sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (482) hide show
  1. sglang/bench_one_batch.py +54 -37
  2. sglang/bench_one_batch_server.py +340 -34
  3. sglang/bench_serving.py +340 -159
  4. sglang/check_env.py +1 -1
  5. sglang/compile_deep_gemm.py +6 -2
  6. sglang/global_config.py +1 -25
  7. sglang/lang/api.py +6 -0
  8. sglang/lang/backend/runtime_endpoint.py +1 -1
  9. sglang/lang/interpreter.py +1 -0
  10. sglang/lang/ir.py +13 -0
  11. sglang/launch_server.py +9 -2
  12. sglang/profiler.py +20 -3
  13. sglang/srt/_custom_ops.py +1 -1
  14. sglang/srt/batch_invariant_ops/__init__.py +27 -0
  15. sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
  16. sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
  17. sglang/srt/compilation/backend.py +437 -0
  18. sglang/srt/compilation/compilation_config.py +20 -0
  19. sglang/srt/compilation/compilation_counter.py +47 -0
  20. sglang/srt/compilation/compile.py +210 -0
  21. sglang/srt/compilation/compiler_interface.py +503 -0
  22. sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
  23. sglang/srt/compilation/fix_functionalization.py +134 -0
  24. sglang/srt/compilation/fx_utils.py +83 -0
  25. sglang/srt/compilation/inductor_pass.py +140 -0
  26. sglang/srt/compilation/pass_manager.py +66 -0
  27. sglang/srt/compilation/piecewise_context_manager.py +40 -0
  28. sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
  29. sglang/srt/configs/__init__.py +8 -0
  30. sglang/srt/configs/deepseek_ocr.py +262 -0
  31. sglang/srt/configs/deepseekvl2.py +194 -96
  32. sglang/srt/configs/dots_ocr.py +64 -0
  33. sglang/srt/configs/dots_vlm.py +2 -7
  34. sglang/srt/configs/falcon_h1.py +309 -0
  35. sglang/srt/configs/load_config.py +33 -2
  36. sglang/srt/configs/mamba_utils.py +117 -0
  37. sglang/srt/configs/model_config.py +284 -118
  38. sglang/srt/configs/modelopt_config.py +30 -0
  39. sglang/srt/configs/nemotron_h.py +286 -0
  40. sglang/srt/configs/olmo3.py +105 -0
  41. sglang/srt/configs/points_v15_chat.py +29 -0
  42. sglang/srt/configs/qwen3_next.py +11 -47
  43. sglang/srt/configs/qwen3_omni.py +613 -0
  44. sglang/srt/configs/qwen3_vl.py +576 -0
  45. sglang/srt/connector/remote_instance.py +1 -1
  46. sglang/srt/constrained/base_grammar_backend.py +6 -1
  47. sglang/srt/constrained/llguidance_backend.py +5 -0
  48. sglang/srt/constrained/outlines_backend.py +1 -1
  49. sglang/srt/constrained/outlines_jump_forward.py +1 -1
  50. sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
  51. sglang/srt/constrained/utils.py +12 -0
  52. sglang/srt/constrained/xgrammar_backend.py +26 -15
  53. sglang/srt/debug_utils/dumper.py +10 -3
  54. sglang/srt/disaggregation/ascend/conn.py +2 -2
  55. sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
  56. sglang/srt/disaggregation/base/conn.py +17 -4
  57. sglang/srt/disaggregation/common/conn.py +268 -98
  58. sglang/srt/disaggregation/decode.py +172 -39
  59. sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
  60. sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
  61. sglang/srt/disaggregation/fake/conn.py +11 -3
  62. sglang/srt/disaggregation/mooncake/conn.py +203 -555
  63. sglang/srt/disaggregation/nixl/conn.py +217 -63
  64. sglang/srt/disaggregation/prefill.py +113 -270
  65. sglang/srt/disaggregation/utils.py +36 -5
  66. sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
  67. sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
  68. sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
  69. sglang/srt/distributed/device_communicators/pynccl.py +24 -12
  70. sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
  71. sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
  72. sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
  73. sglang/srt/distributed/naive_distributed.py +5 -4
  74. sglang/srt/distributed/parallel_state.py +203 -97
  75. sglang/srt/elastic_ep/elastic_ep.py +74 -0
  76. sglang/srt/entrypoints/context.py +3 -2
  77. sglang/srt/entrypoints/engine.py +85 -65
  78. sglang/srt/entrypoints/grpc_server.py +632 -305
  79. sglang/srt/entrypoints/harmony_utils.py +2 -2
  80. sglang/srt/entrypoints/http_server.py +169 -17
  81. sglang/srt/entrypoints/http_server_engine.py +1 -7
  82. sglang/srt/entrypoints/openai/protocol.py +327 -34
  83. sglang/srt/entrypoints/openai/serving_base.py +74 -8
  84. sglang/srt/entrypoints/openai/serving_chat.py +202 -118
  85. sglang/srt/entrypoints/openai/serving_classify.py +204 -0
  86. sglang/srt/entrypoints/openai/serving_completions.py +20 -4
  87. sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
  88. sglang/srt/entrypoints/openai/serving_responses.py +47 -2
  89. sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
  90. sglang/srt/environ.py +323 -0
  91. sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
  92. sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
  93. sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
  94. sglang/srt/eplb/expert_distribution.py +3 -4
  95. sglang/srt/eplb/expert_location.py +30 -5
  96. sglang/srt/eplb/expert_location_dispatch.py +2 -2
  97. sglang/srt/eplb/expert_location_updater.py +2 -2
  98. sglang/srt/function_call/base_format_detector.py +17 -18
  99. sglang/srt/function_call/function_call_parser.py +21 -16
  100. sglang/srt/function_call/glm4_moe_detector.py +4 -8
  101. sglang/srt/function_call/gpt_oss_detector.py +24 -1
  102. sglang/srt/function_call/json_array_parser.py +61 -0
  103. sglang/srt/function_call/kimik2_detector.py +17 -4
  104. sglang/srt/function_call/utils.py +98 -7
  105. sglang/srt/grpc/compile_proto.py +245 -0
  106. sglang/srt/grpc/grpc_request_manager.py +915 -0
  107. sglang/srt/grpc/health_servicer.py +189 -0
  108. sglang/srt/grpc/scheduler_launcher.py +181 -0
  109. sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
  110. sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
  111. sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
  112. sglang/srt/layers/activation.py +11 -7
  113. sglang/srt/layers/attention/aiter_backend.py +17 -18
  114. sglang/srt/layers/attention/ascend_backend.py +125 -10
  115. sglang/srt/layers/attention/attention_registry.py +226 -0
  116. sglang/srt/layers/attention/base_attn_backend.py +32 -4
  117. sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
  118. sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
  119. sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
  120. sglang/srt/layers/attention/fla/chunk.py +0 -1
  121. sglang/srt/layers/attention/fla/chunk_o.py +1 -1
  122. sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
