teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1303) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1935 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2040 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +798 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1683 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +1011 -0
  31. teradataml/automl/data_transformation.py +789 -0
  32. teradataml/automl/feature_engineering.py +1580 -0
  33. teradataml/automl/feature_exploration.py +554 -0
  34. teradataml/automl/model_evaluation.py +151 -0
  35. teradataml/automl/model_training.py +1026 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/auth_client.py +133 -0
  41. teradataml/clients/pkce_client.py +481 -481
  42. teradataml/common/aed_utils.py +7 -2
  43. teradataml/common/bulk_exposed_utils.py +111 -111
  44. teradataml/common/constants.py +1438 -1441
  45. teradataml/common/deprecations.py +160 -0
  46. teradataml/common/exceptions.py +73 -73
  47. teradataml/common/formula.py +742 -742
  48. teradataml/common/garbagecollector.py +597 -635
  49. teradataml/common/messagecodes.py +424 -431
  50. teradataml/common/messages.py +228 -231
  51. teradataml/common/sqlbundle.py +693 -693
  52. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  53. teradataml/common/utils.py +2424 -2500
  54. teradataml/common/warnings.py +25 -25
  55. teradataml/common/wrapper_utils.py +1 -110
  56. teradataml/config/dummy_file1.cfg +4 -4
  57. teradataml/config/dummy_file2.cfg +2 -2
  58. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  59. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  60. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  61. teradataml/context/aed_context.py +217 -217
  62. teradataml/context/context.py +1091 -999
  63. teradataml/data/A_loan.csv +19 -19
  64. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  65. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  66. teradataml/data/B_loan.csv +49 -49
  67. teradataml/data/BuoyData2.csv +17 -17
  68. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  69. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  70. teradataml/data/Convolve2RealsLeft.csv +5 -5
  71. teradataml/data/Convolve2RealsRight.csv +5 -5
  72. teradataml/data/Convolve2ValidLeft.csv +11 -11
  73. teradataml/data/Convolve2ValidRight.csv +11 -11
  74. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  75. teradataml/data/Orders1_12mf.csv +24 -24
  76. teradataml/data/Pi_loan.csv +7 -7
  77. teradataml/data/SMOOTHED_DATA.csv +7 -7
  78. teradataml/data/TestDFFT8.csv +9 -9
  79. teradataml/data/TestRiver.csv +109 -109
  80. teradataml/data/Traindata.csv +28 -28
  81. teradataml/data/acf.csv +17 -17
  82. teradataml/data/adaboost_example.json +34 -34
  83. teradataml/data/adaboostpredict_example.json +24 -24
  84. teradataml/data/additional_table.csv +10 -10
  85. teradataml/data/admissions_test.csv +21 -21
  86. teradataml/data/admissions_train.csv +41 -41
  87. teradataml/data/admissions_train_nulls.csv +41 -41
  88. teradataml/data/advertising.csv +201 -0
  89. teradataml/data/ageandheight.csv +13 -13
  90. teradataml/data/ageandpressure.csv +31 -31
  91. teradataml/data/antiselect_example.json +36 -36
  92. teradataml/data/antiselect_input.csv +8 -8
  93. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  94. teradataml/data/applicant_external.csv +6 -6
  95. teradataml/data/applicant_reference.csv +6 -6
  96. teradataml/data/arima_example.json +9 -9
  97. teradataml/data/assortedtext_input.csv +8 -8
  98. teradataml/data/attribution_example.json +33 -33
  99. teradataml/data/attribution_sample_table.csv +27 -27
  100. teradataml/data/attribution_sample_table1.csv +6 -6
  101. teradataml/data/attribution_sample_table2.csv +11 -11
  102. teradataml/data/bank_churn.csv +10001 -0
  103. teradataml/data/bank_marketing.csv +11163 -0
  104. teradataml/data/bank_web_clicks1.csv +42 -42
  105. teradataml/data/bank_web_clicks2.csv +91 -91
  106. teradataml/data/bank_web_url.csv +85 -85
  107. teradataml/data/barrier.csv +2 -2
  108. teradataml/data/barrier_new.csv +3 -3
  109. teradataml/data/betweenness_example.json +13 -13
  110. teradataml/data/bike_sharing.csv +732 -0
  111. teradataml/data/bin_breaks.csv +8 -8
  112. teradataml/data/bin_fit_ip.csv +3 -3
  113. teradataml/data/binary_complex_left.csv +11 -11
  114. teradataml/data/binary_complex_right.csv +11 -11
  115. teradataml/data/binary_matrix_complex_left.csv +21 -21
  116. teradataml/data/binary_matrix_complex_right.csv +21 -21
  117. teradataml/data/binary_matrix_real_left.csv +21 -21
  118. teradataml/data/binary_matrix_real_right.csv +21 -21
  119. teradataml/data/blood2ageandweight.csv +26 -26
  120. teradataml/data/bmi.csv +501 -0
  121. teradataml/data/boston.csv +507 -507
  122. teradataml/data/boston2cols.csv +721 -0
  123. teradataml/data/breast_cancer.csv +570 -0
  124. teradataml/data/buoydata_mix.csv +11 -11
  125. teradataml/data/burst_data.csv +5 -5
  126. teradataml/data/burst_example.json +20 -20
  127. teradataml/data/byom_example.json +17 -17
  128. teradataml/data/bytes_table.csv +3 -3
  129. teradataml/data/cal_housing_ex_raw.csv +70 -70
  130. teradataml/data/callers.csv +7 -7
  131. teradataml/data/calls.csv +10 -10
  132. teradataml/data/cars_hist.csv +33 -33
  133. teradataml/data/cat_table.csv +24 -24
  134. teradataml/data/ccm_example.json +31 -31
  135. teradataml/data/ccm_input.csv +91 -91
  136. teradataml/data/ccm_input2.csv +13 -13
  137. teradataml/data/ccmexample.csv +101 -101
  138. teradataml/data/ccmprepare_example.json +8 -8
  139. teradataml/data/ccmprepare_input.csv +91 -91
  140. teradataml/data/cfilter_example.json +12 -12
  141. teradataml/data/changepointdetection_example.json +18 -18
  142. teradataml/data/changepointdetectionrt_example.json +8 -8
  143. teradataml/data/chi_sq.csv +2 -2
  144. teradataml/data/churn_data.csv +14 -14
  145. teradataml/data/churn_emission.csv +35 -35
  146. teradataml/data/churn_initial.csv +3 -3
  147. teradataml/data/churn_state_transition.csv +5 -5
  148. teradataml/data/citedges_2.csv +745 -745
  149. teradataml/data/citvertices_2.csv +1210 -1210
  150. teradataml/data/clicks2.csv +16 -16
  151. teradataml/data/clickstream.csv +12 -12
  152. teradataml/data/clickstream1.csv +11 -11
  153. teradataml/data/closeness_example.json +15 -15
  154. teradataml/data/complaints.csv +21 -21
  155. teradataml/data/complaints_mini.csv +3 -3
  156. teradataml/data/complaints_testtoken.csv +224 -224
  157. teradataml/data/complaints_tokens_test.csv +353 -353
  158. teradataml/data/complaints_traintoken.csv +472 -472
  159. teradataml/data/computers_category.csv +1001 -1001
  160. teradataml/data/computers_test1.csv +1252 -1252
  161. teradataml/data/computers_train1.csv +5009 -5009
  162. teradataml/data/computers_train1_clustered.csv +5009 -5009
  163. teradataml/data/confusionmatrix_example.json +9 -9
  164. teradataml/data/conversion_event_table.csv +3 -3
  165. teradataml/data/corr_input.csv +17 -17
  166. teradataml/data/correlation_example.json +11 -11
  167. teradataml/data/coxhazardratio_example.json +39 -39
  168. teradataml/data/coxph_example.json +15 -15
  169. teradataml/data/coxsurvival_example.json +28 -28
  170. teradataml/data/cpt.csv +41 -41
  171. teradataml/data/credit_ex_merged.csv +45 -45
  172. teradataml/data/customer_loyalty.csv +301 -301
  173. teradataml/data/customer_loyalty_newseq.csv +31 -31
  174. teradataml/data/customer_segmentation_test.csv +2628 -0
  175. teradataml/data/customer_segmentation_train.csv +8069 -0
  176. teradataml/data/dataframe_example.json +146 -146
  177. teradataml/data/decisionforest_example.json +37 -37
  178. teradataml/data/decisionforestpredict_example.json +38 -38
  179. teradataml/data/decisiontree_example.json +21 -21
  180. teradataml/data/decisiontreepredict_example.json +45 -45
  181. teradataml/data/dfft2_size4_real.csv +17 -17
  182. teradataml/data/dfft2_test_matrix16.csv +17 -17
  183. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  184. teradataml/data/diabetes.csv +443 -443
  185. teradataml/data/diabetes_test.csv +89 -89
  186. teradataml/data/dict_table.csv +5 -5
  187. teradataml/data/docperterm_table.csv +4 -4
  188. teradataml/data/docs/__init__.py +1 -1
  189. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  190. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  191. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  192. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  193. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  194. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  195. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  196. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  197. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  198. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  199. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  200. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  201. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  202. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  203. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  204. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  205. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  206. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  207. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  208. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  209. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  210. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  211. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  212. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  213. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  214. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  215. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  216. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  217. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
  218. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
  219. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  220. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
  221. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  222. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  223. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  224. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  225. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  226. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  227. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  228. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  229. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  230. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  231. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  232. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  233. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  234. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  235. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  236. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  237. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  238. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  239. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  240. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  241. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  242. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
  243. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  244. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  245. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  246. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  247. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  248. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  249. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  250. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  251. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
  252. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  253. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  254. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  255. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  256. teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
  257. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  258. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  259. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
