sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
- sglang/bench_one_batch_server.py +340 -34
- sglang/bench_serving.py +340 -159
- sglang/check_env.py +1 -1
- sglang/compile_deep_gemm.py +6 -2
- sglang/global_config.py +1 -25
- sglang/lang/api.py +6 -0
- sglang/lang/backend/runtime_endpoint.py +1 -1
- sglang/lang/interpreter.py +1 -0
- sglang/lang/ir.py +13 -0
- sglang/launch_server.py +9 -2
- sglang/profiler.py +20 -3
- sglang/srt/_custom_ops.py +1 -1
- sglang/srt/batch_invariant_ops/__init__.py +27 -0
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
- sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
- sglang/srt/compilation/backend.py +437 -0
- sglang/srt/compilation/compilation_config.py +20 -0
- sglang/srt/compilation/compilation_counter.py +47 -0
- sglang/srt/compilation/compile.py +210 -0
- sglang/srt/compilation/compiler_interface.py +503 -0
- sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
- sglang/srt/compilation/fix_functionalization.py +134 -0
- sglang/srt/compilation/fx_utils.py +83 -0
- sglang/srt/compilation/inductor_pass.py +140 -0
- sglang/srt/compilation/pass_manager.py +66 -0
- sglang/srt/compilation/piecewise_context_manager.py +40 -0
- sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
- sglang/srt/configs/__init__.py +8 -0
- sglang/srt/configs/deepseek_ocr.py +262 -0
- sglang/srt/configs/deepseekvl2.py +194 -96
- sglang/srt/configs/dots_ocr.py +64 -0
- sglang/srt/configs/dots_vlm.py +2 -7
- sglang/srt/configs/falcon_h1.py +309 -0
- sglang/srt/configs/load_config.py +33 -2
- sglang/srt/configs/mamba_utils.py +117 -0
- sglang/srt/configs/model_config.py +284 -118
- sglang/srt/configs/modelopt_config.py +30 -0
- sglang/srt/configs/nemotron_h.py +286 -0
- sglang/srt/configs/olmo3.py +105 -0
- sglang/srt/configs/points_v15_chat.py +29 -0
- sglang/srt/configs/qwen3_next.py +11 -47
- sglang/srt/configs/qwen3_omni.py +613 -0
- sglang/srt/configs/qwen3_vl.py +576 -0
- sglang/srt/connector/remote_instance.py +1 -1
- sglang/srt/constrained/base_grammar_backend.py +6 -1
- sglang/srt/constrained/llguidance_backend.py +5 -0
- sglang/srt/constrained/outlines_backend.py +1 -1
- sglang/srt/constrained/outlines_jump_forward.py +1 -1
- sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
- sglang/srt/constrained/utils.py +12 -0
- sglang/srt/constrained/xgrammar_backend.py +26 -15
- sglang/srt/debug_utils/dumper.py +10 -3
- sglang/srt/disaggregation/ascend/conn.py +2 -2
- sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
- sglang/srt/disaggregation/base/conn.py +17 -4
- sglang/srt/disaggregation/common/conn.py +268 -98
- sglang/srt/disaggregation/decode.py +172 -39
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
- sglang/srt/disaggregation/fake/conn.py +11 -3
- sglang/srt/disaggregation/mooncake/conn.py +203 -555
- sglang/srt/disaggregation/nixl/conn.py +217 -63
- sglang/srt/disaggregation/prefill.py +113 -270
- sglang/srt/disaggregation/utils.py +36 -5
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
- sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
- sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
- sglang/srt/distributed/device_communicators/pynccl.py +24 -12
- sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
- sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
- sglang/srt/distributed/naive_distributed.py +5 -4
- sglang/srt/distributed/parallel_state.py +203 -97
- sglang/srt/elastic_ep/elastic_ep.py +74 -0
- sglang/srt/entrypoints/context.py +3 -2
- sglang/srt/entrypoints/engine.py +85 -65
- sglang/srt/entrypoints/grpc_server.py +632 -305
- sglang/srt/entrypoints/harmony_utils.py +2 -2
- sglang/srt/entrypoints/http_server.py +169 -17
- sglang/srt/entrypoints/http_server_engine.py +1 -7
- sglang/srt/entrypoints/openai/protocol.py +327 -34
- sglang/srt/entrypoints/openai/serving_base.py +74 -8
- sglang/srt/entrypoints/openai/serving_chat.py +202 -118
- sglang/srt/entrypoints/openai/serving_classify.py +204 -0
- sglang/srt/entrypoints/openai/serving_completions.py +20 -4
- sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
- sglang/srt/entrypoints/openai/serving_responses.py +47 -2
- sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
- sglang/srt/environ.py +323 -0
- sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
- sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
- sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
- sglang/srt/eplb/expert_distribution.py +3 -4
- sglang/srt/eplb/expert_location.py +30 -5
- sglang/srt/eplb/expert_location_dispatch.py +2 -2
- sglang/srt/eplb/expert_location_updater.py +2 -2
- sglang/srt/function_call/base_format_detector.py +17 -18
- sglang/srt/function_call/function_call_parser.py +21 -16
- sglang/srt/function_call/glm4_moe_detector.py +4 -8
- sglang/srt/function_call/gpt_oss_detector.py +24 -1
- sglang/srt/function_call/json_array_parser.py +61 -0
- sglang/srt/function_call/kimik2_detector.py +17 -4
- sglang/srt/function_call/utils.py +98 -7
- sglang/srt/grpc/compile_proto.py +245 -0
- sglang/srt/grpc/grpc_request_manager.py +915 -0
- sglang/srt/grpc/health_servicer.py +189 -0
- sglang/srt/grpc/scheduler_launcher.py +181 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
- sglang/srt/layers/activation.py +11 -7
- sglang/srt/layers/attention/aiter_backend.py +17 -18
- sglang/srt/layers/attention/ascend_backend.py +125 -10
- sglang/srt/layers/attention/attention_registry.py +226 -0
- sglang/srt/layers/attention/base_attn_backend.py +32 -4
- sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
- sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
- sglang/srt/layers/attention/fla/chunk.py +0 -1
- sglang/srt/layers/attention/fla/chunk_o.py +1 -1
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
- sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
- sglang/srt/layers/attention/fla/index.py +0 -2
- sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
- sglang/srt/layers/attention/fla/utils.py +0 -3
- sglang/srt/layers/attention/fla/wy_fast.py +0 -2
- sglang/srt/layers/attention/flashattention_backend.py +52 -15