  123. sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
  124. sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
  125. sglang/srt/layers/attention/fla/index.py +0 -2
  126. sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
  127. sglang/srt/layers/attention/fla/utils.py +0 -3
  128. sglang/srt/layers/attention/fla/wy_fast.py +0 -2
  129. sglang/srt/layers/attention/flashattention_backend.py +52 -15
  130. sglang/srt/layers/attention/flashinfer_backend.py +357 -212
  131. sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
  132. sglang/srt/layers/attention/flashmla_backend.py +9 -7
  133. sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
  134. sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
  135. sglang/srt/layers/attention/intel_amx_backend.py +1 -1
  136. sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
  137. sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
  138. sglang/srt/layers/attention/mamba/mamba.py +514 -1
  139. sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
  140. sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
  141. sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
  142. sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
  143. sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
  144. sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
  145. sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
  146. sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
  147. sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
  148. sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
  149. sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
  150. sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
  151. sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
  152. sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
  153. sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
  154. sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
  155. sglang/srt/layers/attention/nsa/transform_index.py +144 -0
  156. sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
  157. sglang/srt/layers/attention/nsa/utils.py +23 -0
  158. sglang/srt/layers/attention/nsa_backend.py +1201 -0
  159. sglang/srt/layers/attention/tbo_backend.py +6 -6
  160. sglang/srt/layers/attention/torch_flex_backend.py +325 -0
  161. sglang/srt/layers/attention/triton_backend.py +249 -42
  162. sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
  163. sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
  164. sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
  165. sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
  166. sglang/srt/layers/attention/utils.py +11 -7
  167. sglang/srt/layers/attention/vision.py +61 -3
  168. sglang/srt/layers/attention/wave_backend.py +4 -4
  169. sglang/srt/layers/attention/xpu_backend.py +1028 -0
  170. sglang/srt/layers/communicator.py +19 -7
  171. sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
  172. sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
  173. sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
  174. sglang/srt/layers/dp_attention.py +28 -1
  175. sglang/srt/layers/elementwise.py +3 -1
  176. sglang/srt/layers/layernorm.py +47 -15
  177. sglang/srt/layers/linear.py +30 -5
  178. sglang/srt/layers/logits_processor.py +161 -18
  179. sglang/srt/layers/modelopt_utils.py +11 -0
  180. sglang/srt/layers/moe/cutlass_moe.py +0 -2
  181. sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
  182. sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
  183. sglang/srt/layers/moe/ep_moe/layer.py +243 -448
  184. sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
  185. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  186. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
  187. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  188. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  189. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  190. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
  191. sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
  192. sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
  193. sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
  194. sglang/srt/layers/moe/moe_runner/runner.py +3 -0
  195. sglang/srt/layers/moe/moe_runner/triton.py +3 -1
  196. sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
  197. sglang/srt/layers/moe/router.py +51 -15
  198. sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
  199. sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
  200. sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
  201. sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
  202. sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
  203. sglang/srt/layers/moe/topk.py +3 -2
  204. sglang/srt/layers/moe/utils.py +27 -1
  205. sglang/srt/layers/parameter.py +23 -6
  206. sglang/srt/layers/quantization/__init__.py +2 -53
  207. sglang/srt/layers/quantization/awq.py +183 -6
  208. sglang/srt/layers/quantization/awq_triton.py +29 -0
  209. sglang/srt/layers/quantization/base_config.py +20 -1
  210. sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
  211. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
  212. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
  213. sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
  214. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
  215. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
  216. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
  217. sglang/srt/layers/quantization/fp8.py +86 -20
  218. sglang/srt/layers/quantization/fp8_kernel.py +55 -10
  219. sglang/srt/layers/quantization/fp8_utils.py +43 -15
  220. sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
  221. sglang/srt/layers/quantization/gptq.py +0 -1
  222. sglang/srt/layers/quantization/int8_kernel.py +18 -2
  223. sglang/srt/layers/quantization/marlin_utils.py +12 -0
  224. sglang/srt/layers/quantization/modelopt_quant.py +141 -81
  225. sglang/srt/layers/quantization/mxfp4.py +17 -34
  226. sglang/srt/layers/quantization/petit.py +1 -1
  227. sglang/srt/layers/quantization/quark/quark.py +3 -1
  228. sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
  229. sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
  230. sglang/srt/layers/quantization/unquant.py +1 -4
  231. sglang/srt/layers/quantization/utils.py +0 -1
  232. sglang/srt/layers/quantization/w4afp8.py +51 -24
  233. sglang/srt/layers/quantization/w8a8_int8.py +45 -27
  234. sglang/srt/layers/radix_attention.py +59 -9