  260. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  261. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  262. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  263. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
  264. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  265. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  266. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  267. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
  268. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  269. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  270. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  271. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  272. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  273. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  274. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  275. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  276. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
  277. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  278. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  279. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  280. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  281. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
  282. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
  283. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  284. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  285. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  286. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  287. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  288. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  289. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  290. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  291. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
  292. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  293. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  294. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  295. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  296. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  297. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  298. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  299. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  300. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
  301. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  302. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
  303. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
  304. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  305. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  306. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  307. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  308. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  309. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  310. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  311. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  312. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
  313. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  314. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  315. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  316. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  317. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  318. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  319. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  320. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  321. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  322. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  323. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  324. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
  325. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
  326. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
  327. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  328. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  329. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  330. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  331. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  332. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  333. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  334. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  335. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  336. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  337. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  338. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  339. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  340. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  341. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  342. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  343. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  344. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  345. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  346. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  347. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  348. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  349. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  350. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  351. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  352. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  353. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  354. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  355. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  356. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  357. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  358. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  359. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  360. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  361. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  362. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  363. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  364. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  365. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  366. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  367. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  368. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  369. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  370. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  371. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  372. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  373. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  374. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  375. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  376. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  377. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  378. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  379. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  380. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  381. teradataml/data/dtw_example.json +17 -17
  382. teradataml/data/dtw_t1.csv +11 -11
  383. teradataml/data/dtw_t2.csv +4 -4
  384. teradataml/data/dwt2d_example.json +15 -15
  385. teradataml/data/dwt_example.json +14 -14
  386. teradataml/data/dwt_filter_dim.csv +5 -5
  387. teradataml/data/emission.csv +9 -9
  388. teradataml/data/emp_table_by_dept.csv +19 -19
  389. teradataml/data/employee_info.csv +4 -4
  390. teradataml/data/employee_table.csv +6 -6
  391. teradataml/data/excluding_event_table.csv +2 -2
  392. teradataml/data/finance_data.csv +6 -6
  393. teradataml/data/finance_data2.csv +61 -61
  394. teradataml/data/finance_data3.csv +93 -93
  395. teradataml/data/fish.csv +160 -0
  396. teradataml/data/fm_blood2ageandweight.csv +26 -26
  397. teradataml/data/fmeasure_example.json +11 -11
  398. teradataml/data/followers_leaders.csv +10 -10
  399. teradataml/data/fpgrowth_example.json +12 -12
  400. teradataml/data/frequentpaths_example.json +29 -29
  401. teradataml/data/friends.csv +9 -9
  402. teradataml/data/fs_input.csv +33 -33
  403. teradataml/data/fs_input1.csv +33 -33
  404. teradataml/data/genData.csv +513 -513
  405. teradataml/data/geodataframe_example.json +39 -39
  406. teradataml/data/glass_types.csv +215 -0
  407. teradataml/data/glm_admissions_model.csv +12 -12
  408. teradataml/data/glm_example.json +56 -29
  409. teradataml/data/glml1l2_example.json +28 -28
  410. teradataml/data/glml1l2predict_example.json +54 -54
  411. teradataml/data/glmpredict_example.json +54 -54
  412. teradataml/data/gq_t1.csv +21 -21
  413. teradataml/data/hconvolve_complex_right.csv +5 -5
  414. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  415. teradataml/data/histogram_example.json +11 -11
  416. teradataml/data/hmmdecoder_example.json +78 -78
  417. teradataml/data/hmmevaluator_example.json +24 -24
  418. teradataml/data/hmmsupervised_example.json +10 -10
  419. teradataml/data/hmmunsupervised_example.json +7 -7
  420. teradataml/data/house_values.csv +12 -12
  421. teradataml/data/house_values2.csv +13 -13
  422. teradataml/data/housing_cat.csv +7 -7
  423. teradataml/data/housing_data.csv +9 -9
  424. teradataml/data/housing_test.csv +47 -47
  425. teradataml/data/housing_test_binary.csv +47 -47
  426. teradataml/data/housing_train.csv +493 -493
  427. teradataml/data/housing_train_attribute.csv +4 -4
  428. teradataml/data/housing_train_binary.csv +437 -437
  429. teradataml/data/housing_train_parameter.csv +2 -2
  430. teradataml/data/housing_train_response.csv +493 -493
  431. teradataml/data/housing_train_segment.csv +201 -0
  432. teradataml/data/ibm_stock.csv +370 -370
  433. teradataml/data/ibm_stock1.csv +370 -370
  434. teradataml/data/identitymatch_example.json +21 -21
  435. teradataml/data/idf_table.csv +4 -4
  436. teradataml/data/impressions.csv +101 -101
  437. teradataml/data/inflation.csv +21 -21
  438. teradataml/data/initial.csv +3 -3
  439. teradataml/data/insect2Cols.csv +61 -0
  440. teradataml/data/insect_sprays.csv +12 -12
  441. teradataml/data/insurance.csv +1339 -1339
  442. teradataml/data/interpolator_example.json +12 -12
  443. teradataml/data/iris_altinput.csv +481 -481
  444. teradataml/data/iris_attribute_output.csv +8 -8
  445. teradataml/data/iris_attribute_test.csv +121 -121
  446. teradataml/data/iris_attribute_train.csv +481 -481
  447. teradataml/data/iris_category_expect_predict.csv +31 -31
  448. teradataml/data/iris_data.csv +151 -0
  449. teradataml/data/iris_input.csv +151 -151
  450. teradataml/data/iris_response_train.csv +121 -121
  451. teradataml/data/iris_test.csv +31 -31
  452. teradataml/data/iris_train.csv +121 -121
  453. teradataml/data/join_table1.csv +4 -4
  454. teradataml/data/join_table2.csv +4 -4
  455. teradataml/data/jsons/anly_function_name.json +6 -6
  456. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  457. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  458. teradataml/data/jsons/byom/h2opredict.json +194 -194
  459. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  460. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  461. teradataml/data/jsons/paired_functions.json +435 -435
