teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +1935 -1640
- teradataml/__init__.py +70 -60
- teradataml/_version.py +11 -11
- teradataml/analytics/Transformations.py +2995 -2995
- teradataml/analytics/__init__.py +81 -83
- teradataml/analytics/analytic_function_executor.py +2040 -2010
- teradataml/analytics/analytic_query_generator.py +958 -958
- teradataml/analytics/byom/H2OPredict.py +514 -514
- teradataml/analytics/byom/PMMLPredict.py +437 -437
- teradataml/analytics/byom/__init__.py +14 -14
- teradataml/analytics/json_parser/__init__.py +130 -130
- teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
- teradataml/analytics/json_parser/json_store.py +191 -191
- teradataml/analytics/json_parser/metadata.py +1637 -1637
- teradataml/analytics/json_parser/utils.py +798 -803
- teradataml/analytics/meta_class.py +196 -196
- teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
- teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
- teradataml/analytics/sqle/__init__.py +97 -110
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
- teradataml/analytics/table_operator/__init__.py +10 -10
- teradataml/analytics/uaf/__init__.py +63 -63
- teradataml/analytics/utils.py +693 -692
- teradataml/analytics/valib.py +1603 -1600
- teradataml/automl/__init__.py +1683 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +1011 -0
- teradataml/automl/data_transformation.py +789 -0
- teradataml/automl/feature_engineering.py +1580 -0
- teradataml/automl/feature_exploration.py +554 -0
- teradataml/automl/model_evaluation.py +151 -0
- teradataml/automl/model_training.py +1026 -0
- teradataml/catalog/__init__.py +1 -3
- teradataml/catalog/byom.py +1759 -1716
- teradataml/catalog/function_argument_mapper.py +859 -861
- teradataml/catalog/model_cataloging_utils.py +491 -1510
- teradataml/clients/auth_client.py +133 -0
- teradataml/clients/pkce_client.py +481 -481
- teradataml/common/aed_utils.py +7 -2
- teradataml/common/bulk_exposed_utils.py +111 -111
- teradataml/common/constants.py +1438 -1441
- teradataml/common/deprecations.py +160 -0
- teradataml/common/exceptions.py +73 -73
- teradataml/common/formula.py +742 -742
- teradataml/common/garbagecollector.py +597 -635
- teradataml/common/messagecodes.py +424 -431
- teradataml/common/messages.py +228 -231
- teradataml/common/sqlbundle.py +693 -693
- teradataml/common/td_coltype_code_to_tdtype.py +48 -48
- teradataml/common/utils.py +2424 -2500
- teradataml/common/warnings.py +25 -25
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/config/dummy_file1.cfg +4 -4
- teradataml/config/dummy_file2.cfg +2 -2
- teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
- teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
- teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
- teradataml/context/aed_context.py +217 -217
- teradataml/context/context.py +1091 -999
- teradataml/data/A_loan.csv +19 -19
- teradataml/data/BINARY_REALS_LEFT.csv +11 -11
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
- teradataml/data/B_loan.csv +49 -49
- teradataml/data/BuoyData2.csv +17 -17
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
- teradataml/data/Convolve2RealsLeft.csv +5 -5
- teradataml/data/Convolve2RealsRight.csv +5 -5
- teradataml/data/Convolve2ValidLeft.csv +11 -11
- teradataml/data/Convolve2ValidRight.csv +11 -11
- teradataml/data/DFFTConv_Real_8_8.csv +65 -65
- teradataml/data/Orders1_12mf.csv +24 -24
- teradataml/data/Pi_loan.csv +7 -7
- teradataml/data/SMOOTHED_DATA.csv +7 -7
- teradataml/data/TestDFFT8.csv +9 -9
- teradataml/data/TestRiver.csv +109 -109
- teradataml/data/Traindata.csv +28 -28
- teradataml/data/acf.csv +17 -17
- teradataml/data/adaboost_example.json +34 -34
- teradataml/data/adaboostpredict_example.json +24 -24
- teradataml/data/additional_table.csv +10 -10
- teradataml/data/admissions_test.csv +21 -21
- teradataml/data/admissions_train.csv +41 -41
- teradataml/data/admissions_train_nulls.csv +41 -41
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -13
- teradataml/data/ageandpressure.csv +31 -31
- teradataml/data/antiselect_example.json +36 -36
- teradataml/data/antiselect_input.csv +8 -8
- teradataml/data/antiselect_input_mixed_case.csv +8 -8
- teradataml/data/applicant_external.csv +6 -6
- teradataml/data/applicant_reference.csv +6 -6
- teradataml/data/arima_example.json +9 -9
- teradataml/data/assortedtext_input.csv +8 -8
- teradataml/data/attribution_example.json +33 -33
- teradataml/data/attribution_sample_table.csv +27 -27
- teradataml/data/attribution_sample_table1.csv +6 -6
- teradataml/data/attribution_sample_table2.csv +11 -11
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +42 -42
- teradataml/data/bank_web_clicks2.csv +91 -91
- teradataml/data/bank_web_url.csv +85 -85
- teradataml/data/barrier.csv +2 -2
- teradataml/data/barrier_new.csv +3 -3
- teradataml/data/betweenness_example.json +13 -13
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -8
- teradataml/data/bin_fit_ip.csv +3 -3
- teradataml/data/binary_complex_left.csv +11 -11
- teradataml/data/binary_complex_right.csv +11 -11
- teradataml/data/binary_matrix_complex_left.csv +21 -21
- teradataml/data/binary_matrix_complex_right.csv +21 -21
- teradataml/data/binary_matrix_real_left.csv +21 -21
- teradataml/data/binary_matrix_real_right.csv +21 -21
- teradataml/data/blood2ageandweight.csv +26 -26
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -507
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -11
- teradataml/data/burst_data.csv +5 -5
- teradataml/data/burst_example.json +20 -20
- teradataml/data/byom_example.json +17 -17
- teradataml/data/bytes_table.csv +3 -3
- teradataml/data/cal_housing_ex_raw.csv +70 -70
- teradataml/data/callers.csv +7 -7
- teradataml/data/calls.csv +10 -10
- teradataml/data/cars_hist.csv +33 -33
- teradataml/data/cat_table.csv +24 -24
- teradataml/data/ccm_example.json +31 -31
- teradataml/data/ccm_input.csv +91 -91
- teradataml/data/ccm_input2.csv +13 -13
- teradataml/data/ccmexample.csv +101 -101
- teradataml/data/ccmprepare_example.json +8 -8
- teradataml/data/ccmprepare_input.csv +91 -91
- teradataml/data/cfilter_example.json +12 -12
- teradataml/data/changepointdetection_example.json +18 -18
- teradataml/data/changepointdetectionrt_example.json +8 -8
- teradataml/data/chi_sq.csv +2 -2
- teradataml/data/churn_data.csv +14 -14
- teradataml/data/churn_emission.csv +35 -35
- teradataml/data/churn_initial.csv +3 -3
- teradataml/data/churn_state_transition.csv +5 -5
- teradataml/data/citedges_2.csv +745 -745
- teradataml/data/citvertices_2.csv +1210 -1210
- teradataml/data/clicks2.csv +16 -16
- teradataml/data/clickstream.csv +12 -12
- teradataml/data/clickstream1.csv +11 -11
- teradataml/data/closeness_example.json +15 -15
- teradataml/data/complaints.csv +21 -21
- teradataml/data/complaints_mini.csv +3 -3
- teradataml/data/complaints_testtoken.csv +224 -224
- teradataml/data/complaints_tokens_test.csv +353 -353
- teradataml/data/complaints_traintoken.csv +472 -472
- teradataml/data/computers_category.csv +1001 -1001
- teradataml/data/computers_test1.csv +1252 -1252
- teradataml/data/computers_train1.csv +5009 -5009
- teradataml/data/computers_train1_clustered.csv +5009 -5009
- teradataml/data/confusionmatrix_example.json +9 -9
- teradataml/data/conversion_event_table.csv +3 -3
- teradataml/data/corr_input.csv +17 -17
- teradataml/data/correlation_example.json +11 -11
- teradataml/data/coxhazardratio_example.json +39 -39
- teradataml/data/coxph_example.json +15 -15
- teradataml/data/coxsurvival_example.json +28 -28
- teradataml/data/cpt.csv +41 -41
- teradataml/data/credit_ex_merged.csv +45 -45
- teradataml/data/customer_loyalty.csv +301 -301
- teradataml/data/customer_loyalty_newseq.csv +31 -31
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +146 -146
- teradataml/data/decisionforest_example.json +37 -37
- teradataml/data/decisionforestpredict_example.json +38 -38
- teradataml/data/decisiontree_example.json +21 -21
- teradataml/data/decisiontreepredict_example.json +45 -45
- teradataml/data/dfft2_size4_real.csv +17 -17
- teradataml/data/dfft2_test_matrix16.csv +17 -17
- teradataml/data/dfft2conv_real_4_4.csv +65 -65
- teradataml/data/diabetes.csv +443 -443
- teradataml/data/diabetes_test.csv +89 -89
- teradataml/data/dict_table.csv +5 -5
- teradataml/data/docperterm_table.csv +4 -4
- teradataml/data/docs/__init__.py +1 -1
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
- teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
- teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
- teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
- teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
- teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
- teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
- teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
- teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
- teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
- teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
- teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
- teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
- teradataml/data/dtw_example.json +17 -17
- teradataml/data/dtw_t1.csv +11 -11
- teradataml/data/dtw_t2.csv +4 -4
- teradataml/data/dwt2d_example.json +15 -15
- teradataml/data/dwt_example.json +14 -14
- teradataml/data/dwt_filter_dim.csv +5 -5
- teradataml/data/emission.csv +9 -9
- teradataml/data/emp_table_by_dept.csv +19 -19
- teradataml/data/employee_info.csv +4 -4
- teradataml/data/employee_table.csv +6 -6
- teradataml/data/excluding_event_table.csv +2 -2
- teradataml/data/finance_data.csv +6 -6
- teradataml/data/finance_data2.csv +61 -61
- teradataml/data/finance_data3.csv +93 -93
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -26
- teradataml/data/fmeasure_example.json +11 -11
- teradataml/data/followers_leaders.csv +10 -10
- teradataml/data/fpgrowth_example.json +12 -12
- teradataml/data/frequentpaths_example.json +29 -29
- teradataml/data/friends.csv +9 -9
- teradataml/data/fs_input.csv +33 -33
- teradataml/data/fs_input1.csv +33 -33
- teradataml/data/genData.csv +513 -513