  235. sglang/srt/layers/rotary_embedding.py +750 -46
  236. sglang/srt/layers/sampler.py +84 -16
  237. sglang/srt/layers/sparse_pooler.py +98 -0
  238. sglang/srt/layers/utils.py +23 -1
  239. sglang/srt/layers/vocab_parallel_embedding.py +4 -1
  240. sglang/srt/lora/backend/base_backend.py +3 -3
  241. sglang/srt/lora/backend/chunked_backend.py +348 -0
  242. sglang/srt/lora/backend/triton_backend.py +9 -4
  243. sglang/srt/lora/eviction_policy.py +139 -0
  244. sglang/srt/lora/lora.py +7 -5
  245. sglang/srt/lora/lora_manager.py +33 -7
  246. sglang/srt/lora/lora_registry.py +1 -1
  247. sglang/srt/lora/mem_pool.py +41 -17
  248. sglang/srt/lora/triton_ops/__init__.py +4 -0
  249. sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
  250. sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
  251. sglang/srt/lora/utils.py +7 -5
  252. sglang/srt/managers/cache_controller.py +83 -152
  253. sglang/srt/managers/data_parallel_controller.py +156 -87
  254. sglang/srt/managers/detokenizer_manager.py +51 -24
  255. sglang/srt/managers/io_struct.py +223 -129
  256. sglang/srt/managers/mm_utils.py +49 -10
  257. sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
  258. sglang/srt/managers/multimodal_processor.py +1 -2
  259. sglang/srt/managers/overlap_utils.py +130 -0
  260. sglang/srt/managers/schedule_batch.py +340 -529
  261. sglang/srt/managers/schedule_policy.py +158 -18
  262. sglang/srt/managers/scheduler.py +665 -620
  263. sglang/srt/managers/scheduler_input_blocker.py +1 -1
  264. sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
  265. sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
  266. sglang/srt/managers/scheduler_pp_mixin.py +341 -0
  267. sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
  268. sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
  269. sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
  270. sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
  271. sglang/srt/managers/tokenizer_manager.py +462 -226
  272. sglang/srt/managers/tp_worker.py +217 -156
  273. sglang/srt/managers/utils.py +79 -47
  274. sglang/srt/mem_cache/allocator.py +21 -22
  275. sglang/srt/mem_cache/allocator_ascend.py +42 -28
  276. sglang/srt/mem_cache/base_prefix_cache.py +3 -3
  277. sglang/srt/mem_cache/chunk_cache.py +20 -2
  278. sglang/srt/mem_cache/common.py +480 -0
  279. sglang/srt/mem_cache/evict_policy.py +38 -0
  280. sglang/srt/mem_cache/hicache_storage.py +44 -2
  281. sglang/srt/mem_cache/hiradix_cache.py +134 -34
  282. sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
  283. sglang/srt/mem_cache/memory_pool.py +602 -208
  284. sglang/srt/mem_cache/memory_pool_host.py +134 -183
  285. sglang/srt/mem_cache/multimodal_cache.py +0 -1
  286. sglang/srt/mem_cache/radix_cache.py +263 -78
  287. sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
  288. sglang/srt/mem_cache/storage/__init__.py +10 -0
  289. sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
  290. sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
  291. sglang/srt/mem_cache/storage/backend_factory.py +223 -0
  292. sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
  293. sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
  294. sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
  295. sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
  296. sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
  297. sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
  298. sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
  299. sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
  300. sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
  301. sglang/srt/mem_cache/swa_radix_cache.py +115 -58
  302. sglang/srt/metrics/collector.py +113 -120
  303. sglang/srt/metrics/func_timer.py +3 -8
  304. sglang/srt/metrics/utils.py +8 -1
  305. sglang/srt/model_executor/cpu_graph_runner.py +2 -2
  306. sglang/srt/model_executor/cuda_graph_runner.py +81 -36
  307. sglang/srt/model_executor/forward_batch_info.py +40 -50
  308. sglang/srt/model_executor/model_runner.py +507 -319
  309. sglang/srt/model_executor/npu_graph_runner.py +11 -5
  310. sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
  311. sglang/srt/model_loader/__init__.py +1 -1
  312. sglang/srt/model_loader/loader.py +438 -37
  313. sglang/srt/model_loader/utils.py +0 -1
  314. sglang/srt/model_loader/weight_utils.py +200 -27
  315. sglang/srt/models/apertus.py +2 -3
  316. sglang/srt/models/arcee.py +2 -2
  317. sglang/srt/models/bailing_moe.py +40 -56
  318. sglang/srt/models/bailing_moe_nextn.py +3 -4
  319. sglang/srt/models/bert.py +1 -1
  320. sglang/srt/models/deepseek_nextn.py +25 -4
  321. sglang/srt/models/deepseek_ocr.py +1516 -0
  322. sglang/srt/models/deepseek_v2.py +793 -235
  323. sglang/srt/models/dots_ocr.py +171 -0
  324. sglang/srt/models/dots_vlm.py +0 -1
  325. sglang/srt/models/dots_vlm_vit.py +1 -1
  326. sglang/srt/models/falcon_h1.py +570 -0
  327. sglang/srt/models/gemma3_causal.py +0 -2
  328. sglang/srt/models/gemma3_mm.py +17 -1
  329. sglang/srt/models/gemma3n_mm.py +2 -3
  330. sglang/srt/models/glm4_moe.py +17 -40
  331. sglang/srt/models/glm4_moe_nextn.py +4 -4
  332. sglang/srt/models/glm4v.py +3 -2
  333. sglang/srt/models/glm4v_moe.py +6 -6
  334. sglang/srt/models/gpt_oss.py +12 -35
  335. sglang/srt/models/grok.py +10 -23
  336. sglang/srt/models/hunyuan.py +2 -7
  337. sglang/srt/models/interns1.py +0 -1
  338. sglang/srt/models/kimi_vl.py +1 -7
  339. sglang/srt/models/kimi_vl_moonvit.py +4 -2
  340. sglang/srt/models/llama.py +6 -2
  341. sglang/srt/models/llama_eagle3.py +1 -1
  342. sglang/srt/models/longcat_flash.py +6 -23
  343. sglang/srt/models/longcat_flash_nextn.py +4 -15
  344. sglang/srt/models/mimo.py +2 -13
  345. sglang/srt/models/mimo_mtp.py +1 -2
  346. sglang/srt/models/minicpmo.py +7 -5
  347. sglang/srt/models/mixtral.py +1 -4
  348. sglang/srt/models/mllama.py +1 -1
  349. sglang/srt/models/mllama4.py +27 -6
  350. sglang/srt/models/nemotron_h.py +511 -0
  351. sglang/srt/models/olmo2.py +31 -4
  352. sglang/srt/models/opt.py +5 -5
  353. sglang/srt/models/phi.py +1 -1
  354. sglang/srt/models/phi4mm.py +1 -1
  355. sglang/srt/models/phimoe.py +0 -1
  356. sglang/srt/models/pixtral.py +0 -3
  357. sglang/srt/models/points_v15_chat.py +186 -0
  358. sglang/srt/models/qwen.py +0 -1
  359. sglang/srt/models/qwen2.py +0 -7
  360. sglang/srt/models/qwen2_5_vl.py +5 -5
  361. sglang/srt/models/qwen2_audio.py +2 -15
  362. sglang/srt/models/qwen2_moe.py +70 -4
  363. sglang/srt/models/qwen2_vl.py +6 -3
  364. sglang/srt/models/qwen3.py +18 -3
