sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
    
        sglang/test/test_block_fp8_ep.py
    DELETED
    
    | 
         @@ -1,358 +0,0 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            import itertools
         
     | 
| 
       2 
     | 
    
         
            -
            import random
         
     | 
| 
       3 
     | 
    
         
            -
            import unittest
         
     | 
| 
       4 
     | 
    
         
            -
            from typing import Any, Callable, Dict, List, Optional, Tuple
         
     | 
| 
       5 
     | 
    
         
            -
             
     | 
| 
       6 
     | 
    
         
            -
            import torch
         
     | 
| 
       7 
     | 
    
         
            -
             
     | 
| 
       8 
     | 
    
         
            -
            from sglang.srt.layers.moe.ep_moe.kernels import (
         
     | 
| 
       9 
     | 
    
         
            -
                grouped_gemm_triton,
         
     | 
| 
       10 
     | 
    
         
            -
                post_reorder_triton_kernel,
         
     | 
| 
       11 
     | 
    
         
            -
                pre_reorder_triton_kernel,
         
     | 
| 
       12 
     | 
    
         
            -
                run_moe_ep_preproess,
         
     | 
| 
       13 
     | 
    
         
            -
                silu_and_mul_triton_kernel,
         
     | 
| 
       14 
     | 
    
         
            -
            )
         
     | 
| 
       15 
     | 
    
         
            -
            from sglang.srt.layers.moe.topk import TopKConfig, select_experts
         
     | 
| 
       16 
     | 
    
         
            -
            from sglang.test.test_utils import CustomTestCase
         
     | 
| 
       17 
     | 
    
         
            -
             
     | 
| 
       18 
     | 
    
         
            -
             
     | 
| 
       19 
     | 
    
         
            -
            # For test
         
     | 
| 
       20 
     | 
    
         
            -
            def ep_moe(
         
     | 
| 
       21 
     | 
    
         
            -
                hidden_states: torch.Tensor,
         
     | 
| 
       22 
     | 
    
         
            -
                w1: torch.Tensor,
         
     | 
| 
       23 
     | 
    
         
            -
                w2: torch.Tensor,
         
     | 
| 
       24 
     | 
    
         
            -
                router_logits: torch.Tensor,
         
     | 
| 
       25 
     | 
    
         
            -
                topk_config: TopKConfig,
         
     | 
| 
       26 
     | 
    
         
            -
                # ep config
         
     | 
| 
       27 
     | 
    
         
            -
                num_experts: int = 256,
         
     | 
| 
       28 
     | 
    
         
            -
                fp8_dtype: torch.types = torch.float8_e4m3fn,
         
     | 
| 
       29 
     | 
    
         
            -
                num_experts_per_partition: int = 128,
         
     | 
| 
       30 
     | 
    
         
            -
                start_expert_id: int = 0,
         
     | 
| 
       31 
     | 
    
         
            -
                end_expert_id: int = 127,
         
     | 
| 
       32 
     | 
    
         
            -
                use_fp8_w8a8: bool = False,
         
     | 
| 
       33 
     | 
    
         
            -
                w1_scale_inv: Optional[torch.Tensor] = None,
         
     | 
| 
       34 
     | 
    
         
            -
                w2_scale_inv: Optional[torch.Tensor] = None,
         
     | 
| 
       35 
     | 
    
         
            -
                block_shape: Optional[List[int]] = None,
         
     | 
| 
       36 
     | 
    
         
            -
            ):
         
     | 
| 
       37 
     | 
    
         
            -
                use_blockwise_fp8 = block_shape is not None
         
     | 
| 
       38 
     | 
    
         
            -
                top_k = topk_config.top_k
         
     | 
| 
       39 
     | 
    
         
            -
                topk_output = select_experts(
         
     | 
| 
       40 
     | 
    
         
            -
                    hidden_states=hidden_states,
         
     | 
| 
       41 
     | 
    
         
            -
                    router_logits=router_logits,
         
     | 
| 
       42 
     | 
    
         
            -
                    topk_config=topk_config,
         
     | 
| 
       43 
     | 
    
         
            -
                )
         
