sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
- sglang/bench_one_batch_server.py +340 -34
- sglang/bench_serving.py +340 -159
- sglang/check_env.py +1 -1
- sglang/compile_deep_gemm.py +6 -2
- sglang/global_config.py +1 -25
- sglang/lang/api.py +6 -0
- sglang/lang/backend/runtime_endpoint.py +1 -1
- sglang/lang/interpreter.py +1 -0
- sglang/lang/ir.py +13 -0
- sglang/launch_server.py +9 -2
- sglang/profiler.py +20 -3
- sglang/srt/_custom_ops.py +1 -1
- sglang/srt/batch_invariant_ops/__init__.py +27 -0
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
- sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
- sglang/srt/compilation/backend.py +437 -0
- sglang/srt/compilation/compilation_config.py +20 -0
- sglang/srt/compilation/compilation_counter.py +47 -0
- sglang/srt/compilation/compile.py +210 -0
- sglang/srt/compilation/compiler_interface.py +503 -0
- sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
- sglang/srt/compilation/fix_functionalization.py +134 -0
- sglang/srt/compilation/fx_utils.py +83 -0
- sglang/srt/compilation/inductor_pass.py +140 -0
- sglang/srt/compilation/pass_manager.py +66 -0
- sglang/srt/compilation/piecewise_context_manager.py +40 -0
- sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
- sglang/srt/configs/__init__.py +8 -0
- sglang/srt/configs/deepseek_ocr.py +262 -0
- sglang/srt/configs/deepseekvl2.py +194 -96
- sglang/srt/configs/dots_ocr.py +64 -0
- sglang/srt/configs/dots_vlm.py +2 -7
- sglang/srt/configs/falcon_h1.py +309 -0
- sglang/srt/configs/load_config.py +33 -2
- sglang/srt/configs/mamba_utils.py +117 -0
- sglang/srt/configs/model_config.py +284 -118
- sglang/srt/configs/modelopt_config.py +30 -0
- sglang/srt/configs/nemotron_h.py +286 -0
- sglang/srt/configs/olmo3.py +105 -0
- sglang/srt/configs/points_v15_chat.py +29 -0
- sglang/srt/configs/qwen3_next.py +11 -47
- sglang/srt/configs/qwen3_omni.py +613 -0
- sglang/srt/configs/qwen3_vl.py +576 -0
- sglang/srt/connector/remote_instance.py +1 -1
- sglang/srt/constrained/base_grammar_backend.py +6 -1
- sglang/srt/constrained/llguidance_backend.py +5 -0
- sglang/srt/constrained/outlines_backend.py +1 -1
- sglang/srt/constrained/outlines_jump_forward.py +1 -1
- sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
- sglang/srt/constrained/utils.py +12 -0
- sglang/srt/constrained/xgrammar_backend.py +26 -15
- sglang/srt/debug_utils/dumper.py +10 -3
- sglang/srt/disaggregation/ascend/conn.py +2 -2
- sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
- sglang/srt/disaggregation/base/conn.py +17 -4
- sglang/srt/disaggregation/common/conn.py +268 -98
- sglang/srt/disaggregation/decode.py +172 -39
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
- sglang/srt/disaggregation/fake/conn.py +11 -3
- sglang/srt/disaggregation/mooncake/conn.py +203 -555
- sglang/srt/disaggregation/nixl/conn.py +217 -63
- sglang/srt/disaggregation/prefill.py +113 -270
- sglang/srt/disaggregation/utils.py +36 -5
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
- sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
- sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
- sglang/srt/distributed/device_communicators/pynccl.py +24 -12
- sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
- sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
- sglang/srt/distributed/naive_distributed.py +5 -4
- sglang/srt/distributed/parallel_state.py +203 -97
- sglang/srt/elastic_ep/elastic_ep.py +74 -0
- sglang/srt/entrypoints/context.py +3 -2
- sglang/srt/entrypoints/engine.py +85 -65
- sglang/srt/entrypoints/grpc_server.py +632 -305
- sglang/srt/entrypoints/harmony_utils.py +2 -2
- sglang/srt/entrypoints/http_server.py +169 -17
- sglang/srt/entrypoints/http_server_engine.py +1 -7
- sglang/srt/entrypoints/openai/protocol.py +327 -34
- sglang/srt/entrypoints/openai/serving_base.py +74 -8
- sglang/srt/entrypoints/openai/serving_chat.py +202 -118
- sglang/srt/entrypoints/openai/serving_classify.py +204 -0
- sglang/srt/entrypoints/openai/serving_completions.py +20 -4
- sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
- sglang/srt/entrypoints/openai/serving_responses.py +47 -2
- sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
- sglang/srt/environ.py +323 -0
- sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
- sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
- sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
- sglang/srt/eplb/expert_distribution.py +3 -4
- sglang/srt/eplb/expert_location.py +30 -5
- sglang/srt/eplb/expert_location_dispatch.py +2 -2
- sglang/srt/eplb/expert_location_updater.py +2 -2
- sglang/srt/function_call/base_format_detector.py +17 -18
- sglang/srt/function_call/function_call_parser.py +21 -16
- sglang/srt/function_call/glm4_moe_detector.py +4 -8
- sglang/srt/function_call/gpt_oss_detector.py +24 -1
- sglang/srt/function_call/json_array_parser.py +61 -0
- sglang/srt/function_call/kimik2_detector.py +17 -4
- sglang/srt/function_call/utils.py +98 -7
- sglang/srt/grpc/compile_proto.py +245 -0
- sglang/srt/grpc/grpc_request_manager.py +915 -0
- sglang/srt/grpc/health_servicer.py +189 -0
- sglang/srt/grpc/scheduler_launcher.py +181 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
- sglang/srt/layers/activation.py +11 -7
- sglang/srt/layers/attention/aiter_backend.py +17 -18
- sglang/srt/layers/attention/ascend_backend.py +125 -10
- sglang/srt/layers/attention/attention_registry.py +226 -0
- sglang/srt/layers/attention/base_attn_backend.py +32 -4
- sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
- sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
- sglang/srt/layers/attention/fla/chunk.py +0 -1
- sglang/srt/layers/attention/fla/chunk_o.py +1 -1
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
- sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
- sglang/srt/layers/attention/fla/index.py +0 -2
- sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
- sglang/srt/layers/attention/fla/utils.py +0 -3
- sglang/srt/layers/attention/fla/wy_fast.py +0 -2
- sglang/srt/layers/attention/flashattention_backend.py +52 -15
- sglang/srt/layers/attention/flashinfer_backend.py +357 -212
- sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
- sglang/srt/layers/attention/flashmla_backend.py +9 -7
- sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
- sglang/srt/layers/attention/intel_amx_backend.py +1 -1
- sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
- sglang/srt/layers/attention/mamba/mamba.py +514 -1
- sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
- sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
- sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
- sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
- sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
- sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
- sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
- sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
- sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
- sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
- sglang/srt/layers/attention/nsa/transform_index.py +144 -0
- sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
- sglang/srt/layers/attention/nsa/utils.py +23 -0
- sglang/srt/layers/attention/nsa_backend.py +1201 -0
- sglang/srt/layers/attention/tbo_backend.py +6 -6
- sglang/srt/layers/attention/torch_flex_backend.py +325 -0
- sglang/srt/layers/attention/triton_backend.py +249 -42
- sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
- sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
- sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
- sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
- sglang/srt/layers/attention/utils.py +11 -7
- sglang/srt/layers/attention/vision.py +61 -3
- sglang/srt/layers/attention/wave_backend.py +4 -4
- sglang/srt/layers/attention/xpu_backend.py +1028 -0
- sglang/srt/layers/communicator.py +19 -7
- sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
- sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
- sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
- sglang/srt/layers/dp_attention.py +28 -1
- sglang/srt/layers/elementwise.py +3 -1
- sglang/srt/layers/layernorm.py +47 -15
- sglang/srt/layers/linear.py +30 -5
- sglang/srt/layers/logits_processor.py +161 -18
- sglang/srt/layers/modelopt_utils.py +11 -0
- sglang/srt/layers/moe/cutlass_moe.py +0 -2
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
- sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
- sglang/srt/layers/moe/ep_moe/layer.py +243 -448
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
- sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
- sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
- sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
- sglang/srt/layers/moe/moe_runner/runner.py +3 -0
- sglang/srt/layers/moe/moe_runner/triton.py +3 -1
- sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
- sglang/srt/layers/moe/router.py +51 -15
- sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
- sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
- sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
- sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
- sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
- sglang/srt/layers/moe/topk.py +3 -2
- sglang/srt/layers/moe/utils.py +27 -1
- sglang/srt/layers/parameter.py +23 -6
- sglang/srt/layers/quantization/__init__.py +2 -53
- sglang/srt/layers/quantization/awq.py +183 -6
- sglang/srt/layers/quantization/awq_triton.py +29 -0
- sglang/srt/layers/quantization/base_config.py +20 -1
- sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
- sglang/srt/layers/quantization/fp8.py +86 -20
- sglang/srt/layers/quantization/fp8_kernel.py +55 -10
- sglang/srt/layers/quantization/fp8_utils.py +43 -15
- sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
- sglang/srt/layers/quantization/gptq.py +0 -1
- sglang/srt/layers/quantization/int8_kernel.py +18 -2
- sglang/srt/layers/quantization/marlin_utils.py +12 -0
- sglang/srt/layers/quantization/modelopt_quant.py +141 -81
- sglang/srt/layers/quantization/mxfp4.py +17 -34
- sglang/srt/layers/quantization/petit.py +1 -1
- sglang/srt/layers/quantization/quark/quark.py +3 -1
- sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
- sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
- sglang/srt/layers/quantization/unquant.py +1 -4
- sglang/srt/layers/quantization/utils.py +0 -1
- sglang/srt/layers/quantization/w4afp8.py +51 -24
- sglang/srt/layers/quantization/w8a8_int8.py +45 -27
- sglang/srt/layers/radix_attention.py +59 -9
- sglang/srt/layers/rotary_embedding.py +750 -46
- sglang/srt/layers/sampler.py +84 -16
- sglang/srt/layers/sparse_pooler.py +98 -0
- sglang/srt/layers/utils.py +23 -1
- sglang/srt/layers/vocab_parallel_embedding.py +4 -1
- sglang/srt/lora/backend/base_backend.py +3 -3
- sglang/srt/lora/backend/chunked_backend.py +348 -0
- sglang/srt/lora/backend/triton_backend.py +9 -4
- sglang/srt/lora/eviction_policy.py +139 -0
- sglang/srt/lora/lora.py +7 -5
- sglang/srt/lora/lora_manager.py +33 -7
- sglang/srt/lora/lora_registry.py +1 -1
- sglang/srt/lora/mem_pool.py +41 -17
- sglang/srt/lora/triton_ops/__init__.py +4 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
- sglang/srt/lora/utils.py +7 -5
- sglang/srt/managers/cache_controller.py +83 -152
- sglang/srt/managers/data_parallel_controller.py +156 -87
- sglang/srt/managers/detokenizer_manager.py +51 -24
- sglang/srt/managers/io_struct.py +223 -129
- sglang/srt/managers/mm_utils.py +49 -10
- sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
- sglang/srt/managers/multimodal_processor.py +1 -2
- sglang/srt/managers/overlap_utils.py +130 -0
- sglang/srt/managers/schedule_batch.py +340 -529