  365. sglang/srt/models/qwen3_moe.py +50 -38
  366. sglang/srt/models/qwen3_next.py +43 -21
  367. sglang/srt/models/qwen3_next_mtp.py +3 -4
  368. sglang/srt/models/qwen3_omni_moe.py +661 -0
  369. sglang/srt/models/qwen3_vl.py +791 -0
  370. sglang/srt/models/qwen3_vl_moe.py +343 -0
  371. sglang/srt/models/registry.py +15 -3
  372. sglang/srt/models/roberta.py +55 -3
  373. sglang/srt/models/sarashina2_vision.py +268 -0
  374. sglang/srt/models/solar.py +505 -0
  375. sglang/srt/models/starcoder2.py +357 -0
  376. sglang/srt/models/step3_vl.py +3 -5
  377. sglang/srt/models/torch_native_llama.py +9 -2
  378. sglang/srt/models/utils.py +61 -0
  379. sglang/srt/multimodal/processors/base_processor.py +21 -9
  380. sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
  381. sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
  382. sglang/srt/multimodal/processors/dots_vlm.py +2 -4
  383. sglang/srt/multimodal/processors/glm4v.py +1 -5
  384. sglang/srt/multimodal/processors/internvl.py +20 -10
  385. sglang/srt/multimodal/processors/janus_pro.py +0 -1
  386. sglang/srt/multimodal/processors/mllama4.py +0 -8
  387. sglang/srt/multimodal/processors/phi4mm.py +0 -1
  388. sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
  389. sglang/srt/multimodal/processors/qwen_vl.py +83 -17
  390. sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
  391. sglang/srt/multimodal/processors/step3_vl.py +1 -1
  392. sglang/srt/parser/conversation.py +41 -0
  393. sglang/srt/parser/jinja_template_utils.py +6 -0
  394. sglang/srt/parser/reasoning_parser.py +0 -1
  395. sglang/srt/sampling/custom_logit_processor.py +77 -2
  396. sglang/srt/sampling/sampling_batch_info.py +36 -23
  397. sglang/srt/sampling/sampling_params.py +75 -0
  398. sglang/srt/server_args.py +1300 -338
  399. sglang/srt/server_args_config_parser.py +146 -0
  400. sglang/srt/single_batch_overlap.py +161 -0
  401. sglang/srt/speculative/base_spec_worker.py +34 -0
  402. sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
  403. sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
  404. sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
  405. sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
  406. sglang/srt/speculative/cpp_ngram/param.h +125 -0
  407. sglang/srt/speculative/cpp_ngram/queue.h +71 -0
  408. sglang/srt/speculative/draft_utils.py +226 -0
  409. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
  410. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
  411. sglang/srt/speculative/eagle_info.py +786 -0
  412. sglang/srt/speculative/eagle_info_v2.py +458 -0
  413. sglang/srt/speculative/eagle_utils.py +113 -1270
  414. sglang/srt/speculative/eagle_worker.py +120 -285
  415. sglang/srt/speculative/eagle_worker_v2.py +702 -0
  416. sglang/srt/speculative/ngram_info.py +433 -0
  417. sglang/srt/speculative/ngram_worker.py +246 -0
  418. sglang/srt/speculative/spec_info.py +49 -0
  419. sglang/srt/speculative/spec_utils.py +641 -0
  420. sglang/srt/speculative/standalone_worker.py +4 -14
  421. sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
  422. sglang/srt/tracing/trace.py +32 -6
  423. sglang/srt/two_batch_overlap.py +35 -18
  424. sglang/srt/utils/__init__.py +2 -0
  425. sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
  426. sglang/srt/{utils.py → utils/common.py} +583 -113
  427. sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
  428. sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
  429. sglang/srt/{offloader.py → utils/offloader.py} +4 -4
  430. sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
  431. sglang/srt/utils/profile_merger.py +199 -0
  432. sglang/srt/utils/rpd_utils.py +452 -0
  433. sglang/srt/utils/slow_rank_detector.py +71 -0
  434. sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
  435. sglang/srt/warmup.py +8 -4
  436. sglang/srt/weight_sync/utils.py +1 -1
  437. sglang/test/attention/test_flashattn_backend.py +1 -1
  438. sglang/test/attention/test_flashattn_mla_backend.py +0 -1
  439. sglang/test/attention/test_prefix_chunk_info.py +0 -2
  440. sglang/test/attention/test_trtllm_mla_backend.py +221 -53
  441. sglang/test/few_shot_gsm8k_engine.py +2 -4
  442. sglang/test/get_logits_ut.py +57 -0
  443. sglang/test/kit_matched_stop.py +157 -0
  444. sglang/test/longbench_v2/__init__.py +1 -0
  445. sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
  446. sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
  447. sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
  448. sglang/test/run_eval.py +120 -11
  449. sglang/test/runners.py +3 -1
  450. sglang/test/send_one.py +42 -7
  451. sglang/test/simple_eval_common.py +8 -2
  452. sglang/test/simple_eval_gpqa.py +0 -1
  453. sglang/test/simple_eval_humaneval.py +0 -3
  454. sglang/test/simple_eval_longbench_v2.py +344 -0
  455. sglang/test/simple_eval_mmmu_vlm.py +441 -0
  456. sglang/test/test_block_fp8.py +3 -4
  457. sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
  458. sglang/test/test_cutlass_moe.py +1 -2
  459. sglang/test/test_cutlass_w4a8_moe.py +10 -20
  460. sglang/test/test_deterministic.py +430 -0
  461. sglang/test/test_deterministic_utils.py +73 -0
  462. sglang/test/test_disaggregation_utils.py +93 -1
  463. sglang/test/test_marlin_moe.py +0 -1
  464. sglang/test/test_programs.py +1 -1
  465. sglang/test/test_utils.py +432 -16
  466. sglang/utils.py +10 -1
  467. sglang/version.py +1 -1
  468. {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
  469. {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
  470. sglang/srt/entrypoints/grpc_request_manager.py +0 -580
  471. sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
  472. sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
  473. sglang/srt/mem_cache/lora_radix_cache.py +0 -421
  474. sglang/srt/speculative/build_eagle_tree.py +0 -427
  475. sglang/test/test_block_fp8_ep.py +0 -358
  476. /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
  477. /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
  478. /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
  479. /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
  480. {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
  481. {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
  482. {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,442 @@
1
+ # Adapted from: https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/layers/mamba/ops/mamba_ssm.py
2
+
3
+ # SPDX-License-Identifier: Apache-2.0
4
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
5
+
6
+ # Copyright (c) 2024, Tri Dao, Albert Gu.