     | 
| 
       44 
     | 
    
         
            -
                topk_weights, topk_ids, _ = topk_output
         
     | 
| 
       45 
     | 
    
         
            -
             
     | 
| 
       46 
     | 
    
         
            -
                reorder_topk_ids, src2dst, seg_indptr = run_moe_ep_preproess(topk_ids, num_experts)
         
     | 
| 
       47 
     | 
    
         
            -
             
     | 
| 
       48 
     | 
    
         
            -
                gateup_input = torch.empty(
         
     | 
| 
       49 
     | 
    
         
            -
                    (int(hidden_states.shape[0] * top_k), hidden_states.shape[1]),
         
     | 
| 
       50 
     | 
    
         
            -
                    device=hidden_states.device,
         
     | 
| 
       51 
     | 
    
         
            -
                    dtype=(
         
     | 
| 
       52 
     | 
    
         
            -
                        fp8_dtype
         
     | 
| 
       53 
     | 
    
         
            -
                        if (use_fp8_w8a8 and not use_blockwise_fp8)
         
     | 
| 
       54 
     | 
    
         
            -
                        else hidden_states.dtype
         
     | 
| 
       55 
     | 
    
         
            -
                    ),
         
     | 
| 
       56 
     | 
    
         
            -
                )
         
     | 
| 
       57 
     | 
    
         
            -
             
     | 
| 
       58 
     | 
    
         
            -
                if use_fp8_w8a8 and not use_blockwise_fp8:
         
     | 
| 
       59 
     | 
    
         
            -
                    max_value = (
         
     | 
| 
       60 
     | 
    
         
            -
                        torch.max(hidden_states).repeat(num_experts_per_partition).to(torch.float32)
         
     | 
| 
       61 
     | 
    
         
            -
                    )
         
     | 
| 
       62 
     | 
    
         
            -
                    w1_input_scale = max_value / torch.finfo(fp8_dtype).max
         
     | 
| 
       63 
     | 
    
         
            -
                else:
         
     | 
| 
       64 
     | 
    
         
            -
                    w1_input_scale = None
         
     | 
| 
       65 
     | 
    
         
            -
             
     | 
| 
       66 
     | 
    
         
            -
                # PreReorder
         
     | 
| 
       67 
     | 
    
         
            -
                pre_reorder_triton_kernel[(hidden_states.shape[0],)](
         
     | 
| 
       68 
     | 
    
         
            -
                    hidden_states,
         
     | 
| 
       69 
     | 
    
         
            -
                    gateup_input,
         
     | 
| 
       70 
     | 
    
         
            -
                    src2dst,
         
     | 
| 
       71 
     | 
    
         
            -
                    topk_ids,
         
     | 
| 
       72 
     | 
    
         
            -
                    w1_input_scale,
         
     | 
| 
       73 
     | 
    
         
            -
                    start_expert_id,
         
     | 
| 
       74 
     | 
    
         
            -
                    end_expert_id,
         
     | 
| 
       75 
     | 
    
         
            -
                    top_k,
         
     | 
| 
       76 
     | 
    
         
            -
                    hidden_states.shape[1],
         
     | 
| 
       77 
     | 
    
         
            -
                    BLOCK_SIZE=512,
         
     | 
| 
       78 
     | 
    
         
            -
                    use_per_token_if_dynamic=True,
         
     | 
| 
       79 
     | 
    
         
            -
                )
         
     | 
| 
       80 
     | 
    
         
            -
             
     | 
| 
       81 
     | 
    
         
            -
                seg_indptr_cur_rank = seg_indptr[start_expert_id : end_expert_id + 2]
         
     | 
| 
       82 
     | 
    
         
            -
                weight_indices_cur_rank = torch.arange(
         
     | 
| 
       83 
     | 
    
         
            -
                    0,
         
     | 
| 
       84 
     | 
    
         
            -
                    num_experts_per_partition,
         
     | 
| 
       85 
     | 
    
         
            -
                    device=hidden_states.device,
         
     | 
| 
       86 
     | 
    
         
            -
                    dtype=torch.int64,
         
     | 
| 
       87 
     | 
    
         
            -
                )
         
