sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,261 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Adapted from: https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/layers/mamba/ops/ssd_combined.py
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            # SPDX-License-Identifier: Apache-2.0
         
     | 
| 
      
 4 
     | 
    
         
            +
            # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
         
     | 
| 
      
 5 
     | 
    
         
            +
             
     | 
| 
      
 6 
     | 
    
         
            +
            # Copyright (c) 2024, Tri Dao, Albert Gu.
         
     | 
| 
      
 7 
     | 
    
         
            +
            # Adapted from https://github.com/state-spaces/mamba/blob/v2.2.4/mamba_ssm/ops/triton/ssd_combined.py
         
     | 
| 
      
 8 
     | 
    
         
            +
             
     | 
| 
      
 9 
     | 
    
         
            +
            # ruff: noqa: E501
         
     | 
| 
      
 10 
     | 
    
         
            +
             
     | 
| 
      
 11 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 12 
     | 
    
         
            +
            import triton
         
     | 
| 
      
 13 
     | 
    
         
            +
            from einops import rearrange
         
     | 
| 
      
 14 
     | 
    
         
            +
            from packaging import version
         
     | 
| 
      
 15 
     | 
    
         
            +
             
     | 
| 
      
 16 
     | 
    
         
            +
            from .ssd_bmm import _bmm_chunk_fwd
         
     | 
| 
      
 17 
     | 
    
         
            +
            from .ssd_chunk_scan import _chunk_scan_fwd
         
     | 
| 
      
 18 
     | 
    
         
            +
            from .ssd_chunk_state import _chunk_cumsum_fwd, _chunk_state_fwd, chunk_state_varlen
         
     | 
| 
      
 19 
     | 
    
         
            +
            from .ssd_state_passing import _state_passing_fwd
         
     | 
| 
      
 20 
     | 
    
         
            +
             
     | 
| 
      
 21 
     | 
    
         
            +
            TRITON_22 = version.parse(triton.__version__) >= version.parse("2.2.0")
         
     | 
| 
      
 22 
     | 
    
         
            +
             
     | 
| 
      
 23 
     | 
    
         
            +
             
     | 
| 
      
 24 
     | 
    
         
            +
            def is_int_pow_2(n):
         
     | 
| 
      
 25 
     | 
    
         
            +
                return isinstance(n, int) and n > 0 and (n & (n - 1)) == 0
         
     | 
| 
      
 26 
     | 
    
         
            +
             
     | 
| 
      
 27 
     | 
    
         
            +
             
     | 
| 
      
 28 
     | 
    
         
            +
            def _mamba_chunk_scan_combined_fwd(
         
     | 
| 
      
 29 
     | 
    
         
            +
                x,
         
     | 
| 
      
 30 
     | 
    
         
            +
                dt,
         
     | 
| 
      
 31 
     | 
    
         
            +
                A,
         
     | 
| 
      
 32 
     | 
    
         
            +
                B,
         
     | 
| 
      
 33 
     | 
    
         
            +
                C,
         
     | 
| 
      
 34 
     | 
    
         
            +
                chunk_size,
         
     | 
| 
      
 35 
     | 
    
         
            +
                D=None,
         
     | 
| 
      
 36 
     | 
    
         
            +
                z=None,
         
     | 
| 
      
 37 
     | 
    
         
            +
                dt_bias=None,
         
     | 
| 
      
 38 
     | 
    
         
            +
                initial_states=None,
         
     | 
| 
      
 39 
     | 
    
         
            +
                seq_idx=None,
         
     | 
| 
      
 40 
     | 
    
         
            +
                chunk_indices=None,
         
     | 
| 
      
 41 
     | 
    
         
            +
                chunk_offsets=None,
         
     | 
| 
      
 42 
     | 
    
         
            +
                cu_seqlens=None,
         
     | 
| 
      
 43 
     | 
    
         
            +
                dt_softplus=False,
         
     | 
| 
      
 44 
     | 
    
         
            +
                dt_limit=(0.0, float("inf")),
         
     | 
| 
      
 45 
     | 
    
         
            +
                state_dtype=None,
         
     | 
| 
      
 46 
     | 
    
         
            +
                out=None,
         
     | 
| 
      
 47 
     | 
    
         
            +
            ):
         
     | 
| 
      
 48 
     | 
    
         
            +
                assert is_int_pow_2(chunk_size), "chunk_size must be integer power of 2"
         
     | 
| 
      
 49 
     | 
    
         
            +
                batch, seqlen, nheads, headdim = x.shape
         
     | 
| 
      
 50 
     | 
    
         
            +
                _, _, ngroups, dstate = B.shape
         
     | 
| 
      
 51 
     | 
    
         
            +
                assert nheads % ngroups == 0
         
     | 
| 
      
 52 
     | 
    
         
            +
                assert B.shape == (batch, seqlen, ngroups, dstate)
         
     | 
| 
      
 53 
     | 
    
         
            +
                assert dt.shape == (batch, seqlen, nheads)
         
     | 
| 
      
 54 
     | 
    
         
            +
                assert A.shape == (nheads,)
         
     | 
| 
      
 55 
     | 
    
         
            +
                assert C.shape == B.shape
         
     | 
| 
      
 56 
     | 
    
         
            +
                if z is not None:
         
     | 
| 
      
 57 
     | 
    
         
            +
                    assert z.shape == x.shape
         
     | 
| 
      
 58 
     | 
    
         
            +
                if D is not None:
         
     | 
| 
      
 59 
     | 
    
         
            +
                    assert D.shape == (nheads, headdim) or D.shape == (nheads,)
         
     | 
| 
      
 60 
     | 
    
         
            +
                if seq_idx is not None:
         
     | 
| 
      
 61 
     | 
    
         
            +
                    assert seq_idx.shape == (batch, seqlen)
         
     | 
| 
      
 62 
     | 
    
         
            +
                if B.stride(-1) != 1:
         
     | 
| 
      
 63 
     | 
    
         
            +
                    B = B.contiguous()
         
     | 
| 
      
 64 
     | 
    
         
            +
                if C.stride(-1) != 1:
         
     | 
| 
      
 65 
     | 
    
         
            +
                    C = C.contiguous()
         
     | 
| 
      
 66 
     | 
    
         
            +
                if (
         
     | 
| 
      
 67 
     | 
    
         
            +
                    x.stride(-1) != 1 and x.stride(1) != 1
         
     | 
| 
      
 68 
     | 
    
         
            +
                ):  # Either M or K dimension should be contiguous
         
     | 
| 
      
 69 
     | 
    
         
            +
                    x = x.contiguous()
         
