sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (482) hide show
  1. sglang/bench_one_batch.py +54 -37
  2. sglang/bench_one_batch_server.py +340 -34
  3. sglang/bench_serving.py +340 -159
  4. sglang/check_env.py +1 -1
  5. sglang/compile_deep_gemm.py +6 -2
  6. sglang/global_config.py +1 -25
  7. sglang/lang/api.py +6 -0
  8. sglang/lang/backend/runtime_endpoint.py +1 -1
  9. sglang/lang/interpreter.py +1 -0
  10. sglang/lang/ir.py +13 -0
  11. sglang/launch_server.py +9 -2
  12. sglang/profiler.py +20 -3
  13. sglang/srt/_custom_ops.py +1 -1
  14. sglang/srt/batch_invariant_ops/__init__.py +27 -0
  15. sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
  16. sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
  17. sglang/srt/compilation/backend.py +437 -0
  18. sglang/srt/compilation/compilation_config.py +20 -0
  19. sglang/srt/compilation/compilation_counter.py +47 -0
  20. sglang/srt/compilation/compile.py +210 -0
  21. sglang/srt/compilation/compiler_interface.py +503 -0
  22. sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
  23. sglang/srt/compilation/fix_functionalization.py +134 -0
  24. sglang/srt/compilation/fx_utils.py +83 -0
  25. sglang/srt/compilation/inductor_pass.py +140 -0
  26. sglang/srt/compilation/pass_manager.py +66 -0
  27. sglang/srt/compilation/piecewise_context_manager.py +40 -0
  28. sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
  29. sglang/srt/configs/__init__.py +8 -0
  30. sglang/srt/configs/deepseek_ocr.py +262 -0
  31. sglang/srt/configs/deepseekvl2.py +194 -96
  32. sglang/srt/configs/dots_ocr.py +64 -0
  33. sglang/srt/configs/dots_vlm.py +2 -7
  34. sglang/srt/configs/falcon_h1.py +309 -0
  35. sglang/srt/configs/load_config.py +33 -2
  36. sglang/srt/configs/mamba_utils.py +117 -0
  37. sglang/srt/configs/model_config.py +284 -118
  38. sglang/srt/configs/modelopt_config.py +30 -0
  39. sglang/srt/configs/nemotron_h.py +286 -0
  40. sglang/srt/configs/olmo3.py +105 -0
  41. sglang/srt/configs/points_v15_chat.py +29 -0
  42. sglang/srt/configs/qwen3_next.py +11 -47
  43. sglang/srt/configs/qwen3_omni.py +613 -0
  44. sglang/srt/configs/qwen3_vl.py +576 -0
  45. sglang/srt/connector/remote_instance.py +1 -1
  46. sglang/srt/constrained/base_grammar_backend.py +6 -1
  47. sglang/srt/constrained/llguidance_backend.py +5 -0
  48. sglang/srt/constrained/outlines_backend.py +1 -1
  49. sglang/srt/constrained/outlines_jump_forward.py +1 -1
  50. sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
  51. sglang/srt/constrained/utils.py +12 -0
  52. sglang/srt/constrained/xgrammar_backend.py +26 -15
  53. sglang/srt/debug_utils/dumper.py +10 -3
  54. sglang/srt/disaggregation/ascend/conn.py +2 -2
  55. sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
  56. sglang/srt/disaggregation/base/conn.py +17 -4
  57. sglang/srt/disaggregation/common/conn.py +268 -98
  58. sglang/srt/disaggregation/decode.py +172 -39
  59. sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
  60. sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
  61. sglang/srt/disaggregation/fake/conn.py +11 -3
  62. sglang/srt/disaggregation/mooncake/conn.py +203 -555
  63. sglang/srt/disaggregation/nixl/conn.py +217 -63
  64. sglang/srt/disaggregation/prefill.py +113 -270
  65. sglang/srt/disaggregation/utils.py +36 -5
  66. sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
  67. sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
  68. sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
  69. sglang/srt/distributed/device_communicators/pynccl.py +24 -12
  70. sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
  71. sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
  72. sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
  73. sglang/srt/distributed/naive_distributed.py +5 -4
  74. sglang/srt/distributed/parallel_state.py +203 -97
  75. sglang/srt/elastic_ep/elastic_ep.py +74 -0
  76. sglang/srt/entrypoints/context.py +3 -2
  77. sglang/srt/entrypoints/engine.py +85 -65
  78. sglang/srt/entrypoints/grpc_server.py +632 -305
  79. sglang/srt/entrypoints/harmony_utils.py +2 -2
  80. sglang/srt/entrypoints/http_server.py +169 -17
  81. sglang/srt/entrypoints/http_server_engine.py +1 -7
  82. sglang/srt/entrypoints/openai/protocol.py +327 -34
  83. sglang/srt/entrypoints/openai/serving_base.py +74 -8
  84. sglang/srt/entrypoints/openai/serving_chat.py +202 -118
  85. sglang/srt/entrypoints/openai/serving_classify.py +204 -0
  86. sglang/srt/entrypoints/openai/serving_completions.py +20 -4
  87. sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
  88. sglang/srt/entrypoints/openai/serving_responses.py +47 -2
  89. sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
  90. sglang/srt/environ.py +323 -0
  91. sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
  92. sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
  93. sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
  94. sglang/srt/eplb/expert_distribution.py +3 -4
  95. sglang/srt/eplb/expert_location.py +30 -5
  96. sglang/srt/eplb/expert_location_dispatch.py +2 -2
  97. sglang/srt/eplb/expert_location_updater.py +2 -2
  98. sglang/srt/function_call/base_format_detector.py +17 -18
  99. sglang/srt/function_call/function_call_parser.py +21 -16
  100. sglang/srt/function_call/glm4_moe_detector.py +4 -8
  101. sglang/srt/function_call/gpt_oss_detector.py +24 -1
  102. sglang/srt/function_call/json_array_parser.py +61 -0
  103. sglang/srt/function_call/kimik2_detector.py +17 -4
  104. sglang/srt/function_call/utils.py +98 -7
  105. sglang/srt/grpc/compile_proto.py +245 -0
  106. sglang/srt/grpc/grpc_request_manager.py +915 -0
  107. sglang/srt/grpc/health_servicer.py +189 -0
  108. sglang/srt/grpc/scheduler_launcher.py +181 -0
  109. sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
  110. sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
  111. sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
  112. sglang/srt/layers/activation.py +11 -7
  113. sglang/srt/layers/attention/aiter_backend.py +17 -18
  114. sglang/srt/layers/attention/ascend_backend.py +125 -10
  115. sglang/srt/layers/attention/attention_registry.py +226 -0