     | 
| 
       88 
     | 
    
         
            -
             
     | 
| 
       89 
     | 
    
         
            -
                # GroupGemm-0
         
     | 
| 
       90 
     | 
    
         
            -
                gateup_output = torch.empty(
         
     | 
| 
       91 
     | 
    
         
            -
                    gateup_input.shape[0],
         
     | 
| 
       92 
     | 
    
         
            -
                    w1.shape[1],
         
     | 
| 
       93 
     | 
    
         
            -
                    device=hidden_states.device,
         
     | 
| 
       94 
     | 
    
         
            -
                    dtype=hidden_states.dtype,
         
     | 
| 
       95 
     | 
    
         
            -
                )
         
     | 
| 
       96 
     | 
    
         
            -
             
     | 
| 
       97 
     | 
    
         
            -
                gateup_output = grouped_gemm_triton(
         
     | 
| 
       98 
     | 
    
         
            -
                    a=gateup_input,
         
     | 
| 
       99 
     | 
    
         
            -
                    b=w1,
         
     | 
| 
       100 
     | 
    
         
            -
                    c=gateup_output,
         
     | 
| 
       101 
     | 
    
         
            -
                    batch_size=num_experts_per_partition,
         
     | 
| 
       102 
     | 
    
         
            -
                    weight_column_major=True,
         
     | 
| 
       103 
     | 
    
         
            -
                    seg_indptr=seg_indptr_cur_rank,
         
     | 
| 
       104 
     | 
    
         
            -
                    weight_indices=weight_indices_cur_rank,
         
     | 
| 
       105 
     | 
    
         
            -
                    use_fp8_w8a8=use_fp8_w8a8,
         
     | 
| 
       106 
     | 
    
         
            -
                    scale_a=w1_input_scale,
         
     | 
| 
       107 
     | 
    
         
            -
                    scale_b=w1_scale_inv,
         
     | 
| 
       108 
     | 
    
         
            -
                    block_shape=block_shape,
         
     | 
| 
       109 
     | 
    
         
            -
                )
         
     | 
| 
       110 
     | 
    
         
            -
             
     | 
| 
       111 
     | 
    
         
            -
                # Act
         
     | 
| 
       112 
     | 
    
         
            -
                down_input = torch.empty(
         
     | 
| 
       113 
     | 
    
         
            -
                    gateup_output.shape[0],
         
     | 
| 
       114 
     | 
    
         
            -
                    gateup_output.shape[1] // 2,
         
     | 
| 
       115 
     | 
    
         
            -
                    device=gateup_output.device,
         
     | 
| 
       116 
     | 
    
         
            -
                    dtype=(
         
     | 
| 
       117 
     | 
    
         
            -
                        fp8_dtype
         
     | 
| 
       118 
     | 
    
         
            -
                        if (use_fp8_w8a8 and not use_blockwise_fp8)
         
     | 
| 
       119 
     | 
    
         
            -
                        else hidden_states.dtype
         
     | 
| 
       120 
     | 
    
         
            -
                    ),
         
     | 
| 
       121 
     | 
    
         
            -
                )
         
     | 
| 
       122 
     | 
    
         
            -
                if use_fp8_w8a8 and not use_blockwise_fp8:
         
     | 
| 
       123 
     | 
    
         
            -
                    w2_input_scale = torch.ones(
         
     | 
| 
       124 
     | 
    
         
            -
                        num_experts_per_partition,
         
     | 
| 
       125 
     | 
    
         
            -
                        dtype=torch.float32,
         
     | 
| 
       126 
     | 
    
         
            -
                        device=hidden_states.device,
         
     | 
| 
       127 
     | 
    
         
            -
                    )
         
     | 
| 
       128 
     | 
    
         
            -
                else:
         
     | 
| 
       129 
     | 
    
         
            -
                    w2_input_scale = None
         
     | 
| 
       130 
     | 
    
         
            -
             
     | 
| 
       131 
     | 
    
         
            -
                silu_and_mul_triton_kernel[(gateup_output.shape[0],)](
         
     | 
| 
       132 
     | 
    
         
            -
                    gateup_output,
         
     | 
| 
       133 
     | 
    
         
            -
                    down_input,
         
     | 
| 
       134 
     | 
    
         
            -
                    gateup_output.shape[1],
         
     | 
| 
       135 
     | 
    
         
            -
                    reorder_topk_ids,
         
     | 
| 
       136 
     | 
    
         
            -
                    w2_input_scale,
         
     | 
| 
       137 
     | 
    
         
            -
                    start_expert_id,
         
     | 
| 
       138 
     | 
    
         
            -
                    end_expert_id,
         
     | 
| 
       139 
     | 
    
         
            -
                    BLOCK_SIZE=512,
         
     | 
| 
       140 
     | 
    
         
            -
                )
         
