sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -25,30 +25,6 @@ if TYPE_CHECKING: 
     | 
|
| 
       25 
25 
     | 
    
         
             
            def quantize(w, dtype, dev, **opt):
         
     | 
| 
       26 
26 
     | 
    
         
             
                if dtype == "bf16":
         
     | 
| 
       27 
27 
     | 
    
         
             
                    return w.to(torch.bfloat16), InFlexData()
         
     | 
| 
       28 
     | 
    
         
            -
                elif dtype == "fp8":
         
     | 
| 
       29 
     | 
    
         
            -
                    wq = w.to(torch.float8_e4m3fn).transpose(-1, -2).contiguous().transpose(-1, -2)
         
     | 
| 
       30 
     | 
    
         
            -
                    return (
         
     | 
| 
       31 
     | 
    
         
            -
                        wq,
         
     | 
| 
       32 
     | 
    
         
            -
                        InFlexData(dtype=wq.dtype, scale=w.abs().max().unsqueeze(0)),
         
     | 
| 
       33 
     | 
    
         
            -
                        MicroscalingCtx(),
         
     | 
| 
       34 
     | 
    
         
            -
                    )
         
     | 
| 
       35 
     | 
    
         
            -
                else:
         
     | 
| 
       36 
     | 
    
         
            -
                    assert dtype == "mx4", f"{dtype=}"
         
     | 
| 
       37 
     | 
    
         
            -
                    swizzle_mx_scale = opt["swizzle_mx_scale"]
         
     | 
| 
       38 
     | 
    
         
            -
                    swizzle_axis = 2 if swizzle_mx_scale else None
         
     | 
| 
       39 
     | 
    
         
            -
                    w = w.to(torch.bfloat16)
         
     | 
| 
       40 
     | 
    
         
            -
                    w, mx_scales, weight_scale_shape = downcast_to_mxfp(
         
     | 
| 
       41 
     | 
    
         
            -
                        w, torch.uint8, axis=1, swizzle_axis=swizzle_axis
         
     | 
| 
       42 
     | 
    
         
            -
                    )
         
     | 
| 
       43 
     | 
    
         
            -
                    return (
         
     | 
| 
       44 
     | 
    
         
            -
                        w,
         
     | 
| 
       45 
     | 
    
         
            -
                        InFlexData(),
         
     | 
| 
       46 
     | 
    
         
            -
                        MicroscalingCtx(
         
     | 
| 
       47 
     | 
    
         
            -
                            weight_scale=mx_scales,
         
     | 
| 
       48 
     | 
    
         
            -
                            swizzle_mx=swizzle_mx_scale,
         
     | 
| 
       49 
     | 
    
         
            -
                            actual_weight_scale_shape=weight_scale_shape,
         
     | 
| 
       50 
     | 
    
         
            -
                        ),
         
     | 
| 
       51 
     | 
    
         
            -
                    )
         
     | 
| 
       52 
28 
     | 
    
         | 
| 
       53 
29 
     | 
    
         | 
| 
       54 
30 
     | 
    
         
             
            def triton_kernel_moe_forward(
         
     | 
| 
         @@ -119,14 +95,14 @@ def triton_kernel_fused_experts( 
     | 
|
| 
       119 
95 
     | 
    
         
             
                block_shape: Optional[list[int]] = None,
         
     | 
| 
       120 
96 
     | 
    
         
             
            ) -> torch.Tensor:
         
     | 
| 
       121 
97 
     | 
    
         | 
| 
       122 
     | 
    
         
            -
                assert use_fp8_w8a8  
     | 
| 
       123 
     | 
    
         
            -
                assert per_channel_quant  
     | 
| 
       124 
     | 
    
         
            -
                assert expert_map  
     | 
| 
       125 
     | 
    
         
            -
                assert w1_scale  
     | 
| 
       126 
     | 
    
         
            -
                assert w2_scale  
     | 
| 
       127 
     | 
    
         
            -
                assert a1_scale  
     | 
| 
       128 
     | 
    
         
            -
                assert a2_scale  
     | 
| 
       129 
     | 
    
         
            -
                assert block_shape  
     | 
| 
      
 98 
     | 
    
         
            +
                assert use_fp8_w8a8 is False, "use_fp8_w8a8 is not supported"
         
     | 
| 
      
 99 
     | 
    
         
            +
                assert per_channel_quant is False, "per_channel_quant is not supported"
         
     | 
| 
      
 100 
     | 
    
         
            +
                assert expert_map is None, "expert_map is not supported"
         
     | 
| 
      
 101 
     | 
    
         
            +
                assert w1_scale is None, "w1_scale is not supported"
         
     | 
| 
      
 102 
     | 
    
         
            +
                assert w2_scale is None, "w2_scale is not supported"
         
     | 
| 
      
 103 
     | 
    
         
            +
                assert a1_scale is None, "a1_scale is not supported"
         
     | 
| 
      
 104 
     | 
    
         
            +
                assert a2_scale is None, "a2_scale is not supported"
         
     | 
| 
      
 105 
     | 
    
         
            +
                assert block_shape is None, "block_shape is not supported"
         
     | 
| 
       130 
106 
     | 
    
         | 
| 
       131 
107 
     | 
    
         
             
                # type check
         
     | 
| 
       132 
108 
     | 
    
         
             
                assert hidden_states.dtype == torch.bfloat16, "hidden_states must be bfloat16"
         
     | 
| 
         @@ -143,7 +119,7 @@ def triton_kernel_fused_experts( 
     | 
|
| 
       143 
119 
     | 
    
         
             
                ), f"w2 shape[-1] {w2.shape[-1]} must be equal to w1 shape[1] {w1.shape[1]}"
         
     | 
| 
       144 
120 
     | 
    
         | 
| 
       145 
121 
     | 
    
         
             
                # feature check
         
     | 
| 
       146 
     | 
    
         
            -
                assert inplace  
     | 
| 
      
 122 
     | 
    
         
            +
                assert inplace is False, "Inplace is not supported in new triton MoE kernel"
         
     | 
| 
       147 
123 
     | 
    
         | 
| 
       148 
124 
     | 
    
         
             
                M, K = hidden_states.shape
         
     | 
| 
       149 
125 
     | 
    
         
             
                E, _, N = w1.shape
         
     | 
| 
         @@ -264,14 +240,14 @@ def triton_kernel_fused_experts_with_bias( 
     | 
|
| 
       264 
240 
     | 
    
         
             
                gemm1_alpha: Optional[float] = None,
         
     | 
| 
       265 
241 
     | 
    
         
             
                gemm1_clamp_limit: Optional[float] = None,
         
     | 
| 
       266 
242 
     | 
    
         
             
            ) -> torch.Tensor:
         
     | 
| 
       267 
     | 
    
         
            -
                assert use_fp8_w8a8  
     | 
| 
       268 
     | 
    
         
            -
                assert per_channel_quant  
     | 
| 
       269 
     | 
    
         
            -
                assert expert_map  
     | 
| 
       270 
     | 
    
         
            -
                assert w1_scale  
     | 
| 
       271 
     | 
    
         
            -
                assert w2_scale  
     | 
| 
       272 
     | 
    
         
            -
                assert a1_scale  
     | 
| 
       273 
     | 
    
         
            -
                assert a2_scale  
     | 
| 
       274 
     | 
    
         
            -
                assert block_shape  
     | 
| 
      
 243 
     | 
    
         
            +
                assert use_fp8_w8a8 is False, "use_fp8_w8a8 is not supported"
         
     | 
| 
      
 244 
     | 
    
         
            +
                assert per_channel_quant is False, "per_channel_quant is not supported"
         
     | 
| 
      
 245 
     | 
    
         
            +
                assert expert_map is None, "expert_map is not supported"
         
     | 
| 
      
 246 
     | 
    
         
            +
                assert w1_scale is None, "w1_scale is not supported"
         
     | 
| 
      
 247 
     | 
    
         
            +
                assert w2_scale is None, "w2_scale is not supported"
         
     | 
| 
      
 248 
     | 
    
         
            +
                assert a1_scale is None, "a1_scale is not supported"
         
     | 
| 
      
 249 
     | 
    
         
            +
                assert a2_scale is None, "a2_scale is not supported"
         
     | 
| 
      
 250 
     | 
    
         
            +
                assert block_shape is None, "block_shape is not supported"
         
     | 
| 
       275 
251 
     | 
    
         | 
| 
       276 
252 
     | 
    
         
             
