
|
+
mlp_hidden_act (`str`, *optional*, defaults to "relu2"):
|
|
71
|
+
The non-linear activation function in the MLP layers.
|
|
72
|
+
attention_bias (`bool`, *optional*, defaults to `False`):
|
|
73
|
+
Whether to use bias in attention layers.
|
|
74
|
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
|
75
|
+
Whether to use bias in MLP layers.
|
|
76
|
+
use_bias (`bool`, *optional*, defaults to `False`):
|
|
77
|
+
Whether to use bias in the model.
|
|
78
|
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
79
|
+
The standard deviation of the truncated_normal_initializer for
|
|
80
|
+
initializing all weight matrices.
|
|
81
|
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
|
82
|
+
The epsilon used by the layer normalization layers.
|
|
83
|
+
residual_in_fp32 (`bool`, *optional*, defaults to `False`):
|
|
84
|
+
Whether or not residuals should be in `float32`. If set to `False`
|
|
85
|
+
residuals will keep the same `dtype` as the rest of the model.
|
|
86
|
+
use_cache (`bool`, *optional*, defaults to `True`):
|
|
87
|
+
Whether or not the model should return the last key/values
|
|
88
|
+
attentions (not used by all models). Only relevant if
|
|
89
|
+
`config.is_decoder=True`.
|
|
90
|
+
num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
|
|
91
|
+
Number of prompt logits to calculate during generation. If `None`,
|
|
92
|
+
all logits will be calculated. If an integer value, only last
|
|
93
|
+
`num_logits_to_keep` logits will be calculated.
|
|
94
|
+
pad_token_id (`int`, *optional*, defaults to 0):
|
|
95
|
+
The id of the padding token.
|
|
96
|
+
bos_token_id (`int`, *optional*, defaults to 1):
|
|
97
|
+
The id of the "beginning-of-sequence" token.
|
|
98
|
+
eos_token_id (`int`, *optional*, defaults to 2):
|
|
99
|
+
The id of the "end-of-sequence" token.
|
|
100
|
+
sliding_window (`int`, *optional*, defaults to None):
|
|
101
|
+
Sliding window attention window size.
|
|
102
|
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
|
103
|
+
The maximum sequence length that this model might ever be used
|
|
104
|
+
with.
|
|
105
|
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
106
|
+
The dropout ratio for the attention probabilities.
|
|
107
|
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
|
108
|
+
The dropout ratio for the hidden states.
|
|
109
|
+
use_mamba_kernels (`bool`, *optional*, defaults to `True`):
|
|
110
|
+
Flag indicating whether or not to use the fast mamba kernels.
|
|
111
|
+
These are available only if `mamba-ssm` and `causal-conv1d`
|
|
112
|
+
are installed, and the mamba modules are running on a CUDA device.
|
|
113
|
+
ssm_state_size (`int`, *optional*, defaults to 128):
|
|
114
|
+
The dimension of the mamba state space latents.
|
|
115
|
+
mamba_num_heads (`int`, *optional*, defaults to 128):
|
|
116
|
+
Number of heads in Mamba layers.
|
|
117
|
+
mamba_n_groups (`int`, *optional*, defaults to 8):
|
|
118
|
+
Number of groups in Mamba layers.
|
|
119
|
+
mamba_head_dim (`int`, *optional*, defaults to 64):
|
|
120
|
+
Dimension of each Mamba head.
|
|
121
|
+
mamba_d_conv (`int`, *optional*, defaults to 4):
|
|
122
|
+
The size of the mamba convolution kernel.
|
|
123
|
+
mamba_expand (`int`, *optional*, defaults to 2):
|
|
124
|
+
Expanding factor used to determine the mamba intermediate size.
|
|
125
|
+
mamba_hidden_act (`str`, *optional*, defaults to "silu"):
|
|
126
|
+
The non-linear activation function in the Mamba layers.
|
|
127
|
+
mamba_dt_min (`float`, *optional*, defaults to 0.001):
|
|
128
|
+
Minimum value for the time step in Mamba.
|
|
129
|
+
mamba_dt_max (`float`, *optional*, defaults to 0.1):
|
|
130
|
+
Maximum value for the time step in Mamba.