  116. sglang/srt/layers/attention/base_attn_backend.py +32 -4
  117. sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
  118. sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
  119. sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
  120. sglang/srt/layers/attention/fla/chunk.py +0 -1
  121. sglang/srt/layers/attention/fla/chunk_o.py +1 -1
  122. sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
  123. sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
  124. sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
  125. sglang/srt/layers/attention/fla/index.py +0 -2
  126. sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
  127. sglang/srt/layers/attention/fla/utils.py +0 -3
  128. sglang/srt/layers/attention/fla/wy_fast.py +0 -2
  129. sglang/srt/layers/attention/flashattention_backend.py +52 -15
  130. sglang/srt/layers/attention/flashinfer_backend.py +357 -212
  131. sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
  132. sglang/srt/layers/attention/flashmla_backend.py +9 -7
  133. sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
  134. sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
  135. sglang/srt/layers/attention/intel_amx_backend.py +1 -1
  136. sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
  137. sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
  138. sglang/srt/layers/attention/mamba/mamba.py +514 -1
  139. sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
  140. sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
  141. sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
  142. sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
  143. sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
  144. sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
  145. sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
  146. sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
  147. sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
  148. sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
  149. sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
  150. sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
  151. sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
  152. sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
  153. sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
  154. sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
  155. sglang/srt/layers/attention/nsa/transform_index.py +144 -0
  156. sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
  157. sglang/srt/layers/attention/nsa/utils.py +23 -0
  158. sglang/srt/layers/attention/nsa_backend.py +1201 -0
  159. sglang/srt/layers/attention/tbo_backend.py +6 -6
  160. sglang/srt/layers/attention/torch_flex_backend.py +325 -0
  161. sglang/srt/layers/attention/triton_backend.py +249 -42
  162. sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
  163. sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
  164. sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
  165. sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
  166. sglang/srt/layers/attention/utils.py +11 -7
  167. sglang/srt/layers/attention/vision.py +61 -3
  168. sglang/srt/layers/attention/wave_backend.py +4 -4
  169. sglang/srt/layers/attention/xpu_backend.py +1028 -0
  170. sglang/srt/layers/communicator.py +19 -7
  171. sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
  172. sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
  173. sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
  174. sglang/srt/layers/dp_attention.py +28 -1
  175. sglang/srt/layers/elementwise.py +3 -1
  176. sglang/srt/layers/layernorm.py +47 -15
  177. sglang/srt/layers/linear.py +30 -5
  178. sglang/srt/layers/logits_processor.py +161 -18
  179. sglang/srt/layers/modelopt_utils.py +11 -0
  180. sglang/srt/layers/moe/cutlass_moe.py +0 -2
  181. sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
  182. sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
  183. sglang/srt/layers/moe/ep_moe/layer.py +243 -448
  184. sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
  185. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  186. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
  187. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  188. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  189. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  190. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
  191. sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
  192. sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
  193. sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
  194. sglang/srt/layers/moe/moe_runner/runner.py +3 -0
  195. sglang/srt/layers/moe/moe_runner/triton.py +3 -1
  196. sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
  197. sglang/srt/layers/moe/router.py +51 -15
  198. sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
  199. sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
  200. sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
  201. sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
  202. sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
  203. sglang/srt/layers/moe/topk.py +3 -2
  204. sglang/srt/layers/moe/utils.py +27 -1
  205. sglang/srt/layers/parameter.py +23 -6
  206. sglang/srt/layers/quantization/__init__.py +2 -53
  207. sglang/srt/layers/quantization/awq.py +183 -6
  208. sglang/srt/layers/quantization/awq_triton.py +29 -0
  209. sglang/srt/layers/quantization/base_config.py +20 -1
  210. sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
  211. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
  212. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
  213. sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
  214. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
  215. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
  216. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
  217. sglang/srt/layers/quantization/fp8.py +86 -20
  218. sglang/srt/layers/quantization/fp8_kernel.py +55 -10
  219. sglang/srt/layers/quantization/fp8_utils.py +43 -15
  220. sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
  221. sglang/srt/layers/quantization/gptq.py +0 -1