                # type check
         
     | 
| 
       277 
253 
     | 
    
         
             
                assert hidden_states.dtype == torch.bfloat16, "hidden_states must be bfloat16"
         
     | 
| 
         @@ -290,7 +266,7 @@ def triton_kernel_fused_experts_with_bias( 
     | 
|
| 
       290 
266 
     | 
    
         
             
                ), f"w2 shape[-1] {w2.shape[-1]} must be equal to w1 shape[1] {w1.shape[1]}"
         
     | 
| 
       291 
267 
     | 
    
         | 
| 
       292 
268 
     | 
    
         
             
                # feature check
         
     | 
| 
       293 
     | 
    
         
            -
                assert inplace  
     | 
| 
      
 269 
     | 
    
         
            +
                assert inplace is False, "Inplace is not supported in new triton MoE kernel"
         
     | 
| 
       294 
270 
     | 
    
         | 
| 
       295 
271 
     | 
    
         
             
                E, _, _ = w1.shape
         
     | 
| 
       296 
272 
     | 
    
         | 
| 
         @@ -0,0 +1,304 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            from __future__ import annotations
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            from dataclasses import dataclass
         
     | 
| 
      
 4 
     | 
    
         
            +
            from typing import TYPE_CHECKING, List, Optional
         
     | 
| 
      
 5 
     | 
    
         
            +
             
     | 
| 
      
 6 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 7 
     | 
    
         
            +
             
     | 
| 
      
 8 
     | 
    
         
            +
            from sglang.srt.layers.moe.moe_runner.base import (
         
     | 
| 
      
 9 
     | 
    
         
            +
                MoeQuantInfo,
         
     | 
| 
      
 10 
     | 
    
         
            +
                MoeRunnerConfig,
         
     | 
| 
      
 11 
     | 
    
         
            +
                MoeRunnerCore,
         
     | 
| 
      
 12 
     | 
    
         
            +
                RunnerInput,
         
     | 
| 
      
 13 
     | 
    
         
            +
                RunnerOutput,
         
     | 
| 
      
 14 
     | 
    
         
            +
                register_post_permute,
         
     | 
| 
      
 15 
     | 
    
         
            +
                register_pre_permute,
         
     | 
| 
      
 16 
     | 
    
         
            +
            )
         
     | 
| 
      
 17 
     | 
    
         
            +
            from sglang.srt.layers.moe.utils import MoeRunnerBackend
         
     | 
| 
      
 18 
     | 
    
         
            +
            from sglang.srt.utils import dispose_tensor
         
     | 
| 
      
 19 
     | 
    
         
            +
             
     | 
| 
      
 20 
     | 
    
         
            +
            if TYPE_CHECKING:
         
     | 
| 
      
 21 
     | 
    
         
            +
                from sglang.srt.layers.moe.token_dispatcher.standard import (
         
     | 
| 
      
 22 
     | 
    
         
            +
                    StandardCombineInput,
         
     | 
| 
      
 23 
     | 
    
         
            +
                    StandardDispatchOutput,
         
     | 
| 
      
 24 
     | 
    
         
            +
                )
         
     | 
| 
      
 25 
     | 
    
         
            +
             
     | 
| 
      
 26 
     | 
    
         
            +
             
     | 
| 
      
 27 
     | 
    
         
            +
            # TODO(kaixih@nvidia): ideally we should merge this logic into
         
     | 
| 
      
 28 
     | 
    
         
            +
            # `fill_gateup_input_triton_kernel` to directly generate e8m0 scale.
         
     | 
| 
      
 29 
     | 
    
         
            +
            @torch.compile
         
     | 
| 
      
 30 
     | 
    
         
            +
            def _cast_to_e8m0_with_rounding_up(x: torch.Tensor) -> torch.Tensor:
         
     | 
| 
      
 31 
     | 
    
         
            +
                temp = x.to(torch.float32).view(torch.int32)
         
     | 
| 
      
 32 
     | 
    
         
            +
                exp = torch.bitwise_right_shift(temp, 23)
         
     | 
| 
      
 33 
     | 
    
         
            +
                mant = torch.bitwise_and(temp, 0x7FFFFF)
         
     | 
| 
      
 34 
     | 
    
         
            +
                is_ru = torch.logical_and(
         
     | 
| 
      
 35 
     | 
    
         
            +
                    torch.logical_and((mant > 0), (exp != 0xFE)),
         
     | 
| 
      
 36 
     | 
    
         
            +
                    ~torch.logical_and((exp == 0), (mant <= 0x400000)),
         
     | 
| 
      
 37 
     | 
    
         
            +
                )
         
     | 
| 
      
 38 
     | 
    
         
            +
                exp = torch.where(is_ru, exp + 1, exp)
         
     | 
| 
      
 39 
     | 
    
         
            +
                new_x = exp.to(torch.uint8).view(torch.int)
         
     | 
| 
      
 40 
     | 
    
         
            +
                return new_x.transpose(1, 2).contiguous().transpose(1, 2)
         
     | 
| 
      
 41 
     | 
    
         
            +
             
     | 
| 
      
 42 
     | 
    
         
            +
             
     | 
| 
      
 43 
     | 
    
         
            +
            @dataclass
         
     | 
| 
      
 44 
     | 
    
         
            +
            class DeepGemmRunnerInput(RunnerInput):
         
     | 
| 
      
 45 
     | 
    
         
            +
                hidden_states: torch.Tensor
         
     | 
| 
      
 46 
     | 
    
         
            +
                hidden_states_scale: torch.Tensor
         
     | 
| 
      
 47 
     | 
    
         
            +
                masked_m: torch.Tensor
         
     | 
| 
      
 48 
     | 
    
         
            +
                expected_m: int
         
     | 
| 
      
 49 
     | 
    
         
            +
                use_masked_gemm: bool
         
     | 
| 
      
 50 
     | 
    
         
            +
             
     | 
| 
      
 51 
     | 
    
         
            +
                @property
         
     | 
| 
      
 52 
     | 
    
         
            +
                def runner_backend(self) -> MoeRunnerBackend:
         
     | 
| 
      
 53 
     | 
    
         
            +
                    return MoeRunnerBackend.DEEP_GEMM
         
     | 
| 
      
 54 
     | 
    
         
            +
             
     | 
| 
      
 55 
     | 
    
         
            +
             
     | 
| 
      
 56 
     | 
    
         
            +
            @dataclass
         
     | 
| 
      
 57 
     | 
    
         
            +
            class DeepGemmRunnerOutput(RunnerOutput):
         
     | 
| 
      
 58 
     | 
    
         
            +
                hidden_states: torch.Tensor
         
     | 
| 
      
 59 
     | 
    
         
            +
             
     | 
| 
      
 60 
     | 
    
         
            +
                @property
         
     | 
| 
      
 61 
     | 
    
         
            +
                def runner_backend(self) -> MoeRunnerBackend:
         
