sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,441 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            """
         
     | 
| 
      
 2 
     | 
    
         
            +
            MMMU evaluation for VLMs using the run_eval simple-evals interface.
         
     | 
| 
      
 3 
     | 
    
         
            +
             
     | 
| 
      
 4 
     | 
    
         
            +
            """
         
     | 
| 
      
 5 
     | 
    
         
            +
             
     | 
| 
      
 6 
     | 
    
         
            +
            from __future__ import annotations
         
     | 
| 
      
 7 
     | 
    
         
            +
             
     | 
| 
      
 8 
     | 
    
         
            +
            import base64
         
     | 
| 
      
 9 
     | 
    
         
            +
            import io
         
     | 
| 
      
 10 
     | 
    
         
            +
            from typing import List, Optional, Tuple
         
     | 
| 
      
 11 
     | 
    
         
            +
             
     | 
| 
      
 12 
     | 
    
         
            +
            from datasets import concatenate_datasets, load_dataset
         
     | 
| 
      
 13 
     | 
    
         
            +
            from PIL import Image
         
     | 
| 
      
 14 
     | 
    
         
            +
             
     | 
| 
      
 15 
     | 
    
         
            +
            from sglang.test import simple_eval_common as common
         
     | 
| 
      
 16 
     | 
    
         
            +
            from sglang.test.simple_eval_common import (
         
     | 
| 
      
 17 
     | 
    
         
            +
                HTML_JINJA,
         
     | 
| 
      
 18 
     | 
    
         
            +
                Eval,
         
     | 
| 
      
 19 
     | 
    
         
            +
                EvalResult,
         
     | 
| 
      
 20 
     | 
    
         
            +
                SamplerBase,
         
     | 
| 
      
 21 
     | 
    
         
            +
                SingleEvalResult,
         
     | 
| 
      
 22 
     | 
    
         
            +
                map_with_progress,
         
     | 
| 
      
 23 
     | 
    
         
            +
            )
         
     | 
| 
      
 24 
     | 
    
         
            +
             
     | 
| 
      
 25 
     | 
    
         
            +
             
     | 
| 
      
 26 
     | 
    
         
            +
            class MMMUVLMEval(Eval):
         
     | 
| 
      
 27 
     | 
    
         
            +
                DOMAIN_CAT2SUB_CAT = {
         
     | 
| 
      
 28 
     | 
    
         
            +
                    "Art and Design": ["Art", "Art_Theory", "Design", "Music"],
         
     | 
| 
      
 29 
     | 
    
         
            +
                    "Business": ["Accounting", "Economics", "Finance", "Manage", "Marketing"],
         
     | 
| 
      
 30 
     | 
    
         
            +
                    "Science": ["Biology", "Chemistry", "Geography", "Math", "Physics"],
         
     | 
| 
      
 31 
     | 
    
         
            +
                    "Health and Medicine": [
         
     | 
| 
      
 32 
     | 
    
         
            +
                        "Basic_Medical_Science",
         
     | 
| 
      
 33 
     | 
    
         
            +
                        "Clinical_Medicine",
         
     | 
| 
      
 34 
     | 
    
         
            +
                        "Diagnostics_and_Laboratory_Medicine",
         
     | 
| 
      
 35 
     | 
    
         
            +
                        "Pharmacy",
         
     | 
| 
      
 36 
     | 
    
         
            +
                        "Public_Health",
         
     | 
| 
      
 37 
     | 
    
         
            +
                    ],
         
     | 
| 
      
 38 
     | 
    
         
            +
                    "Humanities and Social Science": [
         
     | 
| 
      
 39 
     | 
    
         
            +
                        "History",
         
     | 
| 
      
 40 
     | 
    
         
            +
                        "Literature",
         
     | 
| 
      
 41 
     | 
    
         
            +
                        "Sociology",
         
     | 
| 
      
 42 
     | 
    
         
            +
                        "Psychology",
         
     | 
| 
      
 43 
     | 
    
         
            +
                    ],
         
     | 
| 
      
 44 
     | 
    
         
            +
                    "Tech and Engineering": [
         
     | 
| 
      
 45 
     | 
    
         
            +
                        "Agriculture",
         
     | 
| 
      
 46 
     | 
    
         
            +
                        "Architecture_and_Engineering",
         
     | 
| 
      
 47 
     | 
    
         
            +
                        "Computer_Science",
         
     | 
| 
      
 48 
     | 
    
         
            +
                        "Electronics",
         
     | 
| 
      
 49 
     | 
    
         
            +
                        "Energy_and_Power",
         
     | 
| 
      
 50 
     | 
    
         
            +
                        "Materials",
         
     | 
| 
      
 51 
     | 
    
         
            +
                        "Mechanical_Engineering",
         
     | 
| 
      
 52 
     | 
    
         
            +
                    ],
         
     | 
| 
      
 53 
     | 
    
         
            +
                }
         
     | 
| 
      
 54 
     | 
    
         
            +
             
     | 
| 
      
 55 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 56 
     | 
    
         
            +
                    self, num_examples: Optional[int] = 100, num_threads: int = 32, seed: int = 42
         
     | 
| 
      
 57 
     | 
    
         
            +
                ):
         
     | 
| 
      
 58 
     | 
    
         
            +
                    """Create MMMU VLM eval (Math subset, 100 fixed samples by default)."""
         
     | 
| 
      
 59 
     | 
    
         
            +
                    self.num_examples = num_examples
         
     | 
| 
      
 60 
     | 
    
         
            +
                    self.num_threads = num_threads
         
     | 
| 
      
 61 
     | 
    
         
            +
                    self.seed = seed
         
     | 
| 
      
 62 
     | 
    
         
            +
                    # Prepare samples deterministically across all MMMU subjects (validation split)
         
     | 
| 
      
 63 
     | 
    
         
            +
                    self.samples = self._prepare_mmmu_samples(self.num_examples)
         
     | 
| 
      
 64 
     | 
    
         
            +
             
     | 
| 
      
 65 
     | 
    
         
            +
                @staticmethod
         
     | 
| 
      
 66 
     | 
    
         
            +
                def _to_data_uri(image: Image.Image) -> str:
         
     | 
| 
      
 67 
     | 
    
         
            +
                    if image.mode == "RGBA":
         
     | 
| 
      
 68 
     | 
    
         
            +
                        image = image.convert("RGB")
         
     | 
| 
      
 69 
     | 
    
         
            +
                    buf = io.BytesIO()
         
     | 
| 
      
 70 
     | 
    
         
            +
                    image.save(buf, format="PNG")
         
     | 
| 
      
 71 
     | 
    
         
            +
                    b64 = base64.b64encode(buf.getvalue()).decode("utf-8")
         
     | 
| 
      
 72 
     | 
    
         
            +
                    return f"data:image/png;base64,{b64}"
         