  462. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  463. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  464. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  465. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  466. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  467. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  468. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  469. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  470. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  471. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  472. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  473. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  474. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  475. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  476. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  477. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  478. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  479. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  480. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  481. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  482. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  483. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  484. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  485. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  486. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  487. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  488. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  489. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  490. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  491. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  492. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  493. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  494. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  495. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  496. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  497. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  498. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  499. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  500. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  501. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  502. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  503. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  504. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  505. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  506. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  507. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  508. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  509. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  510. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  511. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  512. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  513. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  514. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  515. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  516. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  517. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  518. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  519. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  520. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  521. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  522. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  523. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  524. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  525. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  526. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  527. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  528. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  529. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  531. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  532. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  533. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  534. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  535. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  536. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  537. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  539. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  540. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  541. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  542. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  543. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  544. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  545. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  546. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  547. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  548. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  549. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  550. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  551. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  552. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  553. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  554. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  555. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  556. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  557. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  558. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  559. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  560. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  561. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  562. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  563. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  564. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  565. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  566. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  567. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  568. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
  569. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  570. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  571. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  572. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  573. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  574. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  575. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  576. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  577. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  578. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  579. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
  580. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  581. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  582. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  583. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
  584. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
  585. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  586. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  587. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
  588. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  589. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  590. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  591. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
  592. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  593. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  594. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  595. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
  596. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  597. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  598. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  599. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  600. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  601. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  602. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  603. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  604. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  605. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  606. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  607. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  608. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  609. teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
  610. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  611. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  612. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  613. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  614. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  615. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  616. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  617. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  618. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
  619. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
  620. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
  621. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  622. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  623. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  624. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  625. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  626. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  627. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  628. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  629. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  630. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  631. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  632. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  633. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  634. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  635. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
  636. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
  637. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
  638. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  639. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  640. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  641. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  642. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  643. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  644. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  645. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  646. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  647. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  648. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  649. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  650. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  651. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  653. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  654. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  655. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  656. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  657. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  658. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  659. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  660. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  661. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  662. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  663. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  664. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  665. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  666. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  667. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  668. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  669. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  670. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  671. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  672. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  673. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  674. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  675. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  676. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  677. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  678. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  679. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  680. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  681. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  682. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  683. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  684. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  685. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  686. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  687. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  688. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  689. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  690. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  691. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  692. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  693. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  694. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  695. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  696. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  697. teradataml/data/kmeans_example.json +22 -17
