teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1303) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1935 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2040 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +798 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1683 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +1011 -0
  31. teradataml/automl/data_transformation.py +789 -0
  32. teradataml/automl/feature_engineering.py +1580 -0
  33. teradataml/automl/feature_exploration.py +554 -0
  34. teradataml/automl/model_evaluation.py +151 -0
  35. teradataml/automl/model_training.py +1026 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/auth_client.py +133 -0
  41. teradataml/clients/pkce_client.py +481 -481
  42. teradataml/common/aed_utils.py +7 -2
  43. teradataml/common/bulk_exposed_utils.py +111 -111
  44. teradataml/common/constants.py +1438 -1441
  45. teradataml/common/deprecations.py +160 -0
  46. teradataml/common/exceptions.py +73 -73
  47. teradataml/common/formula.py +742 -742
  48. teradataml/common/garbagecollector.py +597 -635
  49. teradataml/common/messagecodes.py +424 -431
  50. teradataml/common/messages.py +228 -231
  51. teradataml/common/sqlbundle.py +693 -693
  52. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  53. teradataml/common/utils.py +2424 -2500
  54. teradataml/common/warnings.py +25 -25
  55. teradataml/common/wrapper_utils.py +1 -110
  56. teradataml/config/dummy_file1.cfg +4 -4
  57. teradataml/config/dummy_file2.cfg +2 -2
  58. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  59. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  60. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  61. teradataml/context/aed_context.py +217 -217
  62. teradataml/context/context.py +1091 -999
  63. teradataml/data/A_loan.csv +19 -19
  64. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  65. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  66. teradataml/data/B_loan.csv +49 -49
  67. teradataml/data/BuoyData2.csv +17 -17
  68. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  69. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  70. teradataml/data/Convolve2RealsLeft.csv +5 -5
  71. teradataml/data/Convolve2RealsRight.csv +5 -5
  72. teradataml/data/Convolve2ValidLeft.csv +11 -11
  73. teradataml/data/Convolve2ValidRight.csv +11 -11
  74. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  75. teradataml/data/Orders1_12mf.csv +24 -24
  76. teradataml/data/Pi_loan.csv +7 -7
  77. teradataml/data/SMOOTHED_DATA.csv +7 -7
  78. teradataml/data/TestDFFT8.csv +9 -9
  79. teradataml/data/TestRiver.csv +109 -109
  80. teradataml/data/Traindata.csv +28 -28
  81. teradataml/data/acf.csv +17 -17
  82. teradataml/data/adaboost_example.json +34 -34
  83. teradataml/data/adaboostpredict_example.json +24 -24
  84. teradataml/data/additional_table.csv +10 -10
  85. teradataml/data/admissions_test.csv +21 -21
  86. teradataml/data/admissions_train.csv +41 -41
  87. teradataml/data/admissions_train_nulls.csv +41 -41
  88. teradataml/data/advertising.csv +201 -0
  89. teradataml/data/ageandheight.csv +13 -13
  90. teradataml/data/ageandpressure.csv +31 -31
  91. teradataml/data/antiselect_example.json +36 -36
  92. teradataml/data/antiselect_input.csv +8 -8
  93. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  94. teradataml/data/applicant_external.csv +6 -6
  95. teradataml/data/applicant_reference.csv +6 -6
  96. teradataml/data/arima_example.json +9 -9
  97. teradataml/data/assortedtext_input.csv +8 -8
  98. teradataml/data/attribution_example.json +33 -33
  99. teradataml/data/attribution_sample_table.csv +27 -27
  100. teradataml/data/attribution_sample_table1.csv +6 -6
  101. teradataml/data/attribution_sample_table2.csv +11 -11
  102. teradataml/data/bank_churn.csv +10001 -0
  103. teradataml/data/bank_marketing.csv +11163 -0
  104. teradataml/data/bank_web_clicks1.csv +42 -42
  105. teradataml/data/bank_web_clicks2.csv +91 -91
  106. teradataml/data/bank_web_url.csv +85 -85
  107. teradataml/data/barrier.csv +2 -2
  108. teradataml/data/barrier_new.csv +3 -3
  109. teradataml/data/betweenness_example.json +13 -13
  110. teradataml/data/bike_sharing.csv +732 -0
  111. teradataml/data/bin_breaks.csv +8 -8
  112. teradataml/data/bin_fit_ip.csv +3 -3
  113. teradataml/data/binary_complex_left.csv +11 -11
  114. teradataml/data/binary_complex_right.csv +11 -11
  115. teradataml/data/binary_matrix_complex_left.csv +21 -21
  116. teradataml/data/binary_matrix_complex_right.csv +21 -21
  117. teradataml/data/binary_matrix_real_left.csv +21 -21
  118. teradataml/data/binary_matrix_real_right.csv +21 -21
  119. teradataml/data/blood2ageandweight.csv +26 -26
  120. teradataml/data/bmi.csv +501 -0
  121. teradataml/data/boston.csv +507 -507
  122. teradataml/data/boston2cols.csv +721 -0
  123. teradataml/data/breast_cancer.csv +570 -0
  124. teradataml/data/buoydata_mix.csv +11 -11
  125. teradataml/data/burst_data.csv +5 -5
  126. teradataml/data/burst_example.json +20 -20
  127. teradataml/data/byom_example.json +17 -17
  128. teradataml/data/bytes_table.csv +3 -3
  129. teradataml/data/cal_housing_ex_raw.csv +70 -70
  130. teradataml/data/callers.csv +7 -7
  131. teradataml/data/calls.csv +10 -10
  132. teradataml/data/cars_hist.csv +33 -33
  133. teradataml/data/cat_table.csv +24 -24
  134. teradataml/data/ccm_example.json +31 -31
  135. teradataml/data/ccm_input.csv +91 -91
  136. teradataml/data/ccm_input2.csv +13 -13
  137. teradataml/data/ccmexample.csv +101 -101
  138. teradataml/data/ccmprepare_example.json +8 -8
  139. teradataml/data/ccmprepare_input.csv +91 -91
  140. teradataml/data/cfilter_example.json +12 -12
  141. teradataml/data/changepointdetection_example.json +18 -18
  142. teradataml/data/changepointdetectionrt_example.json +8 -8
  143. teradataml/data/chi_sq.csv +2 -2
  144. teradataml/data/churn_data.csv +14 -14
  145. teradataml/data/churn_emission.csv +35 -35
  146. teradataml/data/churn_initial.csv +3 -3
  147. teradataml/data/churn_state_transition.csv +5 -5
  148. teradataml/data/citedges_2.csv +745 -745
  149. teradataml/data/citvertices_2.csv +1210 -1210
  150. teradataml/data/clicks2.csv +16 -16
  151. teradataml/data/clickstream.csv +12 -12
  152. teradataml/data/clickstream1.csv +11 -11
  153. teradataml/data/closeness_example.json +15 -15
  154. teradataml/data/complaints.csv +21 -21
  155. teradataml/data/complaints_mini.csv +3 -3
  156. teradataml/data/complaints_testtoken.csv +224 -224
  157. teradataml/data/complaints_tokens_test.csv +353 -353
  158. teradataml/data/complaints_traintoken.csv +472 -472
  159. teradataml/data/computers_category.csv +1001 -1001
  160. teradataml/data/computers_test1.csv +1252 -1252
  161. teradataml/data/computers_train1.csv +5009 -5009
  162. teradataml/data/computers_train1_clustered.csv +5009 -5009
  163. teradataml/data/confusionmatrix_example.json +9 -9
  164. teradataml/data/conversion_event_table.csv +3 -3
  165. teradataml/data/corr_input.csv +17 -17
  166. teradataml/data/correlation_example.json +11 -11
  167. teradataml/data/coxhazardratio_example.json +39 -39
  168. teradataml/data/coxph_example.json +15 -15
  169. teradataml/data/coxsurvival_example.json +28 -28
  170. teradataml/data/cpt.csv +41 -41
  171. teradataml/data/credit_ex_merged.csv +45 -45
  172. teradataml/data/customer_loyalty.csv +301 -301
  173. teradataml/data/customer_loyalty_newseq.csv +31 -31
  174. teradataml/data/customer_segmentation_test.csv +2628 -0
  175. teradataml/data/customer_segmentation_train.csv +8069 -0
  176. teradataml/data/dataframe_example.json +146 -146
  177. teradataml/data/decisionforest_example.json +37 -37
  178. teradataml/data/decisionforestpredict_example.json +38 -38
  179. teradataml/data/decisiontree_example.json +21 -21
  180. teradataml/data/decisiontreepredict_example.json +45 -45
  181. teradataml/data/dfft2_size4_real.csv +17 -17
  182. teradataml/data/dfft2_test_matrix16.csv +17 -17
  183. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  184. teradataml/data/diabetes.csv +443 -443
  185. teradataml/data/diabetes_test.csv +89 -89
  186. teradataml/data/dict_table.csv +5 -5
  187. teradataml/data/docperterm_table.csv +4 -4
  188. teradataml/data/docs/__init__.py +1 -1
  189. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  190. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  191. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  192. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  193. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  194. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  195. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  196. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  197. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  198. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  199. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  200. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  201. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  202. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  203. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  204. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  205. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  206. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  207. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  208. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  209. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  210. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  211. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  212. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  213. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  214. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  215. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  216. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  217. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
  218. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
  219. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  220. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
  221. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  222. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  223. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  224. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  225. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  226. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  227. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  228. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  229. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  230. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  231. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  232. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  233. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  234. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  235. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  236. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  237. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  238. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  239. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  240. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  241. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  242. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
  243. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  244. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  245. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  246. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  247. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  248. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  249. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  250. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  251. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
  252. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  253. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  254. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  255. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  256. teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
  257. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  258. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  259. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
  260. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  261. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  262. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  263. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
  264. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  265. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  266. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  267. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
  268. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  269. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  270. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  271. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  272. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  273. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  274. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  275. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  276. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
  277. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  278. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  279. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  280. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  281. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
  282. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
  283. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  284. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  285. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  286. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  287. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  288. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  289. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  290. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  291. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
  292. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  293. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  294. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  295. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  296. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  297. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  298. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  299. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  300. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
  301. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  302. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
  303. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
  304. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  305. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  306. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  307. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  308. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  309. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  310. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  311. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  312. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
  313. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  314. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  315. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  316. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  317. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  318. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  319. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  320. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  321. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  322. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  323. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  324. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
  325. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
  326. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
  327. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  328. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  329. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  330. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  331. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  332. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  333. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  334. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  335. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  336. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  337. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  338. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  339. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  340. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  341. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  342. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  343. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  344. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  345. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  346. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  347. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  348. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  349. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  350. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  351. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  352. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  353. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  354. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  355. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  356. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  357. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  358. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  359. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  360. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  361. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  362. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  363. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  364. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  365. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  366. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  367. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  368. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  369. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  370. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  371. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  372. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  373. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  374. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  375. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  376. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  377. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  378. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  379. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  380. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  381. teradataml/data/dtw_example.json +17 -17
  382. teradataml/data/dtw_t1.csv +11 -11
  383. teradataml/data/dtw_t2.csv +4 -4
  384. teradataml/data/dwt2d_example.json +15 -15
  385. teradataml/data/dwt_example.json +14 -14
  386. teradataml/data/dwt_filter_dim.csv +5 -5
  387. teradataml/data/emission.csv +9 -9
  388. teradataml/data/emp_table_by_dept.csv +19 -19
  389. teradataml/data/employee_info.csv +4 -4
  390. teradataml/data/employee_table.csv +6 -6
  391. teradataml/data/excluding_event_table.csv +2 -2
  392. teradataml/data/finance_data.csv +6 -6
  393. teradataml/data/finance_data2.csv +61 -61
  394. teradataml/data/finance_data3.csv +93 -93
  395. teradataml/data/fish.csv +160 -0
  396. teradataml/data/fm_blood2ageandweight.csv +26 -26
  397. teradataml/data/fmeasure_example.json +11 -11
  398. teradataml/data/followers_leaders.csv +10 -10
  399. teradataml/data/fpgrowth_example.json +12 -12
  400. teradataml/data/frequentpaths_example.json +29 -29
  401. teradataml/data/friends.csv +9 -9
  402. teradataml/data/fs_input.csv +33 -33
  403. teradataml/data/fs_input1.csv +33 -33
  404. teradataml/data/genData.csv +513 -513
  405. teradataml/data/geodataframe_example.json +39 -39
  406. teradataml/data/glass_types.csv +215 -0
  407. teradataml/data/glm_admissions_model.csv +12 -12
  408. teradataml/data/glm_example.json +56 -29
  409. teradataml/data/glml1l2_example.json +28 -28
  410. teradataml/data/glml1l2predict_example.json +54 -54