     | 
| 
      
 70 
     | 
    
         
            +
                if (
         
     | 
| 
      
 71 
     | 
    
         
            +
                    z is not None and z.stride(-1) != 1 and z.stride(1) != 1
         
     | 
| 
      
 72 
     | 
    
         
            +
                ):  # Either M or K dimension should be contiguous
         
     | 
| 
      
 73 
     | 
    
         
            +
                    z = z.contiguous()
         
     | 
| 
      
 74 
     | 
    
         
            +
                if D is not None and D.stride(-1) != 1:
         
     | 
| 
      
 75 
     | 
    
         
            +
                    D = D.contiguous()
         
     | 
| 
      
 76 
     | 
    
         
            +
                if initial_states is not None:
         
     | 
| 
      
 77 
     | 
    
         
            +
                    if cu_seqlens is None:
         
     | 
| 
      
 78 
     | 
    
         
            +
                        assert initial_states.shape == (batch, nheads, headdim, dstate)
         
     | 
| 
      
 79 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 80 
     | 
    
         
            +
                        assert initial_states.shape == (
         
     | 
| 
      
 81 
     | 
    
         
            +
                            len(cu_seqlens) - 1,
         
     | 
| 
      
 82 
     | 
    
         
            +
                            nheads,
         
     | 
| 
      
 83 
     | 
    
         
            +
                            headdim,
         
     | 
| 
      
 84 
     | 
    
         
            +
                            dstate,
         
     | 
| 
      
 85 
     | 
    
         
            +
                        )
         
     | 
| 
      
 86 
     | 
    
         
            +
             
     | 
| 
      
 87 
     | 
    
         
            +
                # This function executes 5 sub-functions for computing mamba
         
     | 
| 
      
 88 
     | 
    
         
            +
                # - a good resource is the blog https://goombalab.github.io/blog/2024/mamba2-part3-algorithm/
         
     | 
| 
      
 89 
     | 
    
         
            +
                #   which has a minimal implementation to understand the below operations
         
     | 
| 
      
 90 
     | 
    
         
            +
                # - as explained by the blog, mamba is a special case of causal attention
         
     | 
| 
      
 91 
     | 
    
         
            +
                # - the idea is to chunk the attention matrix and compute each
         
     | 
| 
      
 92 
     | 
    
         
            +
                #   submatrix separately using different optimizations.
         
     | 
| 
      
 93 
     | 
    
         
            +
                # - see the blog and paper for a visualization of the submatrices
         
     | 
| 
      
 94 
     | 
    
         
            +
                #   which we refer to in the comments below
         
     | 
| 
      
 95 
     | 
    
         
            +
             
     | 
| 
      
 96 
     | 
    
         
            +
                # 1. Compute chunked cumsum of A * dt
         
     | 
| 
      
 97 
     | 
    
         
            +
                # - here dt may go through a softplus activation
         
     | 
| 
      
 98 
     | 
    
         
            +
                dA_cumsum, dt = _chunk_cumsum_fwd(
         
     | 
| 
      
 99 
     | 
    
         
            +
                    dt, A, chunk_size, dt_bias=dt_bias, dt_softplus=dt_softplus, dt_limit=dt_limit
         
     | 
| 
      
 100 
     | 
    
         
            +
                )
         
     | 
| 
      
 101 
     | 
    
         
            +
             
     | 
| 
      
 102 
     | 
    
         
            +
                # 2. Compute the state for each intra-chunk
         
     | 
| 
      
 103 
     | 
    
         
            +
                # (right term of low-rank factorization of off-diagonal blocks; B terms)
         
     | 
| 
      
 104 
     | 
    
         
            +
                states = _chunk_state_fwd(B, x, dt, dA_cumsum, seq_idx=seq_idx, states_in_fp32=True)
         
     | 
| 
      
 105 
     | 
    
         
            +
             
     | 
| 
      
 106 
     | 
    
         
            +
                # 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at chunk boundaries
         
     | 
| 
      
 107 
     | 
    
         
            +
                # (middle term of factorization of off-diag blocks; A terms)
         
     | 
| 
      
 108 
     | 
    
         
            +
                # - for handling chunked prefill, this requires i) initial_states
         
     | 
| 
      
 109 
     | 
    
         
            +
                #   ii) seq_idx iii) is_cont_batched and (iv) chunk_offsets to be all specified.
         
     | 
| 
      
 110 
     | 
    
         
            +
                # - When a new seq_idx is detected, we will stop passing the prev_state
         
     | 
| 
      
 111 
     | 
    
         
            +
                #   and switch accordingly to the init_state corresponding to the new seq_idx.
         
     | 
| 
      
 112 
     | 
    
         
            +
                # - We will also make sure that the dA_cumsum is taken only from the start of the
         
     | 
| 
      
 113 
     | 
    
         
            +
                #   sequence (hence we need the full dA_cumsum tensor and not just the values at chunk boundaries)
         
     | 
| 
      
 114 
     | 
    
         
            +
                # - this will ensure that states will be updated with the rightmost flushed seq_idx
         
     | 
| 
      
 115 
     | 
    
         
            +
                #   of the previous chunk. This implies that the first chunk of states is either 0
         
     | 
| 
      
 116 
     | 
    
         
            +
                #   or equal to init_states of the first example.
         
     | 
| 
      
 117 
     | 
    
         
            +
                states, final_states = _state_passing_fwd(
         
     | 
| 
      
 118 
     | 
    
         
            +
                    rearrange(states, "... p n -> ... (p n)"),
         
     | 
| 
      
 119 
     | 
    
         
            +
                    dA_cumsum,
         
     | 
| 
      
 120 
     | 
    
         
            +
                    initial_states=(
         
     | 
| 
      
 121 
     | 
    
         
            +
                        rearrange(initial_states, "... p n -> ... (p n)")
         
     | 
| 
      
 122 
     | 
    
         
            +
                        if initial_states is not None
         
     | 
| 
      
 123 
     | 
    
         
            +
                        else None
         
     | 
| 
      
 124 
     | 
    
         
            +
                    ),
         
     | 
| 
      
 125 
     | 
    
         
            +
                    seq_idx=seq_idx,
         
     | 
| 
      
 126 
     | 
    
         
            +
                    chunk_size=chunk_size,
         
     | 
| 
      
 127 
     | 
    
         
            +
                    out_dtype=state_dtype if state_dtype is not None else C.dtype,
         
