sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -7,6 +7,7 @@ FlashInfer is faster and Triton is easier to customize. 
     | 
|
| 
       7 
7 
     | 
    
         
             
            Each backend supports two operators: extend (i.e. prefill with cached prefix) and decode.
         
     | 
| 
       8 
8 
     | 
    
         
             
            """
         
     | 
| 
       9 
9 
     | 
    
         | 
| 
      
 10 
     | 
    
         
            +
            import logging
         
     | 
| 
       10 
11 
     | 
    
         
             
            import os
         
     | 
| 
       11 
12 
     | 
    
         
             
            from dataclasses import dataclass
         
     | 
| 
       12 
13 
     | 
    
         
             
            from enum import Enum, auto
         
     | 
| 
         @@ -15,21 +16,16 @@ from typing import TYPE_CHECKING, Callable, List, Optional, Union 
     | 
|
| 
       15 
16 
     | 
    
         | 
| 
       16 
17 
     | 
    
         
             
            import torch
         
     | 
| 
       17 
18 
     | 
    
         | 
| 
       18 
     | 
    
         
            -
             
     | 
| 
       19 
     | 
    
         
            -
                import logging
         
     | 
| 
       20 
     | 
    
         
            -
             
     | 
| 
       21 
     | 
    
         
            -
                torch._logging.set_logs(dynamo=logging.ERROR)
         
     | 
| 
       22 
     | 
    
         
            -
                torch._dynamo.config.suppress_errors = True
         
     | 
| 
       23 
     | 
    
         
            -
             
     | 
| 
       24 
     | 
    
         
            -
            from sglang.global_config import global_config
         
     | 
| 
      
 19 
     | 
    
         
            +
            from sglang.srt.environ import envs
         
     | 
| 
       25 
20 
     | 
    
         
             
            from sglang.srt.layers.attention.base_attn_backend import AttentionBackend
         
     | 
| 
       26 
21 
     | 
    
         
             
            from sglang.srt.layers.attention.utils import create_flashinfer_kv_indices_triton
         
     | 
| 
       27 
22 
     | 
    
         
             
            from sglang.srt.layers.dp_attention import get_attention_tp_size
         
     | 
| 
       28 
23 
     | 
    
         
             
            from sglang.srt.layers.radix_attention import AttentionType
         
     | 
| 
       29 
24 
     | 
    
         
             
            from sglang.srt.mem_cache.allocator import SWATokenToKVPoolAllocator
         
     | 
| 
       30 
25 
     | 
    
         
             
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
         
     | 
| 
       31 
     | 
    
         
            -
            from sglang.srt.speculative. 
     | 
| 
      
 26 
     | 
    
         
            +
            from sglang.srt.speculative.spec_info import SpecInput
         
     | 
| 
       32 
27 
     | 
    
         
             
            from sglang.srt.utils import (
         
     | 
| 
      
 28 
     | 
    
         
            +
                get_int_env_var,
         
     | 
| 
       33 
29 
     | 
    
         
             
                is_flashinfer_available,
         
     | 
| 
       34 
30 
     | 
    
         
             
                is_sm100_supported,
         
     | 
| 
       35 
31 
     | 
    
         
             
                next_power_of_2,
         
     | 
| 
         @@ -39,14 +35,21 @@ if TYPE_CHECKING: 
     | 
|
| 
       39 
35 
     | 
    
         
             
                from sglang.srt.layers.radix_attention import RadixAttention
         
     | 
| 
       40 
36 
     | 
    
         
             
                from sglang.srt.model_executor.model_runner import ModelRunner
         
     | 
| 
       41 
37 
     | 
    
         | 
| 
      
 38 
     | 
    
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 
      
 39 
     | 
    
         
            +
             
     | 
| 
      
 40 
     | 
    
         
            +
            if envs.SGLANG_ENABLE_TORCH_COMPILE.get():
         
     | 
| 
      
 41 
     | 
    
         
            +
                torch._logging.set_logs(dynamo=logging.ERROR)
         
     | 
| 
      
 42 
     | 
    
         
            +
                torch._dynamo.config.suppress_errors = True
         
     | 
| 
      
 43 
     | 
    
         
            +
             
     | 
| 
      
 44 
     | 
    
         
            +
             
     | 
| 
       42 
45 
     | 
    
         
             
            if is_flashinfer_available():
         
     | 
| 
       43 
46 
     | 
    
         
             
                from flashinfer import (
         
     | 
| 
       44 
47 
     | 
    
         
             
                    BatchDecodeWithPagedKVCacheWrapper,
         
     | 
| 
       45 
48 
     | 
    
         
             
                    BatchPrefillWithPagedKVCacheWrapper,
         
     | 
| 
       46 
49 
     | 
    
         
             
                    BatchPrefillWithRaggedKVCacheWrapper,
         
     | 
| 
      
 50 
     | 
    
         
            +
                    fast_decode_plan,
         
     | 
| 
       47 
51 
     | 
    
         
             
                )
         
     | 
| 
       48 
52 
     | 
    
         
             
                from flashinfer.cascade import merge_state
         
     | 
| 
       49 
     | 
    
         
            -
                from flashinfer.decode import _get_range_buf, get_seq_lens
         
     | 
| 
       50 
53 
     | 
    
         | 
| 
       51 
54 
     | 
    
         | 
| 
       52 
55 
     | 
    
         
             
            class WrapperDispatch(Enum):
         
     | 
| 
         @@ -54,6 +57,36 @@ class WrapperDispatch(Enum): 
     | 
|
| 
       54 
57 
     | 
    
         
             
                CROSS_ATTENTION = auto()
         
     | 
| 
       55 
58 
     | 
    
         | 
| 
       56 
59 
     | 
    
         | 
| 
      
 60 
     | 
    
         
            +
            @dataclass
         
     | 
| 
      
 61 
     | 
    
         
            +
            class MultiItemScoringParams:
         
     | 
| 
      
 62 
     | 
    
         
            +
                """Parameters for multi-item scoring in attention computation.
         
     | 
| 
      
 63 
     | 
    
         
            +
             
     | 
| 
      
 64 
     | 
    
         
            +
                Used when processing sequences with multiple items separated by delimiters,
         
     | 
| 
      
 65 
     | 
    
         
            +
                where each item needs specific attention patterns that respect item boundaries.
         
     | 
| 
      
 66 
     | 
    
         
            +
             
     | 
| 
      
 67 
     | 
    
         
            +
                Attributes:
         
     | 
| 
      
 68 
     | 
    
         
            +
                    prefix_len_ptr: A uint32 1D tensor indicating the prefix length of each prompt.
         
     | 
| 
      
 69 
     | 
    
         
            +
                                   The tensor size is equal to the batch size.
         
     | 
| 
      
 70 
     | 
    
         
            +
                    token_pos_in_items_ptr: A uint16 1D tensor indicating the token position of each item
         
     | 
| 
      
 71 
     | 
    
         
            +
                                           starting from 0 (delimiter) for each item. For batch size > 1,
         
     | 
| 
      
 72 
     | 
    
         
            +
                                           sequences are concatenated with zero padding to ensure same length.
         
     | 
| 
      
 73 
     | 
    
         
            +
                    token_pos_in_items_len: Zero padding length for token_pos_in_items_ptr to handle
         
     | 
| 
      
 74 
     | 
    
         
            +
                                           batch_size > 1 case. Defines the padded length for each sequence.
         
     | 
| 
      
 75 
     | 
    
         
            +
                    max_item_len_ptr: A uint16 tensor containing the max token length of all items
         
     | 
| 
      
 76 
     | 
    
         
            +
                                     for each prompt in the batch.
         
     | 
| 
      
 77 
     | 
    
         
            +
             
     | 
| 
      
 78 
     | 
    
         
            +
                """
         
     | 
| 
      
 79 
     | 
    
         
            +
             
     | 
| 
      
 80 
     | 
    
         
            +
                prefix_len_ptr: Optional[torch.Tensor] = None
         
     | 
| 
      
 81 
     | 
    
         
            +
                token_pos_in_items_ptr: Optional[torch.Tensor] = None
         
     | 
| 
      
 82 
     | 
    
         
            +
                token_pos_in_items_len: int = 0
         
     | 
| 
      
 83 
     | 
    
         
            +
                max_item_len_ptr: Optional[torch.Tensor] = None
         
     | 
| 
      
 84 
     | 
    
         
            +
             
     | 
| 
      
 85 
     | 
    
         
            +
                def is_enabled(self) -> bool:
         
     | 
| 
      
 86 
     | 
    
         
            +
                    """Check if multi-item scoring is enabled."""
         
     | 
| 
      
 87 
     | 
    
         
            +
                    return self.prefix_len_ptr is not None
         
     | 
| 
      
 88 
     | 
    
         
            +
             
     | 
| 
      
 89 
     | 
    
         
            +
             
     | 
| 
       57 
90 
     | 
    
         
             
            @dataclass
         
     | 
| 
       58 
91 
     | 
    
         
             
            class DecodeMetadata:
         
     | 
| 
       59 
92 
     | 
    
         
             
                decode_wrappers: List[BatchDecodeWithPagedKVCacheWrapper]
         
     | 
| 
         @@ -64,6 +97,7 @@ class PrefillMetadata: 
     | 
|
| 
       64 
97 
     | 
    
         
             
                prefill_wrappers: List[BatchPrefillWithPagedKVCacheWrapper]
         
     | 
| 
       65 
98 
     | 
    
         
             
                use_ragged: bool
         
     | 
| 
       66 
99 
     | 
    
         
             
                extend_no_prefix: bool
         
     | 
| 
      
 100 
     | 
    
         
            +
                multi_item_params: Optional[MultiItemScoringParams] = None
         
     | 
| 
       67 
101 
     | 
    
         | 
| 
       68 
102 
     | 
    
         | 
| 
       69 
103 
     | 
    
         
             
            # Reuse this workspace buffer across all flashinfer wrappers
         
     | 
| 
         @@ -83,9 +117,15 @@ class FlashInferAttnBackend(AttentionBackend): 
     | 
|
| 
       83 
117 
     | 
    
         
             
                    skip_prefill: bool = False,
         
     | 
| 
       84 
118 
     | 
    
         
             
                    kv_indptr_buf: Optional[torch.Tensor] = None,
         
     | 
| 
       85 
119 
     | 
    
         
             
                    kv_last_page_len_buf: Optional[torch.Tensor] = None,
         
     | 
| 
      
 120 
     | 
    
         
            +
                    init_new_workspace: bool = False,
         
     | 
| 
       86 
121 
     | 
    
         
             
                ):
         
     | 
| 
       87 
122 
     | 
    
         
             
                    super().__init__()
         
     | 
| 
       88 
123 
     | 
    
         | 
| 
      
 124 
     | 
    
         
            +
                    # Store multi-item scoring delimiter for efficient access
         
     | 
| 
      
 125 
     | 
    
         
            +
                    self.multi_item_scoring_delimiter = (
         
     | 
| 
      
 126 
     | 
    
         
            +
                        model_runner.server_args.multi_item_scoring_delimiter
         
     | 
| 
      
 127 
     | 
    
         
            +
                    )
         
     | 
| 
      
 128 
     | 
    
         
            +
             
     | 
| 
       89 
129 
     | 
    
         
             