- sglang/srt/managers/schedule_policy.py +158 -18
- sglang/srt/managers/scheduler.py +665 -620
- sglang/srt/managers/scheduler_input_blocker.py +1 -1
- sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
- sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
- sglang/srt/managers/scheduler_pp_mixin.py +341 -0
- sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
- sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
- sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
- sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
- sglang/srt/managers/tokenizer_manager.py +462 -226
- sglang/srt/managers/tp_worker.py +217 -156
- sglang/srt/managers/utils.py +79 -47
- sglang/srt/mem_cache/allocator.py +21 -22
- sglang/srt/mem_cache/allocator_ascend.py +42 -28
- sglang/srt/mem_cache/base_prefix_cache.py +3 -3
- sglang/srt/mem_cache/chunk_cache.py +20 -2
- sglang/srt/mem_cache/common.py +480 -0
- sglang/srt/mem_cache/evict_policy.py +38 -0
- sglang/srt/mem_cache/hicache_storage.py +44 -2
- sglang/srt/mem_cache/hiradix_cache.py +134 -34
- sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
- sglang/srt/mem_cache/memory_pool.py +602 -208
- sglang/srt/mem_cache/memory_pool_host.py +134 -183
- sglang/srt/mem_cache/multimodal_cache.py +0 -1
- sglang/srt/mem_cache/radix_cache.py +263 -78
- sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
- sglang/srt/mem_cache/storage/__init__.py +10 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
- sglang/srt/mem_cache/storage/backend_factory.py +223 -0
- sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
- sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
- sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
- sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
- sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
- sglang/srt/mem_cache/swa_radix_cache.py +115 -58
- sglang/srt/metrics/collector.py +113 -120
- sglang/srt/metrics/func_timer.py +3 -8
- sglang/srt/metrics/utils.py +8 -1
- sglang/srt/model_executor/cpu_graph_runner.py +2 -2
- sglang/srt/model_executor/cuda_graph_runner.py +81 -36
- sglang/srt/model_executor/forward_batch_info.py +40 -50
- sglang/srt/model_executor/model_runner.py +507 -319
- sglang/srt/model_executor/npu_graph_runner.py +11 -5
- sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
- sglang/srt/model_loader/__init__.py +1 -1
- sglang/srt/model_loader/loader.py +438 -37
- sglang/srt/model_loader/utils.py +0 -1
- sglang/srt/model_loader/weight_utils.py +200 -27
- sglang/srt/models/apertus.py +2 -3
- sglang/srt/models/arcee.py +2 -2
- sglang/srt/models/bailing_moe.py +40 -56
- sglang/srt/models/bailing_moe_nextn.py +3 -4
- sglang/srt/models/bert.py +1 -1
- sglang/srt/models/deepseek_nextn.py +25 -4
- sglang/srt/models/deepseek_ocr.py +1516 -0
- sglang/srt/models/deepseek_v2.py +793 -235
- sglang/srt/models/dots_ocr.py +171 -0
- sglang/srt/models/dots_vlm.py +0 -1
- sglang/srt/models/dots_vlm_vit.py +1 -1
- sglang/srt/models/falcon_h1.py +570 -0
- sglang/srt/models/gemma3_causal.py +0 -2
- sglang/srt/models/gemma3_mm.py +17 -1
- sglang/srt/models/gemma3n_mm.py +2 -3
- sglang/srt/models/glm4_moe.py +17 -40
- sglang/srt/models/glm4_moe_nextn.py +4 -4
- sglang/srt/models/glm4v.py +3 -2
- sglang/srt/models/glm4v_moe.py +6 -6
- sglang/srt/models/gpt_oss.py +12 -35
- sglang/srt/models/grok.py +10 -23
- sglang/srt/models/hunyuan.py +2 -7
- sglang/srt/models/interns1.py +0 -1
- sglang/srt/models/kimi_vl.py +1 -7
- sglang/srt/models/kimi_vl_moonvit.py +4 -2
- sglang/srt/models/llama.py +6 -2
- sglang/srt/models/llama_eagle3.py +1 -1
- sglang/srt/models/longcat_flash.py +6 -23
- sglang/srt/models/longcat_flash_nextn.py +4 -15
- sglang/srt/models/mimo.py +2 -13
- sglang/srt/models/mimo_mtp.py +1 -2
- sglang/srt/models/minicpmo.py +7 -5
- sglang/srt/models/mixtral.py +1 -4
- sglang/srt/models/mllama.py +1 -1
- sglang/srt/models/mllama4.py +27 -6
- sglang/srt/models/nemotron_h.py +511 -0
- sglang/srt/models/olmo2.py +31 -4
- sglang/srt/models/opt.py +5 -5
- sglang/srt/models/phi.py +1 -1
- sglang/srt/models/phi4mm.py +1 -1
- sglang/srt/models/phimoe.py +0 -1
- sglang/srt/models/pixtral.py +0 -3
- sglang/srt/models/points_v15_chat.py +186 -0
- sglang/srt/models/qwen.py +0 -1
- sglang/srt/models/qwen2.py +0 -7
- sglang/srt/models/qwen2_5_vl.py +5 -5
- sglang/srt/models/qwen2_audio.py +2 -15
- sglang/srt/models/qwen2_moe.py +70 -4
- sglang/srt/models/qwen2_vl.py +6 -3
- sglang/srt/models/qwen3.py +18 -3
- sglang/srt/models/qwen3_moe.py +50 -38
- sglang/srt/models/qwen3_next.py +43 -21
- sglang/srt/models/qwen3_next_mtp.py +3 -4
- sglang/srt/models/qwen3_omni_moe.py +661 -0
- sglang/srt/models/qwen3_vl.py +791 -0
- sglang/srt/models/qwen3_vl_moe.py +343 -0
- sglang/srt/models/registry.py +15 -3
- sglang/srt/models/roberta.py +55 -3
- sglang/srt/models/sarashina2_vision.py +268 -0
- sglang/srt/models/solar.py +505 -0
- sglang/srt/models/starcoder2.py +357 -0
- sglang/srt/models/step3_vl.py +3 -5
- sglang/srt/models/torch_native_llama.py +9 -2
- sglang/srt/models/utils.py +61 -0
- sglang/srt/multimodal/processors/base_processor.py +21 -9
- sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
- sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
- sglang/srt/multimodal/processors/dots_vlm.py +2 -4
- sglang/srt/multimodal/processors/glm4v.py +1 -5
- sglang/srt/multimodal/processors/internvl.py +20 -10
- sglang/srt/multimodal/processors/janus_pro.py +0 -1
- sglang/srt/multimodal/processors/mllama4.py +0 -8
- sglang/srt/multimodal/processors/phi4mm.py +0 -1
- sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
- sglang/srt/multimodal/processors/qwen_vl.py +83 -17
- sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
- sglang/srt/multimodal/processors/step3_vl.py +1 -1
- sglang/srt/parser/conversation.py +41 -0
- sglang/srt/parser/jinja_template_utils.py +6 -0
- sglang/srt/parser/reasoning_parser.py +0 -1
- sglang/srt/sampling/custom_logit_processor.py +77 -2
- sglang/srt/sampling/sampling_batch_info.py +36 -23
- sglang/srt/sampling/sampling_params.py +75 -0
- sglang/srt/server_args.py +1300 -338
- sglang/srt/server_args_config_parser.py +146 -0
- sglang/srt/single_batch_overlap.py +161 -0
- sglang/srt/speculative/base_spec_worker.py +34 -0
- sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
- sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
- sglang/srt/speculative/cpp_ngram/param.h +125 -0
- sglang/srt/speculative/cpp_ngram/queue.h +71 -0
- sglang/srt/speculative/draft_utils.py +226 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
- sglang/srt/speculative/eagle_info.py +786 -0
- sglang/srt/speculative/eagle_info_v2.py +458 -0
- sglang/srt/speculative/eagle_utils.py +113 -1270
- sglang/srt/speculative/eagle_worker.py +120 -285
- sglang/srt/speculative/eagle_worker_v2.py +702 -0
- sglang/srt/speculative/ngram_info.py +433 -0
- sglang/srt/speculative/ngram_worker.py +246 -0
- sglang/srt/speculative/spec_info.py +49 -0
- sglang/srt/speculative/spec_utils.py +641 -0
- sglang/srt/speculative/standalone_worker.py +4 -14
- sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
- sglang/srt/tracing/trace.py +32 -6
- sglang/srt/two_batch_overlap.py +35 -18
- sglang/srt/utils/__init__.py +2 -0
- sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
- sglang/srt/{utils.py → utils/common.py} +583 -113
- sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
- sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
- sglang/srt/{offloader.py → utils/offloader.py} +4 -4
- sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
- sglang/srt/utils/profile_merger.py +199 -0
- sglang/srt/utils/rpd_utils.py +452 -0
- sglang/srt/utils/slow_rank_detector.py +71 -0
- sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
- sglang/srt/warmup.py +8 -4
- sglang/srt/weight_sync/utils.py +1 -1
- sglang/test/attention/test_flashattn_backend.py +1 -1
- sglang/test/attention/test_flashattn_mla_backend.py +0 -1
- sglang/test/attention/test_prefix_chunk_info.py +0 -2
- sglang/test/attention/test_trtllm_mla_backend.py +221 -53
- sglang/test/few_shot_gsm8k_engine.py +2 -4
- sglang/test/get_logits_ut.py +57 -0
- sglang/test/kit_matched_stop.py +157 -0
- sglang/test/longbench_v2/__init__.py +1 -0
- sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
- sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
- sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
- sglang/test/run_eval.py +120 -11
- sglang/test/runners.py +3 -1
- sglang/test/send_one.py +42 -7
- sglang/test/simple_eval_common.py +8 -2
- sglang/test/simple_eval_gpqa.py +0 -1
- sglang/test/simple_eval_humaneval.py +0 -3
- sglang/test/simple_eval_longbench_v2.py +344 -0
- sglang/test/simple_eval_mmmu_vlm.py +441 -0
- sglang/test/test_block_fp8.py +3 -4
- sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
- sglang/test/test_cutlass_moe.py +1 -2
- sglang/test/test_cutlass_w4a8_moe.py +10 -20
- sglang/test/test_deterministic.py +430 -0
- sglang/test/test_deterministic_utils.py +73 -0
- sglang/test/test_disaggregation_utils.py +93 -1
- sglang/test/test_marlin_moe.py +0 -1
- sglang/test/test_programs.py +1 -1
- sglang/test/test_utils.py +432 -16
- sglang/utils.py +10 -1
- sglang/version.py +1 -1
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
- sglang/srt/entrypoints/grpc_request_manager.py +0 -580
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
- sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
- sglang/srt/mem_cache/lora_radix_cache.py +0 -421
- sglang/srt/speculative/build_eagle_tree.py +0 -427
- sglang/test/test_block_fp8_ep.py +0 -358
- /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
- /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
- /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
- /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1201 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
from typing import TYPE_CHECKING, Dict, List, Literal, Optional, TypeAlias
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from sglang.srt.configs.model_config import get_nsa_index_topk, is_deepseek_nsa
|
|
9
|
+
from sglang.srt.layers.attention.base_attn_backend import AttentionBackend
|
|
10
|
+
from sglang.srt.layers.attention.nsa.nsa_indexer import BaseIndexerMetadata
|
|
11
|
+
from sglang.srt.layers.attention.nsa.quant_k_cache import quantize_k_cache
|
|
12
|
+
from sglang.srt.layers.attention.nsa.transform_index import (
|
|
13
|
+
transform_index_page_table_decode,
|
|
14
|
+
transform_index_page_table_prefill,
|
|
15
|
+
)
|
|
16
|
+
from sglang.srt.layers.attention.nsa.utils import (
|
|
17
|
+
NSA_FLASHMLA_BACKEND_DECODE_COMPUTE_FP8,
|
|
18
|
+
NSA_FUSE_TOPK,
|
|
19
|
+
compute_nsa_seqlens,
|
|
20
|
+
)
|
|
21
|
+
from sglang.srt.layers.dp_attention import get_attention_tp_size
|
|
22
|
+
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
|
|
23
|
+
from sglang.srt.utils import is_hip
|
|
24
|
+
|
|
25
|
+
# from sgl_kernel.flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
|
|
26
|
+
|
|
27
|
+
if TYPE_CHECKING:
|
|
28
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
|
29
|
+
from sglang.srt.model_executor.model_runner import ModelRunner
|
|
30
|
+
from sglang.srt.speculative.spec_info import SpecInput
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
_is_hip = is_hip()
|
|
34
|
+
|
|
35
|
+
if _is_hip:
|
|
36
|
+
try:
|
|
37
|
+
from aiter import ( # noqa: F401
|
|
38
|
+
flash_attn_varlen_func,
|
|
39
|
+
mha_batch_prefill_func,
|
|
40
|
+
paged_attention_ragged,
|
|
41
|
+
)
|
|
42
|
+
from aiter.mla import mla_decode_fwd, mla_prefill_fwd # noqa: F401
|
|
43
|
+
except ImportError:
|
|
44
|
+
print(
|
|
45
|
+
"aiter is AMD specific kernel library. Please make sure aiter is installed on your AMD device."