  698. teradataml/data/kmeans_table.csv +10 -0
  699. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  700. teradataml/data/knn_example.json +18 -18
  701. teradataml/data/knnrecommender_example.json +6 -6
  702. teradataml/data/knnrecommenderpredict_example.json +12 -12
  703. teradataml/data/lar_example.json +17 -17
  704. teradataml/data/larpredict_example.json +30 -30
  705. teradataml/data/lc_new_predictors.csv +5 -5
  706. teradataml/data/lc_new_reference.csv +9 -9
  707. teradataml/data/lda_example.json +8 -8
  708. teradataml/data/ldainference_example.json +14 -14
  709. teradataml/data/ldatopicsummary_example.json +8 -8
  710. teradataml/data/levendist_input.csv +13 -13
  711. teradataml/data/levenshteindistance_example.json +10 -10
  712. teradataml/data/linreg_example.json +9 -9
  713. teradataml/data/load_example_data.py +326 -323
  714. teradataml/data/loan_prediction.csv +295 -295
  715. teradataml/data/lungcancer.csv +138 -138
  716. teradataml/data/mappingdata.csv +12 -12
  717. teradataml/data/milk_timeseries.csv +157 -157
  718. teradataml/data/min_max_titanic.csv +4 -4
  719. teradataml/data/minhash_example.json +6 -6
  720. teradataml/data/ml_ratings.csv +7547 -7547
  721. teradataml/data/ml_ratings_10.csv +2445 -2445
  722. teradataml/data/model1_table.csv +5 -5
  723. teradataml/data/model2_table.csv +5 -5
  724. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  725. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  726. teradataml/data/modularity_example.json +12 -12
  727. teradataml/data/movavg_example.json +7 -7
  728. teradataml/data/mtx1.csv +7 -7
  729. teradataml/data/mtx2.csv +13 -13
  730. teradataml/data/multi_model_classification.csv +401 -0
  731. teradataml/data/multi_model_regression.csv +401 -0
  732. teradataml/data/mvdfft8.csv +9 -9
  733. teradataml/data/naivebayes_example.json +9 -9
  734. teradataml/data/naivebayespredict_example.json +19 -19
  735. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  736. teradataml/data/naivebayestextclassifier_example.json +8 -8
  737. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  738. teradataml/data/name_Find_configure.csv +10 -10
  739. teradataml/data/namedentityfinder_example.json +14 -14
  740. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  741. teradataml/data/namedentityfindertrainer_example.json +6 -6
  742. teradataml/data/nb_iris_input_test.csv +31 -31
  743. teradataml/data/nb_iris_input_train.csv +121 -121
  744. teradataml/data/nbp_iris_model.csv +13 -13
  745. teradataml/data/ner_extractor_text.csv +2 -2
  746. teradataml/data/ner_sports_test2.csv +29 -29
  747. teradataml/data/ner_sports_train.csv +501 -501
  748. teradataml/data/nerevaluator_example.json +5 -5
  749. teradataml/data/nerextractor_example.json +18 -18
  750. teradataml/data/nermem_sports_test.csv +17 -17
  751. teradataml/data/nermem_sports_train.csv +50 -50
  752. teradataml/data/nertrainer_example.json +6 -6
  753. teradataml/data/ngrams_example.json +6 -6
  754. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  755. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  756. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  757. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  758. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  759. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  760. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  761. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  762. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  763. teradataml/data/npath_example.json +23 -23
  764. teradataml/data/ntree_example.json +14 -14
  765. teradataml/data/numeric_strings.csv +4 -4
  766. teradataml/data/numerics.csv +4 -4
  767. teradataml/data/ocean_buoy.csv +17 -17
  768. teradataml/data/ocean_buoy2.csv +17 -17
  769. teradataml/data/ocean_buoys.csv +27 -27
  770. teradataml/data/ocean_buoys2.csv +10 -10
  771. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  772. teradataml/data/ocean_buoys_seq.csv +29 -29
  773. teradataml/data/onehot_encoder_train.csv +4 -0
  774. teradataml/data/openml_example.json +92 -0
  775. teradataml/data/optional_event_table.csv +4 -4
  776. teradataml/data/orders1.csv +11 -11
  777. teradataml/data/orders1_12.csv +12 -12
  778. teradataml/data/orders_ex.csv +4 -4
  779. teradataml/data/pack_example.json +8 -8
  780. teradataml/data/package_tracking.csv +19 -19
  781. teradataml/data/package_tracking_pti.csv +18 -18
  782. teradataml/data/pagerank_example.json +13 -13
  783. teradataml/data/paragraphs_input.csv +6 -6
  784. teradataml/data/pathanalyzer_example.json +7 -7
  785. teradataml/data/pathgenerator_example.json +7 -7
  786. teradataml/data/phrases.csv +7 -7
  787. teradataml/data/pivot_example.json +8 -8
  788. teradataml/data/pivot_input.csv +22 -22
  789. teradataml/data/playerRating.csv +31 -31
  790. teradataml/data/postagger_example.json +6 -6
  791. teradataml/data/posttagger_output.csv +44 -44
  792. teradataml/data/production_data.csv +16 -16
  793. teradataml/data/production_data2.csv +7 -7
  794. teradataml/data/randomsample_example.json +31 -31
  795. teradataml/data/randomwalksample_example.json +8 -8
  796. teradataml/data/rank_table.csv +6 -6
  797. teradataml/data/ref_mobile_data.csv +4 -4
  798. teradataml/data/ref_mobile_data_dense.csv +2 -2
  799. teradataml/data/ref_url.csv +17 -17
  800. teradataml/data/restaurant_reviews.csv +7 -7
  801. teradataml/data/river_data.csv +145 -145
  802. teradataml/data/roc_example.json +7 -7
  803. teradataml/data/roc_input.csv +101 -101
  804. teradataml/data/rule_inputs.csv +6 -6
  805. teradataml/data/rule_table.csv +2 -2
  806. teradataml/data/sales.csv +7 -7
  807. teradataml/data/sales_transaction.csv +501 -501
  808. teradataml/data/salesdata.csv +342 -342
  809. teradataml/data/sample_cities.csv +2 -2
  810. teradataml/data/sample_shapes.csv +10 -10
  811. teradataml/data/sample_streets.csv +2 -2
  812. teradataml/data/sampling_example.json +15 -15
  813. teradataml/data/sax_example.json +8 -8
  814. teradataml/data/scale_attributes.csv +3 -0
  815. teradataml/data/scale_example.json +74 -23
  816. teradataml/data/scale_housing.csv +11 -11
  817. teradataml/data/scale_housing_test.csv +6 -6
  818. teradataml/data/scale_input_part_sparse.csv +31 -0
  819. teradataml/data/scale_input_partitioned.csv +16 -0
  820. teradataml/data/scale_input_sparse.csv +11 -0
  821. teradataml/data/scale_parameters.csv +3 -0
  822. teradataml/data/scale_stat.csv +11 -11
  823. teradataml/data/scalebypartition_example.json +13 -13
  824. teradataml/data/scalemap_example.json +13 -13
  825. teradataml/data/scalesummary_example.json +12 -12
  826. teradataml/data/score_category.csv +101 -101
  827. teradataml/data/score_summary.csv +4 -4
  828. teradataml/data/script_example.json +9 -9
  829. teradataml/data/scripts/deploy_script.py +84 -0
  830. teradataml/data/scripts/mapper.R +20 -0
  831. teradataml/data/scripts/mapper.py +15 -15
  832. teradataml/data/scripts/mapper_replace.py +15 -15
  833. teradataml/data/scripts/sklearn/__init__.py +0 -0
  834. teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
  835. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
  836. teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
  837. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
  838. teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
  839. teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
  840. teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
  841. teradataml/data/seeds.csv +10 -10
  842. teradataml/data/sentenceextractor_example.json +6 -6
  843. teradataml/data/sentiment_extract_input.csv +11 -11
  844. teradataml/data/sentiment_train.csv +16 -16
  845. teradataml/data/sentiment_word.csv +20 -20
  846. teradataml/data/sentiment_word_input.csv +19 -19
  847. teradataml/data/sentimentextractor_example.json +24 -24
  848. teradataml/data/sentimenttrainer_example.json +8 -8
  849. teradataml/data/sequence_table.csv +10 -10
  850. teradataml/data/seriessplitter_example.json +7 -7
  851. teradataml/data/sessionize_example.json +17 -17
  852. teradataml/data/sessionize_table.csv +116 -116
  853. teradataml/data/setop_test1.csv +24 -24
  854. teradataml/data/setop_test2.csv +22 -22
  855. teradataml/data/soc_nw_edges.csv +10 -10
  856. teradataml/data/soc_nw_vertices.csv +7 -7
  857. teradataml/data/souvenir_timeseries.csv +167 -167
  858. teradataml/data/sparse_iris_attribute.csv +5 -5
  859. teradataml/data/sparse_iris_test.csv +121 -121
  860. teradataml/data/sparse_iris_train.csv +601 -601
  861. teradataml/data/star1.csv +6 -6
  862. teradataml/data/state_transition.csv +5 -5
  863. teradataml/data/stock_data.csv +53 -53
  864. teradataml/data/stock_movement.csv +11 -11
  865. teradataml/data/stock_vol.csv +76 -76
  866. teradataml/data/stop_words.csv +8 -8
  867. teradataml/data/store_sales.csv +37 -37
  868. teradataml/data/stringsimilarity_example.json +7 -7
  869. teradataml/data/strsimilarity_input.csv +13 -13
  870. teradataml/data/students.csv +101 -101
  871. teradataml/data/svm_iris_input_test.csv +121 -121
  872. teradataml/data/svm_iris_input_train.csv +481 -481
  873. teradataml/data/svm_iris_model.csv +7 -7
  874. teradataml/data/svmdense_example.json +9 -9
  875. teradataml/data/svmdensepredict_example.json +18 -18
  876. teradataml/data/svmsparse_example.json +7 -7
  877. teradataml/data/svmsparsepredict_example.json +13 -13
  878. teradataml/data/svmsparsesummary_example.json +7 -7
  879. teradataml/data/target_mobile_data.csv +13 -13
  880. teradataml/data/target_mobile_data_dense.csv +5 -5
  881. teradataml/data/templatedata.csv +1201 -1201
  882. teradataml/data/templates/open_source_ml.json +9 -0
  883. teradataml/data/teradataml_example.json +150 -1
  884. teradataml/data/test_classification.csv +101 -0
  885. teradataml/data/test_loan_prediction.csv +53 -53
  886. teradataml/data/test_pacf_12.csv +37 -37
  887. teradataml/data/test_prediction.csv +101 -0
  888. teradataml/data/test_regression.csv +101 -0
  889. teradataml/data/test_river2.csv +109 -109
  890. teradataml/data/text_inputs.csv +6 -6
  891. teradataml/data/textchunker_example.json +7 -7
  892. teradataml/data/textclassifier_example.json +6 -6
  893. teradataml/data/textclassifier_input.csv +7 -7
  894. teradataml/data/textclassifiertrainer_example.json +6 -6
  895. teradataml/data/textmorph_example.json +5 -5
  896. teradataml/data/textparser_example.json +15 -15
  897. teradataml/data/texttagger_example.json +11 -11
  898. teradataml/data/texttokenizer_example.json +6 -6
  899. teradataml/data/texttrainer_input.csv +11 -11
  900. teradataml/data/tf_example.json +6 -6
  901. teradataml/data/tfidf_example.json +13 -13
  902. teradataml/data/tfidf_input1.csv +201 -201
  903. teradataml/data/tfidf_train.csv +6 -6
  904. teradataml/data/time_table1.csv +535 -535
  905. teradataml/data/time_table2.csv +14 -14
  906. teradataml/data/timeseriesdata.csv +1601 -1601
  907. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  908. teradataml/data/titanic.csv +892 -892
  909. teradataml/data/token_table.csv +696 -696
  910. teradataml/data/train_multiclass.csv +101 -0
  911. teradataml/data/train_regression.csv +101 -0
  912. teradataml/data/train_regression_multiple_labels.csv +101 -0
  913. teradataml/data/train_tracking.csv +27 -27
  914. teradataml/data/transformation_table.csv +5 -5
  915. teradataml/data/transformation_table_new.csv +1 -1
  916. teradataml/data/tv_spots.csv +16 -16
  917. teradataml/data/twod_climate_data.csv +117 -117
  918. teradataml/data/uaf_example.json +475 -475
  919. teradataml/data/univariatestatistics_example.json +8 -8
  920. teradataml/data/unpack_example.json +9 -9
  921. teradataml/data/unpivot_example.json +9 -9
  922. teradataml/data/unpivot_input.csv +8 -8
  923. teradataml/data/us_air_pass.csv +36 -36
  924. teradataml/data/us_population.csv +624 -624
  925. teradataml/data/us_states_shapes.csv +52 -52
  926. teradataml/data/varmax_example.json +17 -17
  927. teradataml/data/vectordistance_example.json +25 -25
  928. teradataml/data/ville_climatedata.csv +121 -121
  929. teradataml/data/ville_tempdata.csv +12 -12
  930. teradataml/data/ville_tempdata1.csv +12 -12
  931. teradataml/data/ville_temperature.csv +11 -11
  932. teradataml/data/waveletTable.csv +1605 -1605
  933. teradataml/data/waveletTable2.csv +1605 -1605
  934. teradataml/data/weightedmovavg_example.json +8 -8
