teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1303) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1935 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2040 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +798 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1683 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +1011 -0
  31. teradataml/automl/data_transformation.py +789 -0
  32. teradataml/automl/feature_engineering.py +1580 -0
  33. teradataml/automl/feature_exploration.py +554 -0
  34. teradataml/automl/model_evaluation.py +151 -0
  35. teradataml/automl/model_training.py +1026 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/auth_client.py +133 -0
  41. teradataml/clients/pkce_client.py +481 -481
  42. teradataml/common/aed_utils.py +7 -2
  43. teradataml/common/bulk_exposed_utils.py +111 -111
  44. teradataml/common/constants.py +1438 -1441
  45. teradataml/common/deprecations.py +160 -0
  46. teradataml/common/exceptions.py +73 -73
  47. teradataml/common/formula.py +742 -742
  48. teradataml/common/garbagecollector.py +597 -635
  49. teradataml/common/messagecodes.py +424 -431
  50. teradataml/common/messages.py +228 -231
  51. teradataml/common/sqlbundle.py +693 -693
  52. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  53. teradataml/common/utils.py +2424 -2500
  54. teradataml/common/warnings.py +25 -25
  55. teradataml/common/wrapper_utils.py +1 -110
  56. teradataml/config/dummy_file1.cfg +4 -4
  57. teradataml/config/dummy_file2.cfg +2 -2
  58. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  59. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  60. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  61. teradataml/context/aed_context.py +217 -217
  62. teradataml/context/context.py +1091 -999
  63. teradataml/data/A_loan.csv +19 -19
  64. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  65. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  66. teradataml/data/B_loan.csv +49 -49
  67. teradataml/data/BuoyData2.csv +17 -17
  68. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  69. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  70. teradataml/data/Convolve2RealsLeft.csv +5 -5
  71. teradataml/data/Convolve2RealsRight.csv +5 -5
  72. teradataml/data/Convolve2ValidLeft.csv +11 -11
  73. teradataml/data/Convolve2ValidRight.csv +11 -11
  74. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  75. teradataml/data/Orders1_12mf.csv +24 -24
  76. teradataml/data/Pi_loan.csv +7 -7
  77. teradataml/data/SMOOTHED_DATA.csv +7 -7
  78. teradataml/data/TestDFFT8.csv +9 -9
  79. teradataml/data/TestRiver.csv +109 -109
  80. teradataml/data/Traindata.csv +28 -28
  81. teradataml/data/acf.csv +17 -17
  82. teradataml/data/adaboost_example.json +34 -34
  83. teradataml/data/adaboostpredict_example.json +24 -24
  84. teradataml/data/additional_table.csv +10 -10
  85. teradataml/data/admissions_test.csv +21 -21
  86. teradataml/data/admissions_train.csv +41 -41
  87. teradataml/data/admissions_train_nulls.csv +41 -41
  88. teradataml/data/advertising.csv +201 -0
  89. teradataml/data/ageandheight.csv +13 -13
  90. teradataml/data/ageandpressure.csv +31 -31
  91. teradataml/data/antiselect_example.json +36 -36
  92. teradataml/data/antiselect_input.csv +8 -8
  93. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  94. teradataml/data/applicant_external.csv +6 -6
  95. teradataml/data/applicant_reference.csv +6 -6
  96. teradataml/data/arima_example.json +9 -9
  97. teradataml/data/assortedtext_input.csv +8 -8
  98. teradataml/data/attribution_example.json +33 -33
  99. teradataml/data/attribution_sample_table.csv +27 -27
  100. teradataml/data/attribution_sample_table1.csv +6 -6
  101. teradataml/data/attribution_sample_table2.csv +11 -11
  102. teradataml/data/bank_churn.csv +10001 -0
  103. teradataml/data/bank_marketing.csv +11163 -0
  104. teradataml/data/bank_web_clicks1.csv +42 -42
  105. teradataml/data/bank_web_clicks2.csv +91 -91
  106. teradataml/data/bank_web_url.csv +85 -85
  107. teradataml/data/barrier.csv +2 -2
  108. teradataml/data/barrier_new.csv +3 -3
  109. teradataml/data/betweenness_example.json +13 -13
  110. teradataml/data/bike_sharing.csv +732 -0
  111. teradataml/data/bin_breaks.csv +8 -8
  112. teradataml/data/bin_fit_ip.csv +3 -3
  113. teradataml/data/binary_complex_left.csv +11 -11
  114. teradataml/data/binary_complex_right.csv +11 -11
  115. teradataml/data/binary_matrix_complex_left.csv +21 -21
  116. teradataml/data/binary_matrix_complex_right.csv +21 -21
  117. teradataml/data/binary_matrix_real_left.csv +21 -21
  118. teradataml/data/binary_matrix_real_right.csv +21 -21
  119. teradataml/data/blood2ageandweight.csv +26 -26
  120. teradataml/data/bmi.csv +501 -0
  121. teradataml/data/boston.csv +507 -507
  122. teradataml/data/boston2cols.csv +721 -0
  123. teradataml/data/breast_cancer.csv +570 -0
  124. teradataml/data/buoydata_mix.csv +11 -11
  125. teradataml/data/burst_data.csv +5 -5
  126. teradataml/data/burst_example.json +20 -20
  127. teradataml/data/byom_example.json +17 -17
  128. teradataml/data/bytes_table.csv +3 -3
  129. teradataml/data/cal_housing_ex_raw.csv +70 -70
  130. teradataml/data/callers.csv +7 -7
  131. teradataml/data/calls.csv +10 -10
  132. teradataml/data/cars_hist.csv +33 -33
  133. teradataml/data/cat_table.csv +24 -24
  134. teradataml/data/ccm_example.json +31 -31
  135. teradataml/data/ccm_input.csv +91 -91
  136. teradataml/data/ccm_input2.csv +13 -13
  137. teradataml/data/ccmexample.csv +101 -101
  138. teradataml/data/ccmprepare_example.json +8 -8
  139. teradataml/data/ccmprepare_input.csv +91 -91
  140. teradataml/data/cfilter_example.json +12 -12
  141. teradataml/data/changepointdetection_example.json +18 -18
  142. teradataml/data/changepointdetectionrt_example.json +8 -8
  143. teradataml/data/chi_sq.csv +2 -2
  144. teradataml/data/churn_data.csv +14 -14
  145. teradataml/data/churn_emission.csv +35 -35
  146. teradataml/data/churn_initial.csv +3 -3
  147. teradataml/data/churn_state_transition.csv +5 -5
  148. teradataml/data/citedges_2.csv +745 -745
  149. teradataml/data/citvertices_2.csv +1210 -1210
  150. teradataml/data/clicks2.csv +16 -16
  151. teradataml/data/clickstream.csv +12 -12
  152. teradataml/data/clickstream1.csv +11 -11
  153. teradataml/data/closeness_example.json +15 -15
  154. teradataml/data/complaints.csv +21 -21
  155. teradataml/data/complaints_mini.csv +3 -3
  156. teradataml/data/complaints_testtoken.csv +224 -224
  157. teradataml/data/complaints_tokens_test.csv +353 -353
  158. teradataml/data/complaints_traintoken.csv +472 -472
  159. teradataml/data/computers_category.csv +1001 -1001
  160. teradataml/data/computers_test1.csv +1252 -1252
  161. teradataml/data/computers_train1.csv +5009 -5009
  162. teradataml/data/computers_train1_clustered.csv +5009 -5009
  163. teradataml/data/confusionmatrix_example.json +9 -9
  164. teradataml/data/conversion_event_table.csv +3 -3
  165. teradataml/data/corr_input.csv +17 -17
  166. teradataml/data/correlation_example.json +11 -11
  167. teradataml/data/coxhazardratio_example.json +39 -39
  168. teradataml/data/coxph_example.json +15 -15
  169. teradataml/data/coxsurvival_example.json +28 -28
  170. teradataml/data/cpt.csv +41 -41
  171. teradataml/data/credit_ex_merged.csv +45 -45
  172. teradataml/data/customer_loyalty.csv +301 -301
  173. teradataml/data/customer_loyalty_newseq.csv +31 -31
  174. teradataml/data/customer_segmentation_test.csv +2628 -0
  175. teradataml/data/customer_segmentation_train.csv +8069 -0
  176. teradataml/data/dataframe_example.json +146 -146
  177. teradataml/data/decisionforest_example.json +37 -37
  178. teradataml/data/decisionforestpredict_example.json +38 -38
  179. teradataml/data/decisiontree_example.json +21 -21
  180. teradataml/data/decisiontreepredict_example.json +45 -45
  181. teradataml/data/dfft2_size4_real.csv +17 -17
  182. teradataml/data/dfft2_test_matrix16.csv +17 -17
  183. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  184. teradataml/data/diabetes.csv +443 -443
  185. teradataml/data/diabetes_test.csv +89 -89
  186. teradataml/data/dict_table.csv +5 -5
  187. teradataml/data/docperterm_table.csv +4 -4
  188. teradataml/data/docs/__init__.py +1 -1
  189. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  190. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  191. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  192. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  193. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  194. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  195. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  196. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  197. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  198. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  199. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  200. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  201. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  202. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  203. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  204. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  205. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  206. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  207. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  208. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  209. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  210. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  211. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  212. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  213. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  214. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  215. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  216. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  217. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
