sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -1,9 +1,6 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            from dataclasses import astuple, dataclass
         
     | 
| 
       2 
     | 
    
         
            -
            from functools import lru_cache
         
     | 
| 
       3 
1 
     | 
    
         
             
            from typing import Optional, Union
         
     | 
| 
       4 
2 
     | 
    
         | 
| 
       5 
3 
     | 
    
         
             
            import torch
         
     | 
| 
       6 
     | 
    
         
            -
            import torch.nn.functional as F
         
     | 
| 
       7 
4 
     | 
    
         | 
| 
       8 
5 
     | 
    
         
             
            from sglang.srt.layers.attention.base_attn_backend import AttentionBackend
         
     | 
| 
       9 
6 
     | 
    
         
             
            from sglang.srt.layers.attention.fla.chunk import chunk_gated_delta_rule
         
     | 
| 
         @@ -14,18 +11,31 @@ from sglang.srt.layers.attention.fla.fused_sigmoid_gating_recurrent import ( 
     | 
|
| 
       14 
11 
     | 
    
         
             
                fused_sigmoid_gating_delta_rule_update,
         
     | 
| 
       15 
12 
     | 
    
         
             
            )
         
     | 
| 
       16 
13 
     | 
    
         
             
            from sglang.srt.layers.attention.mamba.causal_conv1d_triton import (
         
     | 
| 
      
 14 
     | 
    
         
            +
                PAD_SLOT_ID,
         
     | 
| 
       17 
15 
     | 
    
         
             
                causal_conv1d_fn,
         
     | 
| 
       18 
16 
     | 
    
         
             
                causal_conv1d_update,
         
     | 
| 
       19 
17 
     | 
    
         
             
            )
         
     | 
| 
      
 18 
     | 
    
         
            +
            from sglang.srt.layers.attention.mamba.mamba import MambaMixer2
         
     | 
| 
      
 19 
     | 
    
         
            +
            from sglang.srt.layers.attention.mamba.mamba2_metadata import (
         
     | 
| 
      
 20 
     | 
    
         
            +
                ForwardMetadata,
         
     | 
| 
      
 21 
     | 
    
         
            +
                Mamba2Metadata,
         
     | 
| 
      
 22 
     | 
    
         
            +
            )
         
     | 
| 
       20 
23 
     | 
    
         
             
            from sglang.srt.layers.radix_attention import RadixAttention
         
     | 
| 
       21 
     | 
    
         
            -
            from sglang.srt.mem_cache.memory_pool import HybridReqToTokenPool
         
     | 
| 
      
 24 
     | 
    
         
            +
            from sglang.srt.mem_cache.memory_pool import HybridReqToTokenPool, MambaPool
         
     | 
| 
       22 
25 
     | 
    
         
             
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
         
     | 
| 
       23 
26 
     | 
    
         
             
            from sglang.srt.model_executor.model_runner import ModelRunner
         
     | 
| 
       24 
     | 
    
         
            -
            from sglang.srt.models.qwen3_next import  
     | 
| 
       25 
     | 
    
         
            -
            from sglang.srt.speculative. 
     | 
| 
       26 
     | 
    
         
            -
            from sglang.srt. 
     | 
| 
      
 27 
     | 
    
         
            +
            from sglang.srt.models.qwen3_next import fused_gdn_gating
         
     | 
| 
      
 28 
     | 
    
         
            +
            from sglang.srt.speculative.eagle_info import EagleDraftInput, EagleVerifyInput
         
     | 
| 
      
 29 
     | 
    
         
            +
            from sglang.srt.speculative.spec_info import SpecInput
         
     | 
| 
      
 30 
     | 
    
         
            +
            from sglang.srt.utils import is_cuda, is_npu
         
     | 
| 
      
 31 
     | 
    
         
            +
             
     | 
| 
      
 32 
     | 
    
         
            +
            if is_cuda():
         
     | 
| 
      
 33 
     | 
    
         
            +
                from sglang.srt.layers.attention.mamba.causal_conv1d import (
         
     | 
| 
      
 34 
     | 
    
         
            +
                    causal_conv1d_fn as causal_conv1d_fn_cuda,
         
     | 
| 
      
 35 
     | 
    
         
            +
                )
         
     | 
| 
       27 
36 
     | 
    
         | 
| 
       28 
     | 
    
         
            -
             
     | 
| 
      
 37 
     | 
    
         
            +
                causal_conv1d_fn = causal_conv1d_fn_cuda
         
     | 
| 
      
 38 
     | 
    
         
            +
            elif is_npu():
         
     | 
| 
       29 
39 
     | 
    
         
             
                from sgl_kernel_npu.fla.chunk import chunk_gated_delta_rule_npu
         
     | 
| 
       30 
40 
     | 
    
         
             
                from sgl_kernel_npu.fla.fused_sigmoid_gating_recurrent import (
         
     | 
| 
       31 
41 
     | 
    
         
             
                    fused_sigmoid_gating_delta_rule_update_npu,
         
     | 
| 
         @@ -41,35 +51,25 @@ if is_npu(): 
     | 
|
| 
       41 
51 
     | 
    
         
             
                causal_conv1d_update = causal_conv1d_update_npu
         
     | 
| 
       42 
52 
     | 
    
         | 
| 
       43 
53 
     | 
    
         | 
| 
       44 
     | 
    
         
            -
             
     | 
| 
       45 
     | 
    
         
            -
            class ForwardMetadata:
         
     | 
| 
       46 
     | 
    
         
            -
                query_start_loc: Optional[torch.Tensor]
         
     | 
| 
       47 
     | 
    
         
            -
                mamba_cache_indices: torch.Tensor
         
     | 
| 
       48 
     | 
    
         
            -
             
     | 
| 
       49 
     | 
    
         
            -
             
     | 
| 
       50 
     | 
    
         
            -
            class MambaAttnBackend(AttentionBackend):
         
     | 
| 
       51 
     | 
    
         
            -
                """Attention backend using Mamba kernel."""
         
     | 
| 
       52 
     | 
    
         
            -
             
     | 
| 
      
 54 
     | 
    
         
            +
            class MambaAttnBackendBase(AttentionBackend):
         
     | 
| 
       53 
55 
     | 
    
         
             
                def __init__(self, model_runner: ModelRunner):
         
     | 
| 
       54 
56 
     | 
    
         
             
                    super().__init__()
         
     | 
| 
       55 
     | 
    
         
            -
                    self.pad_slot_id =  
     | 
| 
      
 57 
     | 
    
         
            +
                    self.pad_slot_id = PAD_SLOT_ID
         
     | 
| 
       56 
58 
     | 
    
         
             
                    self.device = model_runner.device
         
     | 
| 
       57 
59 
     | 
    
         
             
                    self.req_to_token_pool: HybridReqToTokenPool = model_runner.req_to_token_pool
         
     | 
| 
       58 
60 
     | 
    
         
             
                    self.forward_metadata: ForwardMetadata = None
         
     | 
| 
       59 
61 
     | 
    
         
             
                    self.state_indices_list = []
         
     | 
| 
       60 
62 
     | 
    
         
             
                    self.query_start_loc_list = []
         
     | 
| 
      
 63 
     | 
    
         
            +
                    self.cached_cuda_graph_decode_query_start_loc: torch.Tensor = None
         
     | 
| 
      
 64 
     | 
    
         
            +
                    self.cached_cuda_graph_verify_query_start_loc: torch.Tensor = None
         
     | 
| 
       61 
65 
     | 
    
         | 
| 
       62 
     | 
    
         
            -
                 
     | 
| 
       63 
     | 
    
         
            -
                @lru_cache(maxsize=128)
         
     | 
| 
       64 
     | 
    
         
            -
                def _get_cached_arange(cls, bs: int, device_str: str) -> torch.Tensor:
         
     | 
| 
       65 
     | 
    
         
            -
                    """Cache torch.arange tensors for common batch sizes to avoid repeated allocation."""
         