  411. teradataml/data/glmpredict_example.json +54 -54
  412. teradataml/data/gq_t1.csv +21 -21
  413. teradataml/data/hconvolve_complex_right.csv +5 -5
  414. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  415. teradataml/data/histogram_example.json +11 -11
  416. teradataml/data/hmmdecoder_example.json +78 -78
  417. teradataml/data/hmmevaluator_example.json +24 -24
  418. teradataml/data/hmmsupervised_example.json +10 -10
  419. teradataml/data/hmmunsupervised_example.json +7 -7
  420. teradataml/data/house_values.csv +12 -12
  421. teradataml/data/house_values2.csv +13 -13
  422. teradataml/data/housing_cat.csv +7 -7
  423. teradataml/data/housing_data.csv +9 -9
  424. teradataml/data/housing_test.csv +47 -47
  425. teradataml/data/housing_test_binary.csv +47 -47
  426. teradataml/data/housing_train.csv +493 -493
  427. teradataml/data/housing_train_attribute.csv +4 -4
  428. teradataml/data/housing_train_binary.csv +437 -437
  429. teradataml/data/housing_train_parameter.csv +2 -2
  430. teradataml/data/housing_train_response.csv +493 -493
  431. teradataml/data/housing_train_segment.csv +201 -0
  432. teradataml/data/ibm_stock.csv +370 -370
  433. teradataml/data/ibm_stock1.csv +370 -370
  434. teradataml/data/identitymatch_example.json +21 -21
  435. teradataml/data/idf_table.csv +4 -4
  436. teradataml/data/impressions.csv +101 -101
  437. teradataml/data/inflation.csv +21 -21
  438. teradataml/data/initial.csv +3 -3
  439. teradataml/data/insect2Cols.csv +61 -0
  440. teradataml/data/insect_sprays.csv +12 -12
  441. teradataml/data/insurance.csv +1339 -1339
  442. teradataml/data/interpolator_example.json +12 -12
  443. teradataml/data/iris_altinput.csv +481 -481
  444. teradataml/data/iris_attribute_output.csv +8 -8
  445. teradataml/data/iris_attribute_test.csv +121 -121
  446. teradataml/data/iris_attribute_train.csv +481 -481
  447. teradataml/data/iris_category_expect_predict.csv +31 -31
  448. teradataml/data/iris_data.csv +151 -0
  449. teradataml/data/iris_input.csv +151 -151
  450. teradataml/data/iris_response_train.csv +121 -121
  451. teradataml/data/iris_test.csv +31 -31
  452. teradataml/data/iris_train.csv +121 -121
  453. teradataml/data/join_table1.csv +4 -4
  454. teradataml/data/join_table2.csv +4 -4
  455. teradataml/data/jsons/anly_function_name.json +6 -6
  456. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  457. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  458. teradataml/data/jsons/byom/h2opredict.json +194 -194
  459. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  460. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  461. teradataml/data/jsons/paired_functions.json +435 -435
  462. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  463. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  464. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  465. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  466. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  467. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  468. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  469. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  470. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  471. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  472. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  473. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  474. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  475. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  476. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  477. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  478. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  479. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  480. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  481. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  482. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  483. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  484. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  485. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  486. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  487. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  488. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  489. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  490. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  491. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  492. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  493. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  494. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  495. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  496. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  497. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  498. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  499. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  500. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  501. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  502. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  503. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  504. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  505. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  506. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  507. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  508. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  509. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  510. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  511. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  512. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  513. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  514. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  515. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  516. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  517. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  518. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  519. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  520. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  521. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  522. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  523. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  524. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  525. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  526. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  527. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  528. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  529. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  531. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  532. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  533. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  534. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  535. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  536. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  537. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  539. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  540. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  541. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  542. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  543. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  544. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  545. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  546. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  547. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  548. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  549. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  550. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  551. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  552. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  553. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  554. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  555. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  556. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  557. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  558. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  559. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  560. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  561. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  562. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  563. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  564. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  565. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  566. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  567. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  568. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
  569. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  570. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  571. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  572. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  573. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  574. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  575. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  576. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  577. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  578. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  579. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
  580. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  581. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  582. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  583. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
  584. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
  585. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  586. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  587. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
  588. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  589. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  590. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  591. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
  592. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  593. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  594. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  595. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
  596. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  597. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  598. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  599. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  600. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  601. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  602. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  603. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  604. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  605. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  606. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  607. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  608. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  609. teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
  610. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  611. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  612. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  613. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  614. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  615. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  616. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  617. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  618. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
  619. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
  620. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
  621. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  622. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  623. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  624. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  625. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  626. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  627. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  628. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  629. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  630. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  631. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  632. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  633. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  634. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  635. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
  636. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
  637. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
  638. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  639. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  640. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  641. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  642. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  643. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  644. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  645. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  646. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  647. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  648. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  649. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  650. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  651. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  653. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  654. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  655. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  656. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  657. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  658. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  659. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  660. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  661. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  662. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  663. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  664. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  665. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  666. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  667. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  668. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  669. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  670. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  671. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  672. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  673. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  674. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  675. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  676. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  677. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  678. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  679. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  680. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  681. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  682. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  683. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  684. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  685. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  686. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  687. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  688. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  689. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  690. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  691. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  692. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  693. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  694. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  695. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  696. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  697. teradataml/data/kmeans_example.json +22 -17
  698. teradataml/data/kmeans_table.csv +10 -0
  699. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  700. teradataml/data/knn_example.json +18 -18
  701. teradataml/data/knnrecommender_example.json +6 -6
  702. teradataml/data/knnrecommenderpredict_example.json +12 -12
  703. teradataml/data/lar_example.json +17 -17
  704. teradataml/data/larpredict_example.json +30 -30
  705. teradataml/data/lc_new_predictors.csv +5 -5
  706. teradataml/data/lc_new_reference.csv +9 -9
  707. teradataml/data/lda_example.json +8 -8
  708. teradataml/data/ldainference_example.json +14 -14
  709. teradataml/data/ldatopicsummary_example.json +8 -8
  710. teradataml/data/levendist_input.csv +13 -13
  711. teradataml/data/levenshteindistance_example.json +10 -10
  712. teradataml/data/linreg_example.json +9 -9
  713. teradataml/data/load_example_data.py +326 -323
  714. teradataml/data/loan_prediction.csv +295 -295
  715. teradataml/data/lungcancer.csv +138 -138
  716. teradataml/data/mappingdata.csv +12 -12
  717. teradataml/data/milk_timeseries.csv +157 -157
  718. teradataml/data/min_max_titanic.csv +4 -4
  719. teradataml/data/minhash_example.json +6 -6
  720. teradataml/data/ml_ratings.csv +7547 -7547
  721. teradataml/data/ml_ratings_10.csv +2445 -2445
  722. teradataml/data/model1_table.csv +5 -5
  723. teradataml/data/model2_table.csv +5 -5
  724. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  725. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  726. teradataml/data/modularity_example.json +12 -12
  727. teradataml/data/movavg_example.json +7 -7
  728. teradataml/data/mtx1.csv +7 -7
  729. teradataml/data/mtx2.csv +13 -13
  730. teradataml/data/multi_model_classification.csv +401 -0
  731. teradataml/data/multi_model_regression.csv +401 -0
  732. teradataml/data/mvdfft8.csv +9 -9
  733. teradataml/data/naivebayes_example.json +9 -9
  734. teradataml/data/naivebayespredict_example.json +19 -19
  735. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  736. teradataml/data/naivebayestextclassifier_example.json +8 -8
  737. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  738. teradataml/data/name_Find_configure.csv +10 -10
  739. teradataml/data/namedentityfinder_example.json +14 -14
  740. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  741. teradataml/data/namedentityfindertrainer_example.json +6 -6
  742. teradataml/data/nb_iris_input_test.csv +31 -31
  743. teradataml/data/nb_iris_input_train.csv +121 -121
  744. teradataml/data/nbp_iris_model.csv +13 -13
  745. teradataml/data/ner_extractor_text.csv +2 -2
  746. teradataml/data/ner_sports_test2.csv +29 -29
  747. teradataml/data/ner_sports_train.csv +501 -501
  748. teradataml/data/nerevaluator_example.json +5 -5
  749. teradataml/data/nerextractor_example.json +18 -18
  750. teradataml/data/nermem_sports_test.csv +17 -17
  751. teradataml/data/nermem_sports_train.csv +50 -50
  752. teradataml/data/nertrainer_example.json +6 -6
  753. teradataml/data/ngrams_example.json +6 -6
  754. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  755. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  756. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  757. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  758. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  759. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  760. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  761. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  762. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  763. teradataml/data/npath_example.json +23 -23
  764. teradataml/data/ntree_example.json +14 -14
  765. teradataml/data/numeric_strings.csv +4 -4
  766. teradataml/data/numerics.csv +4 -4
  767. teradataml/data/ocean_buoy.csv +17 -17
  768. teradataml/data/ocean_buoy2.csv +17 -17
  769. teradataml/data/ocean_buoys.csv +27 -27
  770. teradataml/data/ocean_buoys2.csv +10 -10
  771. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  772. teradataml/data/ocean_buoys_seq.csv +29 -29
  773. teradataml/data/onehot_encoder_train.csv +4 -0
  774. teradataml/data/openml_example.json +92 -0
  775. teradataml/data/optional_event_table.csv +4 -4
  776. teradataml/data/orders1.csv +11 -11
  777. teradataml/data/orders1_12.csv +12 -12
  778. teradataml/data/orders_ex.csv +4 -4
  779. teradataml/data/pack_example.json +8 -8
  780. teradataml/data/package_tracking.csv +19 -19
  781. teradataml/data/package_tracking_pti.csv +18 -18
  782. teradataml/data/pagerank_example.json +13 -13
  783. teradataml/data/paragraphs_input.csv +6 -6
  784. teradataml/data/pathanalyzer_example.json +7 -7
  785. teradataml/data/pathgenerator_example.json +7 -7