|
|
46
|
+
)
|
|
47
|
+
else:
|
|
48
|
+
from sgl_kernel.flash_attn import flash_attn_with_kvcache
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
@dataclass(frozen=True)
|
|
52
|
+
class NSAFlashMLAMetadata:
|
|
53
|
+
"""Metadata only needed by FlashMLA"""
|
|
54
|
+
|
|
55
|
+
flashmla_metadata: torch.Tensor
|
|
56
|
+
num_splits: torch.Tensor
|
|
57
|
+
|
|
58
|
+
def slice(self, sli):
|
|
59
|
+
return NSAFlashMLAMetadata(
|
|
60
|
+
flashmla_metadata=self.flashmla_metadata,
|
|
61
|
+
num_splits=self.num_splits[sli],
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
def copy_(self, other: "NSAFlashMLAMetadata"):
|
|
65
|
+
self.flashmla_metadata.copy_(other.flashmla_metadata)
|
|
66
|
+
self.num_splits.copy_(other.num_splits)
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
@dataclass(frozen=True)
|
|
70
|
+
class NSAMetadata:
|
|
71
|
+
page_size: int
|
|
72
|
+
|
|
73
|
+
# Sequence lengths for the forward batch
|
|
74
|
+
cache_seqlens_int32: torch.Tensor
|
|
75
|
+
# Maximum sequence length for query
|
|
76
|
+
max_seq_len_q: int
|
|
77
|
+
# Maximum sequence length for key
|
|
78
|
+
max_seq_len_k: int
|
|
79
|
+
# Cumulative sequence lengths for query
|
|
80
|
+
cu_seqlens_q: torch.Tensor
|
|
81
|
+
# Cumulative sequence lengths for key
|
|
82
|
+
cu_seqlens_k: torch.Tensor
|
|
83
|
+
# Page table, the index of KV Cache Tables/Blocks
|
|
84
|
+
# this table is always with page_size = 1
|
|
85
|
+
page_table_1: torch.Tensor
|
|
86
|
+
|
|
87
|
+
# NOTE(dark): This will property be used in:
|
|
88
|
+
# 1. dense decode/prefill, we use paged flash attention, need real_page_table
|
|
89
|
+
# 2. sparse decode/prefill, indexer need real_page_table to compute the score
|
|
90
|
+
real_page_table: torch.Tensor
|
|
91
|
+
|
|
92
|
+
# NSA metadata (nsa prefill are expanded)
|
|
93
|
+
nsa_cache_seqlens_int32: torch.Tensor # this seqlens is clipped to `topk`
|
|
94
|
+
nsa_cu_seqlens_q: torch.Tensor # must be arange(0, len(nsa_cu_seqlens_k))
|
|
95
|
+
nsa_cu_seqlens_k: torch.Tensor # cumsum of `nsa_cache_seqlens_int32`
|
|
96
|
+
nsa_extend_seq_lens_list: List[int]
|
|
97
|
+
nsa_seqlens_expanded: torch.Tensor # expanded, unclipped `seqlens`
|
|
98
|
+
nsa_max_seqlen_q: Literal[1] = 1 # always 1 for decode, variable for extend
|
|
99
|
+
|
|
100
|
+
flashmla_metadata: Optional[NSAFlashMLAMetadata] = None
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
@dataclass(frozen=True)
|
|
104
|
+
class NSAIndexerMetadata(BaseIndexerMetadata):
|
|
105
|
+
attn_metadata: NSAMetadata
|
|
106
|
+
|
|
107
|
+
def get_seqlens_int32(self) -> torch.Tensor:
|
|
108
|
+
return self.attn_metadata.cache_seqlens_int32
|
|
109
|
+
|
|
110
|
+
def get_page_table_64(self) -> torch.Tensor:
|
|
111
|
+
return self.attn_metadata.real_page_table
|
|
112
|
+
|
|
113
|
+
def get_seqlens_expanded(self) -> torch.Tensor:
|
|
114
|
+
return self.attn_metadata.nsa_seqlens_expanded
|
|
115
|
+
|
|
116
|
+
def topk_transform(
|
|
117
|
+
self,
|
|
118
|
+
logits: torch.Tensor,
|
|
119
|
+
topk: int,
|
|
120
|
+
) -> torch.Tensor:
|
|
121
|
+
from sgl_kernel import fast_topk_transform_fused, fast_topk_v2
|
|
122
|
+
|
|
123
|
+
if not NSA_FUSE_TOPK:
|
|
124
|
+
return fast_topk_v2(logits, self.get_seqlens_expanded(), topk)
|
|
125
|
+
|
|
126
|
+
# NOTE(dark): if fused, we return a transformed page table directly
|
|
127
|
+
return fast_topk_transform_fused(
|
|
128
|
+
score=logits,
|
|
129
|
+
lengths=self.get_seqlens_expanded(),
|
|
130
|
+
page_table_size_1=self.attn_metadata.page_table_1,
|
|
131
|
+
cu_seqlens_q=self.attn_metadata.cu_seqlens_q,
|
|
132
|
+
topk=topk,
|
|
133
|
+
)
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
def compute_cu_seqlens(seqlens: torch.Tensor) -> torch.Tensor:
|
|
137
|
+
assert seqlens.dtype == torch.int32 and seqlens.is_cuda
|
|
138
|
+
return torch.nn.functional.pad(
|
|
139
|
+
torch.cumsum(seqlens, dim=0, dtype=torch.int32), (1, 0)
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
|
|
143
|
+
_NSA_IMPL_T: TypeAlias = Literal["flashmla_sparse", "flashmla_kv", "fa3", "tilelang"]
|
|
144
|
+
|
|
145
|
+
NSA_PREFILL_IMPL: _NSA_IMPL_T
|
|
146
|
+
NSA_DECODE_IMPL: _NSA_IMPL_T
|
|
147
|
+
|
|
148
|
+
|
|
149
|
+
class NativeSparseAttnBackend(AttentionBackend):
|
|
150
|
+
def __init__(
|
|
151
|
+
self,
|
|
152
|
+
model_runner: ModelRunner,
|
|
153
|
+
skip_prefill: bool = False,
|
|
154
|
+
speculative_step_id=0,
|
|
155
|
+
topk=0,
|
|
156
|
+
speculative_num_steps=0,
|
|
157
|
+
):
|
|
158
|
+
super().__init__()
|
|
159
|
+
self.forward_metadata: NSAMetadata
|
|
160
|
+
self.device = model_runner.device
|
|
161
|
+
assert isinstance(model_runner.page_size, int)
|
|
162
|
+
self.real_page_size = model_runner.page_size
|
|
163
|
+
self.num_splits = (
|
|
164
|
+
1 if model_runner.server_args.enable_deterministic_inference else 0
|
|
165
|
+
)
|
|
166
|
+
self.use_nsa = is_deepseek_nsa(model_runner.model_config.hf_config)
|
|
167
|
+
assert self.use_nsa, "NSA backend only supports DeepSeek NSA"
|
|
168
|
+
self.nsa_kv_cache_store_fp8 = (
|
|
169
|
+
model_runner.token_to_kv_pool.nsa_kv_cache_store_fp8
|
|
170
|
+
)
|
|
171
|
+
self.nsa_index_topk = get_nsa_index_topk(model_runner.model_config.hf_config)
|
|
172
|
+
self.max_context_len = model_runner.model_config.context_len
|
|
173
|
+
self.num_q_heads = (
|
|
174
|
+
model_runner.model_config.num_attention_heads // get_attention_tp_size()
|
|
175
|
+
)
|
|
176
|
+
self.kv_cache_dim = model_runner.token_to_kv_pool.kv_cache_dim
|
|
177
|
+
|
|
178
|
+
assert model_runner.req_to_token_pool is not None
|
|
179
|
+
self.req_to_token = model_runner.req_to_token_pool.req_to_token
|
|
180
|
+
|
|
181
|
+
global NSA_PREFILL_IMPL, NSA_DECODE_IMPL
|
|
182
|
+
NSA_PREFILL_IMPL = model_runner.server_args.nsa_prefill_backend
|
|
183
|
+
NSA_DECODE_IMPL = model_runner.server_args.nsa_decode_backend
|
|
184
|
+
|
|
185
|
+
self._arange_buf = torch.arange(16384, device=self.device, dtype=torch.int32)
|
|
186
|
+
|
|
187
|
+
if _is_hip:
|
|
188
|
+
max_bs = model_runner.req_to_token_pool.size
|
|
189
|
+
|
|
190
|
+
self.kv_indptr = torch.zeros(
|
|
191
|
+
(max_bs + 1,), dtype=torch.int32, device=model_runner.device
|
|
192
|
+
)
|
|
193
|
+
|
|
194
|
+
# Speculative decoding
|
|
195
|
+
self.topk = model_runner.server_args.speculative_eagle_topk or 0
|
|
196
|
+
self.speculative_num_steps = speculative_num_steps
|
|
197
|
+
self.speculative_num_draft_tokens = (
|
|
198
|
+
model_runner.server_args.speculative_num_draft_tokens
|
|
199
|
+
)
|
|
200
|
+
self.speculative_step_id = speculative_step_id
|
|
201
|
+
|
|
202
|
+
def get_device_int32_arange(self, l: int) -> torch.Tensor:
|
|
203
|
+
if l > len(self._arange_buf):
|
|
204
|
+
next_pow_of_2 = 1 << (l - 1).bit_length()
|
|
205
|
+
self._arange_buf = torch.arange(
|
|
206
|
+
next_pow_of_2, device=self.device, dtype=torch.int32
|
|
207
|
+
)
|
|
208
|
+
return self._arange_buf[:l]
|
|
209
|
+
|
|
210
|
+
def _transform_table_1_to_real(self, page_table: torch.Tensor) -> torch.Tensor:
|
|
211
|
+
page_size = self.real_page_size
|
|
212
|
+
if page_size == 1:
|
|
213
|
+
return page_table
|
|
214
|
+
max_seqlen_k = page_table.shape[1]
|
|
215
|
+
strided_indices = torch.arange(
|
|
216
|
+
0, max_seqlen_k, page_size, device=page_table.device, dtype=torch.int32
|
|
217
|
+
)
|
|
218
|
+
return page_table[:, strided_indices] // page_size
|
|
219
|
+
|
|
220
|
+
def init_forward_metadata(self, forward_batch: ForwardBatch):
|
|
221
|
+
"""Init the metadata for a forward pass."""