     | 
| 
      
 73 
     | 
    
         
            +
             
     | 
| 
      
 74 
     | 
    
         
            +
                @staticmethod
         
     | 
| 
      
 75 
     | 
    
         
            +
                def _build_mc_mapping(options: List[str]) -> Tuple[dict, List[str]]:
         
     | 
| 
      
 76 
     | 
    
         
            +
                    index2ans = {}
         
     | 
| 
      
 77 
     | 
    
         
            +
                    all_choices = []
         
     | 
| 
      
 78 
     | 
    
         
            +
                    ch = ord("A")
         
     | 
| 
      
 79 
     | 
    
         
            +
                    for opt in options:
         
     | 
| 
      
 80 
     | 
    
         
            +
                        letter = chr(ch)
         
     | 
| 
      
 81 
     | 
    
         
            +
                        index2ans[letter] = opt
         
     | 
| 
      
 82 
     | 
    
         
            +
                        all_choices.append(letter)
         
     | 
| 
      
 83 
     | 
    
         
            +
                        ch += 1
         
     | 
| 
      
 84 
     | 
    
         
            +
                    return index2ans, all_choices
         
     | 
| 
      
 85 
     | 
    
         
            +
             
     | 
| 
      
 86 
     | 
    
         
            +
                def _prepare_mmmu_samples(self, k: int) -> List[dict]:
         
     | 
| 
      
 87 
     | 
    
         
            +
                    # Subjects and domains copied from MMMU data_utils to categorize results
         
     | 
| 
      
 88 
     | 
    
         
            +
                    subjects: List[str] = []
         
     | 
| 
      
 89 
     | 
    
         
            +
                    for subs in self.DOMAIN_CAT2SUB_CAT.values():
         
     | 
| 
      
 90 
     | 
    
         
            +
                        subjects.extend(subs)
         
     | 
| 
      
 91 
     | 
    
         
            +
             
     | 
| 
      
 92 
     | 
    
         
            +
                    # Load validation split of each subject
         
     | 
| 
      
 93 
     | 
    
         
            +
                    datasets = []
         
     | 
| 
      
 94 
     | 
    
         
            +
                    for subj in subjects:
         
     | 
| 
      
 95 
     | 
    
         
            +
                        try:
         
     | 
| 
      
 96 
     | 
    
         
            +
                            d = load_dataset("MMMU/MMMU", subj, split="validation")
         
     | 
| 
      
 97 
     | 
    
         
            +
                            # attach subject info via transform
         
     | 
| 
      
 98 
     | 
    
         
            +
                            d = d.add_column("__subject__", [subj] * len(d))
         
     | 
| 
      
 99 
     | 
    
         
            +
                            datasets.append(d)
         
     | 
| 
      
 100 
     | 
    
         
            +
                        except Exception:
         
     | 
| 
      
 101 
     | 
    
         
            +
                            continue
         
     | 
| 
      
 102 
     | 
    
         
            +
                    if not datasets:
         
     | 
| 
      
 103 
     | 
    
         
            +
                        raise RuntimeError("Failed to load MMMU datasets")
         
     | 
| 
      
 104 
     | 
    
         
            +
             
     | 
| 
      
 105 
     | 
    
         
            +
                    merged = concatenate_datasets(datasets)
         
     | 
| 
      
 106 
     | 
    
         
            +
             
     | 
| 
      
 107 
     | 
    
         
            +
                    # Deterministic selection: sort by id (fallback to subject+index)
         
     | 
| 
      
 108 
     | 
    
         
            +
                    def _key(idx):
         
     | 
| 
      
 109 
     | 
    
         
            +
                        ex = merged[idx]
         
     | 
| 
      
 110 
     | 
    
         
            +
                        return str(ex.get("id", f"{ex['__subject__']}:{idx}"))
         
     | 
| 
      
 111 
     | 
    
         
            +
             
     | 
| 
      
 112 
     | 
    
         
            +
                    order = sorted(range(len(merged)), key=_key)
         
     | 
| 
      
 113 
     | 
    
         
            +
                    picked_indices = order[:k]
         
     | 
| 
      
 114 
     | 
    
         
            +
             
     | 
| 
      
 115 
     | 
    
         
            +
                    samples: List[dict] = []
         
     | 
| 
      
 116 
     | 
    
         
            +
                    for idx in picked_indices:
         
     | 
| 
      
 117 
     | 
    
         
            +
                        ex = merged[idx]
         
     | 
| 
      
 118 
     | 
    
         
            +
                        subject = ex["__subject__"]
         
     | 
| 
      
 119 
     | 
    
         
            +
                        image = ex.get("image_1")
         
     | 
| 
      
 120 
     | 
    
         
            +
                        if image is None or not hasattr(image, "convert"):
         
     | 
| 
      
 121 
     | 
    
         
            +
                            continue
         
     | 
| 
      
 122 
     | 
    
         
            +
                        data_uri = self._to_data_uri(image)
         
     | 
| 
      
 123 
     | 
    
         
            +
                        question = ex.get("question", "")
         
     | 
| 
      
 124 
     | 
    
         
            +
                        answer = ex.get("answer")
         
     | 
| 
      
 125 
     | 
    
         
            +
                        raw_options = ex.get("options")
         
     | 
| 
      
 126 
     | 
    
         
            +
                        question_type = "open"
         
     | 
| 
      
 127 
     | 
    
         
            +
                        index2ans = None
         
     | 
| 
      
 128 
     | 
    
         
            +
                        all_choices = None
         
     | 
| 
      
 129 
     | 
    
         
            +
                        options = None
         
     | 
| 
      
 130 
     | 
    
         
            +
                        if raw_options:
         
     | 
| 
      
 131 
     | 
    
         
            +
                            try:
         
     | 
| 
      
 132 
     | 
    
         
            +
                                options = (
         
     | 
| 
      
 133 
     | 
    
         
            +
                                    raw_options
         
     | 
| 
      
 134 
     | 
    
         
            +
                                    if isinstance(raw_options, list)
         
     | 
| 
      
 135 
     | 
    
         
            +
                                    else list(eval(raw_options))
         
     | 
| 
      
 136 
     | 
    
         
            +
                                )
         
     | 
| 
      
 137 
     | 
    
         
            +
                                if isinstance(options, list) and len(options) > 0:
         
     | 
| 
      
 138 
     | 
    
         
            +
                                    index2ans, all_choices = self._build_mc_mapping(options)
         
     | 
| 
      
 139 
     | 
    
         
            +
                                    question_type = "multiple-choice"
         
     | 
| 
      
 140 
     | 
    
         
            +
                            except Exception:
         