     | 
| 
      
 128 
     | 
    
         
            +
                    is_cont_batched=cu_seqlens is not None,
         
     | 
| 
      
 129 
     | 
    
         
            +
                    chunk_offsets=chunk_offsets,
         
     | 
| 
      
 130 
     | 
    
         
            +
                )
         
     | 
| 
      
 131 
     | 
    
         
            +
                states, final_states = (
         
     | 
| 
      
 132 
     | 
    
         
            +
                    rearrange(t, "... (p n) -> ... p n", n=dstate) for t in [states, final_states]
         
     | 
| 
      
 133 
     | 
    
         
            +
                )
         
     | 
| 
      
 134 
     | 
    
         
            +
             
     | 
| 
      
 135 
     | 
    
         
            +
                # 4. Compute batched matrix multiply for C_j^T B_i terms
         
     | 
| 
      
 136 
     | 
    
         
            +
                CB = _bmm_chunk_fwd(C, B, chunk_size, seq_idx=seq_idx, output_dtype=torch.float32)
         
     | 
| 
      
 137 
     | 
    
         
            +
             
     | 
| 
      
 138 
     | 
    
         
            +
                # 5. Scan and compute the diagonal blocks, taking into
         
     | 
| 
      
 139 
     | 
    
         
            +
                #    account past causal states.
         
     | 
| 
      
 140 
     | 
    
         
            +
                # - if initial states are provided, then states information will be
         
     | 
| 
      
 141 
     | 
    
         
            +
                #   augmented with initial_states.
         
     | 
| 
      
 142 
     | 
    
         
            +
                # - to do this properly, we need to account for example changes in
         
     | 
| 
      
 143 
     | 
    
         
            +
                #   the continuous batch, therefore we introduce pseudo chunks, which is
         
     | 
| 
      
 144 
     | 
    
         
            +
                #   a chunk that is split up each time an example changes.
         
     | 
| 
      
 145 
     | 
    
         
            +
                # - in each (pseudo) chunk, we detect if the previous (pseudo) chunk had
         
     | 
| 
      
 146 
     | 
    
         
            +
                #   a seq_idx change, in which case we take states information from
         
     | 
| 
      
 147 
     | 
    
         
            +
                #   init_states.
         
     | 
| 
      
 148 
     | 
    
         
            +
                out_x = _chunk_scan_fwd(
         
     | 
| 
      
 149 
     | 
    
         
            +
                    CB,
         
     | 
| 
      
 150 
     | 
    
         
            +
                    x,
         
     | 
| 
      
 151 
     | 
    
         
            +
                    dt,
         
     | 
| 
      
 152 
     | 
    
         
            +
                    dA_cumsum,
         
     | 
| 
      
 153 
     | 
    
         
            +
                    C,
         
     | 
| 
      
 154 
     | 
    
         
            +
                    states,
         
     | 
| 
      
 155 
     | 
    
         
            +
                    D=D,
         
     | 
| 
      
 156 
     | 
    
         
            +
                    z=z,
         
     | 
| 
      
 157 
     | 
    
         
            +
                    seq_idx=seq_idx,
         
     | 
| 
      
 158 
     | 
    
         
            +
                    chunk_indices=chunk_indices,
         
     | 
| 
      
 159 
     | 
    
         
            +
                    chunk_offsets=chunk_offsets,
         
     | 
| 
      
 160 
     | 
    
         
            +
                    initial_states=initial_states,
         
     | 
| 
      
 161 
     | 
    
         
            +
                    out=out,
         
     | 
| 
      
 162 
     | 
    
         
            +
                )
         
     | 
| 
      
 163 
     | 
    
         
            +
                if cu_seqlens is None:
         
     | 
| 
      
 164 
     | 
    
         
            +
                    return out_x, dt, dA_cumsum, states, final_states
         
     | 
| 
      
 165 
     | 
    
         
            +
                else:
         
     | 
| 
      
 166 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 167 
     | 
    
         
            +
                        batch == 1
         
     | 
| 
      
 168 
     | 
    
         
            +
                    ), "passing cu_seqlens to get the varlen states is only supported if batch dimension is 1"
         
     | 
| 
      
 169 
     | 
    
         
            +
                    varlen_states = chunk_state_varlen(
         
     | 
| 
      
 170 
     | 
    
         
            +
                        B.squeeze(0),
         
     | 
| 
      
 171 
     | 
    
         
            +
                        x.squeeze(0),
         
     | 
| 
      
 172 
     | 
    
         
            +
                        dt.squeeze(0),
         
     | 
| 
      
 173 
     | 
    
         
            +
                        dA_cumsum.squeeze(0),
         
     | 
| 
      
 174 
     | 
    
         
            +
                        cu_seqlens,
         
     | 
| 
      
 175 
     | 
    
         
            +
                        states.squeeze(0),
         
     | 
| 
      
 176 
     | 
    
         
            +
                        initial_states=initial_states,
         
     | 
| 
      
 177 
     | 
    
         
            +
                    )
         
     | 
| 
      
 178 
     | 
    
         
            +
                    return out_x, dt, dA_cumsum, states, final_states, varlen_states
         
     | 
| 
      
 179 
     | 
    
         
            +
             
     | 
| 
      
 180 
     | 
    
         
            +
             
     | 
| 
      
 181 
     | 
    
         
            +
            def mamba_chunk_scan_combined(
         
     | 
| 
      
 182 
     | 
    
         
            +
                x,
         
     | 
| 
      
 183 
     | 
    
         
            +
                dt,
         
     | 
| 
      
 184 
     | 
    
         
            +
                A,
         
     | 
| 
      
 185 
     | 
    
         
            +
                B,
         
     | 
| 
      
 186 
     | 
    
         
            +
                C,
         
     | 
| 
      
 187 
     | 
    
         
            +
                chunk_size,
         
     | 
| 
      
 188 
     | 
    
         
            +
                D=None,
         
     | 
| 
      
 189 
     | 
    
         
            +
                z=None,
         
     | 
| 
      
 190 
     | 
    
         
            +
                dt_bias=None,
         
     | 
| 
      
 191 
     | 
    
         
            +
                initial_states=None,
         
     | 
| 
      
 192 
     | 
    
         
            +
                seq_idx=None,
         
     | 
| 
      
 193 
     | 
    
         
            +
                chunk_indices=None,
         
     | 
| 
      
 194 
     | 
    
         
            +
                chunk_offsets=None,
         
     | 
| 
      
 195 
     | 
    
         
            +
                cu_seqlens=None,
         
     | 
| 
      
 196 
     | 
    
         
            +
                dt_softplus=False,
         
     | 
| 
      
 197 
     | 
    
         
            +
                dt_limit=(0.0, float("inf")),
         
     | 
| 
      
 198 
     | 
    
         
            +
                out=None,
         
     | 
| 
      
 199 
     | 
    
         
            +
                return_final_states=False,
         
     | 
| 
      
 200 
     | 
    
         
            +
                return_varlen_states=False,
         
     | 
| 
      
 201 
     | 
    
         
            +
                state_dtype=None,
         
     | 
| 
      
 202 
     | 
    
         
            +
            ):
         