- teradataml/data/geodataframe_example.json +39 -39
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -12
- teradataml/data/glm_example.json +56 -29
- teradataml/data/glml1l2_example.json +28 -28
- teradataml/data/glml1l2predict_example.json +54 -54
- teradataml/data/glmpredict_example.json +54 -54
- teradataml/data/gq_t1.csv +21 -21
- teradataml/data/hconvolve_complex_right.csv +5 -5
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
- teradataml/data/histogram_example.json +11 -11
- teradataml/data/hmmdecoder_example.json +78 -78
- teradataml/data/hmmevaluator_example.json +24 -24
- teradataml/data/hmmsupervised_example.json +10 -10
- teradataml/data/hmmunsupervised_example.json +7 -7
- teradataml/data/house_values.csv +12 -12
- teradataml/data/house_values2.csv +13 -13
- teradataml/data/housing_cat.csv +7 -7
- teradataml/data/housing_data.csv +9 -9
- teradataml/data/housing_test.csv +47 -47
- teradataml/data/housing_test_binary.csv +47 -47
- teradataml/data/housing_train.csv +493 -493
- teradataml/data/housing_train_attribute.csv +4 -4
- teradataml/data/housing_train_binary.csv +437 -437
- teradataml/data/housing_train_parameter.csv +2 -2
- teradataml/data/housing_train_response.csv +493 -493
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -370
- teradataml/data/ibm_stock1.csv +370 -370
- teradataml/data/identitymatch_example.json +21 -21
- teradataml/data/idf_table.csv +4 -4
- teradataml/data/impressions.csv +101 -101
- teradataml/data/inflation.csv +21 -21
- teradataml/data/initial.csv +3 -3
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +12 -12
- teradataml/data/insurance.csv +1339 -1339
- teradataml/data/interpolator_example.json +12 -12
- teradataml/data/iris_altinput.csv +481 -481
- teradataml/data/iris_attribute_output.csv +8 -8
- teradataml/data/iris_attribute_test.csv +121 -121
- teradataml/data/iris_attribute_train.csv +481 -481
- teradataml/data/iris_category_expect_predict.csv +31 -31
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -151
- teradataml/data/iris_response_train.csv +121 -121
- teradataml/data/iris_test.csv +31 -31
- teradataml/data/iris_train.csv +121 -121
- teradataml/data/join_table1.csv +4 -4
- teradataml/data/join_table2.csv +4 -4
- teradataml/data/jsons/anly_function_name.json +6 -6
- teradataml/data/jsons/byom/dataikupredict.json +147 -147
- teradataml/data/jsons/byom/datarobotpredict.json +146 -146
- teradataml/data/jsons/byom/h2opredict.json +194 -194
- teradataml/data/jsons/byom/onnxpredict.json +186 -186
- teradataml/data/jsons/byom/pmmlpredict.json +146 -146
- teradataml/data/jsons/paired_functions.json +435 -435
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
- teradataml/data/kmeans_example.json +22 -17
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +0 -0
- teradataml/data/knn_example.json +18 -18
- teradataml/data/knnrecommender_example.json +6 -6
- teradataml/data/knnrecommenderpredict_example.json +12 -12
- teradataml/data/lar_example.json +17 -17
- teradataml/data/larpredict_example.json +30 -30
- teradataml/data/lc_new_predictors.csv +5 -5
- teradataml/data/lc_new_reference.csv +9 -9
- teradataml/data/lda_example.json +8 -8
- teradataml/data/ldainference_example.json +14 -14
- teradataml/data/ldatopicsummary_example.json +8 -8
- teradataml/data/levendist_input.csv +13 -13
- teradataml/data/levenshteindistance_example.json +10 -10
- teradataml/data/linreg_example.json +9 -9
- teradataml/data/load_example_data.py +326 -323
- teradataml/data/loan_prediction.csv +295 -295
- teradataml/data/lungcancer.csv +138 -138
- teradataml/data/mappingdata.csv +12 -12
- teradataml/data/milk_timeseries.csv +157 -157
- teradataml/data/min_max_titanic.csv +4 -4
- teradataml/data/minhash_example.json +6 -6
- teradataml/data/ml_ratings.csv +7547 -7547
- teradataml/data/ml_ratings_10.csv +2445 -2445
- teradataml/data/model1_table.csv +5 -5
- teradataml/data/model2_table.csv +5 -5
- teradataml/data/models/iris_db_glm_model.pmml +56 -56
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
- teradataml/data/modularity_example.json +12 -12
- teradataml/data/movavg_example.json +7 -7
- teradataml/data/mtx1.csv +7 -7
- teradataml/data/mtx2.csv +13 -13
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -9
- teradataml/data/naivebayes_example.json +9 -9
- teradataml/data/naivebayespredict_example.json +19 -19
- teradataml/data/naivebayestextclassifier2_example.json +6 -6
- teradataml/data/naivebayestextclassifier_example.json +8 -8
- teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
- teradataml/data/name_Find_configure.csv +10 -10
- teradataml/data/namedentityfinder_example.json +14 -14
- teradataml/data/namedentityfinderevaluator_example.json +10 -10
- teradataml/data/namedentityfindertrainer_example.json +6 -6
- teradataml/data/nb_iris_input_test.csv +31 -31
- teradataml/data/nb_iris_input_train.csv +121 -121
- teradataml/data/nbp_iris_model.csv +13 -13
- teradataml/data/ner_extractor_text.csv +2 -2
- teradataml/data/ner_sports_test2.csv +29 -29
- teradataml/data/ner_sports_train.csv +501 -501
- teradataml/data/nerevaluator_example.json +5 -5
- teradataml/data/nerextractor_example.json +18 -18
- teradataml/data/nermem_sports_test.csv +17 -17
- teradataml/data/nermem_sports_train.csv +50 -50
- teradataml/data/nertrainer_example.json +6 -6
- teradataml/data/ngrams_example.json +6 -6
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
- teradataml/data/npath_example.json +23 -23
- teradataml/data/ntree_example.json +14 -14
- teradataml/data/numeric_strings.csv +4 -4
- teradataml/data/numerics.csv +4 -4
- teradataml/data/ocean_buoy.csv +17 -17
- teradataml/data/ocean_buoy2.csv +17 -17
- teradataml/data/ocean_buoys.csv +27 -27
- teradataml/data/ocean_buoys2.csv +10 -10
- teradataml/data/ocean_buoys_nonpti.csv +28 -28
- teradataml/data/ocean_buoys_seq.csv +29 -29
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -4
- teradataml/data/orders1.csv +11 -11
- teradataml/data/orders1_12.csv +12 -12
- teradataml/data/orders_ex.csv +4 -4
- teradataml/data/pack_example.json +8 -8
- teradataml/data/package_tracking.csv +19 -19
- teradataml/data/package_tracking_pti.csv +18 -18
- teradataml/data/pagerank_example.json +13 -13
- teradataml/data/paragraphs_input.csv +6 -6
- teradataml/data/pathanalyzer_example.json +7 -7
- teradataml/data/pathgenerator_example.json +7 -7
- teradataml/data/phrases.csv +7 -7
- teradataml/data/pivot_example.json +8 -8
- teradataml/data/pivot_input.csv +22 -22
- teradataml/data/playerRating.csv +31 -31
- teradataml/data/postagger_example.json +6 -6
- teradataml/data/posttagger_output.csv +44 -44
- teradataml/data/production_data.csv +16 -16
- teradataml/data/production_data2.csv +7 -7
- teradataml/data/randomsample_example.json +31 -31
- teradataml/data/randomwalksample_example.json +8 -8
- teradataml/data/rank_table.csv +6 -6
- teradataml/data/ref_mobile_data.csv +4 -4
- teradataml/data/ref_mobile_data_dense.csv +2 -2
- teradataml/data/ref_url.csv +17 -17
- teradataml/data/restaurant_reviews.csv +7 -7
- teradataml/data/river_data.csv +145 -145
- teradataml/data/roc_example.json +7 -7
- teradataml/data/roc_input.csv +101 -101
- teradataml/data/rule_inputs.csv +6 -6
- teradataml/data/rule_table.csv +2 -2
- teradataml/data/sales.csv +7 -7
- teradataml/data/sales_transaction.csv +501 -501
- teradataml/data/salesdata.csv +342 -342
- teradataml/data/sample_cities.csv +2 -2
- teradataml/data/sample_shapes.csv +10 -10
- teradataml/data/sample_streets.csv +2 -2
- teradataml/data/sampling_example.json +15 -15
- teradataml/data/sax_example.json +8 -8
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -23
- teradataml/data/scale_housing.csv +11 -11
- teradataml/data/scale_housing_test.csv +6 -6
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -11
- teradataml/data/scalebypartition_example.json +13 -13
- teradataml/data/scalemap_example.json +13 -13
- teradataml/data/scalesummary_example.json +12 -12
- teradataml/data/score_category.csv +101 -101
- teradataml/data/score_summary.csv +4 -4
- teradataml/data/script_example.json +9 -9
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +15 -15
- teradataml/data/scripts/mapper_replace.py +15 -15
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
- teradataml/data/seeds.csv +10 -10
- teradataml/data/sentenceextractor_example.json +6 -6
- teradataml/data/sentiment_extract_input.csv +11 -11
- teradataml/data/sentiment_train.csv +16 -16
- teradataml/data/sentiment_word.csv +20 -20
- teradataml/data/sentiment_word_input.csv +19 -19
- teradataml/data/sentimentextractor_example.json +24 -24
- teradataml/data/sentimenttrainer_example.json +8 -8
- teradataml/data/sequence_table.csv +10 -10
- teradataml/data/seriessplitter_example.json +7 -7
- teradataml/data/sessionize_example.json +17 -17
- teradataml/data/sessionize_table.csv +116 -116
- teradataml/data/setop_test1.csv +24 -24
- teradataml/data/setop_test2.csv +22 -22
- teradataml/data/soc_nw_edges.csv +10 -10
- teradataml/data/soc_nw_vertices.csv +7 -7
- teradataml/data/souvenir_timeseries.csv +167 -167
- teradataml/data/sparse_iris_attribute.csv +5 -5
- teradataml/data/sparse_iris_test.csv +121 -121
- teradataml/data/sparse_iris_train.csv +601 -601
- teradataml/data/star1.csv +6 -6
- teradataml/data/state_transition.csv +5 -5
- teradataml/data/stock_data.csv +53 -53
- teradataml/data/stock_movement.csv +11 -11
- teradataml/data/stock_vol.csv +76 -76
- teradataml/data/stop_words.csv +8 -8
- teradataml/data/store_sales.csv +37 -37
- teradataml/data/stringsimilarity_example.json +7 -7
- teradataml/data/strsimilarity_input.csv +13 -13
- teradataml/data/students.csv +101 -101
- teradataml/data/svm_iris_input_test.csv +121 -121
- teradataml/data/svm_iris_input_train.csv +481 -481
- teradataml/data/svm_iris_model.csv +7 -7
- teradataml/data/svmdense_example.json +9 -9
- teradataml/data/svmdensepredict_example.json +18 -18
- teradataml/data/svmsparse_example.json +7 -7
- teradataml/data/svmsparsepredict_example.json +13 -13
- teradataml/data/svmsparsesummary_example.json +7 -7
- teradataml/data/target_mobile_data.csv +13 -13
- teradataml/data/target_mobile_data_dense.csv +5 -5
