sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,718 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            from __future__ import annotations
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            from abc import ABC, abstractmethod
         
     | 
| 
      
 4 
     | 
    
         
            +
            from typing import TYPE_CHECKING, Any, Dict, Optional
         
     | 
| 
      
 5 
     | 
    
         
            +
             
     | 
| 
      
 6 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 7 
     | 
    
         
            +
            import torch.nn.functional as F
         
     | 
| 
      
 8 
     | 
    
         
            +
            from einops import rearrange
         
     | 
| 
      
 9 
     | 
    
         
            +
            from torch import nn
         
     | 
| 
      
 10 
     | 
    
         
            +
             
     | 
| 
      
 11 
     | 
    
         
            +
            from sglang.srt.custom_op import CustomOp
         
     | 
| 
      
 12 
     | 
    
         
            +
            from sglang.srt.utils import add_prefix, align, is_cuda, is_hip, is_npu
         
     | 
| 
      
 13 
     | 
    
         
            +
             
     | 
| 
      
 14 
     | 
    
         
            +
            if is_cuda():
         
     | 
| 
      
 15 
     | 
    
         
            +
                try:
         
     | 
| 
      
 16 
     | 
    
         
            +
                    import deep_gemm
         
     | 
| 
      
 17 
     | 
    
         
            +
                except ImportError as e:
         
     | 
| 
      
 18 
     | 
    
         
            +
                    deep_gemm = e
         
     | 
| 
      
 19 
     | 
    
         
            +
             
     | 
| 
      
 20 
     | 
    
         
            +
            from sglang.srt.layers import deep_gemm_wrapper
         
     | 
| 
      
 21 
     | 
    
         
            +
            from sglang.srt.layers.attention.nsa.utils import NSA_DUAL_STREAM
         
     | 
| 
      
 22 
     | 
    
         
            +
            from sglang.srt.layers.dp_attention import get_attention_tp_group
         
     | 
| 
      
 23 
     | 
    
         
            +
            from sglang.srt.layers.linear import ReplicatedLinear
         
     | 
| 
      
 24 
     | 
    
         
            +
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
      
 25 
     | 
    
         
            +
            from sglang.srt.layers.rotary_embedding import get_rope_wrapper
         
     | 
| 
      
 26 
     | 
    
         
            +
            from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode
         
     | 
| 
      
 27 
     | 
    
         
            +
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
      
 28 
     | 
    
         
            +
            from sglang.srt.server_args import get_global_server_args
         
     | 
| 
      
 29 
     | 
    
         
            +
             
     | 
| 
      
 30 
     | 
    
         
            +
            if TYPE_CHECKING:
         
     | 
| 
      
 31 
     | 
    
         
            +
                from sglang.srt.mem_cache.memory_pool import NSATokenToKVPool
         
     | 
| 
      
 32 
     | 
    
         
            +
             
     | 
| 
      
 33 
     | 
    
         
            +
            DUAL_STREAM_TOKEN_THRESHOLD = 1024 if is_cuda() else 0
         
     | 
| 
      
 34 
     | 
    
         
            +
             
     | 
| 
      
 35 
     | 
    
         
            +
             
     | 
| 
      
 36 
     | 
    
         
            +
            class BaseIndexerMetadata(ABC):
         
     | 
| 
      
 37 
     | 
    
         
            +
                @abstractmethod
         
     | 
| 
      
 38 
     | 
    
         
            +
                def get_seqlens_int32(self) -> torch.Tensor:
         
     | 
| 
      
 39 
     | 
    
         
            +
                    """
         
     | 
| 
      
 40 
     | 
    
         
            +
                    Return: (batch_size,) int32 tensor
         
     | 
| 
      
 41 
     | 
    
         
            +
                    """
         
     | 
| 
      
 42 
     | 
    
         
            +
             
     | 
| 
      
 43 
     | 
    
         
            +
                @abstractmethod
         
     | 
| 
      
 44 
     | 
    
         
            +
                def get_page_table_64(self) -> torch.Tensor:
         
     | 
| 
      
 45 
     | 
    
         
            +
                    """
         
     | 
| 
      
 46 
     | 
    
         
            +
                    Return: (batch_size, num_blocks) int32, page table.
         
     | 
| 
      
 47 
     | 
    
         
            +
                            The page size of the table is 64.
         
     | 
| 
      
 48 
     | 
    
         
            +
                    """
         
     | 
| 
      
 49 
     | 
    
         
            +
             
     | 
| 
      
 50 
     | 
    
         
            +
                @abstractmethod
         
     | 
| 
      
 51 
     | 
    
         
            +
                def get_seqlens_expanded(self) -> torch.Tensor:
         
     | 
| 
      
 52 
     | 
    
         
            +
                    """
         
     | 
| 
      
 53 
     | 
    
         
            +
                    Return: (sum_extend_seq_len,) int32 tensor
         
     | 
| 
      
 54 
     | 
    
         
            +
                    """
         
     | 
| 
      
 55 
     | 
    
         
            +
             
     | 
| 
      
 56 
     | 
    
         
            +
                @abstractmethod
         
     | 
| 
      
 57 
     | 
    
         
            +
                def topk_transform(
         
     | 
| 
      
 58 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 59 
     | 
    
         
            +
                    logits: torch.Tensor,
         
     | 
| 
      
 60 
     | 
    
         
            +
                    topk: int,
         
     | 
| 
      
 61 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 62 
     | 
    
         
            +
                    """
         
     | 
| 
      
 63 
     | 
    
         
            +
                    Perform topk selection on the logits and possibly transform the result.
         
     | 
| 
      
 64 
     | 
    
         
            +
             
     | 
| 
      
 65 
     | 
    
         
            +
                    NOTE that attention backend may override this function to do some
         
     | 
| 
      
 66 
     | 
    
         
            +
                    transformation, which means the result of this topk_transform may not
         
     | 
| 
      
 67 
     | 
    
         
            +
                    be the topk indices of the input logits.
         
     | 
| 
      
 68 
     | 
    
         
            +
             
     | 
| 
      
 69 
     | 
    
         
            +
                    Return: Anything, since it will be passed to the attention backend
         
     | 
| 
      
 70 
     | 
    
         
            +
                            for further processing on sparse attention computation.
         
     | 
| 
      
 71 
     | 
    
         
            +
                            Don't assume it is the topk indices of the input logits.
         
     | 
| 
      
 72 
     | 
    
         
            +
                    """
         
     | 
| 
      
 73 
     | 
    
         
            +
             
     | 
| 
      
 74 
     | 
    
         
            +
             
     | 
| 
      
 75 
     | 
    
         
            +
            def rotate_activation(x: torch.Tensor) -> torch.Tensor:
         
     | 
| 
      
 76 
     | 
    
         
            +
                assert x.dtype == torch.bfloat16
         
     | 
| 
      
 77 
     | 
    
         
            +
                from sgl_kernel import hadamard_transform
         
     | 
| 
      
 78 
     | 
    
         
            +
             
     | 
| 
      
 79 
     | 
    
         
            +
                hidden_size = x.size(-1)
         
     | 
| 
      
 80 
     | 
    
         
            +
                assert (
         
     | 
| 
      
 81 
     | 
    
         
            +
                    hidden_size & (hidden_size - 1)
         
     | 
| 
      
 82 
     | 
    
         
            +
                ) == 0, "Hidden size must be a power of 2 for Hadamard transform."
         
     | 
| 
      
 83 
     | 
    
         
            +
                return hadamard_transform(x, scale=hidden_size**-0.5)
         
     | 
| 
      
 84 
     | 
    
         
            +
             
     | 
| 
      
 85 
     | 
    
         
            +
             
     | 
| 
      
 86 
     | 
    
         
            +
            class V32LayerNorm(nn.Module):
         
     | 
| 
      
 87 
     | 
    
         
            +
                """
         
     | 
| 
      
 88 
     | 
    
         
            +
                Layer Normalization.
         
     | 
| 
      
 89 
     | 
    
         
            +
                """
         
     | 
| 
      
 90 
     | 
    
         
            +
             
     | 
| 
      
 91 
     | 
    
         
            +
                def __init__(self, dim: int, eps: float = 1e-6):
         
     | 
| 
      
 92 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 93 
     | 
    
         
            +
                    self.dim = dim
         
     | 
| 
      
 94 
     | 
    
         
            +
                    self.eps = eps
         
     | 
| 
      
 95 
     | 
    
         
            +
                    self.weight = nn.Parameter(torch.ones(dim, dtype=torch.float32))
         
     | 
| 
      
 96 
     | 
    
         
            +
                    self.bias = nn.Parameter(torch.zeros(dim, dtype=torch.float32))
         
     | 
| 
      
 97 
     | 
    
         
            +
             
     | 
| 
      
 98 
     | 
    
         
            +
                def forward(self, x: torch.Tensor):
         
     | 
| 
      
 99 
     | 
    
         
            +
                    return F.layer_norm(
         
     | 
| 
      
 100 
     | 
    
         
            +
                        x.float(), (self.dim,), self.weight, self.bias, self.eps
         
     | 
| 
      
 101 
     | 
    
         
            +
                    ).type_as(x)
         
     | 
| 
      
 102 
     | 
    
         
            +
             
     | 
| 
      
 103 
     | 
    
         
            +
             
     | 
| 
      
 104 
     | 
    
         
            +
            class Indexer(CustomOp):
         
     | 
| 
      
 105 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 106 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 107 
     | 
    