     | 
| 
      
 141 
     | 
    
         
            +
                                options = None
         
     | 
| 
      
 142 
     | 
    
         
            +
             
     | 
| 
      
 143 
     | 
    
         
            +
                        # Build final textual prompt; include choices if MC
         
     | 
| 
      
 144 
     | 
    
         
            +
                        prompt_text = f"Question: {question}\n\n"
         
     | 
| 
      
 145 
     | 
    
         
            +
                        if options:
         
     | 
| 
      
 146 
     | 
    
         
            +
                            letters = [chr(ord("A") + i) for i in range(len(options))]
         
     | 
| 
      
 147 
     | 
    
         
            +
                            for letter, opt in zip(letters, options):
         
     | 
| 
      
 148 
     | 
    
         
            +
                                prompt_text += f"{letter}) {opt}\n"
         
     | 
| 
      
 149 
     | 
    
         
            +
                        prompt_text += "\nAnswer: "
         
     | 
| 
      
 150 
     | 
    
         
            +
             
     | 
| 
      
 151 
     | 
    
         
            +
                        samples.append(
         
     | 
| 
      
 152 
     | 
    
         
            +
                            {
         
     | 
| 
      
 153 
     | 
    
         
            +
                                "id": ex.get("id", f"{subject}:{idx}"),
         
     | 
| 
      
 154 
     | 
    
         
            +
                                "final_input_prompt": prompt_text,
         
     | 
| 
      
 155 
     | 
    
         
            +
                                "image_data": data_uri,
         
     | 
| 
      
 156 
     | 
    
         
            +
                                "answer": answer,
         
     | 
| 
      
 157 
     | 
    
         
            +
                                "question_type": question_type,
         
     | 
| 
      
 158 
     | 
    
         
            +
                                "index2ans": index2ans,
         
     | 
| 
      
 159 
     | 
    
         
            +
                                "all_choices": all_choices,
         
     | 
| 
      
 160 
     | 
    
         
            +
                                "category": subject,
         
     | 
| 
      
 161 
     | 
    
         
            +
                            }
         
     | 
| 
      
 162 
     | 
    
         
            +
                        )
         
     | 
| 
      
 163 
     | 
    
         
            +
             
     | 
| 
      
 164 
     | 
    
         
            +
                    return samples
         
     | 
| 
      
 165 
     | 
    
         
            +
             
     | 
| 
      
 166 
     | 
    
         
            +
                @staticmethod
         
     | 
| 
      
 167 
     | 
    
         
            +
                def _split_prompt_for_image(prompt: str) -> tuple[str, str]:
         
     | 
| 
      
 168 
     | 
    
         
            +
                    """Split a prompt containing an inline image tag into prefix and suffix.
         
     | 
| 
      
 169 
     | 
    
         
            +
             
     | 
| 
      
 170 
     | 
    
         
            +
                    If no tag is present, treat the whole prompt as prefix and empty suffix.
         
     | 
| 
      
 171 
     | 
    
         
            +
                    """
         
     | 
| 
      
 172 
     | 
    
         
            +
                    if "<" in prompt and ">" in prompt:
         
     | 
| 
      
 173 
     | 
    
         
            +
                        prefix = prompt.split("<")[0]
         
     | 
| 
      
 174 
     | 
    
         
            +
                        suffix = prompt.split(">", 1)[1]
         
     | 
| 
      
 175 
     | 
    
         
            +
                        return prefix, suffix
         
     | 
| 
      
 176 
     | 
    
         
            +
                    return prompt, ""
         
     | 
| 
      
 177 
     | 
    
         
            +
             
     | 
| 
      
 178 
     | 
    
         
            +
                @staticmethod
         
     | 
| 
      
 179 
     | 
    
         
            +
                def build_chat_messages_from_prompt(prompt: str, image_data) -> List:
         
     | 
| 
      
 180 
     | 
    
         
            +
                    """Split a prompt containing an inline image tag into prefix and suffix.
         
     | 
| 
      
 181 
     | 
    
         
            +
             
     | 
| 
      
 182 
     | 
    
         
            +
                    If no tag is present, treat the whole prompt as prefix and empty suffix.
         
     | 
| 
      
 183 
     | 
    
         
            +
                    """
         
     | 
| 
      
 184 
     | 
    
         
            +
                    # Build a vision+text message for OpenAI-compatible API
         
     | 
| 
      
 185 
     | 
    
         
            +
                    prefix, suffix = MMMUVLMEval._split_prompt_for_image(prompt)
         
     | 
| 
      
 186 
     | 
    
         
            +
             
     | 
| 
      
 187 
     | 
    
         
            +
                    content: List[dict] = []
         
     | 
| 
      
 188 
     | 
    
         
            +
                    if prefix:
         
     | 
| 
      
 189 
     | 
    
         
            +
                        content.append({"type": "text", "text": prefix})
         
     | 
| 
      
 190 
     | 
    
         
            +
                    content.append({"type": "image_url", "image_url": {"url": image_data}})
         
     | 
| 
      
 191 
     | 
    
         
            +
                    if suffix:
         
     | 
| 
      
 192 
     | 
    
         
            +
                        content.append({"type": "text", "text": suffix})
         
     | 
| 
      
 193 
     | 
    
         
            +
                    prompt_messages = [{"role": "user", "content": content}]
         
     | 
| 
      
 194 
     | 
    
         
            +
             
     | 
| 
      
 195 
     | 
    
         
            +
                    return prompt_messages
         
     | 
| 
      
 196 
     | 
    
         
            +
             
     | 
| 
      
 197 
     | 
    
         
            +
                def __call__(self, sampler: SamplerBase) -> EvalResult:
         
     | 
| 
      
 198 
     | 
    
         
            +
                    def fn(sample: dict):
         
     | 
| 
      
 199 
     | 
    
         
            +
                        prompt = sample["final_input_prompt"]
         
     | 
| 
      
 200 
     | 
    
         
            +
                        image_data = sample["image_data"]
         
     | 
| 
      
 201 
     | 
    
         
            +
                        prompt_messages = MMMUVLMEval.build_chat_messages_from_prompt(
         
     | 
| 
      
 202 
     | 
    
         
            +
                            prompt, image_data
         
     | 
| 
      
 203 
     | 
    
         
            +
                        )
         
     | 
| 
      
 204 
     | 
    
         
            +
             
     | 
| 
      
 205 
     | 
    
         
            +
                        # Sample
         
     | 
| 
      
 206 
     | 
    
         
            +
                        response_text = sampler(prompt_messages)
         
     | 
| 
      
 207 
     | 
    
         
            +
             
     | 
| 
      
 208 
     | 
    
         
            +
                        # Parse and score
         
     | 
| 
      
 209 
     | 
    
         
            +
                        gold = sample["answer"]
         
     | 
| 
      
 210 
     | 
    
         
            +
                        if (
         
     | 
| 
      
 211 
     | 
    
         
            +
                            sample["question_type"] == "multiple-choice"
         