- teradataml/data/templatedata.csv +1201 -1201
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +150 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -53
- teradataml/data/test_pacf_12.csv +37 -37
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -109
- teradataml/data/text_inputs.csv +6 -6
- teradataml/data/textchunker_example.json +7 -7
- teradataml/data/textclassifier_example.json +6 -6
- teradataml/data/textclassifier_input.csv +7 -7
- teradataml/data/textclassifiertrainer_example.json +6 -6
- teradataml/data/textmorph_example.json +5 -5
- teradataml/data/textparser_example.json +15 -15
- teradataml/data/texttagger_example.json +11 -11
- teradataml/data/texttokenizer_example.json +6 -6
- teradataml/data/texttrainer_input.csv +11 -11
- teradataml/data/tf_example.json +6 -6
- teradataml/data/tfidf_example.json +13 -13
- teradataml/data/tfidf_input1.csv +201 -201
- teradataml/data/tfidf_train.csv +6 -6
- teradataml/data/time_table1.csv +535 -535
- teradataml/data/time_table2.csv +14 -14
- teradataml/data/timeseriesdata.csv +1601 -1601
- teradataml/data/timeseriesdatasetsd4.csv +105 -105
- teradataml/data/titanic.csv +892 -892
- teradataml/data/token_table.csv +696 -696
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +27 -27
- teradataml/data/transformation_table.csv +5 -5
- teradataml/data/transformation_table_new.csv +1 -1
- teradataml/data/tv_spots.csv +16 -16
- teradataml/data/twod_climate_data.csv +117 -117
- teradataml/data/uaf_example.json +475 -475
- teradataml/data/univariatestatistics_example.json +8 -8
- teradataml/data/unpack_example.json +9 -9
- teradataml/data/unpivot_example.json +9 -9
- teradataml/data/unpivot_input.csv +8 -8
- teradataml/data/us_air_pass.csv +36 -36
- teradataml/data/us_population.csv +624 -624
- teradataml/data/us_states_shapes.csv +52 -52
- teradataml/data/varmax_example.json +17 -17
- teradataml/data/vectordistance_example.json +25 -25
- teradataml/data/ville_climatedata.csv +121 -121
- teradataml/data/ville_tempdata.csv +12 -12
- teradataml/data/ville_tempdata1.csv +12 -12
- teradataml/data/ville_temperature.csv +11 -11
- teradataml/data/waveletTable.csv +1605 -1605
- teradataml/data/waveletTable2.csv +1605 -1605
- teradataml/data/weightedmovavg_example.json +8 -8
- teradataml/data/wft_testing.csv +5 -5
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +5 -5
- teradataml/data/word_embed_input_table2.csv +4 -4
- teradataml/data/word_embed_model.csv +22 -22
- teradataml/data/words_input.csv +13 -13
- teradataml/data/xconvolve_complex_left.csv +6 -6
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
- teradataml/data/xgboost_example.json +35 -35
- teradataml/data/xgboostpredict_example.json +31 -31
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +1769 -1698
- teradataml/dataframe/data_transfer.py +2812 -2745
- teradataml/dataframe/dataframe.py +17630 -16946
- teradataml/dataframe/dataframe_utils.py +1875 -1740
- teradataml/dataframe/fastload.py +794 -603
- teradataml/dataframe/indexer.py +424 -424
- teradataml/dataframe/setop.py +1179 -1166
- teradataml/dataframe/sql.py +10174 -6432
- teradataml/dataframe/sql_function_parameters.py +439 -388
- teradataml/dataframe/sql_functions.py +652 -652
- teradataml/dataframe/sql_interfaces.py +220 -220
- teradataml/dataframe/vantage_function_types.py +674 -630
- teradataml/dataframe/window.py +693 -692
- teradataml/dbutils/__init__.py +3 -3
- teradataml/dbutils/dbutils.py +1167 -1150
- teradataml/dbutils/filemgr.py +267 -267
- teradataml/gen_ai/__init__.py +2 -2
- teradataml/gen_ai/convAI.py +472 -472
- teradataml/geospatial/__init__.py +3 -3
- teradataml/geospatial/geodataframe.py +1105 -1094
- teradataml/geospatial/geodataframecolumn.py +392 -387
- teradataml/geospatial/geometry_types.py +925 -925
- teradataml/hyperparameter_tuner/__init__.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
- teradataml/hyperparameter_tuner/utils.py +281 -187
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +130 -124
- teradataml/options/configure.py +358 -336
- teradataml/options/display.py +176 -176
- teradataml/plot/__init__.py +2 -2
- teradataml/plot/axis.py +1388 -1388
- teradataml/plot/constants.py +15 -15
- teradataml/plot/figure.py +398 -398
- teradataml/plot/plot.py +760 -760
- teradataml/plot/query_generator.py +83 -83
- teradataml/plot/subplot.py +216 -216
- teradataml/scriptmgmt/UserEnv.py +3791 -3761
- teradataml/scriptmgmt/__init__.py +3 -3
- teradataml/scriptmgmt/lls_utils.py +1719 -1604
- teradataml/series/series.py +532 -532
- teradataml/series/series_utils.py +71 -71
- teradataml/table_operators/Apply.py +949 -917
- teradataml/table_operators/Script.py +1718 -1982
- teradataml/table_operators/TableOperator.py +1255 -1616
- teradataml/table_operators/__init__.py +2 -3
- teradataml/table_operators/apply_query_generator.py +262 -262
- teradataml/table_operators/query_generator.py +507 -507
- teradataml/table_operators/table_operator_query_generator.py +460 -460
- teradataml/table_operators/table_operator_util.py +631 -639
- teradataml/table_operators/templates/dataframe_apply.template +184 -184
- teradataml/table_operators/templates/dataframe_map.template +176 -176
- teradataml/table_operators/templates/script_executor.template +170 -170
- teradataml/utils/dtypes.py +684 -684
- teradataml/utils/internal_buffer.py +84 -84
- teradataml/utils/print_versions.py +205 -205
- teradataml/utils/utils.py +410 -410
- teradataml/utils/validators.py +2277 -2115
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
- teradataml-20.0.0.1.dist-info/RECORD +1056 -0
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- teradataml-17.20.0.7.dist-info/RECORD +0 -1280
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
|
@@ -1,89 +1,89 @@
|
|
|
1
|
-
"id","age","sex","bmi","map1","tc","ldl","hdl","tch","ltg","glu","y"
|
|
2
|
-
202,-0.034574862586967,0.0506801187398187,-0.0557853095343297,-0.015999222636143,-0.00982467696941811,-0.00788999512379879,0.0375951860378887,-0.0394933828740919,-0.0529587932392004,0.0279170509033766,39
|
|
3
|
-
17,-0.00551455497881059,-0.044641636506989,0.0422955891888323,0.0494153205448459,0.0245741444856101,-0.0238605666750649,0.0744115640787594,-0.0394933828740919,0.0522799997967812,0.0279170509033766,166
|
|
4
|
-
162,-0.0454724779400257,0.0506801187398187,0.0638518306664503,0.0700725447072635,0.133274420283499,0.131461070372543,-0.0397192078479398,0.108111100629544,0.0757375884575476,0.0859065477110625,217
|
|
5
|
-
99,0.00175052192322852,0.0506801187398187,-0.00512814206192736,-0.0125563519424068,-0.0153284884022226,-0.0138398158977999,0.00814208360519211,-0.0394933828740919,-0.00608024819631442,-0.0673514081378217,92
|
|
6
|
-
78,-0.0963280162542995,-0.044641636506989,-0.0363846922044735,-0.0745280244296595,-0.0387196869916418,-0.0276183482165393,0.0155053592133662,-0.0394933828740919,-0.0740888714915354,-0.00107769750046639,200
|
|
7
|
-
282,-0.0926954778032799,0.0506801187398187,-0.0902752958985185,-0.0573136709609782,-0.0249601584096305,-0.0304366843726451,-0.00658446761115617,-0.00259226199818282,0.024052583226893,0.00306440941436832,94
|
|
8
|
-
345,-0.107225631607358,-0.044641636506989,-0.0115950145052127,-0.0400993174922969,0.0493412959332305,0.0644472995495832,-0.0139477432193303,0.0343088588777263,0.00702686254915195,-0.0300724459043093,200
|
|
9
|
-
362,0.0417084448844436,-0.044641636506989,-0.00728376620968916,0.0287580963824284,-0.0428475455662452,-0.0482861466946485,0.052321737254237,-0.076394503750001,-0.0721284546019561,0.0237749439885419,182
|
|
10
|
-
116,-0.0309423241359475,0.0506801187398187,0.00133873038135806,-0.00567061055493425,0.0644767773734429,0.0494161733836856,-0.0470824834561139,0.108111100629544,0.0837967663655224,0.00306440941436832,229
|
|
11
|
-
179,0.0417084448844436,-0.044641636506989,-0.00836157828357004,-0.0263278347173518,0.0245741444856101,0.0162224364339952,0.0707299262746723,-0.0394933828740919,-0.0483617248028919,-0.0300724459043093,81
|
|
12
|
-
383,0.0489735217864827,-0.044641636506989,0.0606183944448076,-0.0228849640236156,-0.0235842055514294,-0.072711726714232,-0.0434008456520269,-0.00259226199818282,0.104137611358979,0.036201264733046,132
|
|
13
|
-
442,-0.0454724779400257,-0.044641636506989,-0.0730303027164241,-0.081413765817132,0.0837401173882587,0.0278089295202079,0.17381578478911,-0.0394933828740919,-0.00421985970694603,0.00306440941436832,57
|
|
14
|
-
257,-0.0491050163910452,-0.044641636506989,0.160854917315731,-0.0469850588797694,-0.0290880169842339,-0.019789636671801,-0.0470824834561139,0.0343088588777263,0.028016506523264,0.0113486232440377,346
|
|
15
|
-
301,0.0162806757273067,-0.044641636506989,0.0735521393313785,-0.0412469410453994,-0.00432086553661359,-0.0135266674360104,-0.0139477432193303,-0.00111621716314646,0.0428956878925287,0.0444854785627154,275
|
|
16
|
-
135,-0.0745327855481821,-0.044641636506989,0.0433734012627132,-0.0332135761048244,0.0121905687618,0.000251864882729031,0.0633666506664982,-0.0394933828740919,-0.0271286455543265,-0.0466408735636482,103
|
|
17
|
-
440,0.0417084448844436,0.0506801187398187,-0.0159062628007364,0.0172818607481171,-0.0373437341334407,-0.0138398158977999,-0.0249926566315915,-0.0110795197996419,-0.0468794828442166,0.0154907301588724,132
|
|
18
|
-
293,0.00901559882526763,-0.044641636506989,-0.0223731352440218,-0.0320659525517218,-0.0497273098572509,-0.0686407967109681,0.0780932018828464,-0.0708593356186146,-0.0629129499162512,-0.0383566597339788,84
|
|
19
|
-
320,0.0199132141783263,-0.044641636506989,0.00457216660300077,0.0459724498511097,-0.0180803941186249,-0.0545491159304391,0.0633666506664982,-0.0394933828740919,0.0286607203138089,0.0610539062220542,191
|
|
20
|
-
438,0.0417084448844436,0.0506801187398187,0.0196615356373334,0.0597439326260547,-0.00569681839481472,-0.00256647127337676,-0.0286742944356786,-0.00259226199818282,0.0311929907028023,0.00720651632920303,178
|
|
21
|
-
30,0.0671362140415805,0.0506801187398187,-0.00620595413580824,0.063186803319791,-0.0428475455662452,-0.0958847128866574,0.052321737254237,-0.076394503750001,0.0594238004447941,0.0527696923923848,283
|
|
22
|
-