  222. sglang/srt/layers/quantization/int8_kernel.py +18 -2
  223. sglang/srt/layers/quantization/marlin_utils.py +12 -0
  224. sglang/srt/layers/quantization/modelopt_quant.py +141 -81
  225. sglang/srt/layers/quantization/mxfp4.py +17 -34
  226. sglang/srt/layers/quantization/petit.py +1 -1
  227. sglang/srt/layers/quantization/quark/quark.py +3 -1
  228. sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
  229. sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
  230. sglang/srt/layers/quantization/unquant.py +1 -4
  231. sglang/srt/layers/quantization/utils.py +0 -1
  232. sglang/srt/layers/quantization/w4afp8.py +51 -24
  233. sglang/srt/layers/quantization/w8a8_int8.py +45 -27
  234. sglang/srt/layers/radix_attention.py +59 -9
  235. sglang/srt/layers/rotary_embedding.py +750 -46
  236. sglang/srt/layers/sampler.py +84 -16
  237. sglang/srt/layers/sparse_pooler.py +98 -0
  238. sglang/srt/layers/utils.py +23 -1
  239. sglang/srt/layers/vocab_parallel_embedding.py +4 -1
  240. sglang/srt/lora/backend/base_backend.py +3 -3
  241. sglang/srt/lora/backend/chunked_backend.py +348 -0
  242. sglang/srt/lora/backend/triton_backend.py +9 -4
  243. sglang/srt/lora/eviction_policy.py +139 -0
  244. sglang/srt/lora/lora.py +7 -5
  245. sglang/srt/lora/lora_manager.py +33 -7
  246. sglang/srt/lora/lora_registry.py +1 -1
  247. sglang/srt/lora/mem_pool.py +41 -17
  248. sglang/srt/lora/triton_ops/__init__.py +4 -0
  249. sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
  250. sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
  251. sglang/srt/lora/utils.py +7 -5
  252. sglang/srt/managers/cache_controller.py +83 -152
  253. sglang/srt/managers/data_parallel_controller.py +156 -87
  254. sglang/srt/managers/detokenizer_manager.py +51 -24
  255. sglang/srt/managers/io_struct.py +223 -129
  256. sglang/srt/managers/mm_utils.py +49 -10
  257. sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
  258. sglang/srt/managers/multimodal_processor.py +1 -2
  259. sglang/srt/managers/overlap_utils.py +130 -0
  260. sglang/srt/managers/schedule_batch.py +340 -529
  261. sglang/srt/managers/schedule_policy.py +158 -18
  262. sglang/srt/managers/scheduler.py +665 -620
  263. sglang/srt/managers/scheduler_input_blocker.py +1 -1
  264. sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
  265. sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
  266. sglang/srt/managers/scheduler_pp_mixin.py +341 -0
  267. sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
  268. sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
  269. sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
  270. sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
  271. sglang/srt/managers/tokenizer_manager.py +462 -226
  272. sglang/srt/managers/tp_worker.py +217 -156
  273. sglang/srt/managers/utils.py +79 -47
  274. sglang/srt/mem_cache/allocator.py +21 -22
  275. sglang/srt/mem_cache/allocator_ascend.py +42 -28
  276. sglang/srt/mem_cache/base_prefix_cache.py +3 -3
  277. sglang/srt/mem_cache/chunk_cache.py +20 -2
  278. sglang/srt/mem_cache/common.py +480 -0
  279. sglang/srt/mem_cache/evict_policy.py +38 -0
  280. sglang/srt/mem_cache/hicache_storage.py +44 -2
  281. sglang/srt/mem_cache/hiradix_cache.py +134 -34
  282. sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
  283. sglang/srt/mem_cache/memory_pool.py +602 -208
  284. sglang/srt/mem_cache/memory_pool_host.py +134 -183
  285. sglang/srt/mem_cache/multimodal_cache.py +0 -1
  286. sglang/srt/mem_cache/radix_cache.py +263 -78
  287. sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
  288. sglang/srt/mem_cache/storage/__init__.py +10 -0
  289. sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
  290. sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
  291. sglang/srt/mem_cache/storage/backend_factory.py +223 -0
  292. sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
  293. sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
  294. sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
  295. sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
  296. sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
  297. sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
  298. sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
  299. sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
  300. sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
  301. sglang/srt/mem_cache/swa_radix_cache.py +115 -58
  302. sglang/srt/metrics/collector.py +113 -120
  303. sglang/srt/metrics/func_timer.py +3 -8
  304. sglang/srt/metrics/utils.py +8 -1
  305. sglang/srt/model_executor/cpu_graph_runner.py +2 -2
  306. sglang/srt/model_executor/cuda_graph_runner.py +81 -36
  307. sglang/srt/model_executor/forward_batch_info.py +40 -50
  308. sglang/srt/model_executor/model_runner.py +507 -319
  309. sglang/srt/model_executor/npu_graph_runner.py +11 -5
  310. sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
  311. sglang/srt/model_loader/__init__.py +1 -1
  312. sglang/srt/model_loader/loader.py +438 -37
  313. sglang/srt/model_loader/utils.py +0 -1
  314. sglang/srt/model_loader/weight_utils.py +200 -27
  315. sglang/srt/models/apertus.py +2 -3
  316. sglang/srt/models/arcee.py +2 -2
  317. sglang/srt/models/bailing_moe.py +40 -56
  318. sglang/srt/models/bailing_moe_nextn.py +3 -4
  319. sglang/srt/models/bert.py +1 -1
  320. sglang/srt/models/deepseek_nextn.py +25 -4
  321. sglang/srt/models/deepseek_ocr.py +1516 -0
  322. sglang/srt/models/deepseek_v2.py +793 -235
  323. sglang/srt/models/dots_ocr.py +171 -0
  324. sglang/srt/models/dots_vlm.py +0 -1
  325. sglang/srt/models/dots_vlm_vit.py +1 -1
  326. sglang/srt/models/falcon_h1.py +570 -0
  327. sglang/srt/models/gemma3_causal.py +0 -2
  328. sglang/srt/models/gemma3_mm.py +17 -1
  329. sglang/srt/models/gemma3n_mm.py +2 -3
  330. sglang/srt/models/glm4_moe.py +17 -40
  331. sglang/srt/models/glm4_moe_nextn.py +4 -4
  332. sglang/srt/models/glm4v.py +3 -2
  333. sglang/srt/models/glm4v_moe.py +6 -6
  334. sglang/srt/models/gpt_oss.py +12 -35
  335. sglang/srt/models/grok.py +10 -23
  336. sglang/srt/models/hunyuan.py +2 -7
  337. sglang/srt/models/interns1.py +0 -1