     | 
| 
       141 
     | 
    
         
            -
             
     | 
| 
       142 
     | 
    
         
            -
                # GroupGemm-1
         
     | 
| 
       143 
     | 
    
         
            -
                down_output = torch.empty(
         
     | 
| 
       144 
     | 
    
         
            -
                    down_input.shape[0],
         
     | 
| 
       145 
     | 
    
         
            -
                    w2.shape[1],
         
     | 
| 
       146 
     | 
    
         
            -
                    device=hidden_states.device,
         
     | 
| 
       147 
     | 
    
         
            -
                    dtype=hidden_states.dtype,
         
     | 
| 
       148 
     | 
    
         
            -
                )
         
     | 
| 
       149 
     | 
    
         
            -
             
     | 
| 
       150 
     | 
    
         
            -
                down_output = grouped_gemm_triton(
         
     | 
| 
       151 
     | 
    
         
            -
                    a=down_input,
         
     | 
| 
       152 
     | 
    
         
            -
                    b=w2,
         
     | 
| 
       153 
     | 
    
         
            -
                    c=down_output,
         
     | 
| 
       154 
     | 
    
         
            -
                    batch_size=num_experts_per_partition,
         
     | 
| 
       155 
     | 
    
         
            -
                    weight_column_major=True,
         
     | 
| 
       156 
     | 
    
         
            -
                    seg_indptr=seg_indptr_cur_rank,
         
     | 
| 
       157 
     | 
    
         
            -
                    weight_indices=weight_indices_cur_rank,
         
     | 
| 
       158 
     | 
    
         
            -
                    use_fp8_w8a8=use_fp8_w8a8,
         
     | 
| 
       159 
     | 
    
         
            -
                    scale_a=w2_input_scale,
         
     | 
| 
       160 
     | 
    
         
            -
                    scale_b=w2_scale_inv,
         
     | 
| 
       161 
     | 
    
         
            -
                    block_shape=block_shape,
         
     | 
| 
       162 
     | 
    
         
            -
                )
         
     | 
| 
       163 
     | 
    
         
            -
             
     | 
| 
       164 
     | 
    
         
            -
                # PostReorder
         
     | 
| 
       165 
     | 
    
         
            -
                output = torch.empty_like(hidden_states)
         
     | 
| 
       166 
     | 
    
         
            -
                post_reorder_triton_kernel[(hidden_states.size(0),)](
         
     | 
| 
       167 
     | 
    
         
            -
                    down_output,
         
     | 
| 
       168 
     | 
    
         
            -
                    output,
         
     | 
| 
       169 
     | 
    
         
            -
                    src2dst,
         
     | 
| 
       170 
     | 
    
         
            -
                    topk_ids,
         
     | 
| 
       171 
     | 
    
         
            -
                    topk_weights,
         
     | 
| 
       172 
     | 
    
         
            -
                    start_expert_id,
         
     | 
| 
       173 
     | 
    
         
            -
                    end_expert_id,
         
     | 
| 
       174 
     | 
    
         
            -
                    top_k,
         
     | 
| 
       175 
     | 
    
         
            -
                    hidden_states.size(1),
         
     | 
| 
       176 
     | 
    
         
            -
                    0,
         
     | 
| 
       177 
     | 
    
         
            -
                    BLOCK_SIZE=512,
         
     | 
| 
       178 
     | 
    
         
            -
                )
         
     | 
| 
       179 
     | 
    
         
            -
                return output
         
     | 
| 
       180 
     | 
    
         
            -
             
     | 
| 
       181 
     | 
    
         
            -
             
     | 
| 
       182 
     | 
    
         
            -
            # test util
         
     | 
| 
       183 
     | 
    
         
            -
            def block_dequant(
         
     | 
| 
       184 
     | 
    
         
            -
                x_q_block: torch.Tensor,
         
     | 
| 
       185 
     | 
    
         
            -
                x_s: torch.Tensor,
         
     | 
| 
       186 
     | 
    
         
            -
                block_size: List[int],
         
     | 
| 
       187 
     | 
    
         
            -
            ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
       188 
     | 
    