- sglang/srt/layers/attention/flashinfer_backend.py +357 -212
- sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
- sglang/srt/layers/attention/flashmla_backend.py +9 -7
- sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
- sglang/srt/layers/attention/intel_amx_backend.py +1 -1
- sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
- sglang/srt/layers/attention/mamba/mamba.py +514 -1
- sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
- sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
- sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
- sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
- sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
- sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
- sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
- sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
- sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
- sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
- sglang/srt/layers/attention/nsa/transform_index.py +144 -0
- sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
- sglang/srt/layers/attention/nsa/utils.py +23 -0
- sglang/srt/layers/attention/nsa_backend.py +1201 -0
- sglang/srt/layers/attention/tbo_backend.py +6 -6
- sglang/srt/layers/attention/torch_flex_backend.py +325 -0
- sglang/srt/layers/attention/triton_backend.py +249 -42
- sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
- sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
- sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
- sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
- sglang/srt/layers/attention/utils.py +11 -7
- sglang/srt/layers/attention/vision.py +61 -3
- sglang/srt/layers/attention/wave_backend.py +4 -4
- sglang/srt/layers/attention/xpu_backend.py +1028 -0
- sglang/srt/layers/communicator.py +19 -7
- sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
- sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
- sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
- sglang/srt/layers/dp_attention.py +28 -1
- sglang/srt/layers/elementwise.py +3 -1
- sglang/srt/layers/layernorm.py +47 -15
- sglang/srt/layers/linear.py +30 -5
- sglang/srt/layers/logits_processor.py +161 -18
- sglang/srt/layers/modelopt_utils.py +11 -0
- sglang/srt/layers/moe/cutlass_moe.py +0 -2
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
- sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
- sglang/srt/layers/moe/ep_moe/layer.py +243 -448
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
- sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
- sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
- sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
- sglang/srt/layers/moe/moe_runner/runner.py +3 -0
- sglang/srt/layers/moe/moe_runner/triton.py +3 -1
- sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
- sglang/srt/layers/moe/router.py +51 -15
- sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
- sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
- sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
- sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
- sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
- sglang/srt/layers/moe/topk.py +3 -2
- sglang/srt/layers/moe/utils.py +27 -1
- sglang/srt/layers/parameter.py +23 -6
- sglang/srt/layers/quantization/__init__.py +2 -53
- sglang/srt/layers/quantization/awq.py +183 -6
- sglang/srt/layers/quantization/awq_triton.py +29 -0
- sglang/srt/layers/quantization/base_config.py +20 -1
- sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
- sglang/srt/layers/quantization/fp8.py +86 -20
- sglang/srt/layers/quantization/fp8_kernel.py +55 -10
- sglang/srt/layers/quantization/fp8_utils.py +43 -15
- sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
- sglang/srt/layers/quantization/gptq.py +0 -1
- sglang/srt/layers/quantization/int8_kernel.py +18 -2
- sglang/srt/layers/quantization/marlin_utils.py +12 -0
- sglang/srt/layers/quantization/modelopt_quant.py +141 -81
- sglang/srt/layers/quantization/mxfp4.py +17 -34
- sglang/srt/layers/quantization/petit.py +1 -1
- sglang/srt/layers/quantization/quark/quark.py +3 -1
- sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
- sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
- sglang/srt/layers/quantization/unquant.py +1 -4
- sglang/srt/layers/quantization/utils.py +0 -1
- sglang/srt/layers/quantization/w4afp8.py +51 -24
- sglang/srt/layers/quantization/w8a8_int8.py +45 -27
- sglang/srt/layers/radix_attention.py +59 -9
- sglang/srt/layers/rotary_embedding.py +750 -46
- sglang/srt/layers/sampler.py +84 -16
- sglang/srt/layers/sparse_pooler.py +98 -0
- sglang/srt/layers/utils.py +23 -1
- sglang/srt/layers/vocab_parallel_embedding.py +4 -1
- sglang/srt/lora/backend/base_backend.py +3 -3
- sglang/srt/lora/backend/chunked_backend.py +348 -0
- sglang/srt/lora/backend/triton_backend.py +9 -4
- sglang/srt/lora/eviction_policy.py +139 -0
- sglang/srt/lora/lora.py +7 -5
- sglang/srt/lora/lora_manager.py +33 -7
- sglang/srt/lora/lora_registry.py +1 -1
- sglang/srt/lora/mem_pool.py +41 -17
- sglang/srt/lora/triton_ops/__init__.py +4 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
- sglang/srt/lora/utils.py +7 -5
- sglang/srt/managers/cache_controller.py +83 -152
- sglang/srt/managers/data_parallel_controller.py +156 -87
- sglang/srt/managers/detokenizer_manager.py +51 -24
- sglang/srt/managers/io_struct.py +223 -129
- sglang/srt/managers/mm_utils.py +49 -10
- sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
- sglang/srt/managers/multimodal_processor.py +1 -2
- sglang/srt/managers/overlap_utils.py +130 -0
- sglang/srt/managers/schedule_batch.py +340 -529
- sglang/srt/managers/schedule_policy.py +158 -18
- sglang/srt/managers/scheduler.py +665 -620
- sglang/srt/managers/scheduler_input_blocker.py +1 -1
- sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
- sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
- sglang/srt/managers/scheduler_pp_mixin.py +341 -0
- sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
- sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
- sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
- sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
- sglang/srt/managers/tokenizer_manager.py +462 -226
- sglang/srt/managers/tp_worker.py +217 -156
- sglang/srt/managers/utils.py +79 -47
- sglang/srt/mem_cache/allocator.py +21 -22
- sglang/srt/mem_cache/allocator_ascend.py +42 -28
- sglang/srt/mem_cache/base_prefix_cache.py +3 -3
- sglang/srt/mem_cache/chunk_cache.py +20 -2
- sglang/srt/mem_cache/common.py +480 -0
- sglang/srt/mem_cache/evict_policy.py +38 -0
- sglang/srt/mem_cache/hicache_storage.py +44 -2
- sglang/srt/mem_cache/hiradix_cache.py +134 -34
- sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
- sglang/srt/mem_cache/memory_pool.py +602 -208
- sglang/srt/mem_cache/memory_pool_host.py +134 -183
- sglang/srt/mem_cache/multimodal_cache.py +0 -1
- sglang/srt/mem_cache/radix_cache.py +263 -78
- sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
- sglang/srt/mem_cache/storage/__init__.py +10 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
- sglang/srt/mem_cache/storage/backend_factory.py +223 -0
- sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
- sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
- sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
- sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
- sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
- sglang/srt/mem_cache/swa_radix_cache.py +115 -58
- sglang/srt/metrics/collector.py +113 -120
- sglang/srt/metrics/func_timer.py +3 -8
- sglang/srt/metrics/utils.py +8 -1
- sglang/srt/model_executor/cpu_graph_runner.py +2 -2
- sglang/srt/model_executor/cuda_graph_runner.py +81 -36
- sglang/srt/model_executor/forward_batch_info.py +40 -50
- sglang/srt/model_executor/model_runner.py +507 -319
- sglang/srt/model_executor/npu_graph_runner.py +11 -5
- sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
- sglang/srt/model_loader/__init__.py +1 -1
- sglang/srt/model_loader/loader.py +438 -37
- sglang/srt/model_loader/utils.py +0 -1
- sglang/srt/model_loader/weight_utils.py +200 -27
- sglang/srt/models/apertus.py +2 -3
- sglang/srt/models/arcee.py +2 -2
- sglang/srt/models/bailing_moe.py +40 -56
- sglang/srt/models/bailing_moe_nextn.py +3 -4
- sglang/srt/models/bert.py +1 -1
- sglang/srt/models/deepseek_nextn.py +25 -4
- sglang/srt/models/deepseek_ocr.py +1516 -0
- sglang/srt/models/deepseek_v2.py +793 -235
- sglang/srt/models/dots_ocr.py +171 -0
- sglang/srt/models/dots_vlm.py +0 -1
- sglang/srt/models/dots_vlm_vit.py +1 -1
- sglang/srt/models/falcon_h1.py +570 -0
- sglang/srt/models/gemma3_causal.py +0 -2
- sglang/srt/models/gemma3_mm.py +17 -1
- sglang/srt/models/gemma3n_mm.py +2 -3
- sglang/srt/models/glm4_moe.py +17 -40
- sglang/srt/models/glm4_moe_nextn.py +4 -4
- sglang/srt/models/glm4v.py +3 -2
- sglang/srt/models/glm4v_moe.py +6 -6
- sglang/srt/models/gpt_oss.py +12 -35
- sglang/srt/models/grok.py +10 -23
- sglang/srt/models/hunyuan.py +2 -7
- sglang/srt/models/interns1.py +0 -1
- sglang/srt/models/kimi_vl.py +1 -7
- sglang/srt/models/kimi_vl_moonvit.py +4 -2
- sglang/srt/models/llama.py +6 -2
- sglang/srt/models/llama_eagle3.py +1 -1
- sglang/srt/models/longcat_flash.py +6 -23
- sglang/srt/models/longcat_flash_nextn.py +4 -15
- sglang/srt/models/mimo.py +2 -13
- sglang/srt/models/mimo_mtp.py +1 -2
- sglang/srt/models/minicpmo.py +7 -5
- sglang/srt/models/mixtral.py +1 -4
- sglang/srt/models/mllama.py +1 -1
- sglang/srt/models/mllama4.py +27 -6
- sglang/srt/models/nemotron_h.py +511 -0
- sglang/srt/models/olmo2.py +31 -4
- sglang/srt/models/opt.py +5 -5
- sglang/srt/models/phi.py +1 -1
- sglang/srt/models/phi4mm.py +1 -1
- sglang/srt/models/phimoe.py +0 -1
- sglang/srt/models/pixtral.py +0 -3
- sglang/srt/models/points_v15_chat.py +186 -0
- sglang/srt/models/qwen.py +0 -1
- sglang/srt/models/qwen2.py +0 -7
- sglang/srt/models/qwen2_5_vl.py +5 -5
- sglang/srt/models/qwen2_audio.py +2 -15
- sglang/srt/models/qwen2_moe.py +70 -4
- sglang/srt/models/qwen2_vl.py +6 -3
- sglang/srt/models/qwen3.py +18 -3
- sglang/srt/models/qwen3_moe.py +50 -38
- sglang/srt/models/qwen3_next.py +43 -21
- sglang/srt/models/qwen3_next_mtp.py +3 -4
- sglang/srt/models/qwen3_omni_moe.py +661 -0
- sglang/srt/models/qwen3_vl.py +791 -0
- sglang/srt/models/qwen3_vl_moe.py +343 -0
- sglang/srt/models/registry.py +15 -3
- sglang/srt/models/roberta.py +55 -3
- sglang/srt/models/sarashina2_vision.py +268 -0
- sglang/srt/models/solar.py +505 -0
- sglang/srt/models/starcoder2.py +357 -0
- sglang/srt/models/step3_vl.py +3 -5
- sglang/srt/models/torch_native_llama.py +9 -2
- sglang/srt/models/utils.py +61 -0
- sglang/srt/multimodal/processors/base_processor.py +21 -9
- sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
- sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
- sglang/srt/multimodal/processors/dots_vlm.py +2 -4
- sglang/srt/multimodal/processors/glm4v.py +1 -5
- sglang/srt/multimodal/processors/internvl.py +20 -10
- sglang/srt/multimodal/processors/janus_pro.py +0 -1
- sglang/srt/multimodal/processors/mllama4.py +0 -8
- sglang/srt/multimodal/processors/phi4mm.py +0 -1
- sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
- sglang/srt/multimodal/processors/qwen_vl.py +83 -17
- sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
- sglang/srt/multimodal/processors/step3_vl.py +1 -1
- sglang/srt/parser/conversation.py +41 -0
- sglang/srt/parser/jinja_template_utils.py +6 -0
- sglang/srt/parser/reasoning_parser.py +0 -1
- sglang/srt/sampling/custom_logit_processor.py +77 -2
- sglang/srt/sampling/sampling_batch_info.py +36 -23
- sglang/srt/sampling/sampling_params.py +75 -0
- sglang/srt/server_args.py +1300 -338
- sglang/srt/server_args_config_parser.py +146 -0
- sglang/srt/single_batch_overlap.py +161 -0
- sglang/srt/speculative/base_spec_worker.py +34 -0
- sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
- sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
- sglang/srt/speculative/cpp_ngram/param.h +125 -0
- sglang/srt/speculative/cpp_ngram/queue.h +71 -0
- sglang/srt/speculative/draft_utils.py +226 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
