sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -1,14 +1,13 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            from __future__ import annotations
         
     | 
| 
       2 
2 
     | 
    
         | 
| 
       3 
3 
     | 
    
         
             
            import logging
         
     | 
| 
       4 
     | 
    
         
            -
            from typing import TYPE_CHECKING, Any,  
     | 
| 
      
 4 
     | 
    
         
            +
            from typing import TYPE_CHECKING, Any, Dict, List, Optional
         
     | 
| 
       5 
5 
     | 
    
         | 
| 
       6 
6 
     | 
    
         
             
            import torch
         
     | 
| 
       7 
7 
     | 
    
         
             
            from torch.nn import Module
         
     | 
| 
       8 
8 
     | 
    
         
             
            from torch.nn.parameter import Parameter
         
     | 
| 
       9 
9 
     | 
    
         | 
| 
       10 
     | 
    
         
            -
            from sglang.srt. 
     | 
| 
       11 
     | 
    
         
            -
            from sglang.srt.layers.linear import LinearBase, UnquantizedLinearMethod
         
     | 
| 
      
 10 
     | 
    
         
            +
            from sglang.srt.layers.linear import UnquantizedLinearMethod
         
     | 
| 
       12 
11 
     | 
    
         
             
            from sglang.srt.layers.quantization.base_config import (
         
     | 
| 
       13 
12 
     | 
    
         
             
                FusedMoEMethodBase,
         
     | 
| 
       14 
13 
     | 
    
         
             
                QuantizationConfig,
         
     | 
| 
         @@ -17,17 +16,14 @@ from sglang.srt.layers.quantization.base_config import ( 
     | 
|
| 
       17 
16 
     | 
    
         
             
            from sglang.srt.layers.quantization.fp8 import Fp8LinearMethod
         
     | 
| 
       18 
17 
     | 
    
         
             
            from sglang.srt.layers.quantization.unquant import UnquantizedLinearMethod
         
     | 
| 
       19 
18 
     | 
    
         
             
            from sglang.srt.layers.quantization.utils import is_layer_skipped
         
     | 
| 
       20 
     | 
    
         
            -
            from sglang.srt.utils import  
     | 
| 
       21 
     | 
    
         
            -
             
     | 
| 
       22 
     | 
    
         
            -
            _is_npu = is_npu()
         
     | 
| 
       23 
     | 
    
         
            -
            if not _is_npu:
         
     | 
| 
       24 
     | 
    
         
            -
                from sglang.srt.layers.moe.cutlass_w4a8_moe import cutlass_w4a8_moe
         
     | 
| 
      
 19 
     | 
    
         
            +
            from sglang.srt.utils import set_weight_attrs
         
     | 
| 
       25 
20 
     | 
    
         | 
| 
       26 
21 
     | 
    
         
             
            if TYPE_CHECKING:
         
     | 
| 
       27 
22 
     | 
    
         
             
                from sglang.srt.layers.moe import MoeRunnerConfig
         
     | 
| 
       28 
     | 
    
         
            -
                from sglang.srt.layers.moe.ep_moe.layer import  
     | 
| 
      
 23 
     | 
    
         
            +
                from sglang.srt.layers.moe.ep_moe.layer import DeepEPMoE
         
     | 
| 
       29 
24 
     | 
    
         
             
                from sglang.srt.layers.moe.token_dispatcher import (
         
     | 
| 
       30 
25 
     | 
    
         
             
                    CombineInput,
         
     | 
| 
      
 26 
     | 
    
         
            +
                    DeepEPNormalOutput,
         
     | 
| 
       31 
27 
     | 
    
         
             
                    StandardDispatchOutput,
         
     | 
| 
       32 
28 
     | 
    
         
             
                )
         
     | 
| 
       33 
29 
     | 
    
         | 
| 
         @@ -98,9 +94,7 @@ class W4AFp8Config(QuantizationConfig): 
     | 
|
| 
       98 
94 
     | 
    
         
             
                    self, layer: torch.nn.Module, prefix: str
         
     | 
| 
       99 
95 
     | 
    
         
             