                    # Parse constants
         
     | 
| 
       90 
130 
     | 
    
         
             
                    self.decode_use_tensor_cores = should_use_tensor_core(
         
     | 
| 
       91 
131 
     | 
    
         
             
                        kv_cache_dtype=model_runner.kv_cache_dtype,
         
     | 
| 
         @@ -120,18 +160,46 @@ class FlashInferAttnBackend(AttentionBackend): 
     | 
|
| 
       120 
160 
     | 
    
         
             
                        or "Qwen3ForCausalLM" in model_runner.model_config.hf_config.architectures
         
     | 
| 
       121 
161 
     | 
    
         
             
                        or "MiMoForCausalLM" in model_runner.model_config.hf_config.architectures
         
     | 
| 
       122 
162 
     | 
    
         
             
                    ):
         
     | 
| 
       123 
     | 
    
         
            -
                         
     | 
| 
      
 163 
     | 
    
         
            +
                        envs.SGLANG_FLASHINFER_WORKSPACE_SIZE.set(512 * 1024 * 1024)
         
     | 
| 
      
 164 
     | 
    
         
            +
             
     | 
| 
      
 165 
     | 
    
         
            +
                    # When deterministic inference is enabled, tensor cores should be used for decode
         
     | 
| 
      
 166 
     | 
    
         
            +
                    # Also set split tile sizes for prefill and decode from environment variables, and disable kv split for cuda graph
         
     | 
| 
      
 167 
     | 
    
         
            +
                    # More information can be found here: https://github.com/flashinfer-ai/flashinfer/pull/1675
         
     | 
| 
      
 168 
     | 
    
         
            +
                    self.enable_deterministic = (
         
     | 
| 
      
 169 
     | 
    
         
            +
                        model_runner.server_args.enable_deterministic_inference
         
     | 
| 
      
 170 
     | 
    
         
            +
                    )
         
     | 
| 
      
 171 
     | 
    
         
            +
                    self.prefill_split_tile_size = None
         
     | 
| 
      
 172 
     | 
    
         
            +
                    self.decode_split_tile_size = None
         
     | 
| 
      
 173 
     | 
    
         
            +
                    self.disable_cuda_graph_kv_split = False
         
     | 
| 
      
 174 
     | 
    
         
            +
                    if self.enable_deterministic:
         
     | 
| 
      
 175 
     | 
    
         
            +
                        self.decode_use_tensor_cores = True
         
     | 
| 
      
 176 
     | 
    
         
            +
                        self.prefill_split_tile_size = get_int_env_var(
         
     | 
| 
      
 177 
     | 
    
         
            +
                            "SGLANG_FLASHINFER_PREFILL_SPLIT_TILE_SIZE", 4096
         
     | 
| 
      
 178 
     | 
    
         
            +
                        )
         
     | 
| 
      
 179 
     | 
    
         
            +
                        self.decode_split_tile_size = get_int_env_var(
         
     | 
| 
      
 180 
     | 
    
         
            +
                            "SGLANG_FLASHINFER_DECODE_SPLIT_TILE_SIZE", 2048
         
     | 
| 
      
 181 
     | 
    
         
            +
                        )
         
     | 
| 
      
 182 
     | 
    
         
            +
                        self.disable_cuda_graph_kv_split = True
         
     | 
| 
      
 183 
     | 
    
         
            +
                        envs.SGLANG_FLASHINFER_WORKSPACE_SIZE.set(2048 * 1024 * 1024)
         
     | 
| 
       124 
184 
     | 
    
         | 
| 
       125 
185 
     | 
    
         
             
                    # Allocate buffers
         
     | 
| 
       126 
186 
     | 
    
         
             
                    global global_workspace_buffer
         
     | 
| 
       127 
187 
     | 
    
         
             
                    if global_workspace_buffer is None:
         
     | 
| 
       128 
188 
     | 
    
         
             
                        # different from flashinfer zero_init_global_workspace_buffer
         
     | 
| 
      
 189 
     | 
    
         
            +
                        global_workspace_size = envs.SGLANG_FLASHINFER_WORKSPACE_SIZE.get()
         
     | 
| 
       129 
190 
     | 
    
         
             
                        global_workspace_buffer = torch.empty(
         
     | 
| 
       130 
     | 
    
         
            -
                             
     | 
| 
      
 191 
     | 
    
         
            +
                            global_workspace_size,
         
     | 
| 
      
 192 
     | 
    
         
            +
                            dtype=torch.uint8,
         
     | 
| 
      
 193 
     | 
    
         
            +
                            device=model_runner.device,
         
     | 
| 
      
 194 
     | 
    
         
            +
                        )
         
     | 
| 
      
 195 
     | 
    
         
            +
                    if init_new_workspace:
         
     | 
| 
      
 196 
     | 
    
         
            +
                        self.workspace_buffer = torch.empty(
         
     | 
| 
      
 197 
     | 
    
         
            +
                            envs.SGLANG_FLASHINFER_WORKSPACE_SIZE.get(),
         
     | 
| 
       131 
198 
     | 
    
         
             
                            dtype=torch.uint8,
         
     | 
| 
       132 
199 
     | 
    
         
             
                            device=model_runner.device,
         
     | 
| 
       133 
200 
     | 
    
         
             
                        )
         
     | 
| 
       134 
     | 
    
         
            -
                     
     | 
| 
      
 201 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 202 
     | 
    
         
            +
                        self.workspace_buffer = global_workspace_buffer
         
     | 
| 
       135 
203 
     | 
    
         
             
                    max_bs = model_runner.req_to_token_pool.size
         
     | 
| 
       136 
204 
     | 
    
         
             
                    if kv_indptr_buf is None:
         
     | 
| 
       137 
205 
     | 
    
         
             
                        self.kv_indptr = [
         
     | 
| 
         @@ -204,10 +272,133 @@ class FlashInferAttnBackend(AttentionBackend): 
     | 
|
| 
       204 
272 
     | 
    
         | 
| 
       205 
273 
     | 
    
         
             
                    # Other metadata
         
     | 
| 
       206 
274 
     | 
    
         
             
                    self.forward_metadata: Union[PrefillMetadata, DecodeMetadata] = None
         
     | 
| 
      
 275 
     | 
    
         
            +
             
     | 
| 
       207 
276 
     | 
    
         
             
                    self.decode_cuda_graph_metadata = {}
         
     | 
| 
       208 
277 
     | 
    
         
             
                    self.prefill_cuda_graph_metadata = {}  # For verify
         
     | 
| 
       209 
278 
     | 
    
         
             
                    self.draft_extend_cuda_graph_metadata = {}  # For draft extend
         
     | 
| 
       210 
279 
     | 
    
         | 
| 
      
 280 
     | 
    
         
            +
                def _process_multi_item_scoring(
         
     | 
| 
      
 281 
     | 
    
         
            +
                    self, forward_batch: ForwardBatch
         
     | 
| 
      
 282 
     | 
    
         
            +
                ) -> MultiItemScoringParams:
         
     | 
| 
      
 283 
     | 
    
         
            +
                    """Process multi-item scoring tensors for FlashInfer attention.
         
     | 
| 
      
 284 
     | 
    
         
            +
             
     | 
| 
      
 285 
     | 
    
         
            +
                    This method handles sequences containing multiple "items" separated by delimiter tokens,
         
     | 
| 
      
 286 
     | 
    
         
            +
                    where each item needs specific attention patterns that respect item boundaries.
         
     | 
| 
      
 287 
     | 
    
         
            +
             
     | 
| 
      
 288 
     | 
    
         
            +
                    The method produces four key tensors for FlashInfer:
         
     | 
| 
      
 289 
     | 
    
         
            +
                    - prefix_len_ptr: uint32 tensor with prefix length for each prompt in batch
         
     | 
| 
      
 290 
     | 
    
         
            +
                    - token_pos_in_items_ptr: uint16 tensor with token positions starting from 0 at delimiters
         
     | 
| 
      
 291 
     | 
    
         
            +
                    - token_pos_in_items_len: padding length for batch processing
         
     | 
| 
      
 292 
     | 
    
         
            +
                    - max_item_len_ptr: uint16 tensor with max item length for each prompt
         
     | 
| 
      
 293 
     | 
    
         
            +
             
     | 
| 
      
 294 
     | 
    
         
            +
                    Args:
         
     | 
| 
      
 295 
     | 
    
         
            +
                        forward_batch: The forward batch containing input sequences and delimiter info
         
     | 
| 
      
 296 
     | 
    
         
            +
             
     | 
| 
      
 297 
     | 
    
         
            +
                    Returns:
         
     | 
| 
      
 298 
     | 
    
         
            +
                        MultiItemScoringParams: The processed multi-item scoring parameters
         
     | 
| 
      
 299 
     | 
    
         
            +
             
     | 
| 
      
 300 
     | 
    
         
            +
                    Examples:
         
     | 
| 
      
 301 
     | 
    
         
            +
                        Following FlashInfer definition: for 3 items of length 3, 2, 4 respectively:
         
     | 
| 
      
 302 
     | 
    
         
            +
                        token_pos_in_items_ptr = [0, 1, 2, 3, 0, 1, 2, 0, 1, 2, 3, 4, 0]
         
     | 
| 
      
 303 
     | 
    
         
            +
             
     | 
| 
      
 304 
     | 
    
         
            +
                        Case 1: Single sequence
         
     | 
| 
      
 305 
     | 
    
         
            +
                        Text: "What is the capital of France? <delim> London <delim> Paris <delim> Berlin <delim>"
         
     | 
| 
      
 306 
     | 
    
         
            +
                        Tokens: [What, is, the, capital, of, France, ?, <delim>, London, <delim>, Paris, <delim>, Berlin, <delim>]
         
     | 
| 
      
 307 
     | 
    
         
            +
                        Indices: [ 0,   1,  2,   3,      4,  5,     6,   7,     8,      9,     10,    11,    12,     13]
         
     | 
| 
      
 308 
     | 
    
         
            +
                        - prefix_len_ptr: [7] (query length before first delimiter)
         
     | 
| 
      
 309 
     | 
    
         
            +
                        - token_pos_in_items_ptr: [0, 1, 0, 1, 0, 1, 0] (delim=0, London=1, delim=0, Paris=1, delim=0, Berlin=1, delim=0)
         
     | 
| 
      
 310 
     | 
    
         
            +
                        - token_pos_in_items_len: 7 (actual length)
         
     | 
| 
      
 311 
     | 
    
         
            +
                        - max_item_len_ptr: [1] (max item length is 1 token - all options are single tokens)
         
     | 
| 
      
 312 
     | 
    
         
            +
             
     | 
| 
      
 313 
     | 
    
         
            +
                        Case 2: Batch processing (batch_size=2)
         
