sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -7,15 +7,19 @@ from typing import Any, Dict, List, Optional, Tuple, Union 
     | 
|
| 
       7 
7 
     | 
    
         | 
| 
       8 
8 
     | 
    
         
             
            import torch
         
     | 
| 
       9 
9 
     | 
    
         
             
            import torch.nn as nn
         
     | 
| 
      
 10 
     | 
    
         
            +
            import triton
         
     | 
| 
      
 11 
     | 
    
         
            +
            import triton.language as tl
         
     | 
| 
       10 
12 
     | 
    
         | 
| 
       11 
13 
     | 
    
         
             
            from sglang.srt.custom_op import CustomOp
         
     | 
| 
       12 
14 
     | 
    
         
             
            from sglang.srt.utils import (
         
     | 
| 
       13 
15 
     | 
    
         
             
                cpu_has_amx_support,
         
     | 
| 
       14 
16 
     | 
    
         
             
                get_bool_env_var,
         
     | 
| 
      
 17 
     | 
    
         
            +
                get_compiler_backend,
         
     | 
| 
       15 
18 
     | 
    
         
             
                is_cpu,
         
     | 
| 
       16 
19 
     | 
    
         
             
                is_cuda,
         
     | 
| 
       17 
20 
     | 
    
         
             
                is_hip,
         
     | 
| 
       18 
21 
     | 
    
         
             
                is_npu,
         
     | 
| 
      
 22 
     | 
    
         
            +
                is_xpu,
         
     | 
| 
       19 
23 
     | 
    
         
             
            )
         
     | 
| 
       20 
24 
     | 
    
         | 
| 
       21 
25 
     | 
    
         
             
            _is_cuda = is_cuda()
         
     | 
| 
         @@ -24,15 +28,22 @@ _use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip 
     | 
|
| 
       24 
28 
     | 
    
         
             
            _is_npu = is_npu()
         
     | 
| 
       25 
29 
     | 
    
         
             
            _is_cpu_amx_available = cpu_has_amx_support()
         
     | 
| 
       26 
30 
     | 
    
         
             
            _is_cpu = is_cpu()
         
     | 
| 
      
 31 
     | 
    
         
            +
            _is_xpu = is_xpu()
         
     | 
| 
       27 
32 
     | 
    
         | 
| 
       28 
33 
     | 
    
         
             
            if _is_cuda:
         
     | 
| 
       29 
     | 
    
         
            -
                from sgl_kernel import apply_rope_with_cos_sin_cache_inplace
         
     | 
| 
      
 34 
     | 
    
         
            +
                from sgl_kernel import FusedSetKVBufferArg, apply_rope_with_cos_sin_cache_inplace
         
     | 
| 
      
 35 
     | 
    
         
            +
            else:
         
     | 
| 
      
 36 
     | 
    
         
            +
                FusedSetKVBufferArg = None
         
     | 
| 
      
 37 
     | 
    
         
            +
             
     | 
| 
       30 
38 
     | 
    
         
             
            if _use_aiter:
         
     | 
| 
       31 
39 
     | 
    
         
             
                from aiter.rotary_embedding import get_rope as aiter_get_rope
         
     | 
| 
       32 
40 
     | 
    
         | 
| 
       33 
41 
     | 
    
         
             
            if is_npu():
         
     | 
| 
       34 
42 
     | 
    
         
             
                import torch_npu
         
     | 
| 
       35 
43 
     | 
    
         | 
| 
      
 44 
     | 
    
         
            +
                NPU_ROTARY_MUL_MAX_NUM_HEADS = 1000
         
     | 
| 
      
 45 
     | 
    
         
            +
                NPU_ROTARY_MUL_MAX_HEAD_SIZE = 896
         
     | 
| 
      
 46 
     | 
    
         
            +
             
     | 
| 
       36 
47 
     | 
    
         | 
| 
       37 
48 
     | 
    
         
             
            def _rotate_neox(x: torch.Tensor) -> torch.Tensor:
         
     | 
| 
       38 
49 
     | 
    
         
             
                x1 = x[..., : x.shape[-1] // 2]
         
     | 
| 
         @@ -101,9 +112,11 @@ class RotaryEmbedding(CustomOp): 
     | 
|
| 
       101 
112 
     | 
    
         
             
                    if not _is_cuda:
         
     | 
| 
       102 
113 
     | 
    
         
             
                        cache = cache.to(dtype)
         
     | 
| 
       103 
114 
     | 
    
         | 
| 
       104 
     | 
    
         
            -
                    if (
         
     | 
| 
       105 
     | 
    
         
            -
                        not (_is_cuda or _is_npu) or self.head_size not in [64, 128, 256, 512]
         
     | 
| 
       106 
     | 
    
         
            -
             
     | 
| 
      
 115 
     | 
    
         
            +
                    if dtype == torch.float32 or (
         
     | 
| 
      
 116 
     | 
    
         
            +
                        (not (_is_cuda or _is_npu) or self.head_size not in [64, 128, 256, 512])
         
     | 
| 
      
 117 
     | 
    
         
            +
                        and not (_is_cpu and _is_cpu_amx_available)
         
     | 
| 
      
 118 
     | 
    
         
            +
                        and not (_is_xpu)
         
     | 
| 
      
 119 
     | 
    
         
            +
                    ):
         
     | 
| 
       107 
120 
     | 
    
         
             
                        from vllm._custom_ops import rotary_embedding
         
     | 
| 
       108 
121 
     | 
    
         | 
| 
       109 
122 
     | 
    
         
             
                        self.vllm_rotary_embedding = rotary_embedding
         
     | 
| 
         @@ -142,8 +155,13 @@ class RotaryEmbedding(CustomOp): 
     | 
|
| 
       142 
155 
     | 
    
         
             
                    query: torch.Tensor,
         
     | 
| 
       143 
156 
     | 
    
         
             
                    key: torch.Tensor,
         
     | 
| 
       144 
157 
     | 
    
         
             
                    offsets: Optional[torch.Tensor] = None,
         
     | 
| 
      
 158 
     | 
    
         
            +
                    fused_set_kv_buffer_arg: Optional[FusedSetKVBufferArg] = None,
         
     | 
| 
       145 
159 
     | 
    
         
             
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
       146 
160 
     | 
    
         
             
                    """A PyTorch-native implementation of forward()."""
         
     | 
| 
      
 161 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 162 
     | 
    
         
            +
                        fused_set_kv_buffer_arg is None
         
     | 
| 
      
 163 
     | 
    
         
            +
                    ), "fused_set_kv_buffer_arg is not supported for native implementation"
         
     | 
| 
      
 164 
     | 
    
         
            +
             
     | 
| 
       147 
165 
     | 
    
         
             
                    if offsets is not None:
         
     | 
| 
       148 
166 
     | 
    
         
             
                        positions = positions + offsets
         
     | 
| 
       149 
167 
     | 
    
         
             
                    positions = positions.flatten()
         
     | 
| 
         @@ -172,12 +190,17 @@ class RotaryEmbedding(CustomOp): 
     | 
|
| 
       172 
190 
     | 
    
         
             
                    query: torch.Tensor,
         
     | 
| 
       173 
191 
     | 
    
         
             
                    key: torch.Tensor,
         
     | 
| 
       174 
192 
     | 
    
         
             
                    offsets: Optional[torch.Tensor] = None,
         
     | 
| 
      
 193 
     | 
    
         
            +
                    fused_set_kv_buffer_arg: Optional[FusedSetKVBufferArg] = None,
         
     | 
| 
       175 
194 
     | 
    
         
             
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
       176 
195 
     | 
    
         
             
                    """A PyTorch-npu implementation of forward()."""
         
     | 
| 
       177 
     | 
    
         
            -
                     
     | 
| 
      
 196 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 197 
     | 
    
         
            +
                        fused_set_kv_buffer_arg is None
         
     | 
| 
      
 198 
     | 
    
         
            +
                    ), "fused_set_kv_buffer_arg is not supported for npu implementation"
         
     | 
| 
       178 
199 
     | 
    
         | 
| 
       179 
200 
     | 
    
         
             
                    if get_bool_env_var("SGLANG_ENABLE_TORCH_COMPILE"):
         
     | 
| 
       180 
     | 
    
         
            -
                        return self.forward_native( 
     | 
| 
      
 201 
     | 
    
         
            +
                        return self.forward_native(
         
     | 
| 
      
 202 
     | 
    
         
            +
                            positions, query, key, offsets, fused_set_kv_buffer_arg
         
     | 
| 
      
 203 
     | 
    
         
            +
                        )
         
     | 
| 
       181 
204 
     | 
    
         
             
                    else:
         
     | 
| 
       182 
205 
     | 
    
         
             
                        rotary_mode = "half"
         
     | 
| 
       183 
206 
     | 
    
         
             
                        if self.is_neox_style:
         
     | 
| 
         @@ -202,7 +225,12 @@ class RotaryEmbedding(CustomOp): 
     | 
|
| 
       202 
225 
     | 
    
         
             
                    query: torch.Tensor,
         
     | 
| 
       203 
226 
     | 
    
         
             
                    key: torch.Tensor,
         
     | 
| 
       204 
227 
     | 
    
         
             
                    offsets: Optional[torch.Tensor] = None,
         
     | 
| 
      
 228 
     | 
    
         
            +
                    fused_set_kv_buffer_arg: Optional[FusedSetKVBufferArg] = None,
         
     | 
| 
       205 
229 
     | 
    
         
             
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
      
 230 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 231 
     | 
    
         
            +
                        fused_set_kv_buffer_arg is None
         
     | 
| 
      
 232 
     | 
    
         
            +
                    ), "fused_set_kv_buffer_arg is not supported for cpu implementation"
         
     | 
| 
      
 233 
     | 
    
         
            +
             
     | 
| 
       206 
234 
     | 
    
         
             
                    positions = torch.add(positions, offsets) if offsets is not None else positions
         
     | 
| 
       207 
235 
     | 
    
         
             
                    if _is_cpu_amx_available:
         
     | 
| 
       208 
236 
     | 
    
         
             
                        return torch.ops.sgl_kernel.rotary_embedding_cpu(
         
     | 
| 
         @@ -214,7 +242,9 @@ class RotaryEmbedding(CustomOp): 
     | 
|
| 
       214 
242 
     | 
    
         
             
                            self.is_neox_style,
         
     | 
| 
       215 
243 
     | 
    
         
             
                        )
         
     | 
| 
       216 
244 
     | 
    
         
             
                    else:
         
     | 
| 
       217 
     | 
    
         
            -
                        return self.forward_native( 
     | 
| 
      
 245 
     | 
    
         
            +
                        return self.forward_native(
         
     | 
| 
      
 246 
     | 
    
         
            +
                            positions, query, key, offsets, fused_set_kv_buffer_arg
         
     | 
| 
      
 247 
     | 
    
         
            +
                        )
         
     | 
| 
       218 
248 
     | 
    
         | 
| 
       219 
249 
     | 
    
         
             
                def forward_cuda(
         
     | 
| 
       220 
250 
     | 
    
         
             
                    self,
         
     | 
| 
         @@ -222,9 +252,13 @@ class RotaryEmbedding(CustomOp): 
     | 
|
| 
       222 
252 
     | 
    
         
             
                    query: torch.Tensor,
         
     | 
| 
       223 
253 
     | 
    
         
             
                    key: torch.Tensor,
         
     | 
| 
       224 
254 
     | 
    
         
             
                    offsets: Optional[torch.Tensor] = None,
         
     | 
| 
       225 
     | 
    
         
            -
                    fused_set_kv_buffer_arg 
     | 
| 
      
 255 
     | 
    
         
            +
                    fused_set_kv_buffer_arg: Optional[FusedSetKVBufferArg] = None,
         
     | 
| 
       226 
256 
     | 
    
         
             
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
       227 
     | 
    
         
            -
                    if  
     | 
| 
      
 257 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 258 
     | 
    
         
            +
                        _is_cuda
         
     | 
| 
      
 259 
     | 
    
         
            +
                        and (self.head_size in [64, 128, 256, 512])
         
     | 
| 
      
 260 
     | 
    
         
            +
                        and self.dtype != torch.float32
         
     | 
| 
      
 261 
     | 
    
         
            +
                    ):
         
     | 
| 
       228 
262 
     | 
    
         
             
                        apply_rope_with_cos_sin_cache_inplace(
         
     | 
| 
       229 
263 
     | 
    
         
             