|
|
131
|
+
mamba_dt_limit (`tuple`, *optional*, defaults to (0.0, float("inf"))):
|
|
132
|
+
Limits for the time step in Mamba.
|
|
133
|
+
mamba_dt_init_floor (`float`, *optional*, defaults to 1e-4):
|
|
134
|
+
Floor value for time step initialization in Mamba.
|
|
135
|
+
mamba_conv_bias (`bool`, *optional*, defaults to `True`):
|
|
136
|
+
Whether to use bias in the convolution layer of the mamba mixer
|
|
137
|
+
block.
|
|
138
|
+
mamba_proj_bias (`bool`, *optional*, defaults to `False`):
|
|
139
|
+
Whether to use bias in the input and output projections of the
|
|
140
|
+
mamba mixer block.
|
|
141
|
+
mamba_chunk_size (`int`, *optional*, defaults to 256):
|
|
142
|
+
Size of chunks for Mamba processing.
|
|
143
|
+
rescale_prenorm_residual (`bool`, *optional*, defaults to `True`):
|
|
144
|
+
Whether to rescale the pre-normalization residual connections.
|
|
145
|
+
"""
|
|
146
|
+
|
|
147
|
+
model_type = "nemotron_h"
|
|
148
|
+
keys_to_ignore_at_inference = ["past_key_values"]
|
|
149
|
+
|
|
150
|
+
def __init__(
|
|
151
|
+
self,
|
|
152
|
+
vocab_size=131072,
|
|
153
|
+
tie_word_embeddings=False,
|
|
154
|
+
hidden_size=4096,
|
|
155
|
+
intermediate_size=21504,
|
|
156
|
+
num_hidden_layers=52,
|
|
157
|
+
hybrid_override_pattern="M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-",
|
|
158
|
+
num_attention_heads=32,
|
|
159
|
+
head_dim=128,
|
|
160
|
+
num_key_value_heads=8, # nemo: num_query_groups
|
|
161
|
+
mlp_hidden_act="relu2",
|
|
162
|
+
attention_bias=False,
|
|
163
|
+
mlp_bias=False,
|
|
164
|
+
use_bias=False,
|
|
165
|
+
initializer_range=0.02, # nemo: init_method_std
|
|
166
|
+
layer_norm_epsilon=1e-5, # nemo: layernorm_epsilon
|
|
167
|
+
residual_in_fp32=False, # Megatron Core default value
|
|
168
|
+
use_cache=True,
|
|
169
|
+
num_logits_to_keep=1,
|
|
170
|
+
pad_token_id=0,
|
|
171
|
+
bos_token_id=1,
|
|
172
|
+
eos_token_id=2,
|
|
173
|
+
sliding_window=None,
|
|
174
|
+
max_position_embeddings=4096,
|
|
175
|
+
attention_dropout=0.0,
|
|
176
|
+
hidden_dropout=0.0, # * ADDED
|
|
177
|
+
use_mamba_kernels=True,
|
|
178
|
+
ssm_state_size=128, # mamba_state_size
|
|
179
|
+
mamba_num_heads=128,
|
|
180
|
+
mamba_n_groups=8, # nemo: mamba_ssm_ngroups = num_heads
|
|
181
|
+
mamba_head_dim=64,
|
|
182
|
+
mamba_d_conv=4,
|
|
183
|
+
mamba_expand=2,
|
|
184
|
+
mamba_hidden_act="silu",
|
|
185
|
+
mamba_dt_min=0.001,
|
|
186
|
+
mamba_dt_max=0.1,
|
|
187
|
+
mamba_dt_limit=(0.0, float("inf")),
|
|
188
|
+
mamba_dt_init_floor=1e-4,
|
|
189
|
+
mamba_conv_bias=True,
|
|
190
|
+
mamba_proj_bias=False,
|
|
191
|
+
mamba_chunk_size=256,
|
|
192
|
+
rescale_prenorm_residual=True,
|
|
193
|
+
**kwargs,
|
|
194
|
+
):
|
|
195
|
+