     | 
| 
      
 314 
     | 
    
         
            +
                        Sequence 1: 2 items of length 2, 1 → [0, 1, 2, 0, 1, 0] (6 elements)
         
     | 
| 
      
 315 
     | 
    
         
            +
                        Sequence 2: 3 items of length 1, 3, 2 → [0, 1, 0, 1, 2, 3, 0, 1, 2, 0] (10 elements)
         
     | 
| 
      
 316 
     | 
    
         
            +
                        After padding both to length 10:
         
     | 
| 
      
 317 
     | 
    
         
            +
                        - token_pos_in_items_ptr: [0, 1, 2, 0, 1, 0, 0, 0, 0, 0,    0, 1, 0, 1, 2, 3, 0, 1, 2, 0]
         
     | 
| 
      
 318 
     | 
    
         
            +
                        - token_pos_in_items_len: 10 (padded length for batch processing)
         
     | 
| 
      
 319 
     | 
    
         
            +
                        - max_item_len_ptr: [2, 3] (max lengths per sequence)
         
     | 
| 
      
 320 
     | 
    
         
            +
                    """
         
     | 
| 
      
 321 
     | 
    
         
            +
             
     | 
| 
      
 322 
     | 
    
         
            +
                    delimiter = self.multi_item_scoring_delimiter
         
     | 
| 
      
 323 
     | 
    
         
            +
                    if delimiter is None or forward_batch.forward_mode == ForwardMode.DECODE:
         
     | 
| 
      
 324 
     | 
    
         
            +
                        return MultiItemScoringParams()
         
     | 
| 
      
 325 
     | 
    
         
            +
             
     | 
| 
      
 326 
     | 
    
         
            +
                    delimiter_mask = forward_batch.input_ids == delimiter
         
     | 
| 
      
 327 
     | 
    
         
            +
                    prefix_cache_lens = getattr(forward_batch, "extend_prefix_lens", None)
         
     | 
| 
      
 328 
     | 
    
         
            +
                    extend_seq_lens = getattr(forward_batch, "extend_seq_lens", None)
         
     | 
| 
      
 329 
     | 
    
         
            +
                    prefix_len_ptr, token_pos_in_items_ptr = [], []
         
     | 
| 
      
 330 
     | 
    
         
            +
                    token_pos_in_items_len = 0
         
     | 
| 
      
 331 
     | 
    
         
            +
             
     | 
| 
      
 332 
     | 
    
         
            +
                    # If no extend_seq_lens, treat whole batch as one sequence
         
     | 
| 
      
 333 
     | 
    
         
            +
                    if extend_seq_lens is None or len(extend_seq_lens) <= 1:
         
     | 
| 
      
 334 
     | 
    
         
            +
                        extend_seq_lens = [forward_batch.input_ids.size(0)]
         
     | 
| 
      
 335 
     | 
    
         
            +
             
     | 
| 
      
 336 
     | 
    
         
            +
                    seq_start = 0
         
     | 
| 
      
 337 
     | 
    
         
            +
                    for i, seq_len in enumerate(extend_seq_lens):
         
     | 
| 
      
 338 
     | 
    
         
            +
                        seq_end = seq_start + seq_len
         
     | 
| 
      
 339 
     | 
    
         
            +
                        mask = delimiter_mask[seq_start:seq_end]
         
     | 
| 
      
 340 
     | 
    
         
            +
                        pos = forward_batch.positions[seq_start:seq_end]
         
     | 
| 
      
 341 
     | 
    
         
            +
                        delimiter_indices = torch.nonzero(mask, as_tuple=True)[0]
         
     | 
| 
      
 342 
     | 
    
         
            +
             
     | 
| 
      
 343 
     | 
    
         
            +
                        if len(delimiter_indices) > 0:
         
     | 
| 
      
 344 
     | 
    
         
            +
                            first_delim = delimiter_indices[0]
         
     | 
| 
      
 345 
     | 
    
         
            +
                            # Prefix length: store as scalar
         
     | 
| 
      
 346 
     | 
    
         
            +
                            prefix_len = first_delim + (
         
     | 
| 
      
 347 
     | 
    
         
            +
                                prefix_cache_lens[i] if prefix_cache_lens is not None else 0
         
     | 
| 
      
 348 
     | 
    
         
            +
                            )
         
     | 
| 
      
 349 
     | 
    
         
            +
                            prefix_len_ptr.append(
         
     | 
| 
      
 350 
     | 
    
         
            +
                                prefix_len.item() if torch.is_tensor(prefix_len) else prefix_len
         
     | 
| 
      
 351 
     | 
    
         
            +
                            )
         
     | 
| 
      
 352 
     | 
    
         
            +
             
     | 
| 
      
 353 
     | 
    
         
            +
                            # Compute relative positions within items after delimiters
         
     | 
| 
      
 354 
     | 
    
         
            +
                            diff = pos[first_delim:] - torch.cummax(mask[first_delim:], 0)[1]
         
     | 
| 
      
 355 
     | 
    
         
            +
                            token_pos = (diff - pos[first_delim]).to(torch.uint16)
         
     | 
| 
      
 356 
     | 
    
         
            +
                            token_pos_in_items_ptr.append(token_pos)
         
     | 
| 
      
 357 
     | 
    
         
            +
             
     | 
| 
      
 358 
     | 
    
         
            +
                            # Update forward_batch positions in-place
         
     | 
| 
      
 359 
     | 
    
         
            +
                            pos[first_delim:] = diff - 1
         
     | 
| 
      
 360 
     | 
    
         
            +
                            forward_batch.positions[seq_start:seq_end] = pos
         
     | 
| 
      
 361 
     | 
    
         
            +
             
     | 
| 
      
 362 
     | 
    
         
            +
                        seq_start = seq_end
         
     | 
| 
      
 363 
     | 
    
         
            +
             
     | 
| 
      
 364 
     | 
    
         
            +
                    # Pad token_pos_in_items_ptr for batch processing
         
     | 
| 
      
 365 
     | 
    
         
            +
                    if token_pos_in_items_ptr:
         
     | 
| 
      
 366 
     | 
    
         
            +
                        token_pos_in_items_len = max(t.numel() for t in token_pos_in_items_ptr)
         
     | 
| 
      
 367 
     | 
    
         
            +
                        device = forward_batch.input_ids.device
         
     | 
| 
      
 368 
     | 
    
         
            +
                        token_pos_in_items_ptr = [
         
     | 
| 
      
 369 
     | 
    
         
            +
                            torch.cat(
         
     | 
| 
      
 370 
     | 
    
         
            +
                                [
         
     | 
| 
      
 371 
     | 
    
         
            +
                                    t,
         
     | 
| 
      
 372 
     | 
    
         
            +
                                    torch.zeros(
         
     | 
| 
      
 373 
     | 
    
         
            +
                                        token_pos_in_items_len - t.numel(),
         
     | 
| 
      
 374 
     | 
    
         
            +
                                        dtype=torch.uint16,
         
     | 
| 
      
 375 
     | 
    
         
            +
                                        device=device,
         
     | 
| 
      
 376 
     | 
    
         
            +
                                    ),
         
     | 
| 
      
 377 
     | 
    
         
            +
                                ]
         
     | 
| 
      
 378 
     | 
    
         
            +
                            )
         
     | 
| 
      
 379 
     | 
    
         
            +
                            for t in token_pos_in_items_ptr
         
     | 
| 
      
 380 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 381 
     | 
    
         
            +
             
     | 
| 
      
 382 
     | 
    
         
            +
                    if not prefix_len_ptr or not token_pos_in_items_ptr:
         
     | 
| 
      
 383 
     | 
    
         
            +
                        return MultiItemScoringParams()
         
     | 
| 
      
 384 
     | 
    
         
            +
             
     | 
| 
      
 385 
     | 
    
         
            +
                    # Build final params
         
     | 
| 
      
 386 
     | 
    
         
            +
                    device = forward_batch.input_ids.device
         
     | 
| 
      
 387 
     | 
    
         
            +
                    return MultiItemScoringParams(
         
     | 
| 
      
 388 
     | 
    
         
            +
                        prefix_len_ptr=torch.tensor(
         
     | 
| 
      
 389 
     | 
    
         
            +
                            prefix_len_ptr, dtype=torch.uint32, device=device
         
     | 
| 
      
 390 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 391 
     | 
    
         
            +
                        token_pos_in_items_ptr=torch.cat(token_pos_in_items_ptr, dim=0),
         
     | 
| 
      
 392 
     | 
    
         
            +
                        token_pos_in_items_len=token_pos_in_items_len & 0xFFFFFFFF,
         
     | 
| 
      
 393 
     | 
    
         
            +
                        max_item_len_ptr=torch.stack(
         
     | 
| 
      
 394 
     | 
    
         
            +
                            [
         
     | 
| 
      
 395 
     | 
    
         
            +
                                t.to(torch.int32).max().to(torch.uint16)
         
     | 
| 
      
 396 
     | 
    
         
            +
                                for t in token_pos_in_items_ptr
         
     | 
| 
      
 397 
     | 
    
         
            +
                            ],
         
     | 
| 
      
 398 
     | 
    
         
            +
                            dim=0,
         
     | 
| 
      
 399 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 400 
     | 
    
         
            +
                    )
         
     | 
| 
      
 401 
     | 
    
         
            +
             
     | 
| 
       211 
402 
     | 
    
         
             
                def init_forward_metadata(self, forward_batch: ForwardBatch):
         
     | 
| 
       212 
403 
     | 
    
         
             
                    if forward_batch.forward_mode.is_decode_or_idle():
         
     | 
| 
       213 
404 
     | 
    
         
             
                        self.indices_updater_decode.update(
         
     | 
| 
         @@ -218,6 +409,8 @@ class FlashInferAttnBackend(AttentionBackend): 
     | 
|
| 
       218 
409 
     | 
    
         
             
                            decode_wrappers=self.decode_wrappers,
         
     | 
| 
       219 
410 
     | 
    
         
             
                            encoder_lens=forward_batch.encoder_lens,
         
     | 
| 
       220 
411 
     | 
    
         
             
                            spec_info=forward_batch.spec_info,
         
     | 
| 
      
 412 
     | 
    
         
            +
                            fixed_split_size=self.decode_split_tile_size,
         
     | 
| 
      
 413 
     | 
    
         
            +
                            disable_split_kv=False,
         
     | 
| 
       221 
414 
     | 
    
         
             
                        )
         
     | 
| 
       222 
415 
     | 
    
         
             
                        self.forward_metadata = DecodeMetadata(self.decode_wrappers)
         
     | 
| 
       223 
416 
     | 
    
         
             
                    elif forward_batch.forward_mode.is_draft_extend():
         
     | 
| 
         @@ -253,13 +446,26 @@ class FlashInferAttnBackend(AttentionBackend): 
     | 
|
| 
       253 
446 
     | 
    
         
             
                    else:
         
     | 
| 
       254 
447 
     | 
    
         
             