                ) -> Optional[QuantizeMethodBase]:
         
     | 
| 
       100 
96 
     | 
    
         
             
                    from sglang.srt.layers.linear import LinearBase
         
     | 
| 
       101 
     | 
    
         
            -
                    from sglang.srt.layers.moe.ep_moe.layer import EPMoE
         
     | 
| 
       102 
97 
     | 
    
         
             
                    from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
         
     | 
| 
       103 
     | 
    
         
            -
                    from sglang.srt.managers.schedule_batch import global_server_args_dict
         
     | 
| 
       104 
98 
     | 
    
         | 
| 
       105 
99 
     | 
    
         
             
                    if isinstance(layer, LinearBase):
         
     | 
| 
       106 
100 
     | 
    
         
             
                        if is_layer_skipped(prefix, self.ignored_layers):
         
     | 
| 
         @@ -137,7 +131,7 @@ class W4AFp8MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       137 
131 
     | 
    
         | 
| 
       138 
132 
     | 
    
         
             
                def create_weights(
         
     | 
| 
       139 
133 
     | 
    
         
             
                    self,
         
     | 
| 
       140 
     | 
    
         
            -
                    layer:  
     | 
| 
      
 134 
     | 
    
         
            +
                    layer: Module,
         
     | 
| 
       141 
135 
     | 
    
         
             
                    num_experts: int,
         
     | 
| 
       142 
136 
     | 
    
         
             
                    hidden_size: int,
         
     | 
| 
       143 
137 
     | 
    
         
             
                    intermediate_size_per_partition: int,
         
     | 
| 
         @@ -296,7 +290,7 @@ class W4AFp8MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       296 
290 
     | 
    
         | 
| 
       297 
291 
     | 
    
         
             
                def apply(
         
     | 
| 
       298 
292 
     | 
    
         
             
                    self,
         
     | 
| 
       299 
     | 
    
         
            -
                    layer:  
     | 
| 
      
 293 
     | 
    
         
            +
                    layer: Module,
         
     | 
| 
       300 
294 
     | 
    
         
             
                    dispatch_output: StandardDispatchOutput,
         
     | 
| 
       301 
295 
     | 
    
         
             
                ) -> CombineInput:
         
     | 
| 
       302 
296 
     | 
    
         | 
| 
         @@ -307,18 +301,8 @@ class W4AFp8MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       307 
301 
     | 
    
         
             
                    topk_output = dispatch_output.topk_output
         
     | 
| 
       308 
302 
     | 
    
         | 
| 
       309 
303 
     | 
    
         
             
                    topk_weights, topk_ids, _ = topk_output
         
     | 
| 
       310 
     | 
    
         
            -
                    local_topk_ids = topk_ids
         
     | 
| 
       311 
     | 
    
         
            -
                    if get_moe_expert_parallel_world_size() > 1:
         
     | 
| 
       312 
     | 
    
         
            -
                        local_topk_ids = torch.where(
         
     | 
| 
       313 
     | 
    
         
            -
                            topk_ids == -1,
         
     | 
| 
       314 
     | 
    
         
            -
                            layer.num_experts,
         
     | 
| 
       315 
     | 
    
         
            -
                            topk_ids,
         
     | 
| 
       316 
     | 
    
         
            -
                        )
         
     | 
| 
       317 
304 
     | 
    
         | 
| 
       318 
305 
     | 
    
         
             
                    output = cutlass_w4a8_moe(
         
     | 
| 
       319 
     | 
    
         
            -
                        layer.start_expert_id,
         
     | 
| 
       320 
     | 
    
         
            -
                        layer.end_expert_id,
         
     | 
| 
       321 
     | 
    
         
            -
                        layer.num_experts,
         
     | 
| 
       322 
306 
     | 
    
         
             
                        x,
         
     | 
| 
       323 
307 
     | 
    
         
             
                        layer.w13_weight,
         
     | 
| 
       324 
308 
     | 
    
         
             
                        layer.w2_weight,
         
     | 
| 
         @@ -326,7 +310,6 @@ class W4AFp8MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       326 
310 
     | 
    
         
             
                        layer.w2_weight_scale_inv,
         
     | 
| 
       327 
311 
     | 
    
         
             
                        topk_weights,
         
     | 
| 
       328 
312 
     | 
    
         
             