  218. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
  219. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  220. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
  221. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  222. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  223. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  224. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  225. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  226. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  227. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  228. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  229. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  230. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  231. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  232. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  233. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  234. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  235. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  236. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  237. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  238. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  239. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  240. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  241. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  242. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
  243. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  244. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  245. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  246. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  247. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  248. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  249. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  250. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  251. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
  252. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  253. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  254. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  255. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  256. teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
  257. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  258. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  259. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
  260. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  261. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  262. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  263. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
  264. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  265. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  266. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  267. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
  268. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  269. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  270. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  271. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  272. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  273. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  274. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  275. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  276. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
  277. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  278. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  279. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  280. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  281. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
  282. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
  283. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  284. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  285. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  286. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  287. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  288. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  289. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  290. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  291. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
  292. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  293. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  294. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  295. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  296. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  297. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  298. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  299. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  300. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
  301. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  302. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
  303. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
  304. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  305. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  306. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  307. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  308. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  309. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  310. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  311. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  312. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
  313. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  314. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  315. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  316. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  317. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  318. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  319. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  320. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  321. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  322. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  323. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  324. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
  325. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
  326. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
  327. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  328. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  329. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  330. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  331. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  332. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  333. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  334. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  335. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  336. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  337. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  338. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  339. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  340. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  341. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  342. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  343. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  344. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  345. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  346. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  347. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  348. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  349. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  350. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  351. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  352. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  353. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  354. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  355. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  356. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  357. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  358. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  359. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  360. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  361. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  362. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  363. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  364. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  365. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  366. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  367. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  368. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  369. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  370. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  371. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  372. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  373. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  374. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  375. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  376. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  377. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  378. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  379. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  380. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  381. teradataml/data/dtw_example.json +17 -17
  382. teradataml/data/dtw_t1.csv +11 -11
  383. teradataml/data/dtw_t2.csv +4 -4