     | 
| 
      
 62 
     | 
    
         
            +
                    return MoeRunnerBackend.DEEP_GEMM
         
     | 
| 
      
 63 
     | 
    
         
            +
             
     | 
| 
      
 64 
     | 
    
         
            +
             
     | 
| 
      
 65 
     | 
    
         
            +
            @dataclass
         
     | 
| 
      
 66 
     | 
    
         
            +
            class DeepGemmMoeQuantInfo(MoeQuantInfo):
         
     | 
| 
      
 67 
     | 
    
         
            +
                w13_weight: torch.Tensor
         
     | 
| 
      
 68 
     | 
    
         
            +
                w2_weight: torch.Tensor
         
     | 
| 
      
 69 
     | 
    
         
            +
                use_fp8: bool
         
     | 
| 
      
 70 
     | 
    
         
            +
                w13_scale: Optional[torch.Tensor] = None
         
     | 
| 
      
 71 
     | 
    
         
            +
                w2_scale: Optional[torch.Tensor] = None
         
     | 
| 
      
 72 
     | 
    
         
            +
                block_shape: Optional[List[int]] = None
         
     | 
| 
      
 73 
     | 
    
         
            +
             
     | 
| 
      
 74 
     | 
    
         
            +
             
     | 
| 
      
 75 
     | 
    
         
            +
            class DeepGemmRunnerCore(MoeRunnerCore):
         
     | 
| 
      
 76 
     | 
    
         
            +
                def __init__(self, config: MoeRunnerConfig):
         
     | 
| 
      
 77 
     | 
    
         
            +
                    super().__init__(config)
         
     | 
| 
      
 78 
     | 
    
         
            +
                    assert self.config.activation == "silu"
         
     | 
| 
      
 79 
     | 
    
         
            +
             
     | 
| 
      
 80 
     | 
    
         
            +
                def run(
         
     | 
| 
      
 81 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 82 
     | 
    
         
            +
                    runner_input: DeepGemmRunnerInput,
         
     | 
| 
      
 83 
     | 
    
         
            +
                    quant_info: DeepGemmMoeQuantInfo,
         
     | 
| 
      
 84 
     | 
    
         
            +
                    running_state: dict,
         
     | 
| 
      
 85 
     | 
    
         
            +
                ) -> DeepGemmRunnerOutput:
         
     | 
| 
      
 86 
     | 
    
         
            +
             
     | 
| 
      
 87 
     | 
    
         
            +
                    if runner_input.use_masked_gemm:
         
     | 
| 
      
 88 
     | 
    
         
            +
                        hidden_states = self._run_masked_gemm(
         
     | 
| 
      
 89 
     | 
    
         
            +
                            runner_input,
         
     | 
| 
      
 90 
     | 
    
         
            +
                            quant_info,
         
     | 
| 
      
 91 
     | 
    
         
            +
                            running_state,
         
     | 
| 
      
 92 
     | 
    
         
            +
                        )
         
     | 
| 
      
 93 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 94 
     | 
    
         
            +
                        hidden_states = self._run_contiguous_gemm(
         
     | 
| 
      
 95 
     | 
    
         
            +
                            runner_input,
         
     | 
| 
      
 96 
     | 
    
         
            +
                            quant_info,
         
     | 
| 
      
 97 
     | 
    
         
            +
                            running_state,
         
     | 
| 
      
 98 
     | 
    
         
            +
                        )
         
     | 
| 
      
 99 
     | 
    
         
            +
                    return DeepGemmRunnerOutput(hidden_states=hidden_states)
         
     | 
| 
      
 100 
     | 
    
         
            +
             
     | 
| 
      
 101 
     | 
    
         
            +
                def _run_masked_gemm(
         
     | 
| 
      
 102 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 103 
     | 
    
         
            +
                    runner_input: DeepGemmRunnerInput,
         
     | 
| 
      
 104 
     | 
    
         
            +
                    quant_info: DeepGemmMoeQuantInfo,
         
     | 
| 
      
 105 
     | 
    
         
            +
                    running_state: dict,
         
     | 
| 
      
 106 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 107 
     | 
    
         
            +
             
     | 
| 
      
 108 
     | 
    
         
            +
                    from sglang.srt.layers import deep_gemm_wrapper
         
     | 
| 
      
 109 
     | 
    
         
            +
                    from sglang.srt.layers.moe.ep_moe.kernels import (
         
     | 
| 
      
 110 
     | 
    
         
            +
                        silu_and_mul_masked_post_quant_fwd,
         
     | 
| 
      
 111 
     | 
    
         
            +
                    )
         
     | 
| 
      
 112 
     | 
    
         
            +
             
     | 
| 
      
 113 
     | 
    
         
            +
                    hidden_states = runner_input.hidden_states
         
     | 
| 
      
 114 
     | 
    
         
            +
                    hidden_states_scale = runner_input.hidden_states_scale
         
     | 
| 
      
 115 
     | 
    
         
            +
                    masked_m = runner_input.masked_m
         
     | 
| 
      
 116 
     | 
    
         
            +
                    expected_m = runner_input.expected_m
         
     | 
| 
      
 117 
     | 
    
         
            +
             
     | 
| 
      
 118 
     | 
    
         
            +
                    w13_weight = quant_info.w13_weight
         
     | 
| 
      
 119 
     | 
    
         
            +
                    w2_weight = quant_info.w2_weight
         
     | 
| 
      
 120 
     | 
    
         
            +
                    w13_scale = quant_info.w13_scale
         
     | 
| 
      
 121 
     | 
    
         
            +
                    w2_scale = quant_info.w2_scale
         
     | 
| 
      
 122 
     | 
    
         
            +
             
     | 
| 
      
 123 
     | 
    
         
            +
                    hidden_states_device = running_state["hidden_states_device"]
         
     | 
| 
      
 124 
     | 
    
         
            +
             
     | 
| 
      
 125 
     | 
    
         
            +
                    if deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0:
         
     | 
| 
      
 126 
     | 
    
         
            +
                        b, s_mn, s_k = hidden_states_scale.shape
         
     | 
| 
      
 127 
     | 
    
         
            +
                        assert (
         
     | 
| 
      
 128 
     | 
    
         
            +
                            s_mn % 4 == 0 and s_k % 4 == 0
         
     | 
| 
      
 129 
     | 
    
         
            +
                        ), f"scales must be aligned to 4, but got ({b}, {s_mn}, {s_k})"
         
     | 
| 
      
 130 
     | 
    
         
            +
             
     | 
| 
      
 131 
     | 
    
         
            +
                    # GroupGemm-0
         
     | 
| 
      
 132 
     | 
    
         
            +
                    if deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0:
         
     | 
| 
      
 133 
     | 
    
         
            +
                        hidden_states_scale = _cast_to_e8m0_with_rounding_up(hidden_states_scale)
         
     | 
| 
      
 134 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 135 
     | 
    
         
            +
                        hidden_states_scale = deep_gemm_wrapper.get_mn_major_tma_aligned_tensor(
         
     | 
| 
      
 136 
     | 
    
         
            +
                            hidden_states_scale
         
     | 
| 
      
 137 
     | 
    
         
            +
                        )
         
     | 
| 
      
 138 
     | 
    
         
            +
             
     | 
| 
      
 139 
     | 
    
         
            +
                    num_groups, m, k = hidden_states.shape
         
     | 
| 
      
 140 
     | 
    
         
            +
                    n = w13_weight.size(1)
         
     | 
| 
      
 141 
     | 
    
         
            +
                    gateup_output = torch.empty(
         
     | 
| 
      
 142 
     | 
    
         
            +
                        (num_groups, m, n), device=hidden_states_device, dtype=torch.bfloat16
         
     | 
| 
      
 143 
     | 
    
         
            +
                    )
         