self.vocab_size = vocab_size
|
|
196
|
+
self.tie_word_embeddings = tie_word_embeddings
|
|
197
|
+
self.hidden_size = hidden_size
|
|
198
|
+
self.intermediate_size = intermediate_size
|
|
199
|
+
self.num_hidden_layers = num_hidden_layers
|
|
200
|
+
self.hybrid_override_pattern = hybrid_override_pattern
|
|
201
|
+
self.num_attention_heads = num_attention_heads
|
|
202
|
+
self.head_dim = head_dim
|
|
203
|
+
self.sliding_window = sliding_window
|
|
204
|
+
self.max_position_embeddings = max_position_embeddings
|
|
205
|
+
self.attention_dropout = attention_dropout
|
|
206
|
+
self.hidden_dropout = hidden_dropout
|
|
207
|
+
|
|
208
|
+
# Validate hybrid_override_pattern
|
|
209
|
+
# M: Mamba2, *: Attention, -: MLP
|
|
210
|
+
assert len(self.hybrid_override_pattern) == self.num_hidden_layers, (
|
|
211
|
+
"hybrid_override_pattern must have same length as " "num_hidden_layers"
|
|
212
|
+
)
|
|
213
|
+
assert re.match(r"^[*-M]+$", self.hybrid_override_pattern), (
|
|
214
|
+
"hybrid_override_pattern must only contain characters " "'M', '*', or '-'"
|
|
215
|
+
)
|
|
216
|
+
|
|
217
|
+
# for backward compatibility
|
|
218
|
+
if num_key_value_heads is None:
|
|
219
|
+
num_key_value_heads = num_attention_heads
|
|
220
|
+
|
|
221
|
+
self.num_key_value_heads = num_key_value_heads
|
|
222
|
+
self.mlp_hidden_act = mlp_hidden_act
|
|
223
|
+
self.attention_bias = attention_bias
|
|
224
|
+
self.mlp_bias = mlp_bias
|
|
225
|
+
self.use_bias = use_bias
|
|
226
|
+
self.initializer_range = initializer_range
|
|
227
|
+
self.layer_norm_epsilon = layer_norm_epsilon
|
|
228
|
+
self.residual_in_fp32 = residual_in_fp32
|
|
229
|
+
|
|
230
|
+
self.use_cache = use_cache
|
|
231
|
+
self.num_logits_to_keep = num_logits_to_keep
|
|
232
|
+
|
|
233
|
+
self.use_mamba_kernels = use_mamba_kernels
|
|
234
|
+
self.mamba_n_groups = mamba_n_groups
|
|
235
|
+
self.mamba_head_dim = mamba_head_dim
|
|
236
|
+
self.ssm_state_size = ssm_state_size
|
|
237
|
+
self.mamba_num_heads = mamba_num_heads
|
|
238
|
+
self.conv_kernel = mamba_d_conv
|
|
239
|
+
self.expand = mamba_expand
|
|
240
|
+
self.mamba_hidden_act = mamba_hidden_act
|
|
241
|
+
self.time_step_min = mamba_dt_min
|
|
242
|
+
self.time_step_max = mamba_dt_max
|
|
243
|
+
self.time_step_limit = mamba_dt_limit
|
|
244
|
+
self.time_step_floor = mamba_dt_init_floor
|
|
245
|
+
self.use_conv_bias = mamba_conv_bias
|
|
246
|
+
self.mamba_proj_bias = mamba_proj_bias
|
|
247
|
+
self.mamba_chunk_size = mamba_chunk_size
|
|
248
|
+
self.rescale_prenorm_residual = rescale_prenorm_residual
|
|
249
|
+
|
|
250
|
+
super().__init__(
|
|
251
|
+
pad_token_id=pad_token_id,
|
|
252
|
+
bos_token_id=bos_token_id,
|
|
253
|
+
eos_token_id=eos_token_id,
|
|