  786. teradataml/data/phrases.csv +7 -7
  787. teradataml/data/pivot_example.json +8 -8
  788. teradataml/data/pivot_input.csv +22 -22
  789. teradataml/data/playerRating.csv +31 -31
  790. teradataml/data/postagger_example.json +6 -6
  791. teradataml/data/posttagger_output.csv +44 -44
  792. teradataml/data/production_data.csv +16 -16
  793. teradataml/data/production_data2.csv +7 -7
  794. teradataml/data/randomsample_example.json +31 -31
  795. teradataml/data/randomwalksample_example.json +8 -8
  796. teradataml/data/rank_table.csv +6 -6
  797. teradataml/data/ref_mobile_data.csv +4 -4
  798. teradataml/data/ref_mobile_data_dense.csv +2 -2
  799. teradataml/data/ref_url.csv +17 -17
  800. teradataml/data/restaurant_reviews.csv +7 -7
  801. teradataml/data/river_data.csv +145 -145
  802. teradataml/data/roc_example.json +7 -7
  803. teradataml/data/roc_input.csv +101 -101
  804. teradataml/data/rule_inputs.csv +6 -6
  805. teradataml/data/rule_table.csv +2 -2
  806. teradataml/data/sales.csv +7 -7
  807. teradataml/data/sales_transaction.csv +501 -501
  808. teradataml/data/salesdata.csv +342 -342
  809. teradataml/data/sample_cities.csv +2 -2
  810. teradataml/data/sample_shapes.csv +10 -10
  811. teradataml/data/sample_streets.csv +2 -2
  812. teradataml/data/sampling_example.json +15 -15
  813. teradataml/data/sax_example.json +8 -8
  814. teradataml/data/scale_attributes.csv +3 -0
  815. teradataml/data/scale_example.json +74 -23
  816. teradataml/data/scale_housing.csv +11 -11
  817. teradataml/data/scale_housing_test.csv +6 -6
  818. teradataml/data/scale_input_part_sparse.csv +31 -0
  819. teradataml/data/scale_input_partitioned.csv +16 -0
  820. teradataml/data/scale_input_sparse.csv +11 -0
  821. teradataml/data/scale_parameters.csv +3 -0
  822. teradataml/data/scale_stat.csv +11 -11
  823. teradataml/data/scalebypartition_example.json +13 -13
  824. teradataml/data/scalemap_example.json +13 -13
  825. teradataml/data/scalesummary_example.json +12 -12
  826. teradataml/data/score_category.csv +101 -101
  827. teradataml/data/score_summary.csv +4 -4
  828. teradataml/data/script_example.json +9 -9
  829. teradataml/data/scripts/deploy_script.py +84 -0
  830. teradataml/data/scripts/mapper.R +20 -0
  831. teradataml/data/scripts/mapper.py +15 -15
  832. teradataml/data/scripts/mapper_replace.py +15 -15
  833. teradataml/data/scripts/sklearn/__init__.py +0 -0
  834. teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
  835. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
  836. teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
  837. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
  838. teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
  839. teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
  840. teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
  841. teradataml/data/seeds.csv +10 -10
  842. teradataml/data/sentenceextractor_example.json +6 -6
  843. teradataml/data/sentiment_extract_input.csv +11 -11
  844. teradataml/data/sentiment_train.csv +16 -16
  845. teradataml/data/sentiment_word.csv +20 -20
  846. teradataml/data/sentiment_word_input.csv +19 -19
  847. teradataml/data/sentimentextractor_example.json +24 -24
  848. teradataml/data/sentimenttrainer_example.json +8 -8
  849. teradataml/data/sequence_table.csv +10 -10
  850. teradataml/data/seriessplitter_example.json +7 -7
  851. teradataml/data/sessionize_example.json +17 -17
  852. teradataml/data/sessionize_table.csv +116 -116
  853. teradataml/data/setop_test1.csv +24 -24
  854. teradataml/data/setop_test2.csv +22 -22
  855. teradataml/data/soc_nw_edges.csv +10 -10
  856. teradataml/data/soc_nw_vertices.csv +7 -7
  857. teradataml/data/souvenir_timeseries.csv +167 -167
  858. teradataml/data/sparse_iris_attribute.csv +5 -5
  859. teradataml/data/sparse_iris_test.csv +121 -121
  860. teradataml/data/sparse_iris_train.csv +601 -601
  861. teradataml/data/star1.csv +6 -6
  862. teradataml/data/state_transition.csv +5 -5
  863. teradataml/data/stock_data.csv +53 -53
  864. teradataml/data/stock_movement.csv +11 -11
  865. teradataml/data/stock_vol.csv +76 -76
  866. teradataml/data/stop_words.csv +8 -8
  867. teradataml/data/store_sales.csv +37 -37
  868. teradataml/data/stringsimilarity_example.json +7 -7
  869. teradataml/data/strsimilarity_input.csv +13 -13
  870. teradataml/data/students.csv +101 -101
  871. teradataml/data/svm_iris_input_test.csv +121 -121
  872. teradataml/data/svm_iris_input_train.csv +481 -481
  873. teradataml/data/svm_iris_model.csv +7 -7
  874. teradataml/data/svmdense_example.json +9 -9
  875. teradataml/data/svmdensepredict_example.json +18 -18
  876. teradataml/data/svmsparse_example.json +7 -7
  877. teradataml/data/svmsparsepredict_example.json +13 -13
  878. teradataml/data/svmsparsesummary_example.json +7 -7
  879. teradataml/data/target_mobile_data.csv +13 -13
  880. teradataml/data/target_mobile_data_dense.csv +5 -5
  881. teradataml/data/templatedata.csv +1201 -1201
  882. teradataml/data/templates/open_source_ml.json +9 -0
  883. teradataml/data/teradataml_example.json +150 -1
  884. teradataml/data/test_classification.csv +101 -0
  885. teradataml/data/test_loan_prediction.csv +53 -53
  886. teradataml/data/test_pacf_12.csv +37 -37
  887. teradataml/data/test_prediction.csv +101 -0
  888. teradataml/data/test_regression.csv +101 -0
  889. teradataml/data/test_river2.csv +109 -109
  890. teradataml/data/text_inputs.csv +6 -6
  891. teradataml/data/textchunker_example.json +7 -7
  892. teradataml/data/textclassifier_example.json +6 -6
  893. teradataml/data/textclassifier_input.csv +7 -7
  894. teradataml/data/textclassifiertrainer_example.json +6 -6
  895. teradataml/data/textmorph_example.json +5 -5
  896. teradataml/data/textparser_example.json +15 -15
  897. teradataml/data/texttagger_example.json +11 -11
  898. teradataml/data/texttokenizer_example.json +6 -6
  899. teradataml/data/texttrainer_input.csv +11 -11
  900. teradataml/data/tf_example.json +6 -6
  901. teradataml/data/tfidf_example.json +13 -13
  902. teradataml/data/tfidf_input1.csv +201 -201
  903. teradataml/data/tfidf_train.csv +6 -6
  904. teradataml/data/time_table1.csv +535 -535
  905. teradataml/data/time_table2.csv +14 -14
  906. teradataml/data/timeseriesdata.csv +1601 -1601
  907. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  908. teradataml/data/titanic.csv +892 -892
  909. teradataml/data/token_table.csv +696 -696
  910. teradataml/data/train_multiclass.csv +101 -0
  911. teradataml/data/train_regression.csv +101 -0
  912. teradataml/data/train_regression_multiple_labels.csv +101 -0
  913. teradataml/data/train_tracking.csv +27 -27
  914. teradataml/data/transformation_table.csv +5 -5
  915. teradataml/data/transformation_table_new.csv +1 -1
  916. teradataml/data/tv_spots.csv +16 -16
  917. teradataml/data/twod_climate_data.csv +117 -117
  918. teradataml/data/uaf_example.json +475 -475
  919. teradataml/data/univariatestatistics_example.json +8 -8
  920. teradataml/data/unpack_example.json +9 -9
  921. teradataml/data/unpivot_example.json +9 -9
  922. teradataml/data/unpivot_input.csv +8 -8
  923. teradataml/data/us_air_pass.csv +36 -36
  924. teradataml/data/us_population.csv +624 -624
  925. teradataml/data/us_states_shapes.csv +52 -52
  926. teradataml/data/varmax_example.json +17 -17
  927. teradataml/data/vectordistance_example.json +25 -25
  928. teradataml/data/ville_climatedata.csv +121 -121
  929. teradataml/data/ville_tempdata.csv +12 -12
  930. teradataml/data/ville_tempdata1.csv +12 -12
  931. teradataml/data/ville_temperature.csv +11 -11
  932. teradataml/data/waveletTable.csv +1605 -1605
  933. teradataml/data/waveletTable2.csv +1605 -1605
  934. teradataml/data/weightedmovavg_example.json +8 -8
  935. teradataml/data/wft_testing.csv +5 -5
  936. teradataml/data/wine_data.csv +1600 -0
  937. teradataml/data/word_embed_input_table1.csv +5 -5
  938. teradataml/data/word_embed_input_table2.csv +4 -4
  939. teradataml/data/word_embed_model.csv +22 -22
  940. teradataml/data/words_input.csv +13 -13
  941. teradataml/data/xconvolve_complex_left.csv +6 -6
  942. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  943. teradataml/data/xgboost_example.json +35 -35
  944. teradataml/data/xgboostpredict_example.json +31 -31
  945. teradataml/data/ztest_example.json +16 -0
  946. teradataml/dataframe/copy_to.py +1769 -1698
  947. teradataml/dataframe/data_transfer.py +2812 -2745
  948. teradataml/dataframe/dataframe.py +17630 -16946
  949. teradataml/dataframe/dataframe_utils.py +1875 -1740
  950. teradataml/dataframe/fastload.py +794 -603
  951. teradataml/dataframe/indexer.py +424 -424
  952. teradataml/dataframe/setop.py +1179 -1166
  953. teradataml/dataframe/sql.py +10174 -6432
  954. teradataml/dataframe/sql_function_parameters.py +439 -388
  955. teradataml/dataframe/sql_functions.py +652 -652
  956. teradataml/dataframe/sql_interfaces.py +220 -220
  957. teradataml/dataframe/vantage_function_types.py +674 -630
  958. teradataml/dataframe/window.py +693 -692
  959. teradataml/dbutils/__init__.py +3 -3
  960. teradataml/dbutils/dbutils.py +1167 -1150
  961. teradataml/dbutils/filemgr.py +267 -267
  962. teradataml/gen_ai/__init__.py +2 -2
  963. teradataml/gen_ai/convAI.py +472 -472
  964. teradataml/geospatial/__init__.py +3 -3
  965. teradataml/geospatial/geodataframe.py +1105 -1094
  966. teradataml/geospatial/geodataframecolumn.py +392 -387
  967. teradataml/geospatial/geometry_types.py +925 -925
  968. teradataml/hyperparameter_tuner/__init__.py +1 -1
  969. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  970. teradataml/hyperparameter_tuner/utils.py +281 -187
  971. teradataml/lib/aed_0_1.dll +0 -0
  972. teradataml/lib/libaed_0_1.dylib +0 -0
  973. teradataml/lib/libaed_0_1.so +0 -0
  974. teradataml/libaed_0_1.dylib +0 -0
  975. teradataml/libaed_0_1.so +0 -0
  976. teradataml/opensource/__init__.py +1 -0
  977. teradataml/opensource/sklearn/__init__.py +1 -0
  978. teradataml/opensource/sklearn/_class.py +255 -0
  979. teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
  980. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  981. teradataml/opensource/sklearn/constants.py +54 -0
  982. teradataml/options/__init__.py +130 -124
  983. teradataml/options/configure.py +358 -336
  984. teradataml/options/display.py +176 -176
  985. teradataml/plot/__init__.py +2 -2
  986. teradataml/plot/axis.py +1388 -1388
  987. teradataml/plot/constants.py +15 -15
  988. teradataml/plot/figure.py +398 -398
  989. teradataml/plot/plot.py +760 -760
  990. teradataml/plot/query_generator.py +83 -83
  991. teradataml/plot/subplot.py +216 -216
  992. teradataml/scriptmgmt/UserEnv.py +3791 -3761
  993. teradataml/scriptmgmt/__init__.py +3 -3
  994. teradataml/scriptmgmt/lls_utils.py +1719 -1604
  995. teradataml/series/series.py +532 -532
  996. teradataml/series/series_utils.py +71 -71
  997. teradataml/table_operators/Apply.py +949 -917
  998. teradataml/table_operators/Script.py +1718 -1982
  999. teradataml/table_operators/TableOperator.py +1255 -1616
  1000. teradataml/table_operators/__init__.py +2 -3
  1001. teradataml/table_operators/apply_query_generator.py +262 -262
  1002. teradataml/table_operators/query_generator.py +507 -507
  1003. teradataml/table_operators/table_operator_query_generator.py +460 -460
  1004. teradataml/table_operators/table_operator_util.py +631 -639
  1005. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  1006. teradataml/table_operators/templates/dataframe_map.template +176 -176
  1007. teradataml/table_operators/templates/script_executor.template +170 -170
  1008. teradataml/utils/dtypes.py +684 -684
  1009. teradataml/utils/internal_buffer.py +84 -84
  1010. teradataml/utils/print_versions.py +205 -205
  1011. teradataml/utils/utils.py +410 -410
  1012. teradataml/utils/validators.py +2277 -2115
  1013. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
  1014. teradataml-20.0.0.1.dist-info/RECORD +1056 -0
  1015. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
  1016. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
  1017. teradataml/analytics/mle/AdaBoost.py +0 -651
  1018. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1019. teradataml/analytics/mle/Antiselect.py +0 -342
  1020. teradataml/analytics/mle/Arima.py +0 -641
  1021. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1022. teradataml/analytics/mle/Attribution.py +0 -1070
  1023. teradataml/analytics/mle/Betweenness.py +0 -658
  1024. teradataml/analytics/mle/Burst.py +0 -711
  1025. teradataml/analytics/mle/CCM.py +0 -600
  1026. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1027. teradataml/analytics/mle/CFilter.py +0 -460
  1028. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1029. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1030. teradataml/analytics/mle/Closeness.py +0 -737
  1031. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1032. teradataml/analytics/mle/Correlation.py +0 -477
  1033. teradataml/analytics/mle/Correlation2.py +0 -573
  1034. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1035. teradataml/analytics/mle/CoxPH.py +0 -556
  1036. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1037. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1038. teradataml/analytics/mle/DTW.py +0 -623
  1039. teradataml/analytics/mle/DWT.py +0 -564
  1040. teradataml/analytics/mle/DWT2D.py +0 -599
  1041. teradataml/analytics/mle/DecisionForest.py +0 -716
  1042. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1043. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1044. teradataml/analytics/mle/DecisionTree.py +0 -830
  1045. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1046. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1047. teradataml/analytics/mle/FMeasure.py +0 -402
  1048. teradataml/analytics/mle/FPGrowth.py +0 -734
  1049. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1050. teradataml/analytics/mle/GLM.py +0 -558
  1051. teradataml/analytics/mle/GLML1L2.py +0 -547
  1052. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1053. teradataml/analytics/mle/GLMPredict.py +0 -529
  1054. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1055. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1056. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1057. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1058. teradataml/analytics/mle/Histogram.py +0 -561
  1059. teradataml/analytics/mle/IDWT.py +0 -476
  1060. teradataml/analytics/mle/IDWT2D.py +0 -493
  1061. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1062. teradataml/analytics/mle/Interpolator.py +0 -918
  1063. teradataml/analytics/mle/KMeans.py +0 -485
  1064. teradataml/analytics/mle/KNN.py +0 -627
  1065. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1066. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1067. teradataml/analytics/mle/LAR.py +0 -439
  1068. teradataml/analytics/mle/LARPredict.py +0 -478
  1069. teradataml/analytics/mle/LDA.py +0 -548
  1070. teradataml/analytics/mle/LDAInference.py +0 -492
  1071. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1072. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1073. teradataml/analytics/mle/LinReg.py +0 -433
  1074. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1075. teradataml/analytics/mle/MinHash.py +0 -544
  1076. teradataml/analytics/mle/Modularity.py +0 -587
  1077. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1078. teradataml/analytics/mle/NERExtractor.py +0 -595
  1079. teradataml/analytics/mle/NERTrainer.py +0 -458
  1080. teradataml/analytics/mle/NGrams.py +0 -570
  1081. teradataml/analytics/mle/NPath.py +0 -634
  1082. teradataml/analytics/mle/NTree.py +0 -549
  1083. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1084. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1085. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1086. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1087. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1088. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1089. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1090. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1091. teradataml/analytics/mle/POSTagger.py +0 -417
  1092. teradataml/analytics/mle/Pack.py +0 -411
  1093. teradataml/analytics/mle/PageRank.py +0 -535
  1094. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1095. teradataml/analytics/mle/PathGenerator.py +0 -367
  1096. teradataml/analytics/mle/PathStart.py +0 -464
  1097. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1098. teradataml/analytics/mle/Pivot.py +0 -471
  1099. teradataml/analytics/mle/ROC.py +0 -425
  1100. teradataml/analytics/mle/RandomSample.py +0 -637
  1101. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1102. teradataml/analytics/mle/SAX.py +0 -779
  1103. teradataml/analytics/mle/SVMDense.py +0 -677
  1104. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1105. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1106. teradataml/analytics/mle/SVMSparse.py +0 -557
  1107. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1108. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1109. teradataml/analytics/mle/Sampling.py +0 -549
  1110. teradataml/analytics/mle/Scale.py +0 -565
  1111. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1112. teradataml/analytics/mle/ScaleMap.py +0 -378
  1113. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1114. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1115. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1116. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1117. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1118. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1119. teradataml/analytics/mle/Sessionize.py +0 -475
  1120. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1121. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1122. teradataml/analytics/mle/TF.py +0 -389
  1123. teradataml/analytics/mle/TFIDF.py +0 -504
  1124. teradataml/analytics/mle/TextChunker.py +0 -414
  1125. teradataml/analytics/mle/TextClassifier.py +0 -399
  1126. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1127. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1128. teradataml/analytics/mle/TextMorph.py +0 -494
  1129. teradataml/analytics/mle/TextParser.py +0 -623
  1130. teradataml/analytics/mle/TextTagger.py +0 -530
  1131. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1132. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1133. teradataml/analytics/mle/Unpack.py +0 -526
  1134. teradataml/analytics/mle/Unpivot.py +0 -438
  1135. teradataml/analytics/mle/VarMax.py +0 -776
  1136. teradataml/analytics/mle/VectorDistance.py +0 -762
  1137. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1138. teradataml/analytics/mle/XGBoost.py +0 -842
  1139. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1140. teradataml/analytics/mle/__init__.py +0 -123