         
            -
                """This function converts block-wise quantization to tensor-wise quantization.
         
     | 
| 
       189 
     | 
    
         
            -
                The inputs are block-wise quantization tensor `x_q_block`, block-wise quantization scale
         
     | 
| 
       190 
     | 
    
         
            -
                and the block size.
         
     | 
| 
       191 
     | 
    
         
            -
                The outputs are tensor-wise quantization tensor and tensor-wise quantization scale.
         
     | 
| 
       192 
     | 
    
         
            -
                Note only float8 is supported for now.
         
     | 
| 
       193 
     | 
    
         
            -
                """
         
     | 
| 
       194 
     | 
    
         
            -
             
     | 
| 
       195 
     | 
    
         
            -
                # process 3D tensor
         
     | 
| 
       196 
     | 
    
         
            -
                if x_q_block.dim() == 3:
         
     | 
| 
       197 
     | 
    
         
            -
                    batch_size = x_q_block.size(0)
         
     | 
| 
       198 
     | 
    
         
            -
                    return torch.stack(
         
     | 
| 
       199 
     | 
    
         
            -
                        [block_dequant(x_q_block[b], x_s[b], block_size) for b in range(batch_size)]
         
     | 
| 
       200 
     | 
    
         
            -
                    )
         
     | 
| 
       201 
     | 
    
         
            -
             
     | 
| 
       202 
     | 
    
         
            -
                block_n, block_k = block_size[0], block_size[1]
         
     | 
| 
       203 
     | 
    
         
            -
                n, k = x_q_block.shape
         
     | 
| 
       204 
     | 
    
         
            -
                n_tiles = (n + block_n - 1) // block_n
         
     | 
| 
       205 
     | 
    
         
            -
                k_tiles = (k + block_k - 1) // block_k
         
     | 
| 
       206 
     | 
    
         
            -
                assert n_tiles == x_s.shape[0]
         
     | 
| 
       207 
     | 
    
         
            -
                assert k_tiles == x_s.shape[1]
         
     | 
| 
       208 
     | 
    
         
            -
             
     | 
| 
       209 
     | 
    
         
            -
                x_dq_block = x_q_block.to(torch.float32)
         
     | 
| 
       210 
     | 
    
         
            -
             
     | 
| 
       211 
     | 
    
         
            -
                x_dq_block_tiles = [
         
     | 
| 
       212 
     | 
    
         
            -
                    [
         
     | 
| 
       213 
     | 
    
         
            -
                        x_dq_block[
         
     | 
| 
       214 
     | 
    
         
            -
                            j * block_n : min((j + 1) * block_n, n),
         
     | 
| 
       215 
     | 
    
         
            -
                            i * block_k : min((i + 1) * block_k, k),
         
     | 
| 
       216 
     | 
    
         
            -
                        ]
         
     | 
| 
       217 
     | 
    
         
            -
                        for i in range(k_tiles)
         
     | 
| 
       218 
     | 
    
         
            -
                    ]
         
     | 
| 
       219 
     | 
    
         
            -
                    for j in range(n_tiles)
         
     | 
| 
       220 
     | 
    
         
            -
                ]
         
     | 
| 
       221 
     | 
    
         
            -
             
     | 
| 
       222 
     | 
    
         
            -
                for i in range(k_tiles):
         
     | 
| 
       223 
     | 
    
         
            -
                    for j in range(n_tiles):
         
     | 
| 
       224 
     | 
    
         
            -
                        x_dq_block_tiles[j][i][:, :] = x_dq_block_tiles[j][i] * x_s[j][i]
         
     | 
| 
       225 
     | 
    
         
            -
             
     | 
| 
       226 
     | 
    
         
            -
                return x_dq_block
         
     | 
| 
       227 
     | 
    
         
            -
             
     | 
| 
       228 
     | 
    
         
            -
             
     | 
| 
       229 
     | 
    
         
            -
            class TestW8A8BlockFP8EPMoE(CustomTestCase):
         