254
|
+
tie_word_embeddings=tie_word_embeddings,
|
|
255
|
+
**kwargs,
|
|
256
|
+
)
|
|
257
|
+
|
|
258
|
+
@property
|
|
259
|
+
def mamba_layer_ids(self):
|
|
260
|
+
return [
|
|
261
|
+
i
|
|
262
|
+
for i in range(self.num_hidden_layers)
|
|
263
|
+
if self.hybrid_override_pattern[i] == MAMBA
|
|
264
|
+
]
|
|
265
|
+
|
|
266
|
+
@property
|
|
267
|
+
def full_attention_layer_ids(self):
|
|
268
|
+
return [
|
|
269
|
+
i
|
|
270
|
+
for i in range(self.num_hidden_layers)
|
|
271
|
+
if self.hybrid_override_pattern[i] == ATTENTION
|
|
272
|
+
]
|
|
273
|
+
|
|
274
|
+
@property
|
|
275
|
+
def mamba2_cache_params(self) -> Mamba2CacheParams:
|
|
276
|
+
shape = Mamba2StateShape.create(
|
|
277
|
+
tp_world_size=get_attention_tp_size(),
|
|
278
|
+
intermediate_size=self.mamba_num_heads * self.mamba_head_dim,
|
|
279
|
+
n_groups=self.n_groups,
|
|
280
|
+
num_heads=self.mamba_num_heads,
|
|
281
|
+
head_dim=self.mamba_head_dim,
|
|
282
|
+
state_size=self.ssm_state_size,
|
|
283
|
+
conv_kernel=self.conv_kernel,
|
|
284
|
+
)
|
|
285
|
+
|
|
286
|
+
return Mamba2CacheParams(shape=shape, layers=self.mamba_layer_ids)
|
|
@@ -0,0 +1,105 @@
|
|
|
1
|
+
# coding=utf-8
|
|
2
|
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
"""Olmo3 model configuration"""
|
|
16
|
+
|
|
17
|
+
import enum
|
|
18
|
+
|
|
19
|
+
from transformers.configuration_utils import PretrainedConfig
|
|
20
|
+
from transformers.modeling_rope_utils import rope_config_validation
|
|
21
|
+
from transformers.utils import logging
|
|
22
|
+
|
|
23
|
+
logger = logging.get_logger(__name__)
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class Olmo3LayerType(enum.Enum):
|
|
27
|
+
full_attention = "full_attention"
|
|
28
|
+
sliding_attention = "sliding_attention"
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class Olmo3Config(PretrainedConfig):
|
|
32
|
+
|
|
33
|
+
model_type = "olmo3"
|
|
34
|
+
keys_to_ignore_at_inference = ["past_key_values"]
|
|
35
|
+
|
|
36
|
+
def __init__(
|
|
37
|
+
self,
|
|
38
|
+
vocab_size=50304,
|
|
39
|
+
hidden_size=4096,
|
|
40
|
+
intermediate_size=11008,
|
|
41
|
+
num_hidden_layers=32,
|
|
42
|
+
num_attention_heads=32,
|
|
43
|
+
num_key_value_heads=None,
|
|
44
|
+
hidden_act="silu",
|
|
45
|
+
max_position_embeddings=2048,
|
|
46
|
+
initializer_range=0.02,
|
|
47
|
+
use_cache=True,
|
|
48
|
+
pad_token_id=1,
|
|
49
|
+
bos_token_id=None,
|
|
50
|
+
eos_token_id=50279,
|
|
51
|
+
tie_word_embeddings=False,
|
|
52
|
+
rope_theta=10000.0,
|
|
53
|
+
rope_scaling=None,
|
|
54
|
+
attention_bias=False,
|
|
55
|
+
attention_dropout=0.0,
|
|
56
|
+
rms_norm_eps=1e-5,
|
|
57
|
+
sliding_window=4096,
|
|
58
|
+
layer_types=None,
|
|
59
|
+
**kwargs,
|
|
60
|
+
):