- sglang/srt/speculative/eagle_info.py +786 -0
- sglang/srt/speculative/eagle_info_v2.py +458 -0
- sglang/srt/speculative/eagle_utils.py +113 -1270
- sglang/srt/speculative/eagle_worker.py +120 -285
- sglang/srt/speculative/eagle_worker_v2.py +702 -0
- sglang/srt/speculative/ngram_info.py +433 -0
- sglang/srt/speculative/ngram_worker.py +246 -0
- sglang/srt/speculative/spec_info.py +49 -0
- sglang/srt/speculative/spec_utils.py +641 -0
- sglang/srt/speculative/standalone_worker.py +4 -14
- sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
- sglang/srt/tracing/trace.py +32 -6
- sglang/srt/two_batch_overlap.py +35 -18
- sglang/srt/utils/__init__.py +2 -0
- sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
- sglang/srt/{utils.py → utils/common.py} +583 -113
- sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
- sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
- sglang/srt/{offloader.py → utils/offloader.py} +4 -4
- sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
- sglang/srt/utils/profile_merger.py +199 -0
- sglang/srt/utils/rpd_utils.py +452 -0
- sglang/srt/utils/slow_rank_detector.py +71 -0
- sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
- sglang/srt/warmup.py +8 -4
- sglang/srt/weight_sync/utils.py +1 -1
- sglang/test/attention/test_flashattn_backend.py +1 -1
- sglang/test/attention/test_flashattn_mla_backend.py +0 -1
- sglang/test/attention/test_prefix_chunk_info.py +0 -2
- sglang/test/attention/test_trtllm_mla_backend.py +221 -53
- sglang/test/few_shot_gsm8k_engine.py +2 -4
- sglang/test/get_logits_ut.py +57 -0
- sglang/test/kit_matched_stop.py +157 -0
- sglang/test/longbench_v2/__init__.py +1 -0
- sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
- sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
- sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
- sglang/test/run_eval.py +120 -11
- sglang/test/runners.py +3 -1
- sglang/test/send_one.py +42 -7
- sglang/test/simple_eval_common.py +8 -2
- sglang/test/simple_eval_gpqa.py +0 -1
- sglang/test/simple_eval_humaneval.py +0 -3
- sglang/test/simple_eval_longbench_v2.py +344 -0
- sglang/test/simple_eval_mmmu_vlm.py +441 -0
- sglang/test/test_block_fp8.py +3 -4
- sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
- sglang/test/test_cutlass_moe.py +1 -2
- sglang/test/test_cutlass_w4a8_moe.py +10 -20
- sglang/test/test_deterministic.py +430 -0
- sglang/test/test_deterministic_utils.py +73 -0
- sglang/test/test_disaggregation_utils.py +93 -1
- sglang/test/test_marlin_moe.py +0 -1
- sglang/test/test_programs.py +1 -1
- sglang/test/test_utils.py +432 -16
- sglang/utils.py +10 -1
- sglang/version.py +1 -1
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
- sglang/srt/entrypoints/grpc_request_manager.py +0 -580
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
- sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
- sglang/srt/mem_cache/lora_radix_cache.py +0 -421
- sglang/srt/speculative/build_eagle_tree.py +0 -427
- sglang/test/test_block_fp8_ep.py +0 -358
- /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
- /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
- /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
- /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,442 @@
|
|
|
1
|
+
# Adapted from: https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/layers/mamba/ops/mamba_ssm.py
|
|
2
|
+
|
|
3
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
4
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
5
|
+
|
|
6
|
+
# Copyright (c) 2024, Tri Dao, Albert Gu.
|
|
7
|
+
# Adapted from https://github.com/state-spaces/mamba/blob/v2.2.4/mamba_ssm/ops/triton/selective_state_update.py
|
|
8
|
+
|
|
9
|
+
import torch
|
|
10
|
+
import triton
|
|
11
|
+
import triton.language as tl
|
|
12
|
+
from packaging import version
|
|
13
|
+
|
|
14
|
+
from sglang.srt import _custom_ops as ops
|
|
15
|
+
|
|
16
|
+
PAD_SLOT_ID = -1
|
|
17
|
+
|
|
18
|
+
TRITON3 = version.parse(triton.__version__) >= version.parse("3.0.0")
|
|
19
|
+
|
|
20
|
+
if TRITON3:
|
|
21
|
+
|
|
22
|
+
@triton.jit
|
|
23
|
+
def softplus(dt):
|
|
24
|
+
dt = tl.where(dt <= 20.0, tl.math.log(tl.math.exp(dt) + 1), dt)
|
|
25
|
+
return dt
|
|
26
|
+
|
|
27
|
+
else:
|
|
28
|
+
|
|
29
|
+
@triton.jit
|
|
30
|
+
def softplus(dt):
|
|
31
|
+
dt = tl.where(dt <= 20.0, tl.math.log1p(tl.exp(dt)), dt)
|
|
32
|
+
return dt
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
@triton.heuristics({"HAS_DT_BIAS": lambda args: args["dt_bias_ptr"] is not None})
|
|
36
|
+
@triton.heuristics({"HAS_D": lambda args: args["D_ptr"] is not None})
|
|
37
|
+
@triton.heuristics({"HAS_Z": lambda args: args["z_ptr"] is not None})
|
|
38
|
+
@triton.heuristics(
|
|
39
|
+
{
|
|
40
|
+
"HAS_STATE_BATCH_INDICES": lambda args: args["state_batch_indices_ptr"]
|
|
41
|
+
is not None
|
|
42
|
+
}
|
|
43
|
+
)
|
|
44
|
+
@triton.heuristics(
|
|
45
|
+
{"BLOCK_SIZE_DSTATE": lambda args: triton.next_power_of_2(args["dstate"])}
|
|
46
|
+
)
|
|
47
|
+
@triton.jit
|
|
48
|
+
def _selective_scan_update_kernel(
|
|
49
|
+
# Pointers to matrices
|
|
50
|
+
state_ptr,
|
|
51
|
+
x_ptr,
|
|
52
|
+
dt_ptr,
|
|
53
|
+
dt_bias_ptr,
|
|
54
|
+
A_ptr,
|
|
55
|
+
B_ptr,
|
|
56
|
+
C_ptr,
|
|
57
|
+
D_ptr,
|
|
58
|
+
z_ptr,
|
|
59
|
+
out_ptr,
|
|
60
|
+
state_batch_indices_ptr,
|
|
61
|
+
pad_slot_id,
|
|
62
|
+
# Matrix dimensions
|
|
63
|
+
batch,
|
|
64
|
+
nheads,
|
|
65
|
+
dim,
|
|
66
|
+
dstate,
|
|
67
|
+
nheads_ngroups_ratio,
|
|
68
|
+
# Strides
|
|
69
|
+
stride_state_batch,
|
|
70
|
+
stride_state_head,
|
|
71
|
+
stride_state_dim,
|
|
72
|
+
stride_state_dstate,
|
|
73
|
+
stride_x_batch,
|
|
74
|
+
stride_x_head,
|
|
75
|
+
stride_x_dim,
|
|
76
|
+
stride_dt_batch,
|
|
77
|
+
stride_dt_head,
|
|
78
|
+
stride_dt_dim,
|
|
79
|
+
stride_dt_bias_head,
|
|
80
|
+
stride_dt_bias_dim,
|
|
81
|
+
stride_A_head,
|
|
82
|
+
stride_A_dim,
|
|
83
|
+
stride_A_dstate,
|
|
84
|
+
stride_B_batch,
|
|
85
|
+
stride_B_group,
|
|
86
|
+
stride_B_dstate,
|
|
87
|
+
stride_C_batch,
|
|
88
|
+
stride_C_group,
|
|
89
|
+
stride_C_dstate,
|
|
90
|
+
stride_D_head,
|
|
91
|
+
stride_D_dim,
|
|
92
|
+
stride_z_batch,
|
|
93
|
+
stride_z_head,
|
|
94
|
+
stride_z_dim,
|
|
95
|
+
stride_out_batch,
|
|
96
|
+
stride_out_head,
|
|
97
|
+
stride_out_dim,
|
|
98
|
+
# Meta-parameters
|
|
99
|
+
DT_SOFTPLUS: tl.constexpr,
|
|
100
|
+
TIE_HDIM: tl.constexpr,
|
|
101
|
+
BLOCK_SIZE_M: tl.constexpr,
|
|
102
|
+
HAS_DT_BIAS: tl.constexpr,
|
|
103
|
+
HAS_D: tl.constexpr,
|
|
104
|
+
HAS_Z: tl.constexpr,
|
|
105
|
+
HAS_STATE_BATCH_INDICES: tl.constexpr,
|
|
106
|
+
BLOCK_SIZE_DSTATE: tl.constexpr,
|
|
107
|
+
):
|
|
108
|
+
pid_m = tl.program_id(axis=0)
|
|
109
|
+
pid_b = tl.program_id(axis=1)
|
|
110
|
+
pid_h = tl.program_id(axis=2)