7
+ # Adapted from https://github.com/state-spaces/mamba/blob/v2.2.4/mamba_ssm/ops/triton/selective_state_update.py
8
+
9
+ import torch
10
+ import triton
11
+ import triton.language as tl
12
+ from packaging import version
13
+
14
+ from sglang.srt import _custom_ops as ops
15
+
16
+ PAD_SLOT_ID = -1
17
+
18
+ TRITON3 = version.parse(triton.__version__) >= version.parse("3.0.0")
19
+
20
+ if TRITON3:
21
+
22
+ @triton.jit
23
+ def softplus(dt):
24
+ dt = tl.where(dt <= 20.0, tl.math.log(tl.math.exp(dt) + 1), dt)
25
+ return dt
26
+
27
+ else:
28
+
29
+ @triton.jit
30
+ def softplus(dt):
31
+ dt = tl.where(dt <= 20.0, tl.math.log1p(tl.exp(dt)), dt)
32
+ return dt
33
+
34
+
35
+ @triton.heuristics({"HAS_DT_BIAS": lambda args: args["dt_bias_ptr"] is not None})
36
+ @triton.heuristics({"HAS_D": lambda args: args["D_ptr"] is not None})
37
+ @triton.heuristics({"HAS_Z": lambda args: args["z_ptr"] is not None})
38
+ @triton.heuristics(
39
+ {
40
+ "HAS_STATE_BATCH_INDICES": lambda args: args["state_batch_indices_ptr"]
41
+ is not None
42
+ }
43
+ )
44
+ @triton.heuristics(
45
+ {"BLOCK_SIZE_DSTATE": lambda args: triton.next_power_of_2(args["dstate"])}
46
+ )
47
+ @triton.jit
48
+ def _selective_scan_update_kernel(
49
+ # Pointers to matrices
50
+ state_ptr,
51
+ x_ptr,
52
+ dt_ptr,
53
+ dt_bias_ptr,
54
+ A_ptr,
55
+ B_ptr,
56
+ C_ptr,
57
+ D_ptr,
58
+ z_ptr,
59
+ out_ptr,
60
+ state_batch_indices_ptr,
61
+ pad_slot_id,
62
+ # Matrix dimensions
63
+ batch,
64
+ nheads,
65
+ dim,
66
+ dstate,
67
+ nheads_ngroups_ratio,
68
+ # Strides
69
+ stride_state_batch,
70
+ stride_state_head,
71
+ stride_state_dim,
72
+ stride_state_dstate,
73
+ stride_x_batch,
74
+ stride_x_head,
75
+ stride_x_dim,
76
+ stride_dt_batch,
77
+ stride_dt_head,
78
+ stride_dt_dim,
79
+ stride_dt_bias_head,
80
+ stride_dt_bias_dim,
81
+ stride_A_head,
82
+ stride_A_dim,
83
+ stride_A_dstate,
84
+ stride_B_batch,
85
+ stride_B_group,
86
+ stride_B_dstate,
87
+ stride_C_batch,
88
+ stride_C_group,
89
+ stride_C_dstate,
90
+ stride_D_head,
91
+ stride_D_dim,
92
+ stride_z_batch,
93
+ stride_z_head,
94
+ stride_z_dim,
95
+ stride_out_batch,
96
+ stride_out_head,
97
+ stride_out_dim,
98
+ # Meta-parameters
99
+ DT_SOFTPLUS: tl.constexpr,
100
+ TIE_HDIM: tl.constexpr,
101
+ BLOCK_SIZE_M: tl.constexpr,
102
+ HAS_DT_BIAS: tl.constexpr,
103
+ HAS_D: tl.constexpr,
104
+ HAS_Z: tl.constexpr,
105
+ HAS_STATE_BATCH_INDICES: tl.constexpr,
106
+ BLOCK_SIZE_DSTATE: tl.constexpr,
107
+ ):
108
+ pid_m = tl.program_id(axis=0)
109
+ pid_b = tl.program_id(axis=1)
110
+ pid_h = tl.program_id(axis=2)
111
+
112
+ # If HAS_STATE_BATCH_INDICES is true, then the ssm state's batch coordinate
113
+ # is taken from the state_batch_indices_ptr Otherwise, the state coordinate
114
+ # is the same as the batch id.
115
+ if HAS_STATE_BATCH_INDICES:
116
+ state_batch_indices_ptr += pid_b
117
+ state_batch_idx = tl.load(state_batch_indices_ptr).to(tl.int64)
118
+ state_ptr += state_batch_idx * stride_state_batch + pid_h * stride_state_head
119
+ else:
120
+ state_ptr += pid_b * stride_state_batch + pid_h * stride_state_head
121
+
122
+ x_ptr += pid_b * stride_x_batch + pid_h * stride_x_head
123
+ dt_ptr += pid_b * stride_dt_batch + pid_h * stride_dt_head
124
+ if HAS_DT_BIAS:
125
+ dt_bias_ptr += pid_h * stride_dt_bias_head
126
+ A_ptr += pid_h * stride_A_head
127
+ B_ptr += pid_b * stride_B_batch + (pid_h // nheads_ngroups_ratio) * stride_B_group
128
+ C_ptr += pid_b * stride_C_batch + (pid_h // nheads_ngroups_ratio) * stride_C_group
129
+ if HAS_Z:
130
+ z_ptr += pid_b * stride_z_batch + pid_h * stride_z_head
131
+ out_ptr += pid_b * stride_out_batch + pid_h * stride_out_head
132
+
133
+ offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
134
+ offs_n = tl.arange(0, BLOCK_SIZE_DSTATE)
135
+ state_ptrs = state_ptr + (
136
+ offs_m[:, None] * stride_state_dim + offs_n[None, :] * stride_state_dstate
137
+ )
138
+ x_ptrs = x_ptr + offs_m * stride_x_dim
139
+ dt_ptrs = dt_ptr + offs_m * stride_dt_dim
140
+ if HAS_DT_BIAS:
141
+ dt_bias_ptrs = dt_bias_ptr + offs_m * stride_dt_bias_dim
142
+ if HAS_D:
143
+ D_ptr += pid_h * stride_D_head
144
+ A_ptrs = A_ptr + (
145
+ offs_m[:, None] * stride_A_dim + offs_n[None, :] * stride_A_dstate
146
+ )
147
+ B_ptrs = B_ptr + offs_n * stride_B_dstate
148
+ C_ptrs = C_ptr + offs_n * stride_C_dstate
149
+ if HAS_D:
150
+ D_ptrs = D_ptr + offs_m * stride_D_dim
151
+ if HAS_Z:
152
+ z_ptrs = z_ptr + offs_m * stride_z_dim
153
+ out_ptrs = out_ptr + offs_m * stride_out_dim
154
+ mask = (offs_m[:, None] < dim) & (offs_n[None, :] < dstate)
155
+ if HAS_STATE_BATCH_INDICES:
156
+ mask &= state_batch_idx != pad_slot_id
157
+ state = tl.load(state_ptrs, mask=mask, other=0.0)
158
+
159
+ x = tl.load(x_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
160
+ if not TIE_HDIM:
161
+ dt = tl.load(dt_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
162
+ if HAS_DT_BIAS:
163
+ dt += tl.load(dt_bias_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
164
+ if DT_SOFTPLUS:
165
+ dt = softplus(dt)
166
+ A = tl.load(
167
+ A_ptrs, mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate), other=0.0
168
+ ).to(tl.float32)
169
+ dA = tl.exp(A * dt[:, None])
170
+ else:
171
+ dt = tl.load(dt_ptr).to(tl.float32)
172
+ if HAS_DT_BIAS:
173
+ dt += tl.load(dt_bias_ptr).to(tl.float32)
174
+ if DT_SOFTPLUS:
175
+ dt = softplus(dt)
176