  338. sglang/srt/models/kimi_vl.py +1 -7
  339. sglang/srt/models/kimi_vl_moonvit.py +4 -2
  340. sglang/srt/models/llama.py +6 -2
  341. sglang/srt/models/llama_eagle3.py +1 -1
  342. sglang/srt/models/longcat_flash.py +6 -23
  343. sglang/srt/models/longcat_flash_nextn.py +4 -15
  344. sglang/srt/models/mimo.py +2 -13
  345. sglang/srt/models/mimo_mtp.py +1 -2
  346. sglang/srt/models/minicpmo.py +7 -5
  347. sglang/srt/models/mixtral.py +1 -4
  348. sglang/srt/models/mllama.py +1 -1
  349. sglang/srt/models/mllama4.py +27 -6
  350. sglang/srt/models/nemotron_h.py +511 -0
  351. sglang/srt/models/olmo2.py +31 -4
  352. sglang/srt/models/opt.py +5 -5
  353. sglang/srt/models/phi.py +1 -1
  354. sglang/srt/models/phi4mm.py +1 -1
  355. sglang/srt/models/phimoe.py +0 -1
  356. sglang/srt/models/pixtral.py +0 -3
  357. sglang/srt/models/points_v15_chat.py +186 -0
  358. sglang/srt/models/qwen.py +0 -1
  359. sglang/srt/models/qwen2.py +0 -7
  360. sglang/srt/models/qwen2_5_vl.py +5 -5
  361. sglang/srt/models/qwen2_audio.py +2 -15
  362. sglang/srt/models/qwen2_moe.py +70 -4
  363. sglang/srt/models/qwen2_vl.py +6 -3
  364. sglang/srt/models/qwen3.py +18 -3
  365. sglang/srt/models/qwen3_moe.py +50 -38
  366. sglang/srt/models/qwen3_next.py +43 -21
  367. sglang/srt/models/qwen3_next_mtp.py +3 -4
  368. sglang/srt/models/qwen3_omni_moe.py +661 -0
  369. sglang/srt/models/qwen3_vl.py +791 -0
  370. sglang/srt/models/qwen3_vl_moe.py +343 -0
  371. sglang/srt/models/registry.py +15 -3
  372. sglang/srt/models/roberta.py +55 -3
  373. sglang/srt/models/sarashina2_vision.py +268 -0
  374. sglang/srt/models/solar.py +505 -0
  375. sglang/srt/models/starcoder2.py +357 -0
  376. sglang/srt/models/step3_vl.py +3 -5
  377. sglang/srt/models/torch_native_llama.py +9 -2
  378. sglang/srt/models/utils.py +61 -0
  379. sglang/srt/multimodal/processors/base_processor.py +21 -9
  380. sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
  381. sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
  382. sglang/srt/multimodal/processors/dots_vlm.py +2 -4
  383. sglang/srt/multimodal/processors/glm4v.py +1 -5
  384. sglang/srt/multimodal/processors/internvl.py +20 -10
  385. sglang/srt/multimodal/processors/janus_pro.py +0 -1
  386. sglang/srt/multimodal/processors/mllama4.py +0 -8
  387. sglang/srt/multimodal/processors/phi4mm.py +0 -1
  388. sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
  389. sglang/srt/multimodal/processors/qwen_vl.py +83 -17
  390. sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
  391. sglang/srt/multimodal/processors/step3_vl.py +1 -1
  392. sglang/srt/parser/conversation.py +41 -0
  393. sglang/srt/parser/jinja_template_utils.py +6 -0
  394. sglang/srt/parser/reasoning_parser.py +0 -1
  395. sglang/srt/sampling/custom_logit_processor.py +77 -2
  396. sglang/srt/sampling/sampling_batch_info.py +36 -23
  397. sglang/srt/sampling/sampling_params.py +75 -0
  398. sglang/srt/server_args.py +1300 -338
  399. sglang/srt/server_args_config_parser.py +146 -0
  400. sglang/srt/single_batch_overlap.py +161 -0
  401. sglang/srt/speculative/base_spec_worker.py +34 -0
  402. sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
  403. sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
  404. sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
  405. sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
  406. sglang/srt/speculative/cpp_ngram/param.h +125 -0
  407. sglang/srt/speculative/cpp_ngram/queue.h +71 -0
  408. sglang/srt/speculative/draft_utils.py +226 -0
  409. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
  410. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
  411. sglang/srt/speculative/eagle_info.py +786 -0
  412. sglang/srt/speculative/eagle_info_v2.py +458 -0
  413. sglang/srt/speculative/eagle_utils.py +113 -1270
  414. sglang/srt/speculative/eagle_worker.py +120 -285
  415. sglang/srt/speculative/eagle_worker_v2.py +702 -0
  416. sglang/srt/speculative/ngram_info.py +433 -0
  417. sglang/srt/speculative/ngram_worker.py +246 -0
  418. sglang/srt/speculative/spec_info.py +49 -0
  419. sglang/srt/speculative/spec_utils.py +641 -0
  420. sglang/srt/speculative/standalone_worker.py +4 -14
  421. sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
  422. sglang/srt/tracing/trace.py +32 -6
  423. sglang/srt/two_batch_overlap.py +35 -18
  424. sglang/srt/utils/__init__.py +2 -0
  425. sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
  426. sglang/srt/{utils.py → utils/common.py} +583 -113
  427. sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
  428. sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
  429. sglang/srt/{offloader.py → utils/offloader.py} +4 -4
  430. sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
  431. sglang/srt/utils/profile_merger.py +199 -0
  432. sglang/srt/utils/rpd_utils.py +452 -0
  433. sglang/srt/utils/slow_rank_detector.py +71 -0
  434. sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
  435. sglang/srt/warmup.py +8 -4
  436. sglang/srt/weight_sync/utils.py +1 -1
  437. sglang/test/attention/test_flashattn_backend.py +1 -1
  438. sglang/test/attention/test_flashattn_mla_backend.py +0 -1
  439. sglang/test/attention/test_prefix_chunk_info.py +0 -2
  440. sglang/test/attention/test_trtllm_mla_backend.py +221 -53
  441. sglang/test/few_shot_gsm8k_engine.py +2 -4
  442. sglang/test/get_logits_ut.py +57 -0
  443. sglang/test/kit_matched_stop.py +157 -0
  444. sglang/test/longbench_v2/__init__.py +1 -0
  445. sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
  446. sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
  447. sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
  448. sglang/test/run_eval.py +120 -11
  449. sglang/test/runners.py +3 -1
  450. sglang/test/send_one.py +42 -7
  451. sglang/test/simple_eval_common.py +8 -2
  452. sglang/test/simple_eval_gpqa.py +0 -1
  453. sglang/test/simple_eval_humaneval.py +0 -3
  454. sglang/test/simple_eval_longbench_v2.py +344 -0
  455. sglang/test/simple_eval_mmmu_vlm.py +441 -0
  456. sglang/test/test_block_fp8.py +3 -4
  457. sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
  458. sglang/test/test_cutlass_moe.py +1 -2