  935. teradataml/data/wft_testing.csv +5 -5
  936. teradataml/data/wine_data.csv +1600 -0
  937. teradataml/data/word_embed_input_table1.csv +5 -5
  938. teradataml/data/word_embed_input_table2.csv +4 -4
  939. teradataml/data/word_embed_model.csv +22 -22
  940. teradataml/data/words_input.csv +13 -13
  941. teradataml/data/xconvolve_complex_left.csv +6 -6
  942. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  943. teradataml/data/xgboost_example.json +35 -35
  944. teradataml/data/xgboostpredict_example.json +31 -31
  945. teradataml/data/ztest_example.json +16 -0
  946. teradataml/dataframe/copy_to.py +1769 -1698
  947. teradataml/dataframe/data_transfer.py +2812 -2745
  948. teradataml/dataframe/dataframe.py +17630 -16946
  949. teradataml/dataframe/dataframe_utils.py +1875 -1740
  950. teradataml/dataframe/fastload.py +794 -603
  951. teradataml/dataframe/indexer.py +424 -424
  952. teradataml/dataframe/setop.py +1179 -1166
  953. teradataml/dataframe/sql.py +10174 -6432
  954. teradataml/dataframe/sql_function_parameters.py +439 -388
  955. teradataml/dataframe/sql_functions.py +652 -652
  956. teradataml/dataframe/sql_interfaces.py +220 -220
  957. teradataml/dataframe/vantage_function_types.py +674 -630
  958. teradataml/dataframe/window.py +693 -692
  959. teradataml/dbutils/__init__.py +3 -3
  960. teradataml/dbutils/dbutils.py +1167 -1150
  961. teradataml/dbutils/filemgr.py +267 -267
  962. teradataml/gen_ai/__init__.py +2 -2
  963. teradataml/gen_ai/convAI.py +472 -472
  964. teradataml/geospatial/__init__.py +3 -3
  965. teradataml/geospatial/geodataframe.py +1105 -1094
  966. teradataml/geospatial/geodataframecolumn.py +392 -387
  967. teradataml/geospatial/geometry_types.py +925 -925
  968. teradataml/hyperparameter_tuner/__init__.py +1 -1
  969. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  970. teradataml/hyperparameter_tuner/utils.py +281 -187
  971. teradataml/lib/aed_0_1.dll +0 -0
  972. teradataml/lib/libaed_0_1.dylib +0 -0
  973. teradataml/lib/libaed_0_1.so +0 -0
  974. teradataml/libaed_0_1.dylib +0 -0
  975. teradataml/libaed_0_1.so +0 -0
  976. teradataml/opensource/__init__.py +1 -0
  977. teradataml/opensource/sklearn/__init__.py +1 -0
  978. teradataml/opensource/sklearn/_class.py +255 -0
  979. teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
  980. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  981. teradataml/opensource/sklearn/constants.py +54 -0
  982. teradataml/options/__init__.py +130 -124
  983. teradataml/options/configure.py +358 -336
  984. teradataml/options/display.py +176 -176
  985. teradataml/plot/__init__.py +2 -2
  986. teradataml/plot/axis.py +1388 -1388
  987. teradataml/plot/constants.py +15 -15
  988. teradataml/plot/figure.py +398 -398
  989. teradataml/plot/plot.py +760 -760
  990. teradataml/plot/query_generator.py +83 -83
  991. teradataml/plot/subplot.py +216 -216
  992. teradataml/scriptmgmt/UserEnv.py +3791 -3761
  993. teradataml/scriptmgmt/__init__.py +3 -3
  994. teradataml/scriptmgmt/lls_utils.py +1719 -1604
  995. teradataml/series/series.py +532 -532
  996. teradataml/series/series_utils.py +71 -71
  997. teradataml/table_operators/Apply.py +949 -917
  998. teradataml/table_operators/Script.py +1718 -1982
  999. teradataml/table_operators/TableOperator.py +1255 -1616
  1000. teradataml/table_operators/__init__.py +2 -3
  1001. teradataml/table_operators/apply_query_generator.py +262 -262
  1002. teradataml/table_operators/query_generator.py +507 -507
  1003. teradataml/table_operators/table_operator_query_generator.py +460 -460
  1004. teradataml/table_operators/table_operator_util.py +631 -639
  1005. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  1006. teradataml/table_operators/templates/dataframe_map.template +176 -176
  1007. teradataml/table_operators/templates/script_executor.template +170 -170
  1008. teradataml/utils/dtypes.py +684 -684
  1009. teradataml/utils/internal_buffer.py +84 -84
  1010. teradataml/utils/print_versions.py +205 -205
  1011. teradataml/utils/utils.py +410 -410
  1012. teradataml/utils/validators.py +2277 -2115
  1013. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
  1014. teradataml-20.0.0.1.dist-info/RECORD +1056 -0
  1015. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
  1016. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
  1017. teradataml/analytics/mle/AdaBoost.py +0 -651
  1018. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1019. teradataml/analytics/mle/Antiselect.py +0 -342
  1020. teradataml/analytics/mle/Arima.py +0 -641
  1021. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1022. teradataml/analytics/mle/Attribution.py +0 -1070
  1023. teradataml/analytics/mle/Betweenness.py +0 -658
  1024. teradataml/analytics/mle/Burst.py +0 -711
  1025. teradataml/analytics/mle/CCM.py +0 -600
  1026. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1027. teradataml/analytics/mle/CFilter.py +0 -460
  1028. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1029. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1030. teradataml/analytics/mle/Closeness.py +0 -737
  1031. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1032. teradataml/analytics/mle/Correlation.py +0 -477
  1033. teradataml/analytics/mle/Correlation2.py +0 -573
  1034. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1035. teradataml/analytics/mle/CoxPH.py +0 -556
  1036. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1037. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1038. teradataml/analytics/mle/DTW.py +0 -623
  1039. teradataml/analytics/mle/DWT.py +0 -564
  1040. teradataml/analytics/mle/DWT2D.py +0 -599
  1041. teradataml/analytics/mle/DecisionForest.py +0 -716
  1042. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1043. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1044. teradataml/analytics/mle/DecisionTree.py +0 -830
  1045. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1046. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1047. teradataml/analytics/mle/FMeasure.py +0 -402
  1048. teradataml/analytics/mle/FPGrowth.py +0 -734
  1049. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1050. teradataml/analytics/mle/GLM.py +0 -558
  1051. teradataml/analytics/mle/GLML1L2.py +0 -547
  1052. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1053. teradataml/analytics/mle/GLMPredict.py +0 -529
  1054. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1055. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1056. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1057. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1058. teradataml/analytics/mle/Histogram.py +0 -561
  1059. teradataml/analytics/mle/IDWT.py +0 -476
  1060. teradataml/analytics/mle/IDWT2D.py +0 -493
  1061. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1062. teradataml/analytics/mle/Interpolator.py +0 -918
  1063. teradataml/analytics/mle/KMeans.py +0 -485
  1064. teradataml/analytics/mle/KNN.py +0 -627
  1065. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1066. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1067. teradataml/analytics/mle/LAR.py +0 -439
  1068. teradataml/analytics/mle/LARPredict.py +0 -478
  1069. teradataml/analytics/mle/LDA.py +0 -548
  1070. teradataml/analytics/mle/LDAInference.py +0 -492
  1071. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1072. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1073. teradataml/analytics/mle/LinReg.py +0 -433
  1074. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1075. teradataml/analytics/mle/MinHash.py +0 -544
  1076. teradataml/analytics/mle/Modularity.py +0 -587
  1077. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1078. teradataml/analytics/mle/NERExtractor.py +0 -595
  1079. teradataml/analytics/mle/NERTrainer.py +0 -458
  1080. teradataml/analytics/mle/NGrams.py +0 -570
  1081. teradataml/analytics/mle/NPath.py +0 -634
  1082. teradataml/analytics/mle/NTree.py +0 -549
  1083. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1084. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1085. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1086. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1087. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1088. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1089. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1090. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1091. teradataml/analytics/mle/POSTagger.py +0 -417
  1092. teradataml/analytics/mle/Pack.py +0 -411
  1093. teradataml/analytics/mle/PageRank.py +0 -535
  1094. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1095. teradataml/analytics/mle/PathGenerator.py +0 -367
  1096. teradataml/analytics/mle/PathStart.py +0 -464
  1097. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1098. teradataml/analytics/mle/Pivot.py +0 -471
  1099. teradataml/analytics/mle/ROC.py +0 -425
  1100. teradataml/analytics/mle/RandomSample.py +0 -637
  1101. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1102. teradataml/analytics/mle/SAX.py +0 -779
  1103. teradataml/analytics/mle/SVMDense.py +0 -677
  1104. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1105. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1106. teradataml/analytics/mle/SVMSparse.py +0 -557
  1107. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1108. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1109. teradataml/analytics/mle/Sampling.py +0 -549
  1110. teradataml/analytics/mle/Scale.py +0 -565
  1111. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1112. teradataml/analytics/mle/ScaleMap.py +0 -378
  1113. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1114. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1115. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1116. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1117. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1118. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1119. teradataml/analytics/mle/Sessionize.py +0 -475
  1120. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1121. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1122. teradataml/analytics/mle/TF.py +0 -389
  1123. teradataml/analytics/mle/TFIDF.py +0 -504
  1124. teradataml/analytics/mle/TextChunker.py +0 -414
  1125. teradataml/analytics/mle/TextClassifier.py +0 -399
  1126. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1127. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1128. teradataml/analytics/mle/TextMorph.py +0 -494
  1129. teradataml/analytics/mle/TextParser.py +0 -623
  1130. teradataml/analytics/mle/TextTagger.py +0 -530
  1131. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1132. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1133. teradataml/analytics/mle/Unpack.py +0 -526
  1134. teradataml/analytics/mle/Unpivot.py +0 -438
  1135. teradataml/analytics/mle/VarMax.py +0 -776
  1136. teradataml/analytics/mle/VectorDistance.py +0 -762
  1137. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1138. teradataml/analytics/mle/XGBoost.py +0 -842
  1139. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1140. teradataml/analytics/mle/__init__.py +0 -123