                        topk_ids,
         
     | 
| 
       329 
     | 
    
         
            -
                        local_topk_ids,
         
     | 
| 
       330 
313 
     | 
    
         
             
                        self.a_strides1,
         
     | 
| 
       331 
314 
     | 
    
         
             
                        self.b_strides1,
         
     | 
| 
       332 
315 
     | 
    
         
             
                        self.c_strides1,
         
     | 
| 
         @@ -344,3 +327,47 @@ class W4AFp8MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       344 
327 
     | 
    
         
             
                    if self.moe_runner_config.routed_scaling_factor is not None:
         
     | 
| 
       345 
328 
     | 
    
         
             
                        output *= self.moe_runner_config.routed_scaling_factor
         
     | 
| 
       346 
329 
     | 
    
         
             
                    return StandardCombineInput(hidden_states=output)
         
     | 
| 
      
 330 
     | 
    
         
            +
             
     | 
| 
      
 331 
     | 
    
         
            +
                def apply_deepep_normal(
         
     | 
| 
      
 332 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 333 
     | 
    
         
            +
                    layer: DeepEPMoE,
         
     | 
| 
      
 334 
     | 
    
         
            +
                    dispatch_output: DeepEPNormalOutput,
         
     | 
| 
      
 335 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 336 
     | 
    
         
            +
                    from sglang.srt.layers.moe.cutlass_w4a8_moe import (
         
     | 
| 
      
 337 
     | 
    
         
            +
                        cutlass_w4a8_moe_deepep_normal,
         
     | 
| 
      
 338 
     | 
    
         
            +
                    )
         
     | 
| 
      
 339 
     | 
    
         
            +
             
     | 
| 
      
 340 
     | 
    
         
            +
                    hidden_states, topk_idx, topk_weights = (
         
     | 
| 
      
 341 
     | 
    
         
            +
                        dispatch_output.hidden_states,
         
     | 
| 
      
 342 
     | 
    
         
            +
                        dispatch_output.topk_ids,
         
     | 
| 
      
 343 
     | 
    
         
            +
                        dispatch_output.topk_weights,
         
     | 
| 
      
 344 
     | 
    
         
            +
                    )
         
     | 
| 
      
 345 
     | 
    
         
            +
                    if isinstance(hidden_states, tuple):
         
     | 
| 
      
 346 
     | 
    
         
            +
                        hidden_states = hidden_states[0]
         
     | 
| 
      
 347 
     | 
    
         
            +
             
     | 
| 
      
 348 
     | 
    
         
            +
                    num_tokens = hidden_states.shape[0]
         
     | 
| 
      
 349 
     | 
    
         
            +
                    if num_tokens > 0:
         
     | 
| 
      
 350 
     | 
    
         
            +
                        return cutlass_w4a8_moe_deepep_normal(
         
     | 
| 
      
 351 
     | 
    
         
            +
                            hidden_states,
         
     | 
| 
      
 352 
     | 
    
         
            +
                            layer.w13_weight,
         
     | 
| 
      
 353 
     | 
    
         
            +
                            layer.w2_weight,
         
     | 
| 
      
 354 
     | 
    
         
            +
                            layer.w13_weight_scale_inv,
         
     | 
| 
      
 355 
     | 
    
         
            +
                            layer.w2_weight_scale_inv,
         
     | 
| 
      
 356 
     | 
    
         
            +
                            topk_weights,
         
     | 
| 
      
 357 
     | 
    
         
            +
                            topk_idx,
         
     | 
| 
      
 358 
     | 
    
         
            +
                            self.a_strides1,
         
     | 
| 
      
 359 
     | 
    
         
            +
                            self.b_strides1,
         
     | 
| 
      
 360 
     | 
    
         
            +
                            self.c_strides1,
         
     | 
| 
      
 361 
     | 
    
         
            +
                            self.a_strides2,
         
     | 
| 
      
 362 
     | 
    
         
            +
                            self.b_strides2,
         
     | 
| 
      
 363 
     | 
    
         
            +
                            self.c_strides2,
         
     | 
| 
      
 364 
     | 
    
         
            +
                            self.s_strides13,
         
     | 
| 
      
 365 
     | 
    
         
            +
                            self.s_strides2,
         
     | 
| 
      
 366 
     | 
    
         
            +
                            self.expert_offsets,
         
     | 
| 
      
 367 
     | 
    
         
            +
                            self.problem_sizes1,
         
     | 
| 
      
 368 
     | 
    
         
            +
                            self.problem_sizes2,
         
     | 
| 
      
 369 
     | 
    
         
            +
                            layer.w13_input_scale,
         
     | 
| 
      
 370 
     | 
    
         
            +
                            layer.w2_input_scale,
         
     | 
| 
      
 371 
     | 
    
         
            +
                        )
         