  459. sglang/test/test_cutlass_w4a8_moe.py +10 -20
  460. sglang/test/test_deterministic.py +430 -0
  461. sglang/test/test_deterministic_utils.py +73 -0
  462. sglang/test/test_disaggregation_utils.py +93 -1
  463. sglang/test/test_marlin_moe.py +0 -1
  464. sglang/test/test_programs.py +1 -1
  465. sglang/test/test_utils.py +432 -16
  466. sglang/utils.py +10 -1
  467. sglang/version.py +1 -1
  468. {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
  469. {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
  470. sglang/srt/entrypoints/grpc_request_manager.py +0 -580
  471. sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
  472. sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
  473. sglang/srt/mem_cache/lora_radix_cache.py +0 -421
  474. sglang/srt/speculative/build_eagle_tree.py +0 -427
  475. sglang/test/test_block_fp8_ep.py +0 -358
  476. /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
  477. /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
  478. /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
  479. /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
  480. {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
  481. {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
  482. {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,309 @@
1
+ # coding=utf-8
2
+ # Copyright 2024 TII and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Falcon-H1 model configuration"""
16
+
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ from sglang.srt.configs.mamba_utils import Mamba2CacheParams, Mamba2StateShape
22
+ from sglang.srt.layers.dp_attention import get_tensor_model_parallel_world_size
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+
27
+ class FalconH1Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`FalconH1Model`]. It is used to instantiate a
30
+ FalconH1Model model according to the specified arguments, defining the model architecture. Instantiating a configuration
31
+ with defaults taken from [ibm-fms/FalconH1-9.8b-2.2T-hf](https://huggingface.co/ibm-fms/FalconH1-9.8b-2.2T-hf).
32
+ The FalconH1Model is a hybrid [mamba2](https://github.com/state-spaces/mamba) architecture with SwiGLU.
33
+ The checkpoints are jointly trained by IBM, Princeton, and UIUC.
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 128000):
38
+ Vocabulary size of the FalconH1 model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`FalconH1Model`]
40
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
41
+ Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
42
+ model has a output word embedding layer.
43
+ hidden_size (`int`, *optional*, defaults to 4096):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 14336):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer encoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer encoder.
51
+ num_key_value_heads (`int`, *optional*, defaults to 8):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details, check out [this
57
+ paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `8`.
58
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
59
+ The non-linear activation function (function or string) in the decoder.
60
+ initializer_range (`float`, *optional*, defaults to 0.02):
61
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
62
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
63
+ The epsilon used by the rms normalization layers.
64
+ use_cache (`bool`, *optional*, defaults to `True`):
65
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
66
+ relevant if `config.is_decoder=True`.
67
+ num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
68
+ Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an
69
+ integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the
70
+ logits of the last prompt token are needed for generation. For long sequences, the logits for the entire
71
+ sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint
72
+ significantly.
73
+ pad_token_id (`int`, *optional*, defaults to 0):
74
+ The id of the padding token.
75
+ bos_token_id (`int`, *optional*, defaults to 1):
76
+ The id of the "beginning-of-sequence" token.
77
+ eos_token_id (`int`, *optional*, defaults to 2):
78
+ The id of the "end-of-sequence" token.
79
+ max_position_embeddings (`int`, *optional*, defaults to 8192):
80
+ Max cached sequence length for the model
81
+ attention_dropout (`float`, *optional*, defaults to 0.0):
82
+ The dropout ratio for the attention probabilities.
83
+ mamba_d_ssm (`int`, *optional*, defaults to 1024):
84
+ The dimension of the SSM state space latents.
85
+ mamba_n_heads (`int`, *optional*, defaults to 128):
86
+ The number of mamba heads used in the v2 implementation.
87
+ mamba_d_head (`int`, *optional*, defaults to `"auto"`):
88
+ Head embedding dimension size
89
+ mamba_n_groups (`int`, *optional*, defaults to 1):
90
+ The number of the mamba groups used in the v2 implementation.
91
+ mamba_d_state (`int`, *optional*, defaults to 256):
92
+ The dimension the mamba state space latents
93
+ mamba_d_conv (`int`, *optional*, defaults to 4):
94
+ The size of the mamba convolution kernel
95
+ mamba_expand (`int`, *optional*, defaults to 2):
96
+ Expanding factor (relative to hidden_size) used to determine the mamba intermediate size
97
+ mamba_chunk_size (`int`, *optional*, defaults to 256):
98
+ The chunks in which to break the sequence when doing prefill/training
99
+ mamba_conv_bias (`bool`, *optional*, defaults to `True`):
100
+ Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
101
+ mamba_proj_bias (`bool`, *optional*, defaults to `False`):
102
+ Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block
103
+ mamba_norm_before_gate (`bool`, *optional*, defaults to `True`):
104
+ Whether to use RMSNorm before the gate in the Mamba block
105
+ mamba_rms_norm (`bool`, *optional*, defaults to `False`):
106
+ Whether to use RMSNorm instead of LayerNorm in the Mamba block
107
+ projectors_bias (`bool`, *optional*, defaults to `False`):
108
+ Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the attention block
109
+ rope_theta (`float`, *optional*, defaults to 100000.0):
110
+ The theta value used for the RoPE embeddings.