         
            +
                    hidden_size: int,
         
     | 
| 
      
 108 
     | 
    
         
            +
                    index_n_heads: int,
         
     | 
| 
      
 109 
     | 
    
         
            +
                    index_head_dim: int,
         
     | 
| 
      
 110 
     | 
    
         
            +
                    rope_head_dim: int,
         
     | 
| 
      
 111 
     | 
    
         
            +
                    index_topk: int,
         
     | 
| 
      
 112 
     | 
    
         
            +
                    q_lora_rank: int,
         
     | 
| 
      
 113 
     | 
    
         
            +
                    max_position_embeddings: int,
         
     | 
| 
      
 114 
     | 
    
         
            +
                    rope_theta: float,
         
     | 
| 
      
 115 
     | 
    
         
            +
                    layer_id: int,
         
     | 
| 
      
 116 
     | 
    
         
            +
                    scale_fmt: Optional[str],
         
     | 
| 
      
 117 
     | 
    
         
            +
                    block_size: int = 128,
         
     | 
| 
      
 118 
     | 
    
         
            +
                    rope_scaling: Optional[Dict[str, Any]] = None,
         
     | 
| 
      
 119 
     | 
    
         
            +
                    prefix: str = "",
         
     | 
| 
      
 120 
     | 
    
         
            +
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
      
 121 
     | 
    
         
            +
                    alt_stream: Optional[torch.cuda.Stream] = None,
         
     | 
| 
      
 122 
     | 
    
         
            +
                ):
         
     | 
| 
      
 123 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 124 
     | 
    
         
            +
                    self.hidden_size = hidden_size
         
     | 
| 
      
 125 
     | 
    
         
            +
                    self.n_heads = index_n_heads
         
     | 
| 
      
 126 
     | 
    
         
            +
                    self.head_dim = index_head_dim
         
     | 
| 
      
 127 
     | 
    
         
            +
                    self.rope_head_dim = rope_head_dim
         
     | 
| 
      
 128 
     | 
    
         
            +
                    self.index_topk = index_topk
         
     | 
| 
      
 129 
     | 
    
         
            +
                    self.q_lora_rank = q_lora_rank
         
     | 
| 
      
 130 
     | 
    
         
            +
                    self.layer_id = layer_id
         
     | 
| 
      
 131 
     | 
    
         
            +
                    self.alt_stream = alt_stream
         
     | 
| 
      
 132 
     | 
    
         
            +
                    if is_cuda():
         
     | 
| 
      
 133 
     | 
    
         
            +
                        self.sm_count = deep_gemm.get_num_sms()
         
     | 
| 
      
 134 
     | 
    
         
            +
                        self.half_device_sm_count = align(self.sm_count // 2, 8)
         
     | 
| 
      
 135 
     | 
    
         
            +
             
     | 
| 
      
 136 
     | 
    
         
            +
                    self.wq_b = ReplicatedLinear(
         
     | 
| 
      
 137 
     | 
    
         
            +
                        self.q_lora_rank,
         
     | 
| 
      
 138 
     | 
    
         
            +
                        self.n_heads * self.head_dim,
         
     | 
| 
      
 139 
     | 
    
         
            +
                        bias=False,
         
     | 
| 
      
 140 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 141 
     | 
    
         
            +
                        prefix=add_prefix("wq_b", prefix),
         
     | 
| 
      
 142 
     | 
    
         
            +
                    )
         
     | 
| 
      
 143 
     | 
    
         
            +
                    self.wk = ReplicatedLinear(
         
     | 
| 
      
 144 
     | 
    
         
            +
                        self.hidden_size,
         
     | 
| 
      
 145 
     | 
    
         
            +
                        self.head_dim,
         
     | 
| 
      
 146 
     | 
    
         
            +
                        bias=False,
         
     | 
| 
      
 147 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 148 
     | 
    
         
            +
                        prefix=add_prefix("wk", prefix),
         
     | 
| 
      
 149 
     | 
    
         
            +
                    )
         
     | 
| 
      
 150 
     | 
    
         
            +
                    self.k_norm = V32LayerNorm(self.head_dim)
         
     | 
| 
      
 151 
     | 
    
         
            +
                    # NOTE: weight_proj is not quantized
         
     | 
| 
      
 152 
     | 
    
         
            +
                    self.weights_proj = ReplicatedLinear(
         
     | 
| 
      
 153 
     | 
    
         
            +
                        self.hidden_size,
         
     | 
| 
      
 154 
     | 
    
         
            +
                        self.n_heads,
         
     | 
| 
      
 155 
     | 
    
         
            +
                        bias=False,
         
     | 
| 
      
 156 
     | 
    
         
            +
                        prefix=add_prefix("weights_proj", prefix),
         
     | 
| 
      
 157 
     | 
    
         
            +
                    )
         
     | 
| 
      
 158 
     | 
    
         
            +
                    self.rotary_emb = get_rope_wrapper(
         
     | 
| 
      
 159 
     | 
    
         
            +
                        rope_head_dim,
         
     | 
| 
      
 160 
     | 
    
         
            +
                        rotary_dim=rope_head_dim,
         
     | 
| 
      
 161 
     | 
    
         
            +
                        max_position=max_position_embeddings,
         
     | 
| 
      
 162 
     | 
    
         
            +
                        base=rope_theta,  # type: ignore
         
     | 
| 
      
 163 
     | 
    
         
            +
                        rope_scaling=rope_scaling,
         
     | 
| 
      
 164 
     | 
    
         
            +
                        is_neox_style=False,
         
     | 
| 
      
 165 
     | 
    
         
            +
                        device=get_global_server_args().device,
         
     | 
| 
      
 166 
     | 
    
         
            +
                    )
         
     | 
| 
      
 167 
     | 
    
         
            +
                    self.block_size = block_size
         
     | 
| 
      
 168 
     | 
    
         
            +
                    self.scale_fmt = scale_fmt
         
     | 
| 
      
 169 
     | 
    
         
            +
                    self.softmax_scale = self.head_dim**-0.5
         
     | 
| 
      
 170 
     | 
    
         
            +
             
     | 
| 
      
 171 
     | 
    
         
            +
                @torch.compile(dynamic=True)
         
     | 
| 
      
 172 
     | 
    
         
            +
                def _get_logits_head_gate(self, x: torch.Tensor, q_scale: torch.Tensor):
         
     | 
| 
      
 173 
     | 
    
         
            +
                    weights, _ = self.weights_proj(x)
         
     | 
| 
      
 174 
     | 
    
         
            +
                    weights = weights * self.n_heads**-0.5
         
     | 
| 
      
 175 
     | 
    
         
            +
                    weights = weights.unsqueeze(-1) * q_scale * self.softmax_scale
         
     | 
| 
      
 176 
     | 
    
         
            +
                    return weights
         
     | 
| 
      
 177 
     | 
    
         
            +
             
     | 
| 
      
 178 
     | 
    
         
            +
                def _get_q_k_bf16(
         
     | 
| 
      
 179 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 180 
     | 
    
         
            +
                    q_lora: torch.Tensor,
         
     | 
| 
      
 181 
     | 
    
         
            +
                    x: torch.Tensor,
         
     | 
| 
      
 182 
     | 
    
         
            +
                    positions: torch.Tensor,
         
     | 
| 
      
 183 
     | 
    
         
            +
                    enable_dual_stream: bool,
         
     | 
| 
      
 184 
     | 
    
         
            +
                ):
         
     | 
| 
      
 185 
     | 
    
         
            +
             
     | 
| 
      
 186 
     | 
    
         
            +
                    if enable_dual_stream:
         
     | 
| 
      
 187 
     | 
    
         
            +
                        current_stream = torch.cuda.current_stream()
         
     | 
| 
      
 188 
     | 
    
         
            +
                        self.alt_stream.wait_stream(current_stream)
         
     | 
| 
      
 189 
     | 
    
         
            +
             
     | 
| 
      
 190 
     | 
    
         
            +
                        with deep_gemm_wrapper.configure_deep_gemm_num_sms(
         
     | 
| 
      
 191 
     | 
    
         
            +
                            self.half_device_sm_count
         
     | 
| 
      
 192 
     | 
    
         
            +
                        ):
         
     | 
| 
      
 193 
     | 
    
         
            +
                            query, _ = self.wq_b(q_lora)
         
     | 
| 
      
 194 
     | 
    
         
            +
                            query = rearrange(query, "l (h d) -> l h d", d=self.head_dim)
         
     | 
| 
      
 195 
     | 
    
         
            +
                            q_rope, _ = torch.split(
         
     | 
| 
      
 196 
     | 
    
         
            +
                                query,
         
     | 
| 
      
 197 
     | 
    
         
            +
                                [self.rope_head_dim, self.head_dim - self.rope_head_dim],
         
     | 
| 
      
 198 
     | 
    
         
            +
                                dim=-1,
         
     | 
| 
      
 199 
     | 
    
         
            +
                            )
         
     | 
| 
      
 200 
     | 
    
         
            +
                        with torch.cuda.stream(self.alt_stream):
         
     | 
| 
      
 201 
     | 
    
         
            +
                            # TODO we should also put DeepGEMM half SM here?
         