                        prefix_lens = forward_batch.extend_prefix_lens
         
     | 
| 
       255 
448 
     | 
    
         | 
| 
       256 
     | 
    
         
            -
                         
     | 
| 
      
 449 
     | 
    
         
            +
                        # Disable ragged wrapper and ensure prefix handling for multimodal and multi-item scoring
         
     | 
| 
      
 450 
     | 
    
         
            +
                        if self.is_multimodal or self.multi_item_scoring_delimiter is not None:
         
     | 
| 
      
 451 
     | 
    
         
            +
                            # use_ragged = False: Multi-item scoring requires the paged wrapper because:
         
     | 
| 
      
 452 
     | 
    
         
            +
                            # 1. Ragged wrapper doesn't support the specialized multi-item parameters
         
     | 
| 
      
 453 
     | 
    
         
            +
                            #    (prefix_len_ptr, token_pos_in_items_ptr, etc.)
         
     | 
| 
      
 454 
     | 
    
         
            +
                            # 2. Paged wrapper provides better control over attention masking needed
         
     | 
| 
      
 455 
     | 
    
         
            +
                            #    for respecting item boundaries in multi-item sequences
         
     | 
| 
      
 456 
     | 
    
         
            +
                            # 3. Custom masking logic conflicts with ragged wrapper's assumptions
         
     | 
| 
       257 
457 
     | 
    
         
             
                            use_ragged = False
         
     | 
| 
       258 
458 
     | 
    
         
             
                            extend_no_prefix = False
         
     | 
| 
       259 
459 
     | 
    
         
             
                        else:
         
     | 
| 
       260 
     | 
    
         
            -
                            use_ragged =  
     | 
| 
      
 460 
     | 
    
         
            +
                            use_ragged = not self.enable_deterministic
         
     | 
| 
       261 
461 
     | 
    
         
             
                            extend_no_prefix = not any(forward_batch.extend_prefix_lens_cpu)
         
     | 
| 
       262 
462 
     | 
    
         | 
| 
      
 463 
     | 
    
         
            +
                        # Process multi-item scoring in attention backend instead of ForwardBatch
         
     | 
| 
      
 464 
     | 
    
         
            +
                        multi_item_params = MultiItemScoringParams()
         
     | 
| 
      
 465 
     | 
    
         
            +
                        if self.multi_item_scoring_delimiter is not None:
         
     | 
| 
      
 466 
     | 
    
         
            +
                            # Use new backend-specific implementation
         
     | 
| 
      
 467 
     | 
    
         
            +
                            multi_item_params = self._process_multi_item_scoring(forward_batch)
         
     | 
| 
      
 468 
     | 
    
         
            +
             
     | 
| 
       263 
469 
     | 
    
         
             
                        self.indices_updater_prefill.update(
         
     | 
| 
       264 
470 
     | 
    
         
             
                            forward_batch.req_pool_indices,
         
     | 
| 
       265 
471 
     | 
    
         
             
                            forward_batch.seq_lens,
         
     | 
| 
         @@ -270,9 +476,14 @@ class FlashInferAttnBackend(AttentionBackend): 
     | 
|
| 
       270 
476 
     | 
    
         
             
                            use_ragged=use_ragged,
         
     | 
| 
       271 
477 
     | 
    
         
             
                            encoder_lens=forward_batch.encoder_lens,
         
     | 
| 
       272 
478 
     | 
    
         
             
                            spec_info=None,
         
     | 
| 
      
 479 
     | 
    
         
            +
                            fixed_split_size=self.prefill_split_tile_size,
         
     | 
| 
      
 480 
     | 
    
         
            +
                            multi_item_params=multi_item_params,
         
     | 
| 
       273 
481 
     | 
    
         
             
                        )
         
     | 
| 
       274 
482 
     | 
    
         
             
                        self.forward_metadata = PrefillMetadata(
         
     | 
| 
       275 
     | 
    
         
            -
                            self.prefill_wrappers_paged, 
     | 
| 
      
 483 
     | 
    
         
            +
                            self.prefill_wrappers_paged,
         
     | 
| 
      
 484 
     | 
    
         
            +
                            use_ragged,
         
     | 
| 
      
 485 
     | 
    
         
            +
                            extend_no_prefix,
         
     | 
| 
      
 486 
     | 
    
         
            +
                            multi_item_params,
         
     | 
| 
       276 
487 
     | 
    
         
             
                        )
         
     | 
| 
       277 
488 
     | 
    
         | 
| 
       278 
489 
     | 
    
         
             
                def init_cuda_graph_state(
         
     | 
| 
         @@ -317,7 +528,7 @@ class FlashInferAttnBackend(AttentionBackend): 
     | 
|
| 
       317 
528 
     | 
    
         
             
                    seq_lens: torch.Tensor,
         
     | 
| 
       318 
529 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       319 
530 
     | 
    
         
             
                    forward_mode: ForwardMode,
         
     | 
| 
       320 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 531 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
       321 
532 
     | 
    
         
             
                ):
         
     | 
| 
       322 
533 
     | 
    
         
             
                    if forward_mode.is_decode_or_idle():
         
     | 
| 
       323 
534 
     | 
    
         
             
                        decode_wrappers = []
         
     | 
| 
         @@ -344,6 +555,8 @@ class FlashInferAttnBackend(AttentionBackend): 
     | 
|
| 
       344 
555 
     | 
    
         
             
                            decode_wrappers=decode_wrappers,
         
     | 
| 
       345 
556 
     | 
    
         
             
                            encoder_lens=encoder_lens,
         
     | 
| 
       346 
557 
     | 
    
         
             
                            spec_info=spec_info,
         
     | 
| 
      
 558 
     | 
    
         
            +
                            fixed_split_size=None,
         
     | 
| 
      
 559 
     | 
    
         
            +
                            disable_split_kv=self.disable_cuda_graph_kv_split,
         
     | 
| 
       347 
560 
     | 
    
         
             
                        )
         
     | 
| 
       348 
561 
     | 
    
         
             
                        self.decode_cuda_graph_metadata[bs] = decode_wrappers
         
     | 
| 
       349 
562 
     | 
    
         
             
                        self.forward_metadata = DecodeMetadata(decode_wrappers)
         
     | 
| 
         @@ -422,7 +635,7 @@ class FlashInferAttnBackend(AttentionBackend): 
     | 
|
| 
       422 
635 
     | 
    
         
             
                    seq_lens_sum: int,
         
     | 
| 
       423 
636 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       424 
637 
     | 
    
         
             
                    forward_mode: ForwardMode,
         
     | 
| 
       425 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 638 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
       426 
639 
     | 
    
         
             
                    seq_lens_cpu: Optional[torch.Tensor],
         
     | 
| 
       427 
640 
     | 
    
         
             
                ):
         
     | 
| 
       428 
641 
     | 
    
         
             
                    if forward_mode.is_decode_or_idle():
         
     | 
| 
         @@ -434,6 +647,8 @@ class FlashInferAttnBackend(AttentionBackend): 
     | 
|
| 
       434 
647 
     | 
    
         
             
                            decode_wrappers=self.decode_cuda_graph_metadata[bs],
         
     | 
| 
       435 
648 
     | 
    
         
             
                            encoder_lens=encoder_lens[:bs] if encoder_lens is not None else None,
         
     | 
| 
       436 
649 
     | 
    
         
             
                            spec_info=spec_info,
         
     | 
| 
      
 650 
     | 
    
         
            +
                            fixed_split_size=None,
         
     | 
| 
      
 651 
     | 
    
         
            +
                            disable_split_kv=self.disable_cuda_graph_kv_split,
         
     | 
| 
       437 
652 
     | 
    
         
             
                        )
         
     | 
| 
       438 
653 
     | 
    
         
             
                    elif forward_mode.is_target_verify():
         
     | 
| 
       439 
654 
     | 
    
         
             
                        self.indices_updater_prefill.update(
         
     | 
| 
         @@ -499,7 +714,20 @@ class FlashInferAttnBackend(AttentionBackend): 
     | 
|
| 
       499 
714 
     | 
    
         
             
                            forward_batch.token_to_kv_pool.get_kv_buffer(layer.layer_id),
         
     | 
| 
       500 
715 
     | 
    
         
             
                            causal=not layer.is_cross_attention,
         
     | 
| 
       501 
716 
     | 
    
         
             
                            sm_scale=layer.scaling,
         
     | 
| 
       502 
     | 
    
         
            -
                             
     | 
| 
      
 717 
     | 
    
         
            +
                            # Disable sliding window attention for multi-item scoring:
         
     | 
| 
      
 718 
     | 
    
         
            +
                            # - Sliding window could cut across item boundaries, breaking semantic coherence
         
     | 
| 
      
 719 
     | 
    
         
            +
                            # - Multi-item sequences need full attention to properly handle delimiter tokens
         
     | 
| 
      
 720 
     | 
    
         
            +
                            # - Specialized multi-item parameters (prefix_len_ptr, token_pos_in_items_ptr)
         
     | 
| 
      
 721 
     | 
    
         
            +
                            #   provide more precise attention control than simple sliding windows
         
     | 
| 
      
 722 
     | 
    
         
            +
                            # - Item-aware masking takes precedence over window-based masking
         
     | 
| 
      
 723 
     | 
    
         
            +
                            window_left=(
         
     | 
| 
      
 724 
     | 
    
         
            +
                                layer.sliding_window_size
         
     | 
| 
      
 725 
     | 
    
         
            +
                                if not (
         
     | 
| 
      
 726 
     | 
    
         
            +
                                    self.forward_metadata.multi_item_params
         
     | 
| 
      
 727 
     | 
    
         
            +
                                    and self.forward_metadata.multi_item_params.is_enabled()
         
     | 
| 
      
 728 
     | 
    
         
            +
                                )
         
     | 
| 
      
 729 
     | 
    
         
            +
                                else -1
         
     | 
| 
      
 730 
     | 
    
         
            +
                            ),
         
     | 
| 
       503 
731 
     | 
    
         
             
                            logits_soft_cap=logits_soft_cap,
         
     | 
| 
       504 
732 
     | 
    
         
             
                            # Must use _float to avoid device-to-host copy that breaks cuda graph capture.
         
     | 
| 
       505 
733 
     | 
    
         
             
                            k_scale=layer.k_scale_float,
         
     | 
| 
         @@ -507,9 +735,13 @@ class FlashInferAttnBackend(AttentionBackend): 
     | 
|
| 
       507 
735 
     | 
    
         
             
                        )
         
     | 
| 
       508 
736 
     | 
    
         
             
                    else:
         
     | 
| 
       509 
737 
     | 
    
         
             
                        causal = True
         
     | 
| 
       510 
     | 
    
         
            -
                        if  
     | 
| 
       511 
     | 
    
         
            -
                             
     | 
| 
      
 738 
     | 
    
         
            +
                        if (
         
     | 
| 
      
 739 
     | 
    
         
            +
                            layer.is_cross_attention
         
     | 
| 
      
 740 
     | 
    
         
            +
                            or layer.attn_type == AttentionType.ENCODER_ONLY
         
     | 
| 
      
 741 
     | 
    
         
            +
                        ):
         
     | 
| 
       512 
742 
     | 
    
         
             