     | 
| 
      
 212 
     | 
    
         
            +
                            and sample["all_choices"]
         
     | 
| 
      
 213 
     | 
    
         
            +
                            and sample["index2ans"]
         
     | 
| 
      
 214 
     | 
    
         
            +
                        ):
         
     | 
| 
      
 215 
     | 
    
         
            +
                            pred = _parse_multi_choice_response(
         
     | 
| 
      
 216 
     | 
    
         
            +
                                response_text, sample["all_choices"], sample["index2ans"]
         
     | 
| 
      
 217 
     | 
    
         
            +
                            )
         
     | 
| 
      
 218 
     | 
    
         
            +
                            score = 1.0 if (gold is not None and pred == gold) else 0.0
         
     | 
| 
      
 219 
     | 
    
         
            +
                            extracted_answer = pred
         
     | 
| 
      
 220 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 221 
     | 
    
         
            +
                            parsed_list = _parse_open_response(response_text)
         
     | 
| 
      
 222 
     | 
    
         
            +
                            score = (
         
     | 
| 
      
 223 
     | 
    
         
            +
                                1.0 if (gold is not None and _eval_open(gold, parsed_list)) else 0.0
         
     | 
| 
      
 224 
     | 
    
         
            +
                            )
         
     | 
| 
      
 225 
     | 
    
         
            +
                            extracted_answer = ", ".join(map(str, parsed_list))
         
     | 
| 
      
 226 
     | 
    
         
            +
             
     | 
| 
      
 227 
     | 
    
         
            +
                        html_rendered = common.jinja_env.from_string(HTML_JINJA).render(
         
     | 
| 
      
 228 
     | 
    
         
            +
                            prompt_messages=prompt_messages,
         
     | 
| 
      
 229 
     | 
    
         
            +
                            next_message=dict(content=response_text, role="assistant"),
         
     | 
| 
      
 230 
     | 
    
         
            +
                            score=score,
         
     | 
| 
      
 231 
     | 
    
         
            +
                            correct_answer=gold,
         
     | 
| 
      
 232 
     | 
    
         
            +
                            extracted_answer=extracted_answer,
         
     | 
| 
      
 233 
     | 
    
         
            +
                        )
         
     | 
| 
      
 234 
     | 
    
         
            +
             
     | 
| 
      
 235 
     | 
    
         
            +
                        convo = prompt_messages + [dict(content=response_text, role="assistant")]
         
     | 
| 
      
 236 
     | 
    
         
            +
                        return SingleEvalResult(
         
     | 
| 
      
 237 
     | 
    
         
            +
                            html=html_rendered,
         
     | 
| 
      
 238 
     | 
    
         
            +
                            score=score,
         
     | 
| 
      
 239 
     | 
    
         
            +
                            metrics={"__category__": sample["category"]},
         
     | 
| 
      
 240 
     | 
    
         
            +
                            convo=convo,
         
     | 
| 
      
 241 
     | 
    
         
            +
                        )
         
     | 
| 
      
 242 
     | 
    
         
            +
             
     | 
| 
      
 243 
     | 
    
         
            +
                    results = map_with_progress(fn, self.samples, self.num_threads)
         
     | 
| 
      
 244 
     | 
    
         
            +
             
     | 
| 
      
 245 
     | 
    
         
            +
                    # Build category table and overall accuracy
         
     | 
| 
      
 246 
     | 
    
         
            +
                    # Gather per-sample correctness and category
         
     | 
| 
      
 247 
     | 
    
         
            +
                    per_cat_total: dict[str, int] = {}
         
     | 
| 
      
 248 
     | 
    
         
            +
                    per_cat_correct: dict[str, int] = {}
         
     | 
| 
      
 249 
     | 
    
         
            +
                    htmls = []
         
     | 
| 
      
 250 
     | 
    
         
            +
                    convos = []
         
     | 
| 
      
 251 
     | 
    
         
            +
                    scores: List[float] = []
         
     | 
| 
      
 252 
     | 
    
         
            +
                    for r in results:
         
     | 
| 
      
 253 
     | 
    
         
            +
                        # __category__ stored under metrics
         
     | 
| 
      
 254 
     | 
    
         
            +
                        cat = r.metrics.get("__category__") if r.metrics else None
         
     | 
| 
      
 255 
     | 
    
         
            +
                        if cat is None:
         
     | 
| 
      
 256 
     | 
    
         
            +
                            cat = "Unknown"
         
     | 
| 
      
 257 
     | 
    
         
            +
                        per_cat_total[cat] = per_cat_total.get(cat, 0) + 1
         
     | 
| 
      
 258 
     | 
    
         
            +
                        if r.score:
         
     | 
| 
      
 259 
     | 
    
         
            +
                            per_cat_correct[cat] = per_cat_correct.get(cat, 0) + 1
         
     | 
| 
      
 260 
     | 
    
         
            +
                        htmls.append(r.html)
         
     | 
| 
      
 261 
     | 
    
         
            +
                        convos.append(r.convo)
         
     | 
| 
      
 262 
     | 
    
         
            +
                        if r.score is not None:
         
     | 
| 
      
 263 
     | 
    
         
            +
                            scores.append(r.score)
         
     | 
| 
      
 264 
     | 
    
         
            +
             
     | 
| 
      
 265 
     | 
    
         
            +
                    evaluation_result = {}
         
     | 
| 
      
 266 
     | 
    
         
            +
                    for cat, tot in per_cat_total.items():
         
     | 
| 
      
 267 
     | 
    
         
            +
                        corr = per_cat_correct.get(cat, 0)
         
     | 
| 
      
 268 
     | 
    
         
            +
                        acc = (corr / tot) if tot > 0 else 0.0
         
     | 
| 
      
 269 
     | 
    
         
            +
                        evaluation_result[cat] = {"acc": round(acc, 3), "num_example": tot}
         
     | 
| 
      
 270 
     | 
    
         
            +
             
     | 
| 
      
 271 
     | 
    
         
            +
                    printable_results = {}
         
     | 
| 
      
 272 
     | 
    
         
            +
                    # Domains first
         
     | 
| 
      
 273 
     | 
    
         
            +
                    for domain, cats in self.DOMAIN_CAT2SUB_CAT.items():
         
     | 
| 
      
 274 
     | 
    
         
            +
                        acc_sum = 0.0
         
     | 
| 
      
 275 
     | 
    
         
            +
                        num_sum = 0
         
     | 
| 
      
 276 
     | 
    
         
            +
                        for cat in cats:
         
     | 
| 
      
 277 
     | 
    
         
            +
                            if cat in evaluation_result:
         
     | 
| 
      
 278 
     | 
    
         
            +
                                acc_sum += (
         
     | 
| 
      
 279 
     | 
    
         
            +
                                    evaluation_result[cat]["acc"]
         