26,-0.067267708646143,0.0506801187398187,-0.0126728265790937,-0.0400993174922969,-0.0153284884022226,0.0046359433477825,-0.0581273968683752,0.0343088588777263,0.0191990330785671,-0.0342145528191441,202
|
|
23
|
-
156,-0.0273097856849279,0.0506801187398187,0.0606183944448076,0.0494153205448459,0.0851160702464598,0.0863676918748504,-0.0029028298070691,0.0343088588777263,0.0378144788263439,0.0486275854775501,186
|
|
24
|
-
190,-0.00188201652779104,-0.044641636506989,-0.0665634302731387,0.00121513083253827,-0.00294491267841247,0.00307020103883484,0.0118237214092792,-0.00259226199818282,-0.0202887477516296,-0.0259303389894746,79
|
|
25
|
-
152,0.00175052192322852,-0.044641636506989,-0.00405032998804645,-0.00567061055493425,-0.00844872411121698,-0.0238605666750649,0.052321737254237,-0.0394933828740919,-0.0089440189577978,-0.0135040182449705,88
|
|
26
|
-
413,0.0744012909436196,-0.044641636506989,0.0854080721440683,0.063186803319791,0.0149424744782022,0.0130909518160999,0.0155053592133662,-0.00259226199818282,0.00620931561650541,0.0859065477110625,261
|
|
27
|
-
13,0.0162806757273067,-0.044641636506989,-0.0288400076873072,-0.00911348124867051,-0.00432086553661359,-0.00976888589453599,0.0449584616460628,-0.0394933828740919,-0.0307512098645563,-0.0424987666488135,179
|
|
28
|
-
310,-0.00914709342983014,0.0506801187398187,0.00133873038135806,-0.00222773986119799,0.0796122588136553,0.0700839718617947,0.0339135482338016,-0.00259226199818282,0.0267142576335128,0.0817644407962278,142
|
|
29
|
-
192,-0.00551455497881059,0.0506801187398187,-0.041773752573878,-0.0435421881860331,-0.0799982727376757,-0.0761563597939169,-0.0323559322397657,-0.0394933828740919,0.0102256424049578,-0.0093619113301358,178
|
|
30
|
-
188,-0.067267708646143,-0.044641636506989,-0.0547074974604488,-0.0263278347173518,-0.0758704141630723,-0.082106180567918,0.0486400994501499,-0.076394503750001,-0.0868289932162924,-0.104630370371334,143
|
|
31
|
-
337,-0.0200447087828888,-0.044641636506989,0.0854080721440683,-0.0366564467985606,0.0919958345374655,0.0894991764927457,-0.0618090346724622,0.145012221505454,0.0809479135112756,0.0527696923923848,306
|
|
32
|
-
167,-0.0563700932930843,0.0506801187398187,-0.0600965578298533,-0.0366564467985606,-0.0882539898868825,-0.0708328359434948,-0.0139477432193303,-0.0394933828740919,-0.0781409106690696,-0.104630370371334,70
|
|
33
|
-
232,0.00901559882526763,-0.044641636506989,-0.030995631835069,0.0218723549949558,0.00806271018719657,0.00870687335104641,0.00446044580110504,-0.00259226199818282,0.00943640914607987,0.0113486232440377,154
|
|
34
|
-
289,0.0707687524926,0.0506801187398187,-0.0169840748746173,0.0218723549949558,0.0438374845004259,0.0563054395430553,0.0375951860378887,-0.00259226199818282,-0.0702093127286876,-0.0176461251598052,80
|
|
35
|
-
171,0.0235457526293458,0.0506801187398187,-0.02021751109626,-0.0366564467985606,-0.0139525355440215,-0.015092409744958,0.0596850128624111,-0.0394933828740919,-0.0964332228917841,-0.0176461251598052,47
|
|
36
|
-
205,0.110726675453815,0.0506801187398187,0.00672779075076256,0.0287580963824284,-0.0277120641260328,-0.00726369820021974,-0.0470824834561139,0.0343088588777263,0.00200784054982379,0.0776223338813931,277
|
|
37
|
-
333,0.030810829531385,-0.044641636506989,0.104808689473925,0.076958286094736,-0.0112006298276192,-0.0113346282034837,-0.0581273968683752,0.0343088588777263,0.0571041874478439,0.036201264733046,270
|
|
38
|
-
3,0.0852989062966783,0.0506801187398187,0.0444512133365941,-0.00567061055493425,-0.0455994512826475,-0.0341944659141195,-0.0323559322397657,-0.00259226199818282,0.00286377051894013,-0.0259303389894746,141
|
|
39
|
-
28,-0.0236772472339084,-0.044641636506989,0.0595405823709267,-0.0400993174922969,-0.0428475455662452,-0.0435889197678055,0.0118237214092792,-0.0394933828740919,-0.0159982677581387,0.0403433716478807,85
|
|
40
|
-
222,-0.0454724779400257,-0.044641636506989,-0.0385403163522353,-0.0263278347173518,-0.0153284884022226,0.000878161806308105,-0.0323559322397657,-0.00259226199818282,0.00114379737951254,-0.0383566597339788,93
|
|
41
|
-
373,-0.0273097856849279,0.0506801187398187,-0.0234509473179027,-0.015999222636143,0.0135665216200011,0.0127778033543103,0.0265502726256275,-0.00259226199818282,-0.0109044358473771,-0.0217882320746399,71
|
|
42
|
-
308,0.0671362140415805,0.0506801187398187,-0.030995631835069,0.00465800152627453,0.0245741444856101,0.0356376410649462,-0.0286742944356786,0.0343088588777263,0.0233748412798208,0.0817644407962278,172
|
|
43
|
-
68,0.0417084448844436,0.0506801187398187,-0.0148284507268555,-0.0171468461892456,-0.00569681839481472,0.00839372488925688,-0.0139477432193303,-0.00185423958066465,-0.0119006848015081,0.00306440941436832,97
|
|
44
|
-
35,0.0162806757273067,-0.044641636506989,-0.063329994051496,-0.0573136709609782,-0.0579830270064577,-0.0489124436182275,0.00814208360519211,-0.0394933828740919,-0.0594726974107223,-0.0673514081378217,65
|
|
45
|
-
100,-0.00188201652779104,-0.044641636506989,-0.0644078061253769,0.0115437429137471,0.0273260502020124,0.0375165318356834,-0.0139477432193303,0.0343088588777263,0.0117839003835759,-0.0549250873933176,83
|
|
46
|
-
163,-0.0527375548420648,-0.044641636506989,0.0304396563761424,-0.0745280244296595,-0.0235842055514294,-0.0113346282034837,-0.0029028298070691,-0.00259226199818282,-0.0307512098645563,-0.00107769750046639,172
|
|
47
|
-
394,-0.0745327855481821,-0.044641636506989,-0.0460850008694016,-0.0435421881860331,-0.0290880169842339,-0.0232342697514859,0.0155053592133662,-0.0394933828740919,-0.0398095943643375,-0.0217882320746399,69
|
|
48
|
-
340,0.0271782910803654,-0.044641636506989,-0.00728376620968916,-0.0504279295735057,0.0754844002390519,0.0566185880048449,0.0339135482338016,-0.00259226199818282,0.0434431722527813,0.0154907301588724,95
|
|
49
|
-
199,-0.0527375548420648,-0.044641636506989,0.0541515220015222,-0.0263278347173518,-0.0552311212900554,-0.03388131745233,-0.0139477432193303,-0.0394933828740919,-0.0740888714915354,-0.0590671943081523,142
|
|
50
|
-
79,0.00538306037424807,-0.044641636506989,-0.0579409336820915,-0.0228849640236156,-0.0676146970138656,-0.0683276482491785,-0.0544457590642881,-0.00259226199818282,0.0428956878925287,-0.0839198357971606,252
|
|
51
|
-
352,-0.0854304009012408,0.0506801187398187,-0.0406959404999971,-0.0332135761048244,-0.0813742255958769,-0.0695802420963367,-0.00658446761115617,-0.0394933828740919,-0.0578000656756125,-0.0424987666488135,71
|
|
52
|
-
277,0.0126481372762872,-0.044641636506989,0.0261284080806188,0.063186803319791,0.125018703134293,0.0916912157252725,0.0633666506664982,-0.00259226199818282,0.0575728562024259,-0.0217882320746399,283
|
|
53
|
-
14,0.00538306037424807,0.0506801187398187,-0.00189470584028465,0.0081008722200108,-0.00432086553661359,-0.0157187066685371,-0.0029028298070691,-0.00259226199818282,0.0383932482116977,-0.0135040182449705,185
|
|
54
|
-
323,0.0235457526293458,0.0506801187398187,0.0616962065186885,0.0620391798699746,0.0245741444856101,-0.0360733566848567,-0.0912621371051588,0.155344535350708,0.133395733837469,0.0817644407962278,242
|
|
55
|
-
66,-0.0454724779400257,0.0506801187398187,-0.0245287593917836,0.0597439326260547,0.00531080447079431,0.0149698425868371,-0.0544457590642881,0.0712099797536354,0.0423448954496075,0.0154907301588724,163
|
|
56
|
-
338,0.0199132141783263,0.0506801187398187,-0.0126728265790937,0.0700725447072635,-0.0112006298276192,0.00714113104209875,-0.0397192078479398,0.0343088588777263,0.00538436996854573,0.00306440941436832,91
|
|
57
|
-
256,0.00175052192322852,-0.044641636506989,-0.0654856181992578,-0.00567061055493425,-0.00707277125301585,-0.0194764882100115,0.0412768238419757,-0.0394933828740919,-0.003303712578677,0.00720651632920303,153
|
|
58
|
-
180,-0.0236772472339084,-0.044641636506989,-0.0159062628007364,-0.0125563519424068,0.0204462859110067,0.0412743133771578,-0.0434008456520269,0.0343088588777263,0.0140724525157685,-0.0093619113301358,151
|
|
59
|
-
64,-0.034574862586967,-0.044641636506989,-0.0374625042783544,-0.0607565416547144,0.0204462859110067,0.0434663526096845,-0.0139477432193303,-0.00259226199818282,-0.0307512098645563,-0.0714935150526564,128
|
|
60
|
-
397,-0.0854304009012408,0.0506801187398187,-0.030995631835069,-0.0228849640236156,-0.0634868384392622,-0.0542359674686496,0.0191869970174533,-0.0394933828740919,-0.0964332228917841,-0.0342145528191441,43
|
|
61
|
-
317,0.0162806757273067,0.0506801187398187,0.0142724752679289,0.00121513083253827,0.00118294589619092,-0.0213553789807487,-0.0323559322397657,0.0343088588777263,0.0749683360277342,0.0403433716478807,220
|
|
62
|
-
98,-0.0273097856849279,-0.044641636506989,0.0886415083657111,-0.0251802111642493,0.0218222387692079,0.0425269072243159,-0.0323559322397657,0.0343088588777263,0.00286377051894013,0.0776223338813931,279
|
|
63
|
-
159,-0.0127796318808497,-0.044641636506989,-0.0654856181992578,-0.0699375301828207,0.00118294589619092,0.0168487333575743,-0.0029028298070691,-0.00702039650329191,-0.0307512098645563,-0.0507829804784829,96
|
|
64
|
-
50,-0.0418399394890061,0.0506801187398187,0.0142724752679289,-0.00567061055493425,-0.0125765826858204,0.00620168565673016,-0.0728539480847234,0.0712099797536354,0.0354619386607697,-0.0135040182449705,142
|
|
65
|
-
334,0.0271782910803654,0.0506801187398187,-0.00620595413580824,0.0287580963824284,-0.0167044412604238,-0.00162702588800815,-0.0581273968683752,0.0343088588777263,0.0293004132685869,0.0320591578182113,164
|
|
66
|
-
218,0.0744012909436196,-0.044641636506989,0.0315174684500233,0.10105838095089,0.0465893902168282,0.0368902349121043,0.0155053592133662,-0.00259226199818282,0.0336568129023847,0.0444854785627154,296
|
|
67
|
-
136,-0.00551455497881059,-0.044641636506989,0.056307146149284,-0.0366564467985606,-0.0483513569990498,-0.0429626228442264,-0.0728539480847234,0.0379989709653172,0.0507815133629732,0.0569117993072195,272
|
|
68
|
-
437,-0.0563700932930843,-0.044641636506989,-0.074108114790305,-0.0504279295735057,-0.0249601584096305,-0.0470335528474903,0.0928197530991947,-0.076394503750001,-0.0611765950943345,-0.0466408735636482,48
|
|
69
|
-