     | 
| 
      
 144 
     | 
    
         
            +
                    deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
         
     | 
| 
      
 145 
     | 
    
         
            +
                        (hidden_states, hidden_states_scale),
         
     | 
| 
      
 146 
     | 
    
         
            +
                        (w13_weight, w13_scale),
         
     | 
| 
      
 147 
     | 
    
         
            +
                        gateup_output,
         
     | 
| 
      
 148 
     | 
    
         
            +
                        masked_m,
         
     | 
| 
      
 149 
     | 
    
         
            +
                        expected_m,
         
     | 
| 
      
 150 
     | 
    
         
            +
                    )
         
     | 
| 
      
 151 
     | 
    
         
            +
                    dispose_tensor(hidden_states)
         
     | 
| 
      
 152 
     | 
    
         
            +
             
     | 
| 
      
 153 
     | 
    
         
            +
                    # Act
         
     | 
| 
      
 154 
     | 
    
         
            +
                    down_input = torch.empty(
         
     | 
| 
      
 155 
     | 
    
         
            +
                        (
         
     | 
| 
      
 156 
     | 
    
         
            +
                            gateup_output.shape[0],
         
     | 
| 
      
 157 
     | 
    
         
            +
                            gateup_output.shape[1],
         
     | 
| 
      
 158 
     | 
    
         
            +
                            gateup_output.shape[2] // 2,
         
     | 
| 
      
 159 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 160 
     | 
    
         
            +
                        device=hidden_states_device,
         
     | 
| 
      
 161 
     | 
    
         
            +
                        dtype=torch.float8_e4m3fn,
         
     | 
| 
      
 162 
     | 
    
         
            +
                    )
         
     | 
| 
      
 163 
     | 
    
         
            +
                    scale_block_size = 128
         
     | 
| 
      
 164 
     | 
    
         
            +
                    down_input_scale = torch.empty(
         
     | 
| 
      
 165 
     | 
    
         
            +
                        (
         
     | 
| 
      
 166 
     | 
    
         
            +
                            gateup_output.shape[0],
         
     | 
| 
      
 167 
     | 
    
         
            +
                            gateup_output.shape[1],
         
     | 
| 
      
 168 
     | 
    
         
            +
                            gateup_output.shape[2] // 2 // scale_block_size,
         
     | 
| 
      
 169 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 170 
     | 
    
         
            +
                        device=hidden_states_device,
         
     | 
| 
      
 171 
     | 
    
         
            +
                        dtype=torch.float32,
         
     | 
| 
      
 172 
     | 
    
         
            +
                    )
         
     | 
| 
      
 173 
     | 
    
         
            +
                    silu_and_mul_masked_post_quant_fwd(
         
     | 
| 
      
 174 
     | 
    
         
            +
                        gateup_output,
         
     | 
| 
      
 175 
     | 
    
         
            +
                        down_input,
         
     | 
| 
      
 176 
     | 
    
         
            +
                        down_input_scale,
         
     | 
| 
      
 177 
     | 
    
         
            +
                        scale_block_size,
         
     | 
| 
      
 178 
     | 
    
         
            +
                        masked_m,
         
     | 
| 
      
 179 
     | 
    
         
            +
                        scale_ue8m0=deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0,
         
     | 
| 
      
 180 
     | 
    
         
            +
                    )
         
     | 
| 
      
 181 
     | 
    
         
            +
                    del gateup_output
         
     | 
| 
      
 182 
     | 
    
         
            +
             
     | 
| 
      
 183 
     | 
    
         
            +
                    # GroupGemm-1
         
     | 
| 
      
 184 
     | 
    
         
            +
                    n = w2_weight.shape[1]
         
     | 
| 
      
 185 
     | 
    
         
            +
             
     | 
| 
      
 186 
     | 
    
         
            +
                    if not deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0:
         
     | 
| 
      
 187 
     | 
    
         
            +
                        down_input_scale = deep_gemm_wrapper.get_mn_major_tma_aligned_tensor(
         
     | 
| 
      
 188 
     | 
    
         
            +
                            down_input_scale
         
     | 
| 
      
 189 
     | 
    
         
            +
                        )
         
     | 
| 
      
 190 
     | 
    
         
            +
             
     | 
| 
      
 191 
     | 
    
         
            +
                    down_output = torch.empty(
         
     | 
| 
      
 192 
     | 
    
         
            +
                        (num_groups, m, n), device=hidden_states_device, dtype=torch.bfloat16
         
     | 
| 
      
 193 
     | 
    
         
            +
                    )
         
     | 
| 
      
 194 
     | 
    
         
            +
                    deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
         
     | 
| 
      
 195 
     | 
    
         
            +
                        (down_input, down_input_scale),
         
     | 
| 
      
 196 
     | 
    
         
            +
                        (w2_weight, w2_scale),
         
     | 
| 
      
 197 
     | 
    
         
            +
                        down_output,
         
     | 
| 
      
 198 
     | 
    
         
            +
                        masked_m,
         
     | 
| 
      
 199 
     | 
    
         
            +
                        expected_m,
         
     | 
| 
      
 200 
     | 
    
         
            +
                    )
         
     | 
| 
      
 201 
     | 
    
         
            +
                    del down_input
         
     | 
| 
      
 202 
     | 
    
         
            +
             
     | 
| 
      
 203 
     | 
    
         
            +
                    return down_output
         
     | 
| 
      
 204 
     | 
    
         
            +
             
     | 
| 
      
 205 
     | 
    
         
            +
                def _run_contiguous_gemm(
         
     | 
| 
      
 206 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 207 
     | 
    
         
            +
                    runner_input: DeepGemmRunnerInput,
         
     | 
| 
      
 208 
     | 
    
         
            +
                    quant_info: DeepGemmMoeQuantInfo,
         
     | 
| 
      
 209 
     | 
    
         
            +
                    running_state: dict,
         
     | 
| 
      
 210 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 211 
     | 
    
         
            +
                    pass
         
     | 
| 
      
 212 
     | 
    
         
            +
             
     | 
| 
      
 213 
     | 
    
         
            +
                @property
         
     | 
| 
      
 214 
     | 
    
         
            +
                def runner_backend(self) -> MoeRunnerBackend:
         
     | 
| 
      
 215 
     | 
    
         
            +
                    return MoeRunnerBackend.DEEP_GEMM
         
     | 
| 
      
 216 
     | 
    
         
            +
             
     | 
| 
      
 217 
     | 
    
         
            +
             
     | 
| 
      
 218 
     | 
    
         
            +
            @register_pre_permute("standard", "deep_gemm")
         
     | 
| 
      
 219 
     | 
    
         
            +
            def pre_permute_standard_to_deep_gemm(
         
     | 
| 
      
 220 
     | 
    
         
            +
                dispatch_output: StandardDispatchOutput,
         
     | 
| 
      
 221 
     | 
    
         
            +
                quant_info: DeepGemmMoeQuantInfo,
         
     | 
| 
      
 222 
     | 
    
         
            +
                runner_config: MoeRunnerConfig,
         
     | 
| 
      
 223 
     | 
    
         
            +
                running_state: dict,
         
     | 
| 
      
 224 
     | 
    
         
            +
            ) -> DeepGemmRunnerInput:
         
     | 
| 
      
 225 
     | 
    
         
            +
                from sglang.srt.layers.moe.ep_moe.kernels import moe_ep_deepgemm_preprocess
         