     | 
| 
      
 280 
     | 
    
         
            +
                                    * evaluation_result[cat]["num_example"]
         
     | 
| 
      
 281 
     | 
    
         
            +
                                )
         
     | 
| 
      
 282 
     | 
    
         
            +
                                num_sum += evaluation_result[cat]["num_example"]
         
     | 
| 
      
 283 
     | 
    
         
            +
                        if num_sum > 0:
         
     | 
| 
      
 284 
     | 
    
         
            +
                            printable_results[f"Overall-{domain}"] = {
         
     | 
| 
      
 285 
     | 
    
         
            +
                                "num": num_sum,
         
     | 
| 
      
 286 
     | 
    
         
            +
                                "acc": round(acc_sum / num_sum, 3),
         
     | 
| 
      
 287 
     | 
    
         
            +
                            }
         
     | 
| 
      
 288 
     | 
    
         
            +
                        # add each sub-category row if present
         
     | 
| 
      
 289 
     | 
    
         
            +
                        for cat in cats:
         
     | 
| 
      
 290 
     | 
    
         
            +
                            if cat in evaluation_result:
         
     | 
| 
      
 291 
     | 
    
         
            +
                                printable_results[cat] = {
         
     | 
| 
      
 292 
     | 
    
         
            +
                                    "num": evaluation_result[cat]["num_example"],
         
     | 
| 
      
 293 
     | 
    
         
            +
                                    "acc": evaluation_result[cat]["acc"],
         
     | 
| 
      
 294 
     | 
    
         
            +
                                }
         
     | 
| 
      
 295 
     | 
    
         
            +
             
     | 
| 
      
 296 
     | 
    
         
            +
                    # Overall
         
     | 
| 
      
 297 
     | 
    
         
            +
                    total_num = sum(v["num_example"] for v in evaluation_result.values())
         
     | 
| 
      
 298 
     | 
    
         
            +
                    overall_acc = (
         
     | 
| 
      
 299 
     | 
    
         
            +
                        sum(v["acc"] * v["num_example"] for v in evaluation_result.values())
         
     | 
| 
      
 300 
     | 
    
         
            +
                        / total_num
         
     | 
| 
      
 301 
     | 
    
         
            +
                        if total_num > 0
         
     | 
| 
      
 302 
     | 
    
         
            +
                        else 0.0
         
     | 
| 
      
 303 
     | 
    
         
            +
                    )
         
     | 
| 
      
 304 
     | 
    
         
            +
                    printable_results["Overall"] = {"num": total_num, "acc": round(overall_acc, 3)}
         
     | 
| 
      
 305 
     | 
    
         
            +
             
     | 
| 
      
 306 
     | 
    
         
            +
                    # Build EvalResult
         
     | 
| 
      
 307 
     | 
    
         
            +
                    return EvalResult(
         
     | 
| 
      
 308 
     | 
    
         
            +
                        score=overall_acc, metrics=printable_results, htmls=htmls, convos=convos
         
     | 
| 
      
 309 
     | 
    
         
            +
                    )
         
     | 
| 
      
 310 
     | 
    
         
            +
             
     | 
| 
      
 311 
     | 
    
         
            +
             
     | 
| 
      
 312 
     | 
    
         
            +
            def _parse_multi_choice_response(
         
     | 
| 
      
 313 
     | 
    
         
            +
                response: str, all_choices: List[str], index2ans: dict
         
     | 
| 
      
 314 
     | 
    
         
            +
            ) -> str:
         
     | 
| 
      
 315 
     | 
    
         
            +
                # loosely adapted from benchmark mmmu eval
         
     | 
| 
      
 316 
     | 
    
         
            +
                for char in [",", ".", "!", "?", ";", ":", "'"]:
         
     | 
| 
      
 317 
     | 
    
         
            +
                    response = response.strip(char)
         
     | 
| 
      
 318 
     | 
    
         
            +
                response = " " + response + " "
         
     | 
| 
      
 319 
     | 
    
         
            +
             
     | 
| 
      
 320 
     | 
    
         
            +
                # Prefer explicit letter with bracket e.g. (A)
         
     | 
| 
      
 321 
     | 
    
         
            +
                candidates: List[str] = []
         
     | 
| 
      
 322 
     | 
    
         
            +
                for choice in all_choices:
         
     | 
| 
      
 323 
     | 
    
         
            +
                    if f"({choice})" in response:
         
     | 
| 
      
 324 
     | 
    
         
            +
                        candidates.append(choice)
         
     | 
| 
      
 325 
     | 
    
         
            +
                if not candidates:
         
     | 
| 
      
 326 
     | 
    
         
            +
                    for choice in all_choices:
         
     | 
| 
      
 327 
     | 
    
         
            +
                        if f" {choice} " in response:
         
     | 
| 
      
 328 
     | 
    
         
            +
                            candidates.append(choice)
         
     | 
| 
      
 329 
     | 
    
         
            +
                if not candidates and len(response.split()) > 5:
         
     | 
| 
      
 330 
     | 
    
         
            +
                    # try match by option text
         
     | 
| 
      
 331 
     | 
    
         
            +
                    for idx, ans in index2ans.items():
         
     | 
| 
      
 332 
     | 
    
         
            +
                        if ans and ans.lower() in response.lower():
         
     | 
| 
      
 333 
     | 
    
         
            +
                            candidates.append(idx)
         
     | 
| 
      
 334 
     | 
    
         
            +
                if not candidates:
         
     | 
| 
      
 335 
     | 
    
         
            +
                    # fallback to first choice
         
     | 
| 
      
 336 
     | 
    
         
            +
                    return all_choices[0]
         
     | 
| 
      
 337 
     | 
    
         
            +
                if len(candidates) == 1:
         
     | 
| 
      
 338 
     | 
    
         
            +
                    return candidates[0]
         
     | 
| 
      
 339 
     | 
    
         
            +
                # choose the last occurrence
         
     | 
| 
      
 340 
     | 
    
         
            +
                starts = []
         
     | 
| 
      
 341 
     | 
    
         
            +
                for can in candidates:
         
     | 
| 
      
 342 
     | 
    
         
            +
                    pos = response.rfind(f"({can})")
         
     | 
| 
      
 343 
     | 
    
         
            +
                    if pos == -1:
         
     | 
| 
      
 344 
     | 
    
         
            +
                        pos = response.rfind(f" {can} ")
         
     | 
| 
      
 345 
     | 
    
         
            +
                    if pos == -1 and index2ans.get(can):
         
     | 
| 
      
 346 
     | 
    
         
            +
                        pos = response.lower().rfind(index2ans[can].lower())
         
     | 
| 
      
 347 
     | 
    
         
            +
                    starts.append(pos)
         
     | 
| 
      
 348 
     | 
    
         
            +
                return candidates[int(max(range(len(starts)), key=lambda i: starts[i]))]
         