  384. teradataml/data/dwt2d_example.json +15 -15
  385. teradataml/data/dwt_example.json +14 -14
  386. teradataml/data/dwt_filter_dim.csv +5 -5
  387. teradataml/data/emission.csv +9 -9
  388. teradataml/data/emp_table_by_dept.csv +19 -19
  389. teradataml/data/employee_info.csv +4 -4
  390. teradataml/data/employee_table.csv +6 -6
  391. teradataml/data/excluding_event_table.csv +2 -2
  392. teradataml/data/finance_data.csv +6 -6
  393. teradataml/data/finance_data2.csv +61 -61
  394. teradataml/data/finance_data3.csv +93 -93
  395. teradataml/data/fish.csv +160 -0
  396. teradataml/data/fm_blood2ageandweight.csv +26 -26
  397. teradataml/data/fmeasure_example.json +11 -11
  398. teradataml/data/followers_leaders.csv +10 -10
  399. teradataml/data/fpgrowth_example.json +12 -12
  400. teradataml/data/frequentpaths_example.json +29 -29
  401. teradataml/data/friends.csv +9 -9
  402. teradataml/data/fs_input.csv +33 -33
  403. teradataml/data/fs_input1.csv +33 -33
  404. teradataml/data/genData.csv +513 -513
  405. teradataml/data/geodataframe_example.json +39 -39
  406. teradataml/data/glass_types.csv +215 -0
  407. teradataml/data/glm_admissions_model.csv +12 -12
  408. teradataml/data/glm_example.json +56 -29
  409. teradataml/data/glml1l2_example.json +28 -28
  410. teradataml/data/glml1l2predict_example.json +54 -54
  411. teradataml/data/glmpredict_example.json +54 -54
  412. teradataml/data/gq_t1.csv +21 -21
  413. teradataml/data/hconvolve_complex_right.csv +5 -5
  414. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  415. teradataml/data/histogram_example.json +11 -11
  416. teradataml/data/hmmdecoder_example.json +78 -78
  417. teradataml/data/hmmevaluator_example.json +24 -24
  418. teradataml/data/hmmsupervised_example.json +10 -10
  419. teradataml/data/hmmunsupervised_example.json +7 -7
  420. teradataml/data/house_values.csv +12 -12
  421. teradataml/data/house_values2.csv +13 -13
  422. teradataml/data/housing_cat.csv +7 -7
  423. teradataml/data/housing_data.csv +9 -9
  424. teradataml/data/housing_test.csv +47 -47
  425. teradataml/data/housing_test_binary.csv +47 -47
  426. teradataml/data/housing_train.csv +493 -493
  427. teradataml/data/housing_train_attribute.csv +4 -4
  428. teradataml/data/housing_train_binary.csv +437 -437
  429. teradataml/data/housing_train_parameter.csv +2 -2
  430. teradataml/data/housing_train_response.csv +493 -493
  431. teradataml/data/housing_train_segment.csv +201 -0
  432. teradataml/data/ibm_stock.csv +370 -370
  433. teradataml/data/ibm_stock1.csv +370 -370
  434. teradataml/data/identitymatch_example.json +21 -21
  435. teradataml/data/idf_table.csv +4 -4
  436. teradataml/data/impressions.csv +101 -101
  437. teradataml/data/inflation.csv +21 -21
  438. teradataml/data/initial.csv +3 -3
  439. teradataml/data/insect2Cols.csv +61 -0
  440. teradataml/data/insect_sprays.csv +12 -12
  441. teradataml/data/insurance.csv +1339 -1339
  442. teradataml/data/interpolator_example.json +12 -12
  443. teradataml/data/iris_altinput.csv +481 -481
  444. teradataml/data/iris_attribute_output.csv +8 -8
  445. teradataml/data/iris_attribute_test.csv +121 -121
  446. teradataml/data/iris_attribute_train.csv +481 -481
  447. teradataml/data/iris_category_expect_predict.csv +31 -31
  448. teradataml/data/iris_data.csv +151 -0
  449. teradataml/data/iris_input.csv +151 -151
  450. teradataml/data/iris_response_train.csv +121 -121
  451. teradataml/data/iris_test.csv +31 -31
  452. teradataml/data/iris_train.csv +121 -121
  453. teradataml/data/join_table1.csv +4 -4
  454. teradataml/data/join_table2.csv +4 -4
  455. teradataml/data/jsons/anly_function_name.json +6 -6
  456. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  457. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  458. teradataml/data/jsons/byom/h2opredict.json +194 -194
  459. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  460. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  461. teradataml/data/jsons/paired_functions.json +435 -435
  462. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  463. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  464. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  465. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  466. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  467. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  468. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  469. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  470. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  471. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  472. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  473. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  474. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  475. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  476. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  477. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  478. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  479. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  480. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  481. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  482. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  483. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  484. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  485. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  486. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  487. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  488. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  489. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  490. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  491. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  492. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  493. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  494. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  495. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  496. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  497. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  498. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  499. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  500. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  501. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  502. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  503. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  504. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  505. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  506. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  507. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  508. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  509. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  510. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  511. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  512. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  513. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  514. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  515. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  516. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  517. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  518. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  519. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  520. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  521. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  522. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  523. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  524. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  525. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  526. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  527. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  528. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  529. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  531. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  532. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  533. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  534. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  535. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  536. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  537. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  539. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  540. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  541. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  542. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  543. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  544. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  545. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  546. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  547. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  548. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  549. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  550. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  551. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  552. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  553. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  554. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  555. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  556. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  557. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  558. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  559. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  560. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  561. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  562. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  563. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  564. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  565. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  566. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  567. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  568. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