     | 
| 
      
 372 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 373 
     | 
    
         
            +
                        return hidden_states
         
     | 
| 
         @@ -1,28 +1,12 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            from __future__ import annotations
         
     | 
| 
       2 
2 
     | 
    
         | 
| 
       3 
     | 
    
         
            -
            import importlib
         
     | 
| 
       4 
     | 
    
         
            -
            import sys
         
     | 
| 
       5 
3 
     | 
    
         
             
            from types import MappingProxyType
         
     | 
| 
       6 
     | 
    
         
            -
            from typing import  
     | 
| 
       7 
     | 
    
         
            -
                TYPE_CHECKING,
         
     | 
| 
       8 
     | 
    
         
            -
                Any,
         
     | 
| 
       9 
     | 
    
         
            -
                Callable,
         
     | 
| 
       10 
     | 
    
         
            -
                Dict,
         
     | 
| 
       11 
     | 
    
         
            -
                List,
         
     | 
| 
       12 
     | 
    
         
            -
                Mapping,
         
     | 
| 
       13 
     | 
    
         
            -
                Optional,
         
     | 
| 
       14 
     | 
    
         
            -
                Tuple,
         
     | 
| 
       15 
     | 
    
         
            -
                Union,
         
     | 
| 
       16 
     | 
    
         
            -
                cast,
         
     | 
| 
       17 
     | 
    
         
            -
            )
         
     | 
| 
      
 4 
     | 
    
         
            +
            from typing import TYPE_CHECKING, Any, Dict, List, Mapping, Optional, Tuple, Union, cast
         
     | 
| 
       18 
5 
     | 
    
         | 
| 
       19 
6 
     | 
    
         
             
            import torch
         
     | 
| 
       20 
7 
     | 
    
         
             
            from torch.nn.parameter import Parameter
         
     | 
| 
       21 
8 
     | 
    
         | 
| 
       22 
     | 
    
         
            -
            from sglang.srt.distributed import  
     | 
| 
       23 
     | 
    
         
            -
                get_tensor_model_parallel_rank,
         
     | 
| 
       24 
     | 
    
         
            -
                get_tensor_model_parallel_world_size,
         
     | 
| 
       25 
     | 
    
         
            -
            )
         
     | 
| 
      
 9 
     | 
    
         
            +
            from sglang.srt.distributed import get_tensor_model_parallel_world_size
         
     | 
| 
       26 
10 
     | 
    
         
             
            from sglang.srt.layers.amx_utils import _amx_process_weight_after_loading
         
     | 
| 
       27 
11 
     | 
    
         
             
            from sglang.srt.layers.moe import MoeRunner, MoeRunnerBackend, MoeRunnerConfig
         
     | 
| 
       28 
12 
     | 
    
         
             
            from sglang.srt.layers.moe.moe_runner.triton import TritonMoeQuantInfo
         
     | 
| 
         @@ -118,7 +102,12 @@ def npu_fused_experts( 
     | 
|
| 
       118 
102 
     | 
    
         
             
                topk_weights: torch.Tensor,
         
     | 
| 
       119 
103 
     | 
    
         
             
                topk_ids: torch.Tensor,
         
     | 
| 
       120 
104 
     | 
    
         
             
                top_k: int,
         
     | 
| 
      
 105 
     | 
    
         
            +
                **kwargs,
         
     | 
| 
       121 
106 
     | 
    
         
             