                            positions=positions,
         
     | 
| 
       230 
264 
     | 
    
         
             
                            query=query,
         
     | 
| 
         @@ -260,6 +294,17 @@ class RotaryEmbedding(CustomOp): 
     | 
|
| 
       260 
294 
     | 
    
         
             
                    s += f", base={self.base}, is_neox_style={self.is_neox_style}"
         
     | 
| 
       261 
295 
     | 
    
         
             
                    return s
         
     | 
| 
       262 
296 
     | 
    
         | 
| 
      
 297 
     | 
    
         
            +
                def forward_xpu(
         
     | 
| 
      
 298 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 299 
     | 
    
         
            +
                    positions: torch.Tensor,
         
     | 
| 
      
 300 
     | 
    
         
            +
                    query: torch.Tensor,
         
     | 
| 
      
 301 
     | 
    
         
            +
                    key: torch.Tensor,
         
     | 
| 
      
 302 
     | 
    
         
            +
                    offsets: Optional[torch.Tensor] = None,
         
     | 
| 
      
 303 
     | 
    
         
            +
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
      
 304 
     | 
    
         
            +
                    # TODO: make a wrapper, and XPU will implement this kernel later.
         
     | 
| 
      
 305 
     | 
    
         
            +
                    self.cos_sin_cache = self.cos_sin_cache.to(query.device)
         
     | 
| 
      
 306 
     | 
    
         
            +
                    return self.forward_native(positions, query, key, offsets)
         
     | 
| 
      
 307 
     | 
    
         
            +
             
     | 
| 
       263 
308 
     | 
    
         | 
| 
       264 
309 
     | 
    
         
             
            class LinearScalingRotaryEmbedding(RotaryEmbedding):
         
     | 
| 
       265 
310 
     | 
    
         
             
                """RotaryEmbedding extended with linear scaling.
         
     | 
| 
         @@ -782,27 +827,33 @@ class DeepseekScalingRotaryEmbedding(RotaryEmbedding): 
     | 
|
| 
       782 
827 
     | 
    
         
             
                    key: torch.Tensor,
         
     | 
| 
       783 
828 
     | 
    
         
             
                    offsets: Optional[torch.Tensor] = None,
         
     | 
| 
       784 
829 
     | 
    
         
             
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
       785 
     | 
    
         
            -
                     
     | 
| 
       786 
     | 
    
         
            -
                     
     | 
| 
       787 
     | 
    
         
            -
             
     | 
| 
       788 
     | 
    
         
            -
                        return self.forward_native(positions, query, key, offsets)
         
     | 
| 
       789 
     | 
    
         
            -
                    num_tokens = query.shape[0]
         
     | 
| 
       790 
     | 
    
         
            -
                    rotary_mode = "half" if self.is_neox_style else "interleave"
         
     | 
| 
      
 830 
     | 
    
         
            +
                    num_tokens, num_q_heads, _ = query.shape
         
     | 
| 
      
 831 
     | 
    
         
            +
                    num_k_heads = key.shape[1]
         
     | 
| 
      
 832 
     | 
    
         
            +
             
     | 
| 
       791 
833 
     | 
    
         
             
                    self.cos_sin_cache: torch.Tensor = self.cos_sin_cache.to(positions.device)
         
     | 
| 
      
 834 
     | 
    
         
            +
                    cos_sin = self.cos_sin_cache[
         
     | 
| 
      
 835 
     | 
    
         
            +
                        torch.add(positions, offsets) if offsets is not None else positions
         
     | 
| 
      
 836 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 837 
     | 
    
         
            +
                    cos, sin = cos_sin.chunk(2, dim=-1)
         
     | 
| 
      
 838 
     | 
    
         
            +
                    # Reshape to [batchsize, head_dim, seq, rotary_dim]
         
     | 
| 
      
 839 
     | 
    
         
            +
                    cos = cos.repeat(1, 2).unsqueeze(-2).unsqueeze(-2)
         
     | 
| 
      
 840 
     | 
    
         
            +
                    sin = sin.repeat(1, 2).unsqueeze(-2).unsqueeze(-2)
         
     | 
| 
      
 841 
     | 
    
         
            +
             
     | 
| 
       792 
842 
     | 
    
         
             
                    query_rot = query[..., : self.rotary_dim]
         
     | 
| 
       793 
843 
     | 
    
         
             
                    key_rot = key[..., : self.rotary_dim]
         
     | 
| 
       794 
844 
     | 
    
         
             
                    if self.rotary_dim < self.head_size:
         
     | 
| 
       795 
845 
     | 
    
         
             
                        query_pass = query[..., self.rotary_dim :]
         
     | 
| 
       796 
846 
     | 
    
         
             
                        key_pass = key[..., self.rotary_dim :]
         
     | 
| 
       797 
847 
     | 
    
         | 
| 
       798 
     | 
    
         
            -
                    query_rot 
     | 
| 
       799 
     | 
    
         
            -
                         
     | 
| 
       800 
     | 
    
         
            -
                         
     | 
| 
       801 
     | 
    
         
            -
                         
     | 
| 
       802 
     | 
    
         
            -
             
     | 
| 
       803 
     | 
    
         
            -
             
     | 
| 
       804 
     | 
    
         
            -
                         
     | 
| 
       805 
     | 
    
         
            -
                         
     | 
| 
      
 848 
     | 
    
         
            +
                    query_rot = torch_npu.npu_interleave_rope(
         
     | 
| 
      
 849 
     | 
    
         
            +
                        query_rot.reshape(num_tokens, num_q_heads, 1, self.rotary_dim),
         
     | 
| 
      
 850 
     | 
    
         
            +
                        cos,
         
     | 
| 
      
 851 
     | 
    
         
            +
                        sin,
         
     | 
| 
      
 852 
     | 
    
         
            +
                    )
         
     | 
| 
      
 853 
     | 
    
         
            +
                    key_rot = torch_npu.npu_interleave_rope(
         
     | 
| 
      
 854 
     | 
    
         
            +
                        key_rot.reshape(num_tokens, num_k_heads, 1, self.rotary_dim),
         
     | 
| 
      
 855 
     | 
    
         
            +
                        cos,
         
     | 
| 
      
 856 
     | 
    
         
            +
                        sin,
         
     | 
| 
       806 
857 
     | 
    
         
             
                    )
         
     | 
| 
       807 
858 
     | 
    
         
             
                    query_rot = query_rot.reshape(num_tokens, -1, self.rotary_dim)
         
     | 
| 
       808 
859 
     | 
    
         
             
                    key_rot = key_rot.reshape(num_tokens, -1, self.rotary_dim)
         
     | 
| 
         @@ -978,6 +1029,199 @@ class DynamicNTKAlphaRotaryEmbedding(RotaryEmbedding): 
     | 
|
| 
       978 
1029 
     | 
    
         
             
                    return cache
         
     | 
| 
       979 
1030 
     | 
    
         | 
| 
       980 
1031 
     | 
    
         | 
| 
      
 1032 
     | 
    
         
            +
            def apply_interleaved_rope(x: torch.Tensor, mrope_section: list[int]) -> torch.Tensor:
         
     | 
| 
      
 1033 
     | 
    
         
            +
                """Apply interleaved MRoPE to 3D rotary embeddings.
         
     | 
| 
      
 1034 
     | 
    
         
            +
                Reorganizes frequency layout from chunked [TTT...HHH...WWW] to
         
     | 
| 
      
 1035 
     | 
    
         
            +
                interleaved [THTHWHTHW...TT], preserving frequency continuity.
         
     | 
| 
      
 1036 
     | 
    
         
            +
                """
         
     | 
| 
      
 1037 
     | 
    
         
            +
                x_t = x[0].clone()
         
     | 
| 
      
 1038 
     | 
    
         
            +
                x_t[..., 1 : mrope_section[1] * 3 : 3] = x[1, ..., 1 : mrope_section[1] * 3 : 3]
         
     | 
| 
      
 1039 
     | 
    
         
            +
                x_t[..., 2 : mrope_section[2] * 3 : 3] = x[2, ..., 2 : mrope_section[2] * 3 : 3]
         
     | 
| 
      
 1040 
     | 
    
         
            +
                return x_t
         
     | 
| 
      
 1041 
     | 
    
         
            +
             
     | 
| 
      
 1042 
     | 
    
         
            +
             
     | 
| 
      
 1043 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 1044 
     | 
    
         
            +
            def _triton_mrope_forward(
         
     | 
| 
      
 1045 
     | 
    
         
            +
                q_ptr,
         
     | 
| 
      
 1046 
     | 
    
         
            +
                k_ptr,
         
     | 
| 
      
 1047 
     | 
    
         
            +
                cos,
         
     | 
| 
      
 1048 
     | 
    
         
            +
                sin,
         
     | 
| 
      
 1049 
     | 
    
         
            +
                num_tokens,
         
     | 
| 
      
 1050 
     | 
    
         
            +
                n_qh: tl.constexpr,
         
     | 
| 
      
 1051 
     | 
    
         
            +
                n_kh: tl.constexpr,
         
     | 
| 
      
 1052 
     | 
    
         
            +
                hd: tl.constexpr,
         
     | 
| 
      
 1053 
     | 
    
         
            +
                rd: tl.constexpr,
         
     | 
| 
      
 1054 
     | 
    
         
            +
                pad_n_qh: tl.constexpr,
         
     | 
| 
      
 1055 
     | 
    
         
            +
                pad_n_kh: tl.constexpr,
         
     | 
| 
      
 1056 
     | 
    
         
            +
                pad_hd: tl.constexpr,
         
     | 
| 
      
 1057 
     | 
    
         
            +
                mrope_section_t: tl.constexpr,
         
     | 
| 
      
 1058 
     | 
    
         
            +
                mrope_section_h: tl.constexpr,
         
     | 
| 
      
 1059 
     | 
    
         
            +
                mrope_section_w: tl.constexpr,
         
     | 
| 
      
 1060 
     | 
    
         
            +
                is_interleaved: tl.constexpr,
         
     | 
| 
      
 1061 
     | 
    
         
            +
            ):
         
     | 
| 
      
 1062 
     | 
    
         
            +
                # Adapted from
         
     | 
| 
      
 1063 
     | 
    
         
            +
                # https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/ops/qwen2vl_mrope.py
         
     | 
| 
      
 1064 
     | 
    
         
            +
                # This version supports flatten input tensors from vllm
         
     | 
| 
      
 1065 
     | 
    
         
            +
                # and supports cos and sin cache with shape (3, num_tokens, head_dim // 2)
         
     | 
| 
      
 1066 
     | 
    
         
            +
                # instead of (3, bsz, seq_len, head_dim), also supports interleaved rotary
         
     | 
| 
      
 1067 
     | 
    
         
            +
                pid = tl.program_id(0)
         
     | 
| 
      
 1068 
     | 
    
         
            +
                # locate start address
         
     | 
| 
      
 1069 
     | 
    
         
            +
                q_ptr = q_ptr + pid * (n_qh * hd)
         
     | 
| 
      
 1070 
     | 
    
         
            +
                k_ptr = k_ptr + pid * (n_kh * hd)
         
     | 
| 
      
 1071 
     | 
    
         
            +
             
     | 
| 
      
 1072 
     | 
    
         
            +
                # ####################################################################
         
     | 
| 
      
 1073 
     | 
    
         
            +
                # get the cos(mθ_{i...d/2}) and sin(mθ_{i...d/2}) for token position
         
     | 
| 
      
 1074 
     | 
    
         
            +
                # m of this program instance
         
     | 
| 
      
 1075 
     | 
    
         
            +
                # ####################################################################
         
     | 
| 
      
 1076 
     | 
    
         
            +
                # Note: cos and sin now have shape (3, num_tokens, head_dim // 2)
         
     | 
| 
      
 1077 
     | 
    
         
            +
             
     | 
| 
      
 1078 
     | 
    
         
            +
                # Updated stride calculation for half head_dim
         
     | 
| 
      
 1079 
     | 
    
         
            +
                half_rd = rd // 2
         
     | 
| 
      
 1080 
     | 
    
         
            +
                t_cos = cos + pid * half_rd
         
     | 
| 
      
 1081 
     | 
    
         
            +
                h_cos = t_cos + num_tokens * half_rd
         
     | 
| 
      
 1082 
     | 
    
         
            +
                w_cos = h_cos + num_tokens * half_rd
         
     | 
| 
      
 1083 
     | 
    
         
            +
                t_sin = sin + pid * half_rd
         
     | 
| 
      
 1084 
     | 
    
         
            +
                h_sin = t_sin + num_tokens * half_rd
         
     | 
| 
      
 1085 
     | 
    
         
            +
                w_sin = h_sin + num_tokens * half_rd
         
     | 
| 
      
 1086 
     | 
    
         
            +
             
     | 
| 
      
 1087 
     | 
    
         
            +
                # Updated offsets for half head_dim
         
     | 
| 
      
 1088 
     | 
    
         
            +
                cos_offsets = tl.arange(0, pad_hd // 2)
         