                            causal = False
         
     | 
| 
      
 743 
     | 
    
         
            +
                        if save_kv_cache and layer.attn_type == AttentionType.ENCODER_ONLY:
         
     | 
| 
      
 744 
     | 
    
         
            +
                            save_kv_cache = False
         
     | 
| 
       513 
745 
     | 
    
         | 
| 
       514 
746 
     | 
    
         
             
                        if self.forward_metadata.extend_no_prefix:
         
     | 
| 
       515 
747 
     | 
    
         
             
                            # NOTE: FlashInfer currently has limitations with head_dim = 32 or other dimensions
         
     | 
| 
         @@ -638,7 +870,9 @@ class FlashInferIndicesUpdaterDecode: 
     | 
|
| 
       638 
870 
     | 
    
         
             
                    seq_lens_sum: int,
         
     | 
| 
       639 
871 
     | 
    
         
             
                    decode_wrappers: List[BatchDecodeWithPagedKVCacheWrapper],
         
     | 
| 
       640 
872 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       641 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 873 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
      
 874 
     | 
    
         
            +
                    fixed_split_size: Optional[int] = None,
         
     | 
| 
      
 875 
     | 
    
         
            +
                    disable_split_kv: Optional[bool] = None,
         
     | 
| 
       642 
876 
     | 
    
         
             
                ):
         
     | 
| 
       643 
877 
     | 
    
         
             
                    # Keep the signature for type checking. It will be assigned during runtime.
         
     | 
| 
       644 
878 
     | 
    
         
             
                    raise NotImplementedError()
         
     | 
| 
         @@ -651,7 +885,9 @@ class FlashInferIndicesUpdaterDecode: 
     | 
|
| 
       651 
885 
     | 
    
         
             
                    seq_lens_sum: int,
         
     | 
| 
       652 
886 
     | 
    
         
             
                    decode_wrappers: List[BatchDecodeWithPagedKVCacheWrapper],
         
     | 
| 
       653 
887 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       654 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 888 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
      
 889 
     | 
    
         
            +
                    fixed_split_size: Optional[int] = None,
         
     | 
| 
      
 890 
     | 
    
         
            +
                    disable_split_kv: Optional[bool] = None,
         
     | 
| 
       655 
891 
     | 
    
         
             
                ):
         
     | 
| 
       656 
892 
     | 
    
         
             
                    decode_wrappers = decode_wrappers or self.decode_wrappers
         
     | 
| 
       657 
893 
     | 
    
         
             
                    self.call_begin_forward(
         
     | 
| 
         @@ -663,6 +899,8 @@ class FlashInferIndicesUpdaterDecode: 
     | 
|
| 
       663 
899 
     | 
    
         
             
                        None,
         
     | 
| 
       664 
900 
     | 
    
         
             
                        spec_info,
         
     | 
| 
       665 
901 
     | 
    
         
             
                        seq_lens_cpu,
         
     | 
| 
      
 902 
     | 
    
         
            +
                        fixed_split_size=fixed_split_size,
         
     | 
| 
      
 903 
     | 
    
         
            +
                        disable_split_kv=disable_split_kv,
         
     | 
| 
       666 
904 
     | 
    
         
             
                    )
         
     | 
| 
       667 
905 
     | 
    
         | 
| 
       668 
906 
     | 
    
         
             
                def update_sliding_window(
         
     | 
| 
         @@ -673,7 +911,9 @@ class FlashInferIndicesUpdaterDecode: 
     | 
|
| 
       673 
911 
     | 
    
         
             
                    seq_lens_sum: int,
         
     | 
| 
       674 
912 
     | 
    
         
             
                    decode_wrappers: List[BatchDecodeWithPagedKVCacheWrapper],
         
     | 
| 
       675 
913 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       676 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 914 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
      
 915 
     | 
    
         
            +
                    fixed_split_size: Optional[int] = None,
         
     | 
| 
      
 916 
     | 
    
         
            +
                    disable_split_kv: Optional[bool] = None,
         
     | 
| 
       677 
917 
     | 
    
         
             
                ):
         
     | 
| 
       678 
918 
     | 
    
         
             
                    assert self.sliding_window_size is not None
         
     | 
| 
       679 
919 
     | 
    
         
             
                    for wrapper_id in range(2):
         
     | 
| 
         @@ -721,7 +961,9 @@ class FlashInferIndicesUpdaterDecode: 
     | 
|
| 
       721 
961 
     | 
    
         
             
                    seq_lens_sum: int,
         
     | 
| 
       722 
962 
     | 
    
         
             
                    decode_wrappers: List[BatchDecodeWithPagedKVCacheWrapper],
         
     | 
| 
       723 
963 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       724 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 964 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
      
 965 
     | 
    
         
            +
                    fixed_split_size: Optional[int] = None,
         
     | 
| 
      
 966 
     | 
    
         
            +
                    disable_split_kv: Optional[bool] = None,
         
     | 
| 
       725 
967 
     | 
    
         
             
                ):
         
     | 
| 
       726 
968 
     | 
    
         
             
                    for wrapper_id in range(2):
         
     | 
| 
       727 
969 
     | 
    
         
             
                        if wrapper_id == 0:
         
     | 
| 
         @@ -753,9 +995,11 @@ class FlashInferIndicesUpdaterDecode: 
     | 
|
| 
       753 
995 
     | 
    
         
             
                    paged_kernel_lens_sum: int,
         
     | 
| 
       754 
996 
     | 
    
         
             
                    kv_indptr: torch.Tensor,
         
     | 
| 
       755 
997 
     | 
    
         
             
                    kv_start_idx: torch.Tensor,
         
     | 
| 
       756 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 998 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
       757 
999 
     | 
    
         
             
                    seq_lens_cpu: Optional[torch.Tensor],
         
     | 
| 
       758 
1000 
     | 
    
         
             
                    use_sliding_window_kv_pool: bool = False,
         
     | 
| 
      
 1001 
     | 
    
         
            +
                    fixed_split_size: Optional[int] = None,
         
     | 
| 
      
 1002 
     | 
    
         
            +
                    disable_split_kv: Optional[bool] = None,
         
     | 
| 
       759 
1003 
     | 
    
         
             
                ):
         
     | 
| 
       760 
1004 
     | 
    
         
             
                    if spec_info is None:
         
     | 
| 
       761 
1005 
     | 
    
         
             
                        bs = len(req_pool_indices)
         
     | 
| 
         @@ -799,19 +1043,51 @@ class FlashInferIndicesUpdaterDecode: 
     | 
|
| 
       799 
1043 
     | 
    
         
             
                        global_override_indptr_cpu[0] = 0
         
     | 
| 
       800 
1044 
     | 
    
         
             
                        global_override_indptr_cpu[1 : bs + 1] = torch.cumsum(seq_lens_cpu, dim=0)
         
     | 
| 
       801 
1045 
     | 
    
         | 
| 
       802 
     | 
    
         
            -
                    wrapper 
     | 
| 
       803 
     | 
    
         
            -
             
     | 
| 
       804 
     | 
    
         
            -
             
     | 
| 
       805 
     | 
    
         
            -
                         
     | 
| 
       806 
     | 
    
         
            -
                         
     | 
| 
       807 
     | 
    
         
            -
                        self.num_kv_heads,
         
     | 
| 
       808 
     | 
    
         
            -
                        self.head_dim,
         
     | 
| 
       809 
     | 
    
         
            -
                        1,
         
     | 
| 
       810 
     | 
    
         
            -
                        data_type=self.data_type,
         
     | 
| 
       811 
     | 
    
         
            -
                        q_data_type=self.q_data_type,
         
     | 
| 
       812 
     | 
    
         
            -
                        non_blocking=True,
         
     | 
| 
      
 1046 
     | 
    
         
            +
                    # Check if this specific wrapper's begin_forward has been replaced with fast_decode_plan
         
     | 
| 
      
 1047 
     | 
    
         
            +
                    # by checking if it's a partial function with fast_decode_plan as the func
         
     | 
| 
      
 1048 
     | 
    
         
            +
                    wrapper_uses_fast_decode_plan = (
         
     | 
| 
      
 1049 
     | 
    
         
            +
                        hasattr(wrapper.begin_forward, "func")
         
     | 
| 
      
 1050 
     | 
    
         
            +
                        and wrapper.begin_forward.func == fast_decode_plan
         
     | 
| 
       813 
1051 
     | 
    
         
             
                    )
         
     | 
| 
       814 
1052 
     | 
    
         | 
| 
      
 1053 
     | 
    
         
            +
                    if wrapper_uses_fast_decode_plan:
         
     | 
| 
      
 1054 
     | 
    
         
            +
                        # When begin_forward is replaced with fast_decode_plan, pass global_override_indptr_cpu
         
     | 
| 
      
 1055 
     | 
    
         
            +
                        wrapper.begin_forward(
         
     | 
| 
      
 1056 
     | 
    
         
            +
                            kv_indptr,
         
     | 
| 
      
 1057 
     | 
    
         
            +
                            kv_indices,
         
     | 
| 
      
 1058 
     | 
    
         
            +
                            self.kv_last_page_len[:bs],
         
     | 
| 
      
 1059 
     | 
    
         
            +
                            self.num_qo_heads,
         
     | 
| 
      
 1060 
     | 
    
         
            +
                            self.num_kv_heads,
         
     | 
| 
      
 1061 
     | 
    
         
            +
                            self.head_dim,
         
     | 
| 
      
 1062 
     | 
    
         
            +
                            1,
         
     | 
| 
      
 1063 
     | 
    
         
            +
                            data_type=self.data_type,
         
     | 
| 
      
 1064 
     | 
    
         
            +
                            q_data_type=self.q_data_type,
         
     | 
| 
      
 1065 
     | 
    
         
            +
                            non_blocking=True,
         
     | 
| 
      
 1066 
     | 
    
         
            +
                            fixed_split_size=fixed_split_size,
         
     | 
| 
      
 1067 
     | 
    
         
            +
                            disable_split_kv=(
         
     | 
| 
      
 1068 
     | 
    
         
            +
                                disable_split_kv if disable_split_kv is not None else False
         
     | 
| 
      
 1069 
     | 
    
         
            +
                            ),
         
     | 
| 
      
 1070 
     | 
    
         
            +
                            global_override_indptr_cpu=global_override_indptr_cpu,
         
     | 
| 
      
 1071 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1072 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 1073 
     | 
    