     | 
| 
       66 
     | 
    
         
            -
                    device = torch.device(device_str)
         
     | 
| 
       67 
     | 
    
         
            -
                    return torch.arange(0, bs + 1, dtype=torch.int32, device=device)
         
     | 
| 
       68 
     | 
    
         
            -
             
     | 
| 
       69 
     | 
    
         
            -
                def init_forward_metadata(self, forward_batch: ForwardBatch):
         
     | 
| 
      
 66 
     | 
    
         
            +
                def _forward_metadata(self, forward_batch: ForwardBatch):
         
     | 
| 
       70 
67 
     | 
    
         
             
                    bs = forward_batch.batch_size
         
     | 
| 
      
 68 
     | 
    
         
            +
             
     | 
| 
       71 
69 
     | 
    
         
             
                    if forward_batch.forward_mode.is_decode_or_idle():
         
     | 
| 
       72 
     | 
    
         
            -
                        query_start_loc =  
     | 
| 
      
 70 
     | 
    
         
            +
                        query_start_loc = torch.arange(
         
     | 
| 
      
 71 
     | 
    
         
            +
                            0, bs + 1, dtype=torch.int32, device=self.device
         
     | 
| 
      
 72 
     | 
    
         
            +
                        )
         
     | 
| 
       73 
73 
     | 
    
         
             
                    elif forward_batch.forward_mode.is_extend():
         
     | 
| 
       74 
74 
     | 
    
         
             
                        if forward_batch.forward_mode.is_target_verify():
         
     | 
| 
       75 
75 
     | 
    
         
             
                            query_start_loc = torch.arange(
         
     | 
| 
         @@ -93,12 +93,48 @@ class MambaAttnBackend(AttentionBackend): 
     | 
|
| 
       93 
93 
     | 
    
         
             
                    mamba_cache_indices = self.req_to_token_pool.get_mamba_indices(
         
     | 
| 
       94 
94 
     | 
    
         
             
                        forward_batch.req_pool_indices
         
     | 
| 
       95 
95 
     | 
    
         
             
                    )
         
     | 
| 
       96 
     | 
    
         
            -
                     
     | 
| 
      
 96 
     | 
    
         
            +
                    return ForwardMetadata(
         
     | 
| 
       97 
97 
     | 
    
         
             
                        query_start_loc=query_start_loc,
         
     | 
| 
       98 
98 
     | 
    
         
             
                        mamba_cache_indices=mamba_cache_indices,
         
     | 
| 
       99 
99 
     | 
    
         
             
                    )
         
     | 
| 
       100 
100 
     | 
    
         | 
| 
      
 101 
     | 
    
         
            +
                def init_forward_metadata(self, forward_batch: ForwardBatch):
         
     | 
| 
      
 102 
     | 
    
         
            +
                    self.forward_metadata = self._forward_metadata(forward_batch)
         
     | 
| 
      
 103 
     | 
    
         
            +
             
     | 
| 
      
 104 
     | 
    
         
            +
                def init_forward_metadata_capture_cuda_graph(
         
     | 
| 
      
 105 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 106 
     | 
    
         
            +
                    bs: int,
         
     | 
| 
      
 107 
     | 
    
         
            +
                    num_tokens: int,
         
     | 
| 
      
 108 
     | 
    
         
            +
                    req_pool_indices: torch.Tensor,
         
     | 
| 
      
 109 
     | 
    
         
            +
                    seq_lens: torch.Tensor,
         
     | 
| 
      
 110 
     | 
    
         
            +
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
      
 111 
     | 
    
         
            +
                    forward_mode: ForwardMode,
         
     | 
| 
      
 112 
     | 
    
         
            +
                    spec_info: Optional[Union[EagleDraftInput, EagleVerifyInput]],
         
     | 
| 
      
 113 
     | 
    
         
            +
                ):
         
     | 
| 
      
 114 
     | 
    
         
            +
                    self.forward_metadata = self._capture_metadata(
         
     | 
| 
      
 115 
     | 
    
         
            +
                        bs, req_pool_indices, forward_mode
         
     | 
| 
      
 116 
     | 
    
         
            +
                    )
         
     | 
| 
      
 117 
     | 
    
         
            +
             
     | 
| 
      
 118 
     | 
    
         
            +
                def init_forward_metadata_replay_cuda_graph(
         
     | 
| 
      
 119 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 120 
     | 
    
         
            +
                    bs: int,
         
     | 
| 
      
 121 
     | 
    
         
            +
                    req_pool_indices: torch.Tensor,
         
     | 
| 
      
 122 
     | 
    
         
            +
                    seq_lens: torch.Tensor,
         
     | 
| 
      
 123 
     | 
    
         
            +
                    seq_lens_sum: int,
         
     | 
| 
      
 124 
     | 
    
         
            +
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
      
 125 
     | 
    
         
            +
                    forward_mode: ForwardMode,
         
     | 
| 
      
 126 
     | 
    
         
            +
                    spec_info: Optional[Union[EagleDraftInput, EagleVerifyInput]],
         
     | 
| 
      
 127 
     | 
    
         
            +
                    seq_lens_cpu: Optional[torch.Tensor],
         
     | 
| 
      
 128 
     | 
    
         
            +
                ):
         
     | 
| 
      
 129 
     | 
    
         
            +
                    self.forward_metadata = self._replay_metadata(
         
     | 
| 
      
 130 
     | 
    
         
            +
                        bs, req_pool_indices, forward_mode, spec_info, seq_lens_cpu
         
     | 
| 
      
 131 
     | 
    
         
            +
                    )
         
     | 
| 
      
 132 
     | 
    
         
            +
             
     | 
| 
       101 
133 
     | 
    
         
             
                def init_cuda_graph_state(self, max_bs: int, max_num_tokens: int):
         
     | 
| 
      
 134 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 135 
     | 
    
         
            +
                        max_num_tokens % max_bs == 0
         
     | 
| 
      
 136 
     | 
    
         
            +
                    ), f"max_num_tokens={max_num_tokens} must be divisible by max_bs={max_bs}"
         
     | 
| 
      
 137 
     | 
    
         
            +
                    verify_step = max_num_tokens / max_bs
         
     | 
| 
       102 
138 
     | 
    
         
             
                    for i in range(max_bs):
         
     | 
| 
       103 
139 
     | 
    
         
             