     | 
| 
      
 226 
     | 
    
         
            +
             
     | 
| 
      
 227 
     | 
    
         
            +
                hidden_states, topk_output = dispatch_output
         
     | 
| 
      
 228 
     | 
    
         
            +
                topk_weights, topk_ids, _ = topk_output
         
     | 
| 
      
 229 
     | 
    
         
            +
             
     | 
| 
      
 230 
     | 
    
         
            +
                hidden_states_shape = hidden_states.shape
         
     | 
| 
      
 231 
     | 
    
         
            +
                hidden_states_dtype = hidden_states.dtype
         
     | 
| 
      
 232 
     | 
    
         
            +
                hidden_states_device = hidden_states.device
         
     | 
| 
      
 233 
     | 
    
         
            +
                hidden_states_ref = hidden_states
         
     | 
| 
      
 234 
     | 
    
         
            +
             
     | 
| 
      
 235 
     | 
    
         
            +
                topk_weights, topk_ids = topk_weights, topk_ids
         
     | 
| 
      
 236 
     | 
    
         
            +
             
     | 
| 
      
 237 
     | 
    
         
            +
                # PreReorder
         
     | 
| 
      
 238 
     | 
    
         
            +
                masked_m, expected_m, src2dst, hidden_states, hidden_states_scale = (
         
     | 
| 
      
 239 
     | 
    
         
            +
                    moe_ep_deepgemm_preprocess(
         
     | 
| 
      
 240 
     | 
    
         
            +
                        topk_ids,
         
     | 
| 
      
 241 
     | 
    
         
            +
                        runner_config.num_local_experts,
         
     | 
| 
      
 242 
     | 
    
         
            +
                        hidden_states,
         
     | 
| 
      
 243 
     | 
    
         
            +
                        runner_config.top_k,
         
     | 
| 
      
 244 
     | 
    
         
            +
                        quant_info.block_shape,
         
     | 
| 
      
 245 
     | 
    
         
            +
                    )
         
     | 
| 
      
 246 
     | 
    
         
            +
                )
         
     | 
| 
      
 247 
     | 
    
         
            +
             
     | 
| 
      
 248 
     | 
    
         
            +
                dispose_tensor(hidden_states_ref)
         
     | 
| 
      
 249 
     | 
    
         
            +
             
     | 
| 
      
 250 
     | 
    
         
            +
                running_state["topk_ids"] = topk_ids
         
     | 
| 
      
 251 
     | 
    
         
            +
                running_state["topk_weights"] = topk_weights
         
     | 
| 
      
 252 
     | 
    
         
            +
                running_state["hidden_states_shape"] = hidden_states_shape
         
     | 
| 
      
 253 
     | 
    
         
            +
                running_state["hidden_states_dtype"] = hidden_states_dtype
         
     | 
| 
      
 254 
     | 
    
         
            +
                running_state["hidden_states_device"] = hidden_states_device
         
     | 
| 
      
 255 
     | 
    
         
            +
                running_state["src2dst"] = src2dst
         
     | 
| 
      
 256 
     | 
    
         
            +
             
     | 
| 
      
 257 
     | 
    
         
            +
                return DeepGemmRunnerInput(
         
     | 
| 
      
 258 
     | 
    
         
            +
                    hidden_states=hidden_states,
         
     | 
| 
      
 259 
     | 
    
         
            +
                    hidden_states_scale=hidden_states_scale,
         
     | 
| 
      
 260 
     | 
    
         
            +
                    masked_m=masked_m,
         
     | 
| 
      
 261 
     | 
    
         
            +
                    expected_m=expected_m,
         
     | 
| 
      
 262 
     | 
    
         
            +
                    use_masked_gemm=True,
         
     | 
| 
      
 263 
     | 
    
         
            +
                )
         
     | 
| 
      
 264 
     | 
    
         
            +
             
     | 
| 
      
 265 
     | 
    
         
            +
             
     | 
| 
      
 266 
     | 
    
         
            +
            @register_post_permute("deep_gemm", "standard")
         
     | 
| 
      
 267 
     | 
    
         
            +
            def post_permute_deep_gemm_to_standard(
         
     | 
| 
      
 268 
     | 
    
         
            +
                runner_output: DeepGemmRunnerOutput,
         
     | 
| 
      
 269 
     | 
    
         
            +
                quant_info: DeepGemmMoeQuantInfo,
         
     | 
| 
      
 270 
     | 
    
         
            +
                runner_config: MoeRunnerConfig,
         
     | 
| 
      
 271 
     | 
    
         
            +
                running_state: dict,
         
     | 
| 
      
 272 
     | 
    
         
            +
            ) -> StandardCombineInput:
         
     | 
| 
      
 273 
     | 
    
         
            +
                from sglang.srt.layers.moe.ep_moe.kernels import post_reorder_triton_kernel
         
     | 
| 
      
 274 
     | 
    
         
            +
                from sglang.srt.layers.moe.token_dispatcher.standard import StandardCombineInput
         
     | 
| 
      
 275 
     | 
    
         
            +
             
     | 
| 
      
 276 
     | 
    
         
            +
                hidden_states_shape = running_state["hidden_states_shape"]
         
     | 
| 
      
 277 
     | 
    
         
            +
                hidden_states_dtype = running_state["hidden_states_dtype"]
         
     | 
| 
      
 278 
     | 
    
         
            +
                hidden_states_device = running_state["hidden_states_device"]
         
     | 
| 
      
 279 
     | 
    
         
            +
                src2dst = running_state["src2dst"]
         
     | 
| 
      
 280 
     | 
    
         
            +
                topk_ids = running_state["topk_ids"]
         
     | 
| 
      
 281 
     | 
    
         
            +
                topk_weights = running_state["topk_weights"]
         
     | 
| 
      
 282 
     | 
    
         
            +
             
     | 
| 
      
 283 
     | 
    
         
            +
                output = torch.empty(
         
     | 
| 
      
 284 
     | 
    
         
            +
                    hidden_states_shape, dtype=hidden_states_dtype, device=hidden_states_device
         
     | 
| 
      
 285 
     | 
    
         
            +
                )
         
     | 
| 
      
 286 
     | 
    
         
            +
                post_reorder_triton_kernel[(hidden_states_shape[0],)](
         
     | 
| 
      
 287 
     | 
    
         
            +
                    runner_output.hidden_states,
         
     | 
| 
      
 288 
     | 
    
         
            +
                    output,
         
     | 
| 
      
 289 
     | 
    
         
            +
                    src2dst,
         
     | 
| 
      
 290 
     | 
    
         
            +
                    topk_ids,
         
     | 
| 
      
 291 
     | 
    
         
            +
                    topk_weights,
         
     | 
| 
      
 292 
     | 
    
         
            +
                    runner_config.top_k,
         
     | 
| 
      
 293 
     | 
    
         
            +
                    hidden_states_shape[1],
         
     | 
| 
      
 294 
     | 
    
         
            +
                    BLOCK_SIZE=512,
         
     | 
| 
      
 295 
     | 
    
         
            +
                )
         
     | 
| 
      
 296 
     | 
    
         
            +
             
     | 
| 
      
 297 
     | 
    
         
            +
                dispose_tensor(runner_output.hidden_states)
         
     | 
| 
      
 298 
     | 
    
         
            +
             
     | 
| 
      
 299 
     | 
    
         
            +
                if runner_config.routed_scaling_factor is not None:
         
     | 
| 
      
 300 
     | 
    
         
            +
                    output *= runner_config.routed_scaling_factor
         
     | 
| 
      
 301 
     | 
    
         
            +
             
     | 
| 
      
 302 
     | 
    
         
            +
                return StandardCombineInput(
         
     | 
| 
      
 303 
     | 
    
         
            +
                    hidden_states=output,
         
     | 
| 
      
 304 
     | 
    
         
            +
                )
         
     | 
| 
         @@ -9,6 +9,7 @@ from sglang.srt.layers.moe.moe_runner.base import ( 
     | 
|
| 
       9 
9 
     | 
    
         
             
                MoeRunnerConfig,
         
     | 
| 
       10 
10 
     | 
    
         
             