  1141. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1142. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1143. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1144. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1145. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1146. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1147. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1148. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1149. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1150. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1151. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1152. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1153. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1154. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1155. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1156. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1157. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1158. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1159. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1160. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1161. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1162. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1163. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1164. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1165. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1166. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1167. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1168. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1169. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1170. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1171. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1172. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1173. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1174. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1175. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1176. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1177. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1178. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1179. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1180. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1181. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1182. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1183. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1184. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1185. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1186. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1187. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1188. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1189. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1190. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1191. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1192. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1193. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1194. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1195. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1196. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1197. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1198. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1199. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1200. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1201. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1202. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1203. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1204. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1205. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1206. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1207. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1208. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1209. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1210. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1211. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1212. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1213. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1214. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1215. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1216. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1217. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1218. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1219. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1220. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1221. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1222. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1223. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1224. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1225. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1226. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1227. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1228. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1229. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1230. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1231. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1232. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1233. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1234. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1235. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1236. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1237. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1238. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1239. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1240. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1241. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1242. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1243. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1244. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1245. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1246. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1247. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1248. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1249. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1250. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1251. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1252. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1253. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1254. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1255. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1256. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1257. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1258. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1259. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1260. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1261. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1262. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1263. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1264. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1265. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1266. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1267. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1268. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1269. teradataml/analytics/sqle/Antiselect.py +0 -321
  1270. teradataml/analytics/sqle/Attribution.py +0 -603
  1271. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1272. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1273. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1274. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1275. teradataml/analytics/sqle/NPath.py +0 -632
  1276. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1277. teradataml/analytics/sqle/Pack.py +0 -388
  1278. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1279. teradataml/analytics/sqle/Sessionize.py +0 -390
  1280. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1281. teradataml/analytics/sqle/Unpack.py +0 -503
  1282. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1283. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1284. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1285. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1286. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1287. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1288. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1289. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1290. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1291. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1292. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1293. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1294. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1295. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1296. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1297. teradataml/catalog/model_cataloging.py +0 -980
  1298. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1299. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1300. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1301. teradataml/table_operators/sandbox_container_util.py +0 -643
  1302. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1303. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
@@ -1,11 +1,11 @@
1
- "TD_TIMECODE", "buoyid", "salinity", "temperature", "oceanname", "jsoncol"
2
- 2016-01-06 09:08:00.000000,0,33,8.113e+01,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""125""}]}"
3
- 2016-01-06 09:08:02.000000,2,33,9.717e+01,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""104""}]}"
4
- 2016-01-06 09:08:00.000000,0,55,8.113e+01,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""125""}]}"
5
- 2016-01-06 09:08:02.000000,2,55,9.717e+01,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""104""}]}"
6
- 2016-01-06 09:08:01.000000,1,33,7.511e+01,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""113""}]}"
7
- 2016-01-06 09:08:03.000000,3,33,1.0419e+02,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""117""}]}"
8
- 2016-01-06 09:08:01.000000,1,55,7.511e+01,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""113""}]}"
9
- 2016-01-06 09:08:03.000000,3,55,1.0419e+02,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""117""}]}"
10
- 2016-01-06 09:08:04.000000,4,33,1.0721e+02,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""113""}]}"
11
- 2016-01-06 09:08:04.000000,4,55,1.0721e+02,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""113""}]}"
1
+ "TD_TIMECODE", "buoyid", "salinity", "temperature", "oceanname", "jsoncol"
2
+ 2016-01-06 09:08:00.000000,0,33,8.113e+01,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""125""}]}"
3
+ 2016-01-06 09:08:02.000000,2,33,9.717e+01,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""104""}]}"
4
+ 2016-01-06 09:08:00.000000,0,55,8.113e+01,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""125""}]}"
5
+ 2016-01-06 09:08:02.000000,2,55,9.717e+01,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""104""}]}"
6
+ 2016-01-06 09:08:01.000000,1,33,7.511e+01,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""113""}]}"
7
+ 2016-01-06 09:08:03.000000,3,33,1.0419e+02,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""117""}]}"
8
+ 2016-01-06 09:08:01.000000,1,55,7.511e+01,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""113""}]}"
9
+ 2016-01-06 09:08:03.000000,3,55,1.0419e+02,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""117""}]}"
10
+ 2016-01-06 09:08:04.000000,4,33,1.0721e+02,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""113""}]}"
11
+ 2016-01-06 09:08:04.000000,4,55,1.0721e+02,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""113""}]}"
@@ -1,5 +1,5 @@
1
- "id","start_time_column","end_time_column","num_custs"
2
- 1,2010-08-05,2010-08-10,400
3
- 1,2010-08-03,2010-08-09,500
4
- 1,2010-08-04,2010-08-08,200
5
- 1,2010-08-01,2010-08-04,600
1
+ "id","start_time_column","end_time_column","num_custs"
2
+ 1,2010-08-05,2010-08-10,400
3
+ 1,2010-08-03,2010-08-09,500
4
+ 1,2010-08-04,2010-08-08,200
5
+ 1,2010-08-01,2010-08-04,600
@@ -1,21 +1,21 @@
1
- {
2
- "burst_data": {
3
- "id": "integer",
4
- "start_time_column": "date",
5
- "end_time_column": "date",
6
- "num_custs": "real"
7
- },
8
- "finance_data": {
9
- "id": "integer",
10
- "start_time_column": "date",
11
- "end_time_column": "date",
12
- "expenditure": "real",
13
- "income": "real",
14
- "investment": "real"
15
- },
16
- "time_table2": {
17
- "id": "integer",
18
- "burst_start": "date",
19
- "burst_end": "date"
20
- }
1
+ {
2
+ "burst_data": {
3
+ "id": "integer",
4
+ "start_time_column": "date",
5
+ "end_time_column": "date",
6
+ "num_custs": "real"
7
+ },
8
+ "finance_data": {
9
+ "id": "integer",
10
+ "start_time_column": "date",
11
+ "end_time_column": "date",
12
+ "expenditure": "real",
13
+ "income": "real",
14
+ "investment": "real"
15
+ },
16
+ "time_table2": {
17
+ "id": "integer",
18
+ "burst_start": "date",
19
+ "burst_end": "date"
20
+ }
21
21
  }
@@ -1,18 +1,18 @@
1
- {
2
- "iris_test": {
3
- "id" : "integer",
4
- "sepal_length" : "float",
5
- "sepal_width" : "float",
6
- "petal_length" : "float",
7
- "petal_width" : "float",
8
- "species": "integer"
9
- },
10
- "iris_input": {
11
- "id" : "integer",
12
- "sepal_length" : "float",
13
- "sepal_width" : "float",
14
- "petal_length" : "float",
15
- "petal_width" : "float",
16
- "species": "integer"
17
- }
1
+ {
2
+ "iris_test": {
3
+ "id" : "integer",
4
+ "sepal_length" : "float",
5
+ "sepal_width" : "float",
6
+ "petal_length" : "float",
7
+ "petal_width" : "float",
8
+ "species": "integer"
9
+ },
10
+ "iris_input": {
11
+ "id" : "integer",
12
+ "sepal_length" : "float",
13
+ "sepal_width" : "float",