            ):
         
     | 
| 
      
 107 
     | 
    
         
            +
                w13_offset = kwargs.get("w13_offset", None)
         
     | 
| 
      
 108 
     | 
    
         
            +
                w2_offset = kwargs.get("w2_offset", None)
         
     | 
| 
      
 109 
     | 
    
         
            +
                use_wna16 = kwargs.get("use_wna16", False)
         
     | 
| 
      
 110 
     | 
    
         
            +
             
     | 
| 
       122 
111 
     | 
    
         
             
                original_shape = hidden_states.shape
         
     | 
| 
       123 
112 
     | 
    
         
             
                original_dtype = hidden_states.dtype
         
     | 
| 
       124 
113 
     | 
    
         
             
                scale_dtype = original_dtype if original_dtype == torch.bfloat16 else torch.float32
         
     | 
| 
         @@ -143,12 +132,22 @@ def npu_fused_experts( 
     | 
|
| 
       143 
132 
     | 
    
         
             
                )
         
     | 
| 
       144 
133 
     | 
    
         
             
                expert_tokens = expert_tokens.to(torch.int64)
         
     | 
| 
       145 
134 
     | 
    
         
             
                # gmm1: gate_up_proj
         
     | 
| 
       146 
     | 
    
         
            -
                 
     | 
| 
      
 135 
     | 
    
         
            +
                if not use_wna16:
         
     | 
| 
      
 136 
     | 
    
         
            +
                    hidden_states, pertoken_scale = torch_npu.npu_dynamic_quant(hidden_states)
         
     | 
| 
      
 137 
     | 
    
         
            +
                    scale_args13 = {
         
     | 
| 
      
 138 
     | 
    
         
            +
                        "scale": [w13_scale.to(scale_dtype)],
         
     | 
| 
      
 139 
     | 
    
         
            +
                        "per_token_scale": [pertoken_scale],
         
     | 
| 
      
 140 
     | 
    
         
            +
                    }
         
     | 
| 
      
 141 
     | 
    
         
            +
                else:
         
     | 
| 
      
 142 
     | 
    
         
            +
                    scale_args13 = {
         
     | 
| 
      
 143 
     | 
    
         
            +
                        "antiquant_scale": [w13_scale],
         
     | 
| 
      
 144 
     | 
    
         
            +
                        "antiquant_offset": [w13_offset],
         
     | 
| 
      
 145 
     | 
    
         
            +
                    }
         
     | 
| 
      
 146 
     | 
    
         
            +
             
     | 
| 
       147 
147 
     | 
    
         
             
                hidden_states = torch_npu.npu_grouped_matmul(
         
     | 
| 
       148 
148 
     | 
    
         
             
                    x=[hidden_states],
         
     | 
| 
       149 
149 
     | 
    
         
             
                    weight=[w13],
         
     | 
| 
       150 
     | 
    
         
            -
                     
     | 
| 
       151 
     | 
    
         
            -
                    per_token_scale=[pertoken_scale],
         
     | 
| 
      
 150 
     | 
    
         
            +
                    **scale_args13,
         
     | 
| 
       152 
151 
     | 
    
         
             
                    split_item=2,
         
     | 
| 
       153 
152 
     | 
    
         
             
                    group_list_type=0,
         
     | 
| 
       154 
153 
     | 
    
         
             
                    group_type=0,
         
     | 
| 
         @@ -157,13 +156,20 @@ def npu_fused_experts( 
     | 
|
| 
       157 
156 
     | 
    
         
             
                )[0]
         
     | 
| 
       158 
157 
     | 
    
         
             
                # act_fn: swiglu
         
     | 
| 
       159 
158 
     | 
    
         
             
                hidden_states = torch_npu.npu_swiglu(hidden_states)
         
     | 
| 
       160 
     | 
    
         
            -
                 
     | 
| 
      
 159 
     | 
    
         
            +
                if not use_wna16:
         
     | 
| 
      
 160 
     | 
    
         
            +
                    hidden_states, pertoken_scale = torch_npu.npu_dynamic_quant(hidden_states)
         
     | 
| 
      
 161 
     | 
    
         
            +
             
     | 
| 
      
 162 
     | 
    
         
            +
                    scale_args2 = {
         
     | 
| 
      
 163 
     | 
    
         
            +
                        "scale": [w2_scale.to(scale_dtype)],
         
     | 
| 
      
 164 
     | 
    
         
            +
                        "per_token_scale": [pertoken_scale],
         
     | 
| 
      
 165 
     | 
    
         
            +
                    }
         
     | 
| 
      
 166 
     | 
    
         
            +
                else:
         
     | 
| 
      
 167 
     | 
    
         
            +
                    scale_args2 = {"antiquant_scale": [w2_scale], "antiquant_offset": [w2_offset]}
         
     | 
| 
       161 
168 
     | 
    
         
             