                        self.state_indices_list.append(
         
     | 
| 
       104 
140 
     | 
    
         
             
                            torch.full(
         
     | 
| 
         @@ -108,47 +144,43 @@ class MambaAttnBackend(AttentionBackend): 
     | 
|
| 
       108 
144 
     | 
    
         
             
                        self.query_start_loc_list.append(
         
     | 
| 
       109 
145 
     | 
    
         
             
                            torch.empty((i + 2,), dtype=torch.int32, device=self.device)
         
     | 
| 
       110 
146 
     | 
    
         
             
                        )
         
     | 
| 
      
 147 
     | 
    
         
            +
                    self.cached_cuda_graph_decode_query_start_loc = torch.arange(
         
     | 
| 
      
 148 
     | 
    
         
            +
                        0, max_bs + 1, dtype=torch.int32, device=self.device
         
     | 
| 
      
 149 
     | 
    
         
            +
                    )
         
     | 
| 
      
 150 
     | 
    
         
            +
                    self.cached_cuda_graph_verify_query_start_loc = torch.arange(
         
     | 
| 
      
 151 
     | 
    
         
            +
                        0,
         
     | 
| 
      
 152 
     | 
    
         
            +
                        max_bs * verify_step + 1,
         
     | 
| 
      
 153 
     | 
    
         
            +
                        step=verify_step,
         
     | 
| 
      
 154 
     | 
    
         
            +
                        dtype=torch.int32,
         
     | 
| 
      
 155 
     | 
    
         
            +
                        device=self.device,
         
     | 
| 
      
 156 
     | 
    
         
            +
                    )
         
     | 
| 
       111 
157 
     | 
    
         | 
| 
       112 
     | 
    
         
            -
                def  
     | 
| 
       113 
     | 
    
         
            -
                    self,
         
     | 
| 
       114 
     | 
    
         
            -
                    bs: int,
         
     | 
| 
       115 
     | 
    
         
            -
                    num_tokens: int,
         
     | 
| 
       116 
     | 
    
         
            -
                    req_pool_indices: torch.Tensor,
         
     | 
| 
       117 
     | 
    
         
            -
                    seq_lens: torch.Tensor,
         
     | 
| 
       118 
     | 
    
         
            -
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       119 
     | 
    
         
            -
                    forward_mode: ForwardMode,
         
     | 
| 
       120 
     | 
    
         
            -
                    spec_info: Optional[Union[EagleDraftInput, EagleVerifyInput]],
         
     | 
| 
      
 158 
     | 
    
         
            +
                def _capture_metadata(
         
     | 
| 
      
 159 
     | 
    
         
            +
                    self, bs: int, req_pool_indices: torch.Tensor, forward_mode: ForwardMode
         
     | 
| 
       121 
160 
     | 
    
         
             
                ):
         
     | 
| 
       122 
161 
     | 
    
         
             
                    if forward_mode.is_decode_or_idle():
         
     | 
| 
       123 
     | 
    
         
            -
                        self.query_start_loc_list[bs - 1].copy_( 
     | 
| 
      
 162 
     | 
    
         
            +
                        self.query_start_loc_list[bs - 1].copy_(
         
     | 
| 
      
 163 
     | 
    
         
            +
                            self.cached_cuda_graph_decode_query_start_loc[: bs + 1]
         
     | 
| 
      
 164 
     | 
    
         
            +
                        )
         
     | 
| 
       124 
165 
     | 
    
         
             
                    elif forward_mode.is_target_verify():
         
     | 
| 
       125 
166 
     | 
    
         
             
                        self.query_start_loc_list[bs - 1].copy_(
         
     | 
| 
       126 
     | 
    
         
            -
                             
     | 
| 
       127 
     | 
    
         
            -
                                0,
         
     | 
| 
       128 
     | 
    
         
            -
                                bs * spec_info.draft_token_num + 1,
         
     | 
| 
       129 
     | 
    
         
            -
                                step=spec_info.draft_token_num,
         
     | 
| 
       130 
     | 
    
         
            -
                                dtype=torch.int32,
         
     | 
| 
       131 
     | 
    
         
            -
                                device=self.device,
         
     | 
| 
       132 
     | 
    
         
            -
                            )
         
     | 
| 
      
 167 
     | 
    
         
            +
                            self.cached_cuda_graph_verify_query_start_loc[: bs + 1]
         
     | 
| 
       133 
168 
     | 
    
         
             
                        )
         
     | 
| 
       134 
169 
     | 
    
         
             
                    else:
         
     | 
| 
       135 
170 
     | 
    
         
             
                        raise ValueError(f"Invalid forward mode: {forward_mode=}")
         
     | 
| 
       136 
171 
     | 
    
         
             
                    mamba_indices = self.req_to_token_pool.get_mamba_indices(req_pool_indices)
         
     | 
| 
       137 
172 
     | 
    
         
             
                    self.state_indices_list[bs - 1][: len(mamba_indices)].copy_(mamba_indices)
         
     | 
| 
       138 
     | 
    
         
            -
                     
     | 
| 
      
 173 
     | 
    
         
            +
                    return ForwardMetadata(
         
     | 
| 
       139 
174 
     | 
    
         
             
                        query_start_loc=self.query_start_loc_list[bs - 1],
         
     | 
| 
       140 
175 
     | 
    
         
             
                        mamba_cache_indices=self.state_indices_list[bs - 1],
         
     | 
| 
       141 
176 
     | 
    
         
             
                    )
         
     | 
| 
       142 
177 
     | 
    
         | 
| 
       143 
     | 
    
         
            -
                def  
     | 
| 
      
 178 
     | 
    
         
            +
                def _replay_metadata(
         
     | 
| 
       144 
179 
     | 
    
         
             
                    self,
         
     | 
| 
       145 
180 
     | 
    
         
             
                    bs: int,
         
     | 
| 
       146 
181 
     | 
    
         
             
                    req_pool_indices: torch.Tensor,
         
     | 
| 
       147 
     | 
    
         
            -
                    seq_lens: torch.Tensor,
         
     | 
| 
       148 
     | 
    
         
            -
                    seq_lens_sum: int,
         
     | 
| 
       149 
     | 
    
         
            -
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       150 
182 
     | 
    
         
             
                    forward_mode: ForwardMode,
         
     | 
| 
       151 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 183 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
       152 
184 
     | 
    
         
             
                    seq_lens_cpu: Optional[torch.Tensor],
         
     | 
| 
       153 
185 
     | 
    
         
             
                ):
         
     | 
| 
       154 
186 
     | 
    
         
             
                    num_padding = torch.count_nonzero(
         
     | 
| 
         @@ -160,27 +192,33 @@ class MambaAttnBackend(AttentionBackend): 
     | 
|
| 
       160 
192 
     | 
    