                PermuteMethodPool,
         
     | 
| 
       11 
11 
     | 
    
         
             
            )
         
     | 
| 
      
 12 
     | 
    
         
            +
            from sglang.srt.layers.moe.moe_runner.deep_gemm import DeepGemmRunnerCore
         
     | 
| 
       12 
13 
     | 
    
         
             
            from sglang.srt.layers.moe.moe_runner.triton import TritonRunnerCore
         
     | 
| 
       13 
14 
     | 
    
         
             
            from sglang.srt.layers.moe.utils import get_moe_a2a_backend
         
     | 
| 
       14 
15 
     | 
    
         | 
| 
         @@ -30,6 +31,8 @@ class MoeRunner: 
     | 
|
| 
       30 
31 
     | 
    
         | 
| 
       31 
32 
     | 
    
         
             
                    if runner_backend.is_triton():
         
     | 
| 
       32 
33 
     | 
    
         
             
                        self.runner_core = TritonRunnerCore(config)
         
     | 
| 
      
 34 
     | 
    
         
            +
                    elif runner_backend.is_deep_gemm():
         
     | 
| 
      
 35 
     | 
    
         
            +
                        self.runner_core = DeepGemmRunnerCore(config)
         
     | 
| 
       33 
36 
     | 
    
         
             
                    else:
         
     | 
| 
       34 
37 
     | 
    
         
             
                        raise NotImplementedError(f"Unsupported runner backend: {runner_backend}")
         
     | 
| 
       35 
38 
     | 
    
         | 
    
        sglang/srt/layers/moe/router.py
    CHANGED
    
    | 
         @@ -11,7 +11,7 @@ _is_hip = is_hip() 
     | 
|
| 
       11 
11 
     | 
    
         | 
| 
       12 
12 
     | 
    
         | 
| 
       13 
13 
     | 
    
         
             
            @triton.jit
         
     | 
| 
       14 
     | 
    
         
            -
            def  
     | 
| 
      
 14 
     | 
    
         
            +
            def fused_moe_router_cudacore_kernel(
         
     | 
| 
       15 
15 
     | 
    
         
             
                input_ptr,  # input (bs, hidden_dim)
         
     | 
| 
       16 
16 
     | 
    
         
             
                moe_router_weight_ptr,  # input (num_experts, hidden_dim)
         
     | 
| 
       17 
17 
     | 
    
         
             
                topk_weights_ptr,  # output (bs, topk)
         
     | 
| 
         @@ -114,7 +114,7 @@ def fused_moe_router_kernel( 
     | 
|
| 
       114 
114 
     | 
    
         
             
                # assert not moe_renormalize, "moe weight renormalization not implemented"
         
     | 
| 
       115 
115 
     | 
    
         | 
| 
       116 
116 
     | 
    
         | 
| 
       117 
     | 
    
         
            -
            def  
     | 
| 
      
 117 
     | 
    
         
            +
            def fused_moe_router_cudacore(
         
     | 
| 
       118 
118 
     | 
    
         
             
                x: torch.Tensor,
         
     | 
| 
       119 
119 
     | 
    
         
             
                router_weight: torch.Tensor,
         
     | 
| 
       120 
120 
     | 
    
         
             
                topk: int,
         
     | 
| 
         @@ -138,7 +138,7 @@ def fused_moe_router_impl( 
     | 
|
| 
       138 
138 
     | 
    
         
             
                    ),
         
     | 
| 
       139 
139 
     | 
    
         
             
                }
         
     | 
| 
       140 
140 
     | 
    
         | 
| 
       141 
     | 
    
         
            -
                 
     | 
| 
      
 141 
     | 
    
         
            +
                fused_moe_router_cudacore_kernel[(bs,)](
         
     | 
| 
       142 
142 
     | 
    
         
             
                    x,
         
     | 
| 
       143 
143 
     | 
    
         
             
                    router_weight,
         
     | 
| 
       144 
144 
     | 
    
         
             
                    topk_weights,
         
     | 
| 
         @@ -157,7 +157,7 @@ def fused_moe_router_impl( 
     | 
|
| 
       157 
157 
     | 
    
         | 
| 
       158 
158 
     | 
    
         | 
| 
       159 
159 
     | 
    
         
             
            @triton.jit
         
     | 
| 
       160 
     | 
    
         
            -
            def  
     | 
| 
      
 160 
     | 
    
         
            +
            def fused_moe_router_tensorcore_kernel(
         
     | 
| 
       161 
161 
     | 
    
         
             
                a_ptr,  # input (bs, hidden_dim)
         
     | 
| 
       162 
162 
     | 
    
         
             
                b_ptr,  # input (num_experts, hidden_dim)
         
     | 
| 
       163 
163 
     | 
    
         
             
                topk_weights_ptr,  # output (bs, topk)
         
     | 
| 
         @@ -167,12 +167,15 @@ def fused_moe_router_large_bs_kernel( 
     | 
|
| 
       167 
167 
     | 
    
         
             
                topk: tl.constexpr,  # only support topk <= 2
         
     | 
| 
       168 
168 
     | 
    
         
             
                moe_softcapping: tl.constexpr,
         
     | 
| 
       169 
169 
     | 
    
         
             
                moe_renormalize: tl.constexpr,  # not supported
         
     | 
| 
      
 170 
     | 
    
         
            +
                correction_bias_ptr,
         
     | 
| 
      
 171 
     | 
    
         
            +
                is_correction_bias: tl.constexpr,
         
     | 
| 
       170 
172 
     | 
    
         
             
                K: tl.constexpr,
         
     | 
| 
       171 
173 
     | 
    
         
             
                BLOCK_SIZE_M: tl.constexpr,
         
     | 
| 
       172 
174 
     | 
    
         
             
                BLOCK_SIZE_N: tl.constexpr,
         
     | 
| 
       173 
175 
     | 
    
         
             
                BLOCK_SIZE_K: tl.constexpr,
         
     | 
| 
       174 
176 
     | 
    
         
             
                stride_am: tl.constexpr,
         
     | 
| 
       175 
177 
     | 
    
         
             
                stride_bn: tl.constexpr,
         
     | 
| 
      
 178 
     | 
    
         
            +
                dp_attn_workaround_flag: tl.constexpr,
         
     | 
| 
       176 
179 
     | 
    
         
             
            ):
         
     | 
| 
       177 
180 
     | 
    
         | 
| 
       178 
181 
     | 
    
         
             
                # 1. get block id
         
     | 
| 
         @@ -217,6 +220,20 @@ def fused_moe_router_large_bs_kernel( 
     | 
|
| 
       217 
220 
     | 
    
         
             
                    exped = tl.exp(2 * logits_scaled)
         
     | 
| 
       218 
221 
     | 
    
         
             
                    logits_softcapped = (exped - 1) / (exped + 1) * moe_softcapping
         
     | 
| 
       219 
222 
     | 
    
         | 
| 
      
 223 
     | 
    
         
            +
                # Add bias after softcapping
         
     | 
| 
      
 224 
     | 
    
         
            +
                if is_correction_bias:
         
     | 
| 
      
 225 
     | 
    
         
            +
                    bias = tl.load(
         
     | 
| 
      
 226 
     | 
    
         
            +
                        correction_bias_ptr + tl.arange(0, BLOCK_SIZE_N)[None, :],
         
     | 
| 
      
 227 
     | 
    
         
            +
                        mask=expert_mask.T,
         
     | 
| 
      
 228 
     | 
    
         
            +
                        other=0.0,
         
     | 
| 
      
 229 
     | 
    
         
            +
                    )
         
     | 
| 
      
 230 
     | 
    
         
            +
                    logits_softcapped = logits_softcapped + bias
         
     | 
| 
      
 231 
     | 
    
         
            +
             
     | 
| 
      
 232 
     | 
    
         
            +
                if dp_attn_workaround_flag:
         
     | 
| 
      
 233 
     | 
    
         
            +
                    logits_softcapped = tl.where(
         
     | 
| 
      
 234 
     | 
    
         
            +
                        logits_softcapped != logits_softcapped, -1e9, logits_softcapped
         
     | 
| 
      
 235 
     | 
    
         
            +
                    )
         
     | 
| 
      
 236 
     | 
    
         
            +
             
     | 
| 
       220 
237 
     | 
    
         
             