  569. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  570. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  571. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  572. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  573. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  574. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  575. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  576. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  577. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  578. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  579. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
  580. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  581. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  582. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  583. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
  584. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
  585. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  586. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  587. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
  588. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  589. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  590. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  591. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
  592. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  593. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  594. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  595. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
  596. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  597. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  598. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  599. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  600. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  601. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  602. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  603. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  604. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  605. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  606. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  607. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  608. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  609. teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
  610. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  611. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  612. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  613. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  614. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  615. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  616. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  617. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  618. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
  619. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
  620. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
  621. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  622. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  623. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  624. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  625. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  626. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  627. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  628. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  629. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  630. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  631. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  632. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  633. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  634. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  635. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
  636. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
  637. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
  638. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  639. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  640. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  641. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  642. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  643. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  644. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  645. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  646. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  647. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  648. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  649. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  650. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  651. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  653. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  654. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  655. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  656. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  657. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  658. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  659. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  660. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  661. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  662. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  663. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  664. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  665. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  666. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  667. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  668. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  669. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  670. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  671. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  672. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  673. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  674. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  675. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  676. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  677. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  678. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  679. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  680. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  681. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  682. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  683. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  684. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  685. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  686. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  687. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  688. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  689. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  690. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  691. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  692. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  693. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  694. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  695. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  696. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  697. teradataml/data/kmeans_example.json +22 -17
  698. teradataml/data/kmeans_table.csv +10 -0
  699. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  700. teradataml/data/knn_example.json +18 -18
  701. teradataml/data/knnrecommender_example.json +6 -6
  702. teradataml/data/knnrecommenderpredict_example.json +12 -12
  703. teradataml/data/lar_example.json +17 -17
  704. teradataml/data/larpredict_example.json +30 -30
  705. teradataml/data/lc_new_predictors.csv +5 -5
  706. teradataml/data/lc_new_reference.csv +9 -9
  707. teradataml/data/lda_example.json +8 -8
  708. teradataml/data/ldainference_example.json +14 -14
  709. teradataml/data/ldatopicsummary_example.json +8 -8
  710. teradataml/data/levendist_input.csv +13 -13
  711. teradataml/data/levenshteindistance_example.json +10 -10
  712. teradataml/data/linreg_example.json +9 -9
  713. teradataml/data/load_example_data.py +326 -323
  714. teradataml/data/loan_prediction.csv +295 -295
  715. teradataml/data/lungcancer.csv +138 -138
  716. teradataml/data/mappingdata.csv +12 -12
  717. teradataml/data/milk_timeseries.csv +157 -157
  718. teradataml/data/min_max_titanic.csv +4 -4
  719. teradataml/data/minhash_example.json +6 -6
  720. teradataml/data/ml_ratings.csv +7547 -7547
  721. teradataml/data/ml_ratings_10.csv +2445 -2445
  722. teradataml/data/model1_table.csv +5 -5
  723. teradataml/data/model2_table.csv +5 -5
  724. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  725. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  726. teradataml/data/modularity_example.json +12 -12
  727. teradataml/data/movavg_example.json +7 -7
  728. teradataml/data/mtx1.csv +7 -7
  729. teradataml/data/mtx2.csv +13 -13
  730. teradataml/data/multi_model_classification.csv +401 -0
  731. teradataml/data/multi_model_regression.csv +401 -0
  732. teradataml/data/mvdfft8.csv +9 -9
  733. teradataml/data/naivebayes_example.json +9 -9
  734. teradataml/data/naivebayespredict_example.json +19 -19
  735. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  736. teradataml/data/naivebayestextclassifier_example.json +8 -8