111
+ rope_scaling (`float`, *optional*):
112
+ The scaling value used for the RoPE embeddings. If `None`, no scaling is applied.
113
+ lm_head_multiplier (`float`, *optional*, defaults to 1.0):
114
+ The multiplier for the LM head. This is used to scale the output of the LM head.
115
+ embedding_multiplier (`float`, *optional*, defaults to 1.0):
116
+ The multiplier for the embedding layer. This is used to scale the output of the embedding layer.
117
+ mlp_multipliers (`list[float]`, *optional*):
118
+ The multipliers for the MLP layers. This is used to scale the output of the MLP layers. The first value is
119
+ the multiplier of gate layer, the second value is the multiplier of the down_proj layer.
120
+ key_multiplier (`float`, *optional*):
121
+ The multiplier for the key layer. This is used to scale the output of the key layer.
122
+ attention_out_multiplier (`float`, *optional*):
123
+ The multiplier for the attention output layer. This is used to scale the output of the attention output
124
+ attention_in_multiplier (`float`, *optional*):
125
+ The multiplier for the attention input layer. This is used to scale the output of the attention input layer.
126
+ ssm_multipliers (`list[float]`, *optional*):
127
+ The multipliers for the SSM layers. This is used to scale the output of the SSM layers.
128
+ ssm_in_multiplier (`float`, *optional*):
129
+ The multiplier for the SSM input layer. This is used to scale the output of the SSM input layer.
130
+ ssm_out_multiplier (`float`, *optional*):
131
+ The multiplier for the SSM output layer. This is used to scale the output of the SSM output layer.
132
+ """
133
+
134
+ model_type = "falcon_h1"
135
+ keys_to_ignore_at_inference = ["past_key_values"]
136
+
137
+ def __init__(
138
+ self,
139
+ vocab_size=128000,
140
+ tie_word_embeddings=False,
141
+ hidden_size=4096,
142
+ intermediate_size=14336,
143
+ num_hidden_layers=32,
144
+ num_attention_heads=32,
145
+ num_key_value_heads=8,
146
+ hidden_act="silu",
147
+ initializer_range=0.02,
148
+ rms_norm_eps=1e-5,
149
+ use_cache=True,
150
+ num_logits_to_keep=1,
151
+ pad_token_id=0,
152
+ bos_token_id=1,
153
+ eos_token_id=2,
154
+ max_position_embeddings=8192,
155
+ attention_dropout=0.0,
156
+ mamba_d_ssm=1024,
157
+ mamba_n_heads=128,
158
+ mamba_d_head="auto",
159
+ mamba_n_groups=1,
160
+ mamba_d_state=256,
161
+ mamba_d_conv=4,
162
+ mamba_expand=2,
163
+ mamba_chunk_size=256,
164
+ mamba_conv_bias=True,
165
+ mamba_proj_bias=False,
166
+ mamba_norm_before_gate=True,
167
+ mamba_rms_norm=False,
168
+ projectors_bias=False,
169
+ rope_theta=100000.0,
170
+ rope_scaling=None,
171
+ lm_head_multiplier=1.0,
172
+ embedding_multiplier=1.0,
173
+ mlp_multipliers=None,
174
+ key_multiplier=None,
175
+ attention_out_multiplier=None,
176
+ attention_in_multiplier=None,
177
+ ssm_multipliers=None,
178
+ ssm_in_multiplier=None,
179
+ ssm_out_multiplier=None,
180
+ **kwargs,
181
+ ):
182
+ self.vocab_size = vocab_size
183
+ self.hidden_size = hidden_size
184
+ self.intermediate_size = intermediate_size
185
+ self.num_hidden_layers = num_hidden_layers
186
+ self.num_attention_heads = num_attention_heads
187
+ self.max_position_embeddings = max_position_embeddings
188
+ self.attention_dropout = attention_dropout
189
+ self.attention_bias = False
190
+ self.mlp_bias = False
191
+
192
+ # for backward compatibility
193
+ if num_key_value_heads is None:
194
+ num_key_value_heads = num_attention_heads
195
+
196
+ self.num_key_value_heads = num_key_value_heads
197
+ self.hidden_act = hidden_act
198
+ self.initializer_range = initializer_range
199
+ self.rms_norm_eps = rms_norm_eps
200
+
201
+ self.use_cache = use_cache
202
+ self.num_logits_to_keep = num_logits_to_keep
203
+
204
+ self.rope_theta = rope_theta
205
+ self.rope_scaling = None
206
+ self.rope_scaling = rope_scaling
207
+ self.projectors_bias = projectors_bias
208
+ self.mamba_intermediate = mamba_intermediate = (
209
+ mamba_expand * hidden_size if mamba_d_ssm is None else mamba_d_ssm
210
+ )
211
+
212
+ if mamba_intermediate % mamba_n_heads != 0:
213
+ raise ValueError("mamba_n_heads must divide mamba_expand * hidden_size")