                # 5. top1
         
     | 
| 
       221 
238 
     | 
    
         
             
                arange_block_size_n = tl.arange(0, BLOCK_SIZE_N)[None, :]
         
     | 
| 
       222 
239 
     | 
    
         
             
                cond_top1 = arange_block_size_n < num_experts
         
     | 
| 
         @@ -266,7 +283,7 @@ def fused_moe_router_large_bs_kernel( 
     | 
|
| 
       266 
283 
     | 
    
         
             
                    )
         
     | 
| 
       267 
284 
     | 
    
         | 
| 
       268 
285 
     | 
    
         | 
| 
       269 
     | 
    
         
            -
            def  
     | 
| 
      
 286 
     | 
    
         
            +
            def fused_moe_router_tensorcore(
         
     | 
| 
       270 
287 
     | 
    
         
             
                x: torch.Tensor,
         
     | 
| 
       271 
288 
     | 
    
         
             
                router_weight: torch.Tensor,
         
     | 
| 
       272 
289 
     | 
    
         
             
                topk: int,
         
     | 
| 
         @@ -274,6 +291,7 @@ def fused_moe_router_large_bs_impl( 
     | 
|
| 
       274 
291 
     | 
    
         
             
                BLOCK_SIZE_M: int,
         
     | 
| 
       275 
292 
     | 
    
         
             
                BLOCK_SIZE_N: int,
         
     | 
| 
       276 
293 
     | 
    
         
             
                BLOCK_SIZE_K: int,
         
     | 
| 
      
 294 
     | 
    
         
            +
                correction_bias: Optional[torch.Tensor] = None,
         
     | 
| 
       277 
295 
     | 
    
         
             
            ):
         
     | 
| 
       278 
296 
     | 
    
         
             
                assert len(x.shape) == 2 and x.shape[1] == router_weight.shape[1]
         
     | 
| 
       279 
297 
     | 
    
         
             
                bs, hidden_dim = x.shape
         
     | 
| 
         @@ -285,10 +303,17 @@ def fused_moe_router_large_bs_impl( 
     | 
|
| 
       285 
303 
     | 
    
         | 
| 
       286 
304 
     | 
    
         
             
                topk_weights = torch.empty((bs, topk), dtype=torch.float32, device=x.device)
         
     | 
| 
       287 
305 
     | 
    
         
             
                topk_ids = torch.empty((bs, topk), dtype=torch.int32, device=x.device)
         
     | 
| 
      
 306 
     | 
    
         
            +
                is_correction_bias = correction_bias is not None
         
     | 
| 
       288 
307 
     | 
    
         | 
| 
       289 
308 
     | 
    
         
             
                grid = (triton.cdiv(bs, BLOCK_SIZE_M) * triton.cdiv(num_experts, BLOCK_SIZE_N),)
         
     | 
| 
       290 
309 
     | 
    
         | 
| 
       291 
     | 
    
         
            -
                 
     | 
| 
      
 310 
     | 
    
         
            +
                # TODO(ch-wan): temporary workaround for dp attention. We should support masked
         
     | 
| 
      
 311 
     | 
    
         
            +
                # router to skip padded tokens.
         
     | 
| 
      
 312 
     | 
    
         
            +
                from sglang.srt.layers.dp_attention import is_dp_attention_enabled
         
     | 
| 
      
 313 
     | 
    
         
            +
             
     | 
| 
      
 314 
     | 
    
         
            +
                dp_attn_workaround_flag = is_dp_attention_enabled()
         
     | 
| 
      
 315 
     | 
    
         
            +
             
     | 
| 
      
 316 
     | 
    
         
            +
                fused_moe_router_tensorcore_kernel[grid](
         
     | 
| 
       292 
317 
     | 
    
         
             
                    a_ptr=x,
         
     | 
| 
       293 
318 
     | 
    
         
             
                    b_ptr=router_weight,
         
     | 
| 
       294 
319 
     | 
    
         
             
                    topk_weights_ptr=topk_weights,
         
     | 
| 
         @@ -299,11 +324,14 @@ def fused_moe_router_large_bs_impl( 
     | 
|
| 
       299 
324 
     | 
    
         
             
                    moe_softcapping=moe_softcapping,
         
     | 
| 
       300 
325 
     | 
    
         
             
                    moe_renormalize=False,
         
     | 
| 
       301 
326 
     | 
    
         
             
                    K=hidden_dim,
         
     | 
| 
      
 327 
     | 
    
         
            +
                    correction_bias_ptr=correction_bias,
         
     | 
| 
      
 328 
     | 
    
         
            +
                    is_correction_bias=is_correction_bias,
         
     | 
| 
       302 
329 
     | 
    
         
             
                    BLOCK_SIZE_M=BLOCK_SIZE_M,
         
     | 
| 
       303 
330 
     | 
    
         
             
                    BLOCK_SIZE_N=BLOCK_SIZE_N,
         
     | 
| 
       304 
331 
     | 
    
         
             
                    BLOCK_SIZE_K=BLOCK_SIZE_K,
         
     | 
| 
       305 
332 
     | 
    
         
             
                    stride_am=hidden_dim,
         
     | 
| 
       306 
333 
     | 
    
         
             
                    stride_bn=hidden_dim,
         
     | 
| 
      
 334 
     | 
    
         
            +
                    dp_attn_workaround_flag=dp_attn_workaround_flag,
         
     | 
| 
       307 
335 
     | 
    
         
             
                )
         
     | 
| 
       308 
336 
     | 
    
         | 
| 
       309 
337 
     | 
    
         
             
                return topk_weights, topk_ids
         
     | 
| 
         @@ -316,6 +344,7 @@ def fused_moe_router_shim( 
     | 
|
| 
       316 
344 
     | 
    
         
             
                topk,
         
     | 
| 
       317 
345 
     | 
    
         
             
                renormalize,
         
     | 
| 
       318 
346 
     | 
    
         
             
                correction_bias: Optional[torch.Tensor] = None,
         
     | 
| 
      
 347 
     | 
    
         
            +
                enable_deterministic_inference: bool = False,
         
     | 
| 
       319 
348 
     | 
    
         
             
            ):
         
     | 
| 
       320 
349 
     | 
    
         
             
                assert not renormalize
         
     | 
| 
       321 
350 
     | 
    
         
             
                assert (
         
     | 
| 
         @@ -324,16 +353,22 @@ def fused_moe_router_shim( 
     | 
|
| 
       324 
353 
     | 
    
         
             
                )
         
     | 
| 
       325 
354 
     | 
    
         
             
                bs, hidden_dim = hidden_states.shape
         
     | 
| 
       326 
355 
     | 
    
         
             
                num_experts = gating_output.shape[0]
         
     | 
| 
      
 356 
     | 
    
         
            +
             
     | 
| 
       327 
357 
     | 
    
         
             