+ A = tl.load(A_ptr).to(tl.float32)
177
+ dA = tl.exp(A * dt) # scalar, not a matrix
178
+
179
+ B = tl.load(B_ptrs, mask=offs_n < dstate, other=0.0).to(tl.float32)
180
+ C = tl.load(C_ptrs, mask=offs_n < dstate, other=0.0).to(tl.float32)
181
+ if HAS_D:
182
+ D = tl.load(D_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
183
+ if HAS_Z:
184
+ z = tl.load(z_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
185
+
186
+ dB = B[None, :] * dt[:, None] if not TIE_HDIM else B * dt
187
+ state = state * dA + dB * x[:, None]
188
+
189
+ mask = (offs_m[:, None] < dim) & (offs_n[None, :] < dstate)
190
+ if HAS_STATE_BATCH_INDICES:
191
+ mask &= state_batch_idx != pad_slot_id
192
+ tl.store(state_ptrs, state, mask=mask)
193
+ out = tl.sum(state * C[None, :], axis=1)
194
+ if HAS_D:
195
+ out += x * D
196
+ if HAS_Z:
197
+ out *= z * tl.sigmoid(z)
198
+ tl.store(out_ptrs, out, mask=offs_m < dim)
199
+
200
+
201
+ def selective_state_update(
202
+ state,
203
+ x,
204
+ dt,
205
+ A,
206
+ B,
207
+ C,
208
+ D=None,
209
+ z=None,
210
+ dt_bias=None,
211
+ dt_softplus=False,
212
+ state_batch_indices=None,
213
+ pad_slot_id=PAD_SLOT_ID,
214
+ out=None,
215
+ ):
216
+ """
217
+ Argument:
218
+ state: (batch, dim, dstate) or (batch, nheads, dim, dstate)
219
+ x: (batch, dim) or (batch, nheads, dim)
220
+ dt: (batch, dim) or (batch, nheads, dim)
221
+ A: (dim, dstate) or (nheads, dim, dstate)
222
+ B: (batch, dstate) or (batch, ngroups, dstate)
223
+ C: (batch, dstate) or (batch, ngroups, dstate)
224
+ D: (dim,) or (nheads, dim)
225
+ z: (batch, dim) or (batch, nheads, dim)
226
+ dt_bias: (dim,) or (nheads, dim)
227
+ pad_slot_id: int
228
+ if cache_indices is passed, lets the kernel identify padded
229
+ entries that will not be processed,
230
+ for example: cache_indices = [pad_slot_id, 1, 20, pad_slot_id]
231
+ in this case, the kernel will not process entries at
232
+ indices 0 and 3
233
+ out: Preallocated ssm output tensor. Assume same shape as x.
234
+ In-place updated.
235
+ """
236
+ if state.dim() == 3:
237
+ state = state.unsqueeze(1)
238
+ if x.dim() == 2:
239
+ x = x.unsqueeze(1)
240
+ if dt.dim() == 2:
241
+ dt = dt.unsqueeze(1)
242
+ if A.dim() == 2:
243
+ A = A.unsqueeze(0)
244
+ if B.dim() == 2:
245
+ B = B.unsqueeze(1)
246
+ if C.dim() == 2:
247
+ C = C.unsqueeze(1)
248
+ if D is not None and D.dim() == 1:
249
+ D = D.unsqueeze(0)
250
+ if z is not None and z.dim() == 2:
251
+ z = z.unsqueeze(1)
252
+ if dt_bias is not None and dt_bias.dim() == 1:
253
+ dt_bias = dt_bias.unsqueeze(0)
254
+ if out.dim() == 2:
255
+ out = out.unsqueeze(1)
256
+
257
+ _, nheads, dim, dstate = state.shape
258
+ batch = x.shape[0]
259
+
260
+ assert x.shape == (batch, nheads, dim)
261
+ assert dt.shape == x.shape
262
+ assert A.shape == (nheads, dim, dstate)
263
+ ngroups = B.shape[1]
264
+ assert nheads % ngroups == 0, "nheads must be divisible by ngroups"
265
+ assert B.shape == (batch, ngroups, dstate)
266
+ assert C.shape == B.shape
267
+ if D is not None:
268
+ assert D.shape == (nheads, dim)
269
+ if z is not None:
270
+ assert z.shape == x.shape
271
+ if dt_bias is not None:
272
+ assert dt_bias.shape == (nheads, dim)
273
+ if state_batch_indices is not None:
274
+ assert state_batch_indices.shape == (batch,)
275
+ assert out.shape == x.shape
276
+
277
+ grid = lambda META: (triton.cdiv(dim, META["BLOCK_SIZE_M"]), batch, nheads)
278
+ z_strides = (z.stride(0), z.stride(1), z.stride(2)) if z is not None else (0, 0, 0)
279
+ # We don't want autotune since it will overwrite the state
280
+ # We instead tune by hand.
281
+ BLOCK_SIZE_M, num_warps = (
282
+ (32, 4)
283
+ if dstate <= 16
284
+ else (
285
+ (16, 4)
286
+ if dstate <= 32
287
+ else ((8, 4) if dstate <= 64 else ((4, 4) if dstate <= 128 else ((4, 8))))
288
+ )
289
+ )
290
+ tie_hdim = (
291
+ A.stride(-1) == 0
292
+ and A.stride(-2) == 0
293
+ and dt.stride(-1) == 0
294
+ and dt_bias.stride(-1) == 0
295
+ )
296
+ with torch.cuda.device(x.device.index):
297
+ _selective_scan_update_kernel[grid](
298
+ state,
299
+ x,
300
+ dt,
301
+ dt_bias,
302
+ A,
303
+ B,
304
+ C,
305
+ D,
306
+ z,
307
+ out,
308
+ state_batch_indices,
309
+ pad_slot_id,
310
+ batch,
311
+ nheads,
312
+ dim,
313
+ dstate,
314
+ nheads // ngroups,
315
+ state.stride(0),
316
+ state.stride(1),
317
+ state.stride(2),
318
+ state.stride(3),
319
+ x.stride(0),
320
+ x.stride(1),
321
+ x.stride(2),
322
+ dt.stride(0),
323
+ dt.stride(1),
324
+ dt.stride(2),
325
+ *(dt_bias.stride(0), dt_bias.stride(1)) if dt_bias is not None else 0,
326
+ A.stride(0),
327
+ A.stride(1),
328
+ A.stride(2),
329
+ B.stride(0),
330
+ B.stride(1),
331
+ B.stride(2),
332
+ C.stride(0),
333
+ C.stride(1),
334
+ C.stride(2),
335
+ *(D.stride(0), D.stride(1)) if D is not None else 0,
336
+ z_strides[0],
337
+ z_strides[1],
338
+ z_strides[2],
339
+ out.stride(0),
340
+ out.stride(1),
341
+ out.stride(2),
342
+ dt_softplus,
343
+ tie_hdim,
344
+ BLOCK_SIZE_M,
345
+ num_warps=num_warps,
346
+ )
347
+
348
+
349
+ def selective_scan_fn(
350
+ u,
351
+ ssm_states,
352
+ delta,
353
+ A,
354
+ B,
355
+ C,
356
+ D=None,
357
+ z=None,
358
+ delta_bias=None,
359
+ delta_softplus=False,
360
+ query_start_loc=None,
361
+ cache_indices=None,
362
+ has_initial_state=None,
363
+ pad_slot_id=PAD_SLOT_ID,
364
+ ) -> torch.Tensor:
365
+ """
366
+ u: (dim, total_length) for varlen or (batch, dim, seqlen)
367
+ applies changes in place.