     | 
| 
      
 202 
     | 
    
         
            +
                            key, _ = self.wk(x)
         
     | 
| 
      
 203 
     | 
    
         
            +
                            key = self.k_norm(key)
         
     | 
| 
      
 204 
     | 
    
         
            +
             
     | 
| 
      
 205 
     | 
    
         
            +
                            k_rope, _ = torch.split(
         
     | 
| 
      
 206 
     | 
    
         
            +
                                key,
         
     | 
| 
      
 207 
     | 
    
         
            +
                                [self.rope_head_dim, self.head_dim - self.rope_head_dim],
         
     | 
| 
      
 208 
     | 
    
         
            +
                                dim=-1,
         
     | 
| 
      
 209 
     | 
    
         
            +
                            )
         
     | 
| 
      
 210 
     | 
    
         
            +
             
     | 
| 
      
 211 
     | 
    
         
            +
                        current_stream.wait_stream(self.alt_stream)
         
     | 
| 
      
 212 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 213 
     | 
    
         
            +
                        query, _ = self.wq_b(q_lora)
         
     | 
| 
      
 214 
     | 
    
         
            +
                        query = rearrange(query, "l (h d) -> l h d", d=self.head_dim)
         
     | 
| 
      
 215 
     | 
    
         
            +
             
     | 
| 
      
 216 
     | 
    
         
            +
                        q_rope, _ = torch.split(
         
     | 
| 
      
 217 
     | 
    
         
            +
                            query, [self.rope_head_dim, self.head_dim - self.rope_head_dim], dim=-1
         
     | 
| 
      
 218 
     | 
    
         
            +
                        )
         
     | 
| 
      
 219 
     | 
    
         
            +
             
     | 
| 
      
 220 
     | 
    
         
            +
                        key, _ = self.wk(x)
         
     | 
| 
      
 221 
     | 
    
         
            +
                        key = self.k_norm(key)
         
     | 
| 
      
 222 
     | 
    
         
            +
                        k_rope, _ = torch.split(
         
     | 
| 
      
 223 
     | 
    
         
            +
                            key, [self.rope_head_dim, self.head_dim - self.rope_head_dim], dim=-1
         
     | 
| 
      
 224 
     | 
    
         
            +
                        )
         
     | 
| 
      
 225 
     | 
    
         
            +
             
     | 
| 
      
 226 
     | 
    
         
            +
                    q_rope, k_rope = self.rotary_emb(positions, q_rope, k_rope)
         
     | 
| 
      
 227 
     | 
    
         
            +
             
     | 
| 
      
 228 
     | 
    
         
            +
                    query[..., : self.rope_head_dim] = q_rope
         
     | 
| 
      
 229 
     | 
    
         
            +
                    key[..., : self.rope_head_dim] = k_rope
         
     | 
| 
      
 230 
     | 
    
         
            +
             
     | 
| 
      
 231 
     | 
    
         
            +
                    if enable_dual_stream:
         
     | 
| 
      
 232 
     | 
    
         
            +
                        current_stream = torch.cuda.current_stream()
         
     | 
| 
      
 233 
     | 
    
         
            +
                        self.alt_stream.wait_stream(current_stream)
         
     | 
| 
      
 234 
     | 
    
         
            +
                        query = rotate_activation(query)
         
     | 
| 
      
 235 
     | 
    
         
            +
             
     | 
| 
      
 236 
     | 
    
         
            +
                        with torch.cuda.stream(self.alt_stream):
         
     | 
| 
      
 237 
     | 
    
         
            +
                            key = rotate_activation(key)
         
     | 
| 
      
 238 
     | 
    
         
            +
                        current_stream.wait_stream(self.alt_stream)
         
     | 
| 
      
 239 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 240 
     | 
    
         
            +
                        query = rotate_activation(query)
         
     | 
| 
      
 241 
     | 
    
         
            +
                        key = rotate_activation(key)
         
     | 
| 
      
 242 
     | 
    
         
            +
             
     | 
| 
      
 243 
     | 
    
         
            +
                    return query, key
         
     | 
| 
      
 244 
     | 
    
         
            +
             
     | 
| 
      
 245 
     | 
    
         
            +
                def _get_topk_paged(
         
     | 
| 
      
 246 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 247 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 248 
     | 
    
         
            +
                    layer_id: int,
         
     | 
| 
      
 249 
     | 
    
         
            +
                    q_fp8: torch.Tensor,
         
     | 
| 
      
 250 
     | 
    
         
            +
                    weights: torch.Tensor,
         
     | 
| 
      
 251 
     | 
    
         
            +
                    metadata: BaseIndexerMetadata,
         
     | 
| 
      
 252 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 253 
     | 
    
         
            +
                    if TYPE_CHECKING:
         
     | 
| 
      
 254 
     | 
    
         
            +
                        assert isinstance(forward_batch.token_to_kv_pool, NSATokenToKVPool)
         
     | 
| 
      
 255 
     | 
    
         
            +
             
     | 
| 
      
 256 
     | 
    
         
            +
                    page_size = forward_batch.token_to_kv_pool.page_size
         
     | 
| 
      
 257 
     | 
    
         
            +
                    # NOTE(dark): blocksize = 64 is hardcoded in deep_gemm
         
     | 
| 
      
 258 
     | 
    
         
            +
                    assert page_size == 64, "only support page size 64"
         
     | 
| 
      
 259 
     | 
    
         
            +
             
     | 
| 
      
 260 
     | 
    
         
            +
                    # NOTE(dark): this support extend/decode/decode+graph
         
     | 
| 
      
 261 
     | 
    
         
            +
                    block_tables = metadata.get_page_table_64()
         
     | 
| 
      
 262 
     | 
    
         
            +
             
     | 
| 
      
 263 
     | 
    
         
            +
                    max_seq_len = block_tables.shape[1] * page_size
         
     | 
| 
      
 264 
     | 
    
         
            +
                    kv_cache_fp8 = forward_batch.token_to_kv_pool.get_index_k_with_scale_buffer(
         
     | 
| 
      
 265 
     | 
    
         
            +
                        layer_id=layer_id
         
     | 
| 
      
 266 
     | 
    
         
            +
                    )
         
     | 
| 
      
 267 
     | 
    
         
            +
             
     | 
| 
      
 268 
     | 
    
         
            +
                    blocksize = page_size
         
     | 
| 
      
 269 
     | 
    
         
            +
                    if forward_batch.forward_mode.is_target_verify():
         
     | 
| 
      
 270 
     | 
    
         
            +
                        seqlens_32 = metadata.get_seqlens_expanded()
         
     | 
| 
      
 271 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 272 
     | 
    
         
            +
                        seqlens_32 = metadata.get_seqlens_int32()
         
     | 
| 
      
 273 
     | 
    
         
            +
                    # NOTE(dark): 132 is SM count on H200/B200, not magic number
         
     | 
| 
      
 274 
     | 
    
         
            +
                    schedule_metadata = deep_gemm.get_paged_mqa_logits_metadata(
         
     | 
| 
      
 275 
     | 
    
         
            +
                        seqlens_32, blocksize, self.sm_count
         
     | 
| 
      
 276 
     | 
    
         
            +
                    )
         