|
|
111
|
+
|
|
112
|
+
# If HAS_STATE_BATCH_INDICES is true, then the ssm state's batch coordinate
|
|
113
|
+
# is taken from the state_batch_indices_ptr Otherwise, the state coordinate
|
|
114
|
+
# is the same as the batch id.
|
|
115
|
+
if HAS_STATE_BATCH_INDICES:
|
|
116
|
+
state_batch_indices_ptr += pid_b
|
|
117
|
+
state_batch_idx = tl.load(state_batch_indices_ptr).to(tl.int64)
|
|
118
|
+
state_ptr += state_batch_idx * stride_state_batch + pid_h * stride_state_head
|
|
119
|
+
else:
|
|
120
|
+
state_ptr += pid_b * stride_state_batch + pid_h * stride_state_head
|
|
121
|
+
|
|
122
|
+
x_ptr += pid_b * stride_x_batch + pid_h * stride_x_head
|
|
123
|
+
dt_ptr += pid_b * stride_dt_batch + pid_h * stride_dt_head
|
|
124
|
+
if HAS_DT_BIAS:
|
|
125
|
+
dt_bias_ptr += pid_h * stride_dt_bias_head
|
|
126
|
+
A_ptr += pid_h * stride_A_head
|
|
127
|
+
B_ptr += pid_b * stride_B_batch + (pid_h // nheads_ngroups_ratio) * stride_B_group
|
|
128
|
+
C_ptr += pid_b * stride_C_batch + (pid_h // nheads_ngroups_ratio) * stride_C_group
|
|
129
|
+
if HAS_Z:
|
|
130
|
+
z_ptr += pid_b * stride_z_batch + pid_h * stride_z_head
|
|
131
|
+
out_ptr += pid_b * stride_out_batch + pid_h * stride_out_head
|
|
132
|
+
|
|
133
|
+
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
|
134
|
+
offs_n = tl.arange(0, BLOCK_SIZE_DSTATE)
|
|
135
|
+
state_ptrs = state_ptr + (
|
|
136
|
+
offs_m[:, None] * stride_state_dim + offs_n[None, :] * stride_state_dstate
|
|
137
|
+
)
|
|
138
|
+
x_ptrs = x_ptr + offs_m * stride_x_dim
|
|
139
|
+
dt_ptrs = dt_ptr + offs_m * stride_dt_dim
|
|
140
|
+
if HAS_DT_BIAS:
|
|
141
|
+
dt_bias_ptrs = dt_bias_ptr + offs_m * stride_dt_bias_dim
|
|
142
|
+
if HAS_D:
|
|
143
|
+
D_ptr += pid_h * stride_D_head
|
|
144
|
+
A_ptrs = A_ptr + (
|
|
145
|
+
offs_m[:, None] * stride_A_dim + offs_n[None, :] * stride_A_dstate
|
|
146
|
+
)
|
|
147
|
+
B_ptrs = B_ptr + offs_n * stride_B_dstate
|
|
148
|
+
C_ptrs = C_ptr + offs_n * stride_C_dstate
|
|
149
|
+
if HAS_D:
|
|
150
|
+
D_ptrs = D_ptr + offs_m * stride_D_dim
|
|
151
|
+
if HAS_Z:
|
|
152
|
+
z_ptrs = z_ptr + offs_m * stride_z_dim
|
|
153
|
+
out_ptrs = out_ptr + offs_m * stride_out_dim
|
|
154
|
+
mask = (offs_m[:, None] < dim) & (offs_n[None, :] < dstate)
|
|
155
|
+
if HAS_STATE_BATCH_INDICES:
|
|
156
|
+
mask &= state_batch_idx != pad_slot_id
|
|
157
|
+
state = tl.load(state_ptrs, mask=mask, other=0.0)
|
|
158
|
+
|
|
159
|
+
x = tl.load(x_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
|
|
160
|
+
if not TIE_HDIM:
|
|
161
|
+
dt = tl.load(dt_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
|
|
162
|
+
if HAS_DT_BIAS:
|
|
163
|
+
dt += tl.load(dt_bias_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
|
|
164
|
+
if DT_SOFTPLUS:
|
|
165
|
+
dt = softplus(dt)
|
|
166
|
+
A = tl.load(
|
|
167
|
+
A_ptrs, mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate), other=0.0
|
|
168
|
+
).to(tl.float32)
|
|
169
|
+
dA = tl.exp(A * dt[:, None])
|
|
170
|
+
else:
|
|
171
|
+
dt = tl.load(dt_ptr).to(tl.float32)
|
|
172
|
+
if HAS_DT_BIAS:
|
|
173
|
+
dt += tl.load(dt_bias_ptr).to(tl.float32)
|
|
174
|
+
if DT_SOFTPLUS:
|
|
175
|
+
dt = softplus(dt)
|
|
176
|
+
A = tl.load(A_ptr).to(tl.float32)
|
|
177
|
+
dA = tl.exp(A * dt) # scalar, not a matrix
|
|
178
|
+
|
|
179
|
+
B = tl.load(B_ptrs, mask=offs_n < dstate, other=0.0).to(tl.float32)
|
|
180
|
+
C = tl.load(C_ptrs, mask=offs_n < dstate, other=0.0).to(tl.float32)
|
|
181
|
+
if HAS_D:
|
|
182
|
+
D = tl.load(D_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
|
|
183
|
+
if HAS_Z:
|
|
184
|
+
z = tl.load(z_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
|
|
185
|
+
|
|
186
|
+
dB = B[None, :] * dt[:, None] if not TIE_HDIM else B * dt
|
|
187
|
+
state = state * dA + dB * x[:, None]
|
|
188
|
+
|
|
189
|
+
mask = (offs_m[:, None] < dim) & (offs_n[None, :] < dstate)
|
|
190
|
+
if HAS_STATE_BATCH_INDICES:
|
|
191
|
+
mask &= state_batch_idx != pad_slot_id
|
|
192
|
+
tl.store(state_ptrs, state, mask=mask)
|
|
193
|
+
out = tl.sum(state * C[None, :], axis=1)
|
|
194
|
+
if HAS_D:
|
|
195
|
+
out += x * D
|
|
196
|
+
if HAS_Z:
|
|
197
|
+
out *= z * tl.sigmoid(z)
|
|
198
|
+
tl.store(out_ptrs, out, mask=offs_m < dim)
|
|
199
|
+
|
|
200
|
+
|
|
201
|
+
def selective_state_update(
|
|
202
|
+
state,
|
|
203
|
+
x,
|
|
204
|
+
dt,
|
|
205
|
+
A,
|
|
206
|
+
B,
|
|
207
|
+
C,
|
|
208
|
+
D=None,
|
|
209
|
+
z=None,
|
|
210
|
+
dt_bias=None,
|
|
211
|
+
dt_softplus=False,
|
|
212
|
+
state_batch_indices=None,
|
|
213
|
+
pad_slot_id=PAD_SLOT_ID,
|
|
214
|
+
out=None,
|
|
215
|
+
):
|
|
216
|
+
"""
|
|
217
|
+
Argument:
|
|
218
|
+
state: (batch, dim, dstate) or (batch, nheads, dim, dstate)
|
|
219
|
+
x: (batch, dim) or (batch, nheads, dim)
|
|
220
|
+
dt: (batch, dim) or (batch, nheads, dim)
|
|
221
|
+
A: (dim, dstate) or (nheads, dim, dstate)
|
|
222
|
+
B: (batch, dstate) or (batch, ngroups, dstate)
|
|
223
|
+
C: (batch, dstate) or (batch, ngroups, dstate)
|
|
224
|
+
D: (dim,) or (nheads, dim)
|
|
225
|
+
z: (batch, dim) or (batch, nheads, dim)
|
|
226
|
+
dt_bias: (dim,) or (nheads, dim)
|
|
227
|
+
pad_slot_id: int
|
|
228
|
+
if cache_indices is passed, lets the kernel identify padded
|
|
229
|
+
entries that will not be processed,
|
|
230
|
+
for example: cache_indices = [pad_slot_id, 1, 20, pad_slot_id]
|
|
231
|
+
in this case, the kernel will not process entries at
|
|
232
|
+
indices 0 and 3
|
|
233
|
+
out: Preallocated ssm output tensor. Assume same shape as x.
|
|
234
|
+
In-place updated.