14
+ "petal_length" : "float",
15
+ "petal_width" : "float",
16
+ "species": "integer"
17
+ }
18
18
  }
@@ -1,4 +1,4 @@
1
- id_col,byte_col,varbyte_col,blob_col
2
- 2,a,627A7863,abcd1223
3
- 1,b,616263643132,31616263
1
+ id_col,byte_col,varbyte_col,blob_col
2
+ 2,a,627A7863,abcd1223
3
+ 1,b,616263643132,31616263
4
4
  0,c,62717765,30616263
@@ -1,70 +1,70 @@
1
- "id","MedInc","HouseAge","AveRooms","AveBedrms","Population","AveOccup","Latitude","Longitude","MedHouseVal","pi"
2
- 18760,3.8323e+00,1.6e+01,5.9978213507625275e+00,1.0762527233115469e+00,1.414e+03,3.0806100217864922e+00,4.06e+01,-1.2225e+02,1.283e+00,61
3
- 244,2.3906e+00,4.4e+01,4.865573770491803e+00,1.1639344262295082e+00,2.269e+03,3.719672131147541e+00,3.778e+01,-1.2222e+02,1.117e+00,0
4
- 5300,1.583e+00,1.9e+01,3.1481481481481484e+00,1.0454840805718e+00,3.751e+03,2.437296946068876e+00,3.407e+01,-1.1845e+02,3.5e+00,12
5
- 3687,2.9028e+00,1.1e+01,4.013207547169811e+00,1.0962264150943397e+00,1.989e+03,3.7528301886792454e+00,3.422e+01,-1.1837e+02,1.741e+00,8
6
- 5769,2.8342e+00,3.5e+01,3.923076923076923e+00,1.0671550671550671e+00,2.401e+03,2.9316239316239314e+00,3.416e+01,-1.183e+02,2.568e+00,15
7
- 2833,1.3527e+00,3e+01,2.2475247524752477e+00,7.425742574257426e-01,1.69e+02,1.6732673267326732e+00,3.539e+01,-1.1902e+02,6e-01,6
8
- 686,3.4375e+00,3e+01,4.290322580645161e+00,9.6415770609319e-01,6.95e+02,2.4910394265232974e+00,3.769e+01,-1.2212e+02,1.578e+00,2
9
- 18022,6.1648e+00,3.5e+01,5.850574712643678e+00,9.712643678160919e-01,4.84e+02,2.781609195402299e+00,3.725e+01,-1.2196e+02,3.719e+00,58
10
- 10661,1.00757e+01,1.6e+01,6.147826086956521e+00,8.304347826086956e-01,6.35e+02,2.760869565217391e+00,3.366e+01,-1.1781e+02,3.839e+00,27
11
- 19839,1.5714e+00,3.9e+01,3.830357142857143e+00,1.0178571428571428e+00,1.222e+03,5.455357142857143e+00,3.652e+01,-1.1929e+02,4.3e-01,67
12
- 9454,1.2281e+00,2.5e+01,5.503978779840849e+00,1.1538461538461537e+00,9.91e+02,2.6286472148541113e+00,3.977e+01,-1.2323e+02,6.03e-01,26
13
- 15391,4.7647e+00,1.2e+01,6.241269841269841e+00,1.0603174603174603e+00,3.129e+03,3.311111111111111e+00,3.326e+01,-1.1698e+02,2.541e+00,44
14
- 10966,3.9219e+00,3.5e+01,4.888586956521739e+00,9.320652173913043e-01,1.239e+03,3.3668478260869565e+00,3.377e+01,-1.1789e+02,1.896e+00,28
15
- 20348,2.8942e+00,3.9e+01,4.333333333333333e+00,1.0909090909090908e+00,1.13e+02,3.4242424242424243e+00,3.419e+01,-1.1905e+02,2.75e+00,68
16
- 11246,3.1087e+00,2.4e+01,4.735015772870662e+00,1.0157728706624605e+00,1.495e+03,2.358044164037855e+00,3.382e+01,-1.18e+02,2.028e+00,31
17
- 14365,2.1635e+00,4.3e+01,4.533333333333333e+00,9.952380952380953e-01,3.92e+02,1.8666666666666667e+00,3.272e+01,-1.1723e+02,2.442e+00,38
18
- 8783,3.3958e+00,3.8e+01,5.266447368421052e+00,1.1578947368421053e+00,7.11e+02,2.338815789473684e+00,3.379e+01,-1.1831e+02,2.5e+00,23
19
- 8987,8.6718e+00,3.2e+01,7.073943661971831e+00,9.929577464788732e-01,1.4e+03,2.464788732394366e+00,3.399e+01,-1.1837e+02,4.391e+00,25
20
- 5328,2.7679e+00,2.3e+01,3.0386784850926674e+00,1.064464141821112e+00,2.031e+03,1.6365834004834812e+00,3.404e+01,-1.1845e+02,2.775e+00,13
21
- 15749,3.3679e+00,5.2e+01,4.613412228796844e+00,1.0808678500986193e+00,1.09e+03,2.1499013806706113e+00,3.777e+01,-1.2245e+02,3.5e+00,47
22
- 16102,4.2644e+00,4.6e+01,4.756410256410256e+00,1.0256410256410255e+00,1.272e+03,2.717948717948718e+00,3.776e+01,-1.225e+02,2.841e+00,50
23
- 5233,1.7212e+00,3.9e+01,4.584905660377358e+00,1.030188679245283e+00,1.211e+03,4.569811320754717e+00,3.394e+01,-1.1824e+02,9.55e-01,11
24
- 18799,2.225e+00,2.6e+01,5.742718446601942e+00,1.3398058252427185e+00,5.13e+02,2.4902912621359223e+00,4.097e+01,-1.2189e+02,5.2e-01,62
25
- 14870,1.858e+00,2.3e+01,3.9012048192771083e+00,1.0771084337349397e+00,1.025e+03,2.4698795180722892e+00,3.264e+01,-1.1711e+02,6.75e-01,40
26
- 6558,6.827e+00,3.6e+01,7.021428571428571e+00,1.0357142857142858e+00,1.897e+03,2.71e+00,3.42e+01,-1.1811e+02,3.594e+00,19
27
- 19789,1.125e+00,2.3e+01,6.130434782608695e+00,2.5652173913043477e+00,4.7e+01,2.0434782608695654e+00,4.099e+01,-1.2335e+02,6.6e-01,66
28
- 670,3.7813e+00,3.6e+01,4.9035087719298245e+00,9.605263157894737e-01,6.25e+02,2.741228070175439e+00,3.769e+01,-1.2216e+02,1.922e+00,1
29
- 5202,3.0788e+00,4.4e+01,4.594366197183098e+00,9.52112676056338e-01,1.197e+03,3.371830985915493e+00,3.394e+01,-1.1828e+02,1e+00,10
30
- 5904,3.1212e+00,3.9e+01,4.535897435897436e+00,1.0512820512820513e+00,1.499e+03,3.8435897435897437e+00,3.429e+01,-1.1843e+02,1.535e+00,16
31
- 16199,1.7212e+00,4.3e+01,3.8680555555555554e+00,1.1458333333333333e+00,5.73e+02,3.9791666666666665e+00,3.795e+01,-1.2127e+02,5.9e-01,51
32
- 16736,5.966e+00,4.8e+01,4.13986013986014e+00,8.531468531468531e-01,3.4e+02,2.3776223776223775e+00,3.769e+01,-1.2232e+02,3.152e+00,53
33
- 7114,3.2222e+00,3.4e+01,5.342364532019705e+00,1.0295566502463054e+00,1.169e+03,2.8793103448275863e+00,3.392e+01,-1.1802e+02,2.187e+00,20
34
- 17768,2.7562e+00,2.9e+01,4.529639175257732e+00,1.0399484536082475e+00,3.572e+03,4.603092783505154e+00,3.735e+01,-1.2185e+02,1.601e+00,57
35
- 12342,2.5885e+00,2.8e+01,6.267910447761194e+00,1.3723880597014926e+00,3.47e+03,2.58955223880597e+00,3.384e+01,-1.1653e+02,1.59e+00,34
36
- 4761,3.0856e+00,4.9e+01,3.717171717171717e+00,8.956228956228957e-01,6.68e+02,2.249158249158249e+00,3.404e+01,-1.1835e+02,1.516e+00,9
37
- 2313,2.4861e+00,1.5e+01,5.467924528301887e+00,1.0452830188679245e+00,6.49e+02,2.449056603773585e+00,3.694e+01,-1.197e+02,8.63e-01,5
38
- 3593,6.6537e+00,3.2e+01,6.330917874396135e+00,9.951690821256038e-01,1.285e+03,3.103864734299517e+00,3.424e+01,-1.1848e+02,2.676e+00,7
39
- 13312,4.9063e+00,1.5e+01,6.013363028953229e+00,1.024498886414254e+00,1.432e+03,3.1893095768374167e+00,3.408e+01,-1.176e+02,1.598e+00,37
40
- 12242,1.3039e+00,2.2e+01,4.538834951456311e+00,1.171116504854369e+00,2.011e+03,2.4405339805825244e+00,3.375e+01,-1.1697e+02,7.75e-01,33
41
- 11670,4.5e+00,2.8e+01,5.102117061021171e+00,1.0435865504358655e+00,2.112e+03,2.6301369863013697e+00,3.384e+01,-1.1801e+02,2.021e+00,32
42
- 19722,3.6111e+00,4.8e+01,7.297297297297297e+00,1.4864864864864864e+00,2.34e+02,3.1621621621621623e+00,3.894e+01,-1.2176e+02,6.75e-01,65
43
- 8090,3.0882e+00,4e+01,4.394673123486683e+00,1.036319612590799e+00,1.807e+03,4.375302663438257e+00,3.381e+01,-1.1821e+02,1.607e+00,22
44
- 14482,1.07721e+01,2.4e+01,8.893048128342246e+00,1.0641711229946524e+00,5.78e+02,3.090909090909091e+00,3.283e+01,-1.1726e+02,5.00001e+00,39
45
- 1754,3.7277e+00,3.8e+01,5.625766871165644e+00,1.0674846625766872e+00,1.39e+03,2.8425357873210633e+00,3.794e+01,-1.2232e+02,1.651e+00,3
46
- 8830,3.2159e+00,3.8e+01,4.365695792880259e+00,1.1132686084142396e+00,5.47e+02,1.7702265372168284e+00,3.409e+01,-1.1837e+02,3.833e+00,24
47
- 12433,1.7344e+00,2.4e+01,3.298342541436464e+00,1.0585635359116021e+00,4.042e+03,4.466298342541436e+00,3.351e+01,-1.1601e+02,6.64e-01,35
48
- 19172,4.3587e+00,2.9e+01,5.594298245614035e+00,9.824561403508771e-01,1.165e+03,2.5548245614035086e+00,3.844e+01,-1.2267e+02,1.964e+00,64
49
- 2018,1.0472e+00,1.5e+01,5.088e+00,1.112e+00,1.383e+03,3.688e+00,3.672e+01,-1.198e+02,5.78e-01,4
50
- 19018,3.89e+00,7e+00,4.689458689458689e+00,9.943019943019943e-01,1.911e+03,2.7222222222222223e+00,3.834e+01,-1.2196e+02,1.403e+00,63
51
- 15005,2.7014e+00,4.3e+01,5.113095238095238e+00,1.0238095238095237e+00,8.26e+02,2.4583333333333335e+00,3.275e+01,-1.1705e+02,1.337e+00,41
52
- 18099,5.7528e+00,2.7e+01,6.437357630979498e+00,1.0273348519362187e+00,1.259e+03,2.867881548974943e+00,3.732e+01,-1.2204e+02,4.314e+00,59
53
- 7581,2.1389e+00,1.6e+01,4.31665228645384e+00,1.0181190681622088e+00,4.145e+03,3.576358930112166e+00,3.389e+01,-1.1823e+02,1.334e+00,21
54
- 16019,1.07309e+01,5.2e+01,7.850364963503649e+00,1.0218978102189782e+00,7.62e+02,2.781021897810219e+00,3.773e+01,-1.2247e+02,5.00001e+00,49
55
- 18164,4.4699e+00,1.6e+01,3.7302904564315353e+00,1.1106500691562933e+00,1.369e+03,1.8934993084370677e+00,3.736e+01,-1.2203e+02,3.674e+00,60
56
- 13222,3.4267e+00,1.1e+01,5.128698224852071e+00,1.1079881656804733e+00,2.163e+03,3.1997041420118344e+00,3.403e+01,-1.1771e+02,1.644e+00,36
57
- 15630,2.8229e+00,5.2e+01,3.6897590361445785e+00,1.1159638554216869e+00,1.415e+03,2.1310240963855422e+00,3.78e+01,-1.2241e+02,3.75e+00,45
58
- 6044,2.1141e+00,2.7e+01,3.8552036199095023e+00,1.0723981900452488e+00,1.024e+03,4.633484162895928e+00,3.405e+01,-1.1774e+02,1.109e+00,17
59
- 15670,2.7717e+00,5.2e+01,3.914396887159533e+00,1.132295719844358e+00,4.45e+02,1.7315175097276265e+00,3.78e+01,-1.2244e+02,5e+00,46
60
- 15178,3.3724e+00,1.5e+01,5.4078711985688726e+00,1.114490161001789e+00,1.283e+03,2.295169946332737e+00,3.303e+01,-1.1708e+02,1.379e+00,42
61
- 11163,2.2401e+00,2.4e+01,4.873345935727788e+00,1.0964083175803403e+00,1.217e+03,2.3005671077504726e+00,3.383e+01,-1.18e+02,2.125e+00,29
62
- 5611,2.1447e+00,2.6e+01,3.4859504132231405e+00,1.0760330578512396e+00,2.12e+03,3.5041322314049586e+00,3.379e+01,-1.1827e+02,1.587e+00,14
63
- 17157,9.7796e+00,2e+01,6.678082191780822e+00,9.178082191780822e-01,3.24e+02,2.219178082191781e+00,3.743e+01,-1.2221e+02,5.00001e+00,55
64
- 16539,1.7228e+00,3.6e+01,4.962264150943396e+00,1.0424528301886793e+00,7.12e+02,3.358490566037736e+00,3.779e+01,-1.2122e+02,1.05e+00,52
65
- 15199,5.149e+00,1.6e+01,6.851258581235698e+00,1.0183066361556063e+00,1.047e+03,2.3958810068649887e+00,3.29e+01,-1.171e+02,1.843e+00,43
66
- 15994,4.4946e+00,4.8e+01,5.379912663755459e+00,1.002183406113537e+00,1.179e+03,2.574235807860262e+00,3.776e+01,-1.2247e+02,3.586e+00,48
67
- 6389,9.8098e+00,3.9e+01,8.079881656804734e+00,1.0828402366863905e+00,1.034e+03,3.059171597633136e+00,3.416e+01,-1.1803e+02,5.00001e+00,18
68
- 11239,3.6422e+00,1.9e+01,4.344202898550725e+00,9.094202898550725e-01,7.3e+02,2.6449275362318843e+00,3.382e+01,-1.1796e+02,2.094e+00,30
69
- 16804,4.125e+00,3.6e+01,5.178571428571429e+00,8.642857142857143e-01,3.35e+02,2.392857142857143e+00,3.766e+01,-1.2242e+02,3.276e+00,54
70
- 17538,2.925e+00,4.3e+01,4.85655737704918e+00,1.2131147540983607e+00,9.33e+02,3.8237704918032787e+00,3.735e+01,-1.2189e+02,1.708e+00,56
1
+ "id","MedInc","HouseAge","AveRooms","AveBedrms","Population","AveOccup","Latitude","Longitude","MedHouseVal","pi"
2
+ 18760,3.8323e+00,1.6e+01,5.9978213507625275e+00,1.0762527233115469e+00,1.414e+03,3.0806100217864922e+00,4.06e+01,-1.2225e+02,1.283e+00,61
3
+ 244,2.3906e+00,4.4e+01,4.865573770491803e+00,1.1639344262295082e+00,2.269e+03,3.719672131147541e+00,3.778e+01,-1.2222e+02,1.117e+00,0
4
+ 5300,1.583e+00,1.9e+01,3.1481481481481484e+00,1.0454840805718e+00,3.751e+03,2.437296946068876e+00,3.407e+01,-1.1845e+02,3.5e+00,12
5
+ 3687,2.9028e+00,1.1e+01,4.013207547169811e+00,1.0962264150943397e+00,1.989e+03,3.7528301886792454e+00,3.422e+01,-1.1837e+02,1.741e+00,8
6
+ 5769,2.8342e+00,3.5e+01,3.923076923076923e+00,1.0671550671550671e+00,2.401e+03,2.9316239316239314e+00,3.416e+01,-1.183e+02,2.568e+00,15
7
+ 2833,1.3527e+00,3e+01,2.2475247524752477e+00,7.425742574257426e-01,1.69e+02,1.6732673267326732e+00,3.539e+01,-1.1902e+02,6e-01,6
8
+ 686,3.4375e+00,3e+01,4.290322580645161e+00,9.6415770609319e-01,6.95e+02,2.4910394265232974e+00,3.769e+01,-1.2212e+02,1.578e+00,2
9
+ 18022,6.1648e+00,3.5e+01,5.850574712643678e+00,9.712643678160919e-01,4.84e+02,2.781609195402299e+00,3.725e+01,-1.2196e+02,3.719e+00,58
10
+ 10661,1.00757e+01,1.6e+01,6.147826086956521e+00,8.304347826086956e-01,6.35e+02,2.760869565217391e+00,3.366e+01,-1.1781e+02,3.839e+00,27
11
+ 19839,1.5714e+00,3.9e+01,3.830357142857143e+00,1.0178571428571428e+00,1.222e+03,5.455357142857143e+00,3.652e+01,-1.1929e+02,4.3e-01,67
12
+ 9454,1.2281e+00,2.5e+01,5.503978779840849e+00,1.1538461538461537e+00,9.91e+02,2.6286472148541113e+00,3.977e+01,-1.2323e+02,6.03e-01,26
13
+ 15391,4.7647e+00,1.2e+01,6.241269841269841e+00,1.0603174603174603e+00,3.129e+03,3.311111111111111e+00,3.326e+01,-1.1698e+02,2.541e+00,44
14
+ 10966,3.9219e+00,3.5e+01,4.888586956521739e+00,9.320652173913043e-01,1.239e+03,3.3668478260869565e+00,3.377e+01,-1.1789e+02,1.896e+00,28
15
+ 20348,2.8942e+00,3.9e+01,4.333333333333333e+00,1.0909090909090908e+00,1.13e+02,3.4242424242424243e+00,3.419e+01,-1.1905e+02,2.75e+00,68
16
+ 11246,3.1087e+00,2.4e+01,4.735015772870662e+00,1.0157728706624605e+00,1.495e+03,2.358044164037855e+00,3.382e+01,-1.18e+02,2.028e+00,31
17
+ 14365,2.1635e+00,4.3e+01,4.533333333333333e+00,9.952380952380953e-01,3.92e+02,1.8666666666666667e+00,3.272e+01,-1.1723e+02,2.442e+00,38
18
+ 8783,3.3958e+00,3.8e+01,5.266447368421052e+00,1.1578947368421053e+00,7.11e+02,2.338815789473684e+00,3.379e+01,-1.1831e+02,2.5e+00,23