     | 
| 
      
 203 
     | 
    
         
            +
                """
         
     | 
| 
      
 204 
     | 
    
         
            +
                Argument:
         
     | 
| 
      
 205 
     | 
    
         
            +
                    x: (batch, seqlen, nheads, headdim)
         
     | 
| 
      
 206 
     | 
    
         
            +
                    dt: (batch, seqlen, nheads)
         
     | 
| 
      
 207 
     | 
    
         
            +
                    A: (nheads)
         
     | 
| 
      
 208 
     | 
    
         
            +
                    B: (batch, seqlen, ngroups, dstate)
         
     | 
| 
      
 209 
     | 
    
         
            +
                    C: (batch, seqlen, ngroups, dstate)
         
     | 
| 
      
 210 
     | 
    
         
            +
                    chunk_size: int
         
     | 
| 
      
 211 
     | 
    
         
            +
                    D: (nheads, headdim) or (nheads,)
         
     | 
| 
      
 212 
     | 
    
         
            +
                    z: (batch, seqlen, nheads, headdim)
         
     | 
| 
      
 213 
     | 
    
         
            +
                    dt_bias: (nheads,)
         
     | 
| 
      
 214 
     | 
    
         
            +
                    initial_states: (batch, nheads, headdim, dstate)
         
     | 
| 
      
 215 
     | 
    
         
            +
                    seq_idx: (batch, seqlen)
         
     | 
| 
      
 216 
     | 
    
         
            +
                    cu_seqlens: (num_sequences + 1) or None, only used if return_varlen_states is True
         
     | 
| 
      
 217 
     | 
    
         
            +
                    dt_softplus: Whether to apply softplus to dt
         
     | 
| 
      
 218 
     | 
    
         
            +
                    out: Preallocated output tensor
         
     | 
| 
      
 219 
     | 
    
         
            +
                    state_dtype: The data type of the ssm state
         
     | 
| 
      
 220 
     | 
    
         
            +
                """
         
     | 
| 
      
 221 
     | 
    
         
            +
             
     | 
| 
      
 222 
     | 
    
         
            +
                if not return_varlen_states:
         
     | 
| 
      
 223 
     | 
    
         
            +
                    cu_seqlens = None
         
     | 
| 
      
 224 
     | 
    
         
            +
                else:
         
     | 
| 
      
 225 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 226 
     | 
    
         
            +
                        cu_seqlens is not None
         
     | 
| 
      
 227 
     | 
    
         
            +
                    ), "cu_seqlens must be provided if return_varlen_states is True"
         
     | 
| 
      
 228 
     | 
    
         
            +
                out_x, dt_out, dA_cumsum, states, final_states, *rest = (
         
     | 
| 
      
 229 
     | 
    
         
            +
                    _mamba_chunk_scan_combined_fwd(
         
     | 
| 
      
 230 
     | 
    
         
            +
                        x,
         
     | 
| 
      
 231 
     | 
    
         
            +
                        dt,
         
     | 
| 
      
 232 
     | 
    
         
            +
                        A,
         
     | 
| 
      
 233 
     | 
    
         
            +
                        B,
         
     | 
| 
      
 234 
     | 
    
         
            +
                        C,
         
     | 
| 
      
 235 
     | 
    
         
            +
                        chunk_size,
         
     | 
| 
      
 236 
     | 
    
         
            +
                        D=D,
         
     | 
| 
      
 237 
     | 
    
         
            +
                        z=z,
         
     | 
| 
      
 238 
     | 
    
         
            +
                        dt_bias=dt_bias,
         
     | 
| 
      
 239 
     | 
    
         
            +
                        initial_states=initial_states,
         
     | 
| 
      
 240 
     | 
    
         
            +
                        seq_idx=seq_idx,
         
     | 
| 
      
 241 
     | 
    
         
            +
                        chunk_indices=chunk_indices,
         
     | 
| 
      
 242 
     | 
    
         
            +
                        chunk_offsets=chunk_offsets,
         
     | 
| 
      
 243 
     | 
    
         
            +
                        cu_seqlens=cu_seqlens,
         
     | 
| 
      
 244 
     | 
    
         
            +
                        dt_softplus=dt_softplus,
         
     | 
| 
      
 245 
     | 
    
         
            +
                        dt_limit=dt_limit,
         
     | 
| 
      
 246 
     | 
    
         
            +
                        out=out,
         
     | 
| 
      
 247 
     | 
    
         
            +
                        state_dtype=state_dtype,
         
     | 
| 
      
 248 
     | 
    
         
            +
                    )
         
     | 
| 
      
 249 
     | 
    
         
            +
                )
         
     | 
| 
      
 250 
     | 
    
         
            +
                if not return_varlen_states:
         
     | 
| 
      
 251 
     | 
    
         
            +
                    if not return_final_states:
         
     | 
| 
      
 252 
     | 
    
         
            +
                        return
         
     | 
| 
      
 253 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 254 
     | 
    
         
            +
                        return final_states
         
     | 
| 
      
 255 
     | 
    
         
            +
                else:
         
     | 
| 
      
 256 
     | 
    
         
            +
                    varlen_states = rest[0]
         
     | 
| 
      
 257 
     | 
    
         
            +
                    return (
         
     | 
| 
      
 258 
     | 
    
         
            +
                        (varlen_states)
         
     | 
| 
      
 259 
     | 
    
         
            +
                        if not return_final_states
         
     | 
| 
      
 260 
     | 
    
         
            +
                        else (final_states, varlen_states)
         
     | 
| 
      
 261 
     | 
    
         
            +
                    )
         
     | 
| 
         @@ -0,0 +1,264 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Adapted from: https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/layers/mamba/ops/ssd_state_passing.py
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            # SPDX-License-Identifier: Apache-2.0
         
     | 
| 
      
 4 
     | 
    
         
            +
            # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
         
     | 
| 
      
 5 
     | 
    
         
            +
             
     | 
| 
      
 6 
     | 
    
         
            +
            # Copyright (c) 2024, Tri Dao, Albert Gu.
         