|
|
235
|
+
"""
|
|
236
|
+
if state.dim() == 3:
|
|
237
|
+
state = state.unsqueeze(1)
|
|
238
|
+
if x.dim() == 2:
|
|
239
|
+
x = x.unsqueeze(1)
|
|
240
|
+
if dt.dim() == 2:
|
|
241
|
+
dt = dt.unsqueeze(1)
|
|
242
|
+
if A.dim() == 2:
|
|
243
|
+
A = A.unsqueeze(0)
|
|
244
|
+
if B.dim() == 2:
|
|
245
|
+
B = B.unsqueeze(1)
|
|
246
|
+
if C.dim() == 2:
|
|
247
|
+
C = C.unsqueeze(1)
|
|
248
|
+
if D is not None and D.dim() == 1:
|
|
249
|
+
D = D.unsqueeze(0)
|
|
250
|
+
if z is not None and z.dim() == 2:
|
|
251
|
+
z = z.unsqueeze(1)
|
|
252
|
+
if dt_bias is not None and dt_bias.dim() == 1:
|
|
253
|
+
dt_bias = dt_bias.unsqueeze(0)
|
|
254
|
+
if out.dim() == 2:
|
|
255
|
+
out = out.unsqueeze(1)
|
|
256
|
+
|
|
257
|
+
_, nheads, dim, dstate = state.shape
|
|
258
|
+
batch = x.shape[0]
|
|
259
|
+
|
|
260
|
+
assert x.shape == (batch, nheads, dim)
|
|
261
|
+
assert dt.shape == x.shape
|
|
262
|
+
assert A.shape == (nheads, dim, dstate)
|
|
263
|
+
ngroups = B.shape[1]
|
|
264
|
+
assert nheads % ngroups == 0, "nheads must be divisible by ngroups"
|
|
265
|
+
assert B.shape == (batch, ngroups, dstate)
|
|
266
|
+
assert C.shape == B.shape
|
|
267
|
+
if D is not None:
|
|
268
|
+
assert D.shape == (nheads, dim)
|
|
269
|
+
if z is not None:
|
|
270
|
+
assert z.shape == x.shape
|
|
271
|
+
if dt_bias is not None:
|
|
272
|
+
assert dt_bias.shape == (nheads, dim)
|
|
273
|
+
if state_batch_indices is not None:
|
|
274
|
+
assert state_batch_indices.shape == (batch,)
|
|
275
|
+
assert out.shape == x.shape
|
|
276
|
+
|
|
277
|
+
grid = lambda META: (triton.cdiv(dim, META["BLOCK_SIZE_M"]), batch, nheads)
|
|
278
|
+
z_strides = (z.stride(0), z.stride(1), z.stride(2)) if z is not None else (0, 0, 0)
|
|
279
|
+
# We don't want autotune since it will overwrite the state
|
|
280
|
+
# We instead tune by hand.
|
|
281
|
+
BLOCK_SIZE_M, num_warps = (
|
|
282
|
+
(32, 4)
|
|
283
|
+
if dstate <= 16
|
|
284
|
+
else (
|
|
285
|
+
(16, 4)
|
|
286
|
+
if dstate <= 32
|
|
287
|
+
else ((8, 4) if dstate <= 64 else ((4, 4) if dstate <= 128 else ((4, 8))))
|
|
288
|
+
)
|
|
289
|
+
)
|
|
290
|
+
tie_hdim = (
|
|
291
|
+
A.stride(-1) == 0
|
|
292
|
+
and A.stride(-2) == 0
|
|
293
|
+
and dt.stride(-1) == 0
|
|
294
|
+
and dt_bias.stride(-1) == 0
|
|
295
|
+
)
|
|
296
|
+
with torch.cuda.device(x.device.index):
|
|
297
|
+
_selective_scan_update_kernel[grid](
|
|
298
|
+
state,
|
|
299
|
+
x,
|
|
300
|
+
dt,
|
|
301
|
+
dt_bias,
|
|
302
|
+
A,
|
|
303
|
+
B,
|
|
304
|
+
C,
|
|
305
|
+
D,
|
|
306
|
+
z,
|
|
307
|
+
out,
|
|
308
|
+
state_batch_indices,
|
|
309
|
+
pad_slot_id,
|
|
310
|
+
batch,
|
|
311
|
+
nheads,
|
|
312
|
+
dim,
|
|
313
|
+
dstate,
|
|
314
|
+
nheads // ngroups,
|
|
315
|
+
state.stride(0),
|
|
316
|
+
state.stride(1),
|
|
317
|
+
state.stride(2),
|
|
318
|
+
state.stride(3),
|
|
319
|
+
x.stride(0),
|
|
320
|
+
x.stride(1),
|
|
321
|
+
x.stride(2),
|
|
322
|
+
dt.stride(0),
|
|
323
|
+
dt.stride(1),
|
|
324
|
+
dt.stride(2),
|
|
325
|
+
*(dt_bias.stride(0), dt_bias.stride(1)) if dt_bias is not None else 0,
|
|
326
|
+
A.stride(0),
|
|
327
|
+
A.stride(1),
|
|
328
|
+
A.stride(2),
|
|
329
|
+
B.stride(0),
|
|
330
|
+
B.stride(1),
|
|
331
|
+
B.stride(2),
|
|
332
|
+
C.stride(0),
|
|
333
|
+
C.stride(1),
|
|
334
|
+
C.stride(2),
|
|
335
|
+
*(D.stride(0), D.stride(1)) if D is not None else 0,
|
|
336
|
+
z_strides[0],
|
|
337
|
+
z_strides[1],
|
|
338
|
+
z_strides[2],
|
|
339
|
+
out.stride(0),
|
|
340
|
+
out.stride(1),
|
|
341
|
+
out.stride(2),
|
|
342
|
+
dt_softplus,
|
|
343
|
+
tie_hdim,
|
|
344
|
+
BLOCK_SIZE_M,
|
|
345
|
+
num_warps=num_warps,
|
|
346
|
+
)
|
|
347
|
+
|
|
348
|
+
|
|
349
|
+
def selective_scan_fn(
|
|
350
|
+
u,
|
|
351
|
+
ssm_states,
|
|
352
|
+
delta,
|
|
353
|
+
A,
|
|
354
|
+
B,
|
|
355
|
+
C,
|
|
356
|
+
D=None,
|
|
357
|
+
z=None,
|
|
358
|
+
delta_bias=None,
|
|
359
|
+
delta_softplus=False,
|
|
360
|
+
query_start_loc=None,
|
|
361
|
+
cache_indices=None,
|
|
362
|
+
has_initial_state=None,
|
|
363
|
+
pad_slot_id=PAD_SLOT_ID,
|
|
364
|
+
) -> torch.Tensor:
|
|
365
|
+
"""
|
|
366
|
+
u: (dim, total_length) for varlen or (batch, dim, seqlen)
|
|
367
|
+
applies changes in place.
|
|
368
|
+
ssm_states: (batch, dim, dstate) or (batch, nheads, dim, dstate)
|
|
369
|
+
applies changes in place.
|
|
370
|
+
delta: (dim, total_length) for varlen or (batch, dim, seqlen)
|
|
371
|
+
A: (dim, dstate)
|
|
372
|
+
B: (ngroups, dstate, total_length) for varlen or
|
|
373
|
+
(batch,ngroups,dstate,seqlen)
|
|
374
|
+
C: (ngroups, dstate, total_length) for varlen or
|
|
375
|
+
(batch,ngroups,dstate,seqlen)
|
|
376
|
+
D: (dim,)
|
|
377
|
+
z: (dim, total_length) for varlen or (batch, dim, seqlen)
|
|
378
|
+
dt_bias: (dim,) or (dim)
|
|
379
|
+
query_start_loc: (batch + 1) int32
|
|
380
|
+
The cumulative sequence lengths of the sequences in
|
|
381
|
+
the batch, used to index into sequence. prepended with 0.