6,-0.0926954778032799,-0.044641636506989,-0.0406959404999971,-0.0194420933298793,-0.0689906498720667,-0.0792878444118122,0.0412768238419757,-0.076394503750001,-0.0411803851880079,-0.0963461565416647,97
|
|
70
|
-
258,-0.0273097856849279,0.0506801187398187,-0.0557853095343297,0.0253152256886921,-0.00707277125301585,-0.0235474182132754,0.052321737254237,-0.0394933828740919,-0.00514530798026311,-0.0507829804784829,63
|
|
71
|
-
197,-0.0236772472339084,-0.044641636506989,-0.0460850008694016,-0.0332135761048244,0.0328298616348169,0.0362639379885253,0.0375951860378887,-0.00259226199818282,-0.0332487872476258,0.0113486232440377,72
|
|
72
|
-
107,-0.0963280162542995,-0.044641636506989,-0.0762637389380668,-0.0435421881860331,-0.0455994512826475,-0.0348207628376986,0.00814208360519211,-0.0394933828740919,-0.0594726974107223,-0.0839198357971606,134
|
|
73
|
-
250,-0.0127796318808497,-0.044641636506989,0.0606183944448076,0.0528581912385822,0.0479653430750293,0.0293746718291555,-0.0176293810234174,0.0343088588777263,0.0702112981933102,0.00720651632920303,215
|
|
74
|
-
296,-0.0527375548420648,0.0506801187398187,0.0390621529671896,-0.0400993174922969,-0.00569681839481472,-0.0129003705124313,0.0118237214092792,-0.0394933828740919,0.0163049527999418,0.00306440941436832,85
|
|
75
|
-
33,0.0344433679824045,0.0506801187398187,0.125287118877662,0.0287580963824284,-0.0538551684318543,-0.0129003705124313,-0.10230705051742,0.108111100629544,0.000271485727907132,0.0279170509033766,341
|
|
76
|
-
330,-0.0127796318808497,0.0506801187398187,-0.0557853095343297,-0.00222773986119799,-0.0277120641260328,-0.029184090525487,0.0191869970174533,-0.0394933828740919,-0.0170521046047435,0.0444854785627154,135
|
|
77
|
-
372,0.0526060602375023,0.0506801187398187,-0.00943939035745095,0.0494153205448459,0.0507172487914316,-0.019163339748222,-0.0139477432193303,0.0343088588777263,0.119343994203787,-0.0176461251598052,197
|
|
78
|
-
8,0.0635036755905609,0.0506801187398187,-0.00189470584028465,0.0666296740135272,0.0906198816792644,0.108914381123697,0.0228686348215404,0.0177033544835672,-0.0358167281015492,0.00306440941436832,63
|
|
79
|
-
174,-0.0636351701951234,0.0506801187398187,-0.0794971751597095,-0.00567061055493425,-0.071742555588469,-0.0664487574784414,-0.0102661054152432,-0.0394933828740919,-0.0181182673078967,-0.0549250873933176,101
|
|
80
|
-
105,-0.0273097856849279,-0.044641636506989,0.0649296427403312,-0.00222773986119799,-0.0249601584096305,-0.0172844489774848,0.0228686348215404,-0.0394933828740919,-0.0611765950943345,-0.063209301222987,95
|
|
81
|
-
84,-0.0382074010379866,-0.044641636506989,0.00996122697240527,-0.0469850588797694,-0.0593589798646588,-0.0529833736214915,-0.0102661054152432,-0.0394933828740919,-0.0159982677581387,-0.0424987666488135,210
|
|
82
|
-
166,-0.0418399394890061,-0.044641636506989,-0.0665634302731387,-0.0469850588797694,-0.0373437341334407,-0.043275771306016,0.0486400994501499,-0.0394933828740919,-0.0561575730950062,-0.0135040182449705,59
|
|
83
|
-
48,-0.0781653239992017,-0.044641636506989,-0.0730303027164241,-0.0573136709609782,-0.0841261313122791,-0.0742774690231797,-0.0249926566315915,-0.0394933828740919,-0.0181182673078967,-0.0839198357971606,142
|
|
84
|
-
307,0.00901559882526763,0.0506801187398187,-0.00189470584028465,0.0218723549949558,-0.0387196869916418,-0.0248000120604336,-0.00658446761115617,-0.0394933828740919,-0.0398095943643375,-0.0135040182449705,44
|
|
85
|
-
349,0.030810829531385,-0.044641636506989,-0.02021751109626,-0.00567061055493425,-0.00432086553661359,-0.0294972389872765,0.0780932018828464,-0.0394933828740919,-0.0109044358473771,-0.00107769750046639,148
|
|
86
|
-
431,-0.00914709342983014,-0.044641636506989,-0.0568631216082106,-0.0504279295735057,0.0218222387692079,0.0453452433804217,-0.0286742944356786,0.0343088588777263,-0.00991895736315477,-0.0176461251598052,183
|
|
87
|
-
353,0.0126481372762872,0.0506801187398187,-0.0719524906425432,-0.0469850588797694,-0.051103262715452,-0.0971373067338155,0.118591217727804,-0.076394503750001,-0.0202887477516296,-0.0383566597339788,77
|
|
88
|
-
246,-0.0273097856849279,-0.044641636506989,-0.0353068801305926,-0.0297707054110881,-0.0566070741482565,-0.058620045933703,0.0302319104297145,-0.0394933828740919,-0.0498684677352306,-0.129483011860342,125
|
|
89
|
-
286,0.0126481372762872,-0.044641636506989,-0.02021751109626,-0.015999222636143,0.0121905687618,0.0212328118226277,-0.0765355858888105,0.108111100629544,0.0598807230654812,-0.0217882320746399,233
|
|
1
|
+
"id","age","sex","bmi","map1","tc","ldl","hdl","tch","ltg","glu","y"
|
|
2
|
+
202,-0.034574862586967,0.0506801187398187,-0.0557853095343297,-0.015999222636143,-0.00982467696941811,-0.00788999512379879,0.0375951860378887,-0.0394933828740919,-0.0529587932392004,0.0279170509033766,39
|
|
3
|
+
17,-0.00551455497881059,-0.044641636506989,0.0422955891888323,0.0494153205448459,0.0245741444856101,-0.0238605666750649,0.0744115640787594,-0.0394933828740919,0.0522799997967812,0.0279170509033766,166
|
|
4
|
+
162,-0.0454724779400257,0.0506801187398187,0.0638518306664503,0.0700725447072635,0.133274420283499,0.131461070372543,-0.0397192078479398,0.108111100629544,0.0757375884575476,0.0859065477110625,217
|
|
5
|
+
99,0.00175052192322852,0.0506801187398187,-0.00512814206192736,-0.0125563519424068,-0.0153284884022226,-0.0138398158977999,0.00814208360519211,-0.0394933828740919,-0.00608024819631442,-0.0673514081378217,92
|
|
6
|
+
78,-0.0963280162542995,-0.044641636506989,-0.0363846922044735,-0.0745280244296595,-0.0387196869916418,-0.0276183482165393,0.0155053592133662,-0.0394933828740919,-0.0740888714915354,-0.00107769750046639,200
|
|
7
|
+
282,-0.0926954778032799,0.0506801187398187,-0.0902752958985185,-0.0573136709609782,-0.0249601584096305,-0.0304366843726451,-0.00658446761115617,-0.00259226199818282,0.024052583226893,0.00306440941436832,94
|
|
8
|
+
345,-0.107225631607358,-0.044641636506989,-0.0115950145052127,-0.0400993174922969,0.0493412959332305,0.0644472995495832,-0.0139477432193303,0.0343088588777263,0.00702686254915195,-0.0300724459043093,200
|
|
9
|
+
362,0.0417084448844436,-0.044641636506989,-0.00728376620968916,0.0287580963824284,-0.0428475455662452,-0.0482861466946485,0.052321737254237,-0.076394503750001,-0.0721284546019561,0.0237749439885419,182
|
|
10
|
+
116,-0.0309423241359475,0.0506801187398187,0.00133873038135806,-0.00567061055493425,0.0644767773734429,0.0494161733836856,-0.0470824834561139,0.108111100629544,0.0837967663655224,0.00306440941436832,229
|
|
11
|
+
179,0.0417084448844436,-0.044641636506989,-0.00836157828357004,-0.0263278347173518,0.0245741444856101,0.0162224364339952,0.0707299262746723,-0.0394933828740919,-0.0483617248028919,-0.0300724459043093,81
|
|
12
|
+
383,0.0489735217864827,-0.044641636506989,0.0606183944448076,-0.0228849640236156,-0.0235842055514294,-0.072711726714232,-0.0434008456520269,-0.00259226199818282,0.104137611358979,0.036201264733046,132
|
|
13
|
+
442,-0.0454724779400257,-0.044641636506989,-0.0730303027164241,-0.081413765817132,0.0837401173882587,0.0278089295202079,0.17381578478911,-0.0394933828740919,-0.00421985970694603,0.00306440941436832,57
|
|
14
|
+
257,-0.0491050163910452,-0.044641636506989,0.160854917315731,-0.0469850588797694,-0.0290880169842339,-0.019789636671801,-0.0470824834561139,0.0343088588777263,0.028016506523264,0.0113486232440377,346
|
|
15
|
+
301,0.0162806757273067,-0.044641636506989,0.0735521393313785,-0.0412469410453994,-0.00432086553661359,-0.0135266674360104,-0.0139477432193303,-0.00111621716314646,0.0428956878925287,0.0444854785627154,275
|
|
16
|
+
135,-0.0745327855481821,-0.044641636506989,0.0433734012627132,-0.0332135761048244,0.0121905687618,0.000251864882729031,0.0633666506664982,-0.0394933828740919,-0.0271286455543265,-0.0466408735636482,103
|
|
17
|
+
440,0.0417084448844436,0.0506801187398187,-0.0159062628007364,0.0172818607481171,-0.0373437341334407,-0.0138398158977999,-0.0249926566315915,-0.0110795197996419,-0.0468794828442166,0.0154907301588724,132
|
|
18
|
+
293,0.00901559882526763,-0.044641636506989,-0.0223731352440218,-0.0320659525517218,-0.0497273098572509,-0.0686407967109681,0.0780932018828464,-0.0708593356186146,-0.0629129499162512,-0.0383566597339788,84
|
|
19
|
+
320,0.0199132141783263,-0.044641636506989,0.00457216660300077,0.0459724498511097,-0.0180803941186249,-0.0545491159304391,0.0633666506664982,-0.0394933828740919,0.0286607203138089,0.0610539062220542,191
|
|
20
|
+
438,0.0417084448844436,0.0506801187398187,0.0196615356373334,0.0597439326260547,-0.00569681839481472,-0.00256647127337676,-0.0286742944356786,-0.00259226199818282,0.0311929907028023,0.00720651632920303,178
|
|
21
|
+
30,0.0671362140415805,0.0506801187398187,-0.00620595413580824,0.063186803319791,-0.0428475455662452,-0.0958847128866574,0.052321737254237,-0.076394503750001,0.0594238004447941,0.0527696923923848,283
|
|
22
|
+
26,-0.067267708646143,0.0506801187398187,-0.0126728265790937,-0.0400993174922969,-0.0153284884022226,0.0046359433477825,-0.0581273968683752,0.0343088588777263,0.0191990330785671,-0.0342145528191441,202
|
|
23
|
+
156,-0.0273097856849279,0.0506801187398187,0.0606183944448076,0.0494153205448459,0.0851160702464598,0.0863676918748504,-0.0029028298070691,0.0343088588777263,0.0378144788263439,0.0486275854775501,186
|
|
24
|
+
190,-0.00188201652779104,-0.044641636506989,-0.0665634302731387,0.00121513083253827,-0.00294491267841247,0.00307020103883484,0.0118237214092792,-0.00259226199818282,-0.0202887477516296,-0.0259303389894746,79
|
|
25
|
+
152,0.00175052192322852,-0.044641636506989,-0.00405032998804645,-0.00567061055493425,-0.00844872411121698,-0.0238605666750649,0.052321737254237,-0.0394933828740919,-0.0089440189577978,-0.0135040182449705,88
|
|
26
|
+
413,0.0744012909436196,-0.044641636506989,0.0854080721440683,0.063186803319791,0.0149424744782022,0.0130909518160999,0.0155053592133662,-0.00259226199818282,0.00620931561650541,0.0859065477110625,261
|
|
27
|
+
13,0.0162806757273067,-0.044641636506989,-0.0288400076873072,-0.00911348124867051,-0.00432086553661359,-0.00976888589453599,0.0449584616460628,-0.0394933828740919,-0.0307512098645563,-0.0424987666488135,179
|
|
28
|
+