     | 
| 
      
 277 
     | 
    
         
            +
             
     | 
| 
      
 278 
     | 
    
         
            +
                    assert len(q_fp8.shape) == 3
         
     | 
| 
      
 279 
     | 
    
         
            +
                    q_fp8 = q_fp8.unsqueeze(1)  # the next_n dim is 1 now
         
     | 
| 
      
 280 
     | 
    
         
            +
                    assert len(kv_cache_fp8.shape) == 2
         
     | 
| 
      
 281 
     | 
    
         
            +
                    block_kv = 64
         
     | 
| 
      
 282 
     | 
    
         
            +
                    num_heads_kv = 1
         
     | 
| 
      
 283 
     | 
    
         
            +
                    head_dim_with_sf = 132
         
     | 
| 
      
 284 
     | 
    
         
            +
                    kv_cache_fp8 = kv_cache_fp8.view(
         
     | 
| 
      
 285 
     | 
    
         
            +
                        kv_cache_fp8.shape[0], block_kv, num_heads_kv, head_dim_with_sf
         
     | 
| 
      
 286 
     | 
    
         
            +
                    )
         
     | 
| 
      
 287 
     | 
    
         
            +
                    assert len(weights.shape) == 3
         
     | 
| 
      
 288 
     | 
    
         
            +
                    weights = weights.squeeze(2)
         
     | 
| 
      
 289 
     | 
    
         
            +
             
     | 
| 
      
 290 
     | 
    
         
            +
                    logits = deep_gemm.fp8_paged_mqa_logits(
         
     | 
| 
      
 291 
     | 
    
         
            +
                        q_fp8,
         
     | 
| 
      
 292 
     | 
    
         
            +
                        kv_cache_fp8,
         
     | 
| 
      
 293 
     | 
    
         
            +
                        weights,
         
     | 
| 
      
 294 
     | 
    
         
            +
                        seqlens_32,
         
     | 
| 
      
 295 
     | 
    
         
            +
                        block_tables,
         
     | 
| 
      
 296 
     | 
    
         
            +
                        schedule_metadata,
         
     | 
| 
      
 297 
     | 
    
         
            +
                        max_seq_len,
         
     | 
| 
      
 298 
     | 
    
         
            +
                        clean_logits=False,
         
     | 
| 
      
 299 
     | 
    
         
            +
                    )
         
     | 
| 
      
 300 
     | 
    
         
            +
             
     | 
| 
      
 301 
     | 
    
         
            +
                    # NOTE(dark): logits should be cleaned in topk_transform
         
     | 
| 
      
 302 
     | 
    
         
            +
                    topk_result = metadata.topk_transform(logits, self.index_topk)
         
     | 
| 
      
 303 
     | 
    
         
            +
                    return topk_result
         
     | 
| 
      
 304 
     | 
    
         
            +
             
     | 
| 
      
 305 
     | 
    
         
            +
                def _get_topk_ragged(
         
     | 
| 
      
 306 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 307 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 308 
     | 
    
         
            +
                    layer_id: int,
         
     | 
| 
      
 309 
     | 
    
         
            +
                    q_fp8: torch.Tensor,
         
     | 
| 
      
 310 
     | 
    
         
            +
                    weights: torch.Tensor,
         
     | 
| 
      
 311 
     | 
    
         
            +
                    metadata: BaseIndexerMetadata,
         
     | 
| 
      
 312 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 313 
     | 
    
         
            +
                    if TYPE_CHECKING:
         
     | 
| 
      
 314 
     | 
    
         
            +
                        assert isinstance(forward_batch.token_to_kv_pool, NSATokenToKVPool)
         
     | 
| 
      
 315 
     | 
    
         
            +
             
     | 
| 
      
 316 
     | 
    
         
            +
                    page_size = forward_batch.token_to_kv_pool.page_size
         
     | 
| 
      
 317 
     | 
    
         
            +
                    assert page_size == 64, "only support page size 64"
         
     | 
| 
      
 318 
     | 
    
         
            +
                    assert len(weights.shape) == 3
         
     | 
| 
      
 319 
     | 
    
         
            +
                    weights = weights.squeeze(-1)
         
     | 
| 
      
 320 
     | 
    
         
            +
                    k_fp8_list = []
         
     | 
| 
      
 321 
     | 
    
         
            +
                    k_scale_list = []
         
     | 
| 
      
 322 
     | 
    
         
            +
                    ks_list = []
         
     | 
| 
      
 323 
     | 
    
         
            +
                    ke_list = []
         
     | 
| 
      
 324 
     | 
    
         
            +
                    offset = 0
         
     | 
| 
      
 325 
     | 
    
         
            +
                    seq_lens_expanded = metadata.get_seqlens_expanded()
         
     | 
| 
      
 326 
     | 
    
         
            +
                    block_tables = metadata.get_page_table_64()
         
     | 
| 
      
 327 
     | 
    
         
            +
             
     | 
| 
      
 328 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 329 
     | 
    
         
            +
                        forward_batch.seq_lens_cpu is not None
         
     | 
| 
      
 330 
     | 
    
         
            +
                        and forward_batch.extend_seq_lens_cpu is not None
         
     | 
| 
      
 331 
     | 
    
         
            +
                    )
         
     | 
| 
      
 332 
     | 
    
         
            +
             
     | 
| 
      
 333 
     | 
    
         
            +
                    for i in range(forward_batch.batch_size):
         
     | 
| 
      
 334 
     | 
    
         
            +
                        seq_len = forward_batch.seq_lens_cpu[i].item()
         
     | 
| 
      
 335 
     | 
    
         
            +
                        assert isinstance(seq_len, int)
         
     | 
| 
      
 336 
     | 
    
         
            +
                        k_fp8 = forward_batch.token_to_kv_pool.get_index_k_continuous(
         
     | 
| 
      
 337 
     | 
    
         
            +
                            layer_id,
         
     | 
| 
      
 338 
     | 
    
         
            +
                            seq_len,
         
     | 
| 
      
 339 
     | 
    
         
            +
                            block_tables[i],
         
     | 
| 
      
 340 
     | 
    
         
            +
                        )
         
     | 
| 
      
 341 
     | 
    
         
            +
                        k_scale = forward_batch.token_to_kv_pool.get_index_k_scale_continuous(
         
     | 
| 
      
 342 
     | 
    
         
            +
                            layer_id,
         
     | 
| 
      
 343 
     | 
    
         
            +
                            seq_len,
         
     | 
| 
      
 344 
     | 
    
         
            +
                            block_tables[i],
         
     | 
| 
      
 345 
     | 
    
         
            +
                        )
         
     | 
| 
      
 346 
     | 
    
         
            +
                        extend_seq_len = forward_batch.extend_seq_lens_cpu[i]
         
     | 
| 
      
 347 
     | 
    
         
            +
                        ks = torch.full((extend_seq_len,), offset, dtype=torch.int32, device="cuda")
         
     | 
| 
      
 348 
     | 
    
         
            +
                        ke = ks + seq_lens_expanded[offset : offset + extend_seq_len]
         
     | 
| 
      
 349 
     | 
    
         
            +
                        k_fp8_list.append(k_fp8)
         
     | 
| 
      
 350 
     | 
    
         
            +
                        k_scale_list.append(k_scale)
         
     | 
| 
      
 351 
     | 
    
         
            +
                        ks_list.append(ks)
         
     | 
| 
      
 352 
     | 
    
         
            +
                        ke_list.append(ke)
         
     | 
| 
      
 353 
     | 
    
         
            +
                        offset += extend_seq_len
         
     | 
| 
      
 354 
     | 
    
         
            +
             
     | 
| 
      
 355 
     | 
    
         
            +
                    k_fp8 = torch.cat(k_fp8_list, dim=0).view(torch.float8_e4m3fn)
         
     | 
| 
      
 356 
     | 
    
         
            +
                    k_scale = torch.cat(k_scale_list, dim=0).view(torch.float32).squeeze(-1)
         
     | 
| 
      
 357 
     | 
    
         
            +
                    kv_fp8 = (k_fp8, k_scale)
         
     | 
| 
      
 358 
     | 
    
         
            +
                    ks = torch.cat(ks_list, dim=0)
         
     | 
| 
      
 359 
     | 
    
         
            +
                    ke = torch.cat(ke_list, dim=0)
         
     | 
| 
      
 360 
     | 
    
         
            +
             
     | 
| 
      
 361 
     | 
    
         
            +
                    logits = deep_gemm.fp8_mqa_logits(
         
     | 
| 
      
 362 
     | 
    
         
            +
                        q_fp8[:offset],
         
     | 
| 
      
 363 
     | 
    
         
            +
                        kv_fp8,
         
     | 
| 
      
 364 
     | 
    
         
            +
                        weights[:offset],
         
     | 
| 
      
 365 
     | 
    
         
            +
                        ks,
         
     | 
| 
      
 366 
     | 
    
         
            +
                        ke,
         
     | 
| 
      
 367 
     | 
    
         
            +
                        clean_logits=False,
         
     | 
| 
      
 368 
     | 
    
         
            +
                    )
         