         
             
                    mamba_indices[bs - num_padding :] = -1
         
     | 
| 
       161 
193 
     | 
    
         
             
                    self.state_indices_list[bs - 1][: len(mamba_indices)].copy_(mamba_indices)
         
     | 
| 
       162 
194 
     | 
    
         
             
                    if forward_mode.is_decode_or_idle():
         
     | 
| 
       163 
     | 
    
         
            -
                         
     | 
| 
       164 
     | 
    
         
            -
             
     | 
| 
       165 
     | 
    
         
            -
             
     | 
| 
       166 
     | 
    
         
            -
                    elif forward_mode.is_target_verify():
         
     | 
| 
       167 
     | 
    
         
            -
                        self.query_start_loc_list[bs - 1].copy_(
         
     | 
| 
       168 
     | 
    
         
            -
                            torch.arange(
         
     | 
| 
       169 
     | 
    
         
            -
                                0,
         
     | 
| 
       170 
     | 
    
         
            -
                                bs * spec_info.draft_token_num + 1,
         
     | 
| 
       171 
     | 
    
         
            -
                                step=spec_info.draft_token_num,
         
     | 
| 
       172 
     | 
    
         
            -
                                dtype=torch.int32,
         
     | 
| 
       173 
     | 
    
         
            -
                                device=self.device,
         
     | 
| 
      
 195 
     | 
    
         
            +
                        if num_padding == 0:
         
     | 
| 
      
 196 
     | 
    
         
            +
                            self.query_start_loc_list[bs - 1].copy_(
         
     | 
| 
      
 197 
     | 
    
         
            +
                                self.cached_cuda_graph_decode_query_start_loc[: bs + 1]
         
     | 
| 
       174 
198 
     | 
    
         
             
                            )
         
     | 
| 
       175 
     | 
    
         
            -
                         
     | 
| 
       176 
     | 
    
         
            -
             
     | 
| 
       177 
     | 
    
         
            -
             
     | 
| 
      
 199 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 200 
     | 
    
         
            +
                            self.query_start_loc_list[bs - 1][: bs - num_padding].copy_(
         
     | 
| 
      
 201 
     | 
    
         
            +
                                self.cached_cuda_graph_decode_query_start_loc[: bs - num_padding]
         
     | 
| 
      
 202 
     | 
    
         
            +
                            )
         
     | 
| 
      
 203 
     | 
    
         
            +
                            self.query_start_loc_list[bs - 1][bs - num_padding :].copy_(
         
     | 
| 
       178 
204 
     | 
    
         
             
                                bs - num_padding
         
     | 
| 
       179 
     | 
    
         
            -
                            ) 
     | 
| 
      
 205 
     | 
    
         
            +
                            )
         
     | 
| 
      
 206 
     | 
    
         
            +
                    elif forward_mode.is_target_verify():
         
     | 
| 
      
 207 
     | 
    
         
            +
                        if num_padding == 0:
         
     | 
| 
      
 208 
     | 
    
         
            +
                            self.query_start_loc_list[bs - 1].copy_(
         
     | 
| 
      
 209 
     | 
    
         
            +
                                self.cached_cuda_graph_verify_query_start_loc[: bs + 1]
         
     | 
| 
      
 210 
     | 
    
         
            +
                            )
         
     | 
| 
      
 211 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 212 
     | 
    
         
            +
                            self.query_start_loc_list[bs - 1][: bs - num_padding].copy_(
         
     | 
| 
      
 213 
     | 
    
         
            +
                                self.cached_cuda_graph_verify_query_start_loc[: bs - num_padding]
         
     | 
| 
      
 214 
     | 
    
         
            +
                            )
         
     | 
| 
      
 215 
     | 
    
         
            +
                            self.query_start_loc_list[bs - 1][bs - num_padding :].copy_(
         
     | 
| 
      
 216 
     | 
    
         
            +
                                (bs - num_padding) * spec_info.draft_token_num
         
     | 
| 
      
 217 
     | 
    
         
            +
                            )
         
     | 
| 
       180 
218 
     | 
    
         
             
                    else:
         
     | 
| 
       181 
219 
     | 
    
         
             
                        raise ValueError(f"Invalid forward mode: {forward_mode=}")
         
     | 
| 
       182 
220 
     | 
    
         | 
| 
       183 
     | 
    
         
            -
                     
     | 
| 
      
 221 
     | 
    
         
            +
                    return ForwardMetadata(
         
     | 
| 
       184 
222 
     | 
    
         
             
                        query_start_loc=self.query_start_loc_list[bs - 1],
         
     | 
| 
       185 
223 
     | 
    
         
             
                        mamba_cache_indices=self.state_indices_list[bs - 1],
         
     | 
| 
       186 
224 
     | 
    
         
             
                    )
         
     | 
| 
         @@ -188,6 +226,10 @@ class MambaAttnBackend(AttentionBackend): 
     | 
|
| 
       188 
226 
     | 
    
         
             
                def get_cuda_graph_seq_len_fill_value(self):
         
     | 
| 
       189 
227 
     | 
    
         
             
                    return 1  # Mamba attn does not use seq lens to index kv cache
         
     | 
| 
       190 
228 
     | 
    
         | 
| 
      
 229 
     | 
    
         
            +
             
     | 
| 
      
 230 
     | 
    
         
            +
            class GDNAttnBackend(MambaAttnBackendBase):
         
     | 
| 
      
 231 
     | 
    
         
            +
                """Attention backend using Mamba kernel."""
         
     | 
| 
      
 232 
     | 
    
         
            +
             
     | 
| 
       191 
233 
     | 
    
         
             
                def forward_decode(
         
     | 
| 
       192 
234 
     | 
    
         
             
                    self,
         
     | 
| 
       193 
235 
     | 
    
         
             
                    q: torch.Tensor,
         
     | 
| 
         @@ -213,9 +255,9 @@ class MambaAttnBackend(AttentionBackend): 
     | 
|
| 
       213 
255 
     | 
    
         
             
                    dt_bias = kwargs["dt_bias"]
         
     | 
| 
       214 
256 
     | 
    
         
             
                    layer_id = kwargs["layer_id"]
         
     | 
| 
       215 
257 
     | 
    
         | 
| 
       216 
     | 
    
         
            -
                     
     | 
| 
       217 
     | 
    
         
            -
             
     | 
| 
       218 
     | 
    
         
            -
                     
     | 
| 
      
 258 
     | 
    
         
            +
                    layer_cache = self.req_to_token_pool.mamba2_layer_cache(layer_id)
         
     | 
| 
      
 259 
     | 
    
         
            +
                    conv_states = layer_cache.conv
         
     | 
| 
      
 260 
     | 
    
         
            +
                    ssm_states = layer_cache.temporal
         
     | 
| 
       219 
261 
     | 
    
         
             
                    query_start_loc = self.forward_metadata.query_start_loc
         
     | 
| 
       220 
262 
     | 
    
         
             
                    cache_indices = self.forward_metadata.mamba_cache_indices
         
     | 
| 
       221 
263 
     | 
    
         | 
| 
         @@ -293,13 +335,13 @@ class MambaAttnBackend(AttentionBackend): 
     | 
|
| 
       293 
335 
     | 
    