|
|
222
|
+
batch_size = forward_batch.batch_size
|
|
223
|
+
device = forward_batch.seq_lens.device
|
|
224
|
+
|
|
225
|
+
if forward_batch.forward_mode.is_target_verify():
|
|
226
|
+
draft_token_num = self.speculative_num_draft_tokens
|
|
227
|
+
else:
|
|
228
|
+
draft_token_num = 0
|
|
229
|
+
|
|
230
|
+
cache_seqlens_int32 = (forward_batch.seq_lens + draft_token_num).to(torch.int32)
|
|
231
|
+
cu_seqlens_k = compute_cu_seqlens(cache_seqlens_int32)
|
|
232
|
+
assert forward_batch.seq_lens_cpu is not None
|
|
233
|
+
max_seqlen_k = int(forward_batch.seq_lens_cpu.max().item() + draft_token_num)
|
|
234
|
+
page_table = forward_batch.req_to_token_pool.req_to_token[
|
|
235
|
+
forward_batch.req_pool_indices, :max_seqlen_k
|
|
236
|
+
]
|
|
237
|
+
|
|
238
|
+
if forward_batch.forward_mode.is_decode_or_idle():
|
|
239
|
+
extend_seq_lens_cpu = [1] * batch_size
|
|
240
|
+
max_seqlen_q = 1
|
|
241
|
+
cu_seqlens_q = self.get_device_int32_arange(batch_size + 1)
|
|
242
|
+
seqlens_expanded = cache_seqlens_int32
|
|
243
|
+
elif forward_batch.forward_mode.is_target_verify():
|
|
244
|
+
max_seqlen_q = self.speculative_num_draft_tokens
|
|
245
|
+
nsa_max_seqlen_q = self.speculative_num_draft_tokens
|
|
246
|
+
cu_seqlens_q = torch.arange(
|
|
247
|
+
0,
|
|
248
|
+
batch_size * self.speculative_num_draft_tokens + 1,
|
|
249
|
+
1,
|
|
250
|
+
dtype=torch.int32,
|
|
251
|
+
device=device,
|
|
252
|
+
)
|
|
253
|
+
extend_seq_lens_cpu = [self.speculative_num_draft_tokens] * batch_size
|
|
254
|
+
forward_batch.extend_seq_lens_cpu = extend_seq_lens_cpu
|
|
255
|
+
|
|
256
|
+
seqlens_int32_cpu = [
|
|
257
|
+
self.speculative_num_draft_tokens + kv_len
|
|
258
|
+
for kv_len in forward_batch.seq_lens_cpu.tolist()
|
|
259
|
+
]
|
|
260
|
+
seqlens_expanded = torch.cat(
|
|
261
|
+
[
|
|
262
|
+
torch.arange(
|
|
263
|
+
kv_len - qo_len + 1,
|
|
264
|
+
kv_len + 1,
|
|
265
|
+
dtype=torch.int32,
|
|
266
|
+
device=device,
|
|
267
|
+
)
|
|
268
|
+
for qo_len, kv_len in zip(
|
|
269
|
+
extend_seq_lens_cpu,
|
|
270
|
+
seqlens_int32_cpu,
|
|
271
|
+
strict=True,
|
|
272
|
+
)
|
|
273
|
+
]
|
|
274
|
+
)
|
|
275
|
+
page_table = torch.repeat_interleave(
|
|
276
|
+
page_table, repeats=self.speculative_num_draft_tokens, dim=0
|
|
277
|
+
)
|
|
278
|
+
elif forward_batch.forward_mode.is_extend():
|
|
279
|
+
assert (
|
|
280
|
+
forward_batch.extend_seq_lens_cpu is not None
|
|
281
|
+
and forward_batch.extend_seq_lens is not None
|
|
282
|
+
and forward_batch.extend_prefix_lens_cpu is not None
|
|
283
|
+
), "All of them must not be None"
|
|
284
|
+
extend_seq_lens_cpu = forward_batch.extend_seq_lens_cpu
|
|
285
|
+
assert forward_batch.extend_seq_lens is not None
|
|
286
|
+
|
|
287
|
+
if (
|
|
288
|
+
any(forward_batch.extend_prefix_lens_cpu)
|
|
289
|
+
or forward_batch.forward_mode == ForwardMode.DRAFT_EXTEND
|
|
290
|
+
):
|
|
291
|
+
max_seqlen_q = max(extend_seq_lens_cpu)
|
|
292
|
+
cu_seqlens_q = compute_cu_seqlens(
|
|
293
|
+
forward_batch.extend_seq_lens.to(torch.int32)
|
|
294
|
+
)
|
|
295
|
+
else:
|
|
296
|
+
max_seqlen_q = max_seqlen_k
|
|
297
|
+
cu_seqlens_q = cu_seqlens_k
|
|
298
|
+
seqlens_expanded = torch.cat(
|
|
299
|
+
[
|
|
300
|
+
torch.arange(
|
|
301
|
+
kv_len - qo_len + 1,
|
|
302
|
+
kv_len + 1,
|
|
303
|
+
dtype=torch.int32,
|
|
304
|
+
device=device,
|
|
305
|
+
)
|
|
306
|
+
for qo_len, kv_len in zip(
|
|
307
|
+
forward_batch.extend_seq_lens_cpu,
|
|
308
|
+
forward_batch.seq_lens_cpu.tolist(),
|
|
309
|
+
strict=True,
|
|
310
|
+
)
|
|
311
|
+
]
|
|
312
|
+
)
|
|
313
|
+
else:
|
|
314
|
+
assert False, f"Unsupported {forward_batch.forward_mode = }"
|
|
315
|
+
|
|
316
|
+
# 1D, expanded seqlens (1D means cheap to compute, so always compute it)
|
|
317
|
+
nsa_cache_seqlens_int32 = compute_nsa_seqlens(
|
|
318
|
+
original_seq_lens=seqlens_expanded,
|
|
319
|
+
nsa_index_topk=self.nsa_index_topk,
|
|
320
|
+
)
|
|
321
|
+
nsa_cu_seqlens_k = compute_cu_seqlens(nsa_cache_seqlens_int32)
|
|
322
|
+
nsa_cu_seqlens_q = self.get_device_int32_arange(len(nsa_cu_seqlens_k))
|
|
323
|
+
|
|
324
|
+
metadata = NSAMetadata(
|
|
325
|
+
page_size=self.real_page_size,
|
|
326
|
+
cache_seqlens_int32=cache_seqlens_int32,
|
|
327
|
+
max_seq_len_q=max_seqlen_q,
|
|
328
|
+
max_seq_len_k=max_seqlen_k,
|
|
329
|
+
cu_seqlens_q=cu_seqlens_q,
|
|
330
|
+
cu_seqlens_k=cu_seqlens_k,
|
|
331
|
+
page_table_1=page_table,
|
|
332
|
+
flashmla_metadata=(
|
|
333
|
+
self._compute_flashmla_metadata(
|
|
334
|
+
cache_seqlens=nsa_cache_seqlens_int32,
|
|
335
|
+
seq_len_q=1,
|
|
336
|
+
)
|
|
337
|
+
if NSA_DECODE_IMPL == "flashmla_kv"
|
|
338
|
+
else None
|
|
339
|
+
),
|
|
340
|
+
nsa_cache_seqlens_int32=nsa_cache_seqlens_int32,
|
|
341
|
+
nsa_cu_seqlens_q=nsa_cu_seqlens_q,
|
|
342
|
+
nsa_cu_seqlens_k=nsa_cu_seqlens_k,
|
|
343
|
+
nsa_seqlens_expanded=seqlens_expanded,
|
|
344
|
+
nsa_extend_seq_lens_list=extend_seq_lens_cpu,
|
|
345
|
+
real_page_table=self._transform_table_1_to_real(page_table),
|
|
346
|
+
nsa_max_seqlen_q=1,
|
|
347
|
+
)
|
|
348
|
+
|
|
349
|
+
self.forward_metadata = metadata
|
|
350
|
+
|
|
351
|
+
def init_cuda_graph_state(self, max_bs: int, max_num_tokens: int):
|
|
352
|
+
"""Initialize CUDA graph state for the attention backend.
|
|
353
|
+
|
|
354
|
+
Args:
|
|
355
|
+
max_bs (int): Maximum batch size to support in CUDA graphs
|
|
356
|
+
|
|
357
|
+
This creates fixed-size tensors that will be reused during CUDA graph replay
|
|
358
|
+
to avoid memory allocations.
|
|
359
|
+
"""
|
|
360
|
+
self.decode_cuda_graph_metadata: Dict = {
|
|
361
|
+
"cache_seqlens": torch.ones(
|
|
362
|
+
max_num_tokens, dtype=torch.int32, device=self.device
|
|
363
|
+
),
|
|
364
|
+
"cu_seqlens_q": torch.arange(
|
|
365
|
+
0, max_bs + 1, dtype=torch.int32, device=self.device
|
|
366
|
+
),
|
|
367
|
+
"cu_seqlens_k": torch.zeros(
|
|
368
|
+
max_bs + 1, dtype=torch.int32, device=self.device
|
|
369
|
+
),
|
|
370
|
+
# fake page_table for sparse_prefill
|
|
371
|
+
"page_table": torch.zeros(
|
|
372
|
+
max_num_tokens,
|
|
373
|
+
self.max_context_len,
|
|
374
|
+
dtype=torch.int32,
|
|
375
|
+
device=self.device,
|
|
376
|
+
),
|
|
377
|
+
"flashmla_metadata": (
|
|
378
|
+
self._compute_flashmla_metadata(
|
|
379
|
+
cache_seqlens=torch.ones(
|
|
380
|
+
max_num_tokens, dtype=torch.int32, device=self.device
|
|
381
|
+
),
|
|
382
|
+
seq_len_q=1,
|
|
383
|
+
)
|
|
384
|
+
if NSA_DECODE_IMPL == "flashmla_kv"
|
|
385
|
+
else None
|
|
386
|
+
),
|
|
387
|
+
}
|
|
388
|
+
|
|
389
|
+
def init_forward_metadata_capture_cuda_graph(
|
|
390
|
+
self,
|
|
391
|
+
bs: int,
|
|
392
|
+
num_tokens: int,
|
|
393
|
+
req_pool_indices: torch.Tensor,
|
|
394
|
+
seq_lens: torch.Tensor,
|
|
395
|
+
encoder_lens: Optional[torch.Tensor],
|
|
396
|
+
forward_mode: ForwardMode,
|
|
397
|
+
spec_info: Optional[SpecInput],
|
|
398
|
+
):
|
|
399
|
+
"""Initialize forward metadata for capturing CUDA graph."""