  1141. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1142. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1143. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1144. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1145. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1146. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1147. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1148. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1149. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1150. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1151. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1152. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1153. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1154. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1155. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1156. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1157. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1158. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1159. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1160. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1161. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1162. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1163. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1164. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1165. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1166. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1167. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1168. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1169. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1170. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1171. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1172. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1173. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1174. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1175. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1176. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1177. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1178. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1179. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1180. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1181. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1182. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1183. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1184. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1185. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1186. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1187. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1188. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1189. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1190. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1191. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1192. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1193. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1194. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1195. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1196. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1197. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1198. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1199. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1200. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1201. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1202. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1203. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1204. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1205. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1206. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1207. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1208. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1209. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1210. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1211. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1212. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1213. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1214. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1215. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1216. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1217. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1218. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1219. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1220. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1221. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1222. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1223. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1224. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1225. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1226. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1227. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1228. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1229. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1230. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1231. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1232. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1233. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1234. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1235. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1236. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1237. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1238. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1239. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1240. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1241. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1242. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1243. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1244. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1245. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1246. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1247. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1248. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1249. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1250. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1251. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1252. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1253. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1254. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1255. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1256. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1257. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1258. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1259. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1260. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1261. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1262. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1263. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1264. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1265. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1266. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1267. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1268. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1269. teradataml/analytics/sqle/Antiselect.py +0 -321
  1270. teradataml/analytics/sqle/Attribution.py +0 -603
  1271. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1272. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1273. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1274. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1275. teradataml/analytics/sqle/NPath.py +0 -632
  1276. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1277. teradataml/analytics/sqle/Pack.py +0 -388
  1278. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1279. teradataml/analytics/sqle/Sessionize.py +0 -390
  1280. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1281. teradataml/analytics/sqle/Unpack.py +0 -503
  1282. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1283. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1284. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1285. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1286. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1287. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1288. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1289. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1290. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1291. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1292. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1293. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1294. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1295. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1296. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1297. teradataml/catalog/model_cataloging.py +0 -980
  1298. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1299. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1300. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1301. teradataml/table_operators/sandbox_container_util.py +0 -643
  1302. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1303. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1600 @@
1
+ fixed_acidity,volatile_acidity,citric_acid,residual_sugar,chlorides,free_sulfur_dioxide,total_sulfur_dioxide,density,pH,sulphates,alcohol,quality
2
+ 7.4,0.7,0,1.9,0.076,11,34,0.9978,3.51,0.56,9.4,bad
3
+ 7.8,0.88,0,2.6,0.098,25,67,0.9968,3.2,0.68,9.8,bad
4
+ 7.8,0.76,0.04,2.3,0.092,15,54,0.997,3.26,0.65,9.8,bad
5
+ 11.2,0.28,0.56,1.9,0.075,17,60,0.998,3.16,0.58,9.8,good
6
+ 7.4,0.7,0,1.9,0.076,11,34,0.9978,3.51,0.56,9.4,bad
7
+ 7.4,0.66,0,1.8,0.075,13,40,0.9978,3.51,0.56,9.4,bad
8
+ 7.9,0.6,0.06,1.6,0.069,15,59,0.9964,3.3,0.46,9.4,bad
9
+ 7.3,0.65,0,1.2,0.065,15,21,0.9946,3.39,0.47,10,good
10
+ 7.8,0.58,0.02,2,0.073,9,18,0.9968,3.36,0.57,9.5,good
11
+ 7.5,0.5,0.36,6.1,0.071,17,102,0.9978,3.35,0.8,10.5,bad
12
+ 6.7,0.58,0.08,1.8,0.097,15,65,0.9959,3.28,0.54,9.2,bad
13
+ 7.5,0.5,0.36,6.1,0.071,17,102,0.9978,3.35,0.8,10.5,bad
14
+ 5.6,0.615,0,1.6,0.089,16,59,0.9943,3.58,0.52,9.9,bad
15
+ 7.8,0.61,0.29,1.6,0.114,9,29,0.9974,3.26,1.56,9.1,bad
16
+ 8.9,0.62,0.18,3.8,0.176,52,145,0.9986,3.16,0.88,9.2,bad
17
+ 8.9,0.62,0.19,3.9,0.17,51,148,0.9986,3.17,0.93,9.2,bad
18
+ 8.5,0.28,0.56,1.8,0.092,35,103,0.9969,3.3,0.75,10.5,good
19
+ 8.1,0.56,0.28,1.7,0.368,16,56,0.9968,3.11,1.28,9.3,bad
20
+ 7.4,0.59,0.08,4.4,0.086,6,29,0.9974,3.38,0.5,9,bad
21
+ 7.9,0.32,0.51,1.8,0.341,17,56,0.9969,3.04,1.08,9.2,good
22
+ 8.9,0.22,0.48,1.8,0.077,29,60,0.9968,3.39,0.53,9.4,good
23
+ 7.6,0.39,0.31,2.3,0.082,23,71,0.9982,3.52,0.65,9.7,bad
24
+ 7.9,0.43,0.21,1.6,0.106,10,37,0.9966,3.17,0.91,9.5,bad
25
+ 8.5,0.49,0.11,2.3,0.084,9,67,0.9968,3.17,0.53,9.4,bad
26
+ 6.9,0.4,0.14,2.4,0.085,21,40,0.9968,3.43,0.63,9.7,good
27
+ 6.3,0.39,0.16,1.4,0.08,11,23,0.9955,3.34,0.56,9.3,bad
28
+ 7.6,0.41,0.24,1.8,0.08,4,11,0.9962,3.28,0.59,9.5,bad
29
+ 7.9,0.43,0.21,1.6,0.106,10,37,0.9966,3.17,0.91,9.5,bad
30
+ 7.1,0.71,0,1.9,0.08,14,35,0.9972,3.47,0.55,9.4,bad
31
+ 7.8,0.645,0,2,0.082,8,16,0.9964,3.38,0.59,9.8,good
32
+ 6.7,0.675,0.07,2.4,0.089,17,82,0.9958,3.35,0.54,10.1,bad
33
+ 6.9,0.685,0,2.5,0.105,22,37,0.9966,3.46,0.57,10.6,good
34
+ 8.3,0.655,0.12,2.3,0.083,15,113,0.9966,3.17,0.66,9.8,bad
35
+ 6.9,0.605,0.12,10.7,0.073,40,83,0.9993,3.45,0.52,9.4,good
36
+ 5.2,0.32,0.25,1.8,0.103,13,50,0.9957,3.38,0.55,9.2,bad
37
+ 7.8,0.645,0,5.5,0.086,5,18,0.9986,3.4,0.55,9.6,good
38
+ 7.8,0.6,0.14,2.4,0.086,3,15,0.9975,3.42,0.6,10.8,good
39
+ 8.1,0.38,0.28,2.1,0.066,13,30,0.9968,3.23,0.73,9.7,good
40
+ 5.7,1.13,0.09,1.5,0.172,7,19,0.994,3.5,0.48,9.8,bad
41
+ 7.3,0.45,0.36,5.9,0.074,12,87,0.9978,3.33,0.83,10.5,bad
42
+ 7.3,0.45,0.36,5.9,0.074,12,87,0.9978,3.33,0.83,10.5,bad
43
+ 8.8,0.61,0.3,2.8,0.088,17,46,0.9976,3.26,0.51,9.3,bad
44
+ 7.5,0.49,0.2,2.6,0.332,8,14,0.9968,3.21,0.9,10.5,good
45
+ 8.1,0.66,0.22,2.2,0.069,9,23,0.9968,3.3,1.2,10.3,bad
46
+ 6.8,0.67,0.02,1.8,0.05,5,11,0.9962,3.48,0.52,9.5,bad
47
+ 4.6,0.52,0.15,2.1,0.054,8,65,0.9934,3.9,0.56,13.1,bad
48
+ 7.7,0.935,0.43,2.2,0.114,22,114,0.997,3.25,0.73,9.2,bad
49
+ 8.7,0.29,0.52,1.6,0.113,12,37,0.9969,3.25,0.58,9.5,bad
50
+ 6.4,0.4,0.23,1.6,0.066,5,12,0.9958,3.34,0.56,9.2,bad
51
+ 5.6,0.31,0.37,1.4,0.074,12,96,0.9954,3.32,0.58,9.2,bad
52
+ 8.8,0.66,0.26,1.7,0.074,4,23,0.9971,3.15,0.74,9.2,bad
53
+ 6.6,0.52,0.04,2.2,0.069,8,15,0.9956,3.4,0.63,9.4,good
54
+ 6.6,0.5,0.04,2.1,0.068,6,14,0.9955,3.39,0.64,9.4,good
55
+ 8.6,0.38,0.36,3,0.081,30,119,0.997,3.2,0.56,9.4,bad
56
+ 7.6,0.51,0.15,2.8,0.11,33,73,0.9955,3.17,0.63,10.2,good
57
+ 7.7,0.62,0.04,3.8,0.084,25,45,0.9978,3.34,0.53,9.5,bad
58
+ 10.2,0.42,0.57,3.4,0.07,4,10,0.9971,3.04,0.63,9.6,bad
59
+ 7.5,0.63,0.12,5.1,0.111,50,110,0.9983,3.26,0.77,9.4,bad
60
+ 7.8,0.59,0.18,2.3,0.076,17,54,0.9975,3.43,0.59,10,bad
61
+ 7.3,0.39,0.31,2.4,0.074,9,46,0.9962,3.41,0.54,9.4,good
62
+ 8.8,0.4,0.4,2.2,0.079,19,52,0.998,3.44,0.64,9.2,bad
63
+ 7.7,0.69,0.49,1.8,0.115,20,112,0.9968,3.21,0.71,9.3,bad
64
+ 7.5,0.52,0.16,1.9,0.085,12,35,0.9968,3.38,0.62,9.5,good
65
+ 7,0.735,0.05,2,0.081,13,54,0.9966,3.39,0.57,9.8,bad
66
+ 7.2,0.725,0.05,4.65,0.086,4,11,0.9962,3.41,0.39,10.9,bad
67
+ 7.2,0.725,0.05,4.65,0.086,4,11,0.9962,3.41,0.39,10.9,bad
68
+ 7.5,0.52,0.11,1.5,0.079,11,39,0.9968,3.42,0.58,9.6,bad
69
+ 6.6,0.705,0.07,1.6,0.076,6,15,0.9962,3.44,0.58,10.7,bad
70
+ 9.3,0.32,0.57,2,0.074,27,65,0.9969,3.28,0.79,10.7,bad
71
+ 8,0.705,0.05,1.9,0.074,8,19,0.9962,3.34,0.95,10.5,good
72
+ 7.7,0.63,0.08,1.9,0.076,15,27,0.9967,3.32,0.54,9.5,good
73
+ 7.7,0.67,0.23,2.1,0.088,17,96,0.9962,3.32,0.48,9.5,bad
74
+ 7.7,0.69,0.22,1.9,0.084,18,94,0.9961,3.31,0.48,9.5,bad
75
+ 8.3,0.675,0.26,2.1,0.084,11,43,0.9976,3.31,0.53,9.2,bad
76
+ 9.7,0.32,0.54,2.5,0.094,28,83,0.9984,3.28,0.82,9.6,bad
77
+ 8.8,0.41,0.64,2.2,0.093,9,42,0.9986,3.54,0.66,10.5,bad
78
+ 8.8,0.41,0.64,2.2,0.093,9,42,0.9986,3.54,0.66,10.5,bad
79
+ 6.8,0.785,0,2.4,0.104,14,30,0.9966,3.52,0.55,10.7,good
80
+ 6.7,0.75,0.12,2,0.086,12,80,0.9958,3.38,0.52,10.1,bad
81
+ 8.3,0.625,0.2,1.5,0.08,27,119,0.9972,3.16,1.12,9.1,bad
82
+ 6.2,0.45,0.2,1.6,0.069,3,15,0.9958,3.41,0.56,9.2,bad
83
+ 7.8,0.43,0.7,1.9,0.464,22,67,0.9974,3.13,1.28,9.4,bad
84
+ 7.4,0.5,0.47,2,0.086,21,73,0.997,3.36,0.57,9.1,bad
85
+ 7.3,0.67,0.26,1.8,0.401,16,51,0.9969,3.16,1.14,9.4,bad
86
+ 6.3,0.3,0.48,1.8,0.069,18,61,0.9959,3.44,0.78,10.3,good
87
+ 6.9,0.55,0.15,2.2,0.076,19,40,0.9961,3.41,0.59,10.1,bad
88
+ 8.6,0.49,0.28,1.9,0.11,20,136,0.9972,2.93,1.95,9.9,good
89
+ 7.7,0.49,0.26,1.9,0.062,9,31,0.9966,3.39,0.64,9.6,bad
90
+ 9.3,0.39,0.44,2.1,0.107,34,125,0.9978,3.14,1.22,9.5,bad
91
+ 7,0.62,0.08,1.8,0.076,8,24,0.9978,3.48,0.53,9,bad
92
+ 7.9,0.52,0.26,1.9,0.079,42,140,0.9964,3.23,0.54,9.5,bad
93
+ 8.6,0.49,0.28,1.9,0.11,20,136,0.9972,2.93,1.95,9.9,good
94
+ 8.6,0.49,0.29,2,0.11,19,133,0.9972,2.93,1.98,9.8,bad
95
+ 7.7,0.49,0.26,1.9,0.062,9,31,0.9966,3.39,0.64,9.6,bad
96
+ 5,1.02,0.04,1.4,0.045,41,85,0.9938,3.75,0.48,10.5,bad
97
+ 4.7,0.6,0.17,2.3,0.058,17,106,0.9932,3.85,0.6,12.9,good
98
+ 6.8,0.775,0,3,0.102,8,23,0.9965,3.45,0.56,10.7,bad
99
+ 7,0.5,0.25,2,0.07,3,22,0.9963,3.25,0.63,9.2,bad
100
+ 7.6,0.9,0.06,2.5,0.079,5,10,0.9967,3.39,0.56,9.8,bad
101
+ 8.1,0.545,0.18,1.9,0.08,13,35,0.9972,3.3,0.59,9,good
102
+ 8.3,0.61,0.3,2.1,0.084,11,50,0.9972,3.4,0.61,10.2,good
103
+ 7.8,0.5,0.3,1.9,0.075,8,22,0.9959,3.31,0.56,10.4,good
104
+ 8.1,0.545,0.18,1.9,0.08,13,35,0.9972,3.3,0.59,9,good
105
+ 8.1,0.575,0.22,2.1,0.077,12,65,0.9967,3.29,0.51,9.2,bad
106
+ 7.2,0.49,0.24,2.2,0.07,5,36,0.996,3.33,0.48,9.4,bad
107
+ 8.1,0.575,0.22,2.1,0.077,12,65,0.9967,3.29,0.51,9.2,bad
108
+ 7.8,0.41,0.68,1.7,0.467,18,69,0.9973,3.08,1.31,9.3,bad
109
+ 6.2,0.63,0.31,1.7,0.088,15,64,0.9969,3.46,0.79,9.3,bad
110
+ 8,0.33,0.53,2.5,0.091,18,80,0.9976,3.37,0.8,9.6,good
111
+ 8.1,0.785,0.52,2,0.122,37,153,0.9969,3.21,0.69,9.3,bad
112
+ 7.8,0.56,0.19,1.8,0.104,12,47,0.9964,3.19,0.93,9.5,bad
113
+ 8.4,0.62,0.09,2.2,0.084,11,108,0.9964,3.15,0.66,9.8,bad
114
+ 8.4,0.6,0.1,2.2,0.085,14,111,0.9964,3.15,0.66,9.8,bad
115
+ 10.1,0.31,0.44,2.3,0.08,22,46,0.9988,3.32,0.67,9.7,good
116
+ 7.8,0.56,0.19,1.8,0.104,12,47,0.9964,3.19,0.93,9.5,bad
117
+ 9.4,0.4,0.31,2.2,0.09,13,62,0.9966,3.07,0.63,10.5,good
118
+ 8.3,0.54,0.28,1.9,0.077,11,40,0.9978,3.39,0.61,10,good
119
+ 7.8,0.56,0.12,2,0.082,7,28,0.997,3.37,0.5,9.4,good
120
+ 8.8,0.55,0.04,2.2,0.119,14,56,0.9962,3.21,0.6,10.9,good
121
+ 7,0.69,0.08,1.8,0.097,22,89,0.9959,3.34,0.54,9.2,good
122
+ 7.3,1.07,0.09,1.7,0.178,10,89,0.9962,3.3,0.57,9,bad
123
+ 8.8,0.55,0.04,2.2,0.119,14,56,0.9962,3.21,0.6,10.9,good
124
+ 7.3,0.695,0,2.5,0.075,3,13,0.998,3.49,0.52,9.2,bad
125
+ 8,0.71,0,2.6,0.08,11,34,0.9976,3.44,0.53,9.5,bad
126
+ 7.8,0.5,0.17,1.6,0.082,21,102,0.996,3.39,0.48,9.5,bad
127
+ 9,0.62,0.04,1.9,0.146,27,90,0.9984,3.16,0.7,9.4,bad
128
+ 8.2,1.33,0,1.7,0.081,3,12,0.9964,3.53,0.49,10.9,bad
129
+ 8.1,1.33,0,1.8,0.082,3,12,0.9964,3.54,0.48,10.9,bad
130
+ 8,0.59,0.16,1.8,0.065,3,16,0.9962,3.42,0.92,10.5,good
131
+ 6.1,0.38,0.15,1.8,0.072,6,19,0.9955,3.42,0.57,9.4,bad
132
+ 8,0.745,0.56,2,0.118,30,134,0.9968,3.24,0.66,9.4,bad
133
+ 5.6,0.5,0.09,2.3,0.049,17,99,0.9937,3.63,0.63,13,bad
134
+ 5.6,0.5,0.09,2.3,0.049,17,99,0.9937,3.63,0.63,13,bad
135
+ 6.6,0.5,0.01,1.5,0.06,17,26,0.9952,3.4,0.58,9.8,good
136
+ 7.9,1.04,0.05,2.2,0.084,13,29,0.9959,3.22,0.55,9.9,good
137
+ 8.4,0.745,0.11,1.9,0.09,16,63,0.9965,3.19,0.82,9.6,bad
138
+ 8.3,0.715,0.15,1.8,0.089,10,52,0.9968,3.23,0.77,9.5,bad
139
+ 7.2,0.415,0.36,2,0.081,13,45,0.9972,3.48,0.64,9.2,bad
140
+ 7.8,0.56,0.19,2.1,0.081,15,105,0.9962,3.33,0.54,9.5,bad
141
+ 7.8,0.56,0.19,2,0.081,17,108,0.9962,3.32,0.54,9.5,bad
142
+ 8.4,0.745,0.11,1.9,0.09,16,63,0.9965,3.19,0.82,9.6,bad
143
+ 8.3,0.715,0.15,1.8,0.089,10,52,0.9968,3.23,0.77,9.5,bad
144
+ 5.2,0.34,0,1.8,0.05,27,63,0.9916,3.68,0.79,14,good
145
+ 6.3,0.39,0.08,1.7,0.066,3,20,0.9954,3.34,0.58,9.4,bad
146
+ 5.2,0.34,0,1.8,0.05,27,63,0.9916,3.68,0.79,14,good
147
+ 8.1,0.67,0.55,1.8,0.117,32,141,0.9968,3.17,0.62,9.4,bad
148
+ 5.8,0.68,0.02,1.8,0.087,21,94,0.9944,3.54,0.52,10,bad
149
+ 7.6,0.49,0.26,1.6,0.236,10,88,0.9968,3.11,0.8,9.3,bad
150
+ 6.9,0.49,0.1,2.3,0.074,12,30,0.9959,3.42,0.58,10.2,good
151
+ 8.2,0.4,0.44,2.8,0.089,11,43,0.9975,3.53,0.61,10.5,good
152
+ 7.3,0.33,0.47,2.1,0.077,5,11,0.9958,3.33,0.53,10.3,good
153
+ 9.2,0.52,1,3.4,0.61,32,69,0.9996,2.74,2,9.4,bad
154
+ 7.5,0.6,0.03,1.8,0.095,25,99,0.995,3.35,0.54,10.1,bad
155
+ 7.5,0.6,0.03,1.8,0.095,25,99,0.995,3.35,0.54,10.1,bad
156
+ 7.1,0.43,0.42,5.5,0.07,29,129,0.9973,3.42,0.72,10.5,bad
157
+ 7.1,0.43,0.42,5.5,0.071,28,128,0.9973,3.42,0.71,10.5,bad
158
+ 7.1,0.43,0.42,5.5,0.07,29,129,0.9973,3.42,0.72,10.5,bad
159
+ 7.1,0.43,0.42,5.5,0.071,28,128,0.9973,3.42,0.71,10.5,bad
160
+ 7.1,0.68,0,2.2,0.073,12,22,0.9969,3.48,0.5,9.3,bad
161
+ 6.8,0.6,0.18,1.9,0.079,18,86,0.9968,3.59,0.57,9.3,good
162
+ 7.6,0.95,0.03,2,0.09,7,20,0.9959,3.2,0.56,9.6,bad
163
+ 7.6,0.68,0.02,1.3,0.072,9,20,0.9965,3.17,1.08,9.2,bad
164
+ 7.8,0.53,0.04,1.7,0.076,17,31,0.9964,3.33,0.56,10,good
165
+ 7.4,0.6,0.26,7.3,0.07,36,121,0.9982,3.37,0.49,9.4,bad
166
+ 7.3,0.59,0.26,7.2,0.07,35,121,0.9981,3.37,0.49,9.4,bad
167
+ 7.8,0.63,0.48,1.7,0.1,14,96,0.9961,3.19,0.62,9.5,bad
168
+ 6.8,0.64,0.1,2.1,0.085,18,101,0.9956,3.34,0.52,10.2,bad
169
+ 7.3,0.55,0.03,1.6,0.072,17,42,0.9956,3.37,0.48,9,bad
170
+ 6.8,0.63,0.07,2.1,0.089,11,44,0.9953,3.47,0.55,10.4,good
171
+ 7.5,0.705,0.24,1.8,0.36,15,63,0.9964,3,1.59,9.5,bad
172
+ 7.9,0.885,0.03,1.8,0.058,4,8,0.9972,3.36,0.33,9.1,bad
173
+ 8,0.42,0.17,2,0.073,6,18,0.9972,3.29,0.61,9.2,good
174
+ 8,0.42,0.17,2,0.073,6,18,0.9972,3.29,0.61,9.2,good
175
+ 7.4,0.62,0.05,1.9,0.068,24,42,0.9961,3.42,0.57,11.5,good
176
+ 7.3,0.38,0.21,2,0.08,7,35,0.9961,3.33,0.47,9.5,bad
177
+ 6.9,0.5,0.04,1.5,0.085,19,49,0.9958,3.35,0.78,9.5,bad
178
+ 7.3,0.38,0.21,2,0.08,7,35,0.9961,3.33,0.47,9.5,bad
179
+ 7.5,0.52,0.42,2.3,0.087,8,38,0.9972,3.58,0.61,10.5,good
180
+ 7,0.805,0,2.5,0.068,7,20,0.9969,3.48,0.56,9.6,bad
181
+ 8.8,0.61,0.14,2.4,0.067,10,42,0.9969,3.19,0.59,9.5,bad
182
+ 8.8,0.61,0.14,2.4,0.067,10,42,0.9969,3.19,0.59,9.5,bad
183
+ 8.9,0.61,0.49,2,0.27,23,110,0.9972,3.12,1.02,9.3,bad
184
+ 7.2,0.73,0.02,2.5,0.076,16,42,0.9972,3.44,0.52,9.3,bad
185
+ 6.8,0.61,0.2,1.8,0.077,11,65,0.9971,3.54,0.58,9.3,bad
186
+ 6.7,0.62,0.21,1.9,0.079,8,62,0.997,3.52,0.58,9.3,good
187
+ 8.9,0.31,0.57,2,0.111,26,85,0.9971,3.26,0.53,9.7,bad
188
+ 7.4,0.39,0.48,2,0.082,14,67,0.9972,3.34,0.55,9.2,bad
189
+ 7.7,0.705,0.1,2.6,0.084,9,26,0.9976,3.39,0.49,9.7,bad
190
+ 7.9,0.5,0.33,2,0.084,15,143,0.9968,3.2,0.55,9.5,bad
191
+ 7.9,0.49,0.32,1.9,0.082,17,144,0.9968,3.2,0.55,9.5,bad
192
+ 8.2,0.5,0.35,2.9,0.077,21,127,0.9976,3.23,0.62,9.4,bad
193
+ 6.4,0.37,0.25,1.9,0.074,21,49,0.9974,3.57,0.62,9.8,good
194
+ 6.8,0.63,0.12,3.8,0.099,16,126,0.9969,3.28,0.61,9.5,bad
195
+ 7.6,0.55,0.21,2.2,0.071,7,28,0.9964,3.28,0.55,9.7,bad
196
+ 7.6,0.55,0.21,2.2,0.071,7,28,0.9964,3.28,0.55,9.7,bad
197
+ 7.8,0.59,0.33,2,0.074,24,120,0.9968,3.25,0.54,9.4,bad
198
+ 7.3,0.58,0.3,2.4,0.074,15,55,0.9968,3.46,0.59,10.2,bad
199
+ 11.5,0.3,0.6,2,0.067,12,27,0.9981,3.11,0.97,10.1,good
200
+ 5.4,0.835,0.08,1.2,0.046,13,93,0.9924,3.57,0.85,13,good
201
+ 6.9,1.09,0.06,2.1,0.061,12,31,0.9948,3.51,0.43,11.4,bad
202
+ 9.6,0.32,0.47,1.4,0.056,9,24,0.99695,3.22,0.82,10.3,good
203
+ 8.8,0.37,0.48,2.1,0.097,39,145,0.9975,3.04,1.03,9.3,bad
204
+ 6.8,0.5,0.11,1.5,0.075,16,49,0.99545,3.36,0.79,9.5,bad
205
+ 7,0.42,0.35,1.6,0.088,16,39,0.9961,3.34,0.55,9.2,bad
206
+ 7,0.43,0.36,1.6,0.089,14,37,0.99615,3.34,0.56,9.2,good
207
+ 12.8,0.3,0.74,2.6,0.095,9,28,0.9994,3.2,0.77,10.8,good
208
+ 12.8,0.3,0.74,2.6,0.095,9,28,0.9994,3.2,0.77,10.8,good
209
+ 7.8,0.57,0.31,1.8,0.069,26,120,0.99625,3.29,0.53,9.3,bad
210
+ 7.8,0.44,0.28,2.7,0.1,18,95,0.9966,3.22,0.67,9.4,bad
211
+ 11,0.3,0.58,2.1,0.054,7,19,0.998,3.31,0.88,10.5,good
212
+ 9.7,0.53,0.6,2,0.039,5,19,0.99585,3.3,0.86,12.4,good
213
+ 8,0.725,0.24,2.8,0.083,10,62,0.99685,3.35,0.56,10,good
214
+ 11.6,0.44,0.64,2.1,0.059,5,15,0.998,3.21,0.67,10.2,good
215
+ 8.2,0.57,0.26,2.2,0.06,28,65,0.9959,3.3,0.43,10.1,bad
216
+ 7.8,0.735,0.08,2.4,0.092,10,41,0.9974,3.24,0.71,9.8,good
217
+ 7,0.49,0.49,5.6,0.06,26,121,0.9974,3.34,0.76,10.5,bad
218
+ 8.7,0.625,0.16,2,0.101,13,49,0.9962,3.14,0.57,11,bad
219
+ 8.1,0.725,0.22,2.2,0.072,11,41,0.9967,3.36,0.55,9.1,bad
220
+ 7.5,0.49,0.19,1.9,0.076,10,44,0.9957,3.39,0.54,9.7,bad
221
+ 7.8,0.53,0.33,2.4,0.08,24,144,0.99655,3.3,0.6,9.5,bad
222
+ 7.8,0.34,0.37,2,0.082,24,58,0.9964,3.34,0.59,9.4,good
223
+ 7.4,0.53,0.26,2,0.101,16,72,0.9957,3.15,0.57,9.4,bad
224
+ 6.8,0.61,0.04,1.5,0.057,5,10,0.99525,3.42,0.6,9.5,bad
225
+ 8.6,0.645,0.25,2,0.083,8,28,0.99815,3.28,0.6,10,good
226
+ 8.4,0.635,0.36,2,0.089,15,55,0.99745,3.31,0.57,10.4,bad
227
+ 7.7,0.43,0.25,2.6,0.073,29,63,0.99615,3.37,0.58,10.5,good
228
+ 8.9,0.59,0.5,2,0.337,27,81,0.9964,3.04,1.61,9.5,good
229
+ 9,0.82,0.14,2.6,0.089,9,23,0.9984,3.39,0.63,9.8,bad
230
+ 7.7,0.43,0.25,2.6,0.073,29,63,0.99615,3.37,0.58,10.5,good