214
+
215
+ # for the mamba_v2, must satisfy the following
216
+ if mamba_d_head == "auto":
217
+ mamba_d_head = mamba_intermediate // mamba_n_heads
218
+
219
+ if mamba_d_head * mamba_n_heads != mamba_intermediate:
220
+ raise ValueError(
221
+ "The dimensions for the Mamba head state do not match the model intermediate_size"
222
+ )
223
+
224
+ self.mamba_d_ssm = mamba_d_ssm
225
+ self.mamba_n_heads = mamba_n_heads
226
+ self.mamba_d_head = mamba_d_head
227
+ self.mamba_n_groups = mamba_n_groups
228
+ self.mamba_d_state = mamba_d_state
229
+ self.mamba_d_conv = mamba_d_conv
230
+ self.mamba_expand = mamba_expand
231
+ self.mamba_chunk_size = mamba_chunk_size
232
+ self.mamba_conv_bias = mamba_conv_bias
233
+ self.mamba_proj_bias = mamba_proj_bias
234
+
235
+ self.mamba_norm_before_gate = mamba_norm_before_gate
236
+ self.mamba_rms_norm = mamba_rms_norm
237
+
238
+ self.lm_head_multiplier = lm_head_multiplier
239
+ self.embedding_multiplier = embedding_multiplier
240
+
241
+ if mlp_multipliers is not None:
242
+ self.mlp_multipliers = mlp_multipliers
243
+ else:
244
+ self.mlp_multipliers = [1.0, 1.0]
245
+
246
+ if attention_out_multiplier is not None:
247
+ self.attention_out_multiplier = attention_out_multiplier
248
+ else:
249
+ self.attention_out_multiplier = 1.0
250
+
251
+ if attention_in_multiplier is not None:
252
+ self.attention_in_multiplier = attention_in_multiplier
253
+ else:
254
+ self.attention_in_multiplier = 1.0
255
+
256
+ if key_multiplier is not None:
257
+ self.key_multiplier = key_multiplier
258
+ else:
259
+ self.key_multiplier = 1.0
260
+
261
+ if ssm_multipliers is not None:
262
+ self.ssm_multipliers = ssm_multipliers
263
+ else:
264
+ self.ssm_multipliers = [1.0, 1.0, 1.0, 1.0, 1.0]
265
+
266
+ if ssm_in_multiplier is not None:
267
+ self.ssm_in_multiplier = ssm_in_multiplier
268
+ else:
269
+ self.ssm_in_multiplier = 1.0
270
+
271
+ if ssm_out_multiplier is not None:
272
+ self.ssm_out_multiplier = ssm_out_multiplier
273
+ else:
274
+ self.ssm_out_multiplier = 1.0
275
+
276
+ super().__init__(
277
+ pad_token_id=pad_token_id,
278
+ bos_token_id=bos_token_id,
279
+ eos_token_id=eos_token_id,
280
+ tie_word_embeddings=tie_word_embeddings,
281
+ **kwargs,
282
+ )
283
+
284
+ @property
285
+ def layers_block_type(self):
286
+ return ["falcon_h1" for i in range(self.num_hidden_layers)]
287
+
288
+ @property
289
+ def full_attention_layer_ids(self):
290
+ # For Falcon-H1, we do have attention on all layers
291
+ return range(self.num_hidden_layers)
292
+
293
+ @property
294
+ def linear_layer_ids(self):
295
+ # For Falcon-H1, we do have mamba on all layers
296
+ return range(self.num_hidden_layers)
297
+
298
+ @property
299
+ def mamba2_cache_params(self):
300
+ shape = Mamba2StateShape.create(
301
+ tp_world_size=get_tensor_model_parallel_world_size(),
302
+ intermediate_size=self.mamba_intermediate,
303
+ n_groups=self.mamba_n_groups,
304
+ num_heads=self.mamba_n_heads,
305
+ head_dim=self.mamba_d_head,
306
+ state_size=self.mamba_d_state,
307
+ conv_kernel=self.mamba_d_conv,
308
+ )
309
+ return Mamba2CacheParams(shape=shape, layers=self.linear_layer_ids)
@@ -1,10 +1,12 @@
1
1
  # Adapted from https://github.com/vllm-project/vllm/blob/v0.6.4.post1/vllm/config.py
2
2
  import enum
3
- import json
4
3
  import logging
5
4
  from dataclasses import dataclass, field
6
5
  from typing import List, Optional, Union
7
6
 
7
+ import orjson
8
+
9
+ from sglang.srt.configs.modelopt_config import ModelOptConfig
8
10
  from sglang.srt.utils import is_hip
9
11
 
10
12
  logger = logging.getLogger(__name__)
@@ -24,6 +26,8 @@ class LoadFormat(str, enum.Enum):
24
26
  JAX = "jax"
25
27
  REMOTE = "remote"
26
28
  REMOTE_INSTANCE = "remote_instance"
29
+ RDMA = "rdma"
30
+ LOCAL_CACHED = "local_cached"
27
31
 
28
32
 
29
33
  @dataclass
@@ -47,6 +51,12 @@ class LoadConfig:
47
51
  checkpoints.
48
52
  decryption_key_file: If set, decrypts the output files with a password read
49
53
  from this file (after PBKDF2).
54
+ decrypt_max_concurrency: The maximum number of concurrent processes to decrypt the safetensor files. -1 means no limit.