|
|
400
|
+
if forward_mode.is_decode_or_idle():
|
|
401
|
+
# Normal Decode
|
|
402
|
+
# Get sequence information
|
|
403
|
+
cache_seqlens_int32 = seq_lens.to(torch.int32)
|
|
404
|
+
cu_seqlens_k = compute_cu_seqlens(cache_seqlens_int32)
|
|
405
|
+
|
|
406
|
+
# Use max context length for seq_len_k
|
|
407
|
+
page_table_1 = self.decode_cuda_graph_metadata["page_table"][:bs, :]
|
|
408
|
+
max_seqlen_q = 1
|
|
409
|
+
max_seqlen_k = page_table_1.shape[1]
|
|
410
|
+
|
|
411
|
+
# Precompute page table
|
|
412
|
+
# Precompute cumulative sequence lengths
|
|
413
|
+
|
|
414
|
+
# NOTE(dark): this is always arange, since we are decoding
|
|
415
|
+
cu_seqlens_q = self.decode_cuda_graph_metadata["cu_seqlens_q"][: bs + 1]
|
|
416
|
+
nsa_cache_seqlens_int32 = compute_nsa_seqlens(
|
|
417
|
+
cache_seqlens_int32, nsa_index_topk=self.nsa_index_topk
|
|
418
|
+
)
|
|
419
|
+
|
|
420
|
+
seqlens_expanded = cache_seqlens_int32
|
|
421
|
+
nsa_extend_seq_lens_list = [1] * num_tokens
|
|
422
|
+
if NSA_DECODE_IMPL == "flashmla_kv":
|
|
423
|
+
flashmla_metadata = self.decode_cuda_graph_metadata[
|
|
424
|
+
"flashmla_metadata"
|
|
425
|
+
].slice(slice(0, num_tokens + 1))
|
|
426
|
+
flashmla_metadata.copy_(
|
|
427
|
+
self._compute_flashmla_metadata(
|
|
428
|
+
cache_seqlens=nsa_cache_seqlens_int32,
|
|
429
|
+
seq_len_q=1,
|
|
430
|
+
)
|
|
431
|
+
)
|
|
432
|
+
else:
|
|
433
|
+
flashmla_metadata = None
|
|
434
|
+
elif forward_mode.is_target_verify():
|
|
435
|
+
cache_seqlens_int32 = (seq_lens + self.speculative_num_draft_tokens).to(
|
|
436
|
+
torch.int32
|
|
437
|
+
)
|
|
438
|
+
cu_seqlens_k = compute_cu_seqlens(cache_seqlens_int32)
|
|
439
|
+
max_seqlen_q = 1
|
|
440
|
+
page_table_1 = self.decode_cuda_graph_metadata["page_table"][
|
|
441
|
+
: bs * self.speculative_num_draft_tokens, :
|
|
442
|
+
]
|
|
443
|
+
max_seqlen_k = page_table_1.shape[1]
|
|
444
|
+
|
|
445
|
+
cu_seqlens_q = torch.arange(
|
|
446
|
+
0,
|
|
447
|
+
bs * self.speculative_num_draft_tokens + 1,
|
|
448
|
+
1,
|
|
449
|
+
dtype=torch.int32,
|
|
450
|
+
device=self.device,
|
|
451
|
+
)
|
|
452
|
+
|
|
453
|
+
extend_seq_lens_cpu = [self.speculative_num_draft_tokens] * bs
|
|
454
|
+
|
|
455
|
+
seqlens_int32_cpu = [
|
|
456
|
+
self.speculative_num_draft_tokens + kv_len
|
|
457
|
+
for kv_len in seq_lens.tolist()
|
|
458
|
+
]
|
|
459
|
+
seqlens_expanded = torch.cat(
|
|
460
|
+
[
|
|
461
|
+
torch.arange(
|
|
462
|
+
kv_len - qo_len + 1,
|
|
463
|
+
kv_len + 1,
|
|
464
|
+
dtype=torch.int32,
|
|
465
|
+
device=self.device,
|
|
466
|
+
)
|
|
467
|
+
for qo_len, kv_len in zip(
|
|
468
|
+
extend_seq_lens_cpu,
|
|
469
|
+
seqlens_int32_cpu,
|
|
470
|
+
strict=True,
|
|
471
|
+
)
|
|
472
|
+
]
|
|
473
|
+
)
|
|
474
|
+
nsa_cache_seqlens_int32 = compute_nsa_seqlens(
|
|
475
|
+
seqlens_expanded, nsa_index_topk=self.nsa_index_topk
|
|
476
|
+
)
|
|
477
|
+
nsa_extend_seq_lens_list = [1] * bs * self.speculative_num_draft_tokens
|
|
478
|
+
|
|
479
|
+
if NSA_DECODE_IMPL == "flashmla_kv":
|
|
480
|
+
flashmla_metadata = self.decode_cuda_graph_metadata[
|
|
481
|
+
"flashmla_metadata"
|
|
482
|
+
].slice(slice(0, bs * self.speculative_num_draft_tokens + 1))
|
|
483
|
+
|
|
484
|
+
flashmla_metadata.copy_(
|
|
485
|
+
self._compute_flashmla_metadata(
|
|
486
|
+
cache_seqlens=nsa_cache_seqlens_int32,
|
|
487
|
+
seq_len_q=1,
|
|
488
|
+
)
|
|
489
|
+
)
|
|
490
|
+
else:
|
|
491
|
+
flashmla_metadata = None
|
|
492
|
+
elif forward_mode.is_draft_extend():
|
|
493
|
+
cache_seqlens_int32 = (seq_lens + self.speculative_num_draft_tokens).to(
|
|
494
|
+
torch.int32
|
|
495
|
+
)
|
|
496
|
+
cu_seqlens_k = compute_cu_seqlens(cache_seqlens_int32)
|
|
497
|
+
page_table_1 = self.decode_cuda_graph_metadata["page_table"][:bs, :]
|
|
498
|
+
max_seqlen_k = page_table_1.shape[1]
|
|
499
|
+
|
|
500
|
+
extend_seq_lens_cpu = [self.speculative_num_draft_tokens] * bs
|
|
501
|
+
extend_seq_lens = torch.full(
|
|
502
|
+
(bs,),
|
|
503
|
+
self.speculative_num_draft_tokens,
|
|
504
|
+
device=self.device,
|
|
505
|
+
dtype=torch.int32,
|
|
506
|
+
)
|
|
507
|
+
|
|
508
|
+
max_seqlen_q = max(extend_seq_lens_cpu)
|
|
509
|
+
cu_seqlens_q = compute_cu_seqlens(extend_seq_lens.to(torch.int32))
|
|
510
|
+
|
|
511
|
+
seqlens_int32_cpu = [
|
|
512
|
+
self.speculative_num_draft_tokens + kv_len
|
|
513
|
+
for kv_len in seq_lens.tolist()
|
|
514
|
+
]
|
|
515
|
+
seqlens_expanded = torch.cat(
|
|
516
|
+
[
|
|
517
|
+
torch.arange(
|
|
518
|
+
kv_len - qo_len + 1,
|
|
519
|
+
kv_len + 1,
|
|
520
|
+
dtype=torch.int32,
|
|
521
|
+
device=self.device,
|
|
522
|
+
)
|
|
523
|
+
for qo_len, kv_len in zip(
|
|
524
|
+
extend_seq_lens_cpu,
|
|
525
|
+
seqlens_int32_cpu,
|
|
526
|
+
strict=True,
|
|
527
|
+
)
|
|
528
|
+
]
|
|
529
|
+
)
|
|
530
|
+
nsa_cache_seqlens_int32 = compute_nsa_seqlens(
|
|
531
|
+
seqlens_expanded, nsa_index_topk=self.nsa_index_topk
|
|
532
|
+
)
|
|
533
|
+
nsa_extend_seq_lens_list = [1] * bs
|
|
534
|
+
|
|
535
|
+
if NSA_DECODE_IMPL == "flashmla_kv":
|
|
536
|
+
flashmla_metadata = self.decode_cuda_graph_metadata[
|
|
537
|
+
"flashmla_metadata"
|
|
538
|
+
].slice(slice(0, bs * self.speculative_num_draft_tokens + 1))
|
|
539
|
+
# As the DeepGemm is not support for q_len = 3/4 in Indexer and every token has independent topk_indices,
|
|
540
|
+
# we made the Q shape [bs * speculative_num_draft_tokens, 1, head_nums, dim].
|
|
541
|
+
# So seq_len_q is 1 for flashmla_metadata in target_verify and draft_extend mode.
|
|
542
|
+
flashmla_metadata.copy_(
|
|
543
|
+
self._compute_flashmla_metadata(
|
|
544
|
+
cache_seqlens=nsa_cache_seqlens_int32,
|
|
545
|
+
seq_len_q=1,
|
|
546
|
+
)
|
|
547
|
+
)
|
|
548
|
+
else:
|
|
549
|
+
flashmla_metadata = None
|
|
550
|
+
|
|
551
|
+
nsa_cu_seqlens_k = compute_cu_seqlens(nsa_cache_seqlens_int32)
|
|
552
|
+
nsa_cu_seqlens_q = self.get_device_int32_arange(len(nsa_cu_seqlens_k))
|
|
553
|
+
real_page_table = self._transform_table_1_to_real(page_table_1)
|
|
554
|
+
|
|
555
|
+
metadata = NSAMetadata(
|
|
556
|
+
page_size=self.real_page_size,
|
|
557
|
+
cache_seqlens_int32=cache_seqlens_int32,
|
|
558
|
+
max_seq_len_q=max_seqlen_q,
|
|
559
|
+
max_seq_len_k=max_seqlen_k,
|
|
560
|
+
cu_seqlens_q=cu_seqlens_q,
|
|
561
|
+
cu_seqlens_k=cu_seqlens_k,
|
|
562
|
+
page_table_1=page_table_1,
|
|
563
|
+
flashmla_metadata=flashmla_metadata,
|
|
564
|
+
nsa_cache_seqlens_int32=nsa_cache_seqlens_int32,
|
|
565
|
+
nsa_cu_seqlens_q=nsa_cu_seqlens_q,
|
|
566
|
+
nsa_cu_seqlens_k=nsa_cu_seqlens_k,
|
|
567
|
+
nsa_seqlens_expanded=seqlens_expanded,
|
|
568
|
+
real_page_table=real_page_table,
|
|
569
|
+
nsa_extend_seq_lens_list=nsa_extend_seq_lens_list,
|
|
570
|
+
)
|
|
571
|
+
self.decode_cuda_graph_metadata[bs] = metadata
|
|
572
|
+
self.forward_metadata = metadata
|
|
573
|
+
|
|
574
|
+
def init_forward_metadata_replay_cuda_graph(
|
|
575
|
+
self,
|
|
576
|
+
bs: int,
|
|
577
|
+
req_pool_indices: torch.Tensor,
|
|
578
|
+
seq_lens: torch.Tensor,
|
|
579
|
+
seq_lens_sum: int,
|
|
580
|
+
encoder_lens: Optional[torch.Tensor],
|
|
581
|
+
forward_mode: ForwardMode,
|
|
582
|
+
spec_info: Optional[SpecInput],
|
|
583
|
+
seq_lens_cpu: Optional[torch.Tensor],
|
|
584
|
+
out_cache_loc: Optional[torch.Tensor] = None,
|
|
585
|
+
):
|
|
586
|
+
"""Initialize forward metadata for replaying CUDA graph."""