     | 
| 
      
 7 
     | 
    
         
            +
            # Adapted from https://github.com/state-spaces/mamba/blob/v2.2.4/mamba_ssm/ops/triton/ssd_state_passing.py
         
     | 
| 
      
 8 
     | 
    
         
            +
             
     | 
| 
      
 9 
     | 
    
         
            +
            # ruff: noqa: E501
         
     | 
| 
      
 10 
     | 
    
         
            +
             
     | 
| 
      
 11 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 12 
     | 
    
         
            +
            import triton
         
     | 
| 
      
 13 
     | 
    
         
            +
            import triton.language as tl
         
     | 
| 
      
 14 
     | 
    
         
            +
             
     | 
| 
      
 15 
     | 
    
         
            +
             
     | 
| 
      
 16 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 17 
     | 
    
         
            +
            def _state_passing_fwd_kernel(
         
     | 
| 
      
 18 
     | 
    
         
            +
                # Pointers to matrices
         
     | 
| 
      
 19 
     | 
    
         
            +
                states_ptr,
         
     | 
| 
      
 20 
     | 
    
         
            +
                out_ptr,
         
     | 
| 
      
 21 
     | 
    
         
            +
                final_states_ptr,
         
     | 
| 
      
 22 
     | 
    
         
            +
                dA_cs_ptr,
         
     | 
| 
      
 23 
     | 
    
         
            +
                initstates_ptr,
         
     | 
| 
      
 24 
     | 
    
         
            +
                seq_idx_ptr,
         
     | 
| 
      
 25 
     | 
    
         
            +
                chunk_offsets_ptr,
         
     | 
| 
      
 26 
     | 
    
         
            +
                chunk_meta_num,
         
     | 
| 
      
 27 
     | 
    
         
            +
                # Matrix dimensions
         
     | 
| 
      
 28 
     | 
    
         
            +
                dim,
         
     | 
| 
      
 29 
     | 
    
         
            +
                nchunks,
         
     | 
| 
      
 30 
     | 
    
         
            +
                seqlen,
         
     | 
| 
      
 31 
     | 
    
         
            +
                chunk_size,
         
     | 
| 
      
 32 
     | 
    
         
            +
                # Strides
         
     | 
| 
      
 33 
     | 
    
         
            +
                stride_states_batch,
         
     | 
| 
      
 34 
     | 
    
         
            +
                stride_states_chunk,
         
     | 
| 
      
 35 
     | 
    
         
            +
                stride_states_head,
         
     | 
| 
      
 36 
     | 
    
         
            +
                stride_states_dim,
         
     | 
| 
      
 37 
     | 
    
         
            +
                stride_out_batch,
         
     | 
| 
      
 38 
     | 
    
         
            +
                stride_out_chunk,
         
     | 
| 
      
 39 
     | 
    
         
            +
                stride_out_head,
         
     | 
| 
      
 40 
     | 
    
         
            +
                stride_out_dim,
         
     | 
| 
      
 41 
     | 
    
         
            +
                stride_final_states_batch,
         
     | 
| 
      
 42 
     | 
    
         
            +
                stride_final_states_head,
         
     | 
| 
      
 43 
     | 
    
         
            +
                stride_final_states_dim,
         
     | 
| 
      
 44 
     | 
    
         
            +
                stride_dA_cs_batch,
         
     | 
| 
      
 45 
     | 
    
         
            +
                stride_dA_cs_chunk,
         
     | 
| 
      
 46 
     | 
    
         
            +
                stride_dA_cs_head,
         
     | 
| 
      
 47 
     | 
    
         
            +
                stride_dA_cs_csize,
         
     | 
| 
      
 48 
     | 
    
         
            +
                stride_initstates_batch,
         
     | 
| 
      
 49 
     | 
    
         
            +
                stride_initstates_head,
         
     | 
| 
      
 50 
     | 
    
         
            +
                stride_initstates_dim,
         
     | 
| 
      
 51 
     | 
    
         
            +
                stride_seq_idx_batch,
         
     | 
| 
      
 52 
     | 
    
         
            +
                stride_seq_idx_seqlen,
         
     | 
| 
      
 53 
     | 
    
         
            +
                # Meta-parameters
         
     | 
| 
      
 54 
     | 
    
         
            +
                HAS_INITSTATES: tl.constexpr,
         
     | 
| 
      
 55 
     | 
    
         
            +
                HAS_SEQ_IDX: tl.constexpr,
         
     | 
| 
      
 56 
     | 
    
         
            +
                IS_CONT_BATCHED: tl.constexpr,
         
     | 
| 
      
 57 
     | 
    
         
            +
                BLOCK_SIZE: tl.constexpr = 16,
         
     | 
| 
      
 58 
     | 
    
         
            +
            ):
         
     | 
| 
      
 59 
     | 
    
         
            +
                pid_b = tl.program_id(axis=1)
         
     | 
| 
      
 60 
     | 
    
         
            +
                pid_h = tl.program_id(axis=2)
         
     | 
| 
      
 61 
     | 
    
         
            +
                pid_m = tl.program_id(axis=0)
         
     | 
| 
      
 62 
     | 
    
         
            +
                states_ptr += pid_b * stride_states_batch + pid_h * stride_states_head
         
     | 
| 
      
 63 
     | 
    
         
            +
                dA_cs_ptr += (
         
     | 
| 
      
 64 
     | 
    
         
            +
                    pid_b * stride_dA_cs_batch
         
     | 
| 
      
 65 
     | 
    
         
            +
                    + pid_h * stride_dA_cs_head
         
     | 
| 
      
 66 
     | 
    
         
            +
                    + (chunk_size - 1) * stride_dA_cs_csize
         
     | 
| 
      
 67 
     | 
    
         
            +
                )
         
     | 
| 
      
 68 
     | 
    
         
            +
                out_ptr += pid_b * stride_out_batch + pid_h * stride_out_head
         
     | 
| 
      
 69 
     | 
    
         
            +
                final_states_ptr += (
         
     | 
| 
      
 70 
     | 
    
         
            +
                    pid_b * stride_final_states_batch + pid_h * stride_final_states_head
         
     | 
| 
      
 71 
     | 
    
         
            +
                )
         
     | 
| 
      
 72 
     | 
    
         
            +
                if HAS_INITSTATES:
         
     | 
| 
      
 73 
     | 
    
         
            +
                    initstates_ptr += pid_h * stride_initstates_head
         
     | 
| 
      
 74 
     | 
    
         
            +
                    if not IS_CONT_BATCHED:
         