                # gmm2: down_proj
         
     | 
| 
       162 
169 
     | 
    
         
             
                hidden_states = torch_npu.npu_grouped_matmul(
         
     | 
| 
       163 
170 
     | 
    
         
             
                    x=[hidden_states],
         
     | 
| 
       164 
171 
     | 
    
         
             
                    weight=[w2],
         
     | 
| 
       165 
     | 
    
         
            -
                     
     | 
| 
       166 
     | 
    
         
            -
                    per_token_scale=[pertoken_scale],
         
     | 
| 
      
 172 
     | 
    
         
            +
                    **scale_args2,
         
     | 
| 
       167 
173 
     | 
    
         
             
                    split_item=2,
         
     | 
| 
       168 
174 
     | 
    
         
             
                    group_list_type=0,
         
     | 
| 
       169 
175 
     | 
    
         
             
                    group_type=0,
         
     | 
| 
         @@ -393,13 +399,23 @@ class W8A8Int8LinearMethod(LinearMethodBase): 
     | 
|
| 
       393 
399 
     | 
    
         
             
                            x.dtype,
         
     | 
| 
       394 
400 
     | 
    
         
             
                            True,  # is_vnni
         
     | 
| 
       395 
401 
     | 
    
         
             
                        )
         
     | 
| 
       396 
     | 
    
         
            -
             
     | 
| 
       397 
402 
     | 
    
         
             
                    x_q, x_scale = per_token_quant_int8(x)
         
     | 
| 
       398 
403 
     | 
    
         | 
| 
       399 
     | 
    
         
            -
                     
     | 
| 
       400 
     | 
    
         
            -
             
     | 
| 
      
 404 
     | 
    
         
            +
                    x_q_2d = x_q.view(-1, x_q.shape[-1])
         
     | 
| 
      
 405 
     | 
    
         
            +
                    x_scale_2d = x_scale.view(-1, x_scale.shape[-1])
         
     | 
| 
      
 406 
     | 
    
         
            +
                    output_shape = [*x_q.shape[:-1], layer.weight.shape[1]]
         
     | 
| 
      
 407 
     | 
    
         
            +
             
     | 
| 
      
 408 
     | 
    
         
            +
                    output = int8_scaled_mm(
         
     | 
| 
      
 409 
     | 
    
         
            +
                        x_q_2d,
         
     | 
| 
      
 410 
     | 
    
         
            +
                        layer.weight,
         
     | 
| 
      
 411 
     | 
    
         
            +
                        x_scale_2d,
         
     | 
| 
      
 412 
     | 
    
         
            +
                        layer.weight_scale,
         
     | 
| 
      
 413 
     | 
    
         
            +
                        out_dtype=x.dtype,
         
     | 
| 
      
 414 
     | 
    
         
            +
                        bias=bias,
         
     | 
| 
       401 
415 
     | 
    
         
             
                    )
         
     | 
| 
       402 
416 
     | 
    
         | 
| 
      
 417 
     | 
    
         
            +
                    return output.view(output_shape)
         
     | 
| 
      
 418 
     | 
    
         
            +
             
     | 
| 
       403 
419 
     | 
    
         | 
| 
       404 
420 
     | 
    
         
             
            class W8A8Int8MoEMethod(FusedMoEMethodBase):
         
     | 
| 
       405 
421 
     | 
    
         
             
                """MoE method for INT8.
         
     | 
| 
         @@ -638,6 +654,7 @@ class NPU_W8A8LinearMethodImpl: 
     | 
|
| 
       638 
654 
     | 
    
         
             