|
|
587
|
+
assert seq_lens_cpu is not None
|
|
588
|
+
|
|
589
|
+
seq_lens = seq_lens[:bs]
|
|
590
|
+
seq_lens_cpu = seq_lens_cpu[:bs]
|
|
591
|
+
req_pool_indices = req_pool_indices[:bs]
|
|
592
|
+
|
|
593
|
+
# Normal Decode
|
|
594
|
+
metadata: NSAMetadata = self.decode_cuda_graph_metadata[bs]
|
|
595
|
+
if forward_mode.is_decode_or_idle():
|
|
596
|
+
# Normal Decode
|
|
597
|
+
max_len = int(seq_lens_cpu.max().item())
|
|
598
|
+
|
|
599
|
+
cache_seqlens = seq_lens.to(torch.int32)
|
|
600
|
+
metadata.cache_seqlens_int32.copy_(cache_seqlens)
|
|
601
|
+
metadata.cu_seqlens_k[1:].copy_(
|
|
602
|
+
torch.cumsum(cache_seqlens, dim=0, dtype=torch.int32)
|
|
603
|
+
)
|
|
604
|
+
page_indices = self.req_to_token[req_pool_indices, :max_len]
|
|
605
|
+
metadata.page_table_1[:, :max_len].copy_(page_indices)
|
|
606
|
+
nsa_cache_seqlens = compute_nsa_seqlens(
|
|
607
|
+
cache_seqlens, nsa_index_topk=self.nsa_index_topk
|
|
608
|
+
)
|
|
609
|
+
metadata.nsa_cache_seqlens_int32.copy_(nsa_cache_seqlens)
|
|
610
|
+
seqlens_expanded = cache_seqlens
|
|
611
|
+
elif forward_mode.is_target_verify():
|
|
612
|
+
max_seqlen_k = int(
|
|
613
|
+
seq_lens_cpu.max().item() + self.speculative_num_draft_tokens
|
|
614
|
+
)
|
|
615
|
+
|
|
616
|
+
cache_seqlens = (seq_lens + self.speculative_num_draft_tokens).to(
|
|
617
|
+
torch.int32
|
|
618
|
+
)
|
|
619
|
+
metadata.cache_seqlens_int32.copy_(cache_seqlens)
|
|
620
|
+
metadata.cu_seqlens_k[1:].copy_(
|
|
621
|
+
torch.cumsum(cache_seqlens, dim=0, dtype=torch.int32)
|
|
622
|
+
)
|
|
623
|
+
page_indices = self.req_to_token[req_pool_indices, :max_seqlen_k]
|
|
624
|
+
page_indices = torch.repeat_interleave(
|
|
625
|
+
page_indices, repeats=self.speculative_num_draft_tokens, dim=0
|
|
626
|
+
)
|
|
627
|
+
metadata.page_table_1[:, :max_seqlen_k].copy_(page_indices)
|
|
628
|
+
extend_seq_lens_cpu = [self.speculative_num_draft_tokens] * bs
|
|
629
|
+
|
|
630
|
+
seqlens_int32_cpu = [
|
|
631
|
+
self.speculative_num_draft_tokens + kv_len
|
|
632
|
+
for kv_len in seq_lens_cpu.tolist()
|
|
633
|
+
]
|
|
634
|
+
seqlens_expanded = torch.cat(
|
|
635
|
+
[
|
|
636
|
+
torch.arange(
|
|
637
|
+
kv_len - qo_len + 1,
|
|
638
|
+
kv_len + 1,
|
|
639
|
+
dtype=torch.int32,
|
|
640
|
+
device=self.device,
|
|
641
|
+
)
|
|
642
|
+
for qo_len, kv_len in zip(
|
|
643
|
+
extend_seq_lens_cpu,
|
|
644
|
+
seqlens_int32_cpu,
|
|
645
|
+
strict=True,
|
|
646
|
+
)
|
|
647
|
+
]
|
|
648
|
+
)
|
|
649
|
+
metadata.nsa_seqlens_expanded.copy_(seqlens_expanded)
|
|
650
|
+
nsa_cache_seqlens = compute_nsa_seqlens(
|
|
651
|
+
seqlens_expanded, self.nsa_index_topk
|
|
652
|
+
)
|
|
653
|
+
metadata.nsa_cache_seqlens_int32.copy_(nsa_cache_seqlens)
|
|
654
|
+
elif forward_mode.is_draft_extend():
|
|
655
|
+
max_seqlen_k = int(seq_lens_cpu.max().item())
|
|
656
|
+
cache_seqlens = seq_lens.to(torch.int32)
|
|
657
|
+
metadata.cache_seqlens_int32.copy_(cache_seqlens)
|
|
658
|
+
metadata.cu_seqlens_k[1:].copy_(
|
|
659
|
+
torch.cumsum(cache_seqlens, dim=0, dtype=torch.int32)
|
|
660
|
+
)
|
|
661
|
+
page_indices = self.req_to_token[req_pool_indices, :max_seqlen_k]
|
|
662
|
+
metadata.page_table_1[:, :max_seqlen_k].copy_(page_indices)
|
|
663
|
+
extend_seq_lens_cpu = spec_info.accept_length[:bs].tolist()
|
|
664
|
+
|
|
665
|
+
seqlens_int32_cpu = [
|
|
666
|
+
self.speculative_num_draft_tokens + kv_len
|
|
667
|
+
for kv_len in seq_lens_cpu.tolist()
|
|
668
|
+
]
|
|
669
|
+
seqlens_expanded = torch.cat(
|
|
670
|
+
[
|
|
671
|
+
torch.arange(
|
|
672
|
+
kv_len - qo_len + 1,
|
|
673
|
+
kv_len + 1,
|
|
674
|
+
dtype=torch.int32,
|
|
675
|
+
device=self.device,
|
|
676
|
+
)
|
|
677
|
+
for qo_len, kv_len in zip(
|
|
678
|
+
extend_seq_lens_cpu,
|
|
679
|
+
seqlens_int32_cpu,
|
|
680
|
+
strict=True,
|
|
681
|
+
)
|
|
682
|
+
]
|
|
683
|
+
)
|
|
684
|
+
metadata.nsa_seqlens_expanded[: seqlens_expanded.size(0)].copy_(
|
|
685
|
+
seqlens_expanded
|
|
686
|
+
)
|
|
687
|
+
nsa_cache_seqlens = compute_nsa_seqlens(
|
|
688
|
+
seqlens_expanded, self.nsa_index_topk
|
|
689
|
+
)
|
|
690
|
+
metadata.nsa_cache_seqlens_int32[: seqlens_expanded.size(0)].copy_(
|
|
691
|
+
nsa_cache_seqlens
|
|
692
|
+
)
|
|
693
|
+
seqlens_expanded_size = seqlens_expanded.size(0)
|
|
694
|
+
assert (
|
|
695
|
+
metadata.nsa_cache_seqlens_int32 is not None
|
|
696
|
+
and metadata.nsa_cu_seqlens_k is not None
|
|
697
|
+
and self.nsa_index_topk is not None
|
|
698
|
+
)
|
|
699
|
+
|
|
700
|
+
metadata.nsa_cu_seqlens_k[1 : 1 + seqlens_expanded_size].copy_(
|
|
701
|
+
torch.cumsum(nsa_cache_seqlens, dim=0, dtype=torch.int32)
|
|
702
|
+
)
|
|
703
|
+
# NOTE(dark): (nsa-) cu_seqlens_q is always arange, no need to copy
|
|
704
|
+
|
|
705
|
+
assert self.real_page_size == metadata.page_size
|
|
706
|
+
if self.real_page_size > 1:
|
|
707
|
+
real_table = self._transform_table_1_to_real(page_indices)
|
|
708
|
+
new_len = real_table.shape[1]
|
|
709
|
+
metadata.real_page_table[:, :new_len].copy_(real_table)
|
|
710
|
+
else:
|
|
711
|
+
assert metadata.real_page_table is metadata.page_table_1
|
|
712
|
+
|
|
713
|
+
if NSA_DECODE_IMPL == "flashmla_kv":
|
|
714
|
+
flashmla_metadata = metadata.flashmla_metadata.slice(
|
|
715
|
+
slice(0, seqlens_expanded_size + 1)
|
|
716
|
+
)
|
|
717
|
+
flashmla_metadata.copy_(
|
|
718
|
+
self._compute_flashmla_metadata(
|
|
719
|
+
cache_seqlens=nsa_cache_seqlens,
|
|
720
|
+
seq_len_q=1,
|
|
721
|
+
)
|
|
722
|
+
)
|
|
723
|
+
|
|
724
|
+
self.forward_metadata = metadata
|
|
725
|
+
|
|
726
|
+
def forward_extend(
|
|
727
|
+
self,
|
|
728
|
+
q: torch.Tensor,
|
|
729
|
+
k: torch.Tensor,
|
|
730
|
+
v: torch.Tensor,
|
|
731
|
+
layer: RadixAttention,
|
|
732
|
+
forward_batch: ForwardBatch,
|
|
733
|
+
save_kv_cache=True,
|
|
734
|
+
# For multi-head latent attention
|
|
735
|
+
q_rope: Optional[torch.Tensor] = None,
|
|
736
|
+
k_rope: Optional[torch.Tensor] = None,
|
|
737
|
+
topk_indices: Optional[torch.Tensor] = None,
|
|
738
|
+
) -> torch.Tensor:
|
|
739
|
+
|
|
740
|
+
if k is not None:
|
|
741
|
+
assert v is not None
|
|
742
|
+
if save_kv_cache:
|
|
743
|
+
cache_loc = (
|
|
744
|
+
forward_batch.out_cache_loc
|
|
745
|
+
if not layer.is_cross_attention
|
|
746
|
+
else forward_batch.encoder_out_cache_loc
|
|
747
|
+
)
|
|
748
|
+
forward_batch.token_to_kv_pool.set_mla_kv_buffer( # type: ignore
|
|
749
|
+
layer,
|
|
750
|
+
cache_loc,
|
|
751
|
+
k,
|
|
752
|
+
k_rope,
|
|
753
|
+
)
|
|
754
|
+
|
|
755
|
+
metadata = self.forward_metadata
|
|
756
|
+
causal = not layer.is_cross_attention
|
|
757
|
+
assert causal, "NSA is causal only"
|
|
758
|
+
|
|
759
|
+
# For fa3 interface version compatibility, we put new fields into conditional keyword args
|
|
760
|
+
kwargs = {}
|
|
761
|
+
|
|
762
|
+
# Do absorbed multi-latent attention
|
|
763
|
+
assert q_rope is not None
|
|
764
|
+
kv_cache = forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id)
|
|
765
|
+
|
|
766
|
+
# when store in fp8 and compute in fp8, no need to convert dtype
|
|
767
|
+
if not (
|
|
768
|
+
NSA_FLASHMLA_BACKEND_DECODE_COMPUTE_FP8 and self.nsa_kv_cache_store_fp8
|
|
769
|
+
):
|
|
770
|
+
kv_cache = kv_cache.to(q.dtype)
|
|
771
|
+
|
|
772
|
+
if q_rope is not None:
|
|
773
|
+
q_nope = q.view(-1, layer.tp_q_head_num, layer.v_head_dim)
|
|
774
|
+
q_rope = q_rope.view(
|
|
775
|
+
-1, layer.tp_q_head_num, layer.head_dim - layer.v_head_dim
|
|
776
|
+
)
|
|
777
|
+
else:
|
|
778
|
+
q_all = q.contiguous().view(-1, layer.tp_q_head_num, layer.head_dim)
|
|
779
|
+
q_nope = q_all[:, :, : layer.v_head_dim]
|
|
780
|
+
q_rope = q_all[:, :, layer.v_head_dim :]
|
|
781
|
+
|
|
782
|
+
# NOTE(dark): here, we use page size = 1
|
|
783
|
+
|
|
784
|
+
if NSA_FUSE_TOPK:
|
|
785
|
+
page_table_1 = topk_indices
|
|
786
|
+
else:
|
|
787
|
+
assert metadata.nsa_extend_seq_lens_list is not None
|
|
788
|
+