     | 
| 
      
 369 
     | 
    
         
            +
                    token_nums, _, _ = q_fp8.shape
         
     | 
| 
      
 370 
     | 
    
         
            +
                    assert logits.shape[0] == len(seq_lens_expanded)
         
     | 
| 
      
 371 
     | 
    
         
            +
                    raw_topk_result = metadata.topk_transform(logits, self.index_topk)
         
     | 
| 
      
 372 
     | 
    
         
            +
                    topk_result = torch.full(
         
     | 
| 
      
 373 
     | 
    
         
            +
                        (token_nums, self.index_topk), -1, device=q_fp8.device, dtype=torch.int32
         
     | 
| 
      
 374 
     | 
    
         
            +
                    )
         
     | 
| 
      
 375 
     | 
    
         
            +
                    topk_result[:offset] = raw_topk_result
         
     | 
| 
      
 376 
     | 
    
         
            +
                    return topk_result
         
     | 
| 
      
 377 
     | 
    
         
            +
             
     | 
| 
      
 378 
     | 
    
         
            +
                def forward_indexer(
         
     | 
| 
      
 379 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 380 
     | 
    
         
            +
                    q_fp8: torch.Tensor,
         
     | 
| 
      
 381 
     | 
    
         
            +
                    weights: torch.Tensor,
         
     | 
| 
      
 382 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 383 
     | 
    
         
            +
                    topk: int,
         
     | 
| 
      
 384 
     | 
    
         
            +
                    layer_id: int,
         
     | 
| 
      
 385 
     | 
    
         
            +
                ) -> Optional[torch.Tensor]:
         
     | 
| 
      
 386 
     | 
    
         
            +
                    if not is_npu():
         
     | 
| 
      
 387 
     | 
    
         
            +
                        from sglang.srt.layers.attention.nsa.tilelang_kernel import fp8_index
         
     | 
| 
      
 388 
     | 
    
         
            +
             
     | 
| 
      
 389 
     | 
    
         
            +
                    page_size = forward_batch.token_to_kv_pool.page_size
         
     | 
| 
      
 390 
     | 
    
         
            +
                    assert page_size == 64, "only support page size 64"
         
     | 
| 
      
 391 
     | 
    
         
            +
             
     | 
| 
      
 392 
     | 
    
         
            +
                    assert len(weights.shape) == 3
         
     | 
| 
      
 393 
     | 
    
         
            +
                    weights = weights.squeeze(-1)
         
     | 
| 
      
 394 
     | 
    
         
            +
             
     | 
| 
      
 395 
     | 
    
         
            +
                    # logits = deep_gemm.fp8_mqa_logits(q_fp8, kv_fp8, weights, ks, ke)
         
     | 
| 
      
 396 
     | 
    
         
            +
                    k_fp8_list = []
         
     | 
| 
      
 397 
     | 
    
         
            +
                    k_scale_list = []
         
     | 
| 
      
 398 
     | 
    
         
            +
             
     | 
| 
      
 399 
     | 
    
         
            +
                    topk_indices_list = []
         
     | 
| 
      
 400 
     | 
    
         
            +
             
     | 
| 
      
 401 
     | 
    
         
            +
                    block_tables = forward_batch.req_to_token_pool.req_to_token[
         
     | 
| 
      
 402 
     | 
    
         
            +
                        forward_batch.req_pool_indices, :
         
     | 
| 
      
 403 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 404 
     | 
    
         
            +
                    strided_indices = torch.arange(
         
     | 
| 
      
 405 
     | 
    
         
            +
                        0, block_tables.shape[-1], page_size, device="cuda"
         
     | 
| 
      
 406 
     | 
    
         
            +
                    )
         
     | 
| 
      
 407 
     | 
    
         
            +
                    block_tables = block_tables[:, strided_indices] // page_size
         
     | 
| 
      
 408 
     | 
    
         
            +
             
     | 
| 
      
 409 
     | 
    
         
            +
                    q_len_start = 0
         
     | 
| 
      
 410 
     | 
    
         
            +
             
     | 
| 
      
 411 
     | 
    
         
            +
                    for i in range(forward_batch.batch_size):
         
     | 
| 
      
 412 
     | 
    
         
            +
                        seq_len = forward_batch.seq_lens[i].item()
         
     | 
| 
      
 413 
     | 
    
         
            +
                        q_len = (
         
     | 
| 
      
 414 
     | 
    
         
            +
                            forward_batch.extend_seq_lens_cpu[i]
         
     | 
| 
      
 415 
     | 
    
         
            +
                            if forward_batch.forward_mode.is_extend()
         
     | 
| 
      
 416 
     | 
    
         
            +
                            else 1
         
     | 
| 
      
 417 
     | 
    
         
            +
                        )
         
     | 
| 
      
 418 
     | 
    
         
            +
                        q_len_end = q_len_start + q_len
         
     | 
| 
      
 419 
     | 
    
         
            +
             
     | 
| 
      
 420 
     | 
    
         
            +
                        q_fp8_partial = q_fp8[q_len_start:q_len_end]
         
     | 
| 
      
 421 
     | 
    
         
            +
                        q_fp8_partial = q_fp8_partial.unsqueeze(0).contiguous()
         
     | 
| 
      
 422 
     | 
    
         
            +
             
     | 
| 
      
 423 
     | 
    
         
            +
                        weights_partial = weights[q_len_start:q_len_end]
         
     | 
| 
      
 424 
     | 
    
         
            +
                        weights_partial = weights_partial.squeeze(-1).unsqueeze(0).contiguous()
         
     | 
| 
      
 425 
     | 
    
         
            +
             
     | 
| 
      
 426 
     | 
    
         
            +
                        k_fp8 = forward_batch.token_to_kv_pool.get_index_k_continuous(
         
     | 
| 
      
 427 
     | 
    
         
            +
                            layer_id,
         
     | 
| 
      
 428 
     | 
    
         
            +
                            seq_len,
         
     | 
| 
      
 429 
     | 
    
         
            +
                            block_tables[i],
         
     | 
| 
      
 430 
     | 
    
         
            +
                        )
         
     | 
| 
      
 431 
     | 
    
         
            +
                        k_scale = forward_batch.token_to_kv_pool.get_index_k_scale_continuous(
         
     | 
| 
      
 432 
     | 
    
         
            +
                            layer_id,
         
     | 
| 
      
 433 
     | 
    
         
            +
                            seq_len,
         
     | 
| 
      
 434 
     | 
    
         
            +
                            block_tables[i],
         
     | 
| 
      
 435 
     | 
    
         
            +
                        )
         
     | 
| 
      
 436 
     | 
    
         
            +
             
     | 
| 
      
 437 
     | 
    
         
            +
                        k_fp8 = k_fp8.view(torch.float8_e4m3fn).unsqueeze(0).contiguous()
         
     | 
| 
      
 438 
     | 
    
         
            +
                        k_scale = k_scale.view(torch.float32).squeeze(-1).unsqueeze(0).contiguous()
         
     | 
| 
      
 439 
     | 
    
         
            +
             
     | 
| 
      
 440 
     | 
    
         
            +
                        index_score = fp8_index(
         
     | 
| 
      
 441 
     | 
    
         
            +
                            q_fp8_partial,
         
     | 
| 
      
 442 
     | 
    
         
            +
                            weights_partial,
         
     | 
| 
      
 443 
     | 
    
         
            +
                            k_fp8,
         
     | 
| 
      
 444 
     | 
    
         
            +
                            k_scale,
         
     | 
| 
      
 445 
     | 
    
         
            +
                        )
         
     | 
| 
      
 446 
     | 
    
         
            +
                        end_pos = seq_len
         
     | 
| 
      
 447 
     | 
    
         
            +
                        topk_indices = index_score.topk(min(topk, end_pos), dim=-1)[1].squeeze(0)
         
     | 
| 
      
 448 
     | 
    
         
            +
             
     | 
| 
      
 449 
     | 
    
         
            +
                        pad_len = align(topk_indices.shape[-1], 2048) - topk_indices.shape[-1]
         
     | 
| 
      
 450 
     | 
    
         
            +
                        topk_indices = torch.nn.functional.pad(
         
     | 
| 
      
 451 
     | 
    
         
            +
                            topk_indices, (0, pad_len), "constant", -1
         
     | 
| 
      
 452 
     | 
    
         
            +
                        )
         
     | 
| 
      
 453 
     | 
    
         
            +
             
     | 
| 
      
 454 
     | 
    
         
            +
                        topk_indices_list.append(topk_indices)
         
     | 
| 
      
 455 
     | 
    
         
            +
             
     | 
| 
      
 456 
     | 
    
         
            +
                        q_len_start = q_len_end
         
     | 
| 
      
 457 
     | 
    
         
            +
             
     | 
| 
      
 458 
     | 
    
         
            +
                    topk_indices = torch.cat(topk_indices_list, dim=0)
         