|
|
61
|
+
# This model uses Olmo3ForCausalLM in transformers but Olmo2ForCausalLM
|
|
62
|
+
# in sglang.
|
|
63
|
+
if "architectures" not in kwargs:
|
|
64
|
+
kwargs["architectures"] = ["Olmo2ForCausalLM"]
|
|
65
|
+
elif "Olmo3ForCausalLM" in kwargs["architectures"]:
|
|
66
|
+
kwargs["architectures"].remove("Olmo3ForCausalLM")
|
|
67
|
+
kwargs["architectures"].append("Olmo2ForCausalLM")
|
|
68
|
+
|
|
69
|
+
super().__init__(
|
|
70
|
+
pad_token_id=pad_token_id,
|
|
71
|
+
bos_token_id=bos_token_id,
|
|
72
|
+
eos_token_id=eos_token_id,
|
|
73
|
+
tie_word_embeddings=tie_word_embeddings,
|
|
74
|
+
**kwargs,
|
|
75
|
+
)
|
|
76
|
+
self.vocab_size = vocab_size
|
|
77
|
+
self.max_position_embeddings = max_position_embeddings
|
|
78
|
+
self.hidden_size = hidden_size
|
|
79
|
+
self.intermediate_size = intermediate_size
|
|
80
|
+
self.num_hidden_layers = num_hidden_layers
|
|
81
|
+
self.num_attention_heads = num_attention_heads
|
|
82
|
+
|
|
83
|
+
# for backward compatibility
|
|
84
|
+
if num_key_value_heads is None:
|
|
85
|
+
num_key_value_heads = num_attention_heads
|
|
86
|
+
|
|
87
|
+
self.num_key_value_heads = num_key_value_heads
|
|
88
|
+
self.hidden_act = hidden_act
|
|
89
|
+
self.initializer_range = initializer_range
|
|
90
|
+
self.use_cache = use_cache
|
|
91
|
+
self.rope_theta = rope_theta
|
|
92
|
+
self.rope_scaling = rope_scaling
|
|
93
|
+
rope_config_validation(self)
|
|
94
|
+
self.attention_bias = attention_bias
|
|
95
|
+
self.attention_dropout = attention_dropout
|
|
96
|
+
|
|
97
|
+
self.rms_norm_eps = rms_norm_eps
|
|
98
|
+
|
|
99
|
+
self.sliding_window = sliding_window
|
|
100
|
+
self.layer_types = layer_types
|
|
101
|
+
if self.layer_types is None:
|
|
102
|
+
self.layer_types = [
|
|
103
|
+
"sliding_attention" if (i + 1) % 4 != 0 else "full_attention"
|
|
104
|
+
for i in range(self.num_hidden_layers)
|
|
105
|
+
]
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
from typing import Optional, Union
|
|
2
|
+
|
|
3
|
+
from transformers import PretrainedConfig, Qwen2Config
|
|
4
|
+
from transformers.models.qwen2_vl.configuration_qwen2_vl import Qwen2VLVisionConfig
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class POINTSV15ChatConfig(PretrainedConfig):
|
|
8
|
+
model_type = "pointsv1.5_chat"
|
|
9
|
+
|
|
10
|
+
def __init__(
|
|
11
|
+
self,
|
|
12
|
+
vision_config: Optional[Union[dict, Qwen2VLVisionConfig]] = None,
|
|
13
|
+
llm_config: Optional[Union[dict, Qwen2Config]] = None,
|
|
14
|
+
**kwargs,
|
|
15
|
+
):
|
|
16
|
+
super().__init__(**kwargs)
|
|
17
|
+
if vision_config is None:
|
|
18
|
+
vision_config = Qwen2VLVisionConfig()
|
|
19
|
+
elif isinstance(vision_config, dict):
|
|
20
|
+
vision_config = Qwen2VLVisionConfig(**vision_config)
|
|
21
|
+
self.vision_config = vision_config
|
|
22
|
+
|
|
23
|
+
if llm_config is None:
|
|
24
|
+
llm_config = Qwen2Config()
|
|
25
|
+
elif isinstance(llm_config, dict):
|
|
26
|
+
llm_config = Qwen2Config(**llm_config)
|
|
27
|
+
|
|
28
|
+
self.llm_config = llm_config
|
|
29
|
+
self.hidden_size = self.llm_config.hidden_size
|
sglang/srt/configs/qwen3_next.py
CHANGED
|
@@ -15,26 +15,20 @@
|
|
|
15
15
|
"""Qwen3Hybrid model configuration"""
|
|
16
16
|
|
|
17
17
|
import enum
|
|
18
|
-
import os
|
|
19
18
|
|
|
20
|
-
import numpy as np
|
|
21
|
-
import torch
|
|
22
19
|
from transformers.configuration_utils import PretrainedConfig
|
|
23
20
|
from transformers.modeling_rope_utils import rope_config_validation
|
|
24
21
|
from transformers.utils import logging
|
|
25
22
|
|
|
26
|
-
from sglang.srt.