19
+ 8987,8.6718e+00,3.2e+01,7.073943661971831e+00,9.929577464788732e-01,1.4e+03,2.464788732394366e+00,3.399e+01,-1.1837e+02,4.391e+00,25
20
+ 5328,2.7679e+00,2.3e+01,3.0386784850926674e+00,1.064464141821112e+00,2.031e+03,1.6365834004834812e+00,3.404e+01,-1.1845e+02,2.775e+00,13
21
+ 15749,3.3679e+00,5.2e+01,4.613412228796844e+00,1.0808678500986193e+00,1.09e+03,2.1499013806706113e+00,3.777e+01,-1.2245e+02,3.5e+00,47
22
+ 16102,4.2644e+00,4.6e+01,4.756410256410256e+00,1.0256410256410255e+00,1.272e+03,2.717948717948718e+00,3.776e+01,-1.225e+02,2.841e+00,50
23
+ 5233,1.7212e+00,3.9e+01,4.584905660377358e+00,1.030188679245283e+00,1.211e+03,4.569811320754717e+00,3.394e+01,-1.1824e+02,9.55e-01,11
24
+ 18799,2.225e+00,2.6e+01,5.742718446601942e+00,1.3398058252427185e+00,5.13e+02,2.4902912621359223e+00,4.097e+01,-1.2189e+02,5.2e-01,62
25
+ 14870,1.858e+00,2.3e+01,3.9012048192771083e+00,1.0771084337349397e+00,1.025e+03,2.4698795180722892e+00,3.264e+01,-1.1711e+02,6.75e-01,40
26
+ 6558,6.827e+00,3.6e+01,7.021428571428571e+00,1.0357142857142858e+00,1.897e+03,2.71e+00,3.42e+01,-1.1811e+02,3.594e+00,19
27
+ 19789,1.125e+00,2.3e+01,6.130434782608695e+00,2.5652173913043477e+00,4.7e+01,2.0434782608695654e+00,4.099e+01,-1.2335e+02,6.6e-01,66
28
+ 670,3.7813e+00,3.6e+01,4.9035087719298245e+00,9.605263157894737e-01,6.25e+02,2.741228070175439e+00,3.769e+01,-1.2216e+02,1.922e+00,1
29
+ 5202,3.0788e+00,4.4e+01,4.594366197183098e+00,9.52112676056338e-01,1.197e+03,3.371830985915493e+00,3.394e+01,-1.1828e+02,1e+00,10
30
+ 5904,3.1212e+00,3.9e+01,4.535897435897436e+00,1.0512820512820513e+00,1.499e+03,3.8435897435897437e+00,3.429e+01,-1.1843e+02,1.535e+00,16
31
+ 16199,1.7212e+00,4.3e+01,3.8680555555555554e+00,1.1458333333333333e+00,5.73e+02,3.9791666666666665e+00,3.795e+01,-1.2127e+02,5.9e-01,51
32
+ 16736,5.966e+00,4.8e+01,4.13986013986014e+00,8.531468531468531e-01,3.4e+02,2.3776223776223775e+00,3.769e+01,-1.2232e+02,3.152e+00,53
33
+ 7114,3.2222e+00,3.4e+01,5.342364532019705e+00,1.0295566502463054e+00,1.169e+03,2.8793103448275863e+00,3.392e+01,-1.1802e+02,2.187e+00,20
34
+ 17768,2.7562e+00,2.9e+01,4.529639175257732e+00,1.0399484536082475e+00,3.572e+03,4.603092783505154e+00,3.735e+01,-1.2185e+02,1.601e+00,57
35
+ 12342,2.5885e+00,2.8e+01,6.267910447761194e+00,1.3723880597014926e+00,3.47e+03,2.58955223880597e+00,3.384e+01,-1.1653e+02,1.59e+00,34
36
+ 4761,3.0856e+00,4.9e+01,3.717171717171717e+00,8.956228956228957e-01,6.68e+02,2.249158249158249e+00,3.404e+01,-1.1835e+02,1.516e+00,9
37
+ 2313,2.4861e+00,1.5e+01,5.467924528301887e+00,1.0452830188679245e+00,6.49e+02,2.449056603773585e+00,3.694e+01,-1.197e+02,8.63e-01,5
38
+ 3593,6.6537e+00,3.2e+01,6.330917874396135e+00,9.951690821256038e-01,1.285e+03,3.103864734299517e+00,3.424e+01,-1.1848e+02,2.676e+00,7
39
+ 13312,4.9063e+00,1.5e+01,6.013363028953229e+00,1.024498886414254e+00,1.432e+03,3.1893095768374167e+00,3.408e+01,-1.176e+02,1.598e+00,37
40
+ 12242,1.3039e+00,2.2e+01,4.538834951456311e+00,1.171116504854369e+00,2.011e+03,2.4405339805825244e+00,3.375e+01,-1.1697e+02,7.75e-01,33
41
+ 11670,4.5e+00,2.8e+01,5.102117061021171e+00,1.0435865504358655e+00,2.112e+03,2.6301369863013697e+00,3.384e+01,-1.1801e+02,2.021e+00,32
42
+ 19722,3.6111e+00,4.8e+01,7.297297297297297e+00,1.4864864864864864e+00,2.34e+02,3.1621621621621623e+00,3.894e+01,-1.2176e+02,6.75e-01,65
43
+ 8090,3.0882e+00,4e+01,4.394673123486683e+00,1.036319612590799e+00,1.807e+03,4.375302663438257e+00,3.381e+01,-1.1821e+02,1.607e+00,22
44
+ 14482,1.07721e+01,2.4e+01,8.893048128342246e+00,1.0641711229946524e+00,5.78e+02,3.090909090909091e+00,3.283e+01,-1.1726e+02,5.00001e+00,39
45
+ 1754,3.7277e+00,3.8e+01,5.625766871165644e+00,1.0674846625766872e+00,1.39e+03,2.8425357873210633e+00,3.794e+01,-1.2232e+02,1.651e+00,3
46
+ 8830,3.2159e+00,3.8e+01,4.365695792880259e+00,1.1132686084142396e+00,5.47e+02,1.7702265372168284e+00,3.409e+01,-1.1837e+02,3.833e+00,24
47
+ 12433,1.7344e+00,2.4e+01,3.298342541436464e+00,1.0585635359116021e+00,4.042e+03,4.466298342541436e+00,3.351e+01,-1.1601e+02,6.64e-01,35
48
+ 19172,4.3587e+00,2.9e+01,5.594298245614035e+00,9.824561403508771e-01,1.165e+03,2.5548245614035086e+00,3.844e+01,-1.2267e+02,1.964e+00,64
49
+ 2018,1.0472e+00,1.5e+01,5.088e+00,1.112e+00,1.383e+03,3.688e+00,3.672e+01,-1.198e+02,5.78e-01,4
50
+ 19018,3.89e+00,7e+00,4.689458689458689e+00,9.943019943019943e-01,1.911e+03,2.7222222222222223e+00,3.834e+01,-1.2196e+02,1.403e+00,63
51
+ 15005,2.7014e+00,4.3e+01,5.113095238095238e+00,1.0238095238095237e+00,8.26e+02,2.4583333333333335e+00,3.275e+01,-1.1705e+02,1.337e+00,41
52
+ 18099,5.7528e+00,2.7e+01,6.437357630979498e+00,1.0273348519362187e+00,1.259e+03,2.867881548974943e+00,3.732e+01,-1.2204e+02,4.314e+00,59
53
+ 7581,2.1389e+00,1.6e+01,4.31665228645384e+00,1.0181190681622088e+00,4.145e+03,3.576358930112166e+00,3.389e+01,-1.1823e+02,1.334e+00,21
54
+ 16019,1.07309e+01,5.2e+01,7.850364963503649e+00,1.0218978102189782e+00,7.62e+02,2.781021897810219e+00,3.773e+01,-1.2247e+02,5.00001e+00,49
55
+ 18164,4.4699e+00,1.6e+01,3.7302904564315353e+00,1.1106500691562933e+00,1.369e+03,1.8934993084370677e+00,3.736e+01,-1.2203e+02,3.674e+00,60
56
+ 13222,3.4267e+00,1.1e+01,5.128698224852071e+00,1.1079881656804733e+00,2.163e+03,3.1997041420118344e+00,3.403e+01,-1.1771e+02,1.644e+00,36
57
+ 15630,2.8229e+00,5.2e+01,3.6897590361445785e+00,1.1159638554216869e+00,1.415e+03,2.1310240963855422e+00,3.78e+01,-1.2241e+02,3.75e+00,45
58
+ 6044,2.1141e+00,2.7e+01,3.8552036199095023e+00,1.0723981900452488e+00,1.024e+03,4.633484162895928e+00,3.405e+01,-1.1774e+02,1.109e+00,17
59
+ 15670,2.7717e+00,5.2e+01,3.914396887159533e+00,1.132295719844358e+00,4.45e+02,1.7315175097276265e+00,3.78e+01,-1.2244e+02,5e+00,46
60
+ 15178,3.3724e+00,1.5e+01,5.4078711985688726e+00,1.114490161001789e+00,1.283e+03,2.295169946332737e+00,3.303e+01,-1.1708e+02,1.379e+00,42
61
+ 11163,2.2401e+00,2.4e+01,4.873345935727788e+00,1.0964083175803403e+00,1.217e+03,2.3005671077504726e+00,3.383e+01,-1.18e+02,2.125e+00,29
62
+ 5611,2.1447e+00,2.6e+01,3.4859504132231405e+00,1.0760330578512396e+00,2.12e+03,3.5041322314049586e+00,3.379e+01,-1.1827e+02,1.587e+00,14
63
+ 17157,9.7796e+00,2e+01,6.678082191780822e+00,9.178082191780822e-01,3.24e+02,2.219178082191781e+00,3.743e+01,-1.2221e+02,5.00001e+00,55
64
+ 16539,1.7228e+00,3.6e+01,4.962264150943396e+00,1.0424528301886793e+00,7.12e+02,3.358490566037736e+00,3.779e+01,-1.2122e+02,1.05e+00,52
65
+ 15199,5.149e+00,1.6e+01,6.851258581235698e+00,1.0183066361556063e+00,1.047e+03,2.3958810068649887e+00,3.29e+01,-1.171e+02,1.843e+00,43
66
+ 15994,4.4946e+00,4.8e+01,5.379912663755459e+00,1.002183406113537e+00,1.179e+03,2.574235807860262e+00,3.776e+01,-1.2247e+02,3.586e+00,48
67
+ 6389,9.8098e+00,3.9e+01,8.079881656804734e+00,1.0828402366863905e+00,1.034e+03,3.059171597633136e+00,3.416e+01,-1.1803e+02,5.00001e+00,18
68
+ 11239,3.6422e+00,1.9e+01,4.344202898550725e+00,9.094202898550725e-01,7.3e+02,2.6449275362318843e+00,3.382e+01,-1.1796e+02,2.094e+00,30
69
+ 16804,4.125e+00,3.6e+01,5.178571428571429e+00,8.642857142857143e-01,3.35e+02,2.392857142857143e+00,3.766e+01,-1.2242e+02,3.276e+00,54
70
+ 17538,2.925e+00,4.3e+01,4.85655737704918e+00,1.2131147540983607e+00,9.33e+02,3.8237704918032787e+00,3.735e+01,-1.2189e+02,1.708e+00,56
@@ -1,7 +1,7 @@
1
- "callerid","callername"
2
- 5,"winston"
3
- 4,"celine"
4
- 6,"diana"
5
- 3,"simon"
6
- 1,"john"
7
- 2,"carla"
1
+ "callerid","callername"
2
+ 5,"winston"
3
+ 4,"celine"
4
+ 6,"diana"
5
+ 3,"simon"
6
+ 1,"john"
7
+ 2,"carla"
teradataml/data/calls.csv CHANGED
@@ -1,10 +1,10 @@
1
- "callerfrom","callerto","calls"
2
- 5,6,10
3
- 4,6,4
4
- 3,6,1
5
- 1,2,10
6
- 1,3,2
7
- 1,4,5
8
- 1,6,6
9
- 2,4,7
10
- 2,6,12
1
+ "callerfrom","callerto","calls"
2
+ 5,6,10
3
+ 4,6,4
4
+ 3,6,1
5
+ 1,2,10
6
+ 1,3,2
7
+ 1,4,5
8
+ 1,6,6
9
+ 2,4,7
10
+ 2,6,12
@@ -1,33 +1,33 @@
1
- "id","name","cyl","hp"
2
- 26,"fiat x1-9",4,66
3
- 17,"chrysler imperial",8,230
4
- 7,"duster 360",8,245
5
- 19,"honda civic",4,52
6
- 5,"hornet sportabout",8,175
7
- 13,"merc 450sl",8,180
8
- 22,"dodge challenger",8,150
9
- 15,"cadillac fleetwood",8,205
10
- 24,"camaro z28",8,245
11
- 32,"volvo 142e",4,109
12
- 12,"merc 450se",8,180
13
- 30,"ferrari dino",6,175
14
- 3,"datsun 710",4,93
15
- 11,"merc 280c",6,123
16
- 27,"porsche 914-2",4,91
17
- 14,"merc 450slc",8,180
18
- 1,"mazda rx4",6,110
19
- 9,"merc 230",4,95
20
- 4,"hornet 4 drive",6,110
21
- 31,"maserati bora",8,335
22
- 20,"toyota corolla",4,65
23
- 28,"lotus europa",4,113
24
- 29,"ford pantera l",8,264
25
- 18,"fiat 128",4,66
26
- 16,"lincoln continental",8,215
27
- 6,"valiant",6,105
28
- 8,"merc 240d",4,62
29
- 10,"merc 280",6,123
30
- 23,"amc javelin",8,150
31
- 25,"pontiac firebird",8,175
32
- 21,"toyota corona",4,97
33
- 2,"mazda rx4 wag",6,110
1
+ "id","name","cyl","hp"
2
+ 26,"fiat x1-9",4,66
3
+ 17,"chrysler imperial",8,230
4
+ 7,"duster 360",8,245
5
+ 19,"honda civic",4,52
6
+ 5,"hornet sportabout",8,175
7
+ 13,"merc 450sl",8,180
8
+ 22,"dodge challenger",8,150
9
+ 15,"cadillac fleetwood",8,205
10
+ 24,"camaro z28",8,245
11
+ 32,"volvo 142e",4,109
12
+ 12,"merc 450se",8,180
13
+ 30,"ferrari dino",6,175
14
+ 3,"datsun 710",4,93
15
+ 11,"merc 280c",6,123
16
+ 27,"porsche 914-2",4,91
17
+ 14,"merc 450slc",8,180
18
+ 1,"mazda rx4",6,110
19
+ 9,"merc 230",4,95
20
+ 4,"hornet 4 drive",6,110
21
+ 31,"maserati bora",8,335
22
+ 20,"toyota corolla",4,65
23
+ 28,"lotus europa",4,113
24
+ 29,"ford pantera l",8,264
25
+ 18,"fiat 128",4,66
26
+ 16,"lincoln continental",8,215
27
+ 6,"valiant",6,105
28
+ 8,"merc 240d",4,62
29
+ 10,"merc 280",6,123
30
+ 23,"amc javelin",8,150
31
+ 25,"pontiac firebird",8,175
32
+ 21,"toyota corona",4,97
33
+ 2,"mazda rx4 wag",6,110
@@ -1,25 +1,25 @@
1
- column_name,category,ordinal_value
2
- "embarked","S",0
3
- "cabin","B79",0
4
- "embarked","C",1
5
- "cabin","B51 B53 B55",1
6
- "embarked","",2
7
- "cabin","A5",2
8
- "ticket","695",0
9
- "cabin","A23",3
10
- "ticket","11771",1
11
- "cabin","B37",4
12
- "ticket","PC 17754",2
13
- "cabin","",5
14
- "ticket","27042",3
15
- "sex","female",0
16
- "ticket","110152",4
17
- "sex","male",1
18
- "ticket","",5
19
- "sex","",2
20
- "name","Maioni; Miss. Roberta",0
21
- "name","Carlsson; Mr. Frans Olof",1
22
- "name","Goldschmidt; Mr. George B",2
23
- "name","Barkworth; Mr. Algernon Henry Wilson",3
24
- "name","Kent; Mr. Edward Austin",4
1
+ column_name,category,ordinal_value
2
+ "embarked","S",0
3
+ "cabin","B79",0
4
+ "embarked","C",1
5
+ "cabin","B51 B53 B55",1
6
+ "embarked","",2
7
+ "cabin","A5",2
8
+ "ticket","695",0
9
+ "cabin","A23",3
10
+ "ticket","11771",1
11
+ "cabin","B37",4
12
+ "ticket","PC 17754",2
13
+ "cabin","",5
14
+ "ticket","27042",3
15
+ "sex","female",0
16
+ "ticket","110152",4
17
+ "sex","male",1
18
+ "ticket","",5
19
+ "sex","",2
20
+ "name","Maioni; Miss. Roberta",0
21
+ "name","Carlsson; Mr. Frans Olof",1
22
+ "name","Goldschmidt; Mr. George B",2
23
+ "name","Barkworth; Mr. Algernon Henry Wilson",3
24
+ "name","Kent; Mr. Edward Austin",4
25
25
  "name","",5
@@ -1,32 +1,32 @@
1
- {
2
- "ccmexample": {
3
- "seqid": "integer",
4
- "t": "integer",
5
- "a": "double PRECISION",
6
- "b": "double PRECISION"
7
- },
8
- "ccm_input": {
9
- "aster_ccm_id": "integer",
10
- "id": "integer",
11
- "period": "integer",
12
- "expenditure": "integer",
13
- "income": "integer",
14
- "investment": "integer"
15
- },
16
- "ccm_input2": {
17
- "aster_ccm_id": "integer",
18
- "id": "integer",
19
- "period": "integer",
20
- "marketindex": "varchar(30)",
21
- "indexdate": "date",
22
- "indexval": "real",
23
- "indexchange": "real"
24
- },
25
- "ccmprepare_input": {
26
- "id": "integer",
27
- "period": "integer",
28
- "expenditure": "integer",
29
- "income": "integer",
30
- "investment": "integer"
31
- }
1
+ {
2
+ "ccmexample": {
3
+ "seqid": "integer",
4
+ "t": "integer",
5
+ "a": "double PRECISION",
6
+ "b": "double PRECISION"
7
+ },
8
+ "ccm_input": {
9
+ "aster_ccm_id": "integer",
10
+ "id": "integer",
11
+ "period": "integer",
12
+ "expenditure": "integer",
13
+ "income": "integer",
14
+ "investment": "integer"
15
+ },
16
+ "ccm_input2": {
17
+ "aster_ccm_id": "integer",
18
+ "id": "integer",
19
+ "period": "integer",
20
+ "marketindex": "varchar(30)",
21
+ "indexdate": "date",
22
+ "indexval": "real",
23
+ "indexchange": "real"
24
+ },
25
+ "ccmprepare_input": {
26
+ "id": "integer",
27
+ "period": "integer",
28
+ "expenditure": "integer",
29
+ "income": "integer",
30
+ "investment": "integer"
31
+ }
32
32
  }