     | 
| 
      
 459 
     | 
    
         
            +
                    return topk_indices
         
     | 
| 
      
 460 
     | 
    
         
            +
             
     | 
| 
      
 461 
     | 
    
         
            +
                def forward_cuda(
         
     | 
| 
      
 462 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 463 
     | 
    
         
            +
                    x: torch.Tensor,
         
     | 
| 
      
 464 
     | 
    
         
            +
                    q_lora: torch.Tensor,
         
     | 
| 
      
 465 
     | 
    
         
            +
                    positions: torch.Tensor,
         
     | 
| 
      
 466 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 467 
     | 
    
         
            +
                    layer_id: int,
         
     | 
| 
      
 468 
     | 
    
         
            +
                ) -> Optional[torch.Tensor]:
         
     | 
| 
      
 469 
     | 
    
         
            +
                    if is_hip():
         
     | 
| 
      
 470 
     | 
    
         
            +
                        from sglang.srt.layers.attention.nsa.tilelang_kernel import act_quant
         
     | 
| 
      
 471 
     | 
    
         
            +
                    elif not is_npu():
         
     | 
| 
      
 472 
     | 
    
         
            +
                        from sglang.srt.layers.attention.nsa.triton_kernel import act_quant
         
     | 
| 
      
 473 
     | 
    
         
            +
             
     | 
| 
      
 474 
     | 
    
         
            +
                    if TYPE_CHECKING:
         
     | 
| 
      
 475 
     | 
    
         
            +
                        assert isinstance(forward_batch.token_to_kv_pool, NSATokenToKVPool)
         
     | 
| 
      
 476 
     | 
    
         
            +
             
     | 
| 
      
 477 
     | 
    
         
            +
                    metadata = forward_batch.attn_backend.get_indexer_metadata(
         
     | 
| 
      
 478 
     | 
    
         
            +
                        layer_id, forward_batch
         
     | 
| 
      
 479 
     | 
    
         
            +
                    )
         
     | 
| 
      
 480 
     | 
    
         
            +
             
     | 
| 
      
 481 
     | 
    
         
            +
                    enable_dual_stream = (
         
     | 
| 
      
 482 
     | 
    
         
            +
                        NSA_DUAL_STREAM
         
     | 
| 
      
 483 
     | 
    
         
            +
                        and self.alt_stream is not None
         
     | 
| 
      
 484 
     | 
    
         
            +
                        and get_is_capture_mode()
         
     | 
| 
      
 485 
     | 
    
         
            +
                        and q_lora.shape[0] > 0
         
     | 
| 
      
 486 
     | 
    
         
            +
                        and q_lora.shape[0] <= DUAL_STREAM_TOKEN_THRESHOLD
         
     | 
| 
      
 487 
     | 
    
         
            +
                    )
         
     | 
| 
      
 488 
     | 
    
         
            +
             
     | 
| 
      
 489 
     | 
    
         
            +
                    # skip NSA if attention backend choose to skip this batch
         
     | 
| 
      
 490 
     | 
    
         
            +
                    if metadata is None:
         
     | 
| 
      
 491 
     | 
    
         
            +
                        return None
         
     | 
| 
      
 492 
     | 
    
         
            +
             
     | 
| 
      
 493 
     | 
    
         
            +
                    query, key = self._get_q_k_bf16(q_lora, x, positions, enable_dual_stream)
         
     | 
| 
      
 494 
     | 
    
         
            +
             
     | 
| 
      
 495 
     | 
    
         
            +
                    if enable_dual_stream:
         
     | 
| 
      
 496 
     | 
    
         
            +
                        current_stream = torch.cuda.current_stream()
         
     | 
| 
      
 497 
     | 
    
         
            +
                        self.alt_stream.wait_stream(current_stream)
         
     | 
| 
      
 498 
     | 
    
         
            +
             
     | 
| 
      
 499 
     | 
    
         
            +
                        q_fp8, q_scale = act_quant(query, self.block_size, self.scale_fmt)
         
     | 
| 
      
 500 
     | 
    
         
            +
                        with torch.cuda.stream(self.alt_stream):
         
     | 
| 
      
 501 
     | 
    
         
            +
                            k_fp8, k_scale = act_quant(key, self.block_size, self.scale_fmt)
         
     | 
| 
      
 502 
     | 
    
         
            +
                        current_stream.wait_stream(self.alt_stream)
         
     | 
| 
      
 503 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 504 
     | 
    
         
            +
                        q_fp8, q_scale = act_quant(query, self.block_size, self.scale_fmt)
         
     | 
| 
      
 505 
     | 
    
         
            +
                        k_fp8, k_scale = act_quant(key, self.block_size, self.scale_fmt)
         
     | 
| 
      
 506 
     | 
    
         
            +
             
     | 
| 
      
 507 
     | 
    
         
            +
                    # k_fp8: (seq_len, head_dim) fp8_e4m3fn
         
     | 
| 
      
 508 
     | 
    
         
            +
                    # k_buffer: (num_total_tokens + page_size, head_dim) fp8_e4m3fn
         
     | 
| 
      
 509 
     | 
    
         
            +
                    # k_scale: (seq_len, head_dim // block_size = 1) fp8_e4m3fn
         
     | 
| 
      
 510 
     | 
    
         
            +
                    # k_scale_cache: (num_total_tokens + page_size, head_dim // block_size = 1) fp8_e4m3fn
         
     | 
| 
      
 511 
     | 
    
         
            +
                    if not forward_batch.out_cache_loc.is_contiguous():
         
     | 
| 
      
 512 
     | 
    
         
            +
                        forward_batch.out_cache_loc = forward_batch.out_cache_loc.contiguous()
         
     | 
| 
      
 513 
     | 
    
         
            +
                    forward_batch.token_to_kv_pool.set_index_k_and_scale_buffer(
         
     | 
| 
      
 514 
     | 
    
         
            +
                        layer_id=layer_id,
         
     | 
| 
      
 515 
     | 
    
         
            +
                        loc=forward_batch.out_cache_loc,
         
     | 
| 
      
 516 
     | 
    
         
            +
                        index_k=k_fp8,
         
     | 
| 
      
 517 
     | 
    
         
            +
                        index_k_scale=k_scale,
         
     | 
| 
      
 518 
     | 
    
         
            +
                    )
         
     | 
| 
      
 519 
     | 
    
         
            +
             
     | 
| 
      
 520 
     | 
    
         
            +
                    weights = self._get_logits_head_gate(x, q_scale)
         
     | 
| 
      
 521 
     | 
    
         
            +
             
     | 
| 
      
 522 
     | 
    
         
            +
                    if is_cuda():
         
     | 
| 
      
 523 
     | 
    
         
            +
                        assert forward_batch.seq_lens_cpu is not None
         
     | 
| 
      
 524 
     | 
    
         
            +
                        if len(forward_batch.seq_lens_cpu) == 0:
         
     | 
| 
      
 525 
     | 
    
         
            +
                            # this seems b/c max-pad, no worries?
         
     | 
| 
      
 526 
     | 
    
         
            +
                            # if x.shape[0] != 0:
         
     | 
| 
      
 527 
     | 
    
         
            +
                            #     print(
         
     | 
| 
      
 528 
     | 
    
         
            +
                            #         "HACK: seq_lens empty but x not empty, hackily return all-invalid topk_result"
         
     | 
| 
      
 529 
     | 
    
         
            +
                            #     )
         
     | 
| 
      
 530 
     | 
    
         
            +
                            return torch.full(
         
     | 
| 
      
 531 
     | 
    
         
            +
                                (x.shape[0], self.index_topk), -1, dtype=torch.int, device="cuda"
         
     | 
| 
      
 532 
     | 
    
         
            +
                            )
         
     | 
| 
      
 533 
     | 
    
         
            +
             
     | 
| 
      
 534 
     | 
    
         
            +
                        if (
         
     | 
| 
      
 535 
     | 
    
         
            +
                            forward_batch.forward_mode.is_decode_or_idle()
         
     | 
| 
      
 536 
     | 
    
         
            +
                            or forward_batch.forward_mode.is_target_verify()
         
     | 
| 
      
 537 
     | 
    
         
            +
                        ):
         
     | 
| 
      
 538 
     | 
    
         
            +
                            topk_result = self._get_topk_paged(
         
     | 
| 
      
 539 
     | 
    
         
            +
                                forward_batch, layer_id, q_fp8, weights, metadata
         
     | 
| 
      
 540 
     | 
    
         
            +
                            )
         
     | 
| 
      
 541 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 542 
     | 
    
         
            +
                            topk_result = self._get_topk_ragged(
         
     | 
| 
      
 543 
     | 
    
         
            +
                                forward_batch, layer_id, q_fp8, weights, metadata
         