         
             
                    query_start_loc = self.forward_metadata.query_start_loc
         
     | 
| 
       294 
336 
     | 
    
         
             
                    cache_indices = self.forward_metadata.mamba_cache_indices
         
     | 
| 
       295 
337 
     | 
    
         | 
| 
      
 338 
     | 
    
         
            +
                    mamba_cache_params = self.req_to_token_pool.mamba2_layer_cache(layer_id)
         
     | 
| 
      
 339 
     | 
    
         
            +
                    conv_states = mamba_cache_params.conv
         
     | 
| 
      
 340 
     | 
    
         
            +
                    ssm_states = mamba_cache_params.temporal
         
     | 
| 
       296 
341 
     | 
    
         
             
                    if is_target_verify:
         
     | 
| 
       297 
     | 
    
         
            -
                        (
         
     | 
| 
       298 
     | 
    
         
            -
             
     | 
| 
       299 
     | 
    
         
            -
             
     | 
| 
       300 
     | 
    
         
            -
                            intermediate_state_cache,
         
     | 
| 
       301 
     | 
    
         
            -
                            intermediate_conv_window_cache,
         
     | 
| 
       302 
     | 
    
         
            -
                        ) = self.req_to_token_pool.get_mamba_params(layer_id)
         
     | 
| 
      
 342 
     | 
    
         
            +
                        assert isinstance(mamba_cache_params, MambaPool.SpeculativeState)
         
     | 
| 
      
 343 
     | 
    
         
            +
                        intermediate_state_cache = mamba_cache_params.intermediate_ssm
         
     | 
| 
      
 344 
     | 
    
         
            +
                        intermediate_conv_window_cache = mamba_cache_params.intermediate_conv_window
         
     | 
| 
       303 
345 
     | 
    
         
             
                        has_initial_states = torch.ones(
         
     | 
| 
       304 
346 
     | 
    
         
             
                            seq_len // forward_batch.spec_info.draft_token_num,
         
     | 
| 
       305 
347 
     | 
    
         
             
                            dtype=torch.bool,
         
     | 
| 
         @@ -307,9 +349,6 @@ class MambaAttnBackend(AttentionBackend): 
     | 
|
| 
       307 
349 
     | 
    
         
             
                        )
         
     | 
| 
       308 
350 
     | 
    
         
             
                        conv_states_to_use = conv_states.clone()
         
     | 
| 
       309 
351 
     | 
    
         
             
                    else:
         
     | 
| 
       310 
     | 
    
         
            -
                        conv_states, ssm_states, *rest = self.req_to_token_pool.get_mamba_params(
         
     | 
| 
       311 
     | 
    
         
            -
                            layer_id
         
     | 
| 
       312 
     | 
    
         
            -
                        )
         
     | 
| 
       313 
352 
     | 
    
         
             
                        has_initial_states = forward_batch.extend_prefix_lens > 0
         
     | 
| 
       314 
353 
     | 
    
         
             
                        conv_states_to_use = conv_states
         
     | 
| 
       315 
354 
     | 
    
         | 
| 
         @@ -343,6 +382,7 @@ class MambaAttnBackend(AttentionBackend): 
     | 
|
| 
       343 
382 
     | 
    
         
             
                            has_initial_state=has_initial_states,
         
     | 
| 
       344 
383 
     | 
    
         
             
                            cache_indices=cache_indices,
         
     | 
| 
       345 
384 
     | 
    
         
             
                            query_start_loc=query_start_loc,
         
     | 
| 
      
 385 
     | 
    
         
            +
                            seq_lens_cpu=forward_batch.extend_seq_lens_cpu,
         
     | 
| 
       346 
386 
     | 
    
         
             
                        ).transpose(0, 1)[:seq_len]
         
     | 
| 
       347 
387 
     | 
    
         | 
| 
       348 
388 
     | 
    
         
             
                    key_split_dim = key_dim // attn_tp_size
         
     | 
| 
         @@ -403,16 +443,100 @@ class MambaAttnBackend(AttentionBackend): 
     | 
|
| 
       403 
443 
     | 
    
         
             
                    return core_attn_out
         
     | 
| 
       404 
444 
     | 
    
         | 
| 
       405 
445 
     | 
    
         | 
| 
      
 446 
     | 
    
         
            +
            class Mamba2AttnBackend(MambaAttnBackendBase):
         
     | 
| 
      
 447 
     | 
    
         
            +
                """Attention backend wrapper for Mamba2Mixer kernels."""
         
     | 
| 
      
 448 
     | 
    
         
            +
             
     | 
| 
      
 449 
     | 
    
         
            +
                def __init__(self, model_runner: ModelRunner):
         
     | 
| 
      
 450 
     | 
    
         
            +
                    super().__init__(model_runner)
         
     | 
| 
      
 451 
     | 
    
         
            +
                    config = model_runner.mamba2_config
         
     | 
| 
      
 452 
     | 
    
         
            +
                    assert config is not None
         
     | 
| 
      
 453 
     | 
    
         
            +
                    self.mamba_chunk_size = config.mamba_chunk_size
         
     | 
| 
      
 454 
     | 
    
         
            +
             
     | 
| 
      
 455 
     | 
    
         
            +
                def init_forward_metadata(self, forward_batch: ForwardBatch):
         
     | 
| 
      
 456 
     | 
    
         
            +
                    metadata = self._forward_metadata(forward_batch)
         
     | 
| 
      
 457 
     | 
    
         
            +
                    self.forward_metadata = Mamba2Metadata.prepare_mixed(
         
     | 
| 
      
 458 
     | 
    
         
            +
                        metadata.query_start_loc,
         
     | 
| 
      
 459 
     | 
    
         
            +
                        metadata.mamba_cache_indices,
         
     | 
| 
      
 460 
     | 
    
         
            +
                        self.mamba_chunk_size,
         
     | 
| 
      
 461 
     | 
    
         
            +
                        forward_batch,
         
     | 
| 
      
 462 
     | 
    
         
            +
                    )
         
     | 
| 
      
 463 
     | 
    
         
            +
             
     | 
| 
      
 464 
     | 
    
         
            +
                def init_forward_metadata_capture_cuda_graph(
         
     | 
| 
      
 465 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 466 
     | 
    
         
            +
                    bs: int,
         
     | 
| 
      
 467 
     | 
    
         
            +
                    num_tokens: int,
         
     | 
| 
      
 468 
     | 
    
         
            +
                    req_pool_indices: torch.Tensor,
         
     | 
| 
      
 469 
     | 
    
         
            +
                    seq_lens: torch.Tensor,
         
     | 
| 
      
 470 
     | 
    
         
            +
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
      
 471 
     | 
    
         
            +
                    forward_mode: ForwardMode,
         
     | 
| 
      
 472 
     | 
    
         
            +
                    spec_info: Optional[Union[EagleDraftInput, EagleVerifyInput]],
         