231
+ 6.9,0.52,0.25,2.6,0.081,10,37,0.99685,3.46,0.5,11,bad
232
+ 5.2,0.48,0.04,1.6,0.054,19,106,0.9927,3.54,0.62,12.2,good
233
+ 8,0.38,0.06,1.8,0.078,12,49,0.99625,3.37,0.52,9.9,good
234
+ 8.5,0.37,0.2,2.8,0.09,18,58,0.998,3.34,0.7,9.6,good
235
+ 6.9,0.52,0.25,2.6,0.081,10,37,0.99685,3.46,0.5,11,bad
236
+ 8.2,1,0.09,2.3,0.065,7,37,0.99685,3.32,0.55,9,good
237
+ 7.2,0.63,0,1.9,0.097,14,38,0.99675,3.37,0.58,9,good
238
+ 7.2,0.63,0,1.9,0.097,14,38,0.99675,3.37,0.58,9,good
239
+ 7.2,0.645,0,1.9,0.097,15,39,0.99675,3.37,0.58,9.2,good
240
+ 7.2,0.63,0,1.9,0.097,14,38,0.99675,3.37,0.58,9,good
241
+ 8.2,1,0.09,2.3,0.065,7,37,0.99685,3.32,0.55,9,good
242
+ 8.9,0.635,0.37,1.7,0.263,5,62,0.9971,3,1.09,9.3,bad
243
+ 12,0.38,0.56,2.1,0.093,6,24,0.99925,3.14,0.71,10.9,good
244
+ 7.7,0.58,0.1,1.8,0.102,28,109,0.99565,3.08,0.49,9.8,good
245
+ 15,0.21,0.44,2.2,0.075,10,24,1.00005,3.07,0.84,9.2,good
246
+ 15,0.21,0.44,2.2,0.075,10,24,1.00005,3.07,0.84,9.2,good
247
+ 7.3,0.66,0,2,0.084,6,23,0.9983,3.61,0.96,9.9,good
248
+ 7.1,0.68,0.07,1.9,0.075,16,51,0.99685,3.38,0.52,9.5,bad
249
+ 8.2,0.6,0.17,2.3,0.072,11,73,0.9963,3.2,0.45,9.3,bad
250
+ 7.7,0.53,0.06,1.7,0.074,9,39,0.99615,3.35,0.48,9.8,good
251
+ 7.3,0.66,0,2,0.084,6,23,0.9983,3.61,0.96,9.9,good
252
+ 10.8,0.32,0.44,1.6,0.063,16,37,0.9985,3.22,0.78,10,good
253
+ 7.1,0.6,0,1.8,0.074,16,34,0.9972,3.47,0.7,9.9,good
254
+ 11.1,0.35,0.48,3.1,0.09,5,21,0.9986,3.17,0.53,10.5,bad
255
+ 7.7,0.775,0.42,1.9,0.092,8,86,0.9959,3.23,0.59,9.5,bad
256
+ 7.1,0.6,0,1.8,0.074,16,34,0.9972,3.47,0.7,9.9,good
257
+ 8,0.57,0.23,3.2,0.073,17,119,0.99675,3.26,0.57,9.3,bad
258
+ 9.4,0.34,0.37,2.2,0.075,5,13,0.998,3.22,0.62,9.2,bad
259
+ 6.6,0.695,0,2.1,0.075,12,56,0.9968,3.49,0.67,9.2,bad
260
+ 7.7,0.41,0.76,1.8,0.611,8,45,0.9968,3.06,1.26,9.4,bad
261
+ 10,0.31,0.47,2.6,0.085,14,33,0.99965,3.36,0.8,10.5,good
262
+ 7.9,0.33,0.23,1.7,0.077,18,45,0.99625,3.29,0.65,9.3,bad
263
+ 7,0.975,0.04,2,0.087,12,67,0.99565,3.35,0.6,9.4,bad
264
+ 8,0.52,0.03,1.7,0.07,10,35,0.99575,3.34,0.57,10,bad
265
+ 7.9,0.37,0.23,1.8,0.077,23,49,0.9963,3.28,0.67,9.3,bad
266
+ 12.5,0.56,0.49,2.4,0.064,5,27,0.9999,3.08,0.87,10.9,bad
267
+ 11.8,0.26,0.52,1.8,0.071,6,10,0.9968,3.2,0.72,10.2,good
268
+ 8.1,0.87,0,3.3,0.096,26,61,1.00025,3.6,0.72,9.8,bad
269
+ 7.9,0.35,0.46,3.6,0.078,15,37,0.9973,3.35,0.86,12.8,good
270
+ 6.9,0.54,0.04,3,0.077,7,27,0.9987,3.69,0.91,9.4,good
271
+ 11.5,0.18,0.51,4,0.104,4,23,0.9996,3.28,0.97,10.1,good
272
+ 7.9,0.545,0.06,4,0.087,27,61,0.9965,3.36,0.67,10.7,good
273
+ 11.5,0.18,0.51,4,0.104,4,23,0.9996,3.28,0.97,10.1,good
274
+ 10.9,0.37,0.58,4,0.071,17,65,0.99935,3.22,0.78,10.1,bad
275
+ 8.4,0.715,0.2,2.4,0.076,10,38,0.99735,3.31,0.64,9.4,bad
276
+ 7.5,0.65,0.18,7,0.088,27,94,0.99915,3.38,0.77,9.4,bad
277
+ 7.9,0.545,0.06,4,0.087,27,61,0.9965,3.36,0.67,10.7,good
278
+ 6.9,0.54,0.04,3,0.077,7,27,0.9987,3.69,0.91,9.4,good
279
+ 11.5,0.18,0.51,4,0.104,4,23,0.9996,3.28,0.97,10.1,good
280
+ 10.3,0.32,0.45,6.4,0.073,5,13,0.9976,3.23,0.82,12.6,good
281
+ 8.9,0.4,0.32,5.6,0.087,10,47,0.9991,3.38,0.77,10.5,good
282
+ 11.4,0.26,0.44,3.6,0.071,6,19,0.9986,3.12,0.82,9.3,good
283
+ 7.7,0.27,0.68,3.5,0.358,5,10,0.9972,3.25,1.08,9.9,good
284
+ 7.6,0.52,0.12,3,0.067,12,53,0.9971,3.36,0.57,9.1,bad
285
+ 8.9,0.4,0.32,5.6,0.087,10,47,0.9991,3.38,0.77,10.5,good
286
+ 9.9,0.59,0.07,3.4,0.102,32,71,1.00015,3.31,0.71,9.8,bad
287
+ 9.9,0.59,0.07,3.4,0.102,32,71,1.00015,3.31,0.71,9.8,bad
288
+ 12,0.45,0.55,2,0.073,25,49,0.9997,3.1,0.76,10.3,good
289
+ 7.5,0.4,0.12,3,0.092,29,53,0.9967,3.37,0.7,10.3,good
290
+ 8.7,0.52,0.09,2.5,0.091,20,49,0.9976,3.34,0.86,10.6,good
291
+ 11.6,0.42,0.53,3.3,0.105,33,98,1.001,3.2,0.95,9.2,bad
292
+ 8.7,0.52,0.09,2.5,0.091,20,49,0.9976,3.34,0.86,10.6,good
293
+ 11,0.2,0.48,2,0.343,6,18,0.9979,3.3,0.71,10.5,bad
294
+ 10.4,0.55,0.23,2.7,0.091,18,48,0.9994,3.22,0.64,10.3,good
295
+ 6.9,0.36,0.25,2.4,0.098,5,16,0.9964,3.41,0.6,10.1,good
296
+ 13.3,0.34,0.52,3.2,0.094,17,53,1.0014,3.05,0.81,9.5,good
297
+ 10.8,0.5,0.46,2.5,0.073,5,27,1.0001,3.05,0.64,9.5,bad
298
+ 10.6,0.83,0.37,2.6,0.086,26,70,0.9981,3.16,0.52,9.9,bad
299
+ 7.1,0.63,0.06,2,0.083,8,29,0.99855,3.67,0.73,9.6,bad
300
+ 7.2,0.65,0.02,2.3,0.094,5,31,0.9993,3.67,0.8,9.7,bad
301
+ 6.9,0.67,0.06,2.1,0.08,8,33,0.99845,3.68,0.71,9.6,bad
302
+ 7.5,0.53,0.06,2.6,0.086,20,44,0.9965,3.38,0.59,10.7,good
303
+ 11.1,0.18,0.48,1.5,0.068,7,15,0.9973,3.22,0.64,10.1,good
304
+ 8.3,0.705,0.12,2.6,0.092,12,28,0.9994,3.51,0.72,10,bad
305
+ 7.4,0.67,0.12,1.6,0.186,5,21,0.996,3.39,0.54,9.5,bad
306
+ 8.4,0.65,0.6,2.1,0.112,12,90,0.9973,3.2,0.52,9.2,bad
307
+ 10.3,0.53,0.48,2.5,0.063,6,25,0.9998,3.12,0.59,9.3,good
308
+ 7.6,0.62,0.32,2.2,0.082,7,54,0.9966,3.36,0.52,9.4,bad
309
+ 10.3,0.41,0.42,2.4,0.213,6,14,0.9994,3.19,0.62,9.5,good
310
+ 10.3,0.43,0.44,2.4,0.214,5,12,0.9994,3.19,0.63,9.5,good
311
+ 7.4,0.29,0.38,1.7,0.062,9,30,0.9968,3.41,0.53,9.5,good
312
+ 10.3,0.53,0.48,2.5,0.063,6,25,0.9998,3.12,0.59,9.3,good
313
+ 7.9,0.53,0.24,2,0.072,15,105,0.996,3.27,0.54,9.4,good
314
+ 9,0.46,0.31,2.8,0.093,19,98,0.99815,3.32,0.63,9.5,good
315
+ 8.6,0.47,0.3,3,0.076,30,135,0.9976,3.3,0.53,9.4,bad
316
+ 7.4,0.36,0.29,2.6,0.087,26,72,0.99645,3.39,0.68,11,bad
317
+ 7.1,0.35,0.29,2.5,0.096,20,53,0.9962,3.42,0.65,11,good
318
+ 9.6,0.56,0.23,3.4,0.102,37,92,0.9996,3.3,0.65,10.1,bad
319
+ 9.6,0.77,0.12,2.9,0.082,30,74,0.99865,3.3,0.64,10.4,good
320
+ 9.8,0.66,0.39,3.2,0.083,21,59,0.9989,3.37,0.71,11.5,good
321
+ 9.6,0.77,0.12,2.9,0.082,30,74,0.99865,3.3,0.64,10.4,good
322
+ 9.8,0.66,0.39,3.2,0.083,21,59,0.9989,3.37,0.71,11.5,good
323
+ 9.3,0.61,0.26,3.4,0.09,25,87,0.99975,3.24,0.62,9.7,bad
324
+ 7.8,0.62,0.05,2.3,0.079,6,18,0.99735,3.29,0.63,9.3,bad
325
+ 10.3,0.59,0.42,2.8,0.09,35,73,0.999,3.28,0.7,9.5,good
326
+ 10,0.49,0.2,11,0.071,13,50,1.0015,3.16,0.69,9.2,good
327
+ 10,0.49,0.2,11,0.071,13,50,1.0015,3.16,0.69,9.2,good
328
+ 11.6,0.53,0.66,3.65,0.121,6,14,0.9978,3.05,0.74,11.5,good
329
+ 10.3,0.44,0.5,4.5,0.107,5,13,0.998,3.28,0.83,11.5,bad
330
+ 13.4,0.27,0.62,2.6,0.082,6,21,1.0002,3.16,0.67,9.7,good
331
+ 10.7,0.46,0.39,2,0.061,7,15,0.9981,3.18,0.62,9.5,bad
332
+ 10.2,0.36,0.64,2.9,0.122,10,41,0.998,3.23,0.66,12.5,good
333
+ 10.2,0.36,0.64,2.9,0.122,10,41,0.998,3.23,0.66,12.5,good
334
+ 8,0.58,0.28,3.2,0.066,21,114,0.9973,3.22,0.54,9.4,good
335
+ 8.4,0.56,0.08,2.1,0.105,16,44,0.9958,3.13,0.52,11,bad
336
+ 7.9,0.65,0.01,2.5,0.078,17,38,0.9963,3.34,0.74,11.7,good
337
+ 11.9,0.695,0.53,3.4,0.128,7,21,0.9992,3.17,0.84,12.2,good
338
+ 8.9,0.43,0.45,1.9,0.052,6,16,0.9948,3.35,0.7,12.5,good
339
+ 7.8,0.43,0.32,2.8,0.08,29,58,0.9974,3.31,0.64,10.3,bad
340
+ 12.4,0.49,0.58,3,0.103,28,99,1.0008,3.16,1,11.5,good
341
+ 12.5,0.28,0.54,2.3,0.082,12,29,0.9997,3.11,1.36,9.8,good
342
+ 12.2,0.34,0.5,2.4,0.066,10,21,1,3.12,1.18,9.2,good
343
+ 10.6,0.42,0.48,2.7,0.065,5,18,0.9972,3.21,0.87,11.3,good
344
+ 10.9,0.39,0.47,1.8,0.118,6,14,0.9982,3.3,0.75,9.8,good
345
+ 10.9,0.39,0.47,1.8,0.118,6,14,0.9982,3.3,0.75,9.8,good
346
+ 11.9,0.57,0.5,2.6,0.082,6,32,1.0006,3.12,0.78,10.7,good
347
+ 7,0.685,0,1.9,0.067,40,63,0.9979,3.6,0.81,9.9,bad
348
+ 6.6,0.815,0.02,2.7,0.072,17,34,0.9955,3.58,0.89,12.3,good
349
+ 13.8,0.49,0.67,3,0.093,6,15,0.9986,3.02,0.93,12,good
350
+ 9.6,0.56,0.31,2.8,0.089,15,46,0.9979,3.11,0.92,10,good
351
+ 9.1,0.785,0,2.6,0.093,11,28,0.9994,3.36,0.86,9.4,good
352
+ 10.7,0.67,0.22,2.7,0.107,17,34,1.0004,3.28,0.98,9.9,good
353
+ 9.1,0.795,0,2.6,0.096,11,26,0.9994,3.35,0.83,9.4,good
354
+ 7.7,0.665,0,2.4,0.09,8,19,0.9974,3.27,0.73,9.3,bad
355
+ 13.5,0.53,0.79,4.8,0.12,23,77,1.0018,3.18,0.77,13,bad
356
+ 6.1,0.21,0.4,1.4,0.066,40.5,165,0.9912,3.25,0.59,11.9,good
357
+ 6.7,0.75,0.01,2.4,0.078,17,32,0.9955,3.55,0.61,12.8,good
358
+ 11.5,0.41,0.52,3,0.08,29,55,1.0001,3.26,0.88,11,bad
359
+ 10.5,0.42,0.66,2.95,0.116,12,29,0.997,3.24,0.75,11.7,good
360
+ 11.9,0.43,0.66,3.1,0.109,10,23,1,3.15,0.85,10.4,good
361
+ 12.6,0.38,0.66,2.6,0.088,10,41,1.001,3.17,0.68,9.8,good
362
+ 8.2,0.7,0.23,2,0.099,14,81,0.9973,3.19,0.7,9.4,bad
363
+ 8.6,0.45,0.31,2.6,0.086,21,50,0.9982,3.37,0.91,9.9,good
364
+ 11.9,0.58,0.66,2.5,0.072,6,37,0.9992,3.05,0.56,10,bad
365
+ 12.5,0.46,0.63,2,0.071,6,15,0.9988,2.99,0.87,10.2,bad
366
+ 12.8,0.615,0.66,5.8,0.083,7,42,1.0022,3.07,0.73,10,good
367
+ 10,0.42,0.5,3.4,0.107,7,21,0.9979,3.26,0.93,11.8,good
368
+ 12.8,0.615,0.66,5.8,0.083,7,42,1.0022,3.07,0.73,10,good
369
+ 10.4,0.575,0.61,2.6,0.076,11,24,1,3.16,0.69,9,bad
370
+ 10.3,0.34,0.52,2.8,0.159,15,75,0.9998,3.18,0.64,9.4,bad
371
+ 9.4,0.27,0.53,2.4,0.074,6,18,0.9962,3.2,1.13,12,good
372
+ 6.9,0.765,0.02,2.3,0.063,35,63,0.9975,3.57,0.78,9.9,bad
373
+ 7.9,0.24,0.4,1.6,0.056,11,25,0.9967,3.32,0.87,8.7,good
374
+ 9.1,0.28,0.48,1.8,0.067,26,46,0.9967,3.32,1.04,10.6,good
375
+ 7.4,0.55,0.22,2.2,0.106,12,72,0.9959,3.05,0.63,9.2,bad
376
+ 14,0.41,0.63,3.8,0.089,6,47,1.0014,3.01,0.81,10.8,good
377
+ 11.5,0.54,0.71,4.4,0.124,6,15,0.9984,3.01,0.83,11.8,good
378
+ 11.5,0.45,0.5,3,0.078,19,47,1.0003,3.26,1.11,11,good
379
+ 9.4,0.27,0.53,2.4,0.074,6,18,0.9962,3.2,1.13,12,good
380
+ 11.4,0.625,0.66,6.2,0.088,6,24,0.9988,3.11,0.99,13.3,good
381
+ 8.3,0.42,0.38,2.5,0.094,24,60,0.9979,3.31,0.7,10.8,good
382
+ 8.3,0.26,0.42,2,0.08,11,27,0.9974,3.21,0.8,9.4,good
383
+ 13.7,0.415,0.68,2.9,0.085,17,43,1.0014,3.06,0.8,10,good
384
+ 8.3,0.26,0.42,2,0.08,11,27,0.9974,3.21,0.8,9.4,good
385
+ 8.3,0.26,0.42,2,0.08,11,27,0.9974,3.21,0.8,9.4,good
386
+ 7.7,0.51,0.28,2.1,0.087,23,54,0.998,3.42,0.74,9.2,bad
387
+ 7.4,0.63,0.07,2.4,0.09,11,37,0.9979,3.43,0.76,9.7,good
388
+ 7.8,0.54,0.26,2,0.088,23,48,0.9981,3.41,0.74,9.2,good
389
+ 8.3,0.66,0.15,1.9,0.079,17,42,0.9972,3.31,0.54,9.6,good
390
+ 7.8,0.46,0.26,1.9,0.088,23,53,0.9981,3.43,0.74,9.2,good
391
+ 9.6,0.38,0.31,2.5,0.096,16,49,0.9982,3.19,0.7,10,good
392
+ 5.6,0.85,0.05,1.4,0.045,12,88,0.9924,3.56,0.82,12.9,good
393
+ 13.7,0.415,0.68,2.9,0.085,17,43,1.0014,3.06,0.8,10,good
394
+ 9.5,0.37,0.52,2,0.082,6,26,0.998,3.18,0.51,9.5,bad
395
+ 8.4,0.665,0.61,2,0.112,13,95,0.997,3.16,0.54,9.1,bad
396
+ 12.7,0.6,0.65,2.3,0.063,6,25,0.9997,3.03,0.57,9.9,bad
397
+ 12,0.37,0.76,4.2,0.066,7,38,1.0004,3.22,0.6,13,good
398
+ 6.6,0.735,0.02,7.9,0.122,68,124,0.9994,3.47,0.53,9.9,bad
399
+ 11.5,0.59,0.59,2.6,0.087,13,49,0.9988,3.18,0.65,11,good
400
+ 11.5,0.59,0.59,2.6,0.087,13,49,0.9988,3.18,0.65,11,good
401
+ 8.7,0.765,0.22,2.3,0.064,9,42,0.9963,3.1,0.55,9.4,bad
402
+ 6.6,0.735,0.02,7.9,0.122,68,124,0.9994,3.47,0.53,9.9,bad
403
+ 7.7,0.26,0.3,1.7,0.059,20,38,0.9949,3.29,0.47,10.8,good
404
+ 12.2,0.48,0.54,2.6,0.085,19,64,1,3.1,0.61,10.5,good
405
+ 11.4,0.6,0.49,2.7,0.085,10,41,0.9994,3.15,0.63,10.5,good
406
+ 7.7,0.69,0.05,2.7,0.075,15,27,0.9974,3.26,0.61,9.1,bad
407
+ 8.7,0.31,0.46,1.4,0.059,11,25,0.9966,3.36,0.76,10.1,good
408
+ 9.8,0.44,0.47,2.5,0.063,9,28,0.9981,3.24,0.65,10.8,good
409
+ 12,0.39,0.66,3,0.093,12,30,0.9996,3.18,0.63,10.8,good
410
+ 10.4,0.34,0.58,3.7,0.174,6,16,0.997,3.19,0.7,11.3,good
411
+ 12.5,0.46,0.49,4.5,0.07,26,49,0.9981,3.05,0.57,9.6,bad
412
+ 9,0.43,0.34,2.5,0.08,26,86,0.9987,3.38,0.62,9.5,good
413
+ 9.1,0.45,0.35,2.4,0.08,23,78,0.9987,3.38,0.62,9.5,bad
414
+ 7.1,0.735,0.16,1.9,0.1,15,77,0.9966,3.27,0.64,9.3,bad
415
+ 9.9,0.4,0.53,6.7,0.097,6,19,0.9986,3.27,0.82,11.7,good
416
+ 8.8,0.52,0.34,2.7,0.087,24,122,0.9982,3.26,0.61,9.5,bad
417
+ 8.6,0.725,0.24,6.6,0.117,31,134,1.0014,3.32,1.07,9.3,bad
418
+ 10.6,0.48,0.64,2.2,0.111,6,20,0.997,3.26,0.66,11.7,good
419
+ 7,0.58,0.12,1.9,0.091,34,124,0.9956,3.44,0.48,10.5,bad
420
+ 11.9,0.38,0.51,2,0.121,7,20,0.9996,3.24,0.76,10.4,good
421
+ 6.8,0.77,0,1.8,0.066,34,52,0.9976,3.62,0.68,9.9,bad
422
+ 9.5,0.56,0.33,2.4,0.089,35,67,0.9972,3.28,0.73,11.8,good
423
+ 6.6,0.84,0.03,2.3,0.059,32,48,0.9952,3.52,0.56,12.3,good
424
+ 7.7,0.96,0.2,2,0.047,15,60,0.9955,3.36,0.44,10.9,bad
425
+ 10.5,0.24,0.47,2.1,0.066,6,24,0.9978,3.15,0.9,11,good
426
+ 7.7,0.96,0.2,2,0.047,15,60,0.9955,3.36,0.44,10.9,bad
427
+ 6.6,0.84,0.03,2.3,0.059,32,48,0.9952,3.52,0.56,12.3,good
428
+ 6.4,0.67,0.08,2.1,0.045,19,48,0.9949,3.49,0.49,11.4,good
429
+ 9.5,0.78,0.22,1.9,0.077,6,32,0.9988,3.26,0.56,10.6,good
430
+ 9.1,0.52,0.33,1.3,0.07,9,30,0.9978,3.24,0.6,9.3,bad
431
+ 12.8,0.84,0.63,2.4,0.088,13,35,0.9997,3.1,0.6,10.4,good
432
+ 10.5,0.24,0.47,2.1,0.066,6,24,0.9978,3.15,0.9,11,good
433
+ 7.8,0.55,0.35,2.2,0.074,21,66,0.9974,3.25,0.56,9.2,bad
434
+ 11.9,0.37,0.69,2.3,0.078,12,24,0.9958,3,0.65,12.8,good
435
+ 12.3,0.39,0.63,2.3,0.091,6,18,1.0004,3.16,0.49,9.5,bad
436
+ 10.4,0.41,0.55,3.2,0.076,22,54,0.9996,3.15,0.89,9.9,good
437
+ 12.3,0.39,0.63,2.3,0.091,6,18,1.0004,3.16,0.49,9.5,bad
438
+ 8,0.67,0.3,2,0.06,38,62,0.9958,3.26,0.56,10.2,good
439
+ 11.1,0.45,0.73,3.2,0.066,6,22,0.9986,3.17,0.66,11.2,good
440
+ 10.4,0.41,0.55,3.2,0.076,22,54,0.9996,3.15,0.89,9.9,good
441
+ 7,0.62,0.18,1.5,0.062,7,50,0.9951,3.08,0.6,9.3,bad
442
+ 12.6,0.31,0.72,2.2,0.072,6,29,0.9987,2.88,0.82,9.8,good
443
+ 11.9,0.4,0.65,2.15,0.068,7,27,0.9988,3.06,0.68,11.3,good
444
+ 15.6,0.685,0.76,3.7,0.1,6,43,1.0032,2.95,0.68,11.2,good
445
+ 10,0.44,0.49,2.7,0.077,11,19,0.9963,3.23,0.63,11.6,good
446
+ 5.3,0.57,0.01,1.7,0.054,5,27,0.9934,3.57,0.84,12.5,good
447
+ 9.5,0.735,0.1,2.1,0.079,6,31,0.9986,3.23,0.56,10.1,good
448
+ 12.5,0.38,0.6,2.6,0.081,31,72,0.9996,3.1,0.73,10.5,bad
449
+ 9.3,0.48,0.29,2.1,0.127,6,16,0.9968,3.22,0.72,11.2,bad
450
+ 8.6,0.53,0.22,2,0.1,7,27,0.9967,3.2,0.56,10.2,good
451
+ 11.9,0.39,0.69,2.8,0.095,17,35,0.9994,3.1,0.61,10.8,good
452
+ 11.9,0.39,0.69,2.8,0.095,17,35,0.9994,3.1,0.61,10.8,good
453
+ 8.4,0.37,0.53,1.8,0.413,9,26,0.9979,3.06,1.06,9.1,good
454
+ 6.8,0.56,0.03,1.7,0.084,18,35,0.9968,3.44,0.63,10,good
455
+ 10.4,0.33,0.63,2.8,0.084,5,22,0.9998,3.26,0.74,11.2,good
456
+ 7,0.23,0.4,1.6,0.063,21,67,0.9952,3.5,0.63,11.1,bad
457
+ 11.3,0.62,0.67,5.2,0.086,6,19,0.9988,3.22,0.69,13.4,good
458
+ 8.9,0.59,0.39,2.3,0.095,5,22,0.9986,3.37,0.58,10.3,bad
459
+ 9.2,0.63,0.21,2.7,0.097,29,65,0.9988,3.28,0.58,9.6,bad
460
+ 10.4,0.33,0.63,2.8,0.084,5,22,0.9998,3.26,0.74,11.2,good
461
+ 11.6,0.58,0.66,2.2,0.074,10,47,1.0008,3.25,0.57,9,bad
462
+ 9.2,0.43,0.52,2.3,0.083,14,23,0.9976,3.35,0.61,11.3,good
463
+ 8.3,0.615,0.22,2.6,0.087,6,19,0.9982,3.26,0.61,9.3,bad
464
+ 11,0.26,0.68,2.55,0.085,10,25,0.997,3.18,0.61,11.8,bad
465
+ 8.1,0.66,0.7,2.2,0.098,25,129,0.9972,3.08,0.53,9,bad
466
+ 11.5,0.315,0.54,2.1,0.084,5,15,0.9987,2.98,0.7,9.2,good
467
+ 10,0.29,0.4,2.9,0.098,10,26,1.0006,3.48,0.91,9.7,bad
468
+ 10.3,0.5,0.42,2,0.069,21,51,0.9982,3.16,0.72,11.5,good
469
+ 8.8,0.46,0.45,2.6,0.065,7,18,0.9947,3.32,0.79,14,good
470
+ 11.4,0.36,0.69,2.1,0.09,6,21,1,3.17,0.62,9.2,good
471
+ 8.7,0.82,0.02,1.2,0.07,36,48,0.9952,3.2,0.58,9.8,bad
472
+ 13,0.32,0.65,2.6,0.093,15,47,0.9996,3.05,0.61,10.6,bad
473
+ 9.6,0.54,0.42,2.4,0.081,25,52,0.997,3.2,0.71,11.4,good
474
+ 12.5,0.37,0.55,2.6,0.083,25,68,0.9995,3.15,0.82,10.4,good
475
+ 9.9,0.35,0.55,2.1,0.062,5,14,0.9971,3.26,0.79,10.6,bad
476
+ 10.5,0.28,0.51,1.7,0.08,10,24,0.9982,3.2,0.89,9.4,good
477
+ 9.6,0.68,0.24,2.2,0.087,5,28,0.9988,3.14,0.6,10.2,bad
478
+ 9.3,0.27,0.41,2,0.091,6,16,0.998,3.28,0.7,9.7,bad
479
+ 10.4,0.24,0.49,1.8,0.075,6,20,0.9977,3.18,1.06,11,good
480
+ 9.6,0.68,0.24,2.2,0.087,5,28,0.9988,3.14,0.6,10.2,bad
481
+ 9.4,0.685,0.11,2.7,0.077,6,31,0.9984,3.19,0.7,10.1,good
482
+ 10.6,0.28,0.39,15.5,0.069,6,23,1.0026,3.12,0.66,9.2,bad
483
+ 9.4,0.3,0.56,2.8,0.08,6,17,0.9964,3.15,0.92,11.7,good
484
+ 10.6,0.36,0.59,2.2,0.152,6,18,0.9986,3.04,1.05,9.4,bad
485
+ 10.6,0.36,0.6,2.2,0.152,7,18,0.9986,3.04,1.06,9.4,bad
486
+ 10.6,0.44,0.68,4.1,0.114,6,24,0.997,3.06,0.66,13.4,good
487
+ 10.2,0.67,0.39,1.9,0.054,6,17,0.9976,3.17,0.47,10,bad
488
+ 10.2,0.67,0.39,1.9,0.054,6,17,0.9976,3.17,0.47,10,bad
489
+ 10.2,0.645,0.36,1.8,0.053,5,14,0.9982,3.17,0.42,10,good
490
+ 11.6,0.32,0.55,2.8,0.081,35,67,1.0002,3.32,0.92,10.8,good
491
+ 9.3,0.39,0.4,2.6,0.073,10,26,0.9984,3.34,0.75,10.2,good
492
+ 9.3,0.775,0.27,2.8,0.078,24,56,0.9984,3.31,0.67,10.6,good
493
+ 9.2,0.41,0.5,2.5,0.055,12,25,0.9952,3.34,0.79,13.3,good
494
+ 8.9,0.4,0.51,2.6,0.052,13,27,0.995,3.32,0.9,13.4,good
495
+ 8.7,0.69,0.31,3,0.086,23,81,1.0002,3.48,0.74,11.6,good
496
+ 6.5,0.39,0.23,8.3,0.051,28,91,0.9952,3.44,0.55,12.1,good
497
+ 10.7,0.35,0.53,2.6,0.07,5,16,0.9972,3.15,0.65,11,good
498
+ 7.8,0.52,0.25,1.9,0.081,14,38,0.9984,3.43,0.65,9,good
499
+ 7.2,0.34,0.32,2.5,0.09,43,113,0.9966,3.32,0.79,11.1,bad
500
+ 10.7,0.35,0.53,2.6,0.07,5,16,0.9972,3.15,0.65,11,good
501
+ 8.7,0.69,0.31,3,0.086,23,81,1.0002,3.48,0.74,11.6,good
502
+ 7.8,0.52,0.25,1.9,0.081,14,38,0.9984,3.43,0.65,9,good
503
+ 10.4,0.44,0.73,6.55,0.074,38,76,0.999,3.17,0.85,12,good
504
+ 10.4,0.44,0.73,6.55,0.074,38,76,0.999,3.17,0.85,12,good
505
+ 10.5,0.26,0.47,1.9,0.078,6,24,0.9976,3.18,1.04,10.9,good
506
+ 10.5,0.24,0.42,1.8,0.077,6,22,0.9976,3.21,1.05,10.8,good
507
+ 10.2,0.49,0.63,2.9,0.072,10,26,0.9968,3.16,0.78,12.5,good
508
+ 10.4,0.24,0.46,1.8,0.075,6,21,0.9976,3.25,1.02,10.8,good
509
+ 11.2,0.67,0.55,2.3,0.084,6,13,1,3.17,0.71,9.5,good
510
+ 10,0.59,0.31,2.2,0.09,26,62,0.9994,3.18,0.63,10.2,good
511
+ 13.3,0.29,0.75,2.8,0.084,23,43,0.9986,3.04,0.68,11.4,good
512
+ 12.4,0.42,0.49,4.6,0.073,19,43,0.9978,3.02,0.61,9.5,bad
513
+ 10,0.59,0.31,2.2,0.09,26,62,0.9994,3.18,0.63,10.2,good
514
+ 10.7,0.4,0.48,2.1,0.125,15,49,0.998,3.03,0.81,9.7,good
515
+ 10.5,0.51,0.64,2.4,0.107,6,15,0.9973,3.09,0.66,11.8,good
516
+ 10.5,0.51,0.64,2.4,0.107,6,15,0.9973,3.09,0.66,11.8,good
517
+ 8.5,0.655,0.49,6.1,0.122,34,151,1.001,3.31,1.14,9.3,bad
518
+ 12.5,0.6,0.49,4.3,0.1,5,14,1.001,3.25,0.74,11.9,good
519
+ 10.4,0.61,0.49,2.1,0.2,5,16,0.9994,3.16,0.63,8.4,bad
520
+ 10.9,0.21,0.49,2.8,0.088,11,32,0.9972,3.22,0.68,11.7,good
521
+ 7.3,0.365,0.49,2.5,0.088,39,106,0.9966,3.36,0.78,11,bad
522
+ 9.8,0.25,0.49,2.7,0.088,15,33,0.9982,3.42,0.9,10,good
523
+ 7.6,0.41,0.49,2,0.088,16,43,0.998,3.48,0.64,9.1,bad
524
+ 8.2,0.39,0.49,2.3,0.099,47,133,0.9979,3.38,0.99,9.8,bad
525
+ 9.3,0.4,0.49,2.5,0.085,38,142,0.9978,3.22,0.55,9.4,bad
526
+ 9.2,0.43,0.49,2.4,0.086,23,116,0.9976,3.23,0.64,9.5,bad
527
+ 10.4,0.64,0.24,2.8,0.105,29,53,0.9998,3.24,0.67,9.9,bad
528
+ 7.3,0.365,0.49,2.5,0.088,39,106,0.9966,3.36,0.78,11,bad
529
+ 7,0.38,0.49,2.5,0.097,33,85,0.9962,3.39,0.77,11.4,good
530
+ 8.2,0.42,0.49,2.6,0.084,32,55,0.9988,3.34,0.75,8.7,good
531
+ 9.9,0.63,0.24,2.4,0.077,6,33,0.9974,3.09,0.57,9.4,bad
532
+ 9.1,0.22,0.24,2.1,0.078,1,28,0.999,3.41,0.87,10.3,good
533
+ 11.9,0.38,0.49,2.7,0.098,12,42,1.0004,3.16,0.61,10.3,bad
534
+ 11.9,0.38,0.49,2.7,0.098,12,42,1.0004,3.16,0.61,10.3,bad
535
+ 10.3,0.27,0.24,2.1,0.072,15,33,0.9956,3.22,0.66,12.8,good
536
+ 10,0.48,0.24,2.7,0.102,13,32,1,3.28,0.56,10,good
537
+ 9.1,0.22,0.24,2.1,0.078,1,28,0.999,3.41,0.87,10.3,good
538
+ 9.9,0.63,0.24,2.4,0.077,6,33,0.9974,3.09,0.57,9.4,bad
539
+ 8.1,0.825,0.24,2.1,0.084,5,13,0.9972,3.37,0.77,10.7,good
540
+ 12.9,0.35,0.49,5.8,0.066,5,35,1.0014,3.2,0.66,12,good
541
+ 11.2,0.5,0.74,5.15,0.1,5,17,0.9996,3.22,0.62,11.2,bad
542
+ 9.2,0.59,0.24,3.3,0.101,20,47,0.9988,3.26,0.67,9.6,bad
543
+ 9.5,0.46,0.49,6.3,0.064,5,17,0.9988,3.21,0.73,11,good
544
+ 9.3,0.715,0.24,2.1,0.07,5,20,0.9966,3.12,0.59,9.9,bad
545
+ 11.2,0.66,0.24,2.5,0.085,16,53,0.9993,3.06,0.72,11,good
546
+ 14.3,0.31,0.74,1.8,0.075,6,15,1.0008,2.86,0.79,8.4,good
547
+ 9.1,0.47,0.49,2.6,0.094,38,106,0.9982,3.08,0.59,9.1,bad
548
+ 7.5,0.55,0.24,2,0.078,10,28,0.9983,3.45,0.78,9.5,good
549
+ 10.6,0.31,0.49,2.5,0.067,6,21,0.9987,3.26,0.86,10.7,good
550
+ 12.4,0.35,0.49,2.6,0.079,27,69,0.9994,3.12,0.75,10.4,good
551
+ 9,0.53,0.49,1.9,0.171,6,25,0.9975,3.27,0.61,9.4,good
552
+ 6.8,0.51,0.01,2.1,0.074,9,25,0.9958,3.33,0.56,9.5,good
553
+ 9.4,0.43,0.24,2.8,0.092,14,45,0.998,3.19,0.73,10,good
554
+ 9.5,0.46,0.24,2.7,0.092,14,44,0.998,3.12,0.74,10,good
555
+ 5,1.04,0.24,1.6,0.05,32,96,0.9934,3.74,0.62,11.5,bad
556
+ 15.5,0.645,0.49,4.2,0.095,10,23,1.00315,2.92,0.74,11.1,bad
557
+ 15.5,0.645,0.49,4.2,0.095,10,23,1.00315,2.92,0.74,11.1,bad
558
+ 10.9,0.53,0.49,4.6,0.118,10,17,1.0002,3.07,0.56,11.7,good
559
+ 15.6,0.645,0.49,4.2,0.095,10,23,1.00315,2.92,0.74,11.1,bad
560
+ 10.9,0.53,0.49,4.6,0.118,10,17,1.0002,3.07,0.56,11.7,good
561
+ 13,0.47,0.49,4.3,0.085,6,47,1.0021,3.3,0.68,12.7,good
562
+ 12.7,0.6,0.49,2.8,0.075,5,19,0.9994,3.14,0.57,11.4,bad
563
+ 9,0.44,0.49,2.4,0.078,26,121,0.9978,3.23,0.58,9.2,bad
564
+ 9,0.54,0.49,2.9,0.094,41,110,0.9982,3.08,0.61,9.2,bad
565
+ 7.6,0.29,0.49,2.7,0.092,25,60,0.9971,3.31,0.61,10.1,good
566
+ 13,0.47,0.49,4.3,0.085,6,47,1.0021,3.3,0.68,12.7,good
567
+ 12.7,0.6,0.49,2.8,0.075,5,19,0.9994,3.14,0.57,11.4,bad
568
+ 8.7,0.7,0.24,2.5,0.226,5,15,0.9991,3.32,0.6,9,good
569
+ 8.7,0.7,0.24,2.5,0.226,5,15,0.9991,3.32,0.6,9,good
570
+ 9.8,0.5,0.49,2.6,0.25,5,20,0.999,3.31,0.79,10.7,good
571
+ 6.2,0.36,0.24,2.2,0.095,19,42,0.9946,3.57,0.57,11.7,good
572
+ 11.5,0.35,0.49,3.3,0.07,10,37,1.0003,3.32,0.91,11,good
573
+ 6.2,0.36,0.24,2.2,0.095,19,42,0.9946,3.57,0.57,11.7,good
574
+ 10.2,0.24,0.49,2.4,0.075,10,28,0.9978,3.14,0.61,10.4,bad
575
+ 10.5,0.59,0.49,2.1,0.07,14,47,0.9991,3.3,0.56,9.6,bad
576
+ 10.6,0.34,0.49,3.2,0.078,20,78,0.9992,3.19,0.7,10,good
577