     | 
| 
       230 
     | 
    
         
            -
                DTYPES = [torch.half, torch.bfloat16]
         
     | 
| 
       231 
     | 
    
         
            -
                M = [1, 222, 1024, 2048]
         
     | 
| 
       232 
     | 
    
         
            -
                N = [128, 1024, 2048]
         
     | 
| 
       233 
     | 
    
         
            -
                K = [256, 4096, 5120]
         
     | 
| 
       234 
     | 
    
         
            -
                E = [8, 16]
         
     | 
| 
       235 
     | 
    
         
            -
                ep_size = [2, 4]
         
     | 
| 
       236 
     | 
    
         
            -
                TOP_KS = [2, 4]
         
     | 
| 
       237 
     | 
    
         
            -
                BLOCK_SIZE = [[128, 128]]
         
     | 
| 
       238 
     | 
    
         
            -
                SEEDS = [0]
         
     | 
| 
       239 
     | 
    
         
            -
             
     | 
| 
       240 
     | 
    
         
            -
                @classmethod
         
     | 
| 
       241 
     | 
    
         
            -
                def setUpClass(cls):
         
     | 
| 
       242 
     | 
    
         
            -
                    if not torch.cuda.is_available():
         
     | 
| 
       243 
     | 
    
         
            -
                        raise unittest.SkipTest("CUDA is not available")
         
     | 
| 
       244 
     | 
    
         
            -
                    torch.set_default_device("cuda")
         
     | 
| 
       245 
     | 
    
         
            -
             
     | 
| 
       246 
     | 
    
         
            -
                def _w8a8_block_fp8_ep_moe(
         
     | 
| 
       247 
     | 
    
         
            -
                    self, M, N, K, E, ep_size, topk, block_size, dtype, seed
         
     | 
| 
       248 
     | 
    
         
            -
                ):
         
     | 
| 
       249 
     | 
    
         
            -
                    torch.manual_seed(seed)
         
     | 
| 
       250 
     | 
    
         
            -
                    random.seed(seed)
         
     | 
| 
       251 
     | 
    
         
            -
                    # NOTE(HandH1998): to avoid overflow when out_dtype = torch.half
         
     | 
| 
       252 
     | 
    
         
            -
                    factor_for_scale = 1e-2
         
     | 
| 
       253 
     | 
    
         
            -
                    fp8_info = torch.finfo(torch.float8_e4m3fn)
         
     | 
| 
       254 
     | 
    
         
            -
                    fp8_max, fp8_min = fp8_info.max, fp8_info.min
         
     | 
| 
       255 
     | 
    
         
            -
             
     | 
| 
       256 
     | 
    
         
            -
                    a = torch.randn((M, K), dtype=dtype) / 10
         
     | 
| 
       257 
     | 
    
         
            -
             
     | 
| 
       258 
     | 
    
         
            -
                    w1_fp32 = (torch.rand((E, 2 * N, K), dtype=dtype) - 0.5) * 2 * fp8_max
         
     | 
| 
       259 
     | 
    
         
            -
                    w1 = w1_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
         
     | 
| 
       260 
     | 
    
         
            -
             
     | 
| 
       261 
     | 
    
         
            -
                    w2_fp32 = (torch.rand((E, K, N), dtype=dtype) - 0.5) * 2 * fp8_max
         
     | 
| 
       262 
     | 
    
         
            -
                    w2 = w2_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
         
     | 
| 
       263 
     | 
    
         
            -
             
     | 
| 
       264 
     | 
    
         
            -
                    block_n, block_k = block_size[0], block_size[1]
         
     | 
| 
       265 
     | 
    
         
            -
                    n_tiles_w1 = (2 * N + block_n - 1) // block_n
         
     | 
| 
       266 
     | 
    
         
            -
                    n_tiles_w2 = (K + block_n - 1) // block_n
         
     | 
| 
       267 
     | 
    
         
            -
                    k_tiles_w1 = (K + block_k - 1) // block_k
         
     | 
| 
       268 
     | 
    
         
            -
                    k_tiles_w2 = (N + block_k - 1) // block_k
         
     | 
| 
       269 
     | 
    
         
            -
             
     | 
| 
       270 
     | 
    
         
            -
                    w1_s = (
         
     | 
| 
       271 
     | 
    
         
            -
                        torch.rand((E, n_tiles_w1, k_tiles_w1), dtype=torch.float32)
         