|
|
382
|
+
for example: query_start_loc = torch.Tensor([0,10,16,17]),
|
|
383
|
+
x.shape=(dim,17)
|
|
384
|
+
cache_indices: (batch) int32
|
|
385
|
+
A tensor with each cell is a correspondent
|
|
386
|
+
input and output ssm_state index
|
|
387
|
+
has_initial_state: (batch) bool
|
|
388
|
+
A tensor populated with ones and zeros,
|
|
389
|
+
indicate if the ssm_state at the corresponding index should be
|
|
390
|
+
used as initial state. Not providing argument assumes
|
|
391
|
+
there's no initial state
|
|
392
|
+
pad_slot_id: int
|
|
393
|
+
if cache_indices is passed, lets the kernel identify padding entries
|
|
394
|
+
that will not be processed,
|
|
395
|
+
for example: cache_indices = [pad_slot_id, 1 ,20 ,pad_slot_id]
|
|
396
|
+
in this case, the kernel will not process entries at indices 0 and 3
|
|
397
|
+
returns
|
|
398
|
+
output: (dim, total_length) for varlen or (batch, dim, seqlen)
|
|
399
|
+
supports inplace replacement
|
|
400
|
+
"""
|
|
401
|
+
if u.stride(-1) != 1:
|
|
402
|
+
u = u.contiguous()
|
|
403
|
+
if delta.stride(-1) != 1:
|
|
404
|
+
delta = delta.contiguous()
|
|
405
|
+
if D is not None:
|
|
406
|
+
D = D.contiguous()
|
|
407
|
+
if B.stride(-1) != 1:
|
|
408
|
+
B = B.contiguous()
|
|
409
|
+
if C.stride(-1) != 1:
|
|
410
|
+
C = C.contiguous()
|
|
411
|
+
if z is not None and z.stride(-1) != 1:
|
|
412
|
+
z = z.contiguous()
|
|
413
|
+
if B.dim() == 3 and query_start_loc is None:
|
|
414
|
+
B = B.unsqueeze(1)
|
|
415
|
+
if B.dim() == 2 and query_start_loc is not None:
|
|
416
|
+
B = B.unsqueeze(0)
|
|
417
|
+
if C.dim() == 3 and query_start_loc is None:
|
|
418
|
+
C = C.unsqueeze(1)
|
|
419
|
+
if C.dim() == 2 and query_start_loc is not None:
|
|
420
|
+
C = C.unsqueeze(0)
|
|
421
|
+
|
|
422
|
+
ops.selective_scan_fwd(
|
|
423
|
+
u,
|
|
424
|
+
delta,
|
|
425
|
+
A,
|
|
426
|
+
B,
|
|
427
|
+
C,
|
|
428
|
+
D,
|
|
429
|
+
z,
|
|
430
|
+
delta_bias,
|
|
431
|
+
delta_softplus,
|
|
432
|
+
query_start_loc,
|
|
433
|
+
cache_indices,
|
|
434
|
+
has_initial_state,
|
|
435
|
+
ssm_states,
|
|
436
|
+
pad_slot_id,
|
|
437
|
+
)
|
|
438
|
+
|
|
439
|
+
if z is None:
|
|
440
|
+
return delta # output written inplace to delta
|
|
441
|
+
else:
|
|
442
|
+
return z # output written inplace to z
|
|
@@ -0,0 +1,214 @@
|
|
|
1
|
+
# Adapted from: https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/layers/mamba/ops/ssd_bmm.py
|
|
2
|
+
|
|
3
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
4
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
5
|
+
|
|
6
|
+
# Copyright (c) 2024, Tri Dao, Albert Gu.
|
|
7
|
+
# Adapted from https://github.com/state-spaces/mamba/blob/v2.2.4/mamba_ssm/ops/triton/ssd_bmm.py
|
|
8
|
+
|
|
9
|
+
# ruff: noqa: E501,SIM102
|
|
10
|
+
|
|
11
|
+
import math
|
|
12
|
+
|
|
13
|
+
import torch
|
|
14
|
+
import triton
|
|
15
|
+
import triton.language as tl
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
@triton.jit
|
|
19
|
+
def _bmm_chunk_fwd_kernel(
|
|
20
|
+
# Pointers to matrices
|
|
21
|
+
a_ptr,
|
|
22
|
+
b_ptr,
|
|
23
|
+
out_ptr,
|
|
24
|
+
seq_idx_ptr,
|
|
25
|
+
# Matrix dimensions
|
|
26
|
+
seqlen,
|
|
27
|
+
chunk_size,
|
|
28
|
+
K,
|
|
29
|
+
ngroups,
|
|
30
|
+
stride_a_batch,
|
|
31
|
+
stride_a_seqlen,
|
|
32
|
+
stride_a_head,
|
|
33
|
+
stride_ak,
|
|
34
|
+
stride_b_batch,
|
|
35
|
+
stride_b_seqlen,
|
|
36
|
+
stride_b_head,
|
|
37
|
+
stride_bk,
|
|
38
|
+
stride_out_batch,
|
|
39
|
+
stride_out_chunk,
|
|
40
|
+
stride_out_head,
|
|
41
|
+
stride_outm,
|
|
42
|
+
stride_outn,
|
|
43
|
+
stride_seq_idx_batch,
|
|
44
|
+
stride_seq_idx_seqlen,
|
|
45
|
+
# Meta-parameters
|
|
46
|
+
IS_CAUSAL: tl.constexpr,
|
|
47
|
+
dot_dtype: tl.constexpr,
|
|
48
|
+
HAS_SEQ_IDX: tl.constexpr,
|
|
49
|
+
BLOCK_SIZE_M: tl.constexpr = 16,
|
|
50
|
+
BLOCK_SIZE_N: tl.constexpr = 16,
|
|
51
|
+
BLOCK_SIZE_K: tl.constexpr = 16,
|
|
52
|
+
):
|
|
53
|
+
pid_b = tl.program_id(axis=1)
|
|
54
|
+
pid_ch = tl.program_id(axis=2).to(tl.int64)
|
|
55
|
+
pid_c = pid_ch // ngroups
|
|
56
|
+
pid_h = pid_ch - pid_c * ngroups
|
|
57
|
+
num_pid_n = tl.cdiv(chunk_size, BLOCK_SIZE_N)
|
|
58
|
+
pid_m = tl.program_id(axis=0) // num_pid_n
|
|
59
|
+
pid_n = tl.program_id(axis=0) % num_pid_n
|
|
60
|
+
if IS_CAUSAL:
|
|
61
|
+
if pid_n * BLOCK_SIZE_N >= (pid_m + 1) * BLOCK_SIZE_M:
|
|
62
|
+
return
|
|
63
|
+
a_ptr += (
|
|
64
|
+
pid_b * stride_a_batch
|
|
65
|
+
+ pid_c * chunk_size * stride_a_seqlen
|
|
66
|
+
+ pid_h * stride_a_head
|
|
67
|
+
)
|
|
68
|
+
b_ptr += (
|
|
69
|
+
pid_b * stride_b_batch
|
|
70
|
+
+ pid_c * chunk_size * stride_b_seqlen
|
|
71
|
+
+ pid_h * stride_b_head
|
|
72
|
+
)
|
|
73
|
+
if HAS_SEQ_IDX:
|
|
74
|
+
seq_idx_ptr += (
|
|
75
|
+
pid_b * stride_seq_idx_batch + pid_c * chunk_size * stride_seq_idx_seqlen
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
|
79
|
+
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
|
80
|
+
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
|
81
|
+
a_ptrs = a_ptr + (offs_m[:, None] * stride_a_seqlen + offs_k[None, :] * stride_ak)