     | 
| 
      
 544 
     | 
    
         
            +
                            )
         
     | 
| 
      
 545 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 546 
     | 
    
         
            +
                        topk_result = self.forward_indexer(
         
     | 
| 
      
 547 
     | 
    
         
            +
                            q_fp8.contiguous(),
         
     | 
| 
      
 548 
     | 
    
         
            +
                            weights,
         
     | 
| 
      
 549 
     | 
    
         
            +
                            forward_batch,
         
     | 
| 
      
 550 
     | 
    
         
            +
                            topk=self.index_topk,
         
     | 
| 
      
 551 
     | 
    
         
            +
                            layer_id=layer_id,
         
     | 
| 
      
 552 
     | 
    
         
            +
                        )
         
     | 
| 
      
 553 
     | 
    
         
            +
                    return topk_result
         
     | 
| 
      
 554 
     | 
    
         
            +
             
     | 
| 
      
 555 
     | 
    
         
            +
                def forward_npu(
         
     | 
| 
      
 556 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 557 
     | 
    
         
            +
                    x: torch.Tensor,
         
     | 
| 
      
 558 
     | 
    
         
            +
                    q_lora: torch.Tensor,
         
     | 
| 
      
 559 
     | 
    
         
            +
                    positions: torch.Tensor,
         
     | 
| 
      
 560 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 561 
     | 
    
         
            +
                    layer_id: int,
         
     | 
| 
      
 562 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 563 
     | 
    
         
            +
                    import custom_ops  # noqa: F401
         
     | 
| 
      
 564 
     | 
    
         
            +
                    import torch_npu
         
     | 
| 
      
 565 
     | 
    
         
            +
             
     | 
| 
      
 566 
     | 
    
         
            +
                    from sglang.srt.layers.dp_attention import (
         
     | 
| 
      
 567 
     | 
    
         
            +
                        get_attention_tp_rank,
         
     | 
| 
      
 568 
     | 
    
         
            +
                        get_attention_tp_size,
         
     | 
| 
      
 569 
     | 
    
         
            +
                    )
         
     | 
| 
      
 570 
     | 
    
         
            +
                    from sglang.srt.utils import get_bool_env_var
         
     | 
| 
      
 571 
     | 
    
         
            +
             
     | 
| 
      
 572 
     | 
    
         
            +
                    if forward_batch.attn_backend.forward_metadata.seq_lens_cpu_int is None:
         
     | 
| 
      
 573 
     | 
    
         
            +
                        actual_seq_lengths_kv = forward_batch.attn_backend.forward_metadata.seq_lens
         
     | 
| 
      
 574 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 575 
     | 
    
         
            +
                        actual_seq_lengths_kv = (
         
     | 
| 
      
 576 
     | 
    
         
            +
                            forward_batch.attn_backend.forward_metadata.seq_lens_cpu_int
         
     | 
| 
      
 577 
     | 
    
         
            +
                        )
         
     | 
| 
      
 578 
     | 
    
         
            +
                    enable_index_cp = (
         
     | 
| 
      
 579 
     | 
    
         
            +
                        get_bool_env_var("SGLANG_USE_AG_AFTER_QLORA") and layer_id >= 4
         
     | 
| 
      
 580 
     | 
    
         
            +
                    )
         
     | 
| 
      
 581 
     | 
    
         
            +
                    is_prefill = forward_batch.forward_mode.is_extend()
         
     | 
| 
      
 582 
     | 
    
         
            +
             
     | 
| 
      
 583 
     | 
    
         
            +
                    attention_tp_rank = get_attention_tp_rank()
         
     | 
| 
      
 584 
     | 
    
         
            +
                    attention_tp_size = get_attention_tp_size()
         
     | 
| 
      
 585 
     | 
    
         
            +
             
     | 
| 
      
 586 
     | 
    
         
            +
                    cos_sin = self.rotary_emb.cos_sin_cache[positions]
         
     | 
| 
      
 587 
     | 
    
         
            +
                    cos, sin = cos_sin.chunk(2, dim=-1)
         
     | 
| 
      
 588 
     | 
    
         
            +
                    cos = cos.repeat(1, 2).view(-1, 1, 1, self.rope_head_dim)
         
     | 
| 
      
 589 
     | 
    
         
            +
                    sin = sin.repeat(1, 2).view(-1, 1, 1, self.rope_head_dim)
         
     | 
| 
      
 590 
     | 
    
         
            +
                    if is_prefill and enable_index_cp:
         
     | 
| 
      
 591 
     | 
    
         
            +
                        slice_length = cos.shape[0] // attention_tp_size
         
     | 
| 
      
 592 
     | 
    
         
            +
                        cos = cos[
         
     | 
| 
      
 593 
     | 
    
         
            +
                            slice_length
         
     | 
| 
      
 594 
     | 
    
         
            +
                            * attention_tp_rank : slice_length
         
     | 
| 
      
 595 
     | 
    
         
            +
                            * (attention_tp_rank + 1)
         
     | 
| 
      
 596 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 597 
     | 
    
         
            +
                        sin = sin[
         
     | 
| 
      
 598 
     | 
    
         
            +
                            slice_length
         
     | 
| 
      
 599 
     | 
    
         
            +
                            * attention_tp_rank : slice_length
         
     | 
| 
      
 600 
     | 
    
         
            +
                            * (attention_tp_rank + 1)
         
     | 
| 
      
 601 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 602 
     | 
    
         
            +
             
     | 
| 
      
 603 
     | 
    
         
            +
                    slot_mapping = forward_batch.out_cache_loc
         
     | 
| 
      
 604 
     | 
    
         
            +
                    block_table = forward_batch.attn_backend.forward_metadata.block_tables
         
     | 
| 
      
 605 
     | 
    
         
            +
             
     | 
| 
      
 606 
     | 
    
         
            +
                    bs = x.shape[0]
         
     | 
| 
      
 607 
     | 
    
         
            +
             
     | 
| 
      
 608 
     | 
    
         
            +
                    q = self.wq_b(q_lora)[0]  # [bs, 1536] @ [1536, 64 * 128] = [bs, 64 * 128]
         
     | 
| 
      
 609 
     | 
    
         
            +
                    q = q.view(bs, self.n_heads, self.head_dim)  # [bs, 64, 128]
         
     | 
| 
      
 610 
     | 
    
         
            +
                    q_pe, q_nope = torch.split(
         
     | 
| 
      
 611 
     | 
    
         
            +
                        q,
         
     | 
| 
      
 612 
     | 
    
         
            +
                        [self.rope_head_dim, self.head_dim - self.rope_head_dim],
         
     | 
| 
      
 613 
     | 
    
         
            +
                        dim=-1,
         
     | 
| 
      
 614 
     | 
    
         
            +
                    )  # [bs, 64, 64 + 64]
         
     | 
| 
      
 615 
     | 
    
         
            +
             
     | 
| 
      
 616 
     | 
    
         
            +
                    q_pe = q_pe.view(bs, self.n_heads, 1, self.rope_head_dim)
         
     | 
| 
      
 617 
     | 
    
         
            +
                    q_pe = torch_npu.npu_interleave_rope(q_pe, cos, sin).view(
         
     | 
| 
      
 618 
     | 
    
         
            +
                        bs, self.n_heads, self.rope_head_dim
         
     | 
| 
      
 619 
     | 
    
         
            +
                    )  # [bs, n, d]
         
     | 
| 
      
 620 
     | 
    
         
            +
                    q = torch.cat([q_pe, q_nope], dim=-1)
         
     | 
| 
      
 621 
     | 
    
         
            +
             
     | 
| 
      
 622 
     | 
    
         
            +
                    k_proj = self.wk(x)[0]  # [b, s, 7168] @ [7168, 128] = [b, s, 128]
         
     | 
| 
      
 623 
     | 
    
         
            +
                    k = self.k_norm(k_proj)
         
     | 
| 
      
 624 
     | 
    
         
            +
                    k_pe, k_nope = torch.split(
         
     | 
| 
      
 625 
     | 
    
         
            +
                        k,
         
     | 
| 
      
 626 
     | 
    
         
            +
                        [self.rope_head_dim, self.head_dim - self.rope_head_dim],
         
     | 
| 
      
 627 
     | 
    
         
            +
                        dim=-1,
         
     | 
| 
      
 628 
     | 
    
         
            +
                    )  # [bs, 64 + 64]
         
     | 
| 
      
 629 
     | 
    
         
            +
             
     | 
| 
      
 630 
     | 
    
         
            +
                    k_pe = k_pe.view(-1, 1, 1, self.rope_head_dim)
         