page_table_1 = transform_index_page_table_prefill(
|
|
789
|
+
page_table=metadata.page_table_1,
|
|
790
|
+
topk_indices=topk_indices,
|
|
791
|
+
extend_lens_cpu=metadata.nsa_extend_seq_lens_list,
|
|
792
|
+
page_size=1,
|
|
793
|
+
)
|
|
794
|
+
if NSA_PREFILL_IMPL == "tilelang":
|
|
795
|
+
if q_rope is not None:
|
|
796
|
+
q_all = torch.cat([q_nope, q_rope], dim=-1)
|
|
797
|
+
return self._forward_tilelang(
|
|
798
|
+
q_all=q_all,
|
|
799
|
+
kv_cache=kv_cache,
|
|
800
|
+
page_table_1=page_table_1,
|
|
801
|
+
sm_scale=layer.scaling,
|
|
802
|
+
v_head_dim=layer.v_head_dim,
|
|
803
|
+
)
|
|
804
|
+
elif NSA_PREFILL_IMPL == "flashmla_sparse":
|
|
805
|
+
if q_rope is not None:
|
|
806
|
+
q_all = torch.cat([q_nope, q_rope], dim=-1)
|
|
807
|
+
return self._forward_flashmla_sparse(
|
|
808
|
+
q_all=q_all,
|
|
809
|
+
kv_cache=kv_cache,
|
|
810
|
+
page_table_1=page_table_1,
|
|
811
|
+
sm_scale=layer.scaling,
|
|
812
|
+
v_head_dim=layer.v_head_dim,
|
|
813
|
+
)
|
|
814
|
+
elif NSA_PREFILL_IMPL == "flashmla_kv":
|
|
815
|
+
if q_rope is not None:
|
|
816
|
+
q_all = torch.cat([q_nope, q_rope], dim=-1)
|
|
817
|
+
return self._forward_flashmla_kv(
|
|
818
|
+
q_all=q_all,
|
|
819
|
+
kv_cache=kv_cache,
|
|
820
|
+
sm_scale=layer.scaling,
|
|
821
|
+
v_head_dim=layer.v_head_dim,
|
|
822
|
+
# TODO optimize args
|
|
823
|
+
layer=layer,
|
|
824
|
+
metadata=metadata,
|
|
825
|
+
page_table_1=page_table_1,
|
|
826
|
+
)
|
|
827
|
+
elif NSA_PREFILL_IMPL == "fa3":
|
|
828
|
+
return self._forward_fa3(
|
|
829
|
+
q_rope=q_rope,
|
|
830
|
+
kv_cache=kv_cache,
|
|
831
|
+
v_head_dim=layer.v_head_dim,
|
|
832
|
+
q_nope=q_nope,
|
|
833
|
+
page_table=page_table_1,
|
|
834
|
+
cache_seqlens=metadata.nsa_cache_seqlens_int32,
|
|
835
|
+
cu_seqlens_q=metadata.nsa_cu_seqlens_q,
|
|
836
|
+
cu_seqlens_k=metadata.nsa_cu_seqlens_k,
|
|
837
|
+
max_seqlen_q=metadata.nsa_max_seqlen_q,
|
|
838
|
+
sm_scale=layer.scaling,
|
|
839
|
+
logit_cap=layer.logit_cap,
|
|
840
|
+
page_size=1,
|
|
841
|
+
)
|
|
842
|
+
else:
|
|
843
|
+
raise ValueError(f"Unsupported {NSA_PREFILL_IMPL = }")
|
|
844
|
+
|
|
845
|
+
def forward_decode(
|
|
846
|
+
self,
|
|
847
|
+
q: torch.Tensor,
|
|
848
|
+
k: torch.Tensor,
|
|
849
|
+
v: torch.Tensor,
|
|
850
|
+
layer: RadixAttention,
|
|
851
|
+
forward_batch: ForwardBatch,
|
|
852
|
+
save_kv_cache=True,
|
|
853
|
+
# For multi-head latent attention
|
|
854
|
+
q_rope: Optional[torch.Tensor] = None,
|
|
855
|
+
k_rope: Optional[torch.Tensor] = None,
|
|
856
|
+
topk_indices: Optional[torch.Tensor] = None,
|
|
857
|
+
) -> torch.Tensor:
|
|
858
|
+
if k is not None:
|
|
859
|
+
assert v is not None
|
|
860
|
+
if save_kv_cache:
|
|
861
|
+
cache_loc = (
|
|
862
|
+
forward_batch.out_cache_loc
|
|
863
|
+
if not layer.is_cross_attention
|
|
864
|
+
else forward_batch.encoder_out_cache_loc
|
|
865
|
+
)
|
|
866
|
+
forward_batch.token_to_kv_pool.set_mla_kv_buffer( # type: ignore
|
|
867
|
+
layer,
|
|
868
|
+
cache_loc,
|
|
869
|
+
k,
|
|
870
|
+
k_rope,
|
|
871
|
+
)
|
|
872
|
+
|
|
873
|
+
metadata = self.forward_metadata
|
|
874
|
+
causal = not layer.is_cross_attention
|
|
875
|
+
assert causal, "NSA is causal only"
|
|
876
|
+
|
|
877
|
+
# Do absorbed multi-latent attention
|
|
878
|
+
kv_cache = forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id)
|
|
879
|
+
if q_rope is not None:
|
|
880
|
+
q_nope = q.view(-1, layer.tp_q_head_num, layer.v_head_dim)
|
|
881
|
+
q_rope = q_rope.view(
|
|
882
|
+
-1, layer.tp_q_head_num, layer.head_dim - layer.v_head_dim
|
|
883
|
+
)
|
|
884
|
+
else:
|
|
885
|
+
q_all = q.contiguous().view(-1, layer.tp_q_head_num, layer.head_dim)
|
|
886
|
+
q_nope = q_all[:, :, : layer.v_head_dim]
|
|
887
|
+
q_rope = q_all[:, :, layer.v_head_dim :]
|
|
888
|
+
|
|
889
|
+
if NSA_FUSE_TOPK:
|
|
890
|
+
page_table_1 = topk_indices
|
|
891
|
+
else:
|
|
892
|
+
page_table_1 = transform_index_page_table_decode(
|
|
893
|
+
page_table=metadata.page_table_1,
|
|
894
|
+
topk_indices=topk_indices,
|
|
895
|
+
page_size=1,
|
|
896
|
+
)
|
|
897
|
+
|
|
898
|
+
if NSA_DECODE_IMPL == "flashmla_sparse":
|
|
899
|
+
if q_rope is not None:
|
|
900
|
+
q_all = torch.cat([q_nope, q_rope], dim=-1)
|
|
901
|
+
return self._forward_flashmla_sparse(
|
|
902
|
+
q_all=q_all,
|
|
903
|
+
kv_cache=kv_cache,
|
|
904
|
+
page_table_1=page_table_1,
|
|
905
|
+
sm_scale=layer.scaling,
|
|
906
|
+
v_head_dim=layer.v_head_dim,
|
|
907
|
+
)
|
|
908
|
+
elif NSA_DECODE_IMPL == "flashmla_kv":
|
|
909
|
+
if q_rope is not None:
|
|
910
|
+
q_all = torch.cat([q_nope, q_rope], dim=-1)
|
|
911
|
+
return self._forward_flashmla_kv(
|
|
912
|
+
q_all=q_all,
|
|
913
|
+
kv_cache=kv_cache,
|
|
914
|
+
sm_scale=layer.scaling,
|
|
915
|
+
v_head_dim=layer.v_head_dim,
|
|
916
|
+
# TODO optimize args
|
|
917
|
+
layer=layer,
|
|
918
|
+
metadata=metadata,
|
|
919
|
+
page_table_1=page_table_1,
|
|
920
|
+
)
|
|
921
|
+
elif NSA_DECODE_IMPL == "tilelang":
|
|
922
|
+
if q_rope is not None:
|
|
923
|
+
q_all = torch.cat([q_nope, q_rope], dim=-1)
|
|
924
|
+
return self._forward_tilelang(
|
|
925
|
+
q_all=q_all,
|
|
926
|
+
kv_cache=kv_cache,
|
|
927
|
+
page_table_1=page_table_1,
|
|
928
|
+
sm_scale=layer.scaling,
|
|
929
|
+
v_head_dim=layer.v_head_dim,
|
|
930
|
+
)
|
|
931
|
+
elif NSA_DECODE_IMPL == "fa3":
|
|
932
|
+
return self._forward_fa3(
|
|
933
|
+
q_rope=q_rope,
|
|
934
|
+
kv_cache=kv_cache,
|
|
935
|
+
v_head_dim=layer.v_head_dim,
|
|
936
|
+
q_nope=q_nope,
|
|
937
|
+
page_table=page_table_1,
|
|
938
|
+
cache_seqlens=metadata.nsa_cache_seqlens_int32,
|
|
939
|
+
cu_seqlens_q=metadata.nsa_cu_seqlens_q,
|
|
940
|
+
cu_seqlens_k=metadata.nsa_cu_seqlens_k,
|
|
941
|
+
max_seqlen_q=metadata.nsa_max_seqlen_q,
|
|
942
|
+
sm_scale=layer.scaling,
|
|
943
|
+
logit_cap=layer.logit_cap,
|
|
944
|
+
page_size=1,
|
|
945
|
+
)
|
|
946
|
+
elif NSA_DECODE_IMPL == "aiter":
|
|
947
|
+
if q_rope is not None:
|
|
948
|
+
q_all = torch.cat([q_nope, q_rope], dim=-1)
|
|
949
|
+
return self._forward_aiter(
|
|
950
|
+
q_all=q_all,
|
|
951
|
+
kv_cache=kv_cache,
|
|
952
|
+
page_table_1=page_table_1,
|
|
953
|
+
layer=layer,
|
|
954
|
+
metadata=metadata,
|
|
955
|
+
bs=forward_batch.batch_size,
|
|
956
|
+
)
|
|
957
|
+
|
|
958
|
+
else:
|
|
959
|
+
assert False, f"Unsupported {NSA_DECODE_IMPL = }"
|
|
960
|
+
|
|
961
|
+
def _forward_fa3(
|
|
962
|
+
self,
|
|
963
|
+
q_rope: torch.Tensor,
|
|
964
|
+
kv_cache: torch.Tensor,
|
|
965
|
+
v_head_dim: int,
|
|
966
|
+
q_nope: torch.Tensor,
|
|
967
|
+
page_table: torch.Tensor,
|
|
968
|
+
cache_seqlens: torch.Tensor,
|
|
969
|
+
cu_seqlens_q: torch.Tensor,
|
|
970
|
+
cu_seqlens_k: torch.Tensor,
|
|
971
|
+
max_seqlen_q: int,
|
|
972
|
+
sm_scale: float,
|
|
973
|
+
logit_cap: float,
|
|
974
|
+
page_size: int,
|
|
975
|
+
) -> torch.Tensor:
|
|
976
|
+
k_rope_cache = kv_cache[:, :, v_head_dim:]
|
|
977
|
+
c_kv_cache = kv_cache[:, :, :v_head_dim]
|
|
978
|
+
qk_rope_dim = k_rope_cache.shape[-1]
|
|
979
|
+
k_rope_cache = k_rope_cache.view(-1, page_size, 1, qk_rope_dim)
|
|
980
|
+
c_kv_cache = c_kv_cache.view(-1, page_size, 1, v_head_dim)
|
|
981
|
+
o = flash_attn_with_kvcache(
|
|
982
|
+
q=q_rope,
|
|
983
|
+
k_cache=k_rope_cache,
|
|
984
|
+
v_cache=c_kv_cache,
|
|
985
|
+
qv=q_nope,
|
|
986
|
+
page_table=page_table,
|
|
987
|
+
cache_seqlens=cache_seqlens,
|
|
988
|
+
cu_seqlens_q=cu_seqlens_q,
|
|
989
|
+
cu_seqlens_k_new=cu_seqlens_k,
|
|
990
|
+
max_seqlen_q=max_seqlen_q,
|
|
991
|
+
softmax_scale=sm_scale,
|
|
992
|
+
causal=True,
|
|
993
|
+
softcap=logit_cap,
|
|
994
|
+
return_softmax_lse=False,
|
|
995
|
+
num_splits=self.num_splits,
|
|
996
|
+
)
|
|
997
|
+
return o # type: ignore
|
|
998
|
+
|
|
999
|
+
def _forward_flashmla_sparse(
|
|
1000
|
+
self,
|
|
1001
|
+
q_all: torch.Tensor,
|
|
1002
|
+
kv_cache: torch.Tensor,
|
|
1003
|
+
v_head_dim: int,
|
|