55
+
56
+ # ModelOpt-specific loading options
57
+ modelopt_checkpoint_restore_path: Optional[str] = None
58
+ modelopt_checkpoint_save_path: Optional[str] = None
59
+ modelopt_export_path: Optional[str] = None
50
60
  """
51
61
 
52
62
  load_format: Union[str, LoadFormat] = LoadFormat.AUTO
@@ -54,11 +64,24 @@ class LoadConfig:
54
64
  model_loader_extra_config: Optional[Union[str, dict]] = field(default_factory=dict)
55
65
  ignore_patterns: Optional[Union[List[str], str]] = None
56
66
  decryption_key_file: Optional[str] = None
67
+ decrypt_max_concurrency: int = -1
68
+ tp_rank: Optional[int] = None
69
+ remote_instance_weight_loader_seed_instance_ip: Optional[str] = None
70
+ remote_instance_weight_loader_seed_instance_service_port: Optional[int] = None
71
+ remote_instance_weight_loader_send_weights_group_ports: Optional[List[int]] = None
72
+
73
+ # ModelOpt-specific loading options
74
+ modelopt_checkpoint_restore_path: Optional[str] = None
75
+ modelopt_checkpoint_save_path: Optional[str] = None
76
+ modelopt_export_path: Optional[str] = None
77
+
78
+ # ModelOpt configuration object
79
+ modelopt_config: Optional[ModelOptConfig] = None
57
80
 
58
81
  def __post_init__(self):
59
82
  model_loader_extra_config = self.model_loader_extra_config or {}
60
83
  if isinstance(model_loader_extra_config, str):
61
- self.model_loader_extra_config = json.loads(model_loader_extra_config)
84
+ self.model_loader_extra_config = orjson.loads(model_loader_extra_config)
62
85
  self._verify_load_format()
63
86
 
64
87
  if self.ignore_patterns is not None and len(self.ignore_patterns) > 0:
@@ -69,6 +92,14 @@ class LoadConfig:
69
92
  else:
70
93
  self.ignore_patterns = ["original/**/*"]
71
94
 
95
+ # Create ModelOptConfig if not provided
96
+ if self.modelopt_config is None:
97
+ self.modelopt_config = ModelOptConfig(
98
+ checkpoint_restore_path=self.modelopt_checkpoint_restore_path,
99
+ checkpoint_save_path=self.modelopt_checkpoint_save_path,
100
+ export_path=self.modelopt_export_path,
101
+ )
102
+
72
103
  def _verify_load_format(self) -> None:
73
104
  if not isinstance(self.load_format, str):
74
105
  return
@@ -0,0 +1,117 @@
1
+ # Copyright 2025 SGLang Team
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+ """Common config utils for mamba2 - NemotronH, FalconH1, Qwen3Next, etc."""
14
+
15
+ import os
16
+ from dataclasses import dataclass, field
17
+
18
+ import numpy as np
19
+ import torch
20
+
21
+ from sglang.srt.distributed.utils import divide
22
+
23
+
24
+ def extra_groups_for_head_shards(ngroups: int, tp_size: int):
25
+ """Compute the increase in group numbers to account for
26
+ replication in order to accompany the head shards."""
27
+
28
+ # in the case ngoups % tp_size == 0, this will be zero
29
+ if ngroups % tp_size == 0:
30
+ return 0
31
+
32
+ # for n_groups == 1, this is exactly tp_size - n_groups
33
+ return tp_size - ngroups
34
+
35
+
36
+ @dataclass(kw_only=True, frozen=True)
37
+ class Mamba2StateShape:
38
+ conv: tuple[int, int]
39
+ temporal: tuple[int, int, int]
40
+
41
+ intermediate_size: int
42
+ conv_dim: int
43
+ ssm_state_size: int
44
+ num_heads: int
45
+ head_dim: int
46
+ state_size: int
47
+ conv_kernel: int
48
+
49
+ @staticmethod
50
+ def create(
51
+ *,
52
+ tp_world_size: int,
53
+ intermediate_size: int,
54
+ n_groups: int,
55
+ num_heads: int,
56
+ head_dim: int,
57
+ state_size: int,
58
+ conv_kernel: int,
59
+ ) -> "Mamba2StateShape":
60
+ # if n_groups is not divisible by world_size, need to extend the shards
61
+ # to ensure all groups needed by a head is sharded along with it
62
+ if n_groups % tp_world_size != 0:
63
+ extra_groups = extra_groups_for_head_shards(n_groups, tp_world_size)
64
+ n_groups += extra_groups
65
+ # heads and n_groups are TP-ed
66
+ conv_dim = intermediate_size + 2 * n_groups * state_size
67
+
68
+ # contiguous along 'dim' axis
69
+ conv_state_shape = divide(conv_dim, tp_world_size), conv_kernel - 1
70
+
71
+ # These are not TP-ed as they depend on A, dt_bias, D
72
+ # - they are typically small
73
+ # e.g., QWen3-Next: (32, 128, 128)
74
+ temporal_state_shape = (divide(num_heads, tp_world_size), head_dim, state_size)
75
+ return Mamba2StateShape(
76
+ conv=conv_state_shape,
77
+ temporal=temporal_state_shape,
78
+ intermediate_size=intermediate_size,
79
+ conv_dim=conv_dim,
80
+ ssm_state_size=state_size,
81
+ num_heads=num_heads,
82
+ head_dim=head_dim,
83
+ state_size=state_size,
84
+ conv_kernel=conv_kernel,
85
+ )
86
+
87
+
88
+ @dataclass(kw_only=True, frozen=True)
89
+ class Mamba2StateDType:
90
+ conv: torch.dtype
91
+ temporal: torch.dtype
92
+
93
+
94
+ CONV_DTYPE = torch.bfloat16
95
+
96
+
97
+ def mamba2_state_dtype() -> Mamba2StateDType:
98
+ dtype_map = {
99
+ "float32": torch.float32,
100
+ "bfloat16": torch.bfloat16,
101
+ }
102
+ ssm_dtype = dtype_map[os.environ["SGLANG_MAMBA_SSM_DTYPE"]]
103
+ return Mamba2StateDType(conv=CONV_DTYPE, temporal=ssm_dtype)
104
+
105
+
106
+ @dataclass(kw_only=True, frozen=True)
107
+ class Mamba2CacheParams:
108
+ shape: Mamba2StateShape
109
+ dtype: Mamba2StateDType = field(default_factory=mamba2_state_dtype)
110
+ layers: list[int]
111
+
112
+ @property
113
+ def mamba_cache_per_req(self) -> int:
114
+ return (
115
+ int(np.prod(self.shape.conv)) * self.dtype.conv.itemsize
116
+ + int(np.prod(self.shape.temporal)) * self.dtype.temporal.itemsize
117
+ ) * len(self.layers)