                        layer.weight.data = layer.weight.data.transpose(0, 1).contiguous()
         
     | 
| 
       639 
655 
     | 
    
         
             
                    layer.weight_scale.data = torch.flatten(layer.weight_scale.data)
         
     | 
| 
       640 
656 
     | 
    
         
             
                    layer.weight_offset.data = torch.flatten(layer.weight_offset.data)
         
     | 
| 
      
 657 
     | 
    
         
            +
                    layer.weight.data = torch_npu.npu_format_cast(layer.weight.data, 29)
         
     | 
| 
       641 
658 
     | 
    
         | 
| 
       642 
659 
     | 
    
         | 
| 
       643 
660 
     | 
    
         
             
            class NPU_W8A8LinearMethodMTImpl:
         
     | 
| 
         @@ -830,6 +847,7 @@ class NPU_W8A8DynamicLinearMethodImpl: 
     | 
|
| 
       830 
847 
     | 
    
         
             
                    layer.weight_scale.data = layer.weight_scale.data.flatten()
         
     | 
| 
       831 
848 
     | 
    
         
             
                    layer.weight_scale_fp32 = layer.weight_scale.data.to(torch.float32)
         
     | 
| 
       832 
849 
     | 
    
         
             
                    layer.weight_offset.data = layer.weight_offset.data.flatten()
         
     | 
| 
      
 850 
     | 
    
         
            +
                    layer.weight.data = torch_npu.npu_format_cast(layer.weight.data, 29)
         
     | 
| 
       833 
851 
     | 
    
         | 
| 
       834 
852 
     | 
    
         | 
| 
       835 
853 
     | 
    
         
             
            class NPU_W8A8DynamicLinearMethod(LinearMethodBase):
         
     | 
| 
         @@ -17,8 +17,12 @@ from __future__ import annotations 
     | 
|
| 
       17 
17 
     | 
    
         
             
            from enum import Enum
         
     | 
| 
       18 
18 
     | 
    
         
             
            from typing import TYPE_CHECKING, Optional
         
     | 
| 
       19 
19 
     | 
    
         | 
| 
      
 20 
     | 
    
         
            +
            import torch
         
     | 
| 
       20 
21 
     | 
    
         
             
            from torch import nn
         
     | 
| 
       21 
22 
     | 
    
         | 
| 
      
 23 
     | 
    
         
            +
            from sglang.srt.compilation.piecewise_context_manager import get_forward_context
         
     | 
| 
      
 24 
     | 
    
         
            +
            from sglang.srt.utils import direct_register_custom_op
         
     | 
| 
      
 25 
     | 
    
         
            +
             
     | 
| 
       22 
26 
     | 
    
         
             
            if TYPE_CHECKING:
         
     | 
| 
       23 
27 
     | 
    
         
             
                from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
       24 
28 
     | 
    
         
             
                from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
         @@ -105,12 +109,58 @@ class RadixAttention(nn.Module): 
     | 
|
| 
       105 
109 
     | 
    
         
             
                        else:
         
     | 
| 
       106 
110 
     | 
    
         
             
                            k = k.view(-1, self.tp_k_head_num, self.v_head_dim)
         
     | 
| 
       107 
111 
     | 
    
         | 
| 
       108 
     | 
    
         
            -
                     
     | 
| 
       109 
     | 
    
         
            -
                        q 
     | 
| 
       110 
     | 
    
         
            -
                         
     | 
| 
       111 
     | 
    
         
            -
             
     | 
| 
       112 
     | 
    
         
            -
                         
     | 
| 
       113 
     | 
    
         
            -
                         
     | 
| 
       114 
     | 
    
         
            -
             
     | 
| 
       115 
     | 
    
         
            -
                         
     | 
| 
       116 
     | 
    
         
            -
             
     | 
| 
      
 112 
     | 
    
         
            +
                    if forward_batch.forward_mode.is_extend() and get_forward_context() is not None:
         
     | 
| 
      
 113 
     | 
    
         
            +
                        output = torch.empty_like(q)
         
     | 
| 
      
 114 
     | 
    
         
            +
                        torch.ops.sglang.unified_attention_with_output(
         
     | 
| 
      
 115 
     | 
    
         
            +
                            q, k, v, output, save_kv_cache, self.layer_id
         
     | 
| 
      
 116 
     | 
    
         
            +
                        )
         