         
            +
                        # When using original begin_forward, don't pass global_override_indptr_cpu
         
     | 
| 
      
 1074 
     | 
    
         
            +
                        wrapper.begin_forward(
         
     | 
| 
      
 1075 
     | 
    
         
            +
                            kv_indptr,
         
     | 
| 
      
 1076 
     | 
    
         
            +
                            kv_indices,
         
     | 
| 
      
 1077 
     | 
    
         
            +
                            self.kv_last_page_len[:bs],
         
     | 
| 
      
 1078 
     | 
    
         
            +
                            self.num_qo_heads,
         
     | 
| 
      
 1079 
     | 
    
         
            +
                            self.num_kv_heads,
         
     | 
| 
      
 1080 
     | 
    
         
            +
                            self.head_dim,
         
     | 
| 
      
 1081 
     | 
    
         
            +
                            1,
         
     | 
| 
      
 1082 
     | 
    
         
            +
                            data_type=self.data_type,
         
     | 
| 
      
 1083 
     | 
    
         
            +
                            q_data_type=self.q_data_type,
         
     | 
| 
      
 1084 
     | 
    
         
            +
                            non_blocking=True,
         
     | 
| 
      
 1085 
     | 
    
         
            +
                            fixed_split_size=fixed_split_size,
         
     | 
| 
      
 1086 
     | 
    
         
            +
                            disable_split_kv=(
         
     | 
| 
      
 1087 
     | 
    
         
            +
                                disable_split_kv if disable_split_kv is not None else False
         
     | 
| 
      
 1088 
     | 
    
         
            +
                            ),
         
     | 
| 
      
 1089 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1090 
     | 
    
         
            +
             
     | 
| 
       815 
1091 
     | 
    
         
             
                    if locally_override:
         
     | 
| 
       816 
1092 
     | 
    
         
             
                        global_override_indptr_cpu = None
         
     | 
| 
       817 
1093 
     | 
    
         | 
| 
         @@ -858,7 +1134,8 @@ class FlashInferIndicesUpdaterPrefill: 
     | 
|
| 
       858 
1134 
     | 
    
         
             
                    prefill_wrappers: List[BatchPrefillWithPagedKVCacheWrapper],
         
     | 
| 
       859 
1135 
     | 
    
         
             
                    use_ragged: bool,
         
     | 
| 
       860 
1136 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       861 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 1137 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
      
 1138 
     | 
    
         
            +
                    fixed_split_size: Optional[int] = None,
         
     | 
| 
       862 
1139 
     | 
    
         
             
                ):
         
     | 
| 
       863 
1140 
     | 
    
         
             
                    # Keep the signature for type checking. It will be assigned during runtime.
         
     | 
| 
       864 
1141 
     | 
    
         
             
                    raise NotImplementedError()
         
     | 
| 
         @@ -873,7 +1150,9 @@ class FlashInferIndicesUpdaterPrefill: 
     | 
|
| 
       873 
1150 
     | 
    
         
             
                    prefill_wrappers: List[BatchPrefillWithPagedKVCacheWrapper],
         
     | 
| 
       874 
1151 
     | 
    
         
             
                    use_ragged: bool,
         
     | 
| 
       875 
1152 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       876 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 1153 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
      
 1154 
     | 
    
         
            +
                    fixed_split_size: Optional[int] = None,
         
     | 
| 
      
 1155 
     | 
    
         
            +
                    multi_item_params: Optional[MultiItemScoringParams] = None,
         
     | 
| 
       877 
1156 
     | 
    
         
             
                ):
         
     | 
| 
       878 
1157 
     | 
    
         
             
                    if use_ragged:
         
     | 
| 
       879 
1158 
     | 
    
         
             
                        # TODO: remove this device sync, we can use forward_batch.extend_prefix_lens_cpu
         
     | 
| 
         @@ -897,6 +1176,8 @@ class FlashInferIndicesUpdaterPrefill: 
     | 
|
| 
       897 
1176 
     | 
    
         
             
                        self.qo_indptr[0],
         
     | 
| 
       898 
1177 
     | 
    
         
             
                        use_ragged,
         
     | 
| 
       899 
1178 
     | 
    
         
             
                        spec_info,
         
     | 
| 
      
 1179 
     | 
    
         
            +
                        fixed_split_size=fixed_split_size,
         
     | 
| 
      
 1180 
     | 
    
         
            +
                        multi_item_params=multi_item_params,
         
     | 
| 
       900 
1181 
     | 
    
         
             
                    )
         
     | 
| 
       901 
1182 
     | 
    
         | 
| 
       902 
1183 
     | 
    
         
             
                def update_sliding_window(
         
     | 
| 
         @@ -909,7 +1190,9 @@ class FlashInferIndicesUpdaterPrefill: 
     | 
|
| 
       909 
1190 
     | 
    
         
             
                    prefill_wrappers: List[BatchPrefillWithPagedKVCacheWrapper],
         
     | 
| 
       910 
1191 
     | 
    
         
             
                    use_ragged: bool,
         
     | 
| 
       911 
1192 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       912 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 1193 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
      
 1194 
     | 
    
         
            +
                    fixed_split_size: Optional[int] = None,
         
     | 
| 
      
 1195 
     | 
    
         
            +
                    multi_item_params: Optional[MultiItemScoringParams] = None,
         
     | 
| 
       913 
1196 
     | 
    
         
             
                ):
         
     | 
| 
       914 
1197 
     | 
    
         
             
                    for wrapper_id in range(2):
         
     | 
| 
       915 
1198 
     | 
    
         
             
                        if wrapper_id == 0:
         
     | 
| 
         @@ -943,6 +1226,7 @@ class FlashInferIndicesUpdaterPrefill: 
     | 
|
| 
       943 
1226 
     | 
    
         
             
                            use_ragged,
         
     | 
| 
       944 
1227 
     | 
    
         
             
                            spec_info,
         
     | 
| 
       945 
1228 
     | 
    
         
             
                            use_sliding_window_kv_pool=use_sliding_window_kv_pool,
         
     | 
| 
      
 1229 
     | 
    
         
            +
                            multi_item_params=multi_item_params,
         
     | 
| 
       946 
1230 
     | 
    
         
             
                        )
         
     | 
| 
       947 
1231 
     | 
    
         | 
| 
       948 
1232 
     | 
    
         
             
                def update_cross_attention(
         
     | 
| 
         @@ -955,7 +1239,9 @@ class FlashInferIndicesUpdaterPrefill: 
     | 
|
| 
       955 
1239 
     | 
    
         
             
                    prefill_wrappers: List[BatchPrefillWithPagedKVCacheWrapper],
         
     | 
| 
       956 
1240 
     | 
    
         
             
                    use_ragged: bool,
         
     | 
| 
       957 
1241 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       958 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 1242 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
      
 1243 
     | 
    
         
            +
                    fixed_split_size: Optional[int] = None,
         
     | 
| 
      
 1244 
     | 
    
         
            +
                    multi_item_params: Optional[MultiItemScoringParams] = None,
         
     | 
| 
       959 
1245 
     | 
    
         
             
                ):
         
     | 
| 
       960 
1246 
     | 
    
         
             
                    for wrapper_id in range(2):
         
     | 
| 
       961 
1247 
     | 
    
         
             
                        if wrapper_id == 0:
         
     | 
| 
         @@ -982,6 +1268,7 @@ class FlashInferIndicesUpdaterPrefill: 
     | 
|
| 
       982 
1268 
     | 
    
         
             
                            self.qo_indptr[wrapper_id],
         
     | 
| 
       983 
1269 
     | 
    
         
             
                            use_ragged,
         
     | 
| 
       984 
1270 
     | 
    
         
             
                            spec_info,
         
     | 
| 
      
 1271 
     | 
    
         
            +
                            multi_item_params=multi_item_params,
         
     | 
| 
       985 
1272 
     | 
    
         
             
                        )
         
     | 
| 
       986 
1273 
     | 
    
         | 
| 
       987 
1274 
     | 
    
         
             
                def call_begin_forward(
         
     | 
| 
         @@ -997,8 +1284,10 @@ class FlashInferIndicesUpdaterPrefill: 
     | 
|
| 
       997 
1284 
     | 
    
         
             
                    kv_indptr: torch.Tensor,
         
     | 
| 
       998 
1285 
     | 
    
         
             
                    qo_indptr: torch.Tensor,
         
     | 
| 
       999 
1286 
     | 
    
         
             
                    use_ragged: bool,
         
     | 
| 
       1000 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 1287 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
       1001 
1288 
     | 
    
         
             
                    use_sliding_window_kv_pool: bool = False,
         
     | 
| 
      
 1289 
     | 
    
         
            +
                    fixed_split_size: Optional[int] = None,
         
     | 
| 
      
 1290 
     | 
    
         
            +
                    multi_item_params: Optional[MultiItemScoringParams] = None,
         
     | 
| 
       1002 
1291 
     | 
    
         
             
                ):
         
     | 
| 
       1003 
1292 
     | 
    
         
             
                    bs = len(seq_lens)
         
     | 
| 
       1004 
1293 
     | 
    
         
             
                    if spec_info is None:
         
     | 
| 
         @@ -1024,9 +1313,7 @@ class FlashInferIndicesUpdaterPrefill: 
     | 
|
| 
       1024 
1313 
     | 
    
         
             
                        qo_indptr = qo_indptr[: bs + 1]
         
     | 
| 
       1025 
1314 
     | 
    
         
             
                        custom_mask = None
         
     | 
| 
       1026 
1315 
     | 
    
         
             
                    else:
         
     | 
| 
       1027 
     | 
    
         
            -
                        assert isinstance(spec_info,  
     | 
| 
       1028 
     | 
    
         
            -
                            spec_info, EagleVerifyInput
         
     | 
| 
       1029 
     | 
    
         
            -
                        )
         
     | 
| 
      
 1316 
     | 
    
         
            +
                        assert isinstance(spec_info, SpecInput)
         
     | 
| 
       1030 
1317 
     | 
    
         
             
                        kv_indices, kv_indptr, qo_indptr, custom_mask = (
         
     | 
| 
       1031 
1318 
     | 
    
         
             
                            spec_info.generate_attn_arg_prefill(
         
     | 
| 
       1032 
1319 
     | 
    
         
             
                                req_pool_indices,
         
     | 
| 
         @@ -1056,6 +1343,22 @@ class FlashInferIndicesUpdaterPrefill: 
     | 
|
| 
       1056 
1343 
     | 
    
         
             
                        )
         
     | 
| 
       1057 
1344 
     | 
    
         | 
| 
       1058 
1345 
     | 
    
         
             
                    # cached part
         
     | 
| 
      
 1346 
     | 
    
         
            +
                    # Conditionally set multi-item parameters
         
     | 
| 
      
 1347 
     | 
    
         
            +
                    if multi_item_params is not None and multi_item_params.is_enabled():
         
     | 
| 
      
 1348 
     | 
    
         
            +
                        # Multi-item scoring is active - use specialized parameters and disable generic custom_mask
         
     | 
| 
      
 1349 
     | 
    
         
            +
                        use_custom_mask = None
         
     | 
| 
      
 1350 
     | 
    
         
            +
                        prefix_len_ptr = multi_item_params.prefix_len_ptr
         
     | 
| 
      
 1351 
     | 
    
         
            +
                        token_pos_in_items_ptr = multi_item_params.token_pos_in_items_ptr
         
     | 
| 
      
 1352 
     | 
    
         
            +
                        token_pos_in_items_len = multi_item_params.token_pos_in_items_len
         
     | 
| 
      
 1353 
     | 
    
         
            +
                        max_item_len_ptr = multi_item_params.max_item_len_ptr
         
     | 
| 
      
 1354 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 1355 
     | 
    
         
            +
                        # No multi-item scoring - use standard parameters
         
     | 
| 
      
 1356 
     | 
    
         
            +
                        use_custom_mask = custom_mask
         
     | 
| 
      
 1357 
     | 
    
         
            +
                        prefix_len_ptr = None
         
     | 
| 
      
 1358 
     | 
    
         
            +
                        token_pos_in_items_ptr = None
         
     | 
| 
      
 1359 
     | 
    
         
            +
                        token_pos_in_items_len = 0
         
     | 
| 
      
 1360 
     | 
    
         
            +
                        max_item_len_ptr = None
         
     | 
| 
      
 1361 
     | 
    
         
            +
             
     | 
| 
       1059 
1362 
     | 
    
         
             
                    wrapper_paged.begin_forward(
         
     | 
| 
       1060 
1363 
     | 
    
         
             