  737. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  738. teradataml/data/name_Find_configure.csv +10 -10
  739. teradataml/data/namedentityfinder_example.json +14 -14
  740. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  741. teradataml/data/namedentityfindertrainer_example.json +6 -6
  742. teradataml/data/nb_iris_input_test.csv +31 -31
  743. teradataml/data/nb_iris_input_train.csv +121 -121
  744. teradataml/data/nbp_iris_model.csv +13 -13
  745. teradataml/data/ner_extractor_text.csv +2 -2
  746. teradataml/data/ner_sports_test2.csv +29 -29
  747. teradataml/data/ner_sports_train.csv +501 -501
  748. teradataml/data/nerevaluator_example.json +5 -5
  749. teradataml/data/nerextractor_example.json +18 -18
  750. teradataml/data/nermem_sports_test.csv +17 -17
  751. teradataml/data/nermem_sports_train.csv +50 -50
  752. teradataml/data/nertrainer_example.json +6 -6
  753. teradataml/data/ngrams_example.json +6 -6
  754. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  755. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  756. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  757. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  758. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  759. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  760. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  761. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  762. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  763. teradataml/data/npath_example.json +23 -23
  764. teradataml/data/ntree_example.json +14 -14
  765. teradataml/data/numeric_strings.csv +4 -4
  766. teradataml/data/numerics.csv +4 -4
  767. teradataml/data/ocean_buoy.csv +17 -17
  768. teradataml/data/ocean_buoy2.csv +17 -17
  769. teradataml/data/ocean_buoys.csv +27 -27
  770. teradataml/data/ocean_buoys2.csv +10 -10
  771. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  772. teradataml/data/ocean_buoys_seq.csv +29 -29
  773. teradataml/data/onehot_encoder_train.csv +4 -0
  774. teradataml/data/openml_example.json +92 -0
  775. teradataml/data/optional_event_table.csv +4 -4
  776. teradataml/data/orders1.csv +11 -11
  777. teradataml/data/orders1_12.csv +12 -12
  778. teradataml/data/orders_ex.csv +4 -4
  779. teradataml/data/pack_example.json +8 -8
  780. teradataml/data/package_tracking.csv +19 -19
  781. teradataml/data/package_tracking_pti.csv +18 -18
  782. teradataml/data/pagerank_example.json +13 -13
  783. teradataml/data/paragraphs_input.csv +6 -6
  784. teradataml/data/pathanalyzer_example.json +7 -7
  785. teradataml/data/pathgenerator_example.json +7 -7
  786. teradataml/data/phrases.csv +7 -7
  787. teradataml/data/pivot_example.json +8 -8
  788. teradataml/data/pivot_input.csv +22 -22
  789. teradataml/data/playerRating.csv +31 -31
  790. teradataml/data/postagger_example.json +6 -6
  791. teradataml/data/posttagger_output.csv +44 -44
  792. teradataml/data/production_data.csv +16 -16
  793. teradataml/data/production_data2.csv +7 -7
  794. teradataml/data/randomsample_example.json +31 -31
  795. teradataml/data/randomwalksample_example.json +8 -8
  796. teradataml/data/rank_table.csv +6 -6
  797. teradataml/data/ref_mobile_data.csv +4 -4
  798. teradataml/data/ref_mobile_data_dense.csv +2 -2
  799. teradataml/data/ref_url.csv +17 -17
  800. teradataml/data/restaurant_reviews.csv +7 -7
  801. teradataml/data/river_data.csv +145 -145
  802. teradataml/data/roc_example.json +7 -7
  803. teradataml/data/roc_input.csv +101 -101
  804. teradataml/data/rule_inputs.csv +6 -6
  805. teradataml/data/rule_table.csv +2 -2
  806. teradataml/data/sales.csv +7 -7
  807. teradataml/data/sales_transaction.csv +501 -501
  808. teradataml/data/salesdata.csv +342 -342
  809. teradataml/data/sample_cities.csv +2 -2
  810. teradataml/data/sample_shapes.csv +10 -10
  811. teradataml/data/sample_streets.csv +2 -2
  812. teradataml/data/sampling_example.json +15 -15
  813. teradataml/data/sax_example.json +8 -8
  814. teradataml/data/scale_attributes.csv +3 -0
  815. teradataml/data/scale_example.json +74 -23
  816. teradataml/data/scale_housing.csv +11 -11
  817. teradataml/data/scale_housing_test.csv +6 -6
  818. teradataml/data/scale_input_part_sparse.csv +31 -0
  819. teradataml/data/scale_input_partitioned.csv +16 -0
  820. teradataml/data/scale_input_sparse.csv +11 -0
  821. teradataml/data/scale_parameters.csv +3 -0
  822. teradataml/data/scale_stat.csv +11 -11
  823. teradataml/data/scalebypartition_example.json +13 -13
  824. teradataml/data/scalemap_example.json +13 -13
  825. teradataml/data/scalesummary_example.json +12 -12
  826. teradataml/data/score_category.csv +101 -101
  827. teradataml/data/score_summary.csv +4 -4
  828. teradataml/data/script_example.json +9 -9
  829. teradataml/data/scripts/deploy_script.py +84 -0
  830. teradataml/data/scripts/mapper.R +20 -0
  831. teradataml/data/scripts/mapper.py +15 -15
  832. teradataml/data/scripts/mapper_replace.py +15 -15
  833. teradataml/data/scripts/sklearn/__init__.py +0 -0
  834. teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
  835. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
  836. teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
  837. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
  838. teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
  839. teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
  840. teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
  841. teradataml/data/seeds.csv +10 -10
  842. teradataml/data/sentenceextractor_example.json +6 -6
  843. teradataml/data/sentiment_extract_input.csv +11 -11
  844. teradataml/data/sentiment_train.csv +16 -16
  845. teradataml/data/sentiment_word.csv +20 -20
  846. teradataml/data/sentiment_word_input.csv +19 -19
  847. teradataml/data/sentimentextractor_example.json +24 -24
  848. teradataml/data/sentimenttrainer_example.json +8 -8
  849. teradataml/data/sequence_table.csv +10 -10
  850. teradataml/data/seriessplitter_example.json +7 -7
  851. teradataml/data/sessionize_example.json +17 -17
  852. teradataml/data/sessionize_table.csv +116 -116
  853. teradataml/data/setop_test1.csv +24 -24
  854. teradataml/data/setop_test2.csv +22 -22
  855. teradataml/data/soc_nw_edges.csv +10 -10
  856. teradataml/data/soc_nw_vertices.csv +7 -7
  857. teradataml/data/souvenir_timeseries.csv +167 -167
  858. teradataml/data/sparse_iris_attribute.csv +5 -5
  859. teradataml/data/sparse_iris_test.csv +121 -121
  860. teradataml/data/sparse_iris_train.csv +601 -601
  861. teradataml/data/star1.csv +6 -6
  862. teradataml/data/state_transition.csv +5 -5
  863. teradataml/data/stock_data.csv +53 -53
  864. teradataml/data/stock_movement.csv +11 -11
  865. teradataml/data/stock_vol.csv +76 -76
  866. teradataml/data/stop_words.csv +8 -8
  867. teradataml/data/store_sales.csv +37 -37
  868. teradataml/data/stringsimilarity_example.json +7 -7
  869. teradataml/data/strsimilarity_input.csv +13 -13
  870. teradataml/data/students.csv +101 -101
  871. teradataml/data/svm_iris_input_test.csv +121 -121
  872. teradataml/data/svm_iris_input_train.csv +481 -481
  873. teradataml/data/svm_iris_model.csv +7 -7
  874. teradataml/data/svmdense_example.json +9 -9
  875. teradataml/data/svmdensepredict_example.json +18 -18
  876. teradataml/data/svmsparse_example.json +7 -7
  877. teradataml/data/svmsparsepredict_example.json +13 -13
  878. teradataml/data/svmsparsesummary_example.json +7 -7
  879. teradataml/data/target_mobile_data.csv +13 -13
  880. teradataml/data/target_mobile_data_dense.csv +5 -5
  881. teradataml/data/templatedata.csv +1201 -1201
  882. teradataml/data/templates/open_source_ml.json +9 -0
  883. teradataml/data/teradataml_example.json +150 -1
  884. teradataml/data/test_classification.csv +101 -0
  885. teradataml/data/test_loan_prediction.csv +53 -53
  886. teradataml/data/test_pacf_12.csv +37 -37
  887. teradataml/data/test_prediction.csv +101 -0
  888. teradataml/data/test_regression.csv +101 -0
  889. teradataml/data/test_river2.csv +109 -109
  890. teradataml/data/text_inputs.csv +6 -6
  891. teradataml/data/textchunker_example.json +7 -7
  892. teradataml/data/textclassifier_example.json +6 -6
  893. teradataml/data/textclassifier_input.csv +7 -7
  894. teradataml/data/textclassifiertrainer_example.json +6 -6
  895. teradataml/data/textmorph_example.json +5 -5
  896. teradataml/data/textparser_example.json +15 -15
  897. teradataml/data/texttagger_example.json +11 -11
  898. teradataml/data/texttokenizer_example.json +6 -6
  899. teradataml/data/texttrainer_input.csv +11 -11
  900. teradataml/data/tf_example.json +6 -6
  901. teradataml/data/tfidf_example.json +13 -13
  902. teradataml/data/tfidf_input1.csv +201 -201
  903. teradataml/data/tfidf_train.csv +6 -6
  904. teradataml/data/time_table1.csv +535 -535
  905. teradataml/data/time_table2.csv +14 -14
  906. teradataml/data/timeseriesdata.csv +1601 -1601
  907. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  908. teradataml/data/titanic.csv +892 -892
  909. teradataml/data/token_table.csv +696 -696
  910. teradataml/data/train_multiclass.csv +101 -0
  911. teradataml/data/train_regression.csv +101 -0
  912. teradataml/data/train_regression_multiple_labels.csv +101 -0
  913. teradataml/data/train_tracking.csv +27 -27
  914. teradataml/data/transformation_table.csv +5 -5
  915. teradataml/data/transformation_table_new.csv +1 -1
  916. teradataml/data/tv_spots.csv +16 -16
  917. teradataml/data/twod_climate_data.csv +117 -117
  918. teradataml/data/uaf_example.json +475 -475
  919. teradataml/data/univariatestatistics_example.json +8 -8
  920. teradataml/data/unpack_example.json +9 -9
  921. teradataml/data/unpivot_example.json +9 -9
  922. teradataml/data/unpivot_input.csv +8 -8
  923. teradataml/data/us_air_pass.csv +36 -36
  924. teradataml/data/us_population.csv +624 -624