+ 12.3,0.27,0.49,3.1,0.079,28,46,0.9993,3.2,0.8,10.2,good
578
+ 9.9,0.5,0.24,2.3,0.103,6,14,0.9978,3.34,0.52,10,bad
579
+ 8.8,0.44,0.49,2.8,0.083,18,111,0.9982,3.3,0.6,9.5,bad
580
+ 8.8,0.47,0.49,2.9,0.085,17,110,0.9982,3.29,0.6,9.8,bad
581
+ 10.6,0.31,0.49,2.2,0.063,18,40,0.9976,3.14,0.51,9.8,good
582
+ 12.3,0.5,0.49,2.2,0.089,5,14,1.0002,3.19,0.44,9.6,bad
583
+ 12.3,0.5,0.49,2.2,0.089,5,14,1.0002,3.19,0.44,9.6,bad
584
+ 11.7,0.49,0.49,2.2,0.083,5,15,1,3.19,0.43,9.2,bad
585
+ 12,0.28,0.49,1.9,0.074,10,21,0.9976,2.98,0.66,9.9,good
586
+ 11.8,0.33,0.49,3.4,0.093,54,80,1.0002,3.3,0.76,10.7,good
587
+ 7.6,0.51,0.24,2.4,0.091,8,38,0.998,3.47,0.66,9.6,good
588
+ 11.1,0.31,0.49,2.7,0.094,16,47,0.9986,3.12,1.02,10.6,good
589
+ 7.3,0.73,0.24,1.9,0.108,18,102,0.9967,3.26,0.59,9.3,bad
590
+ 5,0.42,0.24,2,0.06,19,50,0.9917,3.72,0.74,14,good
591
+ 10.2,0.29,0.49,2.6,0.059,5,13,0.9976,3.05,0.74,10.5,good
592
+ 9,0.45,0.49,2.6,0.084,21,75,0.9987,3.35,0.57,9.7,bad
593
+ 6.6,0.39,0.49,1.7,0.07,23,149,0.9922,3.12,0.5,11.5,good
594
+ 9,0.45,0.49,2.6,0.084,21,75,0.9987,3.35,0.57,9.7,bad
595
+ 9.9,0.49,0.58,3.5,0.094,9,43,1.0004,3.29,0.58,9,bad
596
+ 7.9,0.72,0.17,2.6,0.096,20,38,0.9978,3.4,0.53,9.5,bad
597
+ 8.9,0.595,0.41,7.9,0.086,30,109,0.9998,3.27,0.57,9.3,bad
598
+ 12.4,0.4,0.51,2,0.059,6,24,0.9994,3.04,0.6,9.3,good
599
+ 11.9,0.58,0.58,1.9,0.071,5,18,0.998,3.09,0.63,10,good
600
+ 8.5,0.585,0.18,2.1,0.078,5,30,0.9967,3.2,0.48,9.8,good
601
+ 12.7,0.59,0.45,2.3,0.082,11,22,1,3,0.7,9.3,good
602
+ 8.2,0.915,0.27,2.1,0.088,7,23,0.9962,3.26,0.47,10,bad
603
+ 13.2,0.46,0.52,2.2,0.071,12,35,1.0006,3.1,0.56,9,good
604
+ 7.7,0.835,0,2.6,0.081,6,14,0.9975,3.3,0.52,9.3,bad
605
+ 13.2,0.46,0.52,2.2,0.071,12,35,1.0006,3.1,0.56,9,good
606
+ 8.3,0.58,0.13,2.9,0.096,14,63,0.9984,3.17,0.62,9.1,good
607
+ 8.3,0.6,0.13,2.6,0.085,6,24,0.9984,3.31,0.59,9.2,good
608
+ 9.4,0.41,0.48,4.6,0.072,10,20,0.9973,3.34,0.79,12.2,good
609
+ 8.8,0.48,0.41,3.3,0.092,26,52,0.9982,3.31,0.53,10.5,good
610
+ 10.1,0.65,0.37,5.1,0.11,11,65,1.0026,3.32,0.64,10.4,good
611
+ 6.3,0.36,0.19,3.2,0.075,15,39,0.9956,3.56,0.52,12.7,good
612
+ 8.8,0.24,0.54,2.5,0.083,25,57,0.9983,3.39,0.54,9.2,bad
613
+ 13.2,0.38,0.55,2.7,0.081,5,16,1.0006,2.98,0.54,9.4,bad
614
+ 7.5,0.64,0,2.4,0.077,18,29,0.9965,3.32,0.6,10,good
615
+ 8.2,0.39,0.38,1.5,0.058,10,29,0.9962,3.26,0.74,9.8,bad
616
+ 9.2,0.755,0.18,2.2,0.148,10,103,0.9969,2.87,1.36,10.2,good
617
+ 9.6,0.6,0.5,2.3,0.079,28,71,0.9997,3.5,0.57,9.7,bad
618
+ 9.6,0.6,0.5,2.3,0.079,28,71,0.9997,3.5,0.57,9.7,bad
619
+ 11.5,0.31,0.51,2.2,0.079,14,28,0.9982,3.03,0.93,9.8,good
620
+ 11.4,0.46,0.5,2.7,0.122,4,17,1.0006,3.13,0.7,10.2,bad
621
+ 11.3,0.37,0.41,2.3,0.088,6,16,0.9988,3.09,0.8,9.3,bad
622
+ 8.3,0.54,0.24,3.4,0.076,16,112,0.9976,3.27,0.61,9.4,bad
623
+ 8.2,0.56,0.23,3.4,0.078,14,104,0.9976,3.28,0.62,9.4,bad
624
+ 10,0.58,0.22,1.9,0.08,9,32,0.9974,3.13,0.55,9.5,bad
625
+ 7.9,0.51,0.25,2.9,0.077,21,45,0.9974,3.49,0.96,12.1,good
626
+ 6.8,0.69,0,5.6,0.124,21,58,0.9997,3.46,0.72,10.2,bad
627
+ 6.8,0.69,0,5.6,0.124,21,58,0.9997,3.46,0.72,10.2,bad
628
+ 8.8,0.6,0.29,2.2,0.098,5,15,0.9988,3.36,0.49,9.1,bad
629
+ 8.8,0.6,0.29,2.2,0.098,5,15,0.9988,3.36,0.49,9.1,bad
630
+ 8.7,0.54,0.26,2.5,0.097,7,31,0.9976,3.27,0.6,9.3,good
631
+ 7.6,0.685,0.23,2.3,0.111,20,84,0.9964,3.21,0.61,9.3,bad
632
+ 8.7,0.54,0.26,2.5,0.097,7,31,0.9976,3.27,0.6,9.3,good
633
+ 10.4,0.28,0.54,2.7,0.105,5,19,0.9988,3.25,0.63,9.5,bad
634
+ 7.6,0.41,0.14,3,0.087,21,43,0.9964,3.32,0.57,10.5,good
635
+ 10.1,0.935,0.22,3.4,0.105,11,86,1.001,3.43,0.64,11.3,bad
636
+ 7.9,0.35,0.21,1.9,0.073,46,102,0.9964,3.27,0.58,9.5,bad
637
+ 8.7,0.84,0,1.4,0.065,24,33,0.9954,3.27,0.55,9.7,bad
638
+ 9.6,0.88,0.28,2.4,0.086,30,147,0.9979,3.24,0.53,9.4,bad
639
+ 9.5,0.885,0.27,2.3,0.084,31,145,0.9978,3.24,0.53,9.4,bad
640
+ 7.7,0.915,0.12,2.2,0.143,7,23,0.9964,3.35,0.65,10.2,good
641
+ 8.9,0.29,0.35,1.9,0.067,25,57,0.997,3.18,1.36,10.3,good
642
+ 9.9,0.54,0.45,2.3,0.071,16,40,0.9991,3.39,0.62,9.4,bad
643
+ 9.5,0.59,0.44,2.3,0.071,21,68,0.9992,3.46,0.63,9.5,bad
644
+ 9.9,0.54,0.45,2.3,0.071,16,40,0.9991,3.39,0.62,9.4,bad
645
+ 9.5,0.59,0.44,2.3,0.071,21,68,0.9992,3.46,0.63,9.5,bad
646
+ 9.9,0.54,0.45,2.3,0.071,16,40,0.9991,3.39,0.62,9.4,bad
647
+ 7.8,0.64,0.1,6,0.115,5,11,0.9984,3.37,0.69,10.1,good
648
+ 7.3,0.67,0.05,3.6,0.107,6,20,0.9972,3.4,0.63,10.1,bad
649
+ 8.3,0.845,0.01,2.2,0.07,5,14,0.9967,3.32,0.58,11,bad
650
+ 8.7,0.48,0.3,2.8,0.066,10,28,0.9964,3.33,0.67,11.2,good
651
+ 6.7,0.42,0.27,8.6,0.068,24,148,0.9948,3.16,0.57,11.3,good
652
+ 10.7,0.43,0.39,2.2,0.106,8,32,0.9986,2.89,0.5,9.6,bad
653
+ 9.8,0.88,0.25,2.5,0.104,35,155,1.001,3.41,0.67,11.2,bad
654
+ 15.9,0.36,0.65,7.5,0.096,22,71,0.9976,2.98,0.84,14.9,bad
655
+ 9.4,0.33,0.59,2.8,0.079,9,30,0.9976,3.12,0.54,12,good
656
+ 8.6,0.47,0.47,2.4,0.074,7,29,0.9979,3.08,0.46,9.5,bad
657
+ 9.7,0.55,0.17,2.9,0.087,20,53,1.0004,3.14,0.61,9.4,bad
658
+ 10.7,0.43,0.39,2.2,0.106,8,32,0.9986,2.89,0.5,9.6,bad
659
+ 12,0.5,0.59,1.4,0.073,23,42,0.998,2.92,0.68,10.5,good
660
+ 7.2,0.52,0.07,1.4,0.074,5,20,0.9973,3.32,0.81,9.6,good
661
+ 7.1,0.84,0.02,4.4,0.096,5,13,0.997,3.41,0.57,11,bad
662
+ 7.2,0.52,0.07,1.4,0.074,5,20,0.9973,3.32,0.81,9.6,good
663
+ 7.5,0.42,0.31,1.6,0.08,15,42,0.9978,3.31,0.64,9,bad
664
+ 7.2,0.57,0.06,1.6,0.076,9,27,0.9972,3.36,0.7,9.6,good
665
+ 10.1,0.28,0.46,1.8,0.05,5,13,0.9974,3.04,0.79,10.2,good
666
+ 12.1,0.4,0.52,2,0.092,15,54,1,3.03,0.66,10.2,bad
667
+ 9.4,0.59,0.14,2,0.084,25,48,0.9981,3.14,0.56,9.7,bad
668
+ 8.3,0.49,0.36,1.8,0.222,6,16,0.998,3.18,0.6,9.5,good
669
+ 11.3,0.34,0.45,2,0.082,6,15,0.9988,2.94,0.66,9.2,good
670
+ 10,0.73,0.43,2.3,0.059,15,31,0.9966,3.15,0.57,11,bad
671
+ 11.3,0.34,0.45,2,0.082,6,15,0.9988,2.94,0.66,9.2,good
672
+ 6.9,0.4,0.24,2.5,0.083,30,45,0.9959,3.26,0.58,10,bad
673
+ 8.2,0.73,0.21,1.7,0.074,5,13,0.9968,3.2,0.52,9.5,bad
674
+ 9.8,1.24,0.34,2,0.079,32,151,0.998,3.15,0.53,9.5,bad
675
+ 8.2,0.73,0.21,1.7,0.074,5,13,0.9968,3.2,0.52,9.5,bad
676
+ 10.8,0.4,0.41,2.2,0.084,7,17,0.9984,3.08,0.67,9.3,good
677
+ 9.3,0.41,0.39,2.2,0.064,12,31,0.9984,3.26,0.65,10.2,bad
678
+ 10.8,0.4,0.41,2.2,0.084,7,17,0.9984,3.08,0.67,9.3,good
679
+ 8.6,0.8,0.11,2.3,0.084,12,31,0.9979,3.4,0.48,9.9,bad
680
+ 8.3,0.78,0.1,2.6,0.081,45,87,0.9983,3.48,0.53,10,bad
681
+ 10.8,0.26,0.45,3.3,0.06,20,49,0.9972,3.13,0.54,9.6,bad
682
+ 13.3,0.43,0.58,1.9,0.07,15,40,1.0004,3.06,0.49,9,bad
683
+ 8,0.45,0.23,2.2,0.094,16,29,0.9962,3.21,0.49,10.2,good
684
+ 8.5,0.46,0.31,2.25,0.078,32,58,0.998,3.33,0.54,9.8,bad
685
+ 8.1,0.78,0.23,2.6,0.059,5,15,0.997,3.37,0.56,11.3,bad
686
+ 9.8,0.98,0.32,2.3,0.078,35,152,0.998,3.25,0.48,9.4,bad
687
+ 8.1,0.78,0.23,2.6,0.059,5,15,0.997,3.37,0.56,11.3,bad
688
+ 7.1,0.65,0.18,1.8,0.07,13,40,0.997,3.44,0.6,9.1,bad
689
+ 9.1,0.64,0.23,3.1,0.095,13,38,0.9998,3.28,0.59,9.7,bad
690
+ 7.7,0.66,0.04,1.6,0.039,4,9,0.9962,3.4,0.47,9.4,bad
691
+ 8.1,0.38,0.48,1.8,0.157,5,17,0.9976,3.3,1.05,9.4,bad
692
+ 7.4,1.185,0,4.25,0.097,5,14,0.9966,3.63,0.54,10.7,bad
693
+ 9.2,0.92,0.24,2.6,0.087,12,93,0.9998,3.48,0.54,9.8,bad
694
+ 8.6,0.49,0.51,2,0.422,16,62,0.9979,3.03,1.17,9,bad
695
+ 9,0.48,0.32,2.8,0.084,21,122,0.9984,3.32,0.62,9.4,bad
696
+ 9,0.47,0.31,2.7,0.084,24,125,0.9984,3.31,0.61,9.4,bad
697
+ 5.1,0.47,0.02,1.3,0.034,18,44,0.9921,3.9,0.62,12.8,good
698
+ 7,0.65,0.02,2.1,0.066,8,25,0.9972,3.47,0.67,9.5,good
699
+ 7,0.65,0.02,2.1,0.066,8,25,0.9972,3.47,0.67,9.5,good
700
+ 9.4,0.615,0.28,3.2,0.087,18,72,1.0001,3.31,0.53,9.7,bad
701
+ 11.8,0.38,0.55,2.1,0.071,5,19,0.9986,3.11,0.62,10.8,good
702
+ 10.6,1.02,0.43,2.9,0.076,26,88,0.9984,3.08,0.57,10.1,good
703
+ 7,0.65,0.02,2.1,0.066,8,25,0.9972,3.47,0.67,9.5,good
704
+ 7,0.64,0.02,2.1,0.067,9,23,0.997,3.47,0.67,9.4,good
705
+ 7.5,0.38,0.48,2.6,0.073,22,84,0.9972,3.32,0.7,9.6,bad
706
+ 9.1,0.765,0.04,1.6,0.078,4,14,0.998,3.29,0.54,9.7,bad
707
+ 8.4,1.035,0.15,6,0.073,11,54,0.999,3.37,0.49,9.9,bad
708
+ 7,0.78,0.08,2,0.093,10,19,0.9956,3.4,0.47,10,bad
709
+ 7.4,0.49,0.19,3,0.077,16,37,0.9966,3.37,0.51,10.5,bad
710
+ 7.8,0.545,0.12,2.5,0.068,11,35,0.996,3.34,0.61,11.6,good
711
+ 9.7,0.31,0.47,1.6,0.062,13,33,0.9983,3.27,0.66,10,good
712
+ 10.6,1.025,0.43,2.8,0.08,21,84,0.9985,3.06,0.57,10.1,bad
713
+ 8.9,0.565,0.34,3,0.093,16,112,0.9998,3.38,0.61,9.5,bad
714
+ 8.7,0.69,0,3.2,0.084,13,33,0.9992,3.36,0.45,9.4,bad
715
+ 8,0.43,0.36,2.3,0.075,10,48,0.9976,3.34,0.46,9.4,bad
716
+ 9.9,0.74,0.28,2.6,0.078,21,77,0.998,3.28,0.51,9.8,bad
717
+ 7.2,0.49,0.18,2.7,0.069,13,34,0.9967,3.29,0.48,9.2,good
718
+ 8,0.43,0.36,2.3,0.075,10,48,0.9976,3.34,0.46,9.4,bad
719
+ 7.6,0.46,0.11,2.6,0.079,12,49,0.9968,3.21,0.57,10,bad
720
+ 8.4,0.56,0.04,2,0.082,10,22,0.9976,3.22,0.44,9.6,bad
721
+ 7.1,0.66,0,3.9,0.086,17,45,0.9976,3.46,0.54,9.5,bad
722
+ 8.4,0.56,0.04,2,0.082,10,22,0.9976,3.22,0.44,9.6,bad
723
+ 8.9,0.48,0.24,2.85,0.094,35,106,0.9982,3.1,0.53,9.2,bad
724
+ 7.6,0.42,0.08,2.7,0.084,15,48,0.9968,3.21,0.59,10,bad
725
+ 7.1,0.31,0.3,2.2,0.053,36,127,0.9965,2.94,1.62,9.5,bad
726
+ 7.5,1.115,0.1,3.1,0.086,5,12,0.9958,3.54,0.6,11.2,bad
727
+ 9,0.66,0.17,3,0.077,5,13,0.9976,3.29,0.55,10.4,bad
728
+ 8.1,0.72,0.09,2.8,0.084,18,49,0.9994,3.43,0.72,11.1,good
729
+ 6.4,0.57,0.02,1.8,0.067,4,11,0.997,3.46,0.68,9.5,bad
730
+ 6.4,0.57,0.02,1.8,0.067,4,11,0.997,3.46,0.68,9.5,bad
731
+ 6.4,0.865,0.03,3.2,0.071,27,58,0.995,3.61,0.49,12.7,good
732
+ 9.5,0.55,0.66,2.3,0.387,12,37,0.9982,3.17,0.67,9.6,bad
733
+ 8.9,0.875,0.13,3.45,0.088,4,14,0.9994,3.44,0.52,11.5,bad
734
+ 7.3,0.835,0.03,2.1,0.092,10,19,0.9966,3.39,0.47,9.6,bad
735
+ 7,0.45,0.34,2.7,0.082,16,72,0.998,3.55,0.6,9.5,bad
736
+ 7.7,0.56,0.2,2,0.075,9,39,0.9987,3.48,0.62,9.3,bad
737
+ 7.7,0.965,0.1,2.1,0.112,11,22,0.9963,3.26,0.5,9.5,bad
738
+ 7.7,0.965,0.1,2.1,0.112,11,22,0.9963,3.26,0.5,9.5,bad
739
+ 8.2,0.59,0,2.5,0.093,19,58,1.0002,3.5,0.65,9.3,good
740
+ 9,0.46,0.23,2.8,0.092,28,104,0.9983,3.1,0.56,9.2,bad
741
+ 9,0.69,0,2.4,0.088,19,38,0.999,3.35,0.6,9.3,bad
742
+ 8.3,0.76,0.29,4.2,0.075,12,16,0.9965,3.45,0.68,11.5,good
743
+ 9.2,0.53,0.24,2.6,0.078,28,139,0.99788,3.21,0.57,9.5,bad
744
+ 6.5,0.615,0,1.9,0.065,9,18,0.9972,3.46,0.65,9.2,bad
745
+ 11.6,0.41,0.58,2.8,0.096,25,101,1.00024,3.13,0.53,10,bad
746
+ 11.1,0.39,0.54,2.7,0.095,21,101,1.0001,3.13,0.51,9.5,bad
747
+ 7.3,0.51,0.18,2.1,0.07,12,28,0.99768,3.52,0.73,9.5,good
748
+ 8.2,0.34,0.38,2.5,0.08,12,57,0.9978,3.3,0.47,9,good
749
+ 8.6,0.33,0.4,2.6,0.083,16,68,0.99782,3.3,0.48,9.4,bad
750
+ 7.2,0.5,0.18,2.1,0.071,12,31,0.99761,3.52,0.72,9.6,good
751
+ 7.3,0.51,0.18,2.1,0.07,12,28,0.99768,3.52,0.73,9.5,good
752
+ 8.3,0.65,0.1,2.9,0.089,17,40,0.99803,3.29,0.55,9.5,bad
753
+ 8.3,0.65,0.1,2.9,0.089,17,40,0.99803,3.29,0.55,9.5,bad
754
+ 7.6,0.54,0.13,2.5,0.097,24,66,0.99785,3.39,0.61,9.4,bad
755
+ 8.3,0.65,0.1,2.9,0.089,17,40,0.99803,3.29,0.55,9.5,bad
756
+ 7.8,0.48,0.68,1.7,0.415,14,32,0.99656,3.09,1.06,9.1,good
757
+ 7.8,0.91,0.07,1.9,0.058,22,47,0.99525,3.51,0.43,10.7,good
758
+ 6.3,0.98,0.01,2,0.057,15,33,0.99488,3.6,0.46,11.2,good
759
+ 8.1,0.87,0,2.2,0.084,10,31,0.99656,3.25,0.5,9.8,bad
760
+ 8.1,0.87,0,2.2,0.084,10,31,0.99656,3.25,0.5,9.8,bad
761
+ 8.8,0.42,0.21,2.5,0.092,33,88,0.99823,3.19,0.52,9.2,bad
762
+ 9,0.58,0.25,2.8,0.075,9,104,0.99779,3.23,0.57,9.7,bad
763
+ 9.3,0.655,0.26,2,0.096,5,35,0.99738,3.25,0.42,9.6,bad
764
+ 8.8,0.7,0,1.7,0.069,8,19,0.99701,3.31,0.53,10,good
765
+ 9.3,0.655,0.26,2,0.096,5,35,0.99738,3.25,0.42,9.6,bad
766
+ 9.1,0.68,0.11,2.8,0.093,11,44,0.99888,3.31,0.55,9.5,good
767
+ 9.2,0.67,0.1,3,0.091,12,48,0.99888,3.31,0.54,9.5,good
768
+ 8.8,0.59,0.18,2.9,0.089,12,74,0.99738,3.14,0.54,9.4,bad
769
+ 7.5,0.6,0.32,2.7,0.103,13,98,0.99938,3.45,0.62,9.5,bad
770
+ 7.1,0.59,0.02,2.3,0.082,24,94,0.99744,3.55,0.53,9.7,good
771
+ 7.9,0.72,0.01,1.9,0.076,7,32,0.99668,3.39,0.54,9.6,bad
772
+ 7.1,0.59,0.02,2.3,0.082,24,94,0.99744,3.55,0.53,9.7,good
773
+ 9.4,0.685,0.26,2.4,0.082,23,143,0.9978,3.28,0.55,9.4,bad
774
+ 9.5,0.57,0.27,2.3,0.082,23,144,0.99782,3.27,0.55,9.4,bad
775
+ 7.9,0.4,0.29,1.8,0.157,1,44,0.9973,3.3,0.92,9.5,good
776
+ 7.9,0.4,0.3,1.8,0.157,2,45,0.99727,3.31,0.91,9.5,good
777
+ 7.2,1,0,3,0.102,7,16,0.99586,3.43,0.46,10,bad
778
+ 6.9,0.765,0.18,2.4,0.243,5.5,48,0.99612,3.4,0.6,10.3,good
779
+ 6.9,0.635,0.17,2.4,0.241,6,18,0.9961,3.4,0.59,10.3,good
780
+ 8.3,0.43,0.3,3.4,0.079,7,34,0.99788,3.36,0.61,10.5,bad
781
+ 7.1,0.52,0.03,2.6,0.076,21,92,0.99745,3.5,0.6,9.8,bad
782
+ 7,0.57,0,2,0.19,12,45,0.99676,3.31,0.6,9.4,good
783
+ 6.5,0.46,0.14,2.4,0.114,9,37,0.99732,3.66,0.65,9.8,bad
784
+ 9,0.82,0.05,2.4,0.081,26,96,0.99814,3.36,0.53,10,bad
785
+ 6.5,0.46,0.14,2.4,0.114,9,37,0.99732,3.66,0.65,9.8,bad
786
+ 7.1,0.59,0.01,2.5,0.077,20,85,0.99746,3.55,0.59,9.8,bad
787
+ 9.9,0.35,0.41,2.3,0.083,11,61,0.9982,3.21,0.5,9.5,bad
788
+ 9.9,0.35,0.41,2.3,0.083,11,61,0.9982,3.21,0.5,9.5,bad
789
+ 10,0.56,0.24,2.2,0.079,19,58,0.9991,3.18,0.56,10.1,good
790
+ 10,0.56,0.24,2.2,0.079,19,58,0.9991,3.18,0.56,10.1,good
791
+ 8.6,0.63,0.17,2.9,0.099,21,119,0.998,3.09,0.52,9.3,bad
792
+ 7.4,0.37,0.43,2.6,0.082,18,82,0.99708,3.33,0.68,9.7,good
793
+ 8.8,0.64,0.17,2.9,0.084,25,130,0.99818,3.23,0.54,9.6,bad
794
+ 7.1,0.61,0.02,2.5,0.081,17,87,0.99745,3.48,0.6,9.7,good
795
+ 7.7,0.6,0,2.6,0.055,7,13,0.99639,3.38,0.56,10.8,bad
796
+ 10.1,0.27,0.54,2.3,0.065,7,26,0.99531,3.17,0.53,12.5,good
797
+ 10.8,0.89,0.3,2.6,0.132,7,60,0.99786,2.99,1.18,10.2,bad
798
+ 8.7,0.46,0.31,2.5,0.126,24,64,0.99746,3.1,0.74,9.6,bad
799
+ 9.3,0.37,0.44,1.6,0.038,21,42,0.99526,3.24,0.81,10.8,good
800
+ 9.4,0.5,0.34,3.6,0.082,5,14,0.9987,3.29,0.52,10.7,good
801
+ 9.4,0.5,0.34,3.6,0.082,5,14,0.9987,3.29,0.52,10.7,good
802
+ 7.2,0.61,0.08,4,0.082,26,108,0.99641,3.25,0.51,9.4,bad
803
+ 8.6,0.55,0.09,3.3,0.068,8,17,0.99735,3.23,0.44,10,bad
804
+ 5.1,0.585,0,1.7,0.044,14,86,0.99264,3.56,0.94,12.9,good
805
+ 7.7,0.56,0.08,2.5,0.114,14,46,0.9971,3.24,0.66,9.6,good
806
+ 8.4,0.52,0.22,2.7,0.084,4,18,0.99682,3.26,0.57,9.9,good
807
+ 8.2,0.28,0.4,2.4,0.052,4,10,0.99356,3.33,0.7,12.8,good
808
+ 8.4,0.25,0.39,2,0.041,4,10,0.99386,3.27,0.71,12.5,good
809
+ 8.2,0.28,0.4,2.4,0.052,4,10,0.99356,3.33,0.7,12.8,good
810
+ 7.4,0.53,0.12,1.9,0.165,4,12,0.99702,3.26,0.86,9.2,bad
811
+ 7.6,0.48,0.31,2.8,0.07,4,15,0.99693,3.22,0.55,10.3,good
812
+ 7.3,0.49,0.1,2.6,0.068,4,14,0.99562,3.3,0.47,10.5,bad
813
+ 12.9,0.5,0.55,2.8,0.072,7,24,1.00012,3.09,0.68,10.9,good
814
+ 10.8,0.45,0.33,2.5,0.099,20,38,0.99818,3.24,0.71,10.8,bad
815
+ 6.9,0.39,0.24,2.1,0.102,4,7,0.99462,3.44,0.58,11.4,bad
816
+ 12.6,0.41,0.54,2.8,0.103,19,41,0.99939,3.21,0.76,11.3,good
817
+ 10.8,0.45,0.33,2.5,0.099,20,38,0.99818,3.24,0.71,10.8,bad
818
+ 9.8,0.51,0.19,3.2,0.081,8,30,0.9984,3.23,0.58,10.5,good
819
+ 10.8,0.29,0.42,1.6,0.084,19,27,0.99545,3.28,0.73,11.9,good
820
+ 7.1,0.715,0,2.35,0.071,21,47,0.99632,3.29,0.45,9.4,bad
821
+ 9.1,0.66,0.15,3.2,0.097,9,59,0.99976,3.28,0.54,9.6,bad
822
+ 7,0.685,0,1.9,0.099,9,22,0.99606,3.34,0.6,9.7,bad
823
+ 4.9,0.42,0,2.1,0.048,16,42,0.99154,3.71,0.74,14,good
824
+ 6.7,0.54,0.13,2,0.076,15,36,0.9973,3.61,0.64,9.8,bad
825
+ 6.7,0.54,0.13,2,0.076,15,36,0.9973,3.61,0.64,9.8,bad
826
+ 7.1,0.48,0.28,2.8,0.068,6,16,0.99682,3.24,0.53,10.3,bad
827
+ 7.1,0.46,0.14,2.8,0.076,15,37,0.99624,3.36,0.49,10.7,bad
828
+ 7.5,0.27,0.34,2.3,0.05,4,8,0.9951,3.4,0.64,11,good
829
+ 7.1,0.46,0.14,2.8,0.076,15,37,0.99624,3.36,0.49,10.7,bad
830
+ 7.8,0.57,0.09,2.3,0.065,34,45,0.99417,3.46,0.74,12.7,good
831
+ 5.9,0.61,0.08,2.1,0.071,16,24,0.99376,3.56,0.77,11.1,good
832
+ 7.5,0.685,0.07,2.5,0.058,5,9,0.99632,3.38,0.55,10.9,bad
833
+ 5.9,0.61,0.08,2.1,0.071,16,24,0.99376,3.56,0.77,11.1,good
834
+ 10.4,0.44,0.42,1.5,0.145,34,48,0.99832,3.38,0.86,9.9,bad
835
+ 11.6,0.47,0.44,1.6,0.147,36,51,0.99836,3.38,0.86,9.9,bad
836
+ 8.8,0.685,0.26,1.6,0.088,16,23,0.99694,3.32,0.47,9.4,bad
837
+ 7.6,0.665,0.1,1.5,0.066,27,55,0.99655,3.39,0.51,9.3,bad
838
+ 6.7,0.28,0.28,2.4,0.012,36,100,0.99064,3.26,0.39,11.7,good
839
+ 6.7,0.28,0.28,2.4,0.012,36,100,0.99064,3.26,0.39,11.7,good
840
+ 10.1,0.31,0.35,1.6,0.075,9,28,0.99672,3.24,0.83,11.2,good
841
+ 6,0.5,0.04,2.2,0.092,13,26,0.99647,3.46,0.47,10,bad
842
+ 11.1,0.42,0.47,2.65,0.085,9,34,0.99736,3.24,0.77,12.1,good
843
+ 6.6,0.66,0,3,0.115,21,31,0.99629,3.45,0.63,10.3,bad
844
+ 10.6,0.5,0.45,2.6,0.119,34,68,0.99708,3.23,0.72,10.9,good
845
+ 7.1,0.685,0.35,2,0.088,9,92,0.9963,3.28,0.62,9.4,bad
846
+ 9.9,0.25,0.46,1.7,0.062,26,42,0.9959,3.18,0.83,10.6,good
847
+ 6.4,0.64,0.21,1.8,0.081,14,31,0.99689,3.59,0.66,9.8,bad
848
+ 6.4,0.64,0.21,1.8,0.081,14,31,0.99689,3.59,0.66,9.8,bad
849
+ 7.4,0.68,0.16,1.8,0.078,12,39,0.9977,3.5,0.7,9.9,good
850
+ 6.4,0.64,0.21,1.8,0.081,14,31,0.99689,3.59,0.66,9.8,bad
851
+ 6.4,0.63,0.21,1.6,0.08,12,32,0.99689,3.58,0.66,9.8,bad
852
+ 9.3,0.43,0.44,1.9,0.085,9,22,0.99708,3.28,0.55,9.5,bad
853
+ 9.3,0.43,0.44,1.9,0.085,9,22,0.99708,3.28,0.55,9.5,bad
854
+ 8,0.42,0.32,2.5,0.08,26,122,0.99801,3.22,1.07,9.7,bad
855
+ 9.3,0.36,0.39,1.5,0.08,41,55,0.99652,3.47,0.73,10.9,good
856
+ 9.3,0.36,0.39,1.5,0.08,41,55,0.99652,3.47,0.73,10.9,good
857
+ 7.6,0.735,0.02,2.5,0.071,10,14,0.99538,3.51,0.71,11.7,good
858
+ 9.3,0.36,0.39,1.5,0.08,41,55,0.99652,3.47,0.73,10.9,good
859
+ 8.2,0.26,0.34,2.5,0.073,16,47,0.99594,3.4,0.78,11.3,good
860
+ 11.7,0.28,0.47,1.7,0.054,17,32,0.99686,3.15,0.67,10.6,good
861
+ 6.8,0.56,0.22,1.8,0.074,15,24,0.99438,3.4,0.82,11.2,good
862
+ 7.2,0.62,0.06,2.7,0.077,15,85,0.99746,3.51,0.54,9.5,bad
863
+ 5.8,1.01,0.66,2,0.039,15,88,0.99357,3.66,0.6,11.5,good
864
+ 7.5,0.42,0.32,2.7,0.067,7,25,0.99628,3.24,0.44,10.4,bad
865
+ 7.2,0.62,0.06,2.5,0.078,17,84,0.99746,3.51,0.53,9.7,bad
866
+ 7.2,0.62,0.06,2.7,0.077,15,85,0.99746,3.51,0.54,9.5,bad
867
+ 7.2,0.635,0.07,2.6,0.077,16,86,0.99748,3.51,0.54,9.7,bad
868
+ 6.8,0.49,0.22,2.3,0.071,13,24,0.99438,3.41,0.83,11.3,good
869
+ 6.9,0.51,0.23,2,0.072,13,22,0.99438,3.4,0.84,11.2,good
870
+ 6.8,0.56,0.22,1.8,0.074,15,24,0.99438,3.4,0.82,11.2,good
871
+ 7.6,0.63,0.03,2,0.08,27,43,0.99578,3.44,0.64,10.9,good
872
+ 7.7,0.715,0.01,2.1,0.064,31,43,0.99371,3.41,0.57,11.8,good
873
+ 6.9,0.56,0.03,1.5,0.086,36,46,0.99522,3.53,0.57,10.6,bad
874
+ 7.3,0.35,0.24,2,0.067,28,48,0.99576,3.43,0.54,10,bad
875
+ 9.1,0.21,0.37,1.6,0.067,6,10,0.99552,3.23,0.58,11.1,good
876
+ 10.4,0.38,0.46,2.1,0.104,6,10,0.99664,3.12,0.65,11.8,good
877
+ 8.8,0.31,0.4,2.8,0.109,7,16,0.99614,3.31,0.79,11.8,good
878
+ 7.1,0.47,0,2.2,0.067,7,14,0.99517,3.4,0.58,10.9,bad
879
+ 7.7,0.715,0.01,2.1,0.064,31,43,0.99371,3.41,0.57,11.8,good
880
+ 8.8,0.61,0.19,4,0.094,30,69,0.99787,3.22,0.5,10,good
881
+ 7.2,0.6,0.04,2.5,0.076,18,88,0.99745,3.53,0.55,9.5,bad
882
+ 9.2,0.56,0.18,1.6,0.078,10,21,0.99576,3.15,0.49,9.9,bad
883
+ 7.6,0.715,0,2.1,0.068,30,35,0.99533,3.48,0.65,11.4,good
884
+ 8.4,0.31,0.29,3.1,0.194,14,26,0.99536,3.22,0.78,12,good
885
+ 7.2,0.6,0.04,2.5,0.076,18,88,0.99745,3.53,0.55,9.5,bad
886
+ 8.8,0.61,0.19,4,0.094,30,69,0.99787,3.22,0.5,10,good
887
+ 8.9,0.75,0.14,2.5,0.086,9,30,0.99824,3.34,0.64,10.5,bad
888
+ 9,0.8,0.12,2.4,0.083,8,28,0.99836,3.33,0.65,10.4,good
889
+ 10.7,0.52,0.38,2.6,0.066,29,56,0.99577,3.15,0.79,12.1,good
890
+ 6.8,0.57,0,2.5,0.072,32,64,0.99491,3.43,0.56,11.2,good
891
+ 10.7,0.9,0.34,6.6,0.112,23,99,1.00289,3.22,0.68,9.3,bad
892
+ 7.2,0.34,0.24,2,0.071,30,52,0.99576,3.44,0.58,10.1,bad
893
+ 7.2,0.66,0.03,2.3,0.078,16,86,0.99743,3.53,0.57,9.7,bad
894
+ 10.1,0.45,0.23,1.9,0.082,10,18,0.99774,3.22,0.65,9.3,good
895
+ 7.2,0.66,0.03,2.3,0.078,16,86,0.99743,3.53,0.57,9.7,bad
896
+ 7.2,0.63,0.03,2.2,0.08,17,88,0.99745,3.53,0.58,9.8,good
897
+ 7.1,0.59,0.01,2.3,0.08,27,43,0.9955,3.42,0.58,10.7,good
898
+ 8.3,0.31,0.39,2.4,0.078,17,43,0.99444,3.31,0.77,12.5,good
899
+ 7.1,0.59,0.01,2.3,0.08,27,43,0.9955,3.42,0.58,10.7,good
900
+ 8.3,0.31,0.39,2.4,0.078,17,43,0.99444,3.31,0.77,12.5,good
901
+ 8.3,1.02,0.02,3.4,0.084,6,11,0.99892,3.48,0.49,11,bad
902
+ 8.9,0.31,0.36,2.6,0.056,10,39,0.99562,3.4,0.69,11.8,bad
903
+ 7.4,0.635,0.1,2.4,0.08,16,33,0.99736,3.58,0.69,10.8,good
904
+ 7.4,0.635,0.1,2.4,0.08,16,33,0.99736,3.58,0.69,10.8,good
905
+ 6.8,0.59,0.06,6,0.06,11,18,0.9962,3.41,0.59,10.8,good
906
+ 6.8,0.59,0.06,6,0.06,11,18,0.9962,3.41,0.59,10.8,good
907
+ 9.2,0.58,0.2,3,0.081,15,115,0.998,3.23,0.59,9.5,bad
908
+ 7.2,0.54,0.27,2.6,0.084,12,78,0.9964,3.39,0.71,11,bad
909
+ 6.1,0.56,0,2.2,0.079,6,9,0.9948,3.59,0.54,11.5,good
910
+ 7.4,0.52,0.13,2.4,0.078,34,61,0.99528,3.43,0.59,10.8,good
911
+ 7.3,0.305,0.39,1.2,0.059,7,11,0.99331,3.29,0.52,11.5,good
912
+ 9.3,0.38,0.48,3.8,0.132,3,11,0.99577,3.23,0.57,13.2,good
913
+ 9.1,0.28,0.46,9,0.114,3,9,0.99901,3.18,0.6,10.9,good
914
+ 10,0.46,0.44,2.9,0.065,4,8,0.99674,3.33,0.62,12.2,good
915
+ 9.4,0.395,0.46,4.6,0.094,3,10,0.99639,3.27,0.64,12.2,good
916
+ 7.3,0.305,0.39,1.2,0.059,7,11,0.99331,3.29,0.52,11.5,good
917
+ 8.6,0.315,0.4,2.2,0.079,3,6,0.99512,3.27,0.67,11.9,good
918
+ 5.3,0.715,0.19,1.5,0.161,7,62,0.99395,3.62,0.61,11,bad
919
+ 6.8,0.41,0.31,8.8,0.084,26,45,0.99824,3.38,0.64,10.1,good
920
+ 8.4,0.36,0.32,2.2,0.081,32,79,0.9964,3.3,0.72,11,good
921
+ 8.4,0.62,0.12,1.8,0.072,38,46,0.99504,3.38,0.89,11.8,good
922
+ 9.6,0.41,0.37,2.3,0.091,10,23,0.99786,3.24,0.56,10.5,bad
923
+ 8.4,0.36,0.32,2.2,0.081,32,79,0.9964,3.3,0.72,11,good