     | 
| 
      
 473 
     | 
    
         
            +
                ):
         
     | 
| 
      
 474 
     | 
    
         
            +
                    metadata = self._capture_metadata(bs, req_pool_indices, forward_mode)
         
     | 
| 
      
 475 
     | 
    
         
            +
                    self.forward_metadata = Mamba2Metadata.prepare_decode(
         
     | 
| 
      
 476 
     | 
    
         
            +
                        metadata.query_start_loc, metadata.mamba_cache_indices, seq_lens
         
     | 
| 
      
 477 
     | 
    
         
            +
                    )
         
     | 
| 
      
 478 
     | 
    
         
            +
             
     | 
| 
      
 479 
     | 
    
         
            +
                def init_forward_metadata_replay_cuda_graph(
         
     | 
| 
      
 480 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 481 
     | 
    
         
            +
                    bs: int,
         
     | 
| 
      
 482 
     | 
    
         
            +
                    req_pool_indices: torch.Tensor,
         
     | 
| 
      
 483 
     | 
    
         
            +
                    seq_lens: torch.Tensor,
         
     | 
| 
      
 484 
     | 
    
         
            +
                    seq_lens_sum: int,
         
     | 
| 
      
 485 
     | 
    
         
            +
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
      
 486 
     | 
    
         
            +
                    forward_mode: ForwardMode,
         
     | 
| 
      
 487 
     | 
    
         
            +
                    spec_info: Optional[Union[EagleDraftInput, EagleVerifyInput]],
         
     | 
| 
      
 488 
     | 
    
         
            +
                    seq_lens_cpu: Optional[torch.Tensor],
         
     | 
| 
      
 489 
     | 
    
         
            +
                ):
         
     | 
| 
      
 490 
     | 
    
         
            +
                    metadata = self._replay_metadata(
         
     | 
| 
      
 491 
     | 
    
         
            +
                        bs, req_pool_indices, forward_mode, spec_info, seq_lens_cpu
         
     | 
| 
      
 492 
     | 
    
         
            +
                    )
         
     | 
| 
      
 493 
     | 
    
         
            +
                    self.forward_metadata = Mamba2Metadata.prepare_decode(
         
     | 
| 
      
 494 
     | 
    
         
            +
                        metadata.query_start_loc, metadata.mamba_cache_indices, seq_lens
         
     | 
| 
      
 495 
     | 
    
         
            +
                    )
         
     | 
| 
      
 496 
     | 
    
         
            +
             
     | 
| 
      
 497 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 498 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 499 
     | 
    
         
            +
                    mixer: MambaMixer2,
         
     | 
| 
      
 500 
     | 
    
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 
      
 501 
     | 
    
         
            +
                    output: torch.Tensor,
         
     | 
| 
      
 502 
     | 
    
         
            +
                    layer_id: int,
         
     | 
| 
      
 503 
     | 
    
         
            +
                    mup_vector: Optional[torch.Tensor] = None,
         
     | 
| 
      
 504 
     | 
    
         
            +
                    use_triton_causal_conv: bool = False,
         
     | 
| 
      
 505 
     | 
    
         
            +
                ):
         
     | 
| 
      
 506 
     | 
    
         
            +
                    assert isinstance(self.forward_metadata, Mamba2Metadata)
         
     | 
| 
      
 507 
     | 
    
         
            +
                    layer_cache = self.req_to_token_pool.mamba2_layer_cache(layer_id)
         
     | 
| 
      
 508 
     | 
    
         
            +
                    return mixer.forward(
         
     | 
| 
      
 509 
     | 
    
         
            +
                        hidden_states=hidden_states,
         
     | 
| 
      
 510 
     | 
    
         
            +
                        output=output,
         
     | 
| 
      
 511 
     | 
    
         
            +
                        layer_cache=layer_cache,
         
     | 
| 
      
 512 
     | 
    
         
            +
                        metadata=self.forward_metadata,
         
     | 
| 
      
 513 
     | 
    
         
            +
                        mup_vector=mup_vector,
         
     | 
| 
      
 514 
     | 
    
         
            +
                        use_triton_causal_conv=use_triton_causal_conv,
         
     | 
| 
      
 515 
     | 
    
         
            +
                    )
         
     | 
| 
      
 516 
     | 
    
         
            +
             
     | 
| 
      
 517 
     | 
    
         
            +
                def forward_decode(self, *args, **kwargs):
         
     | 
| 
      
 518 
     | 
    
         
            +
                    raise NotImplementedError(
         
     | 
| 
      
 519 
     | 
    
         
            +
                        "Mamba2AttnBackend's forward is called directly instead of through HybridLinearAttnBackend, as it supports mixed prefill and decode"
         
     | 
| 
      
 520 
     | 
    
         
            +
                    )
         
     | 
| 
      
 521 
     | 
    
         
            +
             
     | 
| 
      
 522 
     | 
    
         
            +
                def forward_extend(self, *args, **kwargs):
         
     | 
| 
      
 523 
     | 
    
         
            +
                    raise NotImplementedError(
         
     | 
| 
      
 524 
     | 
    
         
            +
                        "Mamba2AttnBackend's forward is called directly instead of through HybridLinearAttnBackend, as it supports mixed prefill and decode"
         
     | 
| 
      
 525 
     | 
    
         
            +
                    )
         
     | 
| 
      
 526 
     | 
    
         
            +
             
     | 
| 
      
 527 
     | 
    
         
            +
             
     | 
| 
       406 
528 
     | 
    
         
             
            class HybridLinearAttnBackend(AttentionBackend):
         
     | 
| 
       407 
     | 
    
         
            -
                """ 
     | 
| 
      
 529 
     | 
    
         
            +
                """Manages a full and linear attention backend"""
         
     | 
| 
       408 
530 
     | 
    
         | 
| 
       409 
531 
     | 
    
         
             
                def __init__(
         
     | 
| 
       410 
532 
     | 
    
         
             
                    self,
         
     | 
| 
       411 
533 
     | 
    
         
             
                    full_attn_backend: AttentionBackend,
         
     | 
| 
       412 
     | 
    
         
            -
                    linear_attn_backend:  
     | 
| 
      
 534 
     | 
    
         
            +
                    linear_attn_backend: MambaAttnBackendBase,
         
     | 
| 
       413 
535 
     | 
    
         
             
                    full_attn_layers: list[int],
         
     | 
| 
       414 
536 
     | 
    
         
             
                ):
         
     | 
| 
       415 
537 
     | 
    
         
             
                    self.full_attn_layers = full_attn_layers
         
     | 
| 
      
 538 
     | 
    
         
            +
                    self.full_attn_backend = full_attn_backend
         
     | 
| 
      
 539 
     | 
    
         
            +
                    self.linear_attn_backend = linear_attn_backend
         
     | 
| 
       416 
540 
     | 
    
         
             
                    self.attn_backend_list = [full_attn_backend, linear_attn_backend]
         
     | 
| 
       417 
541 
     | 
    
         | 
| 
       418 
542 
     | 
    
         
             
                def init_forward_metadata(self, forward_batch: ForwardBatch):
         
     | 
| 
         @@ -431,7 +555,7 @@ class HybridLinearAttnBackend(AttentionBackend): 
     | 
|
| 
       431 
555 
     | 
    