  925. teradataml/data/us_states_shapes.csv +52 -52
  926. teradataml/data/varmax_example.json +17 -17
  927. teradataml/data/vectordistance_example.json +25 -25
  928. teradataml/data/ville_climatedata.csv +121 -121
  929. teradataml/data/ville_tempdata.csv +12 -12
  930. teradataml/data/ville_tempdata1.csv +12 -12
  931. teradataml/data/ville_temperature.csv +11 -11
  932. teradataml/data/waveletTable.csv +1605 -1605
  933. teradataml/data/waveletTable2.csv +1605 -1605
  934. teradataml/data/weightedmovavg_example.json +8 -8
  935. teradataml/data/wft_testing.csv +5 -5
  936. teradataml/data/wine_data.csv +1600 -0
  937. teradataml/data/word_embed_input_table1.csv +5 -5
  938. teradataml/data/word_embed_input_table2.csv +4 -4
  939. teradataml/data/word_embed_model.csv +22 -22
  940. teradataml/data/words_input.csv +13 -13
  941. teradataml/data/xconvolve_complex_left.csv +6 -6
  942. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  943. teradataml/data/xgboost_example.json +35 -35
  944. teradataml/data/xgboostpredict_example.json +31 -31
  945. teradataml/data/ztest_example.json +16 -0
  946. teradataml/dataframe/copy_to.py +1769 -1698
  947. teradataml/dataframe/data_transfer.py +2812 -2745
  948. teradataml/dataframe/dataframe.py +17630 -16946
  949. teradataml/dataframe/dataframe_utils.py +1875 -1740
  950. teradataml/dataframe/fastload.py +794 -603
  951. teradataml/dataframe/indexer.py +424 -424
  952. teradataml/dataframe/setop.py +1179 -1166
  953. teradataml/dataframe/sql.py +10174 -6432
  954. teradataml/dataframe/sql_function_parameters.py +439 -388
  955. teradataml/dataframe/sql_functions.py +652 -652
  956. teradataml/dataframe/sql_interfaces.py +220 -220
  957. teradataml/dataframe/vantage_function_types.py +674 -630
  958. teradataml/dataframe/window.py +693 -692
  959. teradataml/dbutils/__init__.py +3 -3
  960. teradataml/dbutils/dbutils.py +1167 -1150
  961. teradataml/dbutils/filemgr.py +267 -267
  962. teradataml/gen_ai/__init__.py +2 -2
  963. teradataml/gen_ai/convAI.py +472 -472
  964. teradataml/geospatial/__init__.py +3 -3
  965. teradataml/geospatial/geodataframe.py +1105 -1094
  966. teradataml/geospatial/geodataframecolumn.py +392 -387
  967. teradataml/geospatial/geometry_types.py +925 -925
  968. teradataml/hyperparameter_tuner/__init__.py +1 -1
  969. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  970. teradataml/hyperparameter_tuner/utils.py +281 -187
  971. teradataml/lib/aed_0_1.dll +0 -0
  972. teradataml/lib/libaed_0_1.dylib +0 -0
  973. teradataml/lib/libaed_0_1.so +0 -0
  974. teradataml/libaed_0_1.dylib +0 -0
  975. teradataml/libaed_0_1.so +0 -0
  976. teradataml/opensource/__init__.py +1 -0
  977. teradataml/opensource/sklearn/__init__.py +1 -0
  978. teradataml/opensource/sklearn/_class.py +255 -0
  979. teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
  980. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  981. teradataml/opensource/sklearn/constants.py +54 -0
  982. teradataml/options/__init__.py +130 -124
  983. teradataml/options/configure.py +358 -336
  984. teradataml/options/display.py +176 -176
  985. teradataml/plot/__init__.py +2 -2
  986. teradataml/plot/axis.py +1388 -1388
  987. teradataml/plot/constants.py +15 -15
  988. teradataml/plot/figure.py +398 -398
  989. teradataml/plot/plot.py +760 -760
  990. teradataml/plot/query_generator.py +83 -83
  991. teradataml/plot/subplot.py +216 -216
  992. teradataml/scriptmgmt/UserEnv.py +3791 -3761
  993. teradataml/scriptmgmt/__init__.py +3 -3
  994. teradataml/scriptmgmt/lls_utils.py +1719 -1604
  995. teradataml/series/series.py +532 -532
  996. teradataml/series/series_utils.py +71 -71
  997. teradataml/table_operators/Apply.py +949 -917
  998. teradataml/table_operators/Script.py +1718 -1982
  999. teradataml/table_operators/TableOperator.py +1255 -1616
  1000. teradataml/table_operators/__init__.py +2 -3
  1001. teradataml/table_operators/apply_query_generator.py +262 -262
  1002. teradataml/table_operators/query_generator.py +507 -507
  1003. teradataml/table_operators/table_operator_query_generator.py +460 -460
  1004. teradataml/table_operators/table_operator_util.py +631 -639
  1005. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  1006. teradataml/table_operators/templates/dataframe_map.template +176 -176
  1007. teradataml/table_operators/templates/script_executor.template +170 -170
  1008. teradataml/utils/dtypes.py +684 -684
  1009. teradataml/utils/internal_buffer.py +84 -84
  1010. teradataml/utils/print_versions.py +205 -205
  1011. teradataml/utils/utils.py +410 -410
  1012. teradataml/utils/validators.py +2277 -2115
  1013. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
  1014. teradataml-20.0.0.1.dist-info/RECORD +1056 -0
  1015. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
  1016. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
  1017. teradataml/analytics/mle/AdaBoost.py +0 -651
  1018. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1019. teradataml/analytics/mle/Antiselect.py +0 -342
  1020. teradataml/analytics/mle/Arima.py +0 -641
  1021. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1022. teradataml/analytics/mle/Attribution.py +0 -1070
  1023. teradataml/analytics/mle/Betweenness.py +0 -658
  1024. teradataml/analytics/mle/Burst.py +0 -711
  1025. teradataml/analytics/mle/CCM.py +0 -600
  1026. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1027. teradataml/analytics/mle/CFilter.py +0 -460
  1028. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1029. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1030. teradataml/analytics/mle/Closeness.py +0 -737
  1031. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1032. teradataml/analytics/mle/Correlation.py +0 -477
  1033. teradataml/analytics/mle/Correlation2.py +0 -573
  1034. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1035. teradataml/analytics/mle/CoxPH.py +0 -556
  1036. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1037. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1038. teradataml/analytics/mle/DTW.py +0 -623
  1039. teradataml/analytics/mle/DWT.py +0 -564
  1040. teradataml/analytics/mle/DWT2D.py +0 -599
  1041. teradataml/analytics/mle/DecisionForest.py +0 -716
  1042. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1043. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1044. teradataml/analytics/mle/DecisionTree.py +0 -830
  1045. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1046. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1047. teradataml/analytics/mle/FMeasure.py +0 -402
  1048. teradataml/analytics/mle/FPGrowth.py +0 -734
  1049. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1050. teradataml/analytics/mle/GLM.py +0 -558
  1051. teradataml/analytics/mle/GLML1L2.py +0 -547
  1052. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1053. teradataml/analytics/mle/GLMPredict.py +0 -529
  1054. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1055. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1056. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1057. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1058. teradataml/analytics/mle/Histogram.py +0 -561
  1059. teradataml/analytics/mle/IDWT.py +0 -476
  1060. teradataml/analytics/mle/IDWT2D.py +0 -493
  1061. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1062. teradataml/analytics/mle/Interpolator.py +0 -918
  1063. teradataml/analytics/mle/KMeans.py +0 -485
  1064. teradataml/analytics/mle/KNN.py +0 -627
  1065. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1066. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1067. teradataml/analytics/mle/LAR.py +0 -439
  1068. teradataml/analytics/mle/LARPredict.py +0 -478
  1069. teradataml/analytics/mle/LDA.py +0 -548
  1070. teradataml/analytics/mle/LDAInference.py +0 -492
  1071. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1072. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1073. teradataml/analytics/mle/LinReg.py +0 -433
  1074. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1075. teradataml/analytics/mle/MinHash.py +0 -544
  1076. teradataml/analytics/mle/Modularity.py +0 -587
  1077. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1078. teradataml/analytics/mle/NERExtractor.py +0 -595
  1079. teradataml/analytics/mle/NERTrainer.py +0 -458
  1080. teradataml/analytics/mle/NGrams.py +0 -570
  1081. teradataml/analytics/mle/NPath.py +0 -634
  1082. teradataml/analytics/mle/NTree.py +0 -549
  1083. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1084. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1085. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1086. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1087. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1088. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1089. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1090. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1091. teradataml/analytics/mle/POSTagger.py +0 -417
  1092. teradataml/analytics/mle/Pack.py +0 -411
  1093. teradataml/analytics/mle/PageRank.py +0 -535
  1094. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1095. teradataml/analytics/mle/PathGenerator.py +0 -367
  1096. teradataml/analytics/mle/PathStart.py +0 -464
  1097. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1098. teradataml/analytics/mle/Pivot.py +0 -471
  1099. teradataml/analytics/mle/ROC.py +0 -425
  1100. teradataml/analytics/mle/RandomSample.py +0 -637
  1101. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1102. teradataml/analytics/mle/SAX.py +0 -779
  1103. teradataml/analytics/mle/SVMDense.py +0 -677
  1104. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1105. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1106. teradataml/analytics/mle/SVMSparse.py +0 -557