1004
|
+
page_table_1: torch.Tensor,
|
|
1005
|
+
sm_scale: float,
|
|
1006
|
+
) -> torch.Tensor:
|
|
1007
|
+
from flash_mla import flash_mla_sparse_fwd
|
|
1008
|
+
|
|
1009
|
+
o, _, _ = flash_mla_sparse_fwd(
|
|
1010
|
+
q=q_all,
|
|
1011
|
+
kv=kv_cache,
|
|
1012
|
+
indices=page_table_1.unsqueeze(1),
|
|
1013
|
+
sm_scale=sm_scale,
|
|
1014
|
+
d_v=v_head_dim,
|
|
1015
|
+
)
|
|
1016
|
+
return o
|
|
1017
|
+
|
|
1018
|
+
def _forward_flashmla_kv(
|
|
1019
|
+
self,
|
|
1020
|
+
q_all: torch.Tensor,
|
|
1021
|
+
kv_cache: torch.Tensor,
|
|
1022
|
+
v_head_dim: int,
|
|
1023
|
+
sm_scale: float,
|
|
1024
|
+
layer,
|
|
1025
|
+
metadata: NSAMetadata,
|
|
1026
|
+
page_table_1,
|
|
1027
|
+
) -> torch.Tensor:
|
|
1028
|
+
from flash_mla import flash_mla_with_kvcache
|
|
1029
|
+
|
|
1030
|
+
cache_seqlens = metadata.nsa_cache_seqlens_int32
|
|
1031
|
+
|
|
1032
|
+
# TODO the 2nd dim is seq_len_q, need to be >1 when MTP
|
|
1033
|
+
q_all = q_all.view(-1, 1, layer.tp_q_head_num, layer.head_dim)
|
|
1034
|
+
kv_cache = kv_cache.view(-1, self.real_page_size, 1, self.kv_cache_dim)
|
|
1035
|
+
assert self.real_page_size == 64, "only page size 64 is supported"
|
|
1036
|
+
|
|
1037
|
+
if NSA_FLASHMLA_BACKEND_DECODE_COMPUTE_FP8 and not self.nsa_kv_cache_store_fp8:
|
|
1038
|
+
# inefficiently quantize the whole cache
|
|
1039
|
+
kv_cache = quantize_k_cache(kv_cache)
|
|
1040
|
+
|
|
1041
|
+
indices = page_table_1.unsqueeze(1)
|
|
1042
|
+
assert (
|
|
1043
|
+
indices.shape[-1] == self.nsa_index_topk
|
|
1044
|
+
) # requirement of FlashMLA decode kernel
|
|
1045
|
+
|
|
1046
|
+
o, _ = flash_mla_with_kvcache(
|
|
1047
|
+
q=q_all,
|
|
1048
|
+
k_cache=kv_cache,
|
|
1049
|
+
cache_seqlens=cache_seqlens,
|
|
1050
|
+
head_dim_v=v_head_dim,
|
|
1051
|
+
tile_scheduler_metadata=metadata.flashmla_metadata.flashmla_metadata,
|
|
1052
|
+
num_splits=metadata.flashmla_metadata.num_splits,
|
|
1053
|
+
softmax_scale=sm_scale,
|
|
1054
|
+
indices=indices,
|
|
1055
|
+
# doc says it is not used, but if pass in None then error
|
|
1056
|
+
block_table=torch.empty(
|
|
1057
|
+
(q_all.shape[0], 0), dtype=torch.int32, device=q_all.device
|
|
1058
|
+
),
|
|
1059
|
+
is_fp8_kvcache=NSA_FLASHMLA_BACKEND_DECODE_COMPUTE_FP8,
|
|
1060
|
+
)
|
|
1061
|
+
return o
|
|
1062
|
+
|
|
1063
|
+
def _forward_tilelang(
|
|
1064
|
+
self,
|
|
1065
|
+
q_all: torch.Tensor,
|
|
1066
|
+
kv_cache: torch.Tensor,
|
|
1067
|
+
v_head_dim: int,
|
|
1068
|
+
page_table_1: torch.Tensor,
|
|
1069
|
+
sm_scale: float,
|
|
1070
|
+
) -> torch.Tensor:
|
|
1071
|
+
from sglang.srt.layers.attention.nsa.tilelang_kernel import tilelang_sparse_fwd
|
|
1072
|
+
|
|
1073
|
+
return tilelang_sparse_fwd(
|
|
1074
|
+
q=q_all,
|
|
1075
|
+
kv=kv_cache,
|
|
1076
|
+
indices=page_table_1.unsqueeze(1),
|
|
1077
|
+
sm_scale=sm_scale,
|
|
1078
|
+
d_v=v_head_dim,
|
|
1079
|
+
)
|
|
1080
|
+
|
|
1081
|
+
def _forward_aiter(
|
|
1082
|
+
self,
|
|
1083
|
+
q_all: torch.Tensor,
|
|
1084
|
+
kv_cache: torch.Tensor,
|
|
1085
|
+
page_table_1: torch.Tensor,
|
|
1086
|
+
layer: RadixAttention,
|
|
1087
|
+
metadata: NSAMetadata,
|
|
1088
|
+
bs: int,
|
|
1089
|
+
) -> torch.Tensor:
|
|
1090
|
+
q = q_all.reshape(-1, layer.tp_q_head_num * layer.head_dim)
|
|
1091
|
+
|
|
1092
|
+
if layer.head_dim != layer.v_head_dim:
|
|
1093
|
+
o = q.new_empty((q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
|
|
1094
|
+
else:
|
|
1095
|
+
o = torch.empty_like(q)
|
|
1096
|
+
|
|
1097
|
+
kv_indptr = self.kv_indptr
|
|
1098
|
+
|
|
1099
|
+
non_minus1_mask = page_table_1 != -1
|
|
1100
|
+
non_minus1_counts = non_minus1_mask.sum(dim=1)
|
|
1101
|
+
kv_indptr[1 : bs + 1] = torch.cumsum(non_minus1_counts, dim=0)
|
|
1102
|
+
|
|
1103
|
+
kv_indices = page_table_1[page_table_1 != -1]
|
|
1104
|
+
|
|
1105
|
+
mla_decode_fwd(
|
|
1106
|
+
q.view(-1, layer.tp_q_head_num, layer.head_dim),
|
|
1107
|
+
kv_cache.view(-1, 1, 1, layer.head_dim),
|
|
1108
|
+
o.view(-1, layer.tp_q_head_num, layer.v_head_dim),
|
|
1109
|
+
metadata.cu_seqlens_q,
|
|
1110
|
+
kv_indptr,
|
|
1111
|
+
kv_indices,
|
|
1112
|
+
metadata.cu_seqlens_q,
|
|
1113
|
+
metadata.max_seq_len_q,
|
|
1114
|
+
layer.scaling,
|
|
1115
|
+
layer.logit_cap,
|
|
1116
|
+
)
|
|
1117
|
+
# kv_cache = kv_cache.view(-1, 1, layer.head_dim)
|
|
1118
|
+
return o
|
|
1119
|
+
|
|
1120
|
+
def get_cuda_graph_seq_len_fill_value(self):
|
|
1121
|
+
"""Get the fill value for sequence length in CUDA graph."""
|
|
1122
|
+
return 1
|
|
1123
|
+
|
|
1124
|
+
def get_indexer_metadata(
|
|
1125
|
+
self, layer_id: int, forward_batch: ForwardBatch
|
|
1126
|
+
) -> NSAIndexerMetadata:
|
|
1127
|
+
return NSAIndexerMetadata(attn_metadata=self.forward_metadata)
|
|
1128
|
+
|
|
1129
|
+
def _compute_flashmla_metadata(self, cache_seqlens: torch.Tensor, seq_len_q: int):
|
|
1130
|
+
from flash_mla import get_mla_metadata
|
|
1131
|
+
|
|
1132
|
+
flashmla_metadata, num_splits = get_mla_metadata(
|
|
1133
|
+
cache_seqlens=cache_seqlens,
|
|
1134
|
+
# TODO doc says `num_q_tokens_per_q_seq * num_heads_q // num_heads_k`
|
|
1135
|
+
# but the name looks like need seq_len_q?
|
|
1136
|
+
num_q_tokens_per_head_k=seq_len_q * self.num_q_heads // 1,
|
|
1137
|
+
num_heads_k=1,
|
|
1138
|
+
num_heads_q=self.num_q_heads,
|
|
1139
|
+
is_fp8_kvcache=NSA_FLASHMLA_BACKEND_DECODE_COMPUTE_FP8,
|
|
1140
|
+
topk=self.nsa_index_topk,
|
|
1141
|
+
)
|
|
1142
|
+
|
|
1143
|
+
return NSAFlashMLAMetadata(
|
|
1144
|
+
flashmla_metadata=flashmla_metadata,
|
|
1145
|
+
num_splits=num_splits,
|
|
1146
|
+
)
|
|
1147
|
+
|
|
1148
|
+
|
|
1149
|
+
class NativeSparseAttnMultiStepBackend:
|
|
1150
|
+
|
|
1151
|
+
def __init__(
|
|
1152
|
+
self, model_runner: ModelRunner, topk: int, speculative_num_steps: int
|
|
1153
|
+
):
|
|
1154
|
+
self.model_runner = model_runner
|
|
1155
|
+
self.topk = topk
|
|
1156
|
+
self.speculative_num_steps = speculative_num_steps
|
|
1157
|
+
self.attn_backends = []
|
|
1158
|
+
for i in range(self.speculative_num_steps):
|
|
1159
|
+
self.attn_backends.append(
|
|
1160
|
+
NativeSparseAttnBackend(
|
|
1161
|
+
model_runner,
|
|
1162
|
+
speculative_step_id=i,
|
|
1163
|
+
topk=self.topk,
|
|
1164
|
+
speculative_num_steps=self.speculative_num_steps,
|
|
1165
|
+
)
|
|
1166
|
+
)
|
|
1167
|
+
|
|
1168
|
+
def init_forward_metadata(self, forward_batch: ForwardBatch):
|
|
1169
|
+
for i in range(self.speculative_num_steps - 1):
|
|
1170
|
+
self.attn_backends[i].init_forward_metadata(forward_batch)
|
|
1171
|
+
|
|
1172
|
+
def init_cuda_graph_state(self, max_bs: int, max_num_tokens: int):
|
|
1173
|
+
for i in range(self.speculative_num_steps):
|
|
1174
|
+
self.attn_backends[i].init_cuda_graph_state(max_bs, max_num_tokens)
|
|
1175
|
+
|
|
1176
|
+
def init_forward_metadata_capture_cuda_graph(self, forward_batch: ForwardBatch):
|
|
1177
|
+
for i in range(self.speculative_num_steps):
|
|
1178
|
+
self.attn_backends[i].init_forward_metadata_capture_cuda_graph(
|
|
1179
|
+
forward_batch.batch_size,
|
|
1180
|
+
forward_batch.batch_size * self.topk,
|
|
1181
|
+
forward_batch.req_pool_indices,
|
|
1182
|
+
forward_batch.seq_lens,
|
|
1183
|
+
encoder_lens=None,
|
|
1184
|
+
forward_mode=ForwardMode.DECODE,
|
|
1185
|
+
spec_info=forward_batch.spec_info,
|
|
1186
|
+
)
|
|
1187
|
+
|
|
1188
|
+
def init_forward_metadata_replay_cuda_graph(
|
|
1189
|
+
self, forward_batch: ForwardBatch, bs: int
|
|
1190
|
+
):
|
|
1191
|
+
for i in range(self.speculative_num_steps):
|
|
1192
|
+
self.attn_backends[i].init_forward_metadata_replay_cuda_graph(
|
|
1193
|
+
bs,
|
|
1194
|
+
forward_batch.req_pool_indices,
|
|
1195
|
+
forward_batch.seq_lens,
|
|
1196
|
+
seq_lens_sum=-1,
|
|
1197
|
+
encoder_lens=None,
|
|
1198
|
+
forward_mode=ForwardMode.DECODE,
|
|
1199
|
+
spec_info=forward_batch.spec_info,
|
|
1200
|
+
seq_lens_cpu=forward_batch.seq_lens_cpu,
|
|
1201
|
+
)
|