     | 
| 
      
 1089 
     | 
    
         
            +
                if is_interleaved:
         
     | 
| 
      
 1090 
     | 
    
         
            +
                    h_mask = ((cos_offsets % 3) == 1) & (cos_offsets <= 3 * mrope_section_h)
         
     | 
| 
      
 1091 
     | 
    
         
            +
                    w_mask = ((cos_offsets % 3) == 2) & (cos_offsets <= 3 * mrope_section_w)
         
     | 
| 
      
 1092 
     | 
    
         
            +
                    t_mask = ~(h_mask | w_mask)
         
     | 
| 
      
 1093 
     | 
    
         
            +
                else:
         
     | 
| 
      
 1094 
     | 
    
         
            +
                    t_end = mrope_section_t
         
     | 
| 
      
 1095 
     | 
    
         
            +
                    h_end = t_end + mrope_section_h
         
     | 
| 
      
 1096 
     | 
    
         
            +
                    t_mask = cos_offsets < mrope_section_t
         
     | 
| 
      
 1097 
     | 
    
         
            +
                    h_mask = (t_end <= cos_offsets) & (cos_offsets < h_end)
         
     | 
| 
      
 1098 
     | 
    
         
            +
                    w_mask = (h_end <= cos_offsets) & (cos_offsets < half_rd)
         
     | 
| 
      
 1099 
     | 
    
         
            +
             
     | 
| 
      
 1100 
     | 
    
         
            +
                t_cos_row = tl.load(t_cos + cos_offsets, mask=t_mask, other=0)
         
     | 
| 
      
 1101 
     | 
    
         
            +
                h_cos_row = tl.load(h_cos + cos_offsets, mask=h_mask, other=0)
         
     | 
| 
      
 1102 
     | 
    
         
            +
                w_cos_row = tl.load(w_cos + cos_offsets, mask=w_mask, other=0)
         
     | 
| 
      
 1103 
     | 
    
         
            +
                t_sin_row = tl.load(t_sin + cos_offsets, mask=t_mask, other=0)
         
     | 
| 
      
 1104 
     | 
    
         
            +
                h_sin_row = tl.load(h_sin + cos_offsets, mask=h_mask, other=0)
         
     | 
| 
      
 1105 
     | 
    
         
            +
                w_sin_row = tl.load(w_sin + cos_offsets, mask=w_mask, other=0)
         
     | 
| 
      
 1106 
     | 
    
         
            +
             
     | 
| 
      
 1107 
     | 
    
         
            +
                cos_row = t_cos_row + h_cos_row + w_cos_row
         
     | 
| 
      
 1108 
     | 
    
         
            +
                sin_row = t_sin_row + h_sin_row + w_sin_row
         
     | 
| 
      
 1109 
     | 
    
         
            +
             
     | 
| 
      
 1110 
     | 
    
         
            +
                # ####################################################################
         
     | 
| 
      
 1111 
     | 
    
         
            +
                # Load the left and right half of q and k for the current
         
     | 
| 
      
 1112 
     | 
    
         
            +
                # program instance (i.e. for the current token) separately
         
     | 
| 
      
 1113 
     | 
    
         
            +
                # ####################################################################
         
     | 
| 
      
 1114 
     | 
    
         
            +
                # left half of the head
         
     | 
| 
      
 1115 
     | 
    
         
            +
                first_half_q_offsets = (
         
     | 
| 
      
 1116 
     | 
    
         
            +
                    tl.arange(0, pad_n_qh)[:, None] * hd + tl.arange(0, pad_hd // 2)[None, :]
         
     | 
| 
      
 1117 
     | 
    
         
            +
                )
         
     | 
| 
      
 1118 
     | 
    
         
            +
                first_half_k_offsets = (
         
     | 
| 
      
 1119 
     | 
    
         
            +
                    tl.arange(0, pad_n_kh)[:, None] * hd + tl.arange(0, pad_hd // 2)[None, :]
         
     | 
| 
      
 1120 
     | 
    
         
            +
                )
         
     | 
| 
      
 1121 
     | 
    
         
            +
                first_q_mask = (tl.arange(0, pad_n_qh)[:, None] < n_qh) & (
         
     | 
| 
      
 1122 
     | 
    
         
            +
                    tl.arange(0, pad_hd // 2)[None, :] < rd // 2
         
     | 
| 
      
 1123 
     | 
    
         
            +
                )
         
     | 
| 
      
 1124 
     | 
    
         
            +
                first_k_mask = (tl.arange(0, pad_n_kh)[:, None] < n_kh) & (
         
     | 
| 
      
 1125 
     | 
    
         
            +
                    tl.arange(0, pad_hd // 2)[None, :] < rd // 2
         
     | 
| 
      
 1126 
     | 
    
         
            +
                )
         
     | 
| 
      
 1127 
     | 
    
         
            +
             
     | 
| 
      
 1128 
     | 
    
         
            +
                q_tile_1 = tl.load(q_ptr + first_half_q_offsets, mask=first_q_mask, other=0).to(
         
     | 
| 
      
 1129 
     | 
    
         
            +
                    sin_row.dtype
         
     | 
| 
      
 1130 
     | 
    
         
            +
                )
         
     | 
| 
      
 1131 
     | 
    
         
            +
                k_tile_1 = tl.load(k_ptr + first_half_k_offsets, mask=first_k_mask, other=0).to(
         
     | 
| 
      
 1132 
     | 
    
         
            +
                    sin_row.dtype
         
     | 
| 
      
 1133 
     | 
    
         
            +
                )
         
     | 
| 
      
 1134 
     | 
    
         
            +
             
     | 
| 
      
 1135 
     | 
    
         
            +
                # right half of the head
         
     | 
| 
      
 1136 
     | 
    
         
            +
                second_half_q_offsets = first_half_q_offsets + (rd // 2)
         
     | 
| 
      
 1137 
     | 
    
         
            +
                second_half_k_offsets = first_half_k_offsets + (rd // 2)
         
     | 
| 
      
 1138 
     | 
    
         
            +
                second_q_mask = first_q_mask
         
     | 
| 
      
 1139 
     | 
    
         
            +
                second_k_mask = first_k_mask
         
     | 
| 
      
 1140 
     | 
    
         
            +
             
     | 
| 
      
 1141 
     | 
    
         
            +
                q_tile_2 = tl.load(q_ptr + second_half_q_offsets, mask=second_q_mask, other=0).to(
         
     | 
| 
      
 1142 
     | 
    
         
            +
                    sin_row.dtype
         
     | 
| 
      
 1143 
     | 
    
         
            +
                )
         
     | 
| 
      
 1144 
     | 
    
         
            +
                k_tile_2 = tl.load(k_ptr + second_half_k_offsets, mask=second_k_mask, other=0).to(
         
     | 
| 
      
 1145 
     | 
    
         
            +
                    sin_row.dtype
         
     | 
| 
      
 1146 
     | 
    
         
            +
                )
         
     | 
| 
      
 1147 
     | 
    
         
            +
             
     | 
| 
      
 1148 
     | 
    
         
            +
                # y = [x1, x2] * [cos, cos] + [-x2, x1] * [sin, sin]
         
     | 
| 
      
 1149 
     | 
    
         
            +
                # Since cos and sin are now half-size,
         
     | 
| 
      
 1150 
     | 
    
         
            +
                # we use the same cos_row and sin_row for both halves
         
     | 
| 
      
 1151 
     | 
    
         
            +
                new_q_tile_1 = q_tile_1 * cos_row - q_tile_2 * sin_row
         
     | 
| 
      
 1152 
     | 
    
         
            +
                tl.store(q_ptr + first_half_q_offsets, new_q_tile_1, mask=first_q_mask)
         
     | 
| 
      
 1153 
     | 
    
         
            +
                new_q_tile_2 = q_tile_2 * cos_row + q_tile_1 * sin_row
         
     | 
| 
      
 1154 
     | 
    
         
            +
                tl.store(q_ptr + second_half_q_offsets, new_q_tile_2, mask=second_q_mask)
         
     | 
| 
      
 1155 
     | 
    
         
            +
             
     | 
| 
      
 1156 
     | 
    
         
            +
                new_k_tile_1 = k_tile_1 * cos_row - k_tile_2 * sin_row
         
     | 
| 
      
 1157 
     | 
    
         
            +
                tl.store(k_ptr + first_half_k_offsets, new_k_tile_1, mask=first_k_mask)
         
     | 
| 
      
 1158 
     | 
    
         
            +
                new_k_tile_2 = k_tile_2 * cos_row + k_tile_1 * sin_row
         
     | 
| 
      
 1159 
     | 
    
         
            +
                tl.store(k_ptr + second_half_k_offsets, new_k_tile_2, mask=second_k_mask)
         
     | 
| 
      
 1160 
     | 
    
         
            +
             
     | 
| 
      
 1161 
     | 
    
         
            +
             
     | 
| 
      
 1162 
     | 
    
         
            +
            def triton_mrope(
         
     | 
| 
      
 1163 
     | 
    
         
            +
                q: torch.Tensor,
         
     | 
| 
      
 1164 
     | 
    
         
            +
                k: torch.Tensor,
         
     | 
| 
      
 1165 
     | 
    
         
            +
                cos: torch.Tensor,
         
     | 
| 
      
 1166 
     | 
    
         
            +
                sin: torch.Tensor,
         
     | 
| 
      
 1167 
     | 
    
         
            +
                mrope_section: list[int],
         
     | 
| 
      
 1168 
     | 
    
         
            +
                head_size: int,
         
     | 
| 
      
 1169 
     | 
    
         
            +
                rotary_dim: int,
         
     | 
| 
      
 1170 
     | 
    
         
            +
                mrope_interleaved: bool,
         
     | 
| 
      
 1171 
     | 
    
         
            +
            ) -> tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
      
 1172 
     | 
    
         
            +
                """The mrope triton kernel.
         
     | 
| 
      
 1173 
     | 
    
         
            +
             
     | 
| 
      
 1174 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 1175 
     | 
    
         
            +
                    q: [num_tokens, num_heads * head_size]
         
     | 
| 
      
 1176 
     | 
    
         
            +
                    k: [num_tokens, num_kv_heads * head_size]
         
     | 
| 
      
 1177 
     | 
    
         
            +
                    cos: [3, num_tokens, head_size //2 ]
         
     | 
| 
      
 1178 
     | 
    
         
            +
                        (T/H/W positions with multimodal inputs)
         
     | 
| 
      
 1179 
     | 
    
         
            +
                    sin: [3, num_tokens, head_size //2 ]
         
     | 
| 
      
 1180 
     | 
    
         
            +
                        (T/H/W positions with multimodal inputs)
         
     | 
| 
      
 1181 
     | 
    
         
            +
                    mrope_section: [t, h, w]
         
     | 
| 
      
 1182 
     | 
    
         
            +
                    head_size: int
         
     | 
| 
      
 1183 
     | 
    
         
            +
                """
         
     | 
| 
      
 1184 
     | 
    
         
            +
                n_row, n_q_head_head_dim = q.shape
         
     | 
| 
      
 1185 
     | 
    
         
            +
                assert (
         
     | 
| 
      
 1186 
     | 
    
         
            +
                    n_q_head_head_dim % head_size == 0
         
     | 
| 
      
 1187 
     | 
    
         
            +
                ), f"q shape {n_q_head_head_dim} must be divisible by head_size {head_size}"
         
     | 
| 
      
 1188 
     | 
    
         
            +
                n_q_head = n_q_head_head_dim // head_size
         
     | 
| 
      
 1189 
     | 
    
         
            +
                assert (
         
     | 
| 
      
 1190 
     | 
    
         
            +
                    k.shape[1] % head_size == 0
         
     | 
| 
      
 1191 
     | 
    
         
            +
                ), f"k shape {k.shape[1]} must be divisible by head_size {head_size}"
         
     | 
| 
      
 1192 
     | 
    
         
            +
                n_kv_head = k.shape[1] // head_size
         
     | 
| 
      
 1193 
     | 
    
         
            +
                pad_hd = triton.next_power_of_2(head_size)
         
     | 
| 
      
 1194 
     | 
    
         
            +
                pad_n_q_head = triton.next_power_of_2(n_q_head)
         
     | 
| 
      
 1195 
     | 
    
         
            +
                pad_n_kv_head = triton.next_power_of_2(n_kv_head)
         
     | 
| 
      
 1196 
     | 
    
         
            +
             
     | 
| 
      
 1197 
     | 
    
         
            +
                # ensure tensors passed into the kernel are contiguous.
         