  1107. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1108. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1109. teradataml/analytics/mle/Sampling.py +0 -549
  1110. teradataml/analytics/mle/Scale.py +0 -565
  1111. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1112. teradataml/analytics/mle/ScaleMap.py +0 -378
  1113. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1114. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1115. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1116. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1117. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1118. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1119. teradataml/analytics/mle/Sessionize.py +0 -475
  1120. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1121. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1122. teradataml/analytics/mle/TF.py +0 -389
  1123. teradataml/analytics/mle/TFIDF.py +0 -504
  1124. teradataml/analytics/mle/TextChunker.py +0 -414
  1125. teradataml/analytics/mle/TextClassifier.py +0 -399
  1126. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1127. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1128. teradataml/analytics/mle/TextMorph.py +0 -494
  1129. teradataml/analytics/mle/TextParser.py +0 -623
  1130. teradataml/analytics/mle/TextTagger.py +0 -530
  1131. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1132. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1133. teradataml/analytics/mle/Unpack.py +0 -526
  1134. teradataml/analytics/mle/Unpivot.py +0 -438
  1135. teradataml/analytics/mle/VarMax.py +0 -776
  1136. teradataml/analytics/mle/VectorDistance.py +0 -762
  1137. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1138. teradataml/analytics/mle/XGBoost.py +0 -842
  1139. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1140. teradataml/analytics/mle/__init__.py +0 -123
  1141. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1142. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1143. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1144. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1145. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1146. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1147. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1148. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1149. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1150. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1151. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1152. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1153. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1154. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1155. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1156. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1157. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1158. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1159. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1160. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1161. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1162. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1163. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1164. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1165. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1166. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1167. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1168. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1169. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1170. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1171. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1172. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1173. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1174. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1175. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1176. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1177. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1178. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1179. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1180. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1181. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1182. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1183. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1184. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1185. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1186. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1187. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1188. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1189. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1190. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1191. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1192. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1193. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1194. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1195. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1196. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1197. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1198. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1199. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1200. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1201. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1202. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1203. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1204. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1205. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1206. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1207. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1208. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1209. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1210. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1211. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1212. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1213. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1214. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1215. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1216. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1217. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1218. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1219. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1220. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1221. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1222. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1223. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1224. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1225. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1226. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1227. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1228. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1229. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1230. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1231. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1232. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1233. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1234. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1235. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1236. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1237. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1238. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1239. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1240. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1241. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1242. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1243. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1244. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1245. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1246. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1247. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1248. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1249. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1250. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1251. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1252. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1253. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1254. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1255. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1256. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1257. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1258. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1259. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1260. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1261. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1262. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1263. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1264. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1265. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1266. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1267. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1268. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1269. teradataml/analytics/sqle/Antiselect.py +0 -321
  1270. teradataml/analytics/sqle/Attribution.py +0 -603
  1271. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1272. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1273. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1274. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1275. teradataml/analytics/sqle/NPath.py +0 -632
  1276. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1277. teradataml/analytics/sqle/Pack.py +0 -388
  1278. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1279. teradataml/analytics/sqle/Sessionize.py +0 -390