|
|
23
|
+
from sglang.srt.configs.mamba_utils import Mamba2CacheParams, Mamba2StateShape
|
|
27
24
|
from sglang.srt.layers.dp_attention import get_attention_tp_size
|
|
28
25
|
|
|
29
26
|
logger = logging.get_logger(__name__)
|
|
30
27
|
|
|
31
28
|
|
|
32
|
-
# NOTE: HybridLayerType
|
|
33
29
|
class HybridLayerType(enum.Enum):
|
|
34
30
|
full_attention = "attention"
|
|
35
|
-
swa_attention = "swa_attention"
|
|
36
31
|
linear_attention = "linear_attention"
|
|
37
|
-
mamba2 = "mamba"
|
|
38
32
|
|
|
39
33
|
|
|
40
34
|
class Qwen3NextConfig(PretrainedConfig):
|
|
@@ -282,45 +276,15 @@ class Qwen3NextConfig(PretrainedConfig):
|
|
|
282
276
|
]
|
|
283
277
|
|
|
284
278
|
@property
|
|
285
|
-
def
|
|
286
|
-
|
|
287
|
-
|
|
288
|
-
self.
|
|
289
|
-
|
|
279
|
+
def mamba2_cache_params(self) -> Mamba2CacheParams:
|
|
280
|
+
shape = Mamba2StateShape.create(
|
|
281
|
+
tp_world_size=get_attention_tp_size(),
|
|
282
|
+
intermediate_size=self.linear_value_head_dim * self.linear_num_value_heads,
|
|
283
|
+
n_groups=self.linear_num_key_heads,
|
|
284
|
+
num_heads=self.linear_num_value_heads,
|
|
285
|
+
head_dim=self.linear_value_head_dim,
|
|
286
|
+
state_size=self.linear_key_head_dim,
|
|
287
|
+
conv_kernel=self.linear_conv_kernel_dim,
|
|
290
288
|
)
|
|
291
|
-
conv_state_shape = (
|
|
292
|
-
divide(conv_dim, world_size),
|
|
293
|
-
self.linear_conv_kernel_dim - 1,
|
|
294
|
-
)
|
|
295
|
-
|
|
296
|
-
temporal_state_shape = (
|
|
297
|
-
divide(self.linear_num_value_heads, world_size),
|
|
298
|
-
self.linear_key_head_dim,
|
|
299
|
-
self.linear_value_head_dim,
|
|
300
|
-
)
|
|
301
|
-
conv_dtype = torch.bfloat16
|
|
302
|
-
dtype_map = {
|
|
303
|
-
"float32": torch.float32,
|
|
304
|
-
"bfloat16": torch.bfloat16,
|
|
305
|
-
}
|
|
306
|
-
ssm_dtype = dtype_map[os.environ["SGLANG_MAMBA_SSM_DTYPE"]]
|
|
307
|
-
mamba_layers = self.linear_layer_ids
|
|
308
|
-
return (
|
|
309
|
-
conv_state_shape,
|
|
310
|
-
temporal_state_shape,
|
|
311
|
-
conv_dtype,
|
|
312
|
-
ssm_dtype,
|
|
313
|
-
mamba_layers,
|
|
314
|
-
)
|
|
315
|
-
|
|
316
|
-
@property
|
|
317
|
-
def mamba_cache_per_req(self):
|
|
318
|
-
conv_state_shape, temporal_state_shape, conv_dtype, ssm_dtype, mamba_layers = (
|
|
319
|
-
self.hybrid_gdn_params
|
|
320
|
-
)
|
|
321
|
-
mamba_layers_len = len(mamba_layers)
|
|
322
289
|
|
|
323
|
-
return (
|
|
324
|
-
int(np.prod(conv_state_shape)) * conv_dtype.itemsize
|
|
325
|
-
+ int(np.prod(temporal_state_shape)) * ssm_dtype.itemsize
|
|
326
|
-
) * mamba_layers_len
|
|
290
|
+
return Mamba2CacheParams(shape=shape, layers=self.linear_layer_ids)
|