310,-0.00914709342983014,0.0506801187398187,0.00133873038135806,-0.00222773986119799,0.0796122588136553,0.0700839718617947,0.0339135482338016,-0.00259226199818282,0.0267142576335128,0.0817644407962278,142
|
|
29
|
+
192,-0.00551455497881059,0.0506801187398187,-0.041773752573878,-0.0435421881860331,-0.0799982727376757,-0.0761563597939169,-0.0323559322397657,-0.0394933828740919,0.0102256424049578,-0.0093619113301358,178
|
|
30
|
+
188,-0.067267708646143,-0.044641636506989,-0.0547074974604488,-0.0263278347173518,-0.0758704141630723,-0.082106180567918,0.0486400994501499,-0.076394503750001,-0.0868289932162924,-0.104630370371334,143
|
|
31
|
+
337,-0.0200447087828888,-0.044641636506989,0.0854080721440683,-0.0366564467985606,0.0919958345374655,0.0894991764927457,-0.0618090346724622,0.145012221505454,0.0809479135112756,0.0527696923923848,306
|
|
32
|
+
167,-0.0563700932930843,0.0506801187398187,-0.0600965578298533,-0.0366564467985606,-0.0882539898868825,-0.0708328359434948,-0.0139477432193303,-0.0394933828740919,-0.0781409106690696,-0.104630370371334,70
|
|
33
|
+
232,0.00901559882526763,-0.044641636506989,-0.030995631835069,0.0218723549949558,0.00806271018719657,0.00870687335104641,0.00446044580110504,-0.00259226199818282,0.00943640914607987,0.0113486232440377,154
|
|
34
|
+
289,0.0707687524926,0.0506801187398187,-0.0169840748746173,0.0218723549949558,0.0438374845004259,0.0563054395430553,0.0375951860378887,-0.00259226199818282,-0.0702093127286876,-0.0176461251598052,80
|
|
35
|
+
171,0.0235457526293458,0.0506801187398187,-0.02021751109626,-0.0366564467985606,-0.0139525355440215,-0.015092409744958,0.0596850128624111,-0.0394933828740919,-0.0964332228917841,-0.0176461251598052,47
|
|
36
|
+
205,0.110726675453815,0.0506801187398187,0.00672779075076256,0.0287580963824284,-0.0277120641260328,-0.00726369820021974,-0.0470824834561139,0.0343088588777263,0.00200784054982379,0.0776223338813931,277
|
|
37
|
+
333,0.030810829531385,-0.044641636506989,0.104808689473925,0.076958286094736,-0.0112006298276192,-0.0113346282034837,-0.0581273968683752,0.0343088588777263,0.0571041874478439,0.036201264733046,270
|
|
38
|
+
3,0.0852989062966783,0.0506801187398187,0.0444512133365941,-0.00567061055493425,-0.0455994512826475,-0.0341944659141195,-0.0323559322397657,-0.00259226199818282,0.00286377051894013,-0.0259303389894746,141
|
|
39
|
+
28,-0.0236772472339084,-0.044641636506989,0.0595405823709267,-0.0400993174922969,-0.0428475455662452,-0.0435889197678055,0.0118237214092792,-0.0394933828740919,-0.0159982677581387,0.0403433716478807,85
|
|
40
|
+
222,-0.0454724779400257,-0.044641636506989,-0.0385403163522353,-0.0263278347173518,-0.0153284884022226,0.000878161806308105,-0.0323559322397657,-0.00259226199818282,0.00114379737951254,-0.0383566597339788,93
|
|
41
|
+
373,-0.0273097856849279,0.0506801187398187,-0.0234509473179027,-0.015999222636143,0.0135665216200011,0.0127778033543103,0.0265502726256275,-0.00259226199818282,-0.0109044358473771,-0.0217882320746399,71
|
|
42
|
+
308,0.0671362140415805,0.0506801187398187,-0.030995631835069,0.00465800152627453,0.0245741444856101,0.0356376410649462,-0.0286742944356786,0.0343088588777263,0.0233748412798208,0.0817644407962278,172
|
|
43
|
+
68,0.0417084448844436,0.0506801187398187,-0.0148284507268555,-0.0171468461892456,-0.00569681839481472,0.00839372488925688,-0.0139477432193303,-0.00185423958066465,-0.0119006848015081,0.00306440941436832,97
|
|
44
|
+
35,0.0162806757273067,-0.044641636506989,-0.063329994051496,-0.0573136709609782,-0.0579830270064577,-0.0489124436182275,0.00814208360519211,-0.0394933828740919,-0.0594726974107223,-0.0673514081378217,65
|
|
45
|
+
100,-0.00188201652779104,-0.044641636506989,-0.0644078061253769,0.0115437429137471,0.0273260502020124,0.0375165318356834,-0.0139477432193303,0.0343088588777263,0.0117839003835759,-0.0549250873933176,83
|
|
46
|
+
163,-0.0527375548420648,-0.044641636506989,0.0304396563761424,-0.0745280244296595,-0.0235842055514294,-0.0113346282034837,-0.0029028298070691,-0.00259226199818282,-0.0307512098645563,-0.00107769750046639,172
|
|
47
|
+
394,-0.0745327855481821,-0.044641636506989,-0.0460850008694016,-0.0435421881860331,-0.0290880169842339,-0.0232342697514859,0.0155053592133662,-0.0394933828740919,-0.0398095943643375,-0.0217882320746399,69
|
|
48
|
+
340,0.0271782910803654,-0.044641636506989,-0.00728376620968916,-0.0504279295735057,0.0754844002390519,0.0566185880048449,0.0339135482338016,-0.00259226199818282,0.0434431722527813,0.0154907301588724,95
|
|
49
|
+
199,-0.0527375548420648,-0.044641636506989,0.0541515220015222,-0.0263278347173518,-0.0552311212900554,-0.03388131745233,-0.0139477432193303,-0.0394933828740919,-0.0740888714915354,-0.0590671943081523,142
|
|
50
|
+
79,0.00538306037424807,-0.044641636506989,-0.0579409336820915,-0.0228849640236156,-0.0676146970138656,-0.0683276482491785,-0.0544457590642881,-0.00259226199818282,0.0428956878925287,-0.0839198357971606,252
|
|
51
|
+
352,-0.0854304009012408,0.0506801187398187,-0.0406959404999971,-0.0332135761048244,-0.0813742255958769,-0.0695802420963367,-0.00658446761115617,-0.0394933828740919,-0.0578000656756125,-0.0424987666488135,71
|
|
52
|
+
277,0.0126481372762872,-0.044641636506989,0.0261284080806188,0.063186803319791,0.125018703134293,0.0916912157252725,0.0633666506664982,-0.00259226199818282,0.0575728562024259,-0.0217882320746399,283
|
|
53
|
+
14,0.00538306037424807,0.0506801187398187,-0.00189470584028465,0.0081008722200108,-0.00432086553661359,-0.0157187066685371,-0.0029028298070691,-0.00259226199818282,0.0383932482116977,-0.0135040182449705,185
|
|
54
|
+
323,0.0235457526293458,0.0506801187398187,0.0616962065186885,0.0620391798699746,0.0245741444856101,-0.0360733566848567,-0.0912621371051588,0.155344535350708,0.133395733837469,0.0817644407962278,242
|
|
55
|
+
66,-0.0454724779400257,0.0506801187398187,-0.0245287593917836,0.0597439326260547,0.00531080447079431,0.0149698425868371,-0.0544457590642881,0.0712099797536354,0.0423448954496075,0.0154907301588724,163
|
|
56
|
+
338,0.0199132141783263,0.0506801187398187,-0.0126728265790937,0.0700725447072635,-0.0112006298276192,0.00714113104209875,-0.0397192078479398,0.0343088588777263,0.00538436996854573,0.00306440941436832,91
|
|
57
|
+
256,0.00175052192322852,-0.044641636506989,-0.0654856181992578,-0.00567061055493425,-0.00707277125301585,-0.0194764882100115,0.0412768238419757,-0.0394933828740919,-0.003303712578677,0.00720651632920303,153
|
|
58
|
+
180,-0.0236772472339084,-0.044641636506989,-0.0159062628007364,-0.0125563519424068,0.0204462859110067,0.0412743133771578,-0.0434008456520269,0.0343088588777263,0.0140724525157685,-0.0093619113301358,151
|
|
59
|
+
64,-0.034574862586967,-0.044641636506989,-0.0374625042783544,-0.0607565416547144,0.0204462859110067,0.0434663526096845,-0.0139477432193303,-0.00259226199818282,-0.0307512098645563,-0.0714935150526564,128
|
|
60
|
+
397,-0.0854304009012408,0.0506801187398187,-0.030995631835069,-0.0228849640236156,-0.0634868384392622,-0.0542359674686496,0.0191869970174533,-0.0394933828740919,-0.0964332228917841,-0.0342145528191441,43
|
|
61
|
+
317,0.0162806757273067,0.0506801187398187,0.0142724752679289,0.00121513083253827,0.00118294589619092,-0.0213553789807487,-0.0323559322397657,0.0343088588777263,0.0749683360277342,0.0403433716478807,220
|
|
62
|
+
98,-0.0273097856849279,-0.044641636506989,0.0886415083657111,-0.0251802111642493,0.0218222387692079,0.0425269072243159,-0.0323559322397657,0.0343088588777263,0.00286377051894013,0.0776223338813931,279
|
|
63
|
+
159,-0.0127796318808497,-0.044641636506989,-0.0654856181992578,-0.0699375301828207,0.00118294589619092,0.0168487333575743,-0.0029028298070691,-0.00702039650329191,-0.0307512098645563,-0.0507829804784829,96
|
|
64
|
+
50,-0.0418399394890061,0.0506801187398187,0.0142724752679289,-0.00567061055493425,-0.0125765826858204,0.00620168565673016,-0.0728539480847234,0.0712099797536354,0.0354619386607697,-0.0135040182449705,142
|
|
65
|
+
334,0.0271782910803654,0.0506801187398187,-0.00620595413580824,0.0287580963824284,-0.0167044412604238,-0.00162702588800815,-0.0581273968683752,0.0343088588777263,0.0293004132685869,0.0320591578182113,164
|
|
66
|
+
218,0.0744012909436196,-0.044641636506989,0.0315174684500233,0.10105838095089,0.0465893902168282,0.0368902349121043,0.0155053592133662,-0.00259226199818282,0.0336568129023847,0.0444854785627154,296
|
|
67
|
+
136,-0.00551455497881059,-0.044641636506989,0.056307146149284,-0.0366564467985606,-0.0483513569990498,-0.0429626228442264,-0.0728539480847234,0.0379989709653172,0.0507815133629732,0.0569117993072195,272
|
|
68
|
+
437,-0.0563700932930843,-0.044641636506989,-0.074108114790305,-0.0504279295735057,-0.0249601584096305,-0.0470335528474903,0.0928197530991947,-0.076394503750001,-0.0611765950943345,-0.0466408735636482,48
|
|
69
|
+
6,-0.0926954778032799,-0.044641636506989,-0.0406959404999971,-0.0194420933298793,-0.0689906498720667,-0.0792878444118122,0.0412768238419757,-0.076394503750001,-0.0411803851880079,-0.0963461565416647,97
|
|
70
|
+
258,-0.0273097856849279,0.0506801187398187,-0.0557853095343297,0.0253152256886921,-0.00707277125301585,-0.0235474182132754,0.052321737254237,-0.0394933828740919,-0.00514530798026311,-0.0507829804784829,63
|
|
71
|
+
197,-0.0236772472339084,-0.044641636506989,-0.0460850008694016,-0.0332135761048244,0.0328298616348169,0.0362639379885253,0.0375951860378887,-0.00259226199818282,-0.0332487872476258,0.0113486232440377,72
|
|
72
|
+
107,-0.0963280162542995,-0.044641636506989,-0.0762637389380668,-0.0435421881860331,-0.0455994512826475,-0.0348207628376986,0.00814208360519211,-0.0394933828740919,-0.0594726974107223,-0.0839198357971606,134
|
|
73
|
+
250,-0.0127796318808497,-0.044641636506989,0.0606183944448076,0.0528581912385822,0.0479653430750293,0.0293746718291555,-0.0176293810234174,0.0343088588777263,0.0702112981933102,0.00720651632920303,215
|
|
74
|
+
296,-0.0527375548420648,0.0506801187398187,0.0390621529671896,-0.0400993174922969,-0.00569681839481472,-0.0129003705124313,0.0118237214092792,-0.0394933828740919,0.0163049527999418,0.00306440941436832,85
|
|
75
|
+