                        qo_indptr,
         
     | 
| 
       1061 
1364 
     | 
    
         
             
                        kv_indptr,
         
     | 
| 
         @@ -1067,8 +1370,13 @@ class FlashInferIndicesUpdaterPrefill: 
     | 
|
| 
       1067 
1370 
     | 
    
         
             
                        1,
         
     | 
| 
       1068 
1371 
     | 
    
         
             
                        q_data_type=self.q_data_type,
         
     | 
| 
       1069 
1372 
     | 
    
         
             
                        kv_data_type=self.data_type,
         
     | 
| 
       1070 
     | 
    
         
            -
                        custom_mask= 
     | 
| 
      
 1373 
     | 
    
         
            +
                        custom_mask=use_custom_mask,
         
     | 
| 
       1071 
1374 
     | 
    
         
             
                        non_blocking=True,
         
     | 
| 
      
 1375 
     | 
    
         
            +
                        fixed_split_size=fixed_split_size,
         
     | 
| 
      
 1376 
     | 
    
         
            +
                        prefix_len_ptr=prefix_len_ptr,
         
     | 
| 
      
 1377 
     | 
    
         
            +
                        token_pos_in_items_ptr=token_pos_in_items_ptr,
         
     | 
| 
      
 1378 
     | 
    
         
            +
                        token_pos_in_items_len=token_pos_in_items_len,
         
     | 
| 
      
 1379 
     | 
    
         
            +
                        max_item_len_ptr=max_item_len_ptr,
         
     | 
| 
       1072 
1380 
     | 
    
         
             
                    )
         
     | 
| 
       1073 
1381 
     | 
    
         | 
| 
       1074 
1382 
     | 
    
         | 
| 
         @@ -1084,7 +1392,7 @@ class FlashInferMultiStepDraftBackend: 
     | 
|
| 
       1084 
1392 
     | 
    
         
             
                    topk: int,
         
     | 
| 
       1085 
1393 
     | 
    
         
             
                    speculative_num_steps: int,
         
     | 
| 
       1086 
1394 
     | 
    
         
             
                ):
         
     | 
| 
       1087 
     | 
    
         
            -
                    from sglang.srt.speculative. 
     | 
| 
      
 1395 
     | 
    
         
            +
                    from sglang.srt.speculative.spec_utils import generate_draft_decode_kv_indices
         
     | 
| 
       1088 
1396 
     | 
    
         | 
| 
       1089 
1397 
     | 
    
         
             
                    self.topk = topk
         
     | 
| 
       1090 
1398 
     | 
    
         
             
                    self.speculative_num_steps = speculative_num_steps
         
     | 
| 
         @@ -1104,7 +1412,7 @@ class FlashInferMultiStepDraftBackend: 
     | 
|
| 
       1104 
1412 
     | 
    
         
             
                        (max_bs,), dtype=torch.int32, device=model_runner.device
         
     | 
| 
       1105 
1413 
     | 
    
         
             
                    )
         
     | 
| 
       1106 
1414 
     | 
    
         
             
                    self.attn_backends: List[FlashInferAttnBackend] = []
         
     | 
| 
       1107 
     | 
    
         
            -
                    for i in range(self.speculative_num_steps):
         
     | 
| 
      
 1415 
     | 
    
         
            +
                    for i in range(self.speculative_num_steps - 1):
         
     | 
| 
       1108 
1416 
     | 
    
         
             
                        self.attn_backends.append(
         
     | 
| 
       1109 
1417 
     | 
    
         
             
                            FlashInferAttnBackend(
         
     | 
| 
       1110 
1418 
     | 
    
         
             
                                model_runner,
         
     | 
| 
         @@ -1148,7 +1456,7 @@ class FlashInferMultiStepDraftBackend: 
     | 
|
| 
       1148 
1456 
     | 
    
         
             
                    )
         
     | 
| 
       1149 
1457 
     | 
    
         | 
| 
       1150 
1458 
     | 
    
         
             
                    assert forward_batch.spec_info is not None
         
     | 
| 
       1151 
     | 
    
         
            -
                    assert  
     | 
| 
      
 1459 
     | 
    
         
            +
                    assert forward_batch.spec_info.is_draft_input()
         
     | 
| 
       1152 
1460 
     | 
    
         | 
| 
       1153 
1461 
     | 
    
         
             
                    # Copy the kv_indptr once to avoid multiple device-to-host copies in flashinfer's plan.
         
     | 
| 
       1154 
1462 
     | 
    
         
             
                    indptr_cpu_whole = self.kv_indptr[:, : bs + 1].cpu()
         
     | 
| 
         @@ -1192,7 +1500,7 @@ class FlashInferMultiStepDraftBackend: 
     | 
|
| 
       1192 
1500 
     | 
    
         
             
                        device="cuda",
         
     | 
| 
       1193 
1501 
     | 
    
         
             
                    )
         
     | 
| 
       1194 
1502 
     | 
    
         | 
| 
       1195 
     | 
    
         
            -
                    for i in range(self.speculative_num_steps):
         
     | 
| 
      
 1503 
     | 
    
         
            +
                    for i in range(self.speculative_num_steps - 1):
         
     | 
| 
       1196 
1504 
     | 
    
         
             
                        self.attn_backends[i].init_cuda_graph_state(
         
     | 
| 
       1197 
1505 
     | 
    
         
             
                            max_bs, max_num_tokens, kv_indices_buf=self.cuda_graph_kv_indices[i]
         
     | 
| 
       1198 
1506 
     | 
    
         
             
                        )
         
     | 
| 
         @@ -1276,166 +1584,3 @@ def should_use_tensor_core( 
     | 
|
| 
       1276 
1584 
     | 
    
         
             
                    return gqa_group_size >= 4
         
     | 
| 
       1277 
1585 
     | 
    
         
             
                else:
         
     | 
| 
       1278 
1586 
     | 
    
         
             
                    return False
         
     | 
| 
       1279 
     | 
    
         
            -
             
     | 
| 
       1280 
     | 
    
         
            -
             
     | 
| 
       1281 
     | 
    
         
            -
            # Use as a fast path to override the indptr in flashinfer's plan function
         
     | 
| 
       1282 
     | 
    
         
            -
            # This is used to remove some host-to-device copy overhead.
         
     | 
| 
       1283 
     | 
    
         
            -
            global_override_indptr_cpu = None
         
     | 
| 
       1284 
     | 
    
         
            -
             
     | 
| 
       1285 
     | 
    
         
            -
             
     | 
| 
       1286 
     | 
    
         
            -
            def fast_decode_plan(
         
     | 
| 
       1287 
     | 
    
         
            -
                self,
         
     | 
| 
       1288 
     | 
    
         
            -
                indptr: torch.Tensor,
         
     | 
| 
       1289 
     | 
    
         
            -
                indices: torch.Tensor,
         
     | 
| 
       1290 
     | 
    
         
            -
                last_page_len: torch.Tensor,
         
     | 
| 
       1291 
     | 
    
         
            -
                num_qo_heads: int,
         
     | 
| 
       1292 
     | 
    
         
            -
                num_kv_heads: int,
         
     | 
| 
       1293 
     | 
    
         
            -
                head_dim: int,
         
     | 
| 
       1294 
     | 
    
         
            -
                page_size: int,
         
     | 
| 
       1295 
     | 
    
         
            -
                pos_encoding_mode: str = "NONE",
         
     | 
| 
       1296 
     | 
    
         
            -
                window_left: int = -1,
         
     | 
| 
       1297 
     | 
    
         
            -
                logits_soft_cap: Optional[float] = None,
         
     | 
| 
       1298 
     | 
    
         
            -
                q_data_type: Optional[Union[str, torch.dtype]] = None,
         
     | 
| 
       1299 
     | 
    
         
            -
                kv_data_type: Optional[Union[str, torch.dtype]] = None,
         
     | 
| 
       1300 
     | 
    
         
            -
                data_type: Optional[Union[str, torch.dtype]] = None,
         
     | 
| 
       1301 
     | 
    
         
            -
                sm_scale: Optional[float] = None,
         
     | 
| 
       1302 
     | 
    
         
            -
                rope_scale: Optional[float] = None,
         
     | 
| 
       1303 
     | 
    
         
            -
                rope_theta: Optional[float] = None,
         
     | 
| 
       1304 
     | 
    
         
            -
                non_blocking: bool = True,
         
     | 
| 
       1305 
     | 
    
         
            -
            ) -> None:
         
     | 
| 
       1306 
     | 
    
         
            -
                """
         
     | 
| 
       1307 
     | 
    
         
            -
                A faster version of BatchDecodeWithPagedKVCacheWrapper::plan used for FlashInferMultiStepDraftBackend.
         
     | 
| 
       1308 
     | 
    
         
            -
                Modifications:
         
     | 
| 
       1309 
     | 
    
         
            -
                - Remove unnecessary device-to-device copy for the cuda graph buffers.
         
     | 
| 
       1310 
     | 
    
         
            -
                - Remove unnecessary host-to-device copy for the metadata buffers.
         