368
+ ssm_states: (batch, dim, dstate) or (batch, nheads, dim, dstate)
369
+ applies changes in place.
370
+ delta: (dim, total_length) for varlen or (batch, dim, seqlen)
371
+ A: (dim, dstate)
372
+ B: (ngroups, dstate, total_length) for varlen or
373
+ (batch,ngroups,dstate,seqlen)
374
+ C: (ngroups, dstate, total_length) for varlen or
375
+ (batch,ngroups,dstate,seqlen)
376
+ D: (dim,)
377
+ z: (dim, total_length) for varlen or (batch, dim, seqlen)
378
+ dt_bias: (dim,) or (dim)
379
+ query_start_loc: (batch + 1) int32
380
+ The cumulative sequence lengths of the sequences in
381
+ the batch, used to index into sequence. prepended with 0.
382
+ for example: query_start_loc = torch.Tensor([0,10,16,17]),
383
+ x.shape=(dim,17)
384
+ cache_indices: (batch) int32
385
+ A tensor with each cell is a correspondent
386
+ input and output ssm_state index
387
+ has_initial_state: (batch) bool
388
+ A tensor populated with ones and zeros,
389
+ indicate if the ssm_state at the corresponding index should be
390
+ used as initial state. Not providing argument assumes
391
+ there's no initial state
392
+ pad_slot_id: int
393
+ if cache_indices is passed, lets the kernel identify padding entries
394
+ that will not be processed,
395
+ for example: cache_indices = [pad_slot_id, 1 ,20 ,pad_slot_id]
396
+ in this case, the kernel will not process entries at indices 0 and 3
397
+ returns
398
+ output: (dim, total_length) for varlen or (batch, dim, seqlen)
399
+ supports inplace replacement
400
+ """
401
+ if u.stride(-1) != 1:
402
+ u = u.contiguous()
403
+ if delta.stride(-1) != 1:
404
+ delta = delta.contiguous()
405
+ if D is not None:
406
+ D = D.contiguous()
407
+ if B.stride(-1) != 1:
408
+ B = B.contiguous()
409
+ if C.stride(-1) != 1:
410
+ C = C.contiguous()
411
+ if z is not None and z.stride(-1) != 1:
412
+ z = z.contiguous()
413
+ if B.dim() == 3 and query_start_loc is None:
414
+ B = B.unsqueeze(1)
415
+ if B.dim() == 2 and query_start_loc is not None:
416
+ B = B.unsqueeze(0)
417
+ if C.dim() == 3 and query_start_loc is None:
418
+ C = C.unsqueeze(1)
419
+ if C.dim() == 2 and query_start_loc is not None:
420
+ C = C.unsqueeze(0)
421
+
422
+ ops.selective_scan_fwd(
423
+ u,
424
+ delta,
425
+ A,
426
+ B,
427
+ C,
428
+ D,
429
+ z,
430
+ delta_bias,
431
+ delta_softplus,
432
+ query_start_loc,
433
+ cache_indices,
434
+ has_initial_state,
435
+ ssm_states,
436
+ pad_slot_id,
437
+ )
438
+
439
+ if z is None:
440
+ return delta # output written inplace to delta
441
+ else:
442
+ return z # output written inplace to z
@@ -0,0 +1,214 @@
1
+ # Adapted from: https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/layers/mamba/ops/ssd_bmm.py
2
+
3
+ # SPDX-License-Identifier: Apache-2.0
4
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
5
+
6
+ # Copyright (c) 2024, Tri Dao, Albert Gu.
7
+ # Adapted from https://github.com/state-spaces/mamba/blob/v2.2.4/mamba_ssm/ops/triton/ssd_bmm.py
8
+
9
+ # ruff: noqa: E501,SIM102
10
+
11
+ import math
12
+
13
+ import torch
14
+ import triton
15
+ import triton.language as tl
16
+
17
+
18
+ @triton.jit
19
+ def _bmm_chunk_fwd_kernel(
20
+ # Pointers to matrices
21
+ a_ptr,
22
+ b_ptr,
23
+ out_ptr,
24
+ seq_idx_ptr,
25
+ # Matrix dimensions
26
+ seqlen,
27
+ chunk_size,
28
+ K,
29
+ ngroups,
30
+ stride_a_batch,
31
+ stride_a_seqlen,
32
+ stride_a_head,
33
+ stride_ak,
34
+ stride_b_batch,
35
+ stride_b_seqlen,
36
+ stride_b_head,
37
+ stride_bk,
38
+ stride_out_batch,
39
+ stride_out_chunk,
40
+ stride_out_head,
41
+ stride_outm,
42
+ stride_outn,
43
+ stride_seq_idx_batch,
44
+ stride_seq_idx_seqlen,
45
+ # Meta-parameters
46
+ IS_CAUSAL: tl.constexpr,
47
+ dot_dtype: tl.constexpr,
48
+ HAS_SEQ_IDX: tl.constexpr,
49
+ BLOCK_SIZE_M: tl.constexpr = 16,
50
+ BLOCK_SIZE_N: tl.constexpr = 16,
51
+ BLOCK_SIZE_K: tl.constexpr = 16,
52
+ ):
53
+ pid_b = tl.program_id(axis=1)
54
+ pid_ch = tl.program_id(axis=2).to(tl.int64)
55
+ pid_c = pid_ch // ngroups
56
+ pid_h = pid_ch - pid_c * ngroups
57
+ num_pid_n = tl.cdiv(chunk_size, BLOCK_SIZE_N)
58
+ pid_m = tl.program_id(axis=0) // num_pid_n
59
+ pid_n = tl.program_id(axis=0) % num_pid_n
60
+ if IS_CAUSAL:
61
+ if pid_n * BLOCK_SIZE_N >= (pid_m + 1) * BLOCK_SIZE_M:
62
+ return
63
+ a_ptr += (
64
+ pid_b * stride_a_batch
65
+ + pid_c * chunk_size * stride_a_seqlen
66
+ + pid_h * stride_a_head
67
+ )
68
+ b_ptr += (
69
+ pid_b * stride_b_batch
70
+ + pid_c * chunk_size * stride_b_seqlen
71
+ + pid_h * stride_b_head
72
+ )
73
+ if HAS_SEQ_IDX:
74
+ seq_idx_ptr += (
75