|
|
82
|
+
b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_n[None, :] * stride_b_seqlen)
|
|
83
|
+
chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
|
|
84
|
+
|
|
85
|
+
acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
|
86
|
+
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
|
|
87
|
+
a = tl.load(
|
|
88
|
+
a_ptrs,
|
|
89
|
+
mask=(offs_m[:, None] < chunk_size_limit)
|
|
90
|
+
& (offs_k[None, :] < K - k * BLOCK_SIZE_K),
|
|
91
|
+
other=0.0,
|
|
92
|
+
).to(dot_dtype)
|
|
93
|
+
b = tl.load(
|
|
94
|
+
b_ptrs,
|
|
95
|
+
mask=(offs_k[:, None] < K - k * BLOCK_SIZE_K)
|
|
96
|
+
& (offs_n[None, :] < chunk_size_limit),
|
|
97
|
+
other=0.0,
|
|
98
|
+
).to(dot_dtype)
|
|
99
|
+
acc += tl.dot(a, b)
|
|
100
|
+
a_ptrs += BLOCK_SIZE_K * stride_ak
|
|
101
|
+
b_ptrs += BLOCK_SIZE_K * stride_bk
|
|
102
|
+
|
|
103
|
+
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
|
104
|
+
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
|
105
|
+
if HAS_SEQ_IDX:
|
|
106
|
+
chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
|
|
107
|
+
seq_idx_m = tl.load(
|
|
108
|
+
seq_idx_ptr + offs_m * stride_seq_idx_seqlen,
|
|
109
|
+
mask=offs_m < chunk_size_limit,
|
|
110
|
+
other=-1,
|
|
111
|
+
)
|
|
112
|
+
seq_idx_n = tl.load(
|
|
113
|
+
seq_idx_ptr + offs_n * stride_seq_idx_seqlen,
|
|
114
|
+
mask=offs_n < chunk_size_limit,
|
|
115
|
+
other=-2,
|
|
116
|
+
)
|
|
117
|
+
acc = tl.where(seq_idx_m[:, None] == seq_idx_n[None, :], acc, 0.0)
|
|
118
|
+
out = acc.to(out_ptr.dtype.element_ty)
|
|
119
|
+
|
|
120
|
+
out_ptr += (
|
|
121
|
+
pid_b * stride_out_batch + pid_c * stride_out_chunk + pid_h * stride_out_head
|
|
122
|
+
)
|
|
123
|
+
out_ptrs = out_ptr + (stride_outm * offs_m[:, None] + offs_n[None, :] * stride_outn)
|
|
124
|
+
tl.store(
|
|
125
|
+
out_ptrs,
|
|
126
|
+
out,
|
|
127
|
+
mask=(offs_m[:, None] < chunk_size) & (offs_n[None, :] < chunk_size),
|
|
128
|
+
)
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
def _bmm_chunk_fwd(a, b, chunk_size, seq_idx=None, causal=False, output_dtype=None):
|
|
132
|
+
"""
|
|
133
|
+
Argument:
|
|
134
|
+
a: (batch, seqlen, k) or (batch, seqlen, ngroups, k)
|
|
135
|
+
b: (batch, seqlen, k) or (batch, seqlen, ngroups, k)
|
|
136
|
+
seq_idx: (batch, seqlen) or None. out[i, j] for seq_idx[i] != seq_idx[j] will be zeroed out.
|
|
137
|
+
causal: if True, then out[i, j] for i > j will be arbitrary, only out[i, j] for i <= j are
|
|
138
|
+
guaranteed to be correct.
|
|
139
|
+
Return:
|
|
140
|
+
out: (batch, nchunks, chunk_size, chunk_size) or (batch, nchunks, ngroups, chunk_size, chunk_size)
|
|
141
|
+
"""
|
|
142
|
+
# Check constraints.
|
|
143
|
+
has_groups = a.dim() == 4
|
|
144
|
+
if not has_groups:
|
|
145
|
+
batch, seqlen, k = a.shape
|
|
146
|
+
else:
|
|
147
|
+
batch, seqlen, ngroups, k = a.shape
|
|
148
|
+
assert b.shape == a.shape
|
|
149
|
+
if seq_idx is not None:
|
|
150
|
+
assert seq_idx.shape == (batch, seqlen)
|
|
151
|
+
if a.stride(-1) != 1 and a.stride(1) != 1:
|
|
152
|
+
a = a.contiguous()
|
|
153
|
+
if b.stride(-1) != 1 and b.stride(1) != 1:
|
|
154
|
+
b = b.contiguous()
|
|
155
|
+
nchunks = math.ceil(seqlen / chunk_size)
|
|
156
|
+
# Allocates output.
|
|
157
|
+
out_dtype = a.dtype if output_dtype is None else output_dtype
|
|
158
|
+
out = torch.empty(
|
|
159
|
+
(
|
|
160
|
+
(batch, nchunks, chunk_size, chunk_size)
|
|
161
|
+
if not has_groups
|
|
162
|
+
else (batch, nchunks, ngroups, chunk_size, chunk_size)
|
|
163
|
+
),
|
|
164
|
+
device=a.device,
|
|
165
|
+
dtype=out_dtype,
|
|
166
|
+
)
|
|
167
|
+
dot_dtype = (
|
|
168
|
+
tl.bfloat16
|
|
169
|
+
if a.dtype == torch.bfloat16 or b.dtype == torch.bfloat16
|
|
170
|
+
else (
|
|
171
|
+
tl.float16
|
|
172
|
+
if a.dtype == torch.float16 or b.dtype == torch.float16
|
|
173
|
+
else tl.float32
|
|
174
|
+
)
|
|
175
|
+
)
|
|
176
|
+
grid = lambda META: (
|
|
177
|
+
triton.cdiv(chunk_size, META["BLOCK_SIZE_M"])
|
|
178
|
+
* triton.cdiv(chunk_size, META["BLOCK_SIZE_N"]),
|
|
179
|
+
batch,
|
|
180
|
+
nchunks if not has_groups else nchunks * ngroups,
|
|
181
|
+
)
|
|
182
|
+
with torch.cuda.device(a.device.index):
|
|
183
|
+
_bmm_chunk_fwd_kernel[grid](
|
|
184
|
+
a,
|
|
185
|
+
b,
|
|
186
|
+
out,
|
|
187
|
+
seq_idx,
|
|
188
|
+
seqlen,
|
|
189
|
+
chunk_size,
|
|
190
|
+
k,
|
|
191
|
+
ngroups if has_groups else 1,
|
|
192
|
+
a.stride(0),
|
|
193
|
+
a.stride(1),
|
|
194
|
+
0 if not has_groups else a.stride(2),
|
|
195
|
+
a.stride(-1),
|
|
196
|
+
b.stride(0),
|
|
197
|
+
b.stride(1),
|
|
198
|
+
0 if not has_groups else b.stride(2),
|
|
199
|
+
b.stride(-1),
|
|
200
|
+
out.stride(0),
|
|
201
|
+
out.stride(1),
|
|
202
|
+
0 if not has_groups else out.stride(2),
|
|
203
|
+
out.stride(-2),
|
|
204
|
+
out.stride(-1),
|
|
205
|
+
*(
|
|
206
|
+
(seq_idx.stride(0), seq_idx.stride(1))
|
|
207
|
+
if seq_idx is not None
|
|
208
|
+
else (0, 0)
|
|
209
|
+
),
|
|
210
|
+
causal,
|
|
211
|
+
dot_dtype,
|
|
212
|
+
HAS_SEQ_IDX=seq_idx is not None,
|
|
213
|
+
)
|
|
214
|
+
return out
|