     | 
| 
      
 117 
     | 
    
         
            +
                        return output
         
     | 
| 
      
 118 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 119 
     | 
    
         
            +
                        return forward_batch.attn_backend.forward(
         
     | 
| 
      
 120 
     | 
    
         
            +
                            q,
         
     | 
| 
      
 121 
     | 
    
         
            +
                            k,
         
     | 
| 
      
 122 
     | 
    
         
            +
                            v,
         
     | 
| 
      
 123 
     | 
    
         
            +
                            self,
         
     | 
| 
      
 124 
     | 
    
         
            +
                            forward_batch,
         
     | 
| 
      
 125 
     | 
    
         
            +
                            save_kv_cache,
         
     | 
| 
      
 126 
     | 
    
         
            +
                            **kwargs,
         
     | 
| 
      
 127 
     | 
    
         
            +
                        )
         
     | 
| 
      
 128 
     | 
    
         
            +
             
     | 
| 
      
 129 
     | 
    
         
            +
             
     | 
| 
      
 130 
     | 
    
         
            +
            def unified_attention_with_output(
         
     | 
| 
      
 131 
     | 
    
         
            +
                query: torch.Tensor,
         
     | 
| 
      
 132 
     | 
    
         
            +
                key: torch.Tensor,
         
     | 
| 
      
 133 
     | 
    
         
            +
                value: torch.Tensor,
         
     | 
| 
      
 134 
     | 
    
         
            +
                output: torch.Tensor,
         
     | 
| 
      
 135 
     | 
    
         
            +
                save_kv_cache: bool,
         
     | 
| 
      
 136 
     | 
    
         
            +
                layer_id: int,
         
     | 
| 
      
 137 
     | 
    
         
            +
            ) -> None:
         
     | 
| 
      
 138 
     | 
    
         
            +
                context = get_forward_context()
         
     | 
| 
      
 139 
     | 
    
         
            +
                forward_batch = context.forward_batch
         
     | 
| 
      
 140 
     | 
    
         
            +
                attention_layers = context.attention_layers
         
     | 
| 
      
 141 
     | 
    
         
            +
                attention_layer = attention_layers[layer_id]
         
     | 
| 
      
 142 
     | 
    
         
            +
                ret = forward_batch.attn_backend.forward(
         
     | 
| 
      
 143 
     | 
    
         
            +
                    query, key, value, attention_layer, forward_batch, save_kv_cache
         
     | 
| 
      
 144 
     | 
    
         
            +
                )
         
     | 
| 
      
 145 
     | 
    
         
            +
                assert output.shape == ret.shape
         
     | 
| 
      
 146 
     | 
    
         
            +
                output.copy_(ret)
         
     | 
| 
      
 147 
     | 
    
         
            +
                return
         
     | 
| 
      
 148 
     | 
    
         
            +
             
     | 
| 
      
 149 
     | 
    
         
            +
             
     | 
| 
      
 150 
     | 
    
         
            +
            def unified_attention_with_output_fake(
         
     | 
| 
      
 151 
     | 
    
         
            +
                query: torch.Tensor,
         
     | 
| 
      
 152 
     | 
    
         
            +
                key: torch.Tensor,
         
     | 
| 
      
 153 
     | 
    
         
            +
                value: torch.Tensor,
         
     | 
| 
      
 154 
     | 
    
         
            +
                output: torch.Tensor,
         
     | 
| 
      
 155 
     | 
    
         
            +
                save_kv_cache: bool,
         
     | 
| 
      
 156 
     | 
    
         
            +
                layer_id: int,
         
     | 
| 
      
 157 
     | 
    
         
            +
            ) -> None:
         
     | 
| 
      
 158 
     | 
    
         
            +
                return
         
     | 
| 
      
 159 
     | 
    
         
            +
             
     | 
| 
      
 160 
     | 
    
         
            +
             
     | 
| 
      
 161 
     | 
    
         
            +
            direct_register_custom_op(
         
     | 
| 
      
 162 
     | 
    
         
            +
                op_name="unified_attention_with_output",
         
     | 
| 
      
 163 
     | 
    
         
            +
                op_func=unified_attention_with_output,
         
     | 
| 
      
 164 
     | 
    
         
            +
                mutates_args=["output"],
         
     | 
| 
      
 165 
     | 
    
         
            +
                fake_impl=unified_attention_with_output_fake,
         
     | 
| 
      
 166 
     | 
    
         
            +
            )
         
     |