     | 
| 
      
 1198 
     | 
    
         
            +
                # It will be no-op if they are already contiguous
         
     | 
| 
      
 1199 
     | 
    
         
            +
                q = q.contiguous()
         
     | 
| 
      
 1200 
     | 
    
         
            +
                k = k.contiguous()
         
     | 
| 
      
 1201 
     | 
    
         
            +
                cos = cos.contiguous()
         
     | 
| 
      
 1202 
     | 
    
         
            +
                sin = sin.contiguous()
         
     | 
| 
      
 1203 
     | 
    
         
            +
             
     | 
| 
      
 1204 
     | 
    
         
            +
                _triton_mrope_forward[(n_row,)](
         
     | 
| 
      
 1205 
     | 
    
         
            +
                    q,
         
     | 
| 
      
 1206 
     | 
    
         
            +
                    k,
         
     | 
| 
      
 1207 
     | 
    
         
            +
                    cos,
         
     | 
| 
      
 1208 
     | 
    
         
            +
                    sin,
         
     | 
| 
      
 1209 
     | 
    
         
            +
                    n_row,
         
     | 
| 
      
 1210 
     | 
    
         
            +
                    n_q_head,
         
     | 
| 
      
 1211 
     | 
    
         
            +
                    n_kv_head,
         
     | 
| 
      
 1212 
     | 
    
         
            +
                    head_size,
         
     | 
| 
      
 1213 
     | 
    
         
            +
                    rotary_dim,
         
     | 
| 
      
 1214 
     | 
    
         
            +
                    pad_n_q_head,
         
     | 
| 
      
 1215 
     | 
    
         
            +
                    pad_n_kv_head,
         
     | 
| 
      
 1216 
     | 
    
         
            +
                    pad_hd,
         
     | 
| 
      
 1217 
     | 
    
         
            +
                    mrope_section[0],
         
     | 
| 
      
 1218 
     | 
    
         
            +
                    mrope_section[1],
         
     | 
| 
      
 1219 
     | 
    
         
            +
                    mrope_section[2],
         
     | 
| 
      
 1220 
     | 
    
         
            +
                    mrope_interleaved,
         
     | 
| 
      
 1221 
     | 
    
         
            +
                )
         
     | 
| 
      
 1222 
     | 
    
         
            +
                return q, k
         
     | 
| 
      
 1223 
     | 
    
         
            +
             
     | 
| 
      
 1224 
     | 
    
         
            +
             
     | 
| 
       981 
1225 
     | 
    
         
             
            class MRotaryEmbedding(RotaryEmbedding):
         
     | 
| 
       982 
1226 
     | 
    
         
             
                """Rotary Embedding with Multimodal Sections."""
         
     | 
| 
       983 
1227 
     | 
    
         | 
| 
         @@ -990,12 +1234,14 @@ class MRotaryEmbedding(RotaryEmbedding): 
     | 
|
| 
       990 
1234 
     | 
    
         
             
                    is_neox_style: bool,
         
     | 
| 
       991 
1235 
     | 
    
         
             
                    dtype: torch.dtype,
         
     | 
| 
       992 
1236 
     | 
    
         
             
                    mrope_section: Optional[List[int]] = None,
         
     | 
| 
      
 1237 
     | 
    
         
            +
                    mrope_interleaved: bool = False,
         
     | 
| 
       993 
1238 
     | 
    
         
             
                ) -> None:
         
     | 
| 
       994 
1239 
     | 
    
         
             
                    super().__init__(
         
     | 
| 
       995 
1240 
     | 
    
         
             
                        head_size, rotary_dim, max_position_embeddings, base, is_neox_style, dtype
         
     | 
| 
       996 
1241 
     | 
    
         
             
                    )
         
     | 
| 
       997 
1242 
     | 
    
         | 
| 
       998 
1243 
     | 
    
         
             
                    self.mrope_section = mrope_section
         
     | 
| 
      
 1244 
     | 
    
         
            +
                    self.mrope_interleaved = mrope_interleaved
         
     | 
| 
       999 
1245 
     | 
    
         
             
                    if self.mrope_section:
         
     | 
| 
       1000 
1246 
     | 
    
         
             
                        expected_sum = rotary_dim // 2
         
     | 
| 
       1001 
1247 
     | 
    
         
             
                        actual_sum = sum(self.mrope_section)
         
     | 
| 
         @@ -1029,12 +1275,22 @@ class MRotaryEmbedding(RotaryEmbedding): 
     | 
|
| 
       1029 
1275 
     | 
    
         
             
                                f"Corrected mrope_section: {self.mrope_section} (sum={sum(self.mrope_section)})"
         
     | 
| 
       1030 
1276 
     | 
    
         
             
                            )
         
     | 
| 
       1031 
1277 
     | 
    
         | 
| 
       1032 
     | 
    
         
            -
                 
     | 
| 
       1033 
     | 
    
         
            -
             
     | 
| 
      
 1278 
     | 
    
         
            +
                def _match_cos_sin_cache_dtype(self, query: torch.Tensor) -> None:
         
     | 
| 
      
 1279 
     | 
    
         
            +
                    # __setattr__ in nn.Module (called by `self.cos_sin_cache = ...`)
         
     | 
| 
      
 1280 
     | 
    
         
            +
                    # is expensive, so avoid calling it if possible
         
     | 
| 
      
 1281 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 1282 
     | 
    
         
            +
                        self.cos_sin_cache.device != query.device
         
     | 
| 
      
 1283 
     | 
    
         
            +
                        or self.cos_sin_cache.dtype != query.dtype
         
     | 
| 
      
 1284 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 1285 
     | 
    
         
            +
                        self.cos_sin_cache = self.cos_sin_cache.to(query.device, dtype=query.dtype)
         
     | 
| 
      
 1286 
     | 
    
         
            +
             
     | 
| 
      
 1287 
     | 
    
         
            +
                @torch.compile(dynamic=True, backend=get_compiler_backend())
         
     | 
| 
      
 1288 
     | 
    
         
            +
                def _forward_native(
         
     | 
| 
       1034 
1289 
     | 
    
         
             
                    self,
         
     | 
| 
       1035 
1290 
     | 
    
         
             
                    positions: torch.Tensor,
         
     | 
| 
       1036 
1291 
     | 
    
         
             
                    query: torch.Tensor,
         
     | 
| 
       1037 
1292 
     | 
    
         
             
                    key: torch.Tensor,
         
     | 
| 
      
 1293 
     | 
    
         
            +
                    fused_set_kv_buffer_arg: Optional[FusedSetKVBufferArg] = None,
         
     | 
| 
       1038 
1294 
     | 
    
         
             
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
       1039 
1295 
     | 
    
         
             
                    """PyTorch-native implementation equivalent to forward().
         
     | 
| 
       1040 
1296 
     | 
    
         | 
| 
         @@ -1045,6 +1301,9 @@ class MRotaryEmbedding(RotaryEmbedding): 
     | 
|
| 
       1045 
1301 
     | 
    
         
             
                        query: [num_tokens, num_heads * head_size]
         
     | 
| 
       1046 
1302 
     | 
    
         
             
                        key: [num_tokens, num_kv_heads * head_size]
         
     | 
| 
       1047 
1303 
     | 
    
         
             
                    """
         
     | 
| 
      
 1304 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 1305 
     | 
    
         
            +
                        fused_set_kv_buffer_arg is None
         
     | 
| 
      
 1306 
     | 
    
         
            +
                    ), "save kv cache is not supported for MRotaryEmbedding."
         
     | 
| 
       1048 
1307 
     | 
    
         
             
                    assert positions.ndim == 1 or positions.ndim == 2
         
     | 
| 
       1049 
1308 
     | 
    
         | 
| 
       1050 
1309 
     | 
    
         
             
                    num_tokens = positions.shape[-1]
         
     | 
| 
         @@ -1052,15 +1311,18 @@ class MRotaryEmbedding(RotaryEmbedding): 
     | 
|
| 
       1052 
1311 
     | 
    
         
             
                    cos, sin = cos_sin.chunk(2, dim=-1)
         
     | 
| 
       1053 
1312 
     | 
    
         
             
                    if positions.ndim == 2:
         
     | 
| 
       1054 
1313 
     | 
    
         
             
                        assert self.mrope_section
         
     | 
| 
       1055 
     | 
    
         
            -
             
     | 
| 
       1056 
     | 
    
         
            -
             
     | 
| 
       1057 
     | 
    
         
            -
                             
     | 
| 
       1058 
     | 
    
         
            -
             
     | 
| 
       1059 
     | 
    
         
            -
             
     | 
| 
       1060 
     | 
    
         
            -
             
     | 
| 
       1061 
     | 
    
         
            -
             
     | 
| 
       1062 
     | 
    
         
            -
                             
     | 
| 
       1063 
     | 
    
         
            -
             
     | 
| 
      
 1314 
     | 
    
         
            +
                        if self.mrope_interleaved:
         
     | 
| 
      
 1315 
     | 
    
         
            +
                            cos = apply_interleaved_rope(cos, self.mrope_section)
         
     | 
| 
      
 1316 
     | 
    
         
            +
                            sin = apply_interleaved_rope(sin, self.mrope_section)
         
     | 
| 
      
 1317 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 1318 
     | 
    
         
            +
                            cos = torch.cat(
         
     | 
| 
      
 1319 
     | 
    
         
            +
                                [m[i] for i, m in enumerate(cos.split(self.mrope_section, dim=-1))],
         
     | 
| 
      
 1320 
     | 
    
         
            +
                                dim=-1,
         
     | 
| 
      
 1321 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1322 
     | 
    
         
            +
                            sin = torch.cat(
         
     | 
| 
      
 1323 
     | 
    
         
            +
                                [m[i] for i, m in enumerate(sin.split(self.mrope_section, dim=-1))],
         
     | 
| 
      
 1324 
     | 
    
         
            +
                                dim=-1,
         
     | 
| 
      
 1325 
     | 
    
         
            +
                            )
         
     | 
| 
       1064 
1326 
     | 
    
         | 
| 
       1065 
1327 
     | 
    
         
             
                    query_shape = query.shape
         
     | 
| 
       1066 
1328 
     | 
    
         
             
                    query = query.view(num_tokens, -1, self.head_size)
         
     | 
| 
         @@ -1077,6 +1339,72 @@ class MRotaryEmbedding(RotaryEmbedding): 
     | 
|
| 
       1077 
1339 
     | 
    
         
             
                    key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
         
     | 
| 
       1078 
1340 
     | 
    
         
             
                    return query, key
         
     | 
| 
       1079 
1341 
     | 
    
         | 
| 
      
 1342 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 1343 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 1344 
     | 
    
         
            +
                    positions: torch.Tensor,
         
     | 
| 
      
 1345 
     | 
    
         
            +
                    query: torch.Tensor,
         
     | 
| 
      
 1346 
     | 
    
         
            +
                    key: torch.Tensor,
         
     | 
| 
      
 1347 
     | 
    
         
            +
                    fused_set_kv_buffer_arg: Optional[FusedSetKVBufferArg] = None,
         
     | 
| 
      
 1348 
     | 
    
         
            +
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
      
 1349 
     | 
    
         
            +
                    """Forward pass with optional Triton kernel acceleration.
         