33,0.0344433679824045,0.0506801187398187,0.125287118877662,0.0287580963824284,-0.0538551684318543,-0.0129003705124313,-0.10230705051742,0.108111100629544,0.000271485727907132,0.0279170509033766,341
|
|
76
|
+
330,-0.0127796318808497,0.0506801187398187,-0.0557853095343297,-0.00222773986119799,-0.0277120641260328,-0.029184090525487,0.0191869970174533,-0.0394933828740919,-0.0170521046047435,0.0444854785627154,135
|
|
77
|
+
372,0.0526060602375023,0.0506801187398187,-0.00943939035745095,0.0494153205448459,0.0507172487914316,-0.019163339748222,-0.0139477432193303,0.0343088588777263,0.119343994203787,-0.0176461251598052,197
|
|
78
|
+
8,0.0635036755905609,0.0506801187398187,-0.00189470584028465,0.0666296740135272,0.0906198816792644,0.108914381123697,0.0228686348215404,0.0177033544835672,-0.0358167281015492,0.00306440941436832,63
|
|
79
|
+
174,-0.0636351701951234,0.0506801187398187,-0.0794971751597095,-0.00567061055493425,-0.071742555588469,-0.0664487574784414,-0.0102661054152432,-0.0394933828740919,-0.0181182673078967,-0.0549250873933176,101
|
|
80
|
+
105,-0.0273097856849279,-0.044641636506989,0.0649296427403312,-0.00222773986119799,-0.0249601584096305,-0.0172844489774848,0.0228686348215404,-0.0394933828740919,-0.0611765950943345,-0.063209301222987,95
|
|
81
|
+
84,-0.0382074010379866,-0.044641636506989,0.00996122697240527,-0.0469850588797694,-0.0593589798646588,-0.0529833736214915,-0.0102661054152432,-0.0394933828740919,-0.0159982677581387,-0.0424987666488135,210
|
|
82
|
+
166,-0.0418399394890061,-0.044641636506989,-0.0665634302731387,-0.0469850588797694,-0.0373437341334407,-0.043275771306016,0.0486400994501499,-0.0394933828740919,-0.0561575730950062,-0.0135040182449705,59
|
|
83
|
+
48,-0.0781653239992017,-0.044641636506989,-0.0730303027164241,-0.0573136709609782,-0.0841261313122791,-0.0742774690231797,-0.0249926566315915,-0.0394933828740919,-0.0181182673078967,-0.0839198357971606,142
|
|
84
|
+
307,0.00901559882526763,0.0506801187398187,-0.00189470584028465,0.0218723549949558,-0.0387196869916418,-0.0248000120604336,-0.00658446761115617,-0.0394933828740919,-0.0398095943643375,-0.0135040182449705,44
|
|
85
|
+
349,0.030810829531385,-0.044641636506989,-0.02021751109626,-0.00567061055493425,-0.00432086553661359,-0.0294972389872765,0.0780932018828464,-0.0394933828740919,-0.0109044358473771,-0.00107769750046639,148
|
|
86
|
+
431,-0.00914709342983014,-0.044641636506989,-0.0568631216082106,-0.0504279295735057,0.0218222387692079,0.0453452433804217,-0.0286742944356786,0.0343088588777263,-0.00991895736315477,-0.0176461251598052,183
|
|
87
|
+
353,0.0126481372762872,0.0506801187398187,-0.0719524906425432,-0.0469850588797694,-0.051103262715452,-0.0971373067338155,0.118591217727804,-0.076394503750001,-0.0202887477516296,-0.0383566597339788,77
|
|
88
|
+
246,-0.0273097856849279,-0.044641636506989,-0.0353068801305926,-0.0297707054110881,-0.0566070741482565,-0.058620045933703,0.0302319104297145,-0.0394933828740919,-0.0498684677352306,-0.129483011860342,125
|
|
89
|
+
286,0.0126481372762872,-0.044641636506989,-0.02021751109626,-0.015999222636143,0.0121905687618,0.0212328118226277,-0.0765355858888105,0.108111100629544,0.0598807230654812,-0.0217882320746399,233
|
teradataml/data/dict_table.csv
CHANGED
|
@@ -1,5 +1,5 @@
|
|
|
1
|
-
"type1","dict"
|
|
2
|
-
"civil rights","free"
|
|
3
|
-
"civil rights","dignity"
|
|
4
|
-
"civil rights","right"
|
|
5
|
-
"civil rights","equality"
|
|
1
|
+
"type1","dict"
|
|
2
|
+
"civil rights","free"
|
|
3
|
+
"civil rights","dignity"
|
|
4
|
+
"civil rights","right"
|
|
5
|
+
"civil rights","equality"
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
"term","count"
|
|
2
|
-
"three","2"
|
|
3
|
-
"two","2"
|
|
4
|
-
"one","1"
|
|
1
|
+
"term","count"
|
|
2
|
+
"three","2"
|
|
3
|
+
"two","2"
|
|
4
|
+
"one","1"
|
teradataml/data/docs/__init__.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
from teradataml.data.docs import *
|
|
1
|
+
from teradataml.data.docs import *
|
|
@@ -1,180 +1,180 @@
|
|
|
1
|
-
def DataRobotPredict(modeldata=None, newdata=None, accumulate=None, model_output_fields=None,
|
|
2
|
-
overwrite_cached_models=False, is_debug=False, **generic_arguments):
|
|
3
|
-
"""
|
|
4
|
-
DESCRIPTION:
|
|
5
|
-
The DataRobotPredict() function is used to score data in Vantage with a model that has been
|
|
6
|
-
created outside Vantage and exported to Vantage using DataRobot format.
|
|
7
|
-
|
|
8
|
-
PARAMETERS:
|
|
9
|
-
modeldata:
|
|
10
|
-
Required Argument.
|
|
11
|
-
Specifies the model teradataml DataFrame to be used for scoring.
|
|
12
|
-
Types: teradataml DataFrame
|
|
13
|
-
|
|
14
|
-
newdata:
|
|
15
|
-
Required Argument.
|
|
16
|
-
Specifies the input teradataml DataFrame that contains the data to be scored.
|
|
17
|
-
Types: teradataml DataFrame
|
|
18
|
-
Note:
|
|
19
|
-
The input columns containing Date or Timestamp types should be converted to character type before
|
|
20
|
-
running DatRobotPredict().
|
|
21
|
-
|
|
22
|
-
accumulate:
|
|
23
|
-
Required Argument.
|
|
24
|
-
Specifies the name(s) of input teradataml DataFrame column(s) to
|
|
25
|
-
copy to the output.
|
|
26
|
-
Types: str OR list of Strings (str)
|
|
27
|
-
|
|
28
|
-
model_output_fields:
|
|
29
|
-
Optional Argument.
|
|
30
|
-
Specifies the columns of the json output that the user wants to
|
|
31
|
-
specify as individual columns instead of the entire json report.
|
|
32
|
-
Types: str OR list of Strings (str)
|
|
33
|
-
|
|
34
|
-
overwrite_cached_models:
|
|
35
|
-
Optional Argument.
|
|
36
|
-
Specifies the model name that needs to be removed from the cache.
|
|
37
|
-
When a model loaded into the memory of the node fits in the cache,
|
|
38
|
-
it stays in the cache until being evicted to make space for another
|
|
39
|
-
model that needs to be loaded. Therefore, a model can remain in the
|
|
40
|
-
cache even after the completion of function execution. Other functions
|
|
41
|
-
that use the same model can use it, saving the cost of reloading it
|
|
42
|
-
into memory. User should overwrite a cached model only when it is updated,
|
|
43
|
-
to make sure that the Predict function uses the updated model instead
|
|
44
|
-
of the cached model.
|
|
45
|
-
Note:
|
|
46
|
-
Do not use the "overwrite_cached_models" argument except when user
|
|
47
|
-
is trying to replace a previously cached model. Using the argument
|
|
48
|
-
in other cases, including in concurrent queries or multiple times
|
|
49
|
-
within a short period of time lead to an OOM error.
|
|
50
|
-
Default behavior: The function does not overwrite cached models.
|
|
51
|
-
Permitted Values: true, t, yes, y, 1, false, f, no, n, 0, *,
|
|
52
|
-
current_cached_model
|
|
53
|
-
Types: str OR list of Strings (str)
|
|
54
|
-
|
|
55
|
-
is_debug:
|
|
56
|
-
Optional Argument.
|
|
57
|
-
Specifies whether debug statements are added to a trace table or not.
|
|
58
|
-
When set to True, debug statements are added to a trace table that must
|
|
59
|
-
be created beforehand.
|
|
60
|
-
Notes:
|
|
61
|
-
* Only available with BYOM version 3.00.00.02 and later.
|
|
62
|
-
* To save logs for debugging, user can create an error log by using
|
|
63
|
-
the is_debug=True parameter in the predict functions.
|
|
64
|
-
A database trace table is used to collect this information which
|
|
65
|
-
does impact performance of the function, so using small data input
|
|
66
|
-
sizes is recommended.
|
|
67
|
-
* To generate this log, user must do the following:
|
|
68
|
-
1. Create a global trace table with columns vproc_ID BYTE(2),
|
|
69
|
-
Sequence INTEGER, Trace_Output VARCHAR(31000)
|
|
70
|
-
2. Turn on session function tracing:
|
|
71
|
-
SET SESSION FUNCTION TRACE USING '' FOR TABLE <trace_table_name_created_in_step_1>;
|
|
72
|
-
3. Execute function with "is_debug" set to True.
|
|
73
|
-
4. Debug information is logged to the table created in step 1.
|
|
74
|
-
5. To turn off the logging, either disconnect from the session or
|
|
75
|
-
run following SQL:
|
|
76
|
-
SET SESSION FUNCTION TRACE OFF;
|
|
77
|
-
The trace table is temporary and the information is deleted if user
|
|
78
|
-
logs off from the session. If long term persistence is necessary,
|
|
79
|
-
user can copy the table to a permanent table before leaving the
|
|
80
|
-
session.
|
|
81
|
-
Default Value: False
|
|
82
|
-
Types: bool
|
|
83
|
-
|
|
84
|
-
**generic_arguments:
|
|
85
|
-
Specifies the generic keyword arguments SQLE functions accept. Below
|
|
86
|
-
are the generic keyword arguments:
|
|
87
|
-
persist:
|
|
88
|
-
Optional Argument.
|
|
89
|
-
Specifies whether to persist the results of the
|
|
90
|
-
function in a table or not. When set to True,
|
|
91
|
-
results are persisted in a table; otherwise,
|
|
92
|
-
results are garbage collected at the end of the
|
|
93
|
-
session.
|
|
94
|
-
Default Value: False
|
|
95
|
-
Types: bool
|
|
96
|
-
|
|
97
|
-
volatile:
|
|
98
|
-
Optional Argument.
|
|
99
|
-
Specifies whether to put the results of the
|
|
100
|
-
function in a volatile table or not. When set to
|
|
101
|
-
True, results are stored in a volatile table,
|
|
102
|
-
otherwise not.
|
|
103
|
-
Default Value: False
|
|
104
|
-
Types: bool
|
|
105
|
-
|
|
106
|
-
Function allows the user to partition, hash, order or local
|
|
107
|
-
order the input data. These generic arguments are available
|
|
108
|
-
for each argument that accepts teradataml DataFrame as
|
|
109
|
-
input and can be accessed as:
|
|
110
|
-
* "<input_data_arg_name>_partition_column" accepts str or
|
|
111
|
-
list of str (Strings)
|
|
112
|
-
* "<input_data_arg_name>_hash_column" accepts str or list
|
|
113
|
-
of str (Strings)
|
|
114
|
-
* "<input_data_arg_name>_order_column" accepts str or list
|
|
115
|
-
of str (Strings)
|
|
116
|
-
* "local_order_<input_data_arg_name>" accepts boolean
|
|
117
|
-
Note:
|
|
118
|
-
These generic arguments are supported by teradataml if
|
|
119
|
-
the underlying SQL Engine function supports, else an
|
|
120
|
-
exception is raised.
|
|
121
|
-
|
|
122
|
-
RETURNS:
|
|
123
|
-
Instance of DataRobotPredict.
|
|
124
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
125
|
-
references, such as DataRobotPredictObj.<attribute_name>.