     | 
| 
      
 631 
     | 
    
         
            +
                    k_pe = torch_npu.npu_interleave_rope(k_pe, cos, sin).view(
         
     | 
| 
      
 632 
     | 
    
         
            +
                        bs, 1, self.rope_head_dim
         
     | 
| 
      
 633 
     | 
    
         
            +
                    )  # [bs, 1, d]
         
     | 
| 
      
 634 
     | 
    
         
            +
                    k = torch.cat([k_pe, k_nope.unsqueeze(1)], dim=-1)  # [bs, 1, 128]
         
     | 
| 
      
 635 
     | 
    
         
            +
             
     | 
| 
      
 636 
     | 
    
         
            +
                    if is_prefill and enable_index_cp:
         
     | 
| 
      
 637 
     | 
    
         
            +
                        k, local_k = (
         
     | 
| 
      
 638 
     | 
    
         
            +
                            torch.empty(
         
     | 
| 
      
 639 
     | 
    
         
            +
                                (k.shape[0] * attention_tp_size, k.shape[1], k.shape[2]),
         
     | 
| 
      
 640 
     | 
    
         
            +
                                dtype=k.dtype,
         
     | 
| 
      
 641 
     | 
    
         
            +
                                device=k.device,
         
     | 
| 
      
 642 
     | 
    
         
            +
                            ),
         
     | 
| 
      
 643 
     | 
    
         
            +
                            k,
         
     | 
| 
      
 644 
     | 
    
         
            +
                        )
         
     | 
| 
      
 645 
     | 
    
         
            +
                        get_attention_tp_group().all_gather_into_tensor(k, local_k)
         
     | 
| 
      
 646 
     | 
    
         
            +
             
     | 
| 
      
 647 
     | 
    
         
            +
                    forward_batch.token_to_kv_pool.set_index_k_buffer(layer_id, slot_mapping, k)
         
     | 
| 
      
 648 
     | 
    
         
            +
             
     | 
| 
      
 649 
     | 
    
         
            +
                    indexer_input = {}
         
     | 
| 
      
 650 
     | 
    
         
            +
                    if is_prefill:
         
     | 
| 
      
 651 
     | 
    
         
            +
                        actual_seq_lengths_kv = forward_batch.seq_lens.to(device=q.device)
         
     | 
| 
      
 652 
     | 
    
         
            +
                        actual_seq_lengths_q = forward_batch.seq_lens.cumsum(dim=0).to(
         
     | 
| 
      
 653 
     | 
    
         
            +
                            device=q.device
         
     | 
| 
      
 654 
     | 
    
         
            +
                        )
         
     | 
| 
      
 655 
     | 
    
         
            +
                        if enable_index_cp:
         
     | 
| 
      
 656 
     | 
    
         
            +
                            actual_seq_lengths_q -= bs * attention_tp_rank
         
     | 
| 
      
 657 
     | 
    
         
            +
                            actual_seq_lengths_q = torch.max(
         
     | 
| 
      
 658 
     | 
    
         
            +
                                actual_seq_lengths_q,
         
     | 
| 
      
 659 
     | 
    
         
            +
                                torch.zeros_like(actual_seq_lengths_q).to(
         
     | 
| 
      
 660 
     | 
    
         
            +
                                    device=actual_seq_lengths_q.device
         
     | 
| 
      
 661 
     | 
    
         
            +
                                ),
         
     | 
| 
      
 662 
     | 
    
         
            +
                            )
         
     | 
| 
      
 663 
     | 
    
         
            +
                            actual_seq_lengths_q = torch.min(
         
     | 
| 
      
 664 
     | 
    
         
            +
                                actual_seq_lengths_q,
         
     | 
| 
      
 665 
     | 
    
         
            +
                                torch.full(actual_seq_lengths_q.shape, bs).to(
         
     | 
| 
      
 666 
     | 
    
         
            +
                                    device=actual_seq_lengths_q.device
         
     | 
| 
      
 667 
     | 
    
         
            +
                                ),
         
     | 
| 
      
 668 
     | 
    
         
            +
                            )
         
     | 
| 
      
 669 
     | 
    
         
            +
             
     | 
| 
      
 670 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 671 
     | 
    
         
            +
                        if forward_batch.attn_backend.forward_metadata.actual_seq_lengths_q is None:
         
     | 
| 
      
 672 
     | 
    
         
            +
                            actual_seq_lengths_q = torch.tensor(
         
     | 
| 
      
 673 
     | 
    
         
            +
                                [1 + i * 1 for i in range(bs)], dtype=torch.int32, device=k.device
         
     | 
| 
      
 674 
     | 
    
         
            +
                            )
         
     | 
| 
      
 675 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 676 
     | 
    
         
            +
                            actual_seq_lengths_q = (
         
     | 
| 
      
 677 
     | 
    
         
            +
                                forward_batch.attn_backend.forward_metadata.actual_seq_lengths_q
         
     | 
| 
      
 678 
     | 
    
         
            +
                            )
         
     | 
| 
      
 679 
     | 
    
         
            +
             
     | 
| 
      
 680 
     | 
    
         
            +
                    past_key_states = forward_batch.token_to_kv_pool.get_index_k_buffer(layer_id)
         
     | 
| 
      
 681 
     | 
    
         
            +
             
     | 
| 
      
 682 
     | 
    
         
            +
                    x = x.view(-1, self.hidden_size)
         
     | 
| 
      
 683 
     | 
    
         
            +
                    weights = self.weights_proj(x)[0]
         
     | 
| 
      
 684 
     | 
    
         
            +
                    block_table = (
         
     | 
| 
      
 685 
     | 
    
         
            +
                        block_table[: actual_seq_lengths_q.size()[0]] if is_prefill else block_table
         
     | 
| 
      
 686 
     | 
    
         
            +
                    )
         
     | 
| 
      
 687 
     | 
    
         
            +
             
     | 
| 
      
 688 
     | 
    
         
            +
                    topk_indices = torch.ops.custom.npu_lightning_indexer(
         
     | 
| 
      
 689 
     | 
    
         
            +
                        query=q.view(-1, self.n_heads, self.head_dim),
         
     | 
| 
      
 690 
     | 
    
         
            +
                        key=past_key_states,
         
     | 
| 
      
 691 
     | 
    
         
            +
                        weights=weights,
         
     | 
| 
      
 692 
     | 
    
         
            +
                        actual_seq_lengths_query=actual_seq_lengths_q.to(torch.int32),
         
     | 
| 
      
 693 
     | 
    
         
            +
                        actual_seq_lengths_key=actual_seq_lengths_kv.to(k.device).to(torch.int32),
         
     | 
| 
      
 694 
     | 
    
         
            +
                        block_table=block_table,
         
     | 
| 
      
 695 
     | 
    
         
            +
                        layout_query="TND",
         
     | 
| 
      
 696 
     | 
    
         
            +
                        layout_key="PA_BSND",
         
     | 
| 
      
 697 
     | 
    
         
            +
                        sparse_count=self.index_topk,
         
     | 
| 
      
 698 
     | 
    
         
            +
                        sparse_mode=3,
         
     | 
| 
      
 699 
     | 
    
         
            +
                    )
         
     | 
| 
      
 700 
     | 
    
         
            +
             
     | 
| 
      
 701 
     | 
    
         
            +
                    if is_prefill and enable_index_cp:
         
     | 
| 
      
 702 
     | 
    
         
            +
                        topk_indices, local_topk_indices = (
         
     | 
| 
      
 703 
     | 
    
         
            +
                            torch.empty(
         
     | 
| 
      
 704 
     | 
    
         
            +
                                (
         
     | 
| 
      
 705 
     | 
    
         
            +
                                    topk_indices.shape[0] * attention_tp_size,
         
     | 
| 
      
 706 
     | 
    
         
            +
                                    topk_indices.shape[1],
         
     | 
| 
      
 707 
     | 
    
         
            +
                                    topk_indices.shape[2],
         
     | 
| 
      
 708 
     | 
    
         
            +
                                ),
         
     | 
| 
      
 709 
     | 
    
         
            +
                                dtype=topk_indices.dtype,
         
     | 
| 
      
 710 
     | 
    
         
            +
                                device=topk_indices.device,
         
     | 
| 
      
 711 
     | 
    
         
            +
                            ),
         
     | 
| 
      
 712 
     | 
    
         
            +
                            topk_indices,
         
     | 
| 
      
 713 
     | 
    
         
            +
                        )
         
     | 
| 
      
 714 
     | 
    
         
            +
                        get_attention_tp_group().all_gather_into_tensor(
         
     | 
| 
      
 715 
     | 
    
         
            +
                            topk_indices, local_topk_indices
         
     | 
| 
      
 716 
     | 
    
         
            +
                        )
         
     | 
| 
      
 717 
     | 
    
         
            +
             
     | 
| 
      
 718 
     | 
    
         
            +
                    return topk_indices
         
     |