     | 
| 
      
 349 
     | 
    
         
            +
             
     | 
| 
      
 350 
     | 
    
         
            +
             
     | 
| 
      
 351 
     | 
    
         
            +
            def _check_is_number(s: str) -> bool:
         
     | 
| 
      
 352 
     | 
    
         
            +
                try:
         
     | 
| 
      
 353 
     | 
    
         
            +
                    float(s.replace(",", ""))
         
     | 
| 
      
 354 
     | 
    
         
            +
                    return True
         
     | 
| 
      
 355 
     | 
    
         
            +
                except Exception:
         
     | 
| 
      
 356 
     | 
    
         
            +
                    return False
         
     | 
| 
      
 357 
     | 
    
         
            +
             
     | 
| 
      
 358 
     | 
    
         
            +
             
     | 
| 
      
 359 
     | 
    
         
            +
            def _normalize_str(s: str):
         
     | 
| 
      
 360 
     | 
    
         
            +
                s = s.strip()
         
     | 
| 
      
 361 
     | 
    
         
            +
                if _check_is_number(s):
         
     | 
| 
      
 362 
     | 
    
         
            +
                    s = s.replace(",", "")
         
     | 
| 
      
 363 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 364 
     | 
    
         
            +
                        v = round(float(s), 2)
         
     | 
| 
      
 365 
     | 
    
         
            +
                        return [v]
         
     | 
| 
      
 366 
     | 
    
         
            +
                    except Exception:
         
     | 
| 
      
 367 
     | 
    
         
            +
                        return [s.lower()]
         
     | 
| 
      
 368 
     | 
    
         
            +
                return [s.lower()] if len(s) > 1 else [" " + s, s + " "]
         
     | 
| 
      
 369 
     | 
    
         
            +
             
     | 
| 
      
 370 
     | 
    
         
            +
             
     | 
| 
      
 371 
     | 
    
         
            +
            def _extract_numbers(s: str) -> List[str]:
         
     | 
| 
      
 372 
     | 
    
         
            +
                import re as _re
         
     | 
| 
      
 373 
     | 
    
         
            +
             
     | 
| 
      
 374 
     | 
    
         
            +
                pattern_commas = r"-?\b\d{1,3}(?:,\d{3})+\b"
         
     | 
| 
      
 375 
     | 
    
         
            +
                pattern_scientific = r"-?\d+(?:\.\d+)?[eE][+-]?\d+"
         
     | 
| 
      
 376 
     | 
    
         
            +
                pattern_simple = r"-?(?:\d+\.\d+|\.\d+|\d+\b)(?![eE][+-]?\d+)(?![,\d])"
         
     | 
| 
      
 377 
     | 
    
         
            +
                return (
         
     | 
| 
      
 378 
     | 
    
         
            +
                    _re.findall(pattern_commas, s)
         
     | 
| 
      
 379 
     | 
    
         
            +
                    + _re.findall(pattern_scientific, s)
         
     | 
| 
      
 380 
     | 
    
         
            +
                    + _re.findall(pattern_simple, s)
         
     | 
| 
      
 381 
     | 
    
         
            +
                )
         
     | 
| 
      
 382 
     | 
    
         
            +
             
     | 
| 
      
 383 
     | 
    
         
            +
             
     | 
| 
      
 384 
     | 
    
         
            +
            def _parse_open_response(response: str) -> List[str]:
         
     | 
| 
      
 385 
     | 
    
         
            +
                import re as _re
         
     | 
| 
      
 386 
     | 
    
         
            +
             
     | 
| 
      
 387 
     | 
    
         
            +
                def get_key_subresponses(resp: str) -> List[str]:
         
     | 
| 
      
 388 
     | 
    
         
            +
                    resp = resp.strip().strip(".").lower()
         
     | 
| 
      
 389 
     | 
    
         
            +
                    subs = _re.split(r"\.\s(?=[A-Z])|\n", resp)
         
     | 
| 
      
 390 
     | 
    
         
            +
                    indicators = [
         
     | 
| 
      
 391 
     | 
    
         
            +
                        "could be ",
         
     | 
| 
      
 392 
     | 
    
         
            +
                        "so ",
         
     | 
| 
      
 393 
     | 
    
         
            +
                        "is ",
         
     | 
| 
      
 394 
     | 
    
         
            +
                        "thus ",
         
     | 
| 
      
 395 
     | 
    
         
            +
                        "therefore ",
         
     | 
| 
      
 396 
     | 
    
         
            +
                        "final ",
         
     | 
| 
      
 397 
     | 
    
         
            +
                        "answer ",
         
     | 
| 
      
 398 
     | 
    
         
            +
                        "result ",
         
     | 
| 
      
 399 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 400 
     | 
    
         
            +
                    keys = []
         
     | 
| 
      
 401 
     | 
    
         
            +
                    for i, s in enumerate(subs):
         
     | 
| 
      
 402 
     | 
    
         
            +
                        cands = [*indicators]
         
     | 
| 
      
 403 
     | 
    
         
            +
                        if i == len(subs) - 1:
         
     | 
| 
      
 404 
     | 
    
         
            +
                            cands.append("=")
         
     | 
| 
      
 405 
     | 
    
         
            +
                        shortest = None
         
     | 
| 
      
 406 
     | 
    
         
            +
                        for ind in cands:
         
     | 
| 
      
 407 
     | 
    
         
            +
                            if ind in s:
         
     | 
| 
      
 408 
     | 
    
         
            +
                                part = s.split(ind)[-1].strip()
         
     | 
| 
      
 409 
     | 
    
         
            +
                                if not shortest or len(part) < len(shortest):
         
     | 
| 
      
 410 
     | 
    
         
            +
                                    shortest = part
         
     | 
| 
      
 411 
     | 
    
         
            +
                        if shortest and shortest not in [":", ",", ".", "!", "?", ";", ":", "'"]:
         
     | 
| 
      
 412 
     | 
    
         
            +
                            keys.append(shortest)
         
     | 
| 
      
 413 
     | 
    
         
            +
                    return keys or [resp]
         
     | 
| 
      
 414 
     | 
    
         
            +
             
     | 
| 
      
 415 
     | 
    
         
            +
                key_resps = get_key_subresponses(response)
         
     | 
| 
      
 416 
     | 
    
         
            +
                pred_list = key_resps.copy()
         
     | 
| 
      
 417 
     | 
    
         
            +
                for r in key_resps:
         
     | 
| 
      
 418 
     | 
    
         
            +
                    pred_list.extend(_extract_numbers(r))
         
     | 
| 
      
 419 
     | 
    
         
            +
                out = []
         
     | 
| 
      
 420 
     | 
    
         
            +
                for x in pred_list:
         
     | 
| 
      
 421 
     | 
    
         
            +
                    out.extend(_normalize_str(x))
         