     | 
| 
      
 75 
     | 
    
         
            +
                        initstates_ptr += pid_b * stride_initstates_batch
         
     | 
| 
      
 76 
     | 
    
         
            +
             
     | 
| 
      
 77 
     | 
    
         
            +
                if HAS_SEQ_IDX:
         
     | 
| 
      
 78 
     | 
    
         
            +
                    seq_idx_ptr += pid_b * stride_seq_idx_batch
         
     | 
| 
      
 79 
     | 
    
         
            +
             
     | 
| 
      
 80 
     | 
    
         
            +
                offs_m = pid_m * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
         
     | 
| 
      
 81 
     | 
    
         
            +
                states_ptrs = states_ptr + offs_m * stride_states_dim
         
     | 
| 
      
 82 
     | 
    
         
            +
                out_ptrs = out_ptr + offs_m * stride_out_dim
         
     | 
| 
      
 83 
     | 
    
         
            +
                final_states_ptrs = final_states_ptr + offs_m * stride_final_states_dim
         
     | 
| 
      
 84 
     | 
    
         
            +
             
     | 
| 
      
 85 
     | 
    
         
            +
                # - states will be the past state of the sequence that continues on the current check
         
     | 
| 
      
 86 
     | 
    
         
            +
                if not HAS_INITSTATES:
         
     | 
| 
      
 87 
     | 
    
         
            +
                    states = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)
         
     | 
| 
      
 88 
     | 
    
         
            +
                else:
         
     | 
| 
      
 89 
     | 
    
         
            +
                    initstates_ptr += offs_m * stride_initstates_dim
         
     | 
| 
      
 90 
     | 
    
         
            +
                    initstates_ptrs = initstates_ptr
         
     | 
| 
      
 91 
     | 
    
         
            +
                    # - for cont batches, for the first chunk mean it will be the first batch's
         
     | 
| 
      
 92 
     | 
    
         
            +
                    #   init state
         
     | 
| 
      
 93 
     | 
    
         
            +
                    states = tl.load(initstates_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
         
     | 
| 
      
 94 
     | 
    
         
            +
             
     | 
| 
      
 95 
     | 
    
         
            +
                tl.store(out_ptrs, states, mask=offs_m < dim)
         
     | 
| 
      
 96 
     | 
    
         
            +
                out_ptrs += stride_out_chunk
         
     | 
| 
      
 97 
     | 
    
         
            +
                prev_seq_idx_chunk_end = 0
         
     | 
| 
      
 98 
     | 
    
         
            +
                logical_chunk_idx = 0
         
     | 
| 
      
 99 
     | 
    
         
            +
                for c in range(nchunks):
         
     | 
| 
      
 100 
     | 
    
         
            +
                    new_states = tl.load(states_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
         
     | 
| 
      
 101 
     | 
    
         
            +
                    dA_cs = tl.load(dA_cs_ptr).to(tl.float32)
         
     | 
| 
      
 102 
     | 
    
         
            +
                    scale_mask = True
         
     | 
| 
      
 103 
     | 
    
         
            +
                    if HAS_SEQ_IDX:
         
     | 
| 
      
 104 
     | 
    
         
            +
                        # - the seq to pass forward is the one that is flushed to the right
         
     | 
| 
      
 105 
     | 
    
         
            +
                        #   boundary.
         
     | 
| 
      
 106 
     | 
    
         
            +
                        # - that is given by seq_idx_chunk_end below: the sequence index at the end of the chunk.
         
     | 
| 
      
 107 
     | 
    
         
            +
                        seq_idx_chunk_end = tl.load(
         
     | 
| 
      
 108 
     | 
    
         
            +
                            seq_idx_ptr
         
     | 
| 
      
 109 
     | 
    
         
            +
                            + (min((c + 1) * chunk_size, seqlen) - 1) * stride_seq_idx_seqlen
         
     | 
| 
      
 110 
     | 
    
         
            +
                        )
         
     | 
| 
      
 111 
     | 
    
         
            +
                        if HAS_INITSTATES:
         
     | 
| 
      
 112 
     | 
    
         
            +
                            if IS_CONT_BATCHED and prev_seq_idx_chunk_end != seq_idx_chunk_end:
         
     | 
| 
      
 113 
     | 
    
         
            +
                                # this means in the current chunk the rightmost flushed seq
         
     | 
| 
      
 114 
     | 
    
         
            +
                                # has changed.
         
     | 
| 
      
 115 
     | 
    
         
            +
                                # - so we do not propagate the state from previous chunk
         
     | 
| 
      
 116 
     | 
    
         
            +
                                # - but rather we load that sequence's init state
         
     | 
| 
      
 117 
     | 
    
         
            +
                                initstates_ptrs = (
         
     | 
| 
      
 118 
     | 
    
         
            +
                                    initstates_ptr + seq_idx_chunk_end * stride_initstates_batch
         
     | 
| 
      
 119 
     | 
    
         
            +
                                )
         
     | 
| 
      
 120 
     | 
    
         
            +
             
     | 
| 
      
 121 
     | 
    
         
            +
                                # - update state with seq_idx_new's init state
         
     | 
| 
      
 122 
     | 
    
         
            +
                                states = tl.load(initstates_ptrs, mask=offs_m < dim, other=0.0).to(
         
     | 
| 
      
 123 
     | 
    
         
            +
                                    tl.float32
         
     | 
| 
      
 124 
     | 
    
         
            +
                                )
         
     | 
| 
      
 125 
     | 
    
         
            +
             
     | 
| 
      
 126 
     | 
    
         
            +
                                # - we need to consider the cumsum only of the last sequence in the chunk
         
     | 
| 
      
 127 
     | 
    
         
            +
                                # - find its starting position (given by c_off of the logical chunk index)
         
     | 
| 
      
 128 
     | 
    
         
            +
                                # - and subtract the cumsum just before that position from the total cumsum
         
     | 
| 
      
 129 
     | 
    
         
            +
                                # - first, update the logical chunk index (add the number of sequences in the current physical chunk):
         
     | 
| 
      
 130 
     | 
    
         
            +
                                # sequence index at the start of the current chunk
         
     | 
| 
      
 131 
     | 
    
         
            +
                                seq_idx_chunk_start = tl.load(
         
     | 
| 
      
 132 
     | 
    
         
            +
                                    seq_idx_ptr
         
     | 
| 
      
 133 
     | 
    
         
            +
                                    + min(c * chunk_size, seqlen) * stride_seq_idx_seqlen
         