     | 
| 
      
 1350 
     | 
    
         
            +
                    Args:
         
     | 
| 
      
 1351 
     | 
    
         
            +
                        positions:
         
     | 
| 
      
 1352 
     | 
    
         
            +
                            [num_tokens,] (text only) or
         
     | 
| 
      
 1353 
     | 
    
         
            +
                            [3, num_tokens] (T/H/W positions with multimodal inputs)
         
     | 
| 
      
 1354 
     | 
    
         
            +
                        query: [num_tokens, num_heads * head_size]
         
     | 
| 
      
 1355 
     | 
    
         
            +
                        key: [num_tokens, num_kv_heads * head_size]
         
     | 
| 
      
 1356 
     | 
    
         
            +
                    """
         
     | 
| 
      
 1357 
     | 
    
         
            +
                    assert positions.ndim == 1 or positions.ndim == 2
         
     | 
| 
      
 1358 
     | 
    
         
            +
             
     | 
| 
      
 1359 
     | 
    
         
            +
                    if positions.ndim == 2 and self.mrope_section and _is_cuda:
         
     | 
| 
      
 1360 
     | 
    
         
            +
                        return self._forward_triton(positions, query, key)
         
     | 
| 
      
 1361 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 1362 
     | 
    
         
            +
                        return self._forward_native(positions, query, key)
         
     | 
| 
      
 1363 
     | 
    
         
            +
             
     | 
| 
      
 1364 
     | 
    
         
            +
                def _forward_triton(
         
     | 
| 
      
 1365 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 1366 
     | 
    
         
            +
                    positions: torch.Tensor,
         
     | 
| 
      
 1367 
     | 
    
         
            +
                    query: torch.Tensor,
         
     | 
| 
      
 1368 
     | 
    
         
            +
                    key: torch.Tensor,
         
     | 
| 
      
 1369 
     | 
    
         
            +
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
      
 1370 
     | 
    
         
            +
                    assert positions.ndim == 1 or positions.ndim == 2
         
     | 
| 
      
 1371 
     | 
    
         
            +
                    assert key is not None
         
     | 
| 
      
 1372 
     | 
    
         
            +
             
     | 
| 
      
 1373 
     | 
    
         
            +
                    self._match_cos_sin_cache_dtype(query)
         
     | 
| 
      
 1374 
     | 
    
         
            +
                    num_tokens = positions.shape[-1]
         
     | 
| 
      
 1375 
     | 
    
         
            +
                    cos_sin = self.cos_sin_cache[positions]
         
     | 
| 
      
 1376 
     | 
    
         
            +
                    cos, sin = cos_sin.chunk(2, dim=-1)
         
     | 
| 
      
 1377 
     | 
    
         
            +
                    query_shape = query.shape
         
     | 
| 
      
 1378 
     | 
    
         
            +
                    key_shape = key.shape
         
     | 
| 
      
 1379 
     | 
    
         
            +
                    if positions.ndim == 2:
         
     | 
| 
      
 1380 
     | 
    
         
            +
                        assert self.mrope_section
         
     | 
| 
      
 1381 
     | 
    
         
            +
             
     | 
| 
      
 1382 
     | 
    
         
            +
                        q, k = triton_mrope(
         
     | 
| 
      
 1383 
     | 
    
         
            +
                            query,
         
     | 
| 
      
 1384 
     | 
    
         
            +
                            key,
         
     | 
| 
      
 1385 
     | 
    
         
            +
                            cos,
         
     | 
| 
      
 1386 
     | 
    
         
            +
                            sin,
         
     | 
| 
      
 1387 
     | 
    
         
            +
                            self.mrope_section,
         
     | 
| 
      
 1388 
     | 
    
         
            +
                            self.head_size,
         
     | 
| 
      
 1389 
     | 
    
         
            +
                            self.rotary_dim,
         
     | 
| 
      
 1390 
     | 
    
         
            +
                            self.mrope_interleaved,
         
     | 
| 
      
 1391 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1392 
     | 
    
         
            +
             
     | 
| 
      
 1393 
     | 
    
         
            +
                        return q.reshape(query_shape), k.reshape(key_shape)
         
     | 
| 
      
 1394 
     | 
    
         
            +
             
     | 
| 
      
 1395 
     | 
    
         
            +
                    query = query.view(num_tokens, -1, self.head_size)
         
     | 
| 
      
 1396 
     | 
    
         
            +
                    query_rot = query[..., : self.rotary_dim]
         
     | 
| 
      
 1397 
     | 
    
         
            +
                    query_pass = query[..., self.rotary_dim :]
         
     | 
| 
      
 1398 
     | 
    
         
            +
                    query_rot = _apply_rotary_emb(query_rot, cos, sin, self.is_neox_style)
         
     | 
| 
      
 1399 
     | 
    
         
            +
                    query = torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape)
         
     | 
| 
      
 1400 
     | 
    
         
            +
             
     | 
| 
      
 1401 
     | 
    
         
            +
                    key = key.view(num_tokens, -1, self.head_size)
         
     | 
| 
      
 1402 
     | 
    
         
            +
                    key_rot = key[..., : self.rotary_dim]
         
     | 
| 
      
 1403 
     | 
    
         
            +
                    key_pass = key[..., self.rotary_dim :]
         
     | 
| 
      
 1404 
     | 
    
         
            +
                    key_rot = _apply_rotary_emb(key_rot, cos, sin, self.is_neox_style)
         
     | 
| 
      
 1405 
     | 
    
         
            +
                    key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
         
     | 
| 
      
 1406 
     | 
    
         
            +
                    return query, key
         
     | 
| 
      
 1407 
     | 
    
         
            +
             
     | 
| 
       1080 
1408 
     | 
    
         
             
                # Copied from https://github.com/huggingface/transformers/blob/c8e0e603de9b3d49161a15fe6e8ea84badfb5d02/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py#L1439
         
     | 
| 
       1081 
1409 
     | 
    
         
             
                @staticmethod
         
     | 
| 
       1082 
1410 
     | 
    
         
             
                def get_rope_index(
         
     | 
| 
         @@ -1092,6 +1420,28 @@ class MRotaryEmbedding(RotaryEmbedding): 
     | 
|
| 
       1092 
1420 
     | 
    
         
             
                    second_per_grid_ts: Optional[torch.Tensor] = None,
         
     | 
| 
       1093 
1421 
     | 
    
         
             
                    **kwargs,
         
     | 
| 
       1094 
1422 
     | 
    
         
             
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
      
 1423 
     | 
    
         
            +
                    if model_type == "qwen3_omni_moe":
         
     | 
| 
      
 1424 
     | 
    
         
            +
                        # For qwen3-omni
         
     | 
| 
      
 1425 
     | 
    
         
            +
                        return MRotaryEmbedding.get_rope_index_qwen3_omni(
         
     | 
| 
      
 1426 
     | 
    
         
            +
                            spatial_merge_size,
         
     | 
| 
      
 1427 
     | 
    
         
            +
                            image_token_id,
         
     | 
| 
      
 1428 
     | 
    
         
            +
                            video_token_id,
         
     | 
| 
      
 1429 
     | 
    
         
            +
                            vision_start_token_id,
         
     | 
| 
      
 1430 
     | 
    
         
            +
                            tokens_per_second,
         
     | 
| 
      
 1431 
     | 
    
         
            +
                            input_ids,
         
     | 
| 
      
 1432 
     | 
    
         
            +
                            image_grid_thw,
         
     | 
| 
      
 1433 
     | 
    
         
            +
                            video_grid_thw,
         
     | 
| 
      
 1434 
     | 
    
         
            +
                            second_per_grid_ts,
         
     | 
| 
      
 1435 
     | 
    
         
            +
                            **kwargs,
         
     | 
| 
      
 1436 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1437 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 1438 
     | 
    
         
            +
                        model_type.startswith("qwen3_vl") or model_type.startswith("qwen3_vl_moe")
         
     | 
| 
      
 1439 
     | 
    
         
            +
                    ) and video_grid_thw is not None:
         
     | 
| 
      
 1440 
     | 
    
         
            +
                        video_grid_thw = torch.repeat_interleave(
         
     | 
| 
      
 1441 
     | 
    
         
            +
                            video_grid_thw, video_grid_thw[:, 0], dim=0
         
     | 
| 
      
 1442 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1443 
     | 
    
         
            +
                        video_grid_thw[:, 0] = 1
         
     | 
| 
      
 1444 
     | 
    
         
            +
             
     | 
| 
       1095 
1445 
     | 
    
         
             
                    mrope_position_deltas = []
         
     | 
| 
       1096 
1446 
     | 
    
         
             
                    if input_ids is not None and (
         
     | 
| 
       1097 
1447 
     | 
    
         
             
                        image_grid_thw is not None or video_grid_thw is not None
         
     | 
| 
         @@ -1177,7 +1527,11 @@ class MRotaryEmbedding(RotaryEmbedding): 
     | 
|
| 
       1177 
1527 
     | 
    
         | 
| 
       1178 
1528 
     | 
    
         
             
                                    time_tensor_long = time_tensor.long()
         
     | 
| 
       1179 
1529 
     | 
    
         
             
                                    t_index = time_tensor_long.flatten()
         
     | 
| 
       1180 
     | 
    
         
            -
                                elif model_type  
     | 
| 
      
 1530 
     | 
    
         
            +
                                elif model_type in (
         
     | 
| 
      
 1531 
     | 
    
         
            +
                                    "qwen2_vl",
         
     | 
| 
      
 1532 
     | 
    
         
            +
                                    "qwen3_vl",
         
     | 
| 
      
 1533 
     | 
    
         
            +
                                    "qwen3_vl_moe",
         
     | 
| 
      
 1534 
     | 
    
         
            +
                                ):
         
     | 
| 
       1181 
1535 
     | 
    
         
             
                                    t_index = (
         
     | 
| 
       1182 
1536 
     | 
    
         
             
                                        torch.arange(llm_grid_t)
         
     | 
| 
       1183 
1537 
     | 
    
         
             
                                        .view(-1, 1)
         
     | 
| 
         @@ -1185,7 +1539,7 @@ class MRotaryEmbedding(RotaryEmbedding): 
     | 
|
| 
       1185 
1539 
     | 
    
         
             
                                        .flatten()
         
     | 
| 
       1186 
1540 
     | 
    
         
             
                                    )
         
     | 
| 
       1187 
1541 
     | 
    
         
             
                                else:
         
     | 
| 
       1188 
     | 
    
         
            -
                                    raise RuntimeError("Unimplemented")
         
     | 
| 
      
 1542 
     | 
    
         
            +
                                    raise RuntimeError(f"Unimplemented model type: {model_type}")
         
     | 
| 
       1189 
1543 
     | 
    
         
             
                                h_index = (
         
     | 
| 
       1190 
1544 
     | 
    
         
             
                                    torch.arange(llm_grid_h)
         
     | 
| 
       1191 
1545 
     | 
    
         
             
                                    .view(1, -1, 1)
         
     | 
| 
         @@ -1235,6 +1589,304 @@ class MRotaryEmbedding(RotaryEmbedding): 
     | 
|
| 
       1235 
1589 
     | 
    
         
             
                        mrope_position_deltas = max_position_ids + 1 - s
         
     | 
| 
       1236 
1590 
     | 
    
         
             