     | 
| 
      
 422 
     | 
    
         
            +
                # dedup
         
     | 
| 
      
 423 
     | 
    
         
            +
                return list(dict.fromkeys(out))
         
     | 
| 
      
 424 
     | 
    
         
            +
             
     | 
| 
      
 425 
     | 
    
         
            +
             
     | 
| 
      
 426 
     | 
    
         
            +
            def _eval_open(gold, preds: List[str]) -> bool:
         
     | 
| 
      
 427 
     | 
    
         
            +
                if isinstance(gold, list):
         
     | 
| 
      
 428 
     | 
    
         
            +
                    norm_answers = []
         
     | 
| 
      
 429 
     | 
    
         
            +
                    for ans in gold:
         
     | 
| 
      
 430 
     | 
    
         
            +
                        norm_answers.extend(_normalize_str(ans))
         
     | 
| 
      
 431 
     | 
    
         
            +
                else:
         
     | 
| 
      
 432 
     | 
    
         
            +
                    norm_answers = _normalize_str(gold)
         
     | 
| 
      
 433 
     | 
    
         
            +
                for p in preds:
         
     | 
| 
      
 434 
     | 
    
         
            +
                    if isinstance(p, str):
         
     | 
| 
      
 435 
     | 
    
         
            +
                        for na in norm_answers:
         
     | 
| 
      
 436 
     | 
    
         
            +
                            if isinstance(na, str) and na in p:
         
     | 
| 
      
 437 
     | 
    
         
            +
                                return True
         
     | 
| 
      
 438 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 439 
     | 
    
         
            +
                        if p in norm_answers:
         
     | 
| 
      
 440 
     | 
    
         
            +
                            return True
         
     | 
| 
      
 441 
     | 
    
         
            +
                return False
         
     | 
    
        sglang/test/test_block_fp8.py
    CHANGED
    
    | 
         @@ -1,5 +1,4 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            import itertools
         
     | 
| 
       2 
     | 
    
         
            -
            import os
         
     | 
| 
       3 
2 
     | 
    
         
             
            import unittest
         
     | 
| 
       4 
3 
     | 
    
         | 
| 
       5 
4 
     | 
    
         
             
            import torch
         
     | 
| 
         @@ -577,7 +576,7 @@ class TestW8A8BlockFP8BatchedDeepGemm(CustomTestCase): 
     | 
|
| 
       577 
576 
     | 
    
         
             
                    if not torch.cuda.is_available():
         
     | 
| 
       578 
577 
     | 
    
         
             
                        raise unittest.SkipTest("CUDA is not available")
         
     | 
| 
       579 
578 
     | 
    
         
             
                    try:
         
     | 
| 
       580 
     | 
    
         
            -
                        import deep_gemm
         
     | 
| 
      
 579 
     | 
    
         
            +
                        import deep_gemm  # noqa: F401
         
     | 
| 
       581 
580 
     | 
    
         
             
                    except ImportError:
         
     | 
| 
       582 
581 
     | 
    
         
             
                        raise unittest.SkipTest("DeepGEMM is not available")
         
     | 
| 
       583 
582 
     | 
    
         
             
                    torch.set_default_device("cuda")
         
     | 
| 
         @@ -621,11 +620,11 @@ class TestW8A8BlockFP8BatchedDeepGemm(CustomTestCase): 
     | 
|
| 
       621 
620 
     | 
    
         
             
                        w_s,
         
     | 
| 
       622 
621 
     | 
    
         
             
                    )
         
     | 
| 
       623 
622 
     | 
    
         | 
| 
       624 
     | 
    
         
            -
                    from deep_gemm import  
     | 
| 
      
 623 
     | 
    
         
            +
                    from deep_gemm import fp8_m_grouped_gemm_nt_masked
         
     | 
| 
       625 
624 
     | 
    
         | 
| 
       626 
625 
     | 
    
         
             
                    with torch.inference_mode():
         
     | 
| 
       627 
626 
     | 
    
         
             
                        ref_out = torch_w8a8_block_fp8_bmm(a, a_s, w, w_s, block_size, dtype)
         
     | 
| 
       628 
     | 
    
         
            -
                         
     | 
| 
      
 627 
     | 
    
         
            +
                        fp8_m_grouped_gemm_nt_masked(lhs, rhs, oe, masked_m, expected_m)
         
     | 
| 
       629 
628 
     | 
    
         
             
                        out = oe[:, :M, :]
         
     | 
| 
       630 
629 
     | 
    
         | 
| 
       631 
630 
     | 
    
         
             
                    self.assertTrue(
         
     | 
    
        sglang/test/test_cutlass_moe.py
    CHANGED
    
    | 
         @@ -1,5 +1,4 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            import argparse
         
     | 
| 
       2 
     | 
    
         
            -
            import time
         
     | 
| 
       3 
2 
     | 
    
         | 
| 
       4 
3 
     | 
    
         
             
            import torch
         
     | 
| 
       5 
4 
     | 
    
         
             
            import triton  # Added import
         
     | 
| 
         @@ -34,7 +33,7 @@ def get_model_config(tp_size: int): 
     | 
|
| 
       34 
33 
     | 
    
         
             
                    "topk": topk,
         
     | 
| 
       35 
34 
     | 
    
         
             
                    "hidden_size": config.hidden_size,
         
     | 
| 
       36 
35 
     | 
    
         
             
                    "shard_intermediate_size": shard_intermediate_size,
         
     | 
| 
       37 
     | 
    
         
            -
                    "dtype": config. 
     | 
| 
      
 36 
     | 
    
         
            +
                    "dtype": config.dtype,
         
     | 
| 
       38 
37 
     | 
    
         
             
                    "block_shape": config.quantization_config["weight_block_size"],
         
     | 
| 
       39 
38 
     | 
    
         
             
                }
         
     | 
| 
       40 
39 
     | 
    
         | 
| 
         @@ -1,6 +1,6 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            # SPDX-License-Identifier: Apache-2.0
         
     | 
| 
       2 
2 
     | 
    
         | 
| 
       3 
     | 
    
         
            -
            from typing import  
     | 
| 
      
 3 
     | 
    
         
            +
            from typing import Optional
         
     | 
| 
       4 
4 
     | 
    
         | 
| 
       5 
5 
     | 
    
         
             
            import pytest
         
     | 
| 
       6 
6 
     | 
    
         
             
            import torch
         
     | 
| 
         @@ -120,7 +120,7 @@ def test_cutlass_w4a8_moe(M, N, K, E, tp_size, use_ep_moe, topk, group_size, dty 
     | 
|
| 
       120 
120 
     | 
    
         
             