         
             
                    seq_lens: torch.Tensor,
         
     | 
| 
       432 
556 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       433 
557 
     | 
    
         
             
                    forward_mode: ForwardMode,
         
     | 
| 
       434 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 558 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
       435 
559 
     | 
    
         
             
                ):
         
     | 
| 
       436 
560 
     | 
    
         
             
                    for attn_backend in self.attn_backend_list:
         
     | 
| 
       437 
561 
     | 
    
         
             
                        attn_backend.init_forward_metadata_capture_cuda_graph(
         
     | 
| 
         @@ -452,7 +576,7 @@ class HybridLinearAttnBackend(AttentionBackend): 
     | 
|
| 
       452 
576 
     | 
    
         
             
                    seq_lens_sum: int,
         
     | 
| 
       453 
577 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       454 
578 
     | 
    
         
             
                    forward_mode: ForwardMode,
         
     | 
| 
       455 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 579 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
       456 
580 
     | 
    
         
             
                    seq_lens_cpu: Optional[torch.Tensor],
         
     | 
| 
       457 
581 
     | 
    
         
             
                ):
         
     | 
| 
       458 
582 
     | 
    
         
             
                    for attn_backend in self.attn_backend_list:
         
     | 
| 
         @@ -468,7 +592,7 @@ class HybridLinearAttnBackend(AttentionBackend): 
     | 
|
| 
       468 
592 
     | 
    
         
             
                        )
         
     | 
| 
       469 
593 
     | 
    
         | 
| 
       470 
594 
     | 
    
         
             
                def get_cuda_graph_seq_len_fill_value(self):
         
     | 
| 
       471 
     | 
    
         
            -
                    return self. 
     | 
| 
      
 595 
     | 
    
         
            +
                    return self.full_attn_backend.get_cuda_graph_seq_len_fill_value()
         
     | 
| 
       472 
596 
     | 
    
         | 
| 
       473 
597 
     | 
    
         
             
                def forward_decode(
         
     | 
| 
       474 
598 
     | 
    
         
             
                    self,
         
     | 
| 
         @@ -482,10 +606,10 @@ class HybridLinearAttnBackend(AttentionBackend): 
     | 
|
| 
       482 
606 
     | 
    
         
             
                ):
         
     | 
| 
       483 
607 
     | 
    
         
             
                    layer_id = layer.layer_id if layer else kwargs["layer_id"]
         
     | 
| 
       484 
608 
     | 
    
         
             
                    if layer_id in self.full_attn_layers:
         
     | 
| 
       485 
     | 
    
         
            -
                        return self. 
     | 
| 
      
 609 
     | 
    
         
            +
                        return self.full_attn_backend.forward_decode(
         
     | 
| 
       486 
610 
     | 
    
         
             
                            q, k, v, layer, forward_batch, save_kv_cache, **kwargs
         
     | 
| 
       487 
611 
     | 
    
         
             
                        )
         
     | 
| 
       488 
     | 
    
         
            -
                    return self. 
     | 
| 
      
 612 
     | 
    
         
            +
                    return self.linear_attn_backend.forward_decode(
         
     | 
| 
       489 
613 
     | 
    
         
             
                        q, k, v, layer, forward_batch, save_kv_cache, **kwargs
         
     | 
| 
       490 
614 
     | 
    
         
             
                    )
         
     | 
| 
       491 
615 
     | 
    
         | 
| 
         @@ -501,10 +625,10 @@ class HybridLinearAttnBackend(AttentionBackend): 
     | 
|
| 
       501 
625 
     | 
    
         
             
                ):
         
     | 
| 
       502 
626 
     | 
    
         
             
                    layer_id = layer.layer_id if layer else kwargs["layer_id"]
         
     | 
| 
       503 
627 
     | 
    
         
             
                    if layer_id in self.full_attn_layers:
         
     | 
| 
       504 
     | 
    
         
            -
                        return self. 
     | 
| 
      
 628 
     | 
    
         
            +
                        return self.full_attn_backend.forward_extend(
         
     | 
| 
       505 
629 
     | 
    
         
             
                            q, k, v, layer, forward_batch, save_kv_cache, **kwargs
         
     | 
| 
       506 
630 
     | 
    
         
             
                        )
         
     | 
| 
       507 
     | 
    
         
            -
                    return self. 
     | 
| 
      
 631 
     | 
    
         
            +
                    return self.linear_attn_backend.forward_extend(
         
     | 
| 
       508 
632 
     | 
    
         
             
                        q, k, v, layer, forward_batch, save_kv_cache, **kwargs
         
     | 
| 
       509 
633 
     | 
    
         
             
                    )
         
     | 
| 
       510 
634 
     | 
    
         | 
| 
         @@ -547,56 +671,35 @@ class HybridLinearAttnBackend(AttentionBackend): 
     | 
|
| 
       547 
671 
     | 
    
         
             
                def update_mamba_state_after_mtp_verify(self, accepted_length, model):
         
     | 
| 
       548 
672 
     | 
    
         
             
                    request_number = accepted_length.shape[0]
         
     | 
| 
       549 
673 
     | 
    
         | 
| 
       550 
     | 
    
         
            -
                    state_indices_tensor =  
     | 
| 
       551 
     | 
    
         
            -
                         
     | 
| 
       552 
     | 
    
         
            -
             
     | 
| 
      
 674 
     | 
    
         
            +
                    state_indices_tensor = (
         
     | 
| 
      
 675 
     | 
    
         
            +
                        self.linear_attn_backend.forward_metadata.mamba_cache_indices[
         
     | 
| 
      
 676 
     | 
    
         
            +
                            :request_number
         
     | 
| 
      
 677 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 678 
     | 
    
         
            +
                    )
         
     | 
| 
       553 
679 
     | 
    
         | 
| 
       554 
     | 
    
         
            -
                    mamba_caches =  
     | 
| 
       555 
     | 
    
         
            -
                         
     | 
| 
       556 
     | 
    
         
            -
                     
     | 
| 
      
 680 
     | 
    
         
            +
                    mamba_caches = (
         
     | 
| 
      
 681 
     | 
    
         
            +
                        self.linear_attn_backend.req_to_token_pool.get_speculative_mamba2_params_all_layers()
         
     | 
| 
      
 682 
     | 
    
         
            +
                    )
         
     | 
| 
       557 
683 
     | 
    
         | 
| 
       558 
     | 
    
         
            -
                     
     | 
| 
       559 
     | 
    
         
            -
             
     | 
| 
       560 
     | 
    
         
            -
             
     | 
| 
       561 
     | 
    
         
            -
             
     | 
| 
       562 
     | 
    
         
            -
                        intermediate_conv_window_cache,
         
     | 
| 
       563 
     | 
    
         
            -
                    ) = mamba_caches
         
     | 
| 
      
 684 
     | 
    
         
            +
                    conv_states = mamba_caches.conv
         
     | 
| 
      
 685 
     | 
    
         
            +
                    ssm_states = mamba_caches.temporal
         
     | 
| 
      
 686 
     | 
    
         
            +
                    intermediate_state_cache = mamba_caches.intermediate_ssm
         
     | 
| 
      
 687 
     | 
    
         
            +
                    intermediate_conv_window_cache = mamba_caches.intermediate_conv_window
         
     | 
| 
       564 
688 
     | 
    
         | 
| 
       565 
689 
     | 
    
         
             