+ pid_b * stride_seq_idx_batch + pid_c * chunk_size * stride_seq_idx_seqlen
76
+ )
77
+
78
+ offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
79
+ offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
80
+ offs_k = tl.arange(0, BLOCK_SIZE_K)
81
+ a_ptrs = a_ptr + (offs_m[:, None] * stride_a_seqlen + offs_k[None, :] * stride_ak)
82
+ b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_n[None, :] * stride_b_seqlen)
83
+ chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
84
+
85
+ acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
86
+ for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
87
+ a = tl.load(
88
+ a_ptrs,
89
+ mask=(offs_m[:, None] < chunk_size_limit)
90
+ & (offs_k[None, :] < K - k * BLOCK_SIZE_K),
91
+ other=0.0,
92
+ ).to(dot_dtype)
93
+ b = tl.load(
94
+ b_ptrs,
95
+ mask=(offs_k[:, None] < K - k * BLOCK_SIZE_K)
96
+ & (offs_n[None, :] < chunk_size_limit),
97
+ other=0.0,
98
+ ).to(dot_dtype)
99
+ acc += tl.dot(a, b)
100
+ a_ptrs += BLOCK_SIZE_K * stride_ak
101
+ b_ptrs += BLOCK_SIZE_K * stride_bk
102
+
103
+ offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
104
+ offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
105
+ if HAS_SEQ_IDX:
106
+ chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
107
+ seq_idx_m = tl.load(
108
+ seq_idx_ptr + offs_m * stride_seq_idx_seqlen,
109
+ mask=offs_m < chunk_size_limit,
110
+ other=-1,
111
+ )
112
+ seq_idx_n = tl.load(
113
+ seq_idx_ptr + offs_n * stride_seq_idx_seqlen,
114
+ mask=offs_n < chunk_size_limit,
115
+ other=-2,
116
+ )
117
+ acc = tl.where(seq_idx_m[:, None] == seq_idx_n[None, :], acc, 0.0)
118
+ out = acc.to(out_ptr.dtype.element_ty)
119
+
120
+ out_ptr += (
121
+ pid_b * stride_out_batch + pid_c * stride_out_chunk + pid_h * stride_out_head
122
+ )
123
+ out_ptrs = out_ptr + (stride_outm * offs_m[:, None] + offs_n[None, :] * stride_outn)
124
+ tl.store(
125
+ out_ptrs,
126
+ out,
127
+ mask=(offs_m[:, None] < chunk_size) & (offs_n[None, :] < chunk_size),
128
+ )
129
+
130
+
131
+ def _bmm_chunk_fwd(a, b, chunk_size, seq_idx=None, causal=False, output_dtype=None):
132
+ """
133
+ Argument:
134
+ a: (batch, seqlen, k) or (batch, seqlen, ngroups, k)
135
+ b: (batch, seqlen, k) or (batch, seqlen, ngroups, k)
136
+ seq_idx: (batch, seqlen) or None. out[i, j] for seq_idx[i] != seq_idx[j] will be zeroed out.
137
+ causal: if True, then out[i, j] for i > j will be arbitrary, only out[i, j] for i <= j are
138
+ guaranteed to be correct.
139
+ Return:
140
+ out: (batch, nchunks, chunk_size, chunk_size) or (batch, nchunks, ngroups, chunk_size, chunk_size)
141
+ """
142
+ # Check constraints.
143
+ has_groups = a.dim() == 4
144
+ if not has_groups:
145
+ batch, seqlen, k = a.shape
146
+ else:
147
+ batch, seqlen, ngroups, k = a.shape
148
+ assert b.shape == a.shape
149
+ if seq_idx is not None:
150
+ assert seq_idx.shape == (batch, seqlen)
151
+ if a.stride(-1) != 1 and a.stride(1) != 1:
152
+ a = a.contiguous()
153
+ if b.stride(-1) != 1 and b.stride(1) != 1:
154
+ b = b.contiguous()
155
+ nchunks = math.ceil(seqlen / chunk_size)
156
+ # Allocates output.
157
+ out_dtype = a.dtype if output_dtype is None else output_dtype
158
+ out = torch.empty(
159
+ (
160
+ (batch, nchunks, chunk_size, chunk_size)
161
+ if not has_groups
162
+ else (batch, nchunks, ngroups, chunk_size, chunk_size)
163
+ ),
164
+ device=a.device,
165
+ dtype=out_dtype,
166
+ )
167
+ dot_dtype = (
168
+ tl.bfloat16
169
+ if a.dtype == torch.bfloat16 or b.dtype == torch.bfloat16
170
+ else (
171
+ tl.float16
172
+ if a.dtype == torch.float16 or b.dtype == torch.float16
173
+ else tl.float32
174
+ )
175
+ )
176
+ grid = lambda META: (
177
+ triton.cdiv(chunk_size, META["BLOCK_SIZE_M"])
178
+ * triton.cdiv(chunk_size, META["BLOCK_SIZE_N"]),
179
+ batch,
180
+ nchunks if not has_groups else nchunks * ngroups,
181
+ )
182
+ with torch.cuda.device(a.device.index):
183
+ _bmm_chunk_fwd_kernel[grid](
184
+ a,
185
+ b,
186
+ out,
187
+ seq_idx,
188
+ seqlen,
189
+ chunk_size,
190
+ k,
191
+ ngroups if has_groups else 1,
192
+ a.stride(0),
193
+ a.stride(1),
194
+ 0 if not has_groups else a.stride(2),
195
+ a.stride(-1),
196
+ b.stride(0),
197
+ b.stride(1),
198
+ 0 if not has_groups else b.stride(2),
199
+ b.stride(-1),
200
+ out.stride(0),
201
+ out.stride(1),
202
+ 0 if not has_groups else out.stride(2),
203
+ out.stride(-2),
204
+ out.stride(-1),
205
+ *(
206
+ (seq_idx.stride(0), seq_idx.stride(1))
207
+ if seq_idx is not None
208
+ else (0, 0)
209
+ ),
210
+ causal,
211
+ dot_dtype,
212
+ HAS_SEQ_IDX=seq_idx is not None,
213
+ )
214
+ return out