     | 
| 
      
 134 
     | 
    
         
            +
                                )
         
     | 
| 
      
 135 
     | 
    
         
            +
                                logical_chunk_idx += seq_idx_chunk_end - seq_idx_chunk_start
         
     | 
| 
      
 136 
     | 
    
         
            +
                                # - load the chunk offset:
         
     | 
| 
      
 137 
     | 
    
         
            +
                                c_off = tl.load(
         
     | 
| 
      
 138 
     | 
    
         
            +
                                    chunk_offsets_ptr + logical_chunk_idx,
         
     | 
| 
      
 139 
     | 
    
         
            +
                                    mask=logical_chunk_idx < chunk_meta_num,
         
     | 
| 
      
 140 
     | 
    
         
            +
                                    other=0,
         
     | 
| 
      
 141 
     | 
    
         
            +
                                )
         
     | 
| 
      
 142 
     | 
    
         
            +
                                # - if offset is 0, then the sequence starts at the beginning of the chunk, and we don't need to subtract anything
         
     | 
| 
      
 143 
     | 
    
         
            +
                                if c_off > 0:
         
     | 
| 
      
 144 
     | 
    
         
            +
                                    # - dA_cs_ptr currently points to the cumsum at the end of the chunk - subtract the chunk size and add the offset
         
     | 
| 
      
 145 
     | 
    
         
            +
                                    dA_cs_boundary = tl.load(
         
     | 
| 
      
 146 
     | 
    
         
            +
                                        dA_cs_ptr
         
     | 
| 
      
 147 
     | 
    
         
            +
                                        - (chunk_size - 1) * stride_dA_cs_csize
         
     | 
| 
      
 148 
     | 
    
         
            +
                                        + (c_off - 1) * stride_dA_cs_csize,
         
     | 
| 
      
 149 
     | 
    
         
            +
                                        mask=(c_off - 1) > -1 and c_off < chunk_size,
         
     | 
| 
      
 150 
     | 
    
         
            +
                                        other=0.0,
         
     | 
| 
      
 151 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 152 
     | 
    
         
            +
                                    dA_cs -= dA_cs_boundary
         
     | 
| 
      
 153 
     | 
    
         
            +
             
     | 
| 
      
 154 
     | 
    
         
            +
                            # - increment logical chunk index for every physical chunk
         
     | 
| 
      
 155 
     | 
    
         
            +
                            logical_chunk_idx += 1
         
     | 
| 
      
 156 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 157 
     | 
    
         
            +
                            scale_mask = seq_idx_chunk_end == prev_seq_idx_chunk_end
         
     | 
| 
      
 158 
     | 
    
         
            +
                        prev_seq_idx_chunk_end = seq_idx_chunk_end
         
     | 
| 
      
 159 
     | 
    
         
            +
             
     | 
| 
      
 160 
     | 
    
         
            +
                    scale = tl.where(scale_mask, tl.exp(dA_cs), 0.0)
         
     | 
| 
      
 161 
     | 
    
         
            +
                    states = scale * states + new_states
         
     | 
| 
      
 162 
     | 
    
         
            +
                    if c < nchunks - 1:
         
     | 
| 
      
 163 
     | 
    
         
            +
                        tl.store(out_ptrs, states, mask=offs_m < dim)
         
     | 
| 
      
 164 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 165 
     | 
    
         
            +
                        tl.store(final_states_ptrs, states, mask=offs_m < dim)
         
     | 
| 
      
 166 
     | 
    
         
            +
                    states_ptrs += stride_states_chunk
         
     | 
| 
      
 167 
     | 
    
         
            +
                    dA_cs_ptr += stride_dA_cs_chunk
         
     | 
| 
      
 168 
     | 
    
         
            +
                    out_ptrs += stride_out_chunk
         
     | 
| 
      
 169 
     | 
    
         
            +
             
     | 
| 
      
 170 
     | 
    
         
            +
             
     | 
| 
      
 171 
     | 
    
         
            +
            def _state_passing_fwd(
         
     | 
| 
      
 172 
     | 
    
         
            +
                states,
         
     | 
| 
      
 173 
     | 
    
         
            +
                dA_cumsum,
         
     | 
| 
      
 174 
     | 
    
         
            +
                initial_states=None,
         
     | 
| 
      
 175 
     | 
    
         
            +
                seq_idx=None,
         
     | 
| 
      
 176 
     | 
    
         
            +
                chunk_size=None,
         
     | 
| 
      
 177 
     | 
    
         
            +
                out_dtype=None,
         
     | 
| 
      
 178 
     | 
    
         
            +
                is_cont_batched=False,
         
     | 
| 
      
 179 
     | 
    
         
            +
                chunk_offsets=None,
         
     | 
| 
      
 180 
     | 
    
         
            +
            ):
         
     | 
| 
      
 181 
     | 
    
         
            +
                batch, nchunks, nheads, dim = states.shape
         
     | 
| 
      
 182 
     | 
    
         
            +
                if chunk_size is None:
         
     | 
| 
      
 183 
     | 
    
         
            +
                    chunk_size = dA_cumsum.shape[-1]
         
     | 
| 
      
 184 
     | 
    
         
            +
                else:
         
     | 
| 
      
 185 
     | 
    
         
            +
                    assert chunk_size == dA_cumsum.shape[-1]
         
     | 
| 
      
 186 
     | 
    
         
            +
                assert dA_cumsum.shape == (batch, nheads, nchunks, chunk_size)
         
     | 
| 
      
 187 
     | 
    
         
            +
                if initial_states is not None:
         
     | 
| 
      
 188 
     | 
    
         
            +
                    if is_cont_batched:
         
     | 
| 
      
 189 
     | 
    
         
            +
                        # - if cu_seqlens is provided, then the initial states
         
     | 
| 
      
 190 
     | 
    
         
            +
                        #   are used for continuous batching. In which case we
         
     | 
| 
      
 191 
     | 
    
         
            +
                        #   require seq_idx to be provided
         
     | 
| 
      
 192 
     | 
    
         
            +
                        assert (
         
     | 
| 
      
 193 
     | 
    
         
            +
                            seq_idx is not None
         
     | 
| 
      
 194 
     | 
    
         
            +
                        ), "seq_idx must be provided for continuous batching"
         
     | 
| 
      
 195 
     | 
    
         
            +
                        # - we also need chunk_offsets to be provided, to account
         
     | 
| 
      
 196 
     | 
    
         
            +
                        #   for computation of dA_cumsum from the start of the
         
     | 
| 
      
 197 
     | 
    
         
            +
                        #   sequence
         
     | 
| 
      
 198 
     | 
    
         
            +
                        assert (
         
     | 
| 
      
 199 
     | 
    
         
            +
                            chunk_offsets is not None
         
     | 
| 
      
 200 
     | 
    
         
            +
                        ), "chunk_offsets must be provided for continuous batching"
         
     | 
| 
      
 201 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 202 
     | 
    
         
            +
                        # - this is the regular batching case, where initial
         
     | 
| 
      
 203 
     | 
    
         
            +
                        #   states are used are for each example of the batch.
         