     | 
| 
       272 
     | 
    
         
            -
                        * factor_for_scale
         
     | 
| 
       273 
     | 
    
         
            -
                    )
         
     | 
| 
       274 
     | 
    
         
            -
                    w2_s = (
         
     | 
| 
       275 
     | 
    
         
            -
                        torch.rand((E, n_tiles_w2, k_tiles_w2), dtype=torch.float32)
         
     | 
| 
       276 
     | 
    
         
            -
                        * factor_for_scale
         
     | 
| 
       277 
     | 
    
         
            -
                    )
         
     | 
| 
       278 
     | 
    
         
            -
             
     | 
| 
       279 
     | 
    
         
            -
                    w1_ref = block_dequant(w1, w1_s, block_size).to(dtype)
         
     | 
| 
       280 
     | 
    
         
            -
                    w2_ref = block_dequant(w2, w2_s, block_size).to(dtype)
         
     | 
| 
       281 
     | 
    
         
            -
             
     | 
| 
       282 
     | 
    
         
            -
                    score = torch.randn((M, E), dtype=dtype)
         
     | 
| 
       283 
     | 
    
         
            -
                    num_experts_per_partition = E // ep_size
         
     | 
| 
       284 
     | 
    
         
            -
                    cur_rank = random.randint(0, ep_size - 1)
         
     | 
| 
       285 
     | 
    
         
            -
                    start_id = cur_rank * num_experts_per_partition
         
     | 
| 
       286 
     | 
    
         
            -
                    end_id = start_id + num_experts_per_partition - 1
         
     | 
| 
       287 
     | 
    
         
            -
             
     | 
| 
       288 
     | 
    
         
            -
                    topk_config = TopKConfig(
         
     | 
| 
       289 
     | 
    
         
            -
                        top_k=topk,
         
     | 
| 
       290 
     | 
    
         
            -
                        renormalize=False,
         
     | 
| 
       291 
     | 
    
         
            -
                    )
         
     | 
| 
       292 
     | 
    
         
            -
             
     | 
| 
       293 
     | 
    
         
            -
                    with torch.inference_mode():
         
     | 
| 
       294 
     | 
    
         
            -
                        out = ep_moe(
         
     | 
| 
       295 
     | 
    
         
            -
                            hidden_states=a,
         
     | 
| 
       296 
     | 
    
         
            -
                            w1=w1,
         
     | 
| 
       297 
     | 
    
         
            -
                            w2=w2,
         
     | 
| 
       298 
     | 
    
         
            -
                            router_logits=score,
         
     | 
| 
       299 
     | 
    
         
            -
                            topk_config=topk_config,
         
     | 
| 
       300 
     | 
    
         
            -
                            use_fp8_w8a8=True,
         
     | 
| 
       301 
     | 
    
         
            -
                            w1_scale_inv=w1_s,
         
     | 
| 
       302 
     | 
    
         
            -
                            w2_scale_inv=w2_s,
         
     | 
| 
       303 
     | 
    
         
            -
                            block_shape=block_size,
         
     | 
| 
       304 
     | 
    
         
            -
                            num_experts=E,
         
     | 
| 
       305 
     | 
    
         
            -
                            num_experts_per_partition=num_experts_per_partition,
         
     | 
| 
       306 
     | 
    
         
            -
                            start_expert_id=start_id,
         
     | 
| 
       307 
     | 
    
         
            -
                            end_expert_id=end_id,
         
     | 
| 
       308 
     | 
    
         
            -
                        )
         
     | 
| 
       309 
     | 
    
         
            -
                        ref_out = ep_moe(
         
     | 
| 
       310 
     | 
    
         
            -
                            hidden_states=a,
         
     | 
| 
       311 
     | 
    
         
            -
                            w1=w1_ref,
         
     | 
| 
       312 
     | 
    
         
            -
                            w2=w2_ref,
         
     | 
| 
       313 
     | 
    
         
            -
                            router_logits=score,
         
     | 
| 
       314 
     | 
    
         
            -
                            topk_config=topk_config,
         
     | 
| 
       315 
     | 
    
         
            -
                            use_fp8_w8a8=False,
         
     | 
| 
       316 
     | 
    
         
            -
                            w1_scale_inv=None,
         
     | 
| 
       317 
     | 
    
         
            -
                            w2_scale_inv=None,
         
     | 
| 
       318 
     | 
    
         
            -
                            block_shape=None,
         
     | 
| 
       319 
     | 
    
         
            -
                            num_experts=E,
         
     | 
| 
       320 
     | 
    
         
            -
                            num_experts_per_partition=num_experts_per_partition,
         