|
|
126
|
-
Output teradataml DataFrame attribute name is:
|
|
127
|
-
result
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
RAISES:
|
|
131
|
-
TeradataMlException, TypeError, ValueError
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
EXAMPLES:
|
|
135
|
-
# Notes:
|
|
136
|
-
# 1. Get the connection to Vantage to execute the function.
|
|
137
|
-
# 2. One must import the required functions mentioned in
|
|
138
|
-
# the example from teradataml.
|
|
139
|
-
# 3. Function will raise error if not supported on the Vantage
|
|
140
|
-
# user is connected to.
|
|
141
|
-
# 4. To execute BYOM functions, set 'configure.byom_install_location' to the
|
|
142
|
-
# database name where BYOM functions are installed.
|
|
143
|
-
|
|
144
|
-
# Import required libraries / functions.
|
|
145
|
-
import os, teradataml
|
|
146
|
-
from teradataml import get_connection, DataFrame
|
|
147
|
-
from teradataml import save_byom, retrieve_byom, load_example_data
|
|
148
|
-
from teradataml import configure, display_analytic_functions, execute_sql
|
|
149
|
-
|
|
150
|
-
# Load example data.
|
|
151
|
-
load_example_data("byom", "iris_test")
|
|
152
|
-
|
|
153
|
-
# Create teradataml DataFrame objects.
|
|
154
|
-
iris_test = DataFrame.from_table("iris_test")
|
|
155
|
-
|
|
156
|
-
# Set install location of BYOM functions.
|
|
157
|
-
configure.byom_install_location = "mldb"
|
|
158
|
-
|
|
159
|
-
# Check the list of available analytic functions.
|
|
160
|
-
display_analytic_functions(type="BYOM")
|
|
161
|
-
|
|
162
|
-
# Load model file into Vantage.
|
|
163
|
-
model_file = os.path.join(os.path.dirname(teradataml.__file__), "data",
|
|
164
|
-
"models", "dr_iris_rf")
|
|
165
|
-
save_byom("dr_iris_rf", model_file, "byom_models")
|
|
166
|
-
|
|
167
|
-
# Retrieve model.
|
|
168
|
-
modeldata = retrieve_byom("dr_iris_rf", table_name="byom_models")
|
|
169
|
-
|
|
170
|
-
# Example 1: Score data in Vantage with a model that has
|
|
171
|
-
# been created outside the Vantage by removing all the
|
|
172
|
-
# all cached models.
|
|
173
|
-
Datarobotpredict_1 = DataRobotPredict(newdata=iris_test,
|
|
174
|
-
modeldata=modeldata,
|
|
175
|
-
accumulate=['id', 'sepal_length', 'petal_length'],
|
|
176
|
-
overwrite_cached_models="*")
|
|
177
|
-
|
|
178
|
-
# Print the results.
|
|
179
|
-
print(Datarobotpredict_1.result)
|
|
180
|
-
"""
|
|
1
|
+
def DataRobotPredict(modeldata=None, newdata=None, accumulate=None, model_output_fields=None,
|
|
2
|
+
overwrite_cached_models=False, is_debug=False, **generic_arguments):
|
|
3
|
+
"""
|
|
4
|
+
DESCRIPTION:
|
|
5
|
+
The DataRobotPredict() function is used to score data in Vantage with a model that has been
|
|
6
|
+
created outside Vantage and exported to Vantage using DataRobot format.
|
|
7
|
+
|
|
8
|
+
PARAMETERS:
|
|
9
|
+
modeldata:
|
|
10
|
+
Required Argument.
|
|
11
|
+
Specifies the model teradataml DataFrame to be used for scoring.
|
|
12
|
+
Types: teradataml DataFrame
|
|
13
|
+
|
|
14
|
+
newdata:
|
|
15
|
+
Required Argument.
|
|
16
|
+
Specifies the input teradataml DataFrame that contains the data to be scored.
|
|
17
|
+
Types: teradataml DataFrame
|
|
18
|
+
Note:
|
|
19
|
+
The input columns containing Date or Timestamp types should be converted to character type before
|
|
20
|
+
running DatRobotPredict().
|
|
21
|
+
|
|
22
|
+
accumulate:
|
|
23
|
+
Required Argument.
|
|
24
|
+
Specifies the name(s) of input teradataml DataFrame column(s) to
|
|
25
|
+
copy to the output.
|
|
26
|
+
Types: str OR list of Strings (str)
|
|
27
|
+
|
|
28
|
+
model_output_fields:
|
|
29
|
+
Optional Argument.
|
|
30
|
+
Specifies the columns of the json output that the user wants to
|
|
31
|
+
specify as individual columns instead of the entire json report.
|
|
32
|
+
Types: str OR list of Strings (str)
|
|
33
|
+
|
|
34
|
+
overwrite_cached_models:
|
|
35
|
+
Optional Argument.
|
|
36
|
+
Specifies the model name that needs to be removed from the cache.
|
|
37
|
+
When a model loaded into the memory of the node fits in the cache,
|
|
38
|
+
it stays in the cache until being evicted to make space for another
|
|
39
|
+
model that needs to be loaded. Therefore, a model can remain in the
|
|
40
|
+
cache even after the completion of function execution. Other functions
|
|
41
|
+
that use the same model can use it, saving the cost of reloading it
|
|
42
|
+
into memory. User should overwrite a cached model only when it is updated,
|
|
43
|
+
to make sure that the Predict function uses the updated model instead
|
|
44
|
+
of the cached model.
|
|
45
|
+
Note:
|
|
46
|
+
Do not use the "overwrite_cached_models" argument except when user
|
|
47
|
+
is trying to replace a previously cached model. Using the argument
|
|
48
|
+
in other cases, including in concurrent queries or multiple times
|
|
49
|
+
within a short period of time lead to an OOM error.
|
|
50
|
+
Default behavior: The function does not overwrite cached models.
|
|
51
|
+
Permitted Values: true, t, yes, y, 1, false, f, no, n, 0, *,
|
|
52
|
+
current_cached_model
|
|
53
|
+
Types: str OR list of Strings (str)
|
|
54
|
+
|
|
55
|
+
is_debug:
|
|
56
|
+
Optional Argument.
|
|
57
|
+
Specifies whether debug statements are added to a trace table or not.
|
|
58
|
+
When set to True, debug statements are added to a trace table that must
|
|
59
|
+
be created beforehand.
|
|
60
|
+
Notes:
|
|
61
|
+
* Only available with BYOM version 3.00.00.02 and later.
|
|
62
|
+
* To save logs for debugging, user can create an error log by using
|
|
63
|
+
the is_debug=True parameter in the predict functions.
|
|
64
|
+
A database trace table is used to collect this information which
|
|
65
|
+
does impact performance of the function, so using small data input
|
|
66
|
+
sizes is recommended.
|
|
67
|
+
* To generate this log, user must do the following:
|
|
68
|
+
1. Create a global trace table with columns vproc_ID BYTE(2),
|
|
69
|
+
Sequence INTEGER, Trace_Output VARCHAR(31000)
|
|
70
|
+
2. Turn on session function tracing:
|
|
71
|
+
SET SESSION FUNCTION TRACE USING '' FOR TABLE <trace_table_name_created_in_step_1>;
|
|
72
|
+
3. Execute function with "is_debug" set to True.
|
|
73
|
+
4. Debug information is logged to the table created in step 1.
|
|
74
|
+
5. To turn off the logging, either disconnect from the session or
|
|
75
|
+
run following SQL:
|
|
76
|
+
SET SESSION FUNCTION TRACE OFF;
|
|
77
|
+
The trace table is temporary and the information is deleted if user
|
|
78
|
+
logs off from the session. If long term persistence is necessary,
|
|
79
|
+
user can copy the table to a permanent table before leaving the
|
|
80
|
+
session.
|
|
81
|
+
Default Value: False
|
|
82
|
+
Types: bool
|
|
83
|
+
|
|
84
|
+
**generic_arguments:
|
|
85
|
+
Specifies the generic keyword arguments SQLE functions accept. Below
|
|
86
|
+
are the generic keyword arguments:
|
|
87
|
+
persist:
|
|
88
|
+
Optional Argument.
|
|
89
|
+
Specifies whether to persist the results of the
|
|
90
|
+
function in a table or not. When set to True,
|
|
91
|
+
results are persisted in a table; otherwise,
|
|
92
|
+
results are garbage collected at the end of the
|
|
93
|
+
session.
|
|
94
|
+
Default Value: False
|
|
95
|
+
Types: bool
|
|
96
|
+
|
|
97
|
+
volatile:
|
|
98
|
+
Optional Argument.
|
|
99
|
+
Specifies whether to put the results of the
|
|
100
|
+
function in a volatile table or not. When set to
|
|
101
|
+
True, results are stored in a volatile table,
|
|
102
|
+
otherwise not.
|
|
103
|
+
Default Value: False
|
|
104
|
+
Types: bool
|
|
105
|
+
|
|
106
|
+
Function allows the user to partition, hash, order or local
|
|
107
|
+
order the input data. These generic arguments are available
|
|
108
|
+
for each argument that accepts teradataml DataFrame as
|
|
109
|
+
input and can be accessed as:
|
|
110
|
+
* "<input_data_arg_name>_partition_column" accepts str or
|
|
111
|
+
list of str (Strings)
|
|
112
|
+
* "<input_data_arg_name>_hash_column" accepts str or list
|
|
113
|
+
of str (Strings)
|
|
114
|
+
* "<input_data_arg_name>_order_column" accepts str or list
|
|
115
|
+
of str (Strings)
|
|
116
|
+
* "local_order_<input_data_arg_name>" accepts boolean
|
|
117
|
+
Note:
|
|
118
|
+
These generic arguments are supported by teradataml if
|
|
119
|
+
the underlying SQL Engine function supports, else an
|
|
120
|
+
exception is raised.
|
|
121
|
+
|
|
122
|
+
RETURNS:
|
|
123
|
+
Instance of DataRobotPredict.
|
|
124
|
+
Output teradataml DataFrames can be accessed using attribute
|
|
125
|
+
references, such as DataRobotPredictObj.<attribute_name>.
|
|
126
|
+
Output teradataml DataFrame attribute name is:
|
|
127
|
+
result
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
RAISES:
|
|
131
|
+
TeradataMlException, TypeError, ValueError
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
EXAMPLES:
|
|
135
|
+
# Notes:
|
|
136
|
+
# 1. Get the connection to Vantage to execute the function.
|
|
137
|
+
# 2. One must import the required functions mentioned in
|
|
138
|
+
# the example from teradataml.
|
|
139
|
+
# 3. Function will raise error if not supported on the Vantage
|
|
140
|
+
# user is connected to.
|
|
141
|
+
# 4. To execute BYOM functions, set 'configure.byom_install_location' to the
|
|
142
|
+
# database name where BYOM functions are installed.
|
|
143
|
+
|
|
144
|
+
# Import required libraries / functions.
|
|
145
|
+
import os, teradataml
|
|
146
|
+
from teradataml import get_connection, DataFrame
|
|
147
|
+
from teradataml import save_byom, retrieve_byom, load_example_data
|
|
148
|
+
from teradataml import configure, display_analytic_functions, execute_sql
|
|
149
|
+
|
|
150
|
+
# Load example data.
|
|
151
|
+
load_example_data("byom", "iris_test")
|
|
152
|
+
|
|
153
|
+
# Create teradataml DataFrame objects.
|
|
154
|
+
iris_test = DataFrame.from_table("iris_test")
|
|
155
|
+
|
|
156
|
+
# Set install location of BYOM functions.
|
|
157
|
+
configure.byom_install_location = "mldb"
|
|
158
|
+
|
|
159
|
+
# Check the list of available analytic functions.
|
|
160
|
+
display_analytic_functions(type="BYOM")
|
|
161
|
+
|
|
162
|
+
# Load model file into Vantage.
|
|
163
|
+
model_file = os.path.join(os.path.dirname(teradataml.__file__), "data",
|
|
164
|
+
"models", "dr_iris_rf")
|
|
165
|
+
save_byom("dr_iris_rf", model_file, "byom_models")
|
|
166
|
+
|
|
167
|
+
# Retrieve model.
|
|
168
|
+
modeldata = retrieve_byom("dr_iris_rf", table_name="byom_models")
|
|
169
|
+
|
|
170
|
+
# Example 1: Score data in Vantage with a model that has
|
|
171
|
+
# been created outside the Vantage by removing all the
|
|
172
|
+
# all cached models.
|
|
173
|
+
Datarobotpredict_1 = DataRobotPredict(newdata=iris_test,
|
|
174
|
+
modeldata=modeldata,
|
|
175
|
+
accumulate=['id', 'sepal_length', 'petal_length'],
|
|
176
|
+
overwrite_cached_models="*")
|
|
177
|
+
|
|
178
|
+
# Print the results.
|
|
179
|
+
print(Datarobotpredict_1.result)
|
|
180
|
+
"""
|