     | 
| 
      
 204 
     | 
    
         
            +
                        assert initial_states.shape == (batch, nheads, dim)
         
     | 
| 
      
 205 
     | 
    
         
            +
             
     | 
| 
      
 206 
     | 
    
         
            +
                if seq_idx is not None:
         
     | 
| 
      
 207 
     | 
    
         
            +
                    seqlen = seq_idx.shape[-1]
         
     | 
| 
      
 208 
     | 
    
         
            +
                    assert seq_idx.shape == (batch, seqlen)
         
     | 
| 
      
 209 
     | 
    
         
            +
                out_dtype = states.dtype if out_dtype is None else out_dtype
         
     | 
| 
      
 210 
     | 
    
         
            +
                out = torch.empty(
         
     | 
| 
      
 211 
     | 
    
         
            +
                    (batch, nchunks, nheads, dim), device=states.device, dtype=out_dtype
         
     | 
| 
      
 212 
     | 
    
         
            +
                )
         
     | 
| 
      
 213 
     | 
    
         
            +
                final_states = torch.empty(
         
     | 
| 
      
 214 
     | 
    
         
            +
                    (batch, nheads, dim), device=states.device, dtype=torch.float32
         
     | 
| 
      
 215 
     | 
    
         
            +
                )
         
     | 
| 
      
 216 
     | 
    
         
            +
                grid = lambda META: (triton.cdiv(dim, META["BLOCK_SIZE"]), batch, nheads)
         
     | 
| 
      
 217 
     | 
    
         
            +
                with torch.cuda.device(states.device.index):
         
     | 
| 
      
 218 
     | 
    
         
            +
                    _state_passing_fwd_kernel[grid](
         
     | 
| 
      
 219 
     | 
    
         
            +
                        states,
         
     | 
| 
      
 220 
     | 
    
         
            +
                        out,
         
     | 
| 
      
 221 
     | 
    
         
            +
                        final_states,
         
     | 
| 
      
 222 
     | 
    
         
            +
                        dA_cumsum,
         
     | 
| 
      
 223 
     | 
    
         
            +
                        initial_states,
         
     | 
| 
      
 224 
     | 
    
         
            +
                        seq_idx,
         
     | 
| 
      
 225 
     | 
    
         
            +
                        chunk_offsets,
         
     | 
| 
      
 226 
     | 
    
         
            +
                        len(chunk_offsets) if chunk_offsets is not None else 0,
         
     | 
| 
      
 227 
     | 
    
         
            +
                        dim,
         
     | 
| 
      
 228 
     | 
    
         
            +
                        nchunks,
         
     | 
| 
      
 229 
     | 
    
         
            +
                        seqlen if seq_idx is not None else 0,
         
     | 
| 
      
 230 
     | 
    
         
            +
                        chunk_size,
         
     | 
| 
      
 231 
     | 
    
         
            +
                        states.stride(0),
         
     | 
| 
      
 232 
     | 
    
         
            +
                        states.stride(1),
         
     | 
| 
      
 233 
     | 
    
         
            +
                        states.stride(2),
         
     | 
| 
      
 234 
     | 
    
         
            +
                        states.stride(3),
         
     | 
| 
      
 235 
     | 
    
         
            +
                        out.stride(0),
         
     | 
| 
      
 236 
     | 
    
         
            +
                        out.stride(1),
         
     | 
| 
      
 237 
     | 
    
         
            +
                        out.stride(2),
         
     | 
| 
      
 238 
     | 
    
         
            +
                        out.stride(3),
         
     | 
| 
      
 239 
     | 
    
         
            +
                        final_states.stride(0),
         
     | 
| 
      
 240 
     | 
    
         
            +
                        final_states.stride(1),
         
     | 
| 
      
 241 
     | 
    
         
            +
                        final_states.stride(2),
         
     | 
| 
      
 242 
     | 
    
         
            +
                        dA_cumsum.stride(0),
         
     | 
| 
      
 243 
     | 
    
         
            +
                        dA_cumsum.stride(2),
         
     | 
| 
      
 244 
     | 
    
         
            +
                        dA_cumsum.stride(1),
         
     | 
| 
      
 245 
     | 
    
         
            +
                        dA_cumsum.stride(3),
         
     | 
| 
      
 246 
     | 
    
         
            +
                        *(
         
     | 
| 
      
 247 
     | 
    
         
            +
                            (
         
     | 
| 
      
 248 
     | 
    
         
            +
                                initial_states.stride(0),
         
     | 
| 
      
 249 
     | 
    
         
            +
                                initial_states.stride(1),
         
     | 
| 
      
 250 
     | 
    
         
            +
                                initial_states.stride(2),
         
     | 
| 
      
 251 
     | 
    
         
            +
                            )
         
     | 
| 
      
 252 
     | 
    
         
            +
                            if initial_states is not None
         
     | 
| 
      
 253 
     | 
    
         
            +
                            else (0, 0, 0)
         
     | 
| 
      
 254 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 255 
     | 
    
         
            +
                        *(
         
     | 
| 
      
 256 
     | 
    
         
            +
                            (seq_idx.stride(0), seq_idx.stride(1))
         
     | 
| 
      
 257 
     | 
    
         
            +
                            if seq_idx is not None
         
     | 
| 
      
 258 
     | 
    
         
            +
                            else (0, 0)
         
     | 
| 
      
 259 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 260 
     | 
    
         
            +
                        HAS_INITSTATES=initial_states is not None,
         
     | 
| 
      
 261 
     | 
    
         
            +
                        HAS_SEQ_IDX=seq_idx is not None,
         
     | 
| 
      
 262 
     | 
    
         
            +
                        IS_CONT_BATCHED=is_cont_batched,
         
     | 
| 
      
 263 
     | 
    
         
            +
                    )
         
     | 
| 
      
 264 
     | 
    
         
            +
                return out, final_states
         
     |