                BLOCK_SIZE_M = 32
         
     | 
| 
       328 
     | 
    
         
            -
             
     | 
| 
       329 
     | 
    
         
            -
                 
     | 
| 
      
 358 
     | 
    
         
            +
             
     | 
| 
      
 359 
     | 
    
         
            +
                BLOCK_SIZE_N = max(num_experts, 16)
         
     | 
| 
      
 360 
     | 
    
         
            +
                BLOCK_SIZE_K = (
         
     | 
| 
      
 361 
     | 
    
         
            +
                    256 if num_experts < 256 else 64
         
     | 
| 
      
 362 
     | 
    
         
            +
                )  # if experts are large, need to use smaller k block or shared memory OOM
         
     | 
| 
      
 363 
     | 
    
         
            +
             
     | 
| 
       330 
364 
     | 
    
         
             
                if (
         
     | 
| 
       331 
     | 
    
         
            -
                    bs >= 512
         
     | 
| 
       332 
     | 
    
         
            -
                    and topk <= 2
         
     | 
| 
       333 
     | 
    
         
            -
                    and num_experts <= BLOCK_SIZE_N
         
     | 
| 
      
 365 
     | 
    
         
            +
                    (bs >= 512 or num_experts > 8)
         
     | 
| 
       334 
366 
     | 
    
         
             
                    and hidden_dim % BLOCK_SIZE_K == 0
         
     | 
| 
      
 367 
     | 
    
         
            +
                    # we keep using single kernel to avoid non-deterministic behavior
         
     | 
| 
      
 368 
     | 
    
         
            +
                    and not enable_deterministic_inference
         
     | 
| 
       335 
369 
     | 
    
         
             
                ):
         
     | 
| 
       336 
     | 
    
         
            -
                     
     | 
| 
      
 370 
     | 
    
         
            +
                    # if large batch size or large expert, use kernel that uses tensorcore in matmul
         
     | 
| 
      
 371 
     | 
    
         
            +
                    return fused_moe_router_tensorcore(
         
     | 
| 
       337 
372 
     | 
    
         
             
                        x=hidden_states,
         
     | 
| 
       338 
373 
     | 
    
         
             
                        router_weight=gating_output,
         
     | 
| 
       339 
374 
     | 
    
         
             
                        topk=topk,
         
     | 
| 
         @@ -341,9 +376,11 @@ def fused_moe_router_shim( 
     | 
|
| 
       341 
376 
     | 
    
         
             
                        BLOCK_SIZE_M=BLOCK_SIZE_M,
         
     | 
| 
       342 
377 
     | 
    
         
             
                        BLOCK_SIZE_N=BLOCK_SIZE_N,
         
     | 
| 
       343 
378 
     | 
    
         
             
                        BLOCK_SIZE_K=BLOCK_SIZE_K,
         
     | 
| 
      
 379 
     | 
    
         
            +
                        correction_bias=correction_bias,
         
     | 
| 
       344 
380 
     | 
    
         
             
                    )
         
     | 
| 
       345 
381 
     | 
    
         
             
                else:
         
     | 
| 
       346 
     | 
    
         
            -
                     
     | 
| 
      
 382 
     | 
    
         
            +
                    # if smaller, use kernel that does not use tensorcore in matmul
         
     | 
| 
      
 383 
     | 
    
         
            +
                    return fused_moe_router_cudacore(
         
     | 
| 
       347 
384 
     | 
    
         
             
                        x=hidden_states,
         
     | 
| 
       348 
385 
     | 
    
         
             
                        router_weight=gating_output,
         
     | 
| 
       349 
386 
     | 
    
         
             
                        topk=topk,
         
     | 
| 
         @@ -380,11 +417,10 @@ class FusedMoeRouter: 
     | 
|
| 
       380 
417 
     | 
    
         
             
                        renormalize=False,
         
     | 
| 
       381 
418 
     | 
    
         
             
                    )
         
     | 
| 
       382 
419 
     | 
    
         | 
| 
       383 
     | 
    
         
            -
                def  
     | 
| 
      
 420 
     | 
    
         
            +
                def forward_torch(
         
     | 
| 
       384 
421 
     | 
    
         
             
                    self,
         
     | 
| 
       385 
422 
     | 
    
         
             
                    x: torch.Tensor,
         
     | 
| 
       386 
423 
     | 
    
         
             
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
       387 
     | 
    
         
            -
                    # g, _ = self.router_linear.forward(x)
         
     | 
| 
       388 
424 
     | 
    
         
             
                    g = x.float() @ self.router_linear.weight.T.float()
         
     | 
| 
       389 
425 
     | 
    
         | 
| 
       390 
426 
     | 
    
         
             
                    g = torch.tanh(g.float() / self.moe_softcapping) * self.moe_softcapping
         
     | 
| 
         @@ -16,8 +16,14 @@ from sglang.srt.layers.moe.token_dispatcher.deepep import ( 
     | 
|
| 
       16 
16 
     | 
    
         
             
                DeepEPNormalCombineInput,
         
     | 
| 
       17 
17 
     | 
    
         
             
                DeepEPNormalOutput,
         
     | 
| 
       18 
18 
     | 
    
         
             
            )
         
     | 
| 
      
 19 
     | 
    
         
            +
            from sglang.srt.layers.moe.token_dispatcher.mooncake import (
         
     | 
| 
      
 20 
     | 
    
         
            +
                MooncakeCombineInput,
         
     | 
| 
      
 21 
     | 
    
         
            +
                MooncakeDispatchOutput,
         
     | 
| 
      
 22 
     | 
    
         
            +
                MooncakeEPDispatcher,
         
     | 
| 
      
 23 
     | 
    
         
            +
            )
         
     | 
| 
       19 
24 
     | 
    
         
             
            from sglang.srt.layers.moe.token_dispatcher.standard import (
         
     | 
| 
       20 
25 
     | 
    
         
             
                StandardCombineInput,
         
     | 
| 
      
 26 
     | 
    
         
            +
                StandardDispatcher,
         
     | 
| 
       21 
27 
     | 
    
         
             
                StandardDispatchOutput,
         
     | 
| 
       22 
28 
     | 
    
         
             
            )
         
     | 
| 
       23 
29 
     | 
    
         | 
| 
         @@ -30,6 +36,10 @@ __all__ = [ 
     | 
|
| 
       30 
36 
     | 
    
         
             
                "DispatchOutput",
         
     | 
| 
       31 
37 
     | 
    
         
             
                "DispatchOutputFormat",
         
     | 
| 
       32 
38 
     | 
    
         
             
                "DispatchOutputChecker",
         
     | 
| 
      
 39 
     | 
    
         
            +
                "MooncakeCombineInput",
         
     | 
| 
      
 40 
     | 
    
         
            +
                "MooncakeDispatchOutput",
         
     | 
| 
      
 41 
     | 
    
         
            +
                "MooncakeEPDispatcher",
         
     | 
| 
      
 42 
     | 
    
         
            +
                "StandardDispatcher",
         
     | 
| 
       33 
43 
     | 
    
         
             
                "StandardDispatchOutput",
         
     | 
| 
       34 
44 
     | 
    
         
             
                "StandardCombineInput",
         
     | 
| 
       35 
45 
     | 
    
         
             
                "DeepEPConfig",
         
     | 
| 
         @@ -73,7 +73,7 @@ class DispatchOutputFormat(Enum): 
     | 
|
| 
       73 
73 
     | 
    
         
             
            class DispatchOutput(Protocol):
         
     | 
| 
       74 
74 
     | 
    
         
             
                """Protocol for dispatch outputs in different formats."""
         
     | 
| 
       75 
75 
     | 
    
         | 
| 
       76 
     | 
    
         
            -
                 
     | 
| 
      
 76 
     | 
    
         
            +
                hidden_states: torch.Tensor
         
     | 
| 
       77 
77 
     | 
    
         | 
| 
       78 
78 
     | 
    
         
             
                @property
         
     | 
| 
       79 
79 
     | 
    
         
             
                def format(self) -> DispatchOutputFormat: ...
         
     |