                    # SSM state updates (chunked to reduce peak memory)
         
     | 
| 
       566 
690 
     | 
    
         
             
                    valid_mask = accepted_length > 0
         
     | 
| 
       567 
691 
     | 
    
         | 
| 
       568 
692 
     | 
    
         
             
                    # Compute common indices once to avoid duplication
         
     | 
| 
       569 
693 
     | 
    
         
             
                    last_steps_all = (accepted_length - 1).to(torch.int64)
         
     | 
| 
       570 
     | 
    
         
            -
                    valid_state_indices = state_indices_tensor[valid_mask].to(torch.int64)
         
     | 
| 
       571 
     | 
    
         
            -
                    last_steps = last_steps_all[valid_mask].to(torch.int64)
         
     | 
| 
       572 
     | 
    
         
            -
             
     | 
| 
       573 
     | 
    
         
            -
                     
     | 
| 
       574 
     | 
    
         
            -
             
     | 
| 
       575 
     | 
    
         
            -
                         
     | 
| 
       576 
     | 
    
         
            -
             
     | 
| 
       577 
     | 
    
         
            -
             
     | 
| 
       578 
     | 
    
         
            -
             
     | 
| 
       579 
     | 
    
         
            -
             
     | 
| 
       580 
     | 
    
         
            -
             
     | 
| 
       581 
     | 
    
         
            -
             
     | 
| 
       582 
     | 
    
         
            -
                            for j in range(idx.numel()):
         
     | 
| 
       583 
     | 
    
         
            -
                                ci = idx[j].item()
         
     | 
| 
       584 
     | 
    
         
            -
                                st = steps[j].item()
         
     | 
| 
       585 
     | 
    
         
            -
                                ssm_states[:, ci, :].copy_(
         
     | 
| 
       586 
     | 
    
         
            -
                                    intermediate_state_cache[:, ci, st].to(
         
     | 
| 
       587 
     | 
    
         
            -
                                        ssm_states.dtype, copy=False
         
     | 
| 
       588 
     | 
    
         
            -
                                    )
         
     | 
| 
       589 
     | 
    
         
            -
                                )
         
     | 
| 
       590 
     | 
    
         
            -
             
     | 
| 
       591 
     | 
    
         
            -
                        # Conv window updates
         
     | 
| 
       592 
     | 
    
         
            -
                        for i in range(0, num_valid, chunk):
         
     | 
| 
       593 
     | 
    
         
            -
                            idx = valid_state_indices[i : i + chunk]
         
     | 
| 
       594 
     | 
    
         
            -
                            steps = last_steps[i : i + chunk]
         
     | 
| 
       595 
     | 
    
         
            -
                            for j in range(idx.numel()):
         
     | 
| 
       596 
     | 
    
         
            -
                                ci = idx[j].item()
         
     | 
| 
       597 
     | 
    
         
            -
                                st = steps[j].item()
         
     | 
| 
       598 
     | 
    
         
            -
                                conv_states[:, ci, :, :].copy_(
         
     | 
| 
       599 
     | 
    
         
            -
                                    intermediate_conv_window_cache[:, ci, st].to(
         
     | 
| 
       600 
     | 
    
         
            -
                                        conv_states.dtype, copy=False
         
     | 
| 
       601 
     | 
    
         
            -
                                    )
         
     | 
| 
       602 
     | 
    
         
            -
                                )
         
     | 
| 
      
 694 
     | 
    
         
            +
                    valid_state_indices = state_indices_tensor[valid_mask].to(torch.int64)  # [N]
         
     | 
| 
      
 695 
     | 
    
         
            +
                    last_steps = last_steps_all[valid_mask].to(torch.int64)  # [N]
         
     | 
| 
      
 696 
     | 
    
         
            +
             
     | 
| 
      
 697 
     | 
    
         
            +
                    # scatter into ssm_states at the chosen cache lines
         
     | 
| 
      
 698 
     | 
    
         
            +
                    ssm_states[:, valid_state_indices, :] = intermediate_state_cache[
         
     | 
| 
      
 699 
     | 
    
         
            +
                        :, valid_state_indices, last_steps
         
     | 
| 
      
 700 
     | 
    
         
            +
                    ].to(ssm_states.dtype, copy=False)
         
     | 
| 
      
 701 
     | 
    
         
            +
             
     | 
| 
      
 702 
     | 
    
         
            +
                    # Scatter into conv_states at the chosen cache lines
         
     | 
| 
      
 703 
     | 
    
         
            +
                    conv_states[:, valid_state_indices, :, :] = intermediate_conv_window_cache[
         
     | 
| 
      
 704 
     | 
    
         
            +
                        :, valid_state_indices, last_steps
         
     | 
| 
      
 705 
     | 
    
         
            +
                    ].to(conv_states.dtype, copy=False)
         
     | 
| 
         @@ -10,7 +10,7 @@ import torch 
     | 
|
| 
       10 
10 
     | 
    
         
             
            from sgl_kernel import causal_conv1d_fwd
         
     | 
| 
       11 
11 
     | 
    
         
             
            from sgl_kernel import causal_conv1d_update as causal_conv1d_update_kernel
         
     | 
| 
       12 
12 
     | 
    
         | 
| 
       13 
     | 
    
         
            -
             
     | 
| 
      
 13 
     | 
    
         
            +
            from .causal_conv1d_triton import PAD_SLOT_ID
         
     | 
| 
       14 
14 
     | 
    
         | 
| 
       15 
15 
     | 
    
         | 
| 
       16 
16 
     | 
    
         
             
            def causal_conv1d_fn(
         
     | 
| 
         @@ -23,6 +23,7 @@ def causal_conv1d_fn( 
     | 
|
| 
       23 
23 
     | 
    
         
             
                conv_states: Optional[torch.Tensor] = None,
         
     | 
| 
       24 
24 
     | 
    
         
             
                activation: Optional[str] = "silu",
         
     | 
| 
       25 
25 
     | 
    
         
             
                pad_slot_id: int = PAD_SLOT_ID,
         
     | 
| 
      
 26 
     | 
    
         
            +
                **kwargs,
         
     | 
| 
       26 
27 
     | 
    
         
             
            ):
         
     | 
| 
       27 
28 
     | 
    
         
             
                """
         
     | 
| 
       28 
29 
     | 
    
         
             
                x: (batch, dim, seqlen) or (dim,cu_seq_len) for varlen
         
     |