                )
         
     | 
| 
       121 
121 
     | 
    
         
             
                topk_weights, topk_ids, _ = topk_output
         
     | 
| 
       122 
122 
     | 
    
         
             
                expert_map = torch.arange(E, dtype=torch.int32, device=device)
         
     | 
| 
       123 
     | 
    
         
            -
                expert_map[local_e:] =  
     | 
| 
      
 123 
     | 
    
         
            +
                expert_map[local_e:] = -1
         
     | 
| 
       124 
124 
     | 
    
         | 
| 
       125 
125 
     | 
    
         
             
                output = cutlass_moe(
         
     | 
| 
       126 
126 
     | 
    
         
             
                    a,
         
     | 
| 
         @@ -138,9 +138,7 @@ def test_cutlass_w4a8_moe(M, N, K, E, tp_size, use_ep_moe, topk, group_size, dty 
     | 
|
| 
       138 
138 
     | 
    
         
             
                    c_strides2,
         
     | 
| 
       139 
139 
     | 
    
         
             
                    s_strides13,
         
     | 
| 
       140 
140 
     | 
    
         
             
                    s_strides2,
         
     | 
| 
       141 
     | 
    
         
            -
                     
     | 
| 
       142 
     | 
    
         
            -
                    local_e - 1,
         
     | 
| 
       143 
     | 
    
         
            -
                    E,
         
     | 
| 
      
 141 
     | 
    
         
            +
                    local_e,
         
     | 
| 
       144 
142 
     | 
    
         
             
                    a1_scale,
         
     | 
| 
       145 
143 
     | 
    
         
             
                    a2_scale,
         
     | 
| 
       146 
144 
     | 
    
         
             
                    expert_map,
         
     | 
| 
         @@ -178,7 +176,7 @@ def cutlass_moe( 
     | 
|
| 
       178 
176 
     | 
    
         
             
                w1_scale: torch.Tensor,
         
     | 
| 
       179 
177 
     | 
    
         
             
                w2_scale: torch.Tensor,
         
     | 
| 
       180 
178 
     | 
    
         
             
                topk_weights: torch.Tensor,
         
     | 
| 
       181 
     | 
    
         
            -
                 
     | 
| 
      
 179 
     | 
    
         
            +
                topk_ids: torch.Tensor,
         
     | 
| 
       182 
180 
     | 
    
         
             
                a_strides1: torch.Tensor,
         
     | 
| 
       183 
181 
     | 
    
         
             
                b_strides1: torch.Tensor,
         
     | 
| 
       184 
182 
     | 
    
         
             
                c_strides1: torch.Tensor,
         
     | 
| 
         @@ -187,40 +185,32 @@ def cutlass_moe( 
     | 
|
| 
       187 
185 
     | 
    
         
             
                c_strides2: torch.Tensor,
         
     | 
| 
       188 
186 
     | 
    
         
             
                s_strides13: torch.Tensor,
         
     | 
| 
       189 
187 
     | 
    
         
             
                s_strides2: torch.Tensor,
         
     | 
| 
       190 
     | 
    
         
            -
                 
     | 
| 
       191 
     | 
    
         
            -
                end_expert_id: int,
         
     | 
| 
       192 
     | 
    
         
            -
                E: int,
         
     | 
| 
      
 188 
     | 
    
         
            +
                num_local_experts: int,
         
     | 
| 
       193 
189 
     | 
    
         
             
                a1_scale: Optional[torch.Tensor] = None,
         
     | 
| 
       194 
190 
     | 
    
         
             
                a2_scale: Optional[torch.Tensor] = None,
         
     | 
| 
       195 
191 
     | 
    
         
             
                expert_map: Optional[torch.Tensor] = None,
         
     | 
| 
       196 
192 
     | 
    
         
             
                apply_router_weight_on_input: bool = False,
         
     | 
| 
       197 
193 
     | 
    
         
             
            ):
         
     | 
| 
       198 
     | 
    
         
            -
                 
     | 
| 
       199 
     | 
    
         
            -
                local_topk_ids = torch.where(expert_map[topk_ids_] != E, expert_map[topk_ids_], E)
         
     | 
| 
      
 194 
     | 
    
         
            +
                topk_ids = expert_map[topk_ids]
         
     | 
| 
       200 
195 
     | 
    
         
             
                device = a.device
         
     | 
| 
       201 
196 
     | 
    
         | 
| 
       202 
     | 
    
         
            -
                local_num_experts = end_expert_id - start_expert_id + 1
         
     | 
| 
       203 
197 
     | 
    
         
             
                expert_offsets = torch.empty(
         
     | 
| 
       204 
     | 
    
         
            -
                    ( 
     | 
| 
      
 198 
     | 
    
         
            +
                    (num_local_experts + 1), dtype=torch.int32, device=device
         
     | 
| 
       205 
199 
     | 
    
         
             
                )
         
     | 
| 
       206 
200 
     | 
    
         
             
                problem_sizes1 = torch.empty(
         
     | 
| 
       207 
     | 
    
         
            -
                    ( 
     | 
| 
      
 201 
     | 
    
         
            +
                    (num_local_experts, 3), dtype=torch.int32, device=device
         
     | 
| 
       208 
202 
     | 
    
         
             
                )
         
     | 
| 
       209 
203 
     | 
    
         
             
                problem_sizes2 = torch.empty(
         
     | 
| 
       210 
     | 
    
         
            -
                    ( 
     | 
| 
      
 204 
     | 
    
         
            +
                    (num_local_experts, 3), dtype=torch.int32, device=device
         
     | 
| 
       211 
205 
     | 
    
         
             
                )
         
     | 
| 
       212 
206 
     | 
    
         
             
                return cutlass_w4a8_moe(
         
     | 
| 
       213 
     | 
    
         
            -
                    start_expert_id,
         
     | 
| 
       214 
     | 
    
         
            -
                    end_expert_id,
         
     | 
| 
       215 
     | 
    
         
            -
                    E,
         
     | 
| 
       216 
207 
     | 
    
         
             
                    a,
         
     | 
| 
       217 
208 
     | 
    
         
             
                    w1_q,
         
     | 
| 
       218 
209 
     | 
    
         
             
                    w2_q,
         
     | 
| 
       219 
210 
     | 
    
         
             
                    w1_scale,
         
     | 
| 
       220 
211 
     | 
    
         
             
                    w2_scale,
         
     | 
| 
       221 
212 
     | 
    
         
             
                    topk_weights,
         
     | 
| 
       222 
     | 
    
         
            -
                     
     | 
| 
       223 
     | 
    
         
            -
                    local_topk_ids,
         
     | 
| 
      
 213 
     | 
    
         
            +
                    topk_ids,
         
     | 
| 
       224 
214 
     | 
    
         
             
                    a_strides1,
         
     | 
| 
       225 
215 
     | 
    
         
             
                    b_strides1,
         
     | 
| 
       226 
216 
     | 
    
         
             
                    c_strides1,
         
     |