924
+ 8.4,0.62,0.12,1.8,0.072,38,46,0.99504,3.38,0.89,11.8,good
925
+ 6.8,0.41,0.31,8.8,0.084,26,45,0.99824,3.38,0.64,10.1,good
926
+ 8.6,0.47,0.27,2.3,0.055,14,28,0.99516,3.18,0.8,11.2,bad
927
+ 8.6,0.22,0.36,1.9,0.064,53,77,0.99604,3.47,0.87,11,good
928
+ 9.4,0.24,0.33,2.3,0.061,52,73,0.99786,3.47,0.9,10.2,good
929
+ 8.4,0.67,0.19,2.2,0.093,11,75,0.99736,3.2,0.59,9.2,bad
930
+ 8.6,0.47,0.27,2.3,0.055,14,28,0.99516,3.18,0.8,11.2,bad
931
+ 8.7,0.33,0.38,3.3,0.063,10,19,0.99468,3.3,0.73,12,good
932
+ 6.6,0.61,0.01,1.9,0.08,8,25,0.99746,3.69,0.73,10.5,bad
933
+ 7.4,0.61,0.01,2,0.074,13,38,0.99748,3.48,0.65,9.8,bad
934
+ 7.6,0.4,0.29,1.9,0.078,29,66,0.9971,3.45,0.59,9.5,good
935
+ 7.4,0.61,0.01,2,0.074,13,38,0.99748,3.48,0.65,9.8,bad
936
+ 6.6,0.61,0.01,1.9,0.08,8,25,0.99746,3.69,0.73,10.5,bad
937
+ 8.8,0.3,0.38,2.3,0.06,19,72,0.99543,3.39,0.72,11.8,good
938
+ 8.8,0.3,0.38,2.3,0.06,19,72,0.99543,3.39,0.72,11.8,good
939
+ 12,0.63,0.5,1.4,0.071,6,26,0.99791,3.07,0.6,10.4,bad
940
+ 7.2,0.38,0.38,2.8,0.068,23,42,0.99356,3.34,0.72,12.9,good
941
+ 6.2,0.46,0.17,1.6,0.073,7,11,0.99425,3.61,0.54,11.4,bad
942
+ 9.6,0.33,0.52,2.2,0.074,13,25,0.99509,3.36,0.76,12.4,good
943
+ 9.9,0.27,0.49,5,0.082,9,17,0.99484,3.19,0.52,12.5,good
944
+ 10.1,0.43,0.4,2.6,0.092,13,52,0.99834,3.22,0.64,10,good
945
+ 9.8,0.5,0.34,2.3,0.094,10,45,0.99864,3.24,0.6,9.7,good
946
+ 8.3,0.3,0.49,3.8,0.09,11,24,0.99498,3.27,0.64,12.1,good
947
+ 10.2,0.44,0.42,2,0.071,7,20,0.99566,3.14,0.79,11.1,good
948
+ 10.2,0.44,0.58,4.1,0.092,11,24,0.99745,3.29,0.99,12,good
949
+ 8.3,0.28,0.48,2.1,0.093,6,12,0.99408,3.26,0.62,12.4,good
950
+ 8.9,0.12,0.45,1.8,0.075,10,21,0.99552,3.41,0.76,11.9,good
951
+ 8.9,0.12,0.45,1.8,0.075,10,21,0.99552,3.41,0.76,11.9,good
952
+ 8.9,0.12,0.45,1.8,0.075,10,21,0.99552,3.41,0.76,11.9,good
953
+ 8.3,0.28,0.48,2.1,0.093,6,12,0.99408,3.26,0.62,12.4,good
954
+ 8.2,0.31,0.4,2.2,0.058,6,10,0.99536,3.31,0.68,11.2,good
955
+ 10.2,0.34,0.48,2.1,0.052,5,9,0.99458,3.2,0.69,12.1,good
956
+ 7.6,0.43,0.4,2.7,0.082,6,11,0.99538,3.44,0.54,12.2,good
957
+ 8.5,0.21,0.52,1.9,0.09,9,23,0.99648,3.36,0.67,10.4,bad
958
+ 9,0.36,0.52,2.1,0.111,5,10,0.99568,3.31,0.62,11.3,good
959
+ 9.5,0.37,0.52,2,0.088,12,51,0.99613,3.29,0.58,11.1,good
960
+ 6.4,0.57,0.12,2.3,0.12,25,36,0.99519,3.47,0.71,11.3,good
961
+ 8,0.59,0.05,2,0.089,12,32,0.99735,3.36,0.61,10,bad
962
+ 8.5,0.47,0.27,1.9,0.058,18,38,0.99518,3.16,0.85,11.1,good
963
+ 7.1,0.56,0.14,1.6,0.078,7,18,0.99592,3.27,0.62,9.3,bad
964
+ 6.6,0.57,0.02,2.1,0.115,6,16,0.99654,3.38,0.69,9.5,bad
965
+ 8.8,0.27,0.39,2,0.1,20,27,0.99546,3.15,0.69,11.2,good
966
+ 8.5,0.47,0.27,1.9,0.058,18,38,0.99518,3.16,0.85,11.1,good
967
+ 8.3,0.34,0.4,2.4,0.065,24,48,0.99554,3.34,0.86,11,good
968
+ 9,0.38,0.41,2.4,0.103,6,10,0.99604,3.13,0.58,11.9,good
969
+ 8.5,0.66,0.2,2.1,0.097,23,113,0.99733,3.13,0.48,9.2,bad
970
+ 9,0.4,0.43,2.4,0.068,29,46,0.9943,3.2,0.6,12.2,good
971
+ 6.7,0.56,0.09,2.9,0.079,7,22,0.99669,3.46,0.61,10.2,bad
972
+ 10.4,0.26,0.48,1.9,0.066,6,10,0.99724,3.33,0.87,10.9,good
973
+ 10.4,0.26,0.48,1.9,0.066,6,10,0.99724,3.33,0.87,10.9,good
974
+ 10.1,0.38,0.5,2.4,0.104,6,13,0.99643,3.22,0.65,11.6,good
975
+ 8.5,0.34,0.44,1.7,0.079,6,12,0.99605,3.52,0.63,10.7,bad
976
+ 8.8,0.33,0.41,5.9,0.073,7,13,0.99658,3.3,0.62,12.1,good
977
+ 7.2,0.41,0.3,2.1,0.083,35,72,0.997,3.44,0.52,9.4,bad
978
+ 7.2,0.41,0.3,2.1,0.083,35,72,0.997,3.44,0.52,9.4,bad
979
+ 8.4,0.59,0.29,2.6,0.109,31,119,0.99801,3.15,0.5,9.1,bad
980
+ 7,0.4,0.32,3.6,0.061,9,29,0.99416,3.28,0.49,11.3,good
981
+ 12.2,0.45,0.49,1.4,0.075,3,6,0.9969,3.13,0.63,10.4,bad
982
+ 9.1,0.5,0.3,1.9,0.065,8,17,0.99774,3.32,0.71,10.5,good
983
+ 9.5,0.86,0.26,1.9,0.079,13,28,0.99712,3.25,0.62,10,bad
984
+ 7.3,0.52,0.32,2.1,0.07,51,70,0.99418,3.34,0.82,12.9,good
985
+ 9.1,0.5,0.3,1.9,0.065,8,17,0.99774,3.32,0.71,10.5,good
986
+ 12.2,0.45,0.49,1.4,0.075,3,6,0.9969,3.13,0.63,10.4,bad
987
+ 7.4,0.58,0,2,0.064,7,11,0.99562,3.45,0.58,11.3,good
988
+ 9.8,0.34,0.39,1.4,0.066,3,7,0.9947,3.19,0.55,11.4,good
989
+ 7.1,0.36,0.3,1.6,0.08,35,70,0.99693,3.44,0.5,9.4,bad
990
+ 7.7,0.39,0.12,1.7,0.097,19,27,0.99596,3.16,0.49,9.4,bad
991
+ 9.7,0.295,0.4,1.5,0.073,14,21,0.99556,3.14,0.51,10.9,good
992
+ 7.7,0.39,0.12,1.7,0.097,19,27,0.99596,3.16,0.49,9.4,bad
993
+ 7.1,0.34,0.28,2,0.082,31,68,0.99694,3.45,0.48,9.4,bad
994
+ 6.5,0.4,0.1,2,0.076,30,47,0.99554,3.36,0.48,9.4,good
995
+ 7.1,0.34,0.28,2,0.082,31,68,0.99694,3.45,0.48,9.4,bad
996
+ 10,0.35,0.45,2.5,0.092,20,88,0.99918,3.15,0.43,9.4,bad
997
+ 7.7,0.6,0.06,2,0.079,19,41,0.99697,3.39,0.62,10.1,good
998
+ 5.6,0.66,0,2.2,0.087,3,11,0.99378,3.71,0.63,12.8,good
999
+ 5.6,0.66,0,2.2,0.087,3,11,0.99378,3.71,0.63,12.8,good
1000
+ 8.9,0.84,0.34,1.4,0.05,4,10,0.99554,3.12,0.48,9.1,good
1001
+ 6.4,0.69,0,1.65,0.055,7,12,0.99162,3.47,0.53,12.9,good
1002
+ 7.5,0.43,0.3,2.2,0.062,6,12,0.99495,3.44,0.72,11.5,good
1003
+ 9.9,0.35,0.38,1.5,0.058,31,47,0.99676,3.26,0.82,10.6,good
1004
+ 9.1,0.29,0.33,2.05,0.063,13,27,0.99516,3.26,0.84,11.7,good
1005
+ 6.8,0.36,0.32,1.8,0.067,4,8,0.9928,3.36,0.55,12.8,good
1006
+ 8.2,0.43,0.29,1.6,0.081,27,45,0.99603,3.25,0.54,10.3,bad
1007
+ 6.8,0.36,0.32,1.8,0.067,4,8,0.9928,3.36,0.55,12.8,good
1008
+ 9.1,0.29,0.33,2.05,0.063,13,27,0.99516,3.26,0.84,11.7,good
1009
+ 9.1,0.3,0.34,2,0.064,12,25,0.99516,3.26,0.84,11.7,good
1010
+ 8.9,0.35,0.4,3.6,0.11,12,24,0.99549,3.23,0.7,12,good
1011
+ 9.6,0.5,0.36,2.8,0.116,26,55,0.99722,3.18,0.68,10.9,bad
1012
+ 8.9,0.28,0.45,1.7,0.067,7,12,0.99354,3.25,0.55,12.3,good
1013
+ 8.9,0.32,0.31,2,0.088,12,19,0.9957,3.17,0.55,10.4,good
1014
+ 7.7,1.005,0.15,2.1,0.102,11,32,0.99604,3.23,0.48,10,bad
1015
+ 7.5,0.71,0,1.6,0.092,22,31,0.99635,3.38,0.58,10,good
1016
+ 8,0.58,0.16,2,0.12,3,7,0.99454,3.22,0.58,11.2,good
1017
+ 10.5,0.39,0.46,2.2,0.075,14,27,0.99598,3.06,0.84,11.4,good
1018
+ 8.9,0.38,0.4,2.2,0.068,12,28,0.99486,3.27,0.75,12.6,good
1019
+ 8,0.18,0.37,0.9,0.049,36,109,0.99007,2.89,0.44,12.7,good
1020
+ 8,0.18,0.37,0.9,0.049,36,109,0.99007,2.89,0.44,12.7,good
1021
+ 7,0.5,0.14,1.8,0.078,10,23,0.99636,3.53,0.61,10.4,bad
1022
+ 11.3,0.36,0.66,2.4,0.123,3,8,0.99642,3.2,0.53,11.9,good
1023
+ 11.3,0.36,0.66,2.4,0.123,3,8,0.99642,3.2,0.53,11.9,good
1024
+ 7,0.51,0.09,2.1,0.062,4,9,0.99584,3.35,0.54,10.5,bad
1025
+ 8.2,0.32,0.42,2.3,0.098,3,9,0.99506,3.27,0.55,12.3,good
1026
+ 7.7,0.58,0.01,1.8,0.088,12,18,0.99568,3.32,0.56,10.5,good
1027
+ 8.6,0.83,0,2.8,0.095,17,43,0.99822,3.33,0.6,10.4,good
1028
+ 7.9,0.31,0.32,1.9,0.066,14,36,0.99364,3.41,0.56,12.6,good
1029
+ 6.4,0.795,0,2.2,0.065,28,52,0.99378,3.49,0.52,11.6,bad
1030
+ 7.2,0.34,0.21,2.5,0.075,41,68,0.99586,3.37,0.54,10.1,good
1031
+ 7.7,0.58,0.01,1.8,0.088,12,18,0.99568,3.32,0.56,10.5,good
1032
+ 7.1,0.59,0,2.1,0.091,9,14,0.99488,3.42,0.55,11.5,good
1033
+ 7.3,0.55,0.01,1.8,0.093,9,15,0.99514,3.35,0.58,11,good
1034
+ 8.1,0.82,0,4.1,0.095,5,14,0.99854,3.36,0.53,9.6,bad
1035
+ 7.5,0.57,0.08,2.6,0.089,14,27,0.99592,3.3,0.59,10.4,good
1036
+ 8.9,0.745,0.18,2.5,0.077,15,48,0.99739,3.2,0.47,9.7,good
1037
+ 10.1,0.37,0.34,2.4,0.085,5,17,0.99683,3.17,0.65,10.6,good
1038
+ 7.6,0.31,0.34,2.5,0.082,26,35,0.99356,3.22,0.59,12.5,good
1039
+ 7.3,0.91,0.1,1.8,0.074,20,56,0.99672,3.35,0.56,9.2,bad
1040
+ 8.7,0.41,0.41,6.2,0.078,25,42,0.9953,3.24,0.77,12.6,good
1041
+ 8.9,0.5,0.21,2.2,0.088,21,39,0.99692,3.33,0.83,11.1,good
1042
+ 7.4,0.965,0,2.2,0.088,16,32,0.99756,3.58,0.67,10.2,bad
1043
+ 6.9,0.49,0.19,1.7,0.079,13,26,0.99547,3.38,0.64,9.8,good
1044
+ 8.9,0.5,0.21,2.2,0.088,21,39,0.99692,3.33,0.83,11.1,good
1045
+ 9.5,0.39,0.41,8.9,0.069,18,39,0.99859,3.29,0.81,10.9,good
1046
+ 6.4,0.39,0.33,3.3,0.046,12,53,0.99294,3.36,0.62,12.2,good
1047
+ 6.9,0.44,0,1.4,0.07,32,38,0.99438,3.32,0.58,11.4,good
1048
+ 7.6,0.78,0,1.7,0.076,33,45,0.99612,3.31,0.62,10.7,good
1049
+ 7.1,0.43,0.17,1.8,0.082,27,51,0.99634,3.49,0.64,10.4,bad
1050
+ 9.3,0.49,0.36,1.7,0.081,3,14,0.99702,3.27,0.78,10.9,good
1051
+ 9.3,0.5,0.36,1.8,0.084,6,17,0.99704,3.27,0.77,10.8,good
1052
+ 7.1,0.43,0.17,1.8,0.082,27,51,0.99634,3.49,0.64,10.4,bad
1053
+ 8.5,0.46,0.59,1.4,0.414,16,45,0.99702,3.03,1.34,9.2,bad
1054
+ 5.6,0.605,0.05,2.4,0.073,19,25,0.99258,3.56,0.55,12.9,bad
1055
+ 8.3,0.33,0.42,2.3,0.07,9,20,0.99426,3.38,0.77,12.7,good
1056
+ 8.2,0.64,0.27,2,0.095,5,77,0.99747,3.13,0.62,9.1,good
1057
+ 8.2,0.64,0.27,2,0.095,5,77,0.99747,3.13,0.62,9.1,good
1058
+ 8.9,0.48,0.53,4,0.101,3,10,0.99586,3.21,0.59,12.1,good
1059
+ 7.6,0.42,0.25,3.9,0.104,28,90,0.99784,3.15,0.57,9.1,bad
1060
+ 9.9,0.53,0.57,2.4,0.093,30,52,0.9971,3.19,0.76,11.6,good
1061
+ 8.9,0.48,0.53,4,0.101,3,10,0.99586,3.21,0.59,12.1,good
1062
+ 11.6,0.23,0.57,1.8,0.074,3,8,0.9981,3.14,0.7,9.9,good
1063
+ 9.1,0.4,0.5,1.8,0.071,7,16,0.99462,3.21,0.69,12.5,good
1064
+ 8,0.38,0.44,1.9,0.098,6,15,0.9956,3.3,0.64,11.4,good
1065
+ 10.2,0.29,0.65,2.4,0.075,6,17,0.99565,3.22,0.63,11.8,good
1066
+ 8.2,0.74,0.09,2,0.067,5,10,0.99418,3.28,0.57,11.8,good
1067
+ 7.7,0.61,0.18,2.4,0.083,6,20,0.9963,3.29,0.6,10.2,good
1068
+ 6.6,0.52,0.08,2.4,0.07,13,26,0.99358,3.4,0.72,12.5,good
1069
+ 11.1,0.31,0.53,2.2,0.06,3,10,0.99572,3.02,0.83,10.9,good
1070
+ 11.1,0.31,0.53,2.2,0.06,3,10,0.99572,3.02,0.83,10.9,good
1071
+ 8,0.62,0.35,2.8,0.086,28,52,0.997,3.31,0.62,10.8,bad
1072
+ 9.3,0.33,0.45,1.5,0.057,19,37,0.99498,3.18,0.89,11.1,good
1073
+ 7.5,0.77,0.2,8.1,0.098,30,92,0.99892,3.2,0.58,9.2,bad
1074
+ 7.2,0.35,0.26,1.8,0.083,33,75,0.9968,3.4,0.58,9.5,good
1075
+ 8,0.62,0.33,2.7,0.088,16,37,0.9972,3.31,0.58,10.7,good
1076
+ 7.5,0.77,0.2,8.1,0.098,30,92,0.99892,3.2,0.58,9.2,bad
1077
+ 9.1,0.25,0.34,2,0.071,45,67,0.99769,3.44,0.86,10.2,good
1078
+ 9.9,0.32,0.56,2,0.073,3,8,0.99534,3.15,0.73,11.4,good
1079
+ 8.6,0.37,0.65,6.4,0.08,3,8,0.99817,3.27,0.58,11,bad
1080
+ 8.6,0.37,0.65,6.4,0.08,3,8,0.99817,3.27,0.58,11,bad
1081
+ 7.9,0.3,0.68,8.3,0.05,37.5,278,0.99316,3.01,0.51,12.3,good
1082
+ 10.3,0.27,0.56,1.4,0.047,3,8,0.99471,3.16,0.51,11.8,good
1083
+ 7.9,0.3,0.68,8.3,0.05,37.5,289,0.99316,3.01,0.51,12.3,good
1084
+ 7.2,0.38,0.3,1.8,0.073,31,70,0.99685,3.42,0.59,9.5,good
1085
+ 8.7,0.42,0.45,2.4,0.072,32,59,0.99617,3.33,0.77,12,good
1086
+ 7.2,0.38,0.3,1.8,0.073,31,70,0.99685,3.42,0.59,9.5,good
1087
+ 6.8,0.48,0.08,1.8,0.074,40,64,0.99529,3.12,0.49,9.6,bad
1088
+ 8.5,0.34,0.4,4.7,0.055,3,9,0.99738,3.38,0.66,11.6,good
1089
+ 7.9,0.19,0.42,1.6,0.057,18,30,0.994,3.29,0.69,11.2,good
1090
+ 11.6,0.41,0.54,1.5,0.095,22,41,0.99735,3.02,0.76,9.9,good
1091
+ 11.6,0.41,0.54,1.5,0.095,22,41,0.99735,3.02,0.76,9.9,good
1092
+ 10,0.26,0.54,1.9,0.083,42,74,0.99451,2.98,0.63,11.8,good
1093
+ 7.9,0.34,0.42,2,0.086,8,19,0.99546,3.35,0.6,11.4,good
1094
+ 7,0.54,0.09,2,0.081,10,16,0.99479,3.43,0.59,11.5,good
1095
+ 9.2,0.31,0.36,2.2,0.079,11,31,0.99615,3.33,0.86,12,good
1096
+ 6.6,0.725,0.09,5.5,0.117,9,17,0.99655,3.35,0.49,10.8,good
1097
+ 9.4,0.4,0.47,2.5,0.087,6,20,0.99772,3.15,0.5,10.5,bad
1098
+ 6.6,0.725,0.09,5.5,0.117,9,17,0.99655,3.35,0.49,10.8,good
1099
+ 8.6,0.52,0.38,1.5,0.096,5,18,0.99666,3.2,0.52,9.4,bad
1100
+ 8,0.31,0.45,2.1,0.216,5,16,0.99358,3.15,0.81,12.5,good
1101
+ 8.6,0.52,0.38,1.5,0.096,5,18,0.99666,3.2,0.52,9.4,bad
1102
+ 8.4,0.34,0.42,2.1,0.072,23,36,0.99392,3.11,0.78,12.4,good
1103
+ 7.4,0.49,0.27,2.1,0.071,14,25,0.99388,3.35,0.63,12,good
1104
+ 6.1,0.48,0.09,1.7,0.078,18,30,0.99402,3.45,0.54,11.2,good
1105
+ 7.4,0.49,0.27,2.1,0.071,14,25,0.99388,3.35,0.63,12,good
1106
+ 8,0.48,0.34,2.2,0.073,16,25,0.9936,3.28,0.66,12.4,good
1107
+ 6.3,0.57,0.28,2.1,0.048,13,49,0.99374,3.41,0.6,12.8,bad
1108
+ 8.2,0.23,0.42,1.9,0.069,9,17,0.99376,3.21,0.54,12.3,good
1109
+ 9.1,0.3,0.41,2,0.068,10,24,0.99523,3.27,0.85,11.7,good
1110
+ 8.1,0.78,0.1,3.3,0.09,4,13,0.99855,3.36,0.49,9.5,bad
1111
+ 10.8,0.47,0.43,2.1,0.171,27,66,0.9982,3.17,0.76,10.8,good
1112
+ 8.3,0.53,0,1.4,0.07,6,14,0.99593,3.25,0.64,10,good
1113
+ 5.4,0.42,0.27,2,0.092,23,55,0.99471,3.78,0.64,12.3,good
1114
+ 7.9,0.33,0.41,1.5,0.056,6,35,0.99396,3.29,0.71,11,good
1115
+ 8.9,0.24,0.39,1.6,0.074,3,10,0.99698,3.12,0.59,9.5,good
1116
+ 5,0.4,0.5,4.3,0.046,29,80,0.9902,3.49,0.66,13.6,good
1117
+ 7,0.69,0.07,2.5,0.091,15,21,0.99572,3.38,0.6,11.3,good
1118
+ 7,0.69,0.07,2.5,0.091,15,21,0.99572,3.38,0.6,11.3,good
1119
+ 7,0.69,0.07,2.5,0.091,15,21,0.99572,3.38,0.6,11.3,good
1120
+ 7.1,0.39,0.12,2.1,0.065,14,24,0.99252,3.3,0.53,13.3,good
1121
+ 5.6,0.66,0,2.5,0.066,7,15,0.99256,3.52,0.58,12.9,bad
1122
+ 7.9,0.54,0.34,2.5,0.076,8,17,0.99235,3.2,0.72,13.1,good
1123
+ 6.6,0.5,0,1.8,0.062,21,28,0.99352,3.44,0.55,12.3,good
1124
+ 6.3,0.47,0,1.4,0.055,27,33,0.9922,3.45,0.48,12.3,good
1125
+ 10.7,0.4,0.37,1.9,0.081,17,29,0.99674,3.12,0.65,11.2,good
1126
+ 6.5,0.58,0,2.2,0.096,3,13,0.99557,3.62,0.62,11.5,bad
1127
+ 8.8,0.24,0.35,1.7,0.055,13,27,0.99394,3.14,0.59,11.3,good
1128
+ 5.8,0.29,0.26,1.7,0.063,3,11,0.9915,3.39,0.54,13.5,good
1129
+ 6.3,0.76,0,2.9,0.072,26,52,0.99379,3.51,0.6,11.5,good
1130
+ 10,0.43,0.33,2.7,0.095,28,89,0.9984,3.22,0.68,10,bad
1131
+ 10.5,0.43,0.35,3.3,0.092,24,70,0.99798,3.21,0.69,10.5,good
1132
+ 9.1,0.6,0,1.9,0.058,5,10,0.9977,3.18,0.63,10.4,good
1133
+ 5.9,0.19,0.21,1.7,0.045,57,135,0.99341,3.32,0.44,9.5,bad
1134
+ 7.4,0.36,0.34,1.8,0.075,18,38,0.9933,3.38,0.88,13.6,good
1135
+ 7.2,0.48,0.07,5.5,0.089,10,18,0.99684,3.37,0.68,11.2,good
1136
+ 8.5,0.28,0.35,1.7,0.061,6,15,0.99524,3.3,0.74,11.8,good
1137
+ 8,0.25,0.43,1.7,0.067,22,50,0.9946,3.38,0.6,11.9,good
1138
+ 10.4,0.52,0.45,2,0.08,6,13,0.99774,3.22,0.76,11.4,good
1139
+ 10.4,0.52,0.45,2,0.08,6,13,0.99774,3.22,0.76,11.4,good
1140
+ 7.5,0.41,0.15,3.7,0.104,29,94,0.99786,3.14,0.58,9.1,bad
1141
+ 8.2,0.51,0.24,2,0.079,16,86,0.99764,3.34,0.64,9.5,good
1142
+ 7.3,0.4,0.3,1.7,0.08,33,79,0.9969,3.41,0.65,9.5,good
1143
+ 8.2,0.38,0.32,2.5,0.08,24,71,0.99624,3.27,0.85,11,good
1144
+ 6.9,0.45,0.11,2.4,0.043,6,12,0.99354,3.3,0.65,11.4,good
1145
+ 7,0.22,0.3,1.8,0.065,16,20,0.99672,3.61,0.82,10,good
1146
+ 7.3,0.32,0.23,2.3,0.066,35,70,0.99588,3.43,0.62,10.1,bad
1147
+ 8.2,0.2,0.43,2.5,0.076,31,51,0.99672,3.53,0.81,10.4,good
1148
+ 7.8,0.5,0.12,1.8,0.178,6,21,0.996,3.28,0.87,9.8,good
1149
+ 10,0.41,0.45,6.2,0.071,6,14,0.99702,3.21,0.49,11.8,good
1150
+ 7.8,0.39,0.42,2,0.086,9,21,0.99526,3.39,0.66,11.6,good
1151
+ 10,0.35,0.47,2,0.061,6,11,0.99585,3.23,0.52,12,good
1152
+ 8.2,0.33,0.32,2.8,0.067,4,12,0.99473,3.3,0.76,12.8,good
1153
+ 6.1,0.58,0.23,2.5,0.044,16,70,0.99352,3.46,0.65,12.5,good
1154
+ 8.3,0.6,0.25,2.2,0.118,9,38,0.99616,3.15,0.53,9.8,bad
1155
+ 9.6,0.42,0.35,2.1,0.083,17,38,0.99622,3.23,0.66,11.1,good
1156
+ 6.6,0.58,0,2.2,0.1,50,63,0.99544,3.59,0.68,11.4,good
1157
+ 8.3,0.6,0.25,2.2,0.118,9,38,0.99616,3.15,0.53,9.8,bad
1158
+ 8.5,0.18,0.51,1.75,0.071,45,88,0.99524,3.33,0.76,11.8,good
1159
+ 5.1,0.51,0.18,2.1,0.042,16,101,0.9924,3.46,0.87,12.9,good
1160
+ 6.7,0.41,0.43,2.8,0.076,22,54,0.99572,3.42,1.16,10.6,good
1161
+ 10.2,0.41,0.43,2.2,0.11,11,37,0.99728,3.16,0.67,10.8,bad
1162
+ 10.6,0.36,0.57,2.3,0.087,6,20,0.99676,3.14,0.72,11.1,good
1163
+ 8.8,0.45,0.43,1.4,0.076,12,21,0.99551,3.21,0.75,10.2,good
1164
+ 8.5,0.32,0.42,2.3,0.075,12,19,0.99434,3.14,0.71,11.8,good
1165
+ 9,0.785,0.24,1.7,0.078,10,21,0.99692,3.29,0.67,10,bad
1166
+ 9,0.785,0.24,1.7,0.078,10,21,0.99692,3.29,0.67,10,bad
1167
+ 8.5,0.44,0.5,1.9,0.369,15,38,0.99634,3.01,1.1,9.4,bad
1168
+ 9.9,0.54,0.26,2,0.111,7,60,0.99709,2.94,0.98,10.2,bad
1169
+ 8.2,0.33,0.39,2.5,0.074,29,48,0.99528,3.32,0.88,12.4,good
1170
+ 6.5,0.34,0.27,2.8,0.067,8,44,0.99384,3.21,0.56,12,good
1171
+ 7.6,0.5,0.29,2.3,0.086,5,14,0.99502,3.32,0.62,11.5,good
1172
+ 9.2,0.36,0.34,1.6,0.062,5,12,0.99667,3.2,0.67,10.5,good
1173
+ 7.1,0.59,0,2.2,0.078,26,44,0.99522,3.42,0.68,10.8,good
1174
+ 9.7,0.42,0.46,2.1,0.074,5,16,0.99649,3.27,0.74,12.3,good
1175
+ 7.6,0.36,0.31,1.7,0.079,26,65,0.99716,3.46,0.62,9.5,good
1176
+ 7.6,0.36,0.31,1.7,0.079,26,65,0.99716,3.46,0.62,9.5,good
1177
+ 6.5,0.61,0,2.2,0.095,48,59,0.99541,3.61,0.7,11.5,good
1178
+ 6.5,0.88,0.03,5.6,0.079,23,47,0.99572,3.58,0.5,11.2,bad
1179
+ 7.1,0.66,0,2.4,0.052,6,11,0.99318,3.35,0.66,12.7,good
1180
+ 5.6,0.915,0,2.1,0.041,17,78,0.99346,3.68,0.73,11.4,bad
1181
+ 8.2,0.35,0.33,2.4,0.076,11,47,0.99599,3.27,0.81,11,good
1182
+ 8.2,0.35,0.33,2.4,0.076,11,47,0.99599,3.27,0.81,11,good
1183
+ 9.8,0.39,0.43,1.65,0.068,5,11,0.99478,3.19,0.46,11.4,bad
1184
+ 10.2,0.4,0.4,2.5,0.068,41,54,0.99754,3.38,0.86,10.5,good
1185
+ 6.8,0.66,0.07,1.6,0.07,16,61,0.99572,3.29,0.6,9.3,bad
1186
+ 6.7,0.64,0.23,2.1,0.08,11,119,0.99538,3.36,0.7,10.9,bad
1187
+ 7,0.43,0.3,2,0.085,6,39,0.99346,3.33,0.46,11.9,good
1188
+ 6.6,0.8,0.03,7.8,0.079,6,12,0.9963,3.52,0.5,12.2,bad
1189
+ 7,0.43,0.3,2,0.085,6,39,0.99346,3.33,0.46,11.9,good
1190
+ 6.7,0.64,0.23,2.1,0.08,11,119,0.99538,3.36,0.7,10.9,bad
1191
+ 8.8,0.955,0.05,1.8,0.075,5,19,0.99616,3.3,0.44,9.6,bad
1192
+ 9.1,0.4,0.57,4.6,0.08,6,20,0.99652,3.28,0.57,12.5,good
1193
+ 6.5,0.885,0,2.3,0.166,6,12,0.99551,3.56,0.51,10.8,bad
1194
+ 7.2,0.25,0.37,2.5,0.063,11,41,0.99439,3.52,0.8,12.4,good
1195
+ 6.4,0.885,0,2.3,0.166,6,12,0.99551,3.56,0.51,10.8,bad
1196
+ 7,0.745,0.12,1.8,0.114,15,64,0.99588,3.22,0.59,9.5,good
1197
+ 6.2,0.43,0.22,1.8,0.078,21,56,0.99633,3.52,0.6,9.5,good
1198
+ 7.9,0.58,0.23,2.3,0.076,23,94,0.99686,3.21,0.58,9.5,good
1199
+ 7.7,0.57,0.21,1.5,0.069,4,9,0.99458,3.16,0.54,9.8,good
1200
+ 7.7,0.26,0.26,2,0.052,19,77,0.9951,3.15,0.79,10.9,good
1201
+ 7.9,0.58,0.23,2.3,0.076,23,94,0.99686,3.21,0.58,9.5,good
1202
+ 7.7,0.57,0.21,1.5,0.069,4,9,0.99458,3.16,0.54,9.8,good
1203
+ 7.9,0.34,0.36,1.9,0.065,5,10,0.99419,3.27,0.54,11.2,good
1204
+ 8.6,0.42,0.39,1.8,0.068,6,12,0.99516,3.35,0.69,11.7,good
1205
+ 9.9,0.74,0.19,5.8,0.111,33,76,0.99878,3.14,0.55,9.4,bad
1206
+ 7.2,0.36,0.46,2.1,0.074,24,44,0.99534,3.4,0.85,11,good
1207
+ 7.2,0.36,0.46,2.1,0.074,24,44,0.99534,3.4,0.85,11,good
1208
+ 7.2,0.36,0.46,2.1,0.074,24,44,0.99534,3.4,0.85,11,good
1209
+ 9.9,0.72,0.55,1.7,0.136,24,52,0.99752,3.35,0.94,10,bad
1210
+ 7.2,0.36,0.46,2.1,0.074,24,44,0.99534,3.4,0.85,11,good
1211
+ 6.2,0.39,0.43,2,0.071,14,24,0.99428,3.45,0.87,11.2,good
1212
+ 6.8,0.65,0.02,2.1,0.078,8,15,0.99498,3.35,0.62,10.4,good
1213
+ 6.6,0.44,0.15,2.1,0.076,22,53,0.9957,3.32,0.62,9.3,bad
1214
+ 6.8,0.65,0.02,2.1,0.078,8,15,0.99498,3.35,0.62,10.4,good
1215
+ 9.6,0.38,0.42,1.9,0.071,5,13,0.99659,3.15,0.75,10.5,good
1216
+ 10.2,0.33,0.46,1.9,0.081,6,9,0.99628,3.1,0.48,10.4,good
1217
+ 8.8,0.27,0.46,2.1,0.095,20,29,0.99488,3.26,0.56,11.3,good
1218
+ 7.9,0.57,0.31,2,0.079,10,79,0.99677,3.29,0.69,9.5,good
1219
+ 8.2,0.34,0.37,1.9,0.057,43,74,0.99408,3.23,0.81,12,good
1220
+ 8.2,0.4,0.31,1.9,0.082,8,24,0.996,3.24,0.69,10.6,good
1221
+ 9,0.39,0.4,1.3,0.044,25,50,0.99478,3.2,0.83,10.9,good
1222
+ 10.9,0.32,0.52,1.8,0.132,17,44,0.99734,3.28,0.77,11.5,good
1223
+ 10.9,0.32,0.52,1.8,0.132,17,44,0.99734,3.28,0.77,11.5,good
1224
+ 8.1,0.53,0.22,2.2,0.078,33,89,0.99678,3.26,0.46,9.6,good
1225
+ 10.5,0.36,0.47,2.2,0.074,9,23,0.99638,3.23,0.76,12,good
1226
+ 12.6,0.39,0.49,2.5,0.08,8,20,0.9992,3.07,0.82,10.3,good
1227
+ 9.2,0.46,0.23,2.6,0.091,18,77,0.99922,3.15,0.51,9.4,bad
1228
+ 7.5,0.58,0.03,4.1,0.08,27,46,0.99592,3.02,0.47,9.2,bad
1229
+ 9,0.58,0.25,2,0.104,8,21,0.99769,3.27,0.72,9.6,bad
1230
+ 5.1,0.42,0,1.8,0.044,18,88,0.99157,3.68,0.73,13.6,good
1231
+ 7.6,0.43,0.29,2.1,0.075,19,66,0.99718,3.4,0.64,9.5,bad
1232
+ 7.7,0.18,0.34,2.7,0.066,15,58,0.9947,3.37,0.78,11.8,good
1233
+ 7.8,0.815,0.01,2.6,0.074,48,90,0.99621,3.38,0.62,10.8,bad
1234
+ 7.6,0.43,0.29,2.1,0.075,19,66,0.99718,3.4,0.64,9.5,bad
1235
+ 10.2,0.23,0.37,2.2,0.057,14,36,0.99614,3.23,0.49,9.3,bad
1236
+ 7.1,0.75,0.01,2.2,0.059,11,18,0.99242,3.39,0.4,12.8,good
1237
+ 6,0.33,0.32,12.9,0.054,6,113,0.99572,3.3,0.56,11.5,bad
1238
+ 7.8,0.55,0,1.7,0.07,7,17,0.99659,3.26,0.64,9.4,good
1239
+ 7.1,0.75,0.01,2.2,0.059,11,18,0.99242,3.39,0.4,12.8,good
1240
+ 8.1,0.73,0,2.5,0.081,12,24,0.99798,3.38,0.46,9.6,bad
1241
+ 6.5,0.67,0,4.3,0.057,11,20,0.99488,3.45,0.56,11.8,bad
1242
+ 7.5,0.61,0.2,1.7,0.076,36,60,0.99494,3.1,0.4,9.3,bad
1243
+ 9.8,0.37,0.39,2.5,0.079,28,65,0.99729,3.16,0.59,9.8,bad
1244
+ 9,0.4,0.41,2,0.058,15,40,0.99414,3.22,0.6,12.2,good
1245
+ 8.3,0.56,0.22,2.4,0.082,10,86,0.9983,3.37,0.62,9.5,bad
1246
+ 5.9,0.29,0.25,13.4,0.067,72,160,0.99721,3.33,0.54,10.3,good
1247
+ 7.4,0.55,0.19,1.8,0.082,15,34,0.99655,3.49,0.68,10.5,bad
1248
+ 7.4,0.74,0.07,1.7,0.086,15,48,0.99502,3.12,0.48,10,bad
1249
+ 7.4,0.55,0.19,1.8,0.082,15,34,0.99655,3.49,0.68,10.5,bad
1250
+ 6.9,0.41,0.33,2.2,0.081,22,36,0.9949,3.41,0.75,11.1,good
1251
+ 7.1,0.6,0.01,2.3,0.079,24,37,0.99514,3.4,0.61,10.9,good
1252
+ 7.1,0.6,0.01,2.3,0.079,24,37,0.99514,3.4,0.61,10.9,good
1253
+ 7.5,0.58,0.14,2.2,0.077,27,60,0.9963,3.28,0.59,9.8,bad
1254
+ 7.1,0.72,0,1.8,0.123,6,14,0.99627,3.45,0.58,9.8,bad
1255
+ 7.9,0.66,0,1.4,0.096,6,13,0.99569,3.43,0.58,9.5,bad
1256
+ 7.8,0.7,0.06,1.9,0.079,20,35,0.99628,3.4,0.69,10.9,bad
1257
+ 6.1,0.64,0.02,2.4,0.069,26,46,0.99358,3.47,0.45,11,bad
1258
+ 7.5,0.59,0.22,1.8,0.082,43,60,0.99499,3.1,0.42,9.2,bad
1259
+ 7,0.58,0.28,4.8,0.085,12,69,0.99633,3.32,0.7,11,good
1260
+ 6.8,0.64,0,2.7,0.123,15,33,0.99538,3.44,0.63,11.3,good
1261
+ 6.8,0.64,0,2.7,0.123,15,33,0.99538,3.44,0.63,11.3,good
1262