     | 
| 
       1311 
     | 
    
         
            -
                """
         
     | 
| 
       1312 
     | 
    
         
            -
                batch_size = len(last_page_len)
         
     | 
| 
       1313 
     | 
    
         
            -
                if logits_soft_cap is None:
         
     | 
| 
       1314 
     | 
    
         
            -
                    logits_soft_cap = 0.0
         
     | 
| 
       1315 
     | 
    
         
            -
             
     | 
| 
       1316 
     | 
    
         
            -
                # Handle data types consistently
         
     | 
| 
       1317 
     | 
    
         
            -
                if data_type is not None:
         
     | 
| 
       1318 
     | 
    
         
            -
                    if q_data_type is None:
         
     | 
| 
       1319 
     | 
    
         
            -
                        q_data_type = data_type
         
     | 
| 
       1320 
     | 
    
         
            -
                    if kv_data_type is None:
         
     | 
| 
       1321 
     | 
    
         
            -
                        kv_data_type = data_type
         
     | 
| 
       1322 
     | 
    
         
            -
                elif q_data_type is None:
         
     | 
| 
       1323 
     | 
    
         
            -
                    q_data_type = "float16"
         
     | 
| 
       1324 
     | 
    
         
            -
             
     | 
| 
       1325 
     | 
    
         
            -
                if kv_data_type is None:
         
     | 
| 
       1326 
     | 
    
         
            -
                    kv_data_type = q_data_type
         
     | 
| 
       1327 
     | 
    
         
            -
             
     | 
| 
       1328 
     | 
    
         
            -
                if self.use_tensor_cores:
         
     | 
| 
       1329 
     | 
    
         
            -
                    qo_indptr_host = _get_range_buf(batch_size + 1, "cpu")
         
     | 
| 
       1330 
     | 
    
         
            -
             
     | 
| 
       1331 
     | 
    
         
            -
                if self.is_cuda_graph_enabled:
         
     | 
| 
       1332 
     | 
    
         
            -
                    if batch_size != self._fixed_batch_size:
         
     | 
| 
       1333 
     | 
    
         
            -
                        raise ValueError(
         
     | 
| 
       1334 
     | 
    
         
            -
                            "The batch size should be fixed in cudagraph mode, the runtime batch size {} "
         
     | 
| 
       1335 
     | 
    
         
            -
                            " mismatches the batch size set during initialization {}".format(
         
     | 
| 
       1336 
     | 
    
         
            -
                                batch_size, self._fixed_batch_size
         
     | 
| 
       1337 
     | 
    
         
            -
                            )
         
     | 
| 
       1338 
     | 
    
         
            -
                        )
         
     | 
| 
       1339 
     | 
    
         
            -
                    if len(indices) > len(self._paged_kv_indices_buf):
         
     | 
| 
       1340 
     | 
    
         
            -
                        raise ValueError(
         
     | 
| 
       1341 
     | 
    
         
            -
                            "The size of indices should be less than or equal to the allocated buffer"
         
     | 
| 
       1342 
     | 
    
         
            -
                        )
         
     | 
| 
       1343 
     | 
    
         
            -
                else:
         
     | 
| 
       1344 
     | 
    
         
            -
                    self._paged_kv_indptr_buf = indptr
         
     | 
| 
       1345 
     | 
    
         
            -
                    self._paged_kv_indices_buf = indices
         
     | 
| 
       1346 
     | 
    
         
            -
                    self._paged_kv_last_page_len_buf = last_page_len
         
     | 
| 
       1347 
     | 
    
         
            -
                    if self.use_tensor_cores:
         
     | 
| 
       1348 
     | 
    
         
            -
                        self._qo_indptr_buf = qo_indptr_host.to(
         
     | 
| 
       1349 
     | 
    
         
            -
                            self.device, non_blocking=non_blocking
         
     | 
| 
       1350 
     | 
    
         
            -
                        )
         
     | 
| 
       1351 
     | 
    
         
            -
             
     | 
| 
       1352 
     | 
    
         
            -
                # Create empty tensors for dtype info if needed
         
     | 
| 
       1353 
     | 
    
         
            -
                empty_q_data = torch.empty(
         
     | 
| 
       1354 
     | 
    
         
            -
                    0,
         
     | 
| 
       1355 
     | 
    
         
            -
                    dtype=(
         
     | 
| 
       1356 
     | 
    
         
            -
                        getattr(torch, q_data_type) if isinstance(q_data_type, str) else q_data_type
         
     | 
| 
       1357 
     | 
    
         
            -
                    ),
         
     | 
| 
       1358 
     | 
    
         
            -
                    device=self.device,
         
     | 
| 
       1359 
     | 
    
         
            -
                )
         
     | 
| 
       1360 
     | 
    
         
            -
             
     | 
| 
       1361 
     | 
    
         
            -
                empty_kv_cache = torch.empty(
         
     | 
| 
       1362 
     | 
    
         
            -
                    0,
         
     | 
| 
       1363 
     | 
    
         
            -
                    dtype=(
         
     | 
| 
       1364 
     | 
    
         
            -
                        getattr(torch, kv_data_type)
         
     | 
| 
       1365 
     | 
    
         
            -
                        if isinstance(kv_data_type, str)
         
     | 
| 
       1366 
     | 
    
         
            -
                        else kv_data_type
         
     | 
| 
       1367 
     | 
    
         
            -
                    ),
         
     | 
| 
       1368 
     | 
    
         
            -
                    device=self.device,
         
     | 
| 
       1369 
     | 
    
         
            -
                )
         
     | 
| 
       1370 
     | 
    
         
            -
             
     | 
| 
       1371 
     | 
    
         
            -
                indptr_host = (
         
     | 
| 
       1372 
     | 
    
         
            -
                    global_override_indptr_cpu
         
     | 
| 
       1373 
     | 
    
         
            -
                    if global_override_indptr_cpu is not None
         
     | 
| 
       1374 
     | 
    
         
            -
                    else indptr.cpu()
         
     | 
| 
       1375 
     | 
    
         
            -
                )
         
     | 
| 
       1376 
     | 
    
         
            -
             
     | 
| 
       1377 
     | 
    
         
            -
                with torch.cuda.device(self.device):
         
     | 
| 
       1378 
     | 
    
         
            -
             
     | 
| 
       1379 
     | 
    
         
            -
                    if self.use_tensor_cores:
         
     | 
| 
       1380 
     | 
    
         
            -
                        # ALSO convert last_page_len to CPU
         
     | 
| 
       1381 
     | 
    
         
            -
                        if page_size == 1:
         
     | 
| 
       1382 
     | 
    
         
            -
                            # When page size is 1, last_page_len is always 1.
         
     | 
| 
       1383 
     | 
    
         
            -
                            # Directly construct the host tensor rather than executing a device-to-host copy.
         
     | 
| 
       1384 
     | 
    
         
            -
                            last_page_len_host = torch.ones(
         
     | 
| 
       1385 
     | 
    
         
            -
                                (batch_size,), dtype=torch.int32, device="cpu"
         
     | 
| 
       1386 
     | 
    
         
            -
                            )
         
     | 
| 
       1387 
     | 
    
         
            -
                        else:
         
     | 
| 
       1388 
     | 
    
         
            -
                            last_page_len_host = last_page_len.cpu()
         
     | 
| 
       1389 
     | 
    
         
            -
             
     | 
| 
       1390 
     | 
    
         
            -
                        kv_lens_arr_host = get_seq_lens(indptr_host, last_page_len_host, page_size)
         
     | 
| 
       1391 
     | 
    
         
            -
             
     | 
| 
       1392 
     | 
    
         
            -
                        try:
         
     | 
| 
       1393 
     | 
    
         
            -
                            # Make sure we pass exactly 15 arguments for tensor core version
         
     | 
| 
       1394 
     | 
    
         
            -
                            self._plan_info = self._cached_module.plan(
         
     | 
| 
       1395 
     | 
    
         
            -
                                self._float_workspace_buffer,
         
     | 
| 
       1396 
     | 
    
         
            -
                                self._int_workspace_buffer,
         
     | 
| 
       1397 
     | 
    
         
            -
                                self._pin_memory_int_workspace_buffer,
         
     | 
| 
       1398 
     | 
    
         
            -
                                qo_indptr_host,
         
     | 
| 
       1399 
     | 
    
         
            -
                                indptr_host,
         
     | 
| 
       1400 
     | 
    
         
            -
                                kv_lens_arr_host,
         
     | 
| 
       1401 
     | 
    
         
            -
                                batch_size,  # total_num_rows
         
     | 
| 
       1402 
     | 
    
         
            -
                                batch_size,
         
     | 
| 
       1403 
     | 
    
         
            -
                                num_qo_heads,
         
     | 
| 
       1404 
     | 
    
         
            -
                                num_kv_heads,
         
     | 
| 
       1405 
     | 
    
         
            -
                                page_size,
         
     | 
| 
       1406 
     | 
    
         
            -
                                self.is_cuda_graph_enabled,
         
     | 
| 
       1407 
     | 
    
         
            -
                                head_dim,
         
     | 
| 
       1408 
     | 
    
         
            -
                                head_dim,
         
     | 
| 
       1409 
     | 
    
         
            -
                                False,  # causal
         
     | 
| 
       1410 
     | 
    
         
            -
                            )
         
     | 
| 
       1411 
     | 
    
         
            -
                        except Exception as e:
         
     | 
| 
       1412 
     | 
    
         
            -
                            raise RuntimeError(f"Error in standard plan: {e}")
         
     | 
| 
       1413 
     | 
    
         
            -
                    else:
         
     | 
| 
       1414 
     | 
    
         
            -
                        try:
         
     | 
| 
       1415 
     | 
    
         
            -
                            # Make sure we pass exactly 15 arguments for standard version
         
     | 
| 
       1416 
     | 
    
         
            -
                            self._plan_info = self._cached_module.plan(
         
     | 
| 
       1417 
     | 
    
         
            -
                                self._float_workspace_buffer,
         
     | 
| 
       1418 
     | 
    
         
            -
                                self._int_workspace_buffer,
         
     | 
| 
       1419 
     | 
    
         
            -
                                self._pin_memory_int_workspace_buffer,
         
     | 
| 
       1420 
     | 
    
         
            -
                                indptr_host,
         
     | 
| 
       1421 
     | 
    
         
            -
                                batch_size,
         
     | 
| 
       1422 
     | 
    
         
            -
                                num_qo_heads,
         
     | 
| 
       1423 
     | 
    
         
            -
                                num_kv_heads,
         
     | 
| 
       1424 
     | 
    
         
            -
                                page_size,
         
     | 
| 
       1425 
     | 
    
         
            -
                                self.is_cuda_graph_enabled,
         
     | 
| 
       1426 
     | 
    
         
            -
                                window_left,
         
     | 
| 
       1427 
     | 
    
         
            -
                                logits_soft_cap,
         
     | 
| 
       1428 
     | 
    
         
            -
                                head_dim,
         
     | 
| 
       1429 
     | 
    
         
            -
                                head_dim,
         
     | 
| 
       1430 
     | 
    
         
            -
                                empty_q_data,
         
     | 
| 
       1431 
     | 
    
         
            -
                                empty_kv_cache,
         
     | 
| 
       1432 
     | 
    
         
            -
                            )
         
     | 
| 
       1433 
     | 
    
         
            -
                        except Exception as e:
         
     | 
| 
       1434 
     | 
    
         
            -
                            raise RuntimeError(f"Error in standard plan: {e}")
         
     | 
| 
       1435 
     | 
    
         
            -
             
     | 
| 
       1436 
     | 
    
         
            -
                self._pos_encoding_mode = pos_encoding_mode
         
     | 
| 
       1437 
     | 
    
         
            -
                self._window_left = window_left
         
     | 
| 
       1438 
     | 
    
         
            -
                self._logits_soft_cap = logits_soft_cap
         
     | 
| 
       1439 
     | 
    
         
            -
                self._sm_scale = sm_scale
         
     | 
| 
       1440 
     | 
    
         
            -
                self._rope_scale = rope_scale
         
     | 
| 
       1441 
     | 
    
         
            -
                self._rope_theta = rope_theta
         
     |