     | 
| 
       321 
     | 
    
         
            -
                            start_expert_id=start_id,
         
     | 
| 
       322 
     | 
    
         
            -
                            end_expert_id=end_id,
         
     | 
| 
       323 
     | 
    
         
            -
                        )
         
     | 
| 
       324 
     | 
    
         
            -
                    self.assertTrue(
         
     | 
| 
       325 
     | 
    
         
            -
                        torch.mean(torch.abs(out.to(torch.float32) - ref_out.to(torch.float32)))
         
     | 
| 
       326 
     | 
    
         
            -
                        / (torch.mean(torch.abs(ref_out.to(torch.float32))) + 1e-6)
         
     | 
| 
       327 
     | 
    
         
            -
                        < 0.06
         
     | 
| 
       328 
     | 
    
         
            -
                    )
         
     | 
| 
       329 
     | 
    
         
            -
             
     | 
| 
       330 
     | 
    
         
            -
                def test_w8a8_block_fp8_ep_moe(self):
         
     | 
| 
       331 
     | 
    
         
            -
                    for params in itertools.product(
         
     | 
| 
       332 
     | 
    
         
            -
                        self.M,
         
     | 
| 
       333 
     | 
    
         
            -
                        self.N,
         
     | 
| 
       334 
     | 
    
         
            -
                        self.K,
         
     | 
| 
       335 
     | 
    
         
            -
                        self.E,
         
     | 
| 
       336 
     | 
    
         
            -
                        self.ep_size,
         
     | 
| 
       337 
     | 
    
         
            -
                        self.TOP_KS,
         
     | 
| 
       338 
     | 
    
         
            -
                        self.BLOCK_SIZE,
         
     | 
| 
       339 
     | 
    
         
            -
                        self.DTYPES,
         
     | 
| 
       340 
     | 
    
         
            -
                        self.SEEDS,
         
     | 
| 
       341 
     | 
    
         
            -
                    ):
         
     | 
| 
       342 
     | 
    
         
            -
                        with self.subTest(
         
     | 
| 
       343 
     | 
    
         
            -
                            M=params[0],
         
     | 
| 
       344 
     | 
    
         
            -
                            N=params[1],
         
     | 
| 
       345 
     | 
    
         
            -
                            K=params[2],
         
     | 
| 
       346 
     | 
    
         
            -
                            E=params[3],
         
     | 
| 
       347 
     | 
    
         
            -
                            ep_size=params[4],
         
     | 
| 
       348 
     | 
    
         
            -
                            topk=params[5],
         
     | 
| 
       349 
     | 
    
         
            -
                            block_size=params[6],
         
     | 
| 
       350 
     | 
    
         
            -
                            dtype=params[7],
         
     | 
| 
       351 
     | 
    
         
            -
                            seed=params[8],
         
     | 
| 
       352 
     | 
    
         
            -
                        ):
         
     | 
| 
       353 
     | 
    
         
            -
                            self._w8a8_block_fp8_ep_moe(*params)
         
     | 
| 
       354 
     | 
    
         
            -
                        torch.cuda.empty_cache()
         
     | 
| 
       355 
     | 
    
         
            -
             
     | 
| 
       356 
     | 
    
         
            -
             
     | 
| 
       357 
     | 
    
         
            -
            if __name__ == "__main__":
         
     | 
| 
       358 
     | 
    
         
            -
                unittest.main(verbosity=2)
         
     | 
| 
         
            File without changes
         
     | 
| 
         
            File without changes
         
     | 
| 
         
            File without changes
         
     | 
| 
         
            File without changes
         
     | 
| 
         
            File without changes
         
     | 
| 
         
            File without changes
         
     | 
| 
         
            File without changes
         
     |