+ 8.6,0.635,0.68,1.8,0.403,19,56,0.99632,3.02,1.15,9.3,bad
1263
+ 6.3,1.02,0,2,0.083,17,24,0.99437,3.59,0.55,11.2,bad
1264
+ 9.8,0.45,0.38,2.5,0.081,34,66,0.99726,3.15,0.58,9.8,bad
1265
+ 8.2,0.78,0,2.2,0.089,13,26,0.9978,3.37,0.46,9.6,bad
1266
+ 8.5,0.37,0.32,1.8,0.066,26,51,0.99456,3.38,0.72,11.8,good
1267
+ 7.2,0.57,0.05,2.3,0.081,16,36,0.99564,3.38,0.6,10.3,good
1268
+ 7.2,0.57,0.05,2.3,0.081,16,36,0.99564,3.38,0.6,10.3,good
1269
+ 10.4,0.43,0.5,2.3,0.068,13,19,0.996,3.1,0.87,11.4,good
1270
+ 6.9,0.41,0.31,2,0.079,21,51,0.99668,3.47,0.55,9.5,good
1271
+ 5.5,0.49,0.03,1.8,0.044,28,87,0.9908,3.5,0.82,14,good
1272
+ 5,0.38,0.01,1.6,0.048,26,60,0.99084,3.7,0.75,14,good
1273
+ 7.3,0.44,0.2,1.6,0.049,24,64,0.9935,3.38,0.57,11.7,good
1274
+ 5.9,0.46,0,1.9,0.077,25,44,0.99385,3.5,0.53,11.2,bad
1275
+ 7.5,0.58,0.2,2,0.073,34,44,0.99494,3.1,0.43,9.3,bad
1276
+ 7.8,0.58,0.13,2.1,0.102,17,36,0.9944,3.24,0.53,11.2,good
1277
+ 8,0.715,0.22,2.3,0.075,13,81,0.99688,3.24,0.54,9.5,good
1278
+ 8.5,0.4,0.4,6.3,0.05,3,10,0.99566,3.28,0.56,12,bad
1279
+ 7,0.69,0,1.9,0.114,3,10,0.99636,3.35,0.6,9.7,good
1280
+ 8,0.715,0.22,2.3,0.075,13,81,0.99688,3.24,0.54,9.5,good
1281
+ 9.8,0.3,0.39,1.7,0.062,3,9,0.9948,3.14,0.57,11.5,good
1282
+ 7.1,0.46,0.2,1.9,0.077,28,54,0.9956,3.37,0.64,10.4,good
1283
+ 7.1,0.46,0.2,1.9,0.077,28,54,0.9956,3.37,0.64,10.4,good
1284
+ 7.9,0.765,0,2,0.084,9,22,0.99619,3.33,0.68,10.9,good
1285
+ 8.7,0.63,0.28,2.7,0.096,17,69,0.99734,3.26,0.63,10.2,good
1286
+ 7,0.42,0.19,2.3,0.071,18,36,0.99476,3.39,0.56,10.9,bad
1287
+ 11.3,0.37,0.5,1.8,0.09,20,47,0.99734,3.15,0.57,10.5,bad
1288
+ 7.1,0.16,0.44,2.5,0.068,17,31,0.99328,3.35,0.54,12.4,good
1289
+ 8,0.6,0.08,2.6,0.056,3,7,0.99286,3.22,0.37,13,bad
1290
+ 7,0.6,0.3,4.5,0.068,20,110,0.99914,3.3,1.17,10.2,bad
1291
+ 7,0.6,0.3,4.5,0.068,20,110,0.99914,3.3,1.17,10.2,bad
1292
+ 7.6,0.74,0,1.9,0.1,6,12,0.99521,3.36,0.59,11,bad
1293
+ 8.2,0.635,0.1,2.1,0.073,25,60,0.99638,3.29,0.75,10.9,good
1294
+ 5.9,0.395,0.13,2.4,0.056,14,28,0.99362,3.62,0.67,12.4,good
1295
+ 7.5,0.755,0,1.9,0.084,6,12,0.99672,3.34,0.49,9.7,bad
1296
+ 8.2,0.635,0.1,2.1,0.073,25,60,0.99638,3.29,0.75,10.9,good
1297
+ 6.6,0.63,0,4.3,0.093,51,77.5,0.99558,3.2,0.45,9.5,bad
1298
+ 6.6,0.63,0,4.3,0.093,51,77.5,0.99558,3.2,0.45,9.5,bad
1299
+ 7.2,0.53,0.14,2.1,0.064,15,29,0.99323,3.35,0.61,12.1,good
1300
+ 5.7,0.6,0,1.4,0.063,11,18,0.99191,3.45,0.56,12.2,good
1301
+ 7.6,1.58,0,2.1,0.137,5,9,0.99476,3.5,0.4,10.9,bad
1302
+ 5.2,0.645,0,2.15,0.08,15,28,0.99444,3.78,0.61,12.5,good
1303
+ 6.7,0.86,0.07,2,0.1,20,57,0.99598,3.6,0.74,11.7,good
1304
+ 9.1,0.37,0.32,2.1,0.064,4,15,0.99576,3.3,0.8,11.2,good
1305
+ 8,0.28,0.44,1.8,0.081,28,68,0.99501,3.36,0.66,11.2,bad
1306
+ 7.6,0.79,0.21,2.3,0.087,21,68,0.9955,3.12,0.44,9.2,bad
1307
+ 7.5,0.61,0.26,1.9,0.073,24,88,0.99612,3.3,0.53,9.8,bad
1308
+ 9.7,0.69,0.32,2.5,0.088,22,91,0.9979,3.29,0.62,10.1,bad
1309
+ 6.8,0.68,0.09,3.9,0.068,15,29,0.99524,3.41,0.52,11.1,bad
1310
+ 9.7,0.69,0.32,2.5,0.088,22,91,0.9979,3.29,0.62,10.1,bad
1311
+ 7,0.62,0.1,1.4,0.071,27,63,0.996,3.28,0.61,9.2,bad
1312
+ 7.5,0.61,0.26,1.9,0.073,24,88,0.99612,3.3,0.53,9.8,bad
1313
+ 6.5,0.51,0.15,3,0.064,12,27,0.9929,3.33,0.59,12.8,good
1314
+ 8,1.18,0.21,1.9,0.083,14,41,0.99532,3.34,0.47,10.5,bad
1315
+ 7,0.36,0.21,2.3,0.086,20,65,0.99558,3.4,0.54,10.1,good
1316
+ 7,0.36,0.21,2.4,0.086,24,69,0.99556,3.4,0.53,10.1,good
1317
+ 7.5,0.63,0.27,2,0.083,17,91,0.99616,3.26,0.58,9.8,good
1318
+ 5.4,0.74,0,1.2,0.041,16,46,0.99258,4.01,0.59,12.5,good
1319
+ 9.9,0.44,0.46,2.2,0.091,10,41,0.99638,3.18,0.69,11.9,good
1320
+ 7.5,0.63,0.27,2,0.083,17,91,0.99616,3.26,0.58,9.8,good
1321
+ 9.1,0.76,0.68,1.7,0.414,18,64,0.99652,2.9,1.33,9.1,good
1322
+ 9.7,0.66,0.34,2.6,0.094,12,88,0.99796,3.26,0.66,10.1,bad
1323
+ 5,0.74,0,1.2,0.041,16,46,0.99258,4.01,0.59,12.5,good
1324
+ 9.1,0.34,0.42,1.8,0.058,9,18,0.99392,3.18,0.55,11.4,bad
1325
+ 9.1,0.36,0.39,1.8,0.06,21,55,0.99495,3.18,0.82,11,good
1326
+ 6.7,0.46,0.24,1.7,0.077,18,34,0.9948,3.39,0.6,10.6,good
1327
+ 6.7,0.46,0.24,1.7,0.077,18,34,0.9948,3.39,0.6,10.6,good
1328
+ 6.7,0.46,0.24,1.7,0.077,18,34,0.9948,3.39,0.6,10.6,good
1329
+ 6.7,0.46,0.24,1.7,0.077,18,34,0.9948,3.39,0.6,10.6,good
1330
+ 6.5,0.52,0.11,1.8,0.073,13,38,0.9955,3.34,0.52,9.3,bad
1331
+ 7.4,0.6,0.26,2.1,0.083,17,91,0.99616,3.29,0.56,9.8,good
1332
+ 7.4,0.6,0.26,2.1,0.083,17,91,0.99616,3.29,0.56,9.8,good
1333
+ 7.8,0.87,0.26,3.8,0.107,31,67,0.99668,3.26,0.46,9.2,bad
1334
+ 8.4,0.39,0.1,1.7,0.075,6,25,0.99581,3.09,0.43,9.7,good
1335
+ 9.1,0.775,0.22,2.2,0.079,12,48,0.9976,3.18,0.51,9.6,bad
1336
+ 7.2,0.835,0,2,0.166,4,11,0.99608,3.39,0.52,10,bad
1337
+ 6.6,0.58,0.02,2.4,0.069,19,40,0.99387,3.38,0.66,12.6,good
1338
+ 6,0.5,0,1.4,0.057,15,26,0.99448,3.36,0.45,9.5,bad
1339
+ 6,0.5,0,1.4,0.057,15,26,0.99448,3.36,0.45,9.5,bad
1340
+ 6,0.5,0,1.4,0.057,15,26,0.99448,3.36,0.45,9.5,bad
1341
+ 7.5,0.51,0.02,1.7,0.084,13,31,0.99538,3.36,0.54,10.5,good
1342
+ 7.5,0.51,0.02,1.7,0.084,13,31,0.99538,3.36,0.54,10.5,good
1343
+ 7.5,0.51,0.02,1.7,0.084,13,31,0.99538,3.36,0.54,10.5,good
1344
+ 7.6,0.54,0.02,1.7,0.085,17,31,0.99589,3.37,0.51,10.4,good
1345
+ 7.5,0.51,0.02,1.7,0.084,13,31,0.99538,3.36,0.54,10.5,good
1346
+ 11.5,0.42,0.48,2.6,0.077,8,20,0.99852,3.09,0.53,11,bad
1347
+ 8.2,0.44,0.24,2.3,0.063,10,28,0.99613,3.25,0.53,10.2,good
1348
+ 6.1,0.59,0.01,2.1,0.056,5,13,0.99472,3.52,0.56,11.4,bad
1349
+ 7.2,0.655,0.03,1.8,0.078,7,12,0.99587,3.34,0.39,9.5,bad
1350
+ 7.2,0.655,0.03,1.8,0.078,7,12,0.99587,3.34,0.39,9.5,bad
1351
+ 6.9,0.57,0,2.8,0.081,21,41,0.99518,3.41,0.52,10.8,bad
1352
+ 9,0.6,0.29,2,0.069,32,73,0.99654,3.34,0.57,10,bad
1353
+ 7.2,0.62,0.01,2.3,0.065,8,46,0.99332,3.32,0.51,11.8,good
1354
+ 7.6,0.645,0.03,1.9,0.086,14,57,0.9969,3.37,0.46,10.3,bad
1355
+ 7.6,0.645,0.03,1.9,0.086,14,57,0.9969,3.37,0.46,10.3,bad
1356
+ 7.2,0.58,0.03,2.3,0.077,7,28,0.99568,3.35,0.52,10,bad
1357
+ 6.1,0.32,0.25,1.8,0.086,5,32,0.99464,3.36,0.44,10.1,bad
1358
+ 6.1,0.34,0.25,1.8,0.084,4,28,0.99464,3.36,0.44,10.1,bad
1359
+ 7.3,0.43,0.24,2.5,0.078,27,67,0.99648,3.6,0.59,11.1,good
1360
+ 7.4,0.64,0.17,5.4,0.168,52,98,0.99736,3.28,0.5,9.5,bad
1361
+ 11.6,0.475,0.4,1.4,0.091,6,28,0.99704,3.07,0.65,10.03333333,good
1362
+ 9.2,0.54,0.31,2.3,0.112,11,38,0.99699,3.24,0.56,10.9,bad
1363
+ 8.3,0.85,0.14,2.5,0.093,13,54,0.99724,3.36,0.54,10.1,bad
1364
+ 11.6,0.475,0.4,1.4,0.091,6,28,0.99704,3.07,0.65,10.03333333,good
1365
+ 8,0.83,0.27,2,0.08,11,63,0.99652,3.29,0.48,9.8,bad
1366
+ 7.2,0.605,0.02,1.9,0.096,10,31,0.995,3.46,0.53,11.8,good
1367
+ 7.8,0.5,0.09,2.2,0.115,10,42,0.9971,3.18,0.62,9.5,bad
1368
+ 7.3,0.74,0.08,1.7,0.094,10,45,0.99576,3.24,0.5,9.8,bad
1369
+ 6.9,0.54,0.3,2.2,0.088,9,105,0.99725,3.25,1.18,10.5,good
1370
+ 8,0.77,0.32,2.1,0.079,16,74,0.99656,3.27,0.5,9.8,good
1371
+ 6.6,0.61,0,1.6,0.069,4,8,0.99396,3.33,0.37,10.4,bad
1372
+ 8.7,0.78,0.51,1.7,0.415,12,66,0.99623,3,1.17,9.2,bad
1373
+ 7.5,0.58,0.56,3.1,0.153,5,14,0.99476,3.21,1.03,11.6,good
1374
+ 8.7,0.78,0.51,1.7,0.415,12,66,0.99623,3,1.17,9.2,bad
1375
+ 7.7,0.75,0.27,3.8,0.11,34,89,0.99664,3.24,0.45,9.3,bad
1376
+ 6.8,0.815,0,1.2,0.267,16,29,0.99471,3.32,0.51,9.8,bad
1377
+ 7.2,0.56,0.26,2,0.083,13,100,0.99586,3.26,0.52,9.9,bad
1378
+ 8.2,0.885,0.2,1.4,0.086,7,31,0.9946,3.11,0.46,10,bad
1379
+ 5.2,0.49,0.26,2.3,0.09,23,74,0.9953,3.71,0.62,12.2,good
1380
+ 7.2,0.45,0.15,2,0.078,10,28,0.99609,3.29,0.51,9.9,good
1381
+ 7.5,0.57,0.02,2.6,0.077,11,35,0.99557,3.36,0.62,10.8,good
1382
+ 7.5,0.57,0.02,2.6,0.077,11,35,0.99557,3.36,0.62,10.8,good
1383
+ 6.8,0.83,0.09,1.8,0.074,4,25,0.99534,3.38,0.45,9.6,bad
1384
+ 8,0.6,0.22,2.1,0.08,25,105,0.99613,3.3,0.49,9.9,bad
1385
+ 8,0.6,0.22,2.1,0.08,25,105,0.99613,3.3,0.49,9.9,bad
1386
+ 7.1,0.755,0.15,1.8,0.107,20,84,0.99593,3.19,0.5,9.5,bad
1387
+ 8,0.81,0.25,3.4,0.076,34,85,0.99668,3.19,0.42,9.2,bad
1388
+ 7.4,0.64,0.07,1.8,0.1,8,23,0.9961,3.3,0.58,9.6,bad
1389
+ 7.4,0.64,0.07,1.8,0.1,8,23,0.9961,3.3,0.58,9.6,bad
1390
+ 6.6,0.64,0.31,6.1,0.083,7,49,0.99718,3.35,0.68,10.3,bad
1391
+ 6.7,0.48,0.02,2.2,0.08,36,111,0.99524,3.1,0.53,9.7,bad
1392
+ 6,0.49,0,2.3,0.068,15,33,0.99292,3.58,0.59,12.5,good
1393
+ 8,0.64,0.22,2.4,0.094,5,33,0.99612,3.37,0.58,11,bad
1394
+ 7.1,0.62,0.06,1.3,0.07,5,12,0.9942,3.17,0.48,9.8,bad
1395
+ 8,0.52,0.25,2,0.078,19,59,0.99612,3.3,0.48,10.2,bad
1396
+ 6.4,0.57,0.14,3.9,0.07,27,73,0.99669,3.32,0.48,9.2,bad
1397
+ 8.6,0.685,0.1,1.6,0.092,3,12,0.99745,3.31,0.65,9.55,good
1398
+ 8.7,0.675,0.1,1.6,0.09,4,11,0.99745,3.31,0.65,9.55,bad
1399
+ 7.3,0.59,0.26,2,0.08,17,104,0.99584,3.28,0.52,9.9,bad
1400
+ 7,0.6,0.12,2.2,0.083,13,28,0.9966,3.52,0.62,10.2,good
1401
+ 7.2,0.67,0,2.2,0.068,10,24,0.9956,3.42,0.72,11.1,good
1402
+ 7.9,0.69,0.21,2.1,0.08,33,141,0.9962,3.25,0.51,9.9,bad
1403
+ 7.9,0.69,0.21,2.1,0.08,33,141,0.9962,3.25,0.51,9.9,bad
1404
+ 7.6,0.3,0.42,2,0.052,6,24,0.9963,3.44,0.82,11.9,good
1405
+ 7.2,0.33,0.33,1.7,0.061,3,13,0.996,3.23,1.1,10,good
1406
+ 8,0.5,0.39,2.6,0.082,12,46,0.9985,3.43,0.62,10.7,good
1407
+ 7.7,0.28,0.3,2,0.062,18,34,0.9952,3.28,0.9,11.3,good
1408
+ 8.2,0.24,0.34,5.1,0.062,8,22,0.9974,3.22,0.94,10.9,good
1409
+ 6,0.51,0,2.1,0.064,40,54,0.995,3.54,0.93,10.7,good
1410
+ 8.1,0.29,0.36,2.2,0.048,35,53,0.995,3.27,1.01,12.4,good
1411
+ 6,0.51,0,2.1,0.064,40,54,0.995,3.54,0.93,10.7,good
1412
+ 6.6,0.96,0,1.8,0.082,5,16,0.9936,3.5,0.44,11.9,good
1413
+ 6.4,0.47,0.4,2.4,0.071,8,19,0.9963,3.56,0.73,10.6,good
1414
+ 8.2,0.24,0.34,5.1,0.062,8,22,0.9974,3.22,0.94,10.9,good
1415
+ 9.9,0.57,0.25,2,0.104,12,89,0.9963,3.04,0.9,10.1,bad
1416
+ 10,0.32,0.59,2.2,0.077,3,15,0.9994,3.2,0.78,9.6,bad
1417
+ 6.2,0.58,0,1.6,0.065,8,18,0.9966,3.56,0.84,9.4,bad
1418
+ 10,0.32,0.59,2.2,0.077,3,15,0.9994,3.2,0.78,9.6,bad
1419
+ 7.3,0.34,0.33,2.5,0.064,21,37,0.9952,3.35,0.77,12.1,good
1420
+ 7.8,0.53,0.01,1.6,0.077,3,19,0.995,3.16,0.46,9.8,bad
1421
+ 7.7,0.64,0.21,2.2,0.077,32,133,0.9956,3.27,0.45,9.9,bad
1422
+ 7.8,0.53,0.01,1.6,0.077,3,19,0.995,3.16,0.46,9.8,bad
1423
+ 7.5,0.4,0.18,1.6,0.079,24,58,0.9965,3.34,0.58,9.4,bad
1424
+ 7,0.54,0,2.1,0.079,39,55,0.9956,3.39,0.84,11.4,good
1425
+ 6.4,0.53,0.09,3.9,0.123,14,31,0.9968,3.5,0.67,11,bad
1426
+ 8.3,0.26,0.37,1.4,0.076,8,23,0.9974,3.26,0.7,9.6,good
1427
+ 8.3,0.26,0.37,1.4,0.076,8,23,0.9974,3.26,0.7,9.6,good
1428
+ 7.7,0.23,0.37,1.8,0.046,23,60,0.9971,3.41,0.71,12.1,good
1429
+ 7.6,0.41,0.33,2.5,0.078,6,23,0.9957,3.3,0.58,11.2,bad
1430
+ 7.8,0.64,0,1.9,0.072,27,55,0.9962,3.31,0.63,11,bad
1431
+ 7.9,0.18,0.4,2.2,0.049,38,67,0.996,3.33,0.93,11.3,bad
1432
+ 7.4,0.41,0.24,1.8,0.066,18,47,0.9956,3.37,0.62,10.4,bad
1433
+ 7.6,0.43,0.31,2.1,0.069,13,74,0.9958,3.26,0.54,9.9,good
1434
+ 5.9,0.44,0,1.6,0.042,3,11,0.9944,3.48,0.85,11.7,good
1435
+ 6.1,0.4,0.16,1.8,0.069,11,25,0.9955,3.42,0.74,10.1,good
1436
+ 10.2,0.54,0.37,15.4,0.214,55,95,1.00369,3.18,0.77,9,good
1437
+ 10.2,0.54,0.37,15.4,0.214,55,95,1.00369,3.18,0.77,9,good
1438
+ 10,0.38,0.38,1.6,0.169,27,90,0.99914,3.15,0.65,8.5,bad
1439
+ 6.8,0.915,0.29,4.8,0.07,15,39,0.99577,3.53,0.54,11.1,bad
1440
+ 7,0.59,0,1.7,0.052,3,8,0.996,3.41,0.47,10.3,bad
1441
+ 7.3,0.67,0.02,2.2,0.072,31,92,0.99566,3.32,0.68,11.06666667,good
1442
+ 7.2,0.37,0.32,2,0.062,15,28,0.9947,3.23,0.73,11.3,good
1443
+ 7.4,0.785,0.19,5.2,0.094,19,98,0.99713,3.16,0.52,9.566666667,good
1444
+ 6.9,0.63,0.02,1.9,0.078,18,30,0.99712,3.4,0.75,9.8,bad
1445
+ 6.9,0.58,0.2,1.75,0.058,8,22,0.99322,3.38,0.49,11.7,bad
1446
+ 7.3,0.67,0.02,2.2,0.072,31,92,0.99566,3.32,0.68,11.1,good
1447
+ 7.4,0.785,0.19,5.2,0.094,19,98,0.99713,3.16,0.52,9.6,good
1448
+ 6.9,0.63,0.02,1.9,0.078,18,30,0.99712,3.4,0.75,9.8,bad
1449
+ 6.8,0.67,0,1.9,0.08,22,39,0.99701,3.4,0.74,9.7,bad
1450
+ 6.9,0.58,0.01,1.9,0.08,40,54,0.99683,3.4,0.73,9.7,bad
1451
+ 7.2,0.38,0.31,2,0.056,15,29,0.99472,3.23,0.76,11.3,good
1452
+ 7.2,0.37,0.32,2,0.062,15,28,0.9947,3.23,0.73,11.3,good
1453
+ 7.8,0.32,0.44,2.7,0.104,8,17,0.99732,3.33,0.78,11,good
1454
+ 6.6,0.58,0.02,2,0.062,37,53,0.99374,3.35,0.76,11.6,good
1455
+ 7.6,0.49,0.33,1.9,0.074,27,85,0.99706,3.41,0.58,9,bad
1456
+ 11.7,0.45,0.63,2.2,0.073,7,23,0.99974,3.21,0.69,10.9,good
1457
+ 6.5,0.9,0,1.6,0.052,9,17,0.99467,3.5,0.63,10.9,good
1458
+ 6,0.54,0.06,1.8,0.05,38,89,0.99236,3.3,0.5,10.55,good
1459
+ 7.6,0.49,0.33,1.9,0.074,27,85,0.99706,3.41,0.58,9,bad
1460
+ 8.4,0.29,0.4,1.7,0.067,8,20,0.99603,3.39,0.6,10.5,bad
1461
+ 7.9,0.2,0.35,1.7,0.054,7,15,0.99458,3.32,0.8,11.9,good
1462
+ 6.4,0.42,0.09,2.3,0.054,34,64,0.99724,3.41,0.68,10.4,good
1463
+ 6.2,0.785,0,2.1,0.06,6,13,0.99664,3.59,0.61,10,bad
1464
+ 6.8,0.64,0.03,2.3,0.075,14,31,0.99545,3.36,0.58,10.4,good
1465
+ 6.9,0.63,0.01,2.4,0.076,14,39,0.99522,3.34,0.53,10.8,good
1466
+ 6.8,0.59,0.1,1.7,0.063,34,53,0.9958,3.41,0.67,9.7,bad
1467
+ 6.8,0.59,0.1,1.7,0.063,34,53,0.9958,3.41,0.67,9.7,bad
1468
+ 7.3,0.48,0.32,2.1,0.062,31,54,0.99728,3.3,0.65,10,good
1469
+ 6.7,1.04,0.08,2.3,0.067,19,32,0.99648,3.52,0.57,11,bad
1470
+ 7.3,0.48,0.32,2.1,0.062,31,54,0.99728,3.3,0.65,10,good
1471
+ 7.3,0.98,0.05,2.1,0.061,20,49,0.99705,3.31,0.55,9.7,bad
1472
+ 10,0.69,0.11,1.4,0.084,8,24,0.99578,2.88,0.47,9.7,bad
1473
+ 6.7,0.7,0.08,3.75,0.067,8,16,0.99334,3.43,0.52,12.6,bad
1474
+ 7.6,0.35,0.6,2.6,0.073,23,44,0.99656,3.38,0.79,11.1,good
1475
+ 6.1,0.6,0.08,1.8,0.071,14,45,0.99336,3.38,0.54,11,bad
1476
+ 9.9,0.5,0.5,13.8,0.205,48,82,1.00242,3.16,0.75,8.8,bad
1477
+ 5.3,0.47,0.11,2.2,0.048,16,89,0.99182,3.54,0.88,13.56666667,good
1478
+ 9.9,0.5,0.5,13.8,0.205,48,82,1.00242,3.16,0.75,8.8,bad
1479
+ 5.3,0.47,0.11,2.2,0.048,16,89,0.99182,3.54,0.88,13.6,good
1480
+ 7.1,0.875,0.05,5.7,0.082,3,14,0.99808,3.4,0.52,10.2,bad
1481
+ 8.2,0.28,0.6,3,0.104,10,22,0.99828,3.39,0.68,10.6,bad
1482
+ 5.6,0.62,0.03,1.5,0.08,6,13,0.99498,3.66,0.62,10.1,bad
1483
+ 8.2,0.28,0.6,3,0.104,10,22,0.99828,3.39,0.68,10.6,bad
1484
+ 7.2,0.58,0.54,2.1,0.114,3,9,0.99719,3.33,0.57,10.3,bad
1485
+ 8.1,0.33,0.44,1.5,0.042,6,12,0.99542,3.35,0.61,10.7,bad
1486
+ 6.8,0.91,0.06,2,0.06,4,11,0.99592,3.53,0.64,10.9,bad
1487
+ 7,0.655,0.16,2.1,0.074,8,25,0.99606,3.37,0.55,9.7,bad
1488
+ 6.8,0.68,0.21,2.1,0.07,9,23,0.99546,3.38,0.6,10.3,bad
1489
+ 6,0.64,0.05,1.9,0.066,9,17,0.99496,3.52,0.78,10.6,bad
1490
+ 5.6,0.54,0.04,1.7,0.049,5,13,0.9942,3.72,0.58,11.4,bad
1491
+ 6.2,0.57,0.1,2.1,0.048,4,11,0.99448,3.44,0.76,10.8,good
1492
+ 7.1,0.22,0.49,1.8,0.039,8,18,0.99344,3.39,0.56,12.4,good
1493
+ 5.6,0.54,0.04,1.7,0.049,5,13,0.9942,3.72,0.58,11.4,bad
1494
+ 6.2,0.65,0.06,1.6,0.05,6,18,0.99348,3.57,0.54,11.95,bad
1495
+ 7.7,0.54,0.26,1.9,0.089,23,147,0.99636,3.26,0.59,9.7,bad
1496
+ 6.4,0.31,0.09,1.4,0.066,15,28,0.99459,3.42,0.7,10,good
1497
+ 7,0.43,0.02,1.9,0.08,15,28,0.99492,3.35,0.81,10.6,good
1498
+ 7.7,0.54,0.26,1.9,0.089,23,147,0.99636,3.26,0.59,9.7,bad
1499
+ 6.9,0.74,0.03,2.3,0.054,7,16,0.99508,3.45,0.63,11.5,good
1500
+ 6.6,0.895,0.04,2.3,0.068,7,13,0.99582,3.53,0.58,10.8,good
1501
+ 6.9,0.74,0.03,2.3,0.054,7,16,0.99508,3.45,0.63,11.5,good
1502
+ 7.5,0.725,0.04,1.5,0.076,8,15,0.99508,3.26,0.53,9.6,bad
1503
+ 7.8,0.82,0.29,4.3,0.083,21,64,0.99642,3.16,0.53,9.4,bad
1504
+ 7.3,0.585,0.18,2.4,0.078,15,60,0.99638,3.31,0.54,9.8,bad
1505
+ 6.2,0.44,0.39,2.5,0.077,6,14,0.99555,3.51,0.69,11,good
1506
+ 7.5,0.38,0.57,2.3,0.106,5,12,0.99605,3.36,0.55,11.4,good
1507
+ 6.7,0.76,0.02,1.8,0.078,6,12,0.996,3.55,0.63,9.95,bad
1508
+ 6.8,0.81,0.05,2,0.07,6,14,0.99562,3.51,0.66,10.8,good
1509
+ 7.5,0.38,0.57,2.3,0.106,5,12,0.99605,3.36,0.55,11.4,good
1510
+ 7.1,0.27,0.6,2.1,0.074,17,25,0.99814,3.38,0.72,10.6,good
1511
+ 7.9,0.18,0.4,1.8,0.062,7,20,0.9941,3.28,0.7,11.1,bad
1512
+ 6.4,0.36,0.21,2.2,0.047,26,48,0.99661,3.47,0.77,9.7,good
1513
+ 7.1,0.69,0.04,2.1,0.068,19,27,0.99712,3.44,0.67,9.8,bad
1514
+ 6.4,0.79,0.04,2.2,0.061,11,17,0.99588,3.53,0.65,10.4,good
1515
+ 6.4,0.56,0.15,1.8,0.078,17,65,0.99294,3.33,0.6,10.5,good
1516
+ 6.9,0.84,0.21,4.1,0.074,16,65,0.99842,3.53,0.72,9.233333333,good
1517
+ 6.9,0.84,0.21,4.1,0.074,16,65,0.99842,3.53,0.72,9.25,good
1518
+ 6.1,0.32,0.25,2.3,0.071,23,58,0.99633,3.42,0.97,10.6,bad
1519
+ 6.5,0.53,0.06,2,0.063,29,44,0.99489,3.38,0.83,10.3,good
1520
+ 7.4,0.47,0.46,2.2,0.114,7,20,0.99647,3.32,0.63,10.5,bad
1521
+ 6.6,0.7,0.08,2.6,0.106,14,27,0.99665,3.44,0.58,10.2,bad
1522
+ 6.5,0.53,0.06,2,0.063,29,44,0.99489,3.38,0.83,10.3,good
1523
+ 6.9,0.48,0.2,1.9,0.082,9,23,0.99585,3.39,0.43,9.05,bad
1524
+ 6.1,0.32,0.25,2.3,0.071,23,58,0.99633,3.42,0.97,10.6,bad
1525
+ 6.8,0.48,0.25,2,0.076,29,61,0.9953,3.34,0.6,10.4,bad
1526
+ 6,0.42,0.19,2,0.075,22,47,0.99522,3.39,0.78,10,good
1527
+ 6.7,0.48,0.08,2.1,0.064,18,34,0.99552,3.33,0.64,9.7,bad
1528
+ 6.8,0.47,0.08,2.2,0.064,18,38,0.99553,3.3,0.65,9.6,good
1529
+ 7.1,0.53,0.07,1.7,0.071,15,24,0.9951,3.29,0.66,10.8,good
1530
+ 7.9,0.29,0.49,2.2,0.096,21,59,0.99714,3.31,0.67,10.1,good
1531
+ 7.1,0.69,0.08,2.1,0.063,42,52,0.99608,3.42,0.6,10.2,good
1532
+ 6.6,0.44,0.09,2.2,0.063,9,18,0.99444,3.42,0.69,11.3,good
1533
+ 6.1,0.705,0.1,2.8,0.081,13,28,0.99631,3.6,0.66,10.2,bad
1534
+ 7.2,0.53,0.13,2,0.058,18,22,0.99573,3.21,0.68,9.9,good
1535
+ 8,0.39,0.3,1.9,0.074,32,84,0.99717,3.39,0.61,9,bad
1536
+ 6.6,0.56,0.14,2.4,0.064,13,29,0.99397,3.42,0.62,11.7,good
1537
+ 7,0.55,0.13,2.2,0.075,15,35,0.9959,3.36,0.59,9.7,good
1538
+ 6.1,0.53,0.08,1.9,0.077,24,45,0.99528,3.6,0.68,10.3,good
1539
+ 5.4,0.58,0.08,1.9,0.059,20,31,0.99484,3.5,0.64,10.2,good
1540
+ 6.2,0.64,0.09,2.5,0.081,15,26,0.99538,3.57,0.63,12,bad
1541
+ 7.2,0.39,0.32,1.8,0.065,34,60,0.99714,3.46,0.78,9.9,bad
1542
+ 6.2,0.52,0.08,4.4,0.071,11,32,0.99646,3.56,0.63,11.6,good
1543
+ 7.4,0.25,0.29,2.2,0.054,19,49,0.99666,3.4,0.76,10.9,good
1544
+ 6.7,0.855,0.02,1.9,0.064,29,38,0.99472,3.3,0.56,10.75,good
1545
+ 11.1,0.44,0.42,2.2,0.064,14,19,0.99758,3.25,0.57,10.4,good
1546
+ 8.4,0.37,0.43,2.3,0.063,12,19,0.9955,3.17,0.81,11.2,good
1547
+ 6.5,0.63,0.33,1.8,0.059,16,28,0.99531,3.36,0.64,10.1,good
1548
+ 7,0.57,0.02,2,0.072,17,26,0.99575,3.36,0.61,10.2,bad
1549
+ 6.3,0.6,0.1,1.6,0.048,12,26,0.99306,3.55,0.51,12.1,bad
1550
+ 11.2,0.4,0.5,2,0.099,19,50,0.99783,3.1,0.58,10.4,bad
1551
+ 7.4,0.36,0.3,1.8,0.074,17,24,0.99419,3.24,0.7,11.4,good
1552
+ 7.1,0.68,0,2.3,0.087,17,26,0.99783,3.45,0.53,9.5,bad
1553
+ 7.1,0.67,0,2.3,0.083,18,27,0.99768,3.44,0.54,9.4,bad
1554
+ 6.3,0.68,0.01,3.7,0.103,32,54,0.99586,3.51,0.66,11.3,good
1555
+ 7.3,0.735,0,2.2,0.08,18,28,0.99765,3.41,0.6,9.4,bad
1556
+ 6.6,0.855,0.02,2.4,0.062,15,23,0.99627,3.54,0.6,11,good
1557
+ 7,0.56,0.17,1.7,0.065,15,24,0.99514,3.44,0.68,10.55,good
1558
+ 6.6,0.88,0.04,2.2,0.066,12,20,0.99636,3.53,0.56,9.9,bad
1559
+ 6.6,0.855,0.02,2.4,0.062,15,23,0.99627,3.54,0.6,11,good
1560
+ 6.9,0.63,0.33,6.7,0.235,66,115,0.99787,3.22,0.56,9.5,bad
1561
+ 7.8,0.6,0.26,2,0.08,31,131,0.99622,3.21,0.52,9.9,bad
1562
+ 7.8,0.6,0.26,2,0.08,31,131,0.99622,3.21,0.52,9.9,bad
1563
+ 7.8,0.6,0.26,2,0.08,31,131,0.99622,3.21,0.52,9.9,bad
1564
+ 7.2,0.695,0.13,2,0.076,12,20,0.99546,3.29,0.54,10.1,bad
1565
+ 7.2,0.695,0.13,2,0.076,12,20,0.99546,3.29,0.54,10.1,bad
1566
+ 7.2,0.695,0.13,2,0.076,12,20,0.99546,3.29,0.54,10.1,bad
1567
+ 6.7,0.67,0.02,1.9,0.061,26,42,0.99489,3.39,0.82,10.9,good
1568
+ 6.7,0.16,0.64,2.1,0.059,24,52,0.99494,3.34,0.71,11.2,good
1569
+ 7.2,0.695,0.13,2,0.076,12,20,0.99546,3.29,0.54,10.1,bad
1570
+ 7,0.56,0.13,1.6,0.077,25,42,0.99629,3.34,0.59,9.2,bad
1571
+ 6.2,0.51,0.14,1.9,0.056,15,34,0.99396,3.48,0.57,11.5,good
1572
+ 6.4,0.36,0.53,2.2,0.23,19,35,0.9934,3.37,0.93,12.4,good
1573
+ 6.4,0.38,0.14,2.2,0.038,15,25,0.99514,3.44,0.65,11.1,good
1574
+ 7.3,0.69,0.32,2.2,0.069,35,104,0.99632,3.33,0.51,9.5,bad
1575
+ 6,0.58,0.2,2.4,0.075,15,50,0.99467,3.58,0.67,12.5,good
1576
+ 5.6,0.31,0.78,13.9,0.074,23,92,0.99677,3.39,0.48,10.5,good
1577
+ 7.5,0.52,0.4,2.2,0.06,12,20,0.99474,3.26,0.64,11.8,good
1578
+ 8,0.3,0.63,1.6,0.081,16,29,0.99588,3.3,0.78,10.8,good
1579
+ 6.2,0.7,0.15,5.1,0.076,13,27,0.99622,3.54,0.6,11.9,good
1580
+ 6.8,0.67,0.15,1.8,0.118,13,20,0.9954,3.42,0.67,11.3,good
1581
+ 6.2,0.56,0.09,1.7,0.053,24,32,0.99402,3.54,0.6,11.3,bad
1582
+ 7.4,0.35,0.33,2.4,0.068,9,26,0.9947,3.36,0.6,11.9,good
1583
+ 6.2,0.56,0.09,1.7,0.053,24,32,0.99402,3.54,0.6,11.3,bad
1584
+ 6.1,0.715,0.1,2.6,0.053,13,27,0.99362,3.57,0.5,11.9,bad
1585
+ 6.2,0.46,0.29,2.1,0.074,32,98,0.99578,3.33,0.62,9.8,bad
1586
+ 6.7,0.32,0.44,2.4,0.061,24,34,0.99484,3.29,0.8,11.6,good
1587
+ 7.2,0.39,0.44,2.6,0.066,22,48,0.99494,3.3,0.84,11.5,good
1588
+ 7.5,0.31,0.41,2.4,0.065,34,60,0.99492,3.34,0.85,11.4,good
1589
+ 5.8,0.61,0.11,1.8,0.066,18,28,0.99483,3.55,0.66,10.9,good
1590
+ 7.2,0.66,0.33,2.5,0.068,34,102,0.99414,3.27,0.78,12.8,good
1591
+ 6.6,0.725,0.2,7.8,0.073,29,79,0.9977,3.29,0.54,9.2,bad
1592
+ 6.3,0.55,0.15,1.8,0.077,26,35,0.99314,3.32,0.82,11.6,good
1593
+ 5.4,0.74,0.09,1.7,0.089,16,26,0.99402,3.67,0.56,11.6,good
1594
+ 6.3,0.51,0.13,2.3,0.076,29,40,0.99574,3.42,0.75,11,good
1595
+ 6.8,0.62,0.08,1.9,0.068,28,38,0.99651,3.42,0.82,9.5,good
1596
+ 6.2,0.6,0.08,2,0.09,32,44,0.9949,3.45,0.58,10.5,bad
1597
+ 5.9,0.55,0.1,2.2,0.062,39,51,0.99512,3.52,0.76,11.2,good
1598
+ 6.3,0.51,0.13,2.3,0.076,29,40,0.99574,3.42,0.75,11,good
1599
+ 5.9,0.645,0.12,2,0.075,32,44,0.99547,3.57,0.71,10.2,bad
1600
+ 6,0.31,0.47,3.6,0.067,18,42,0.99549,3.39,0.66,11,good