                        return position_ids, mrope_position_deltas
         
     | 
| 
       1237 
1591 
     | 
    
         | 
| 
      
 1592 
     | 
    
         
            +
                @staticmethod
         
     | 
| 
      
 1593 
     | 
    
         
            +
                def get_rope_index_qwen3_omni(
         
     | 
| 
      
 1594 
     | 
    
         
            +
                    spatial_merge_size: int,
         
     | 
| 
      
 1595 
     | 
    
         
            +
                    image_token_id: int,
         
     | 
| 
      
 1596 
     | 
    
         
            +
                    video_token_id: int,
         
     | 
| 
      
 1597 
     | 
    
         
            +
                    vision_start_token_id: int,
         
     | 
| 
      
 1598 
     | 
    
         
            +
                    tokens_per_second: Optional[int] = None,
         
     | 
| 
      
 1599 
     | 
    
         
            +
                    input_ids: Optional[torch.LongTensor] = None,
         
     | 
| 
      
 1600 
     | 
    
         
            +
                    image_grid_thw: Optional[torch.LongTensor] = None,
         
     | 
| 
      
 1601 
     | 
    
         
            +
                    video_grid_thw: Optional[torch.LongTensor] = None,
         
     | 
| 
      
 1602 
     | 
    
         
            +
                    second_per_grid_ts: Optional[torch.Tensor] = None,
         
     | 
| 
      
 1603 
     | 
    
         
            +
                    **kwargs,
         
     | 
| 
      
 1604 
     | 
    
         
            +
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
      
 1605 
     | 
    
         
            +
                    # For qwen3-omni
         
     | 
| 
      
 1606 
     | 
    
         
            +
                    audio_token_id = kwargs["audio_token_id"]
         
     | 
| 
      
 1607 
     | 
    
         
            +
                    audio_start_token_id = kwargs["audio_start_token_id"]
         
     | 
| 
      
 1608 
     | 
    
         
            +
                    position_id_per_seconds = kwargs["position_id_per_seconds"]
         
     | 
| 
      
 1609 
     | 
    
         
            +
                    use_audio_in_video = kwargs.get("use_audio_in_video", False)
         
     | 
| 
      
 1610 
     | 
    
         
            +
                    audio_seqlens = kwargs.get("audio_seqlens", None)
         
     | 
| 
      
 1611 
     | 
    
         
            +
                    second_per_grids = second_per_grid_ts
         
     | 
| 
      
 1612 
     | 
    
         
            +
             
     | 
| 
      
 1613 
     | 
    
         
            +
                    mrope_position_deltas = []
         
     | 
| 
      
 1614 
     | 
    
         
            +
                    if input_ids is not None and (
         
     | 
| 
      
 1615 
     | 
    
         
            +
                        image_grid_thw is not None or video_grid_thw is not None
         
     | 
| 
      
 1616 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 1617 
     | 
    
         
            +
                        total_input_ids = input_ids
         
     | 
| 
      
 1618 
     | 
    
         
            +
                        position_ids = torch.zeros(
         
     | 
| 
      
 1619 
     | 
    
         
            +
                            3,
         
     | 
| 
      
 1620 
     | 
    
         
            +
                            input_ids.shape[0],
         
     | 
| 
      
 1621 
     | 
    
         
            +
                            input_ids.shape[1],
         
     | 
| 
      
 1622 
     | 
    
         
            +
                            dtype=torch.float,
         
     | 
| 
      
 1623 
     | 
    
         
            +
                            device=input_ids.device,
         
     | 
| 
      
 1624 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1625 
     | 
    
         
            +
                        image_idx, video_idx, audio_idx = 0, 0, 0
         
     | 
| 
      
 1626 
     | 
    
         
            +
                        for i, current_input_ids in enumerate(total_input_ids):
         
     | 
| 
      
 1627 
     | 
    
         
            +
                            image_nums, video_nums, audio_nums = 0, 0, 0
         
     | 
| 
      
 1628 
     | 
    
         
            +
                            vision_start_indices = torch.argwhere(
         
     | 
| 
      
 1629 
     | 
    
         
            +
                                current_input_ids == vision_start_token_id
         
     | 
| 
      
 1630 
     | 
    
         
            +
                            ).squeeze(1)
         
     | 
| 
      
 1631 
     | 
    
         
            +
                            if vision_start_indices.numel() > 0:
         
     | 
| 
      
 1632 
     | 
    
         
            +
                                vision_tokens = current_input_ids[vision_start_indices + 1]
         
     | 
| 
      
 1633 
     | 
    
         
            +
                                image_nums = (vision_tokens == image_token_id).sum()
         
     | 
| 
      
 1634 
     | 
    
         
            +
                                video_nums = (
         
     | 
| 
      
 1635 
     | 
    
         
            +
                                    (vision_tokens == audio_start_token_id).sum()
         
     | 
| 
      
 1636 
     | 
    
         
            +
                                    if use_audio_in_video
         
     | 
| 
      
 1637 
     | 
    
         
            +
                                    else (vision_tokens == video_token_id).sum()
         
     | 
| 
      
 1638 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1639 
     | 
    
         
            +
                            audio_nums = torch.sum(current_input_ids == audio_start_token_id)
         
     | 
| 
      
 1640 
     | 
    
         
            +
                            input_tokens = current_input_ids.tolist()
         
     | 
| 
      
 1641 
     | 
    
         
            +
                            llm_pos_ids_list: list = []
         
     | 
| 
      
 1642 
     | 
    
         
            +
                            st = 0
         
     | 
| 
      
 1643 
     | 
    
         
            +
                            remain_images, remain_videos, remain_audios = (
         
     | 
| 
      
 1644 
     | 
    
         
            +
                                image_nums,
         
     | 
| 
      
 1645 
     | 
    
         
            +
                                video_nums,
         
     | 
| 
      
 1646 
     | 
    
         
            +
                                audio_nums,
         
     | 
| 
      
 1647 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1648 
     | 
    
         
            +
                            multimodal_nums = (
         
     | 
| 
      
 1649 
     | 
    
         
            +
                                image_nums + audio_nums
         
     | 
| 
      
 1650 
     | 
    
         
            +
                                if use_audio_in_video
         
     | 
| 
      
 1651 
     | 
    
         
            +
                                else image_nums + video_nums + audio_nums
         
     | 
| 
      
 1652 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1653 
     | 
    
         
            +
                            for _ in range(multimodal_nums):
         
     | 
| 
      
 1654 
     | 
    
         
            +
                                st_idx = (
         
     | 
| 
      
 1655 
     | 
    
         
            +
                                    llm_pos_ids_list[-1].max() + 1
         
     | 
| 
      
 1656 
     | 
    
         
            +
                                    if len(llm_pos_ids_list) > 0
         
     | 
| 
      
 1657 
     | 
    
         
            +
                                    else 0
         
     | 
| 
      
 1658 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1659 
     | 
    
         
            +
                                ed_vision_start = (
         
     | 
| 
      
 1660 
     | 
    
         
            +
                                    input_tokens.index(vision_start_token_id, st)
         
     | 
| 
      
 1661 
     | 
    
         
            +
                                    if (
         
     | 
| 
      
 1662 
     | 
    
         
            +
                                        (
         
     | 
| 
      
 1663 
     | 
    
         
            +
                                            image_token_id in input_tokens
         
     | 
| 
      
 1664 
     | 
    
         
            +
                                            or video_token_id in input_tokens
         
     | 
| 
      
 1665 
     | 
    
         
            +
                                        )
         
     | 
| 
      
 1666 
     | 
    
         
            +
                                        and (remain_videos > 0 or remain_images > 0)
         
     | 
| 
      
 1667 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 1668 
     | 
    
         
            +
                                    else len(input_tokens) + 1
         
     | 
| 
      
 1669 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1670 
     | 
    
         
            +
                                ed_audio_start = (
         
     | 
| 
      
 1671 
     | 
    
         
            +
                                    input_tokens.index(audio_start_token_id, st)
         
     | 
| 
      
 1672 
     | 
    
         
            +
                                    if (audio_token_id in input_tokens and remain_audios > 0)
         
     | 
| 
      
 1673 
     | 
    
         
            +
                                    else len(input_tokens) + 1
         
     | 
| 
      
 1674 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1675 
     | 
    
         
            +
                                min_ed = min(ed_vision_start, ed_audio_start)
         
     | 
| 
      
 1676 
     | 
    
         
            +
             
     | 
| 
      
 1677 
     | 
    
         
            +
                                text_len = min_ed - st
         
     | 
| 
      
 1678 
     | 
    
         
            +
                                if text_len != 0:
         
     | 
| 
      
 1679 
     | 
    
         
            +
                                    llm_pos_ids_list.append(
         
     | 
| 
      
 1680 
     | 
    
         
            +
                                        torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx
         
     | 
| 
      
 1681 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 1682 
     | 
    
         
            +
                                    st_idx += text_len
         
     | 
| 
      
 1683 
     | 
    
         
            +
                                # Audio in Video
         
     | 
| 
      
 1684 
     | 
    
         
            +
                                if (
         
     | 
| 
      
 1685 
     | 
    
         
            +
                                    min_ed == ed_vision_start
         
     | 
| 
      
 1686 
     | 
    
         
            +
                                    and ed_vision_start + 1 == ed_audio_start
         
     | 
| 
      
 1687 
     | 
    
         
            +
                                ):
         
     | 
| 
      
 1688 
     | 
    
         
            +
                                    bos_len, eos_len = 2, 2
         
     | 
| 
      
 1689 
     | 
    
         
            +
                                else:
         
     | 
| 
      
 1690 
     | 
    
         
            +
                                    bos_len, eos_len = 1, 1
         
     | 
| 
      
 1691 
     | 
    
         
            +
                                llm_pos_ids_list.append(
         
     | 
| 
      
 1692 
     | 
    
         
            +
                                    torch.arange(bos_len).view(1, -1).expand(3, -1) + st_idx
         
     | 
| 
      
 1693 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1694 
     | 
    
         
            +
                                st_idx += bos_len
         
     | 
| 
      
 1695 
     | 
    
         
            +
                                # Audio Only
         
     | 
| 
      
 1696 
     | 
    
         
            +
                                if min_ed == ed_audio_start:
         
     | 
| 
      
 1697 
     | 
    
         
            +
                                    audio_len = MRotaryEmbedding._get_feat_extract_output_lengths(
         
     | 
| 
      
 1698 
     | 
    
         
            +
                                        audio_seqlens[audio_idx]
         
     | 
| 
      
 1699 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 1700 
     | 
    
         
            +
                                    llm_pos_ids = (
         
     | 
| 
      
 1701 
     | 
    
         
            +
                                        torch.arange(audio_len).view(1, -1).expand(3, -1) + st_idx
         
     | 
| 
      
 1702 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 1703 
     | 
    
         
            +
                                    llm_pos_ids_list.append(llm_pos_ids)
         
     | 
| 
      
 1704 
     | 
    
         
            +
             
     | 
| 
      
 1705 
     | 
    
         
            +
                                    st += int(text_len + bos_len + audio_len + eos_len)
         
     | 
| 
      
 1706 
     | 
    
         
            +
                                    audio_idx += 1
         
     | 
| 
      
 1707 
     | 
    
         
            +
                                    remain_audios -= 1
         
     | 
| 
      
 1708 
     | 
    
         
            +
             
     | 
| 
      
 1709 
     | 
    
         
            +
                                # Image Only
         
     | 
| 
      
 1710 
     | 
    
         
            +
                                elif (
         
     | 
| 
      
 1711 
     | 
    
         
            +
                                    min_ed == ed_vision_start
         
     | 
| 
      
 1712 
     | 
    
         
            +
                                    and current_input_ids[ed_vision_start + 1] == image_token_id
         
     | 
| 
      
 1713 
     | 
    
         
            +
                                ):
         
     | 
| 
      
 1714 
     | 
    
         
            +
                                    grid_t = image_grid_thw[image_idx][0]
         
     | 
| 
      
 1715 
     | 
    
         
            +
                                    grid_hs = image_grid_thw[:, 1]
         
     | 
| 
      
 1716 
     | 
    
         
            +
                                    grid_ws = image_grid_thw[:, 2]
         
     | 
| 
      
 1717 
     | 
    
         
            +
                                    t_index = (
         
     | 
| 
      
 1718 
     | 
    
         
            +
                                        torch.arange(grid_t) * 1 * position_id_per_seconds
         
     | 
| 
      
 1719 
     | 
    
         
            +
                                    ).float()
         
     | 
| 
      
 1720 
     | 
    
         
            +
                                    llm_pos_ids = MRotaryEmbedding._get_llm_pos_ids_for_vision(
         
     | 
| 
      
 1721 
     | 
    
         
            +
                                        st_idx,
         
     | 
| 
      
 1722 
     | 
    
         
            +
                                        image_idx,
         
     | 
| 
      
 1723 
     | 
    
         
            +
                                        spatial_merge_size,
         
     | 
| 
      
 1724 
     | 
    
         
            +
                                        t_index,
         
     | 
| 
      
 1725 
     | 
    
         
            +
                                        grid_hs,
         
     | 
| 
      
 1726 
     | 
    
         
            +
                                        grid_ws,
         
     | 
| 
      
 1727 
     | 
    
         
            +
                                        input_ids.device,
         
     | 
| 
      
 1728 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 1729 
     | 
    
         
            +
                                    image_len = image_grid_thw[image_idx].prod() // (
         
     | 
| 
      
 1730 
     | 
    
         
            +
                                        spatial_merge_size**2
         
     | 
| 
      
 1731 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 1732 
     | 
    
         
            +
                                    llm_pos_ids_list.append(llm_pos_ids)
         
     | 
| 
      
 1733 
     | 
    
         
            +
             
     | 
| 
      
 1734 
     | 
    
         
            +
                                    st += int(text_len + bos_len + image_len + eos_len)
         
     | 
| 
      
 1735 
     | 
    
         
            +
                                    image_idx += 1
         
     | 
| 
      
 1736 
     | 
    
         
            +
                                    remain_images -= 1
         
     | 
| 
      
 1737 
     | 
    
         
            +
             
     | 
| 
      
 1738 
     | 
    
         
            +
                                # Video Only
         
     | 
| 
      
 1739 
     | 
    
         
            +
                                elif (
         
     | 
| 
      
 1740 
     | 
    
         
            +
                                    min_ed == ed_vision_start
         
     | 
| 
      
 1741 
     | 
    
         
            +
                                    and current_input_ids[ed_vision_start + 1] == video_token_id
         
     | 
| 
      
 1742 
     | 
    
         
            +
                                ):
         
     | 
| 
      
 1743 
     | 
    
         
            +
                                    grid_t = video_grid_thw[video_idx][0]
         
     | 
| 
      
 1744 
     | 
    
         
            +
                                    grid_hs = video_grid_thw[:, 1]
         
     | 
| 
      
 1745 
     | 
    
         
            +
                                    grid_ws = video_grid_thw[:, 2]
         
     | 
| 
      
 1746 
     | 
    
         
            +
                                    t_index = (
         
     | 
| 
      
 1747 
     | 
    
         
            +
                                        torch.arange(grid_t)
         
     | 
| 
      
 1748 
     | 
    
         
            +
                                        * second_per_grids[video_idx].cpu().float()
         
     | 
| 
      
 1749 
     | 
    
         
            +
                                        * position_id_per_seconds
         
     | 
| 
      
 1750 
     | 
    
         
            +
                                    ).float()
         
     | 
| 
      
 1751 
     | 
    
         
            +
                                    llm_pos_ids = MRotaryEmbedding._get_llm_pos_ids_for_vision(
         
     | 
| 
      
 1752 
     | 
    
         
            +
                                        st_idx,
         
     | 
| 
      
 1753 
     | 
    
         
            +
                                        video_idx,
         
     | 
| 
      
 1754 
     | 
    
         
            +
                                        spatial_merge_size,
         
     | 
| 
      
 1755 
     | 
    
         
            +
                                        t_index,
         
     | 
| 
      
 1756 
     | 
    
         
            +
                                        grid_hs,
         
     | 
| 
      
 1757 
     | 
    
         
            +
                                        grid_ws,
         
     | 
| 
      
 1758 
     | 
    
         
            +
                                        input_ids.device,
         
     | 
| 
      
 1759 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 1760 
     | 
    
         
            +
                                    video_len = video_grid_thw[video_idx].prod() // (
         
     | 
| 
      
 1761 
     | 
    
         
            +
                                        spatial_merge_size**2
         
     | 
| 
      
 1762 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 1763 
     | 
    
         
            +
                                    llm_pos_ids_list.append(llm_pos_ids)
         
     | 
| 
      
 1764 
     | 
    
         
            +
             
     | 
| 
      
 1765 
     | 
    
         
            +
                                    st += int(text_len + bos_len + video_len + eos_len)
         
     | 
| 
      
 1766 
     | 
    
         
            +
                                    video_idx += 1
         
     | 
| 
      
 1767 
     | 
    
         
            +
                                    remain_videos -= 1
         
     | 
| 
      
 1768 
     | 
    
         
            +
             
     | 
| 
      
 1769 
     | 
    
         
            +
                                # Audio in Video
         
     | 
| 
      
 1770 
     | 
    
         
            +
                                elif (
         
     | 
| 
      
 1771 
     | 
    
         
            +
                                    min_ed == ed_vision_start
         
     | 
| 
      
 1772 
     | 
    
         
            +
                                    and ed_vision_start + 1 == ed_audio_start
         
     | 
| 
      
 1773 
     | 
    
         
            +
                                ):
         
     | 
| 
      
 1774 
     | 
    
         
            +
                                    audio_len = MRotaryEmbedding._get_feat_extract_output_lengths(
         
     | 
| 
      
 1775 
     | 
    
         
            +
                                        audio_seqlens[audio_idx]
         
     | 
| 
      
 1776 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 1777 
     | 
    
         
            +
                                    audio_llm_pos_ids = (
         
     | 
| 
      
 1778 
     | 
    
         
            +
                                        torch.arange(audio_len).view(1, -1).expand(3, -1) + st_idx
         
     | 
| 
      
 1779 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 1780 
     | 
    
         
            +
                                    grid_t = video_grid_thw[video_idx][0]
         
     | 
| 
      
 1781 
     | 
    
         
            +
                                    grid_hs = video_grid_thw[:, 1]
         
     | 
| 
      
 1782 
     | 
    
         
            +
                                    grid_ws = video_grid_thw[:, 2]
         
     | 
| 
      
 1783 
     | 
    
         
            +
             
     | 
| 
      
 1784 
     | 
    
         
            +
                                    t_index = (
         
     | 
| 
      
 1785 
     | 
    
         
            +
                                        torch.arange(grid_t)
         
     | 
| 
      
 1786 
     | 
    
         
            +
                                        * second_per_grids[video_idx].cpu().float()
         
     | 
| 
      
 1787 
     | 
    
         
            +
                                        * position_id_per_seconds
         
     | 
| 
      
 1788 
     | 
    
         
            +
                                    ).float()
         
     | 
| 
      
 1789 
     | 
    
         
            +
                                    video_llm_pos_ids = (
         
     | 
| 
      
 1790 
     | 
    
         
            +
                                        MRotaryEmbedding._get_llm_pos_ids_for_vision(
         
     | 
| 
      
 1791 
     | 
    
         
            +
                                            st_idx,
         
     | 
| 
      
 1792 
     | 
    
         
            +
                                            video_idx,
         
     | 
| 
      
 1793 
     | 
    
         
            +
                                            spatial_merge_size,
         
     | 
| 
      
 1794 
     | 
    
         
            +
                                            t_index,
         
     | 
| 
      
 1795 
     | 
    
         
            +
                                            grid_hs,
         
     | 
| 
      
 1796 
     | 
    
         
            +
                                            grid_ws,
         
     | 
| 
      
 1797 
     | 
    
         
            +
                                            input_ids.device,
         
     | 
| 
      
 1798 
     | 
    
         
            +
                                        )
         
     | 
| 
      
 1799 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 1800 
     | 
    
         
            +
                                    video_data_index, audio_data_index = 0, 0
         
     | 
| 
      
 1801 
     | 
    
         
            +
                                    while (
         
     | 
| 
      
 1802 
     | 
    
         
            +
                                        video_data_index < video_llm_pos_ids.shape[-1]
         
     | 
| 
      
 1803 
     | 
    
         
            +
                                        and audio_data_index < audio_llm_pos_ids.shape[-1]
         
     | 
| 
      
 1804 
     | 
    
         
            +
                                    ):
         
     | 
| 
      
 1805 
     | 
    
         
            +
                                        if (
         
     | 
| 
      
 1806 
     | 
    
         
            +
                                            video_llm_pos_ids[0][video_data_index]
         
     | 
| 
      
 1807 
     | 
    
         
            +
                                            <= audio_llm_pos_ids[0][audio_data_index]
         
     | 
| 
      
 1808 
     | 
    
         
            +
                                        ):
         
     | 
| 
      
 1809 
     | 
    
         
            +
                                            llm_pos_ids_list.append(
         
     | 
| 
      
 1810 
     | 
    
         
            +
                                                video_llm_pos_ids[
         
     | 
| 
      
 1811 
     | 
    
         
            +
                                                    :, video_data_index : video_data_index + 1
         
     | 
| 
      
 1812 
     | 
    
         
            +
                                                ]
         
     | 
| 
      
 1813 
     | 
    
         
            +
                                            )
         
     | 
| 
      
 1814 
     | 
    
         
            +
                                            video_data_index += 1
         
     | 
| 
      
 1815 
     | 
    
         
            +
                                        else:
         
     | 
| 
      
 1816 
     | 
    
         
            +
                                            llm_pos_ids_list.append(
         
     | 
| 
      
 1817 
     | 
    
         
            +
                                                audio_llm_pos_ids[
         
     | 
| 
      
 1818 
     | 
    
         
            +
                                                    :, audio_data_index : audio_data_index + 1
         
     | 
| 
      
 1819 
     | 
    
         
            +
                                                ]
         
     | 
| 
      
 1820 
     | 
    
         
            +
                                            )
         
     | 
| 
      
 1821 
     | 
    
         
            +
                                            audio_data_index += 1
         
     | 
| 
      
 1822 
     | 
    
         
            +
                                    if video_data_index < video_llm_pos_ids.shape[-1]:
         
     | 
| 
      
 1823 
     | 
    
         
            +
                                        llm_pos_ids_list.append(
         
     | 
| 
      
 1824 
     | 
    
         
            +
                                            video_llm_pos_ids[
         
     | 
| 
      
 1825 
     | 
    
         
            +
                                                :, video_data_index : video_llm_pos_ids.shape[-1]
         
     | 
| 
      
 1826 
     | 
    
         
            +
                                            ]
         
     | 
| 
      
 1827 
     | 
    
         
            +
                                        )
         
     | 
| 
      
 1828 
     | 
    
         
            +
                                    if audio_data_index < audio_llm_pos_ids.shape[-1]:
         
     | 
| 
      
 1829 
     | 
    
         
            +
                                        llm_pos_ids_list.append(
         
     | 
| 
      
 1830 
     | 
    
         
            +
                                            audio_llm_pos_ids[
         
     | 
| 
      
 1831 
     | 
    
         
            +
                                                :, audio_data_index : audio_llm_pos_ids.shape[-1]
         
     | 
| 
      
 1832 
     | 
    
         
            +
                                            ]
         
     | 
| 
      
 1833 
     | 
    
         
            +
                                        )
         
     | 
| 
      
 1834 
     | 
    
         
            +
                                    video_len = video_grid_thw[video_idx].prod() // (
         
     | 
| 
      
 1835 
     | 
    
         
            +
                                        spatial_merge_size**2
         
     | 
| 
      
 1836 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 1837 
     | 
    
         
            +
             
     | 
| 
      
 1838 
     | 
    
         
            +
                                    st += int(text_len + bos_len + audio_len + video_len + eos_len)
         
     | 
| 
      
 1839 
     | 
    
         
            +
             
     | 
| 
      
 1840 
     | 
    
         
            +
                                    audio_idx += 1
         
     | 
| 
      
 1841 
     | 
    
         
            +
                                    video_idx += 1
         
     | 
| 
      
 1842 
     | 
    
         
            +
                                    remain_videos -= 1
         
     | 
| 
      
 1843 
     | 
    
         
            +
                                    remain_audios -= 1
         
     | 
| 
      
 1844 
     | 
    
         
            +
                                st_idx = (
         
     | 
| 
      
 1845 
     | 
    
         
            +
                                    llm_pos_ids_list[-1].max() + 1
         
     | 
| 
      
 1846 
     | 
    
         
            +
                                    if len(llm_pos_ids_list) > 0
         
     | 
| 
      
 1847 
     | 
    
         
            +
                                    else 0
         
     | 
| 
      
 1848 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1849 
     | 
    
         
            +
                                llm_pos_ids_list.append(
         
     | 
| 
      
 1850 
     | 
    
         
            +
                                    torch.arange(eos_len).view(1, -1).expand(3, -1) + st_idx
         
     | 
| 
      
 1851 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1852 
     | 
    
         
            +
             
     | 
| 
      
 1853 
     | 
    
         
            +
                            if st < len(input_tokens):
         
     | 
| 
      
 1854 
     | 
    
         
            +
                                st_idx = (
         
     | 
| 
      
 1855 
     | 
    
         
            +
                                    llm_pos_ids_list[-1].max() + 1
         
     | 
| 
      
 1856 
     | 
    
         
            +
                                    if len(llm_pos_ids_list) > 0
         
     | 
| 
      
 1857 
     | 
    
         
            +
                                    else 0
         
     | 
| 
      
 1858 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1859 
     | 
    
         
            +
                                text_len = len(input_tokens) - st
         
     | 
| 
      
 1860 
     | 
    
         
            +
                                llm_pos_ids_list.append(
         
     | 
| 
      
 1861 
     | 
    
         
            +
                                    torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx
         
     | 
| 
      
 1862 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1863 
     | 
    
         
            +
             
     | 
| 
      
 1864 
     | 
    
         
            +
                            llm_positions = torch.cat(
         
     | 
| 
      
 1865 
     | 
    
         
            +
                                [item.float() for item in llm_pos_ids_list], dim=1
         
     | 
| 
      
 1866 
     | 
    
         
            +
                            ).reshape(3, -1)
         
     | 
| 
      
 1867 
     | 
    
         
            +
             
     | 
| 
      
 1868 
     | 
    
         
            +
                            position_ids[..., i, :] = llm_positions.to(position_ids.device)
         
     | 
| 
      
 1869 
     | 
    
         
            +
                            mrope_position_deltas.append(
         
     | 
| 
      
 1870 
     | 
    
         
            +
                                llm_positions.max() + 1 - len(current_input_ids)
         
     | 
| 
      
 1871 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1872 
     | 
    
         
            +
                        mrope_position_deltas = torch.tensor(
         
     | 
| 
      
 1873 
     | 
    
         
            +
                            mrope_position_deltas, device=input_ids.device
         
     | 
| 
      
 1874 
     | 
    
         
            +
                        ).unsqueeze(1)
         
     | 
| 
      
 1875 
     | 
    
         
            +
             
     | 
| 
      
 1876 
     | 
    
         
            +
                        return position_ids, mrope_position_deltas
         
     | 
| 
      
 1877 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 1878 
     | 
    
         
            +
                        s = input_ids.shape[1]
         
     | 
| 
      
 1879 
     | 
    
         
            +
                        position_ids = torch.arange(s)
         
     | 
| 
      
 1880 
     | 
    
         
            +
                        position_ids = (
         
     | 
| 
      
 1881 
     | 
    
         
            +
                            position_ids.unsqueeze(0).expand(3, -1, -1).to(input_ids.device)
         
     | 
| 
      
 1882 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1883 
     | 
    
         
            +
                        max_position_ids = position_ids.max(0, keepdim=False)[0].max(
         
     | 
| 
      
 1884 
     | 
    
         
            +
                            -1, keepdim=True
         
     | 
| 
      
 1885 
     | 
    
         
            +
                        )[0]
         
     | 
| 
      
 1886 
     | 
    
         
            +
                        mrope_position_deltas = max_position_ids + 1 - s
         
     | 
| 
      
 1887 
     | 
    
         
            +
             
     | 
| 
      
 1888 
     | 
    
         
            +
                        return position_ids, mrope_position_deltas
         
     | 
| 
      
 1889 
     | 
    
         
            +
             
     | 
| 
       1238 
1890 
     | 
    
         
             
                # Adapted from https://github.com/vllm-project/vllm/blob/3779eb8c81449b924a23457fc77e45a0e6171178/vllm/model_executor/layers/rotary_embedding.py#L1120
         
     | 
| 
       1239 
1891 
     | 
    
         
             
                @staticmethod
         
     | 
| 
       1240 
1892 
     | 
    
         
             
                def get_rope_index_glm4v(
         
     | 
| 
         @@ -1433,6 +2085,44 @@ class MRotaryEmbedding(RotaryEmbedding): 
     | 
|
| 
       1433 
2085 
     | 
    
         | 
| 
       1434 
2086 
     | 
    
         
             
                        return position_ids, mrope_position_deltas
         
     | 
| 
       1435 
2087 
     | 
    
         | 
| 
      
 2088 
     | 
    
         
            +
                # For qwen3-omni
         
     | 
| 
      
 2089 
     | 
    
         
            +
                @staticmethod
         
     | 
| 
      
 2090 
     | 
    
         
            +
                def _get_feat_extract_output_lengths(input_lengths):
         
     | 
| 
      
 2091 
     | 
    
         
            +
                    """
         
     | 
| 
      
 2092 
     | 
    
         
            +
                    Computes the output length of the convolutional layers and the output length of the audio encoder
         
     | 
| 
      
 2093 
     | 
    
         
            +
                    """
         
     | 
| 
      
 2094 
     | 
    
         
            +
                    input_lengths_leave = input_lengths % 100
         
     | 
| 
      
 2095 
     | 
    
         
            +
                    feat_lengths = (input_lengths_leave - 1) // 2 + 1
         
     | 
| 
      
 2096 
     | 
    
         
            +
                    output_lengths = (
         
     | 
| 
      
 2097 
     | 
    
         
            +
                        ((feat_lengths - 1) // 2 + 1 - 1) // 2 + 1 + (input_lengths // 100) * 13
         
     | 
| 
      
 2098 
     | 
    
         
            +
                    )
         
     | 
| 
      
 2099 
     | 
    
         
            +
                    return output_lengths
         
     | 
| 
      
 2100 
     | 
    
         
            +
             
     | 
| 
      
 2101 
     | 
    
         
            +
                # For qwen3-omni
         
     | 
| 
      
 2102 
     | 
    
         
            +
                @staticmethod
         
     | 
| 
      
 2103 
     | 
    
         
            +
                def _get_llm_pos_ids_for_vision(
         
     | 
| 
      
 2104 
     | 
    
         
            +
                    st_idx, vision_idx, spatial_merge_size, t_index, grid_hs, grid_ws, device
         
     | 
| 
      
 2105 
     | 
    
         
            +
                ):
         
     | 
| 
      
 2106 
     | 
    
         
            +
                    grid_h = grid_hs[vision_idx] // spatial_merge_size
         
     | 
| 
      
 2107 
     | 
    
         
            +
                    grid_w = grid_ws[vision_idx] // spatial_merge_size
         
     | 
| 
      
 2108 
     | 
    
         
            +
             
     | 
| 
      
 2109 
     | 
    
         
            +
                    h_index = (
         
     | 
| 
      
 2110 
     | 
    
         
            +
                        torch.arange(grid_h, device=device)
         
     | 
| 
      
 2111 
     | 
    
         
            +
                        .view(1, -1, 1)
         
     | 
| 
      
 2112 
     | 
    
         
            +
                        .expand(len(t_index), -1, grid_w)
         
     | 
| 
      
 2113 
     | 
    
         
            +
                        .flatten()
         
     | 
| 
      
 2114 
     | 
    
         
            +
                    )
         
     | 
| 
      
 2115 
     | 
    
         
            +
                    w_index = (
         
     | 
| 
      
 2116 
     | 
    
         
            +
                        torch.arange(grid_w, device=device)
         
     | 
| 
      
 2117 
     | 
    
         
            +
                        .view(1, 1, -1)
         
     | 
| 
      
 2118 
     | 
    
         
            +
                        .expand(len(t_index), grid_h, -1)
         
     | 
| 
      
 2119 
     | 
    
         
            +
                        .flatten()
         
     | 
| 
      
 2120 
     | 
    
         
            +
                    )
         
     | 
| 
      
 2121 
     | 
    
         
            +
                    t_index = t_index.view(-1, 1).expand(-1, grid_h * grid_w).flatten()
         
     | 
| 
      
 2122 
     | 
    
         
            +
             
     | 
| 
      
 2123 
     | 
    
         
            +
                    llm_pos_ids = torch.stack([t_index, h_index, w_index], dim=0) + st_idx
         
     | 
| 
      
 2124 
     | 
    
         
            +
                    return llm_pos_ids
         
     | 
| 
      
 2125 
     | 
    
         
            +
             
     | 
| 
       1436 
2126 
     | 
    
         | 
| 
       1437 
2127 
     | 
    
         
             
            class DualChunkRotaryEmbedding(CustomOp):
         
     | 
| 
       1438 
2128 
     | 
    
         
             
                """Rotary positional embedding for Dual Chunk Attention."""
         
     | 
| 
         @@ -1734,6 +2424,7 @@ def get_rope( 
     | 
|
| 
       1734 
2424 
     | 
    
         
             
                                is_neox_style,
         
     | 
| 
       1735 
2425 
     | 
    
         
             
                                dtype,
         
     | 
| 
       1736 
2426 
     | 
    
         
             
                                mrope_section=rope_scaling["mrope_section"],
         
     | 
| 
      
 2427 
     | 
    
         
            +
                                mrope_interleaved=rope_scaling.get("mrope_interleaved", False),
         
     | 
| 
       1737 
2428 
     | 
    
         
             
                            )
         
     | 
| 
       1738 
2429 
     | 
    
         
             
                        else:
         
     | 
| 
       1739 
2430 
     | 
    
         
             
                            rotary_emb = RotaryEmbedding(
         
     | 
| 
         @@ -1888,17 +2579,30 @@ def apply_rotary_pos_emb_npu( 
     | 
|
| 
       1888 
2579 
     | 
    
         
             
                sin: torch.Tensor,
         
     | 
| 
       1889 
2580 
     | 
    
         
             
                unsqueeze_dim=1,
         
     | 
| 
       1890 
2581 
     | 
    
         
             
            ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
       1891 
     | 
    
         
            -
                 
     | 
| 
      
 2582 
     | 
    
         
            +
                """Ascend implementation equivalent to apply_rotary_pos_emb_native.
         
     | 
| 
      
 2583 
     | 
    
         
            +
             
     | 
| 
      
 2584 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 2585 
     | 
    
         
            +
                    q: [num_tokens, num_heads, head_size]
         
     | 
| 
      
 2586 
     | 
    
         
            +
                    k: [num_tokens, num_kv_heads, head_size]
         
     | 
| 
      
 2587 
     | 
    
         
            +
                    cos: [num_tokens, head_size]
         
     | 
| 
      
 2588 
     | 
    
         
            +
                    sin: [num_tokens, head_size]
         
     | 
| 
      
 2589 
     | 
    
         
            +
                """
         
     | 
| 
      
 2590 
     | 
    
         
            +
                if (
         
     | 
| 
      
 2591 
     | 
    
         
            +
                    cos.dim() != 2
         
     | 
| 
      
 2592 
     | 
    
         
            +
                    or q.dim() != 3
         
     | 
| 
      
 2593 
     | 
    
         
            +
                    or q.shape[1] >= NPU_ROTARY_MUL_MAX_NUM_HEADS
         
     | 
| 
      
 2594 
     | 
    
         
            +
                    or q.shape[2] >= NPU_ROTARY_MUL_MAX_HEAD_SIZE
         
     | 
| 
      
 2595 
     | 
    
         
            +
                ):
         
     | 
| 
      
 2596 
     | 
    
         
            +
                    # Note: num_heads and head_size of q must be less than 1000 and 896, respectively
         
     | 
| 
       1892 
2597 
     | 
    
         
             
                    return apply_rotary_pos_emb_native(q, k, cos, sin, unsqueeze_dim)
         
     | 
| 
       1893 
     | 
    
         
            -
                cos = cos.unsqueeze(unsqueeze_dim)
         
     | 
| 
       1894 
     | 
    
         
            -
                 
     | 
| 
       1895 
     | 
    
         
            -
                 
     | 
| 
       1896 
     | 
    
         
            -
                 
     | 
| 
       1897 
     | 
    
         
            -
                 
     | 
| 
       1898 
     | 
    
         
            -
                 
     | 
| 
       1899 
     | 
    
         
            -
                q_embed 
     | 
| 
       1900 
     | 
    
         
            -
                 
     | 
| 
       1901 
     | 
    
         
            -
                k_embed = torch.transpose(k_embed, 1, 2)
         
     | 
| 
      
 2598 
     | 
    
         
            +
                cos = cos.unsqueeze(unsqueeze_dim).unsqueeze(0)
         
     | 
| 
      
 2599 
     | 
    
         
            +
                sin = sin.unsqueeze(unsqueeze_dim).unsqueeze(0)
         
     | 
| 
      
 2600 
     | 
    
         
            +
                q = q.unsqueeze(0)
         
     | 
| 
      
 2601 
     | 
    
         
            +
                k = k.unsqueeze(0)
         
     | 
| 
      
 2602 
     | 
    
         
            +
                q_embed = torch_npu.npu_rotary_mul(q, cos, sin)
         
     | 
| 
      
 2603 
     | 
    
         
            +
                k_embed = torch_npu.npu_rotary_mul(k, cos, sin)
         
     | 
| 
      
 2604 
     | 
    
         
            +
                q_embed = q_embed.squeeze(0)
         
     | 
| 
      
 2605 
     | 
    
         
            +
                k_embed = k_embed.squeeze(0)
         
     | 
| 
       1902 
2606 
     | 
    
         
             
                return q_embed, k_embed
         
     | 
| 
       1903 
2607 
     | 
    
         | 
| 
       1904 
2608 
     | 
    
         |