  1280. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1281. teradataml/analytics/sqle/Unpack.py +0 -503
  1282. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1283. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1284. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1285. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1286. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1287. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1288. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1289. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1290. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1291. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1292. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1293. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1294. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1295. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1296. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1297. teradataml/catalog/model_cataloging.py +0 -980
  1298. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1299. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1300. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1301. teradataml/table_operators/sandbox_container_util.py +0 -643
  1302. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1303. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,101 @@
1
+ col1,col2,col3,col4,label
2
+ -2.205721671526727e+00,2.8321466994682485e+00,1.867520275756581e+00,-8.64610731175433e-01,2
3
+ 5.940271318831895e-01,5.731635150667003e-01,1.0103778829203267e+00,1.1384304963082261e+00,1
4
+ -6.054157973815384e-01,1.4695402199005276e+00,1.2967080804064262e+00,2.3190739909406444e-01,1
5
+ -1.6894137543326657e+00,1.0128345292844416e+00,1.2041909133795903e-01,-1.4461113899493347e+00,0
6
+ 1.4337012132131193e+00,1.1270982601480961e-02,8.842657677773155e-01,1.8175270928859488e+00,1
7
+ 2.4885701724207623e+00,-3.549097277006048e+00,-2.5077599004831708e+00,7.356663373754904e-01,0
8
+ 8.149522883609237e-01,5.503151982707637e-01,1.11878775783329e+00,1.401835188746393e+00,0
9
+ 1.5281758325825747e+00,-2.3937359839840564e+00,-1.7827382154867717e+00,3.0647655778895677e-01,0
10
+ -7.231680381760497e-02,9.918424852420743e-01,1.079616747055318e+00,5.810616458714633e-01,1
11
+ 1.3532962753060973e+00,4.7806978517759646e-01,1.3641878049920808e+00,2.032460019376548e+00,1
12
+ 1.7944511285596305e+00,5.182422233568129e-03,1.0966560501920106e+00,2.2688059912400154e+00,1
13
+ -1.4406868036855542e+00,1.3672637265065073e+00,6.731149622919457e-01,-8.91859919596895e-01,2
14
+ 1.0992130836331504e-01,7.31244993359142e-01,8.951838770205742e-01,6.344620899857935e-01,1
15
+ -2.237552093695031e-01,1.8746721928084975e+00,1.9876466987502077e+00,9.883432156504453e-01,2
16
+ -2.100171129389473e+00,3.25103561435169e+00,2.406205156499104e+00,-4.4740722040698255e-01,2
17
+ 9.701689943235585e-01,2.715962651517618e+00,3.666420101713081e+00,3.0658351416540803e+00,2
18
+ 1.5315292034557055e+00,-3.2146218570770673e+00,-2.7106129772347356e+00,-2.4575503581531644e-01,0
19
+ 1.3548998580811358e+00,-7.684162017813859e-01,-4.6877475804735114e-02,1.189512293349728e+00,0
20
+ -8.792651612207568e-01,7.484493033727162e-01,3.133806659361569e-01,-6.026121615130622e-01,2
21
+ 6.42326369627201e-01,7.224830478949127e-01,1.2088889821652882e+00,1.3006240785861745e+00,1
22
+ 2.7338999623284566e+00,-3.3530163052983015e+00,-2.1365085488245463e+00,1.17828765193378e+00,0
23
+ 1.9975244659770346e+00,-2.4389050415716804e+00,-1.5486055326123547e+00,8.68357117306938e-01,0
24
+ 1.2718670663208493e+00,-2.011151501336602e+00,-1.505141465791385e+00,2.422631832248353e-01,0
25
+ 2.136461755763499e+00,-1.5364082708131555e-01,1.1246349676118002e+00,2.592892344744437e+00,1
26
+ -1.0463767387971428e+00,2.072521277771624e+00,1.7117300074560142e+00,8.399456600014976e-02,2
27
+ 1.1564733856410392e-01,-6.922233327553984e-02,-8.11815766831625e-03,9.906710440047184e-02,2
28
+ -4.4474939960166104e-01,1.3294467657724653e+00,1.2356714816573484e+00,3.397636558606848e-01,2
29
+ 7.230329735069526e-01,2.9416709820726694e-01,7.727443327252768e-01,1.1121588558743056e+00,1
30
+ 1.8324086110597337e+00,-1.4464361654391522e-01,9.500036754107359e-01,2.2151584739657757e+00,1
31
+ -8.949735251150521e-01,-8.767003797681986e-01,-1.5371644824583068e+00,-1.724104081471264e+00,2
32
+ 3.1968254396685936e-02,1.913592148745129e+00,2.1871813975599217e+00,1.337548543158305e+00,2
33
+ -5.295010766779764e-01,2.350991115051295e+00,2.341376260856668e+00,9.252620699459992e-01,2
34
+ 9.786561706856266e-01,-1.1000141572577344e+00,-6.512227888382562e-01,4.897621895981188e-01,0
35
+ 4.2548084865062585e-01,5.233019460721258e-01,8.5144036205131e-01,8.918594263562661e-01,2
36
+ 1.1728175256640287e+00,-1.317817518737321e+00,-7.799300261798354e-01,5.872238155060185e-01,0
37
+ -2.443584186885214e+00,2.067475618266378e+00,8.566996977399313e-01,-1.683243206354091e+00,2
38
+ -4.2276158128364316e-01,9.962973150485089e-01,8.716398875000242e-01,1.416843474291939e-01,1
39
+ -1.44373025698074e+00,4.889292679846961e-01,-3.2372692196790664e-01,-1.4911102232017974e+00,2
40
+ -1.1383027829290153e+00,6.522942624341397e-01,4.699454855271057e-02,-9.947999509194593e-01,0
41
+ -3.819387970225214e-01,1.3012321927073194e+00,1.2418899561079297e+00,3.9992879512283885e-01,2
42
+ -5.620225253397535e-01,1.1406209196108452e+00,9.504801123771934e-01,6.371761918700547e-02,1
43
+ 1.3896125676249422e+00,-1.813539813342489e+00,-1.2097102079438988e+00,5.248613166717124e-01,0
44
+ 2.4758463851522423e+00,-2.7699095019421134e+00,-1.632817392094593e+00,1.2478023877400806e+00,0
45
+ 7.216694959200303e-01,6.439541745313729e-01,1.1681601352955355e+00,1.3475524460049013e+00,1
46
+ 3.5117341307021976e-01,7.865417025029074e-01,1.104473791055926e+00,9.765004807424893e-01,1
47
+ 1.0928025721211885e+00,-2.450891113723896e+00,-2.1121329741692842e+00,-2.818777717308639e-01,0
48
+ 4.06969474139137e-01,-1.293708995112314e+00,-1.2181522624172572e+00,-3.632305276501736e-01,0
49
+ -2.8978824993367214e-01,8.584007011351746e-01,7.962582402668705e-01,2.1607042095682255e-01,1
50
+ 1.5794848586078107e+00,2.4036701107416447e-01,1.232406436289369e+00,2.156862942201161e+00,1
51
+ 2.187442228125731e-01,5.381709070736012e-01,7.426160615751836e-01,6.409570872742335e-01,0
52
+ 2.899023433706116e-02,9.062299083374733e-01,1.0442144720383355e+00,6.509150594771294e-01,2
53
+ 1.3440332436583258e+00,-2.21099259420037e+00,-1.6876574324327382e+00,1.9789592795943634e-01,0
54
+ 1.6923510885431092e-02,1.0102640077753082e+00,1.1547310815609215e+00,7.062051585628684e-01,0
55
+ 1.4215775327822588e+00,1.9869880523788785e-01,1.0892175508257465e+00,1.9292765047980258e+00,1
56
+ 3.6912216908338134e+00,-4.470425720631566e+00,-2.8204054510606804e+00,1.6293255501210493e+00,0
57
+ 6.332591353317139e-01,3.0700517694412093e+00,3.8627421878639634e+00,2.880555411710709e+00,2
58
+ 3.0531860792932e-01,-4.082079183733004e-01,-2.7683200118227136e-01,1.0871309272144247e-01,0
59
+ -2.6801299823628943e-01,3.9906192591818734e-01,2.8914806997917264e-01,-6.78188681878136e-02,2
60
+ -2.3211053667726502e+00,1.4864815236970312e+00,2.729906061625348e-01,-1.9224736688285549e+00,2
61
+ -2.208311803057051e+00,1.935678427118546e+00,8.504116645498019e-01,-1.475581377056579e+00,2
62
+ -2.107272113227528e+00,7.626468501171743e-01,-4.1699943957372354e-01,-2.1432086713395053e+00,2
63
+ 2.9694595761429632e-02,-2.5440001583966276e-01,-2.7013823965968264e-01,-1.3496743889872453e-01,0
64
+ -1.6197484336106305e+00,3.1027604625119354e+00,2.530269084921403e+00,5.8559196213358256e-02,2
65
+ -1.8289652217246832e-01,7.526089522376019e-01,7.413914051536741e-01,2.7929475339269505e-01,1
66
+ 1.4902072871374412e+00,-2.346045368544701e+00,-1.7517932706337538e+00,2.9087420866346947e-01,0
67
+ -1.275082312584234e+00,1.1264845797831589e+00,5.010216351026264e-01,-8.460230272623603e-01,2
68
+ 3.313141452859733e+00,-2.972407538112374e+00,-1.35324756917722e+00,2.1675232841387126e+00,0
69
+ -2.071560256193874e+00,1.3027473941274694e+00,2.1654344712218576e-01,-1.73200131044599e+00,2
70
+ 1.8849462993797015e+00,-2.4685968831056182e-01,8.661474697994327e-01,2.2121908310936034e+00,1
71
+ -2.8692000017174224e-01,1.048557834557211e+00,1.0134149122848968e+00,3.485956144249277e-01,1
72
+ 1.2393621157594457e+00,-1.419355998341882e+00,-8.545043287817928e-01,6.023976406486208e-01,0
73
+ 5.692383222031177e-01,6.852597418410251e-01,1.1222940842634186e+00,1.183125572776162e+00,1
74
+ -2.5663597322215495e+00,1.6266442739525337e+00,2.826875793701432e-01,-2.1370657552337575e+00,2
75
+ 8.658254600723946e-01,2.870161120982609e-01,8.514422335769642e-01,1.2875707908091423e+00,1
76
+ -8.930136272452173e-01,6.177765279132996e-03,-5.358340907741215e-01,-1.1231415554924216e+00,2
77
+ 4.171803637611743e-01,5.976496646608869e-01,9.30617113224727e-01,9.317800757827368e-01,1
78
+ 1.0384584448767356e+00,-1.237269632959174e+00,-7.703563209383606e-01,4.7221264234321547e-01,0
79
+ -8.82437002901284e-02,-5.535047087736443e-01,-6.806596537280936e-01,-4.8660937000358284e-01,0
80
+ -2.2332945259620884e+00,2.384623575296672e+00,1.3437980496009692e+00,-1.202786826385931e+00,2
81
+ -1.5440535021499295e+00,6.153247321744232e-01,-2.4152710035941571e-01,-1.5320756693521462e+00,2
82
+ -1.2165112758892604e-01,1.6504820132700906e+00,1.7957459076734437e+00,9.652633608191348e-01,2
83
+ 8.921338069304287e-01,-1.421006996282316e+00,-1.06744279048931e+00,1.629417336042811e-01,0
84
+ 1.8951379768016638e+00,-2.5615682863538596e+00,-1.749797731405485e+00,6.559543109437884e-01,0
85
+ 2.2823687017116767e-01,7.967217856594284e-01,1.0412770490561085e+00,8.282078179308016e-01,1
86
+ 7.092165932574367e-01,2.837712488204607e-01,7.525692379086388e-01,1.0876700553283503e+00,1
87
+ 6.918654910072527e-01,-1.3217318950534493e+00,-1.0767185485836799e+00,-2.2577575794245686e-02,0
88
+ -1.954106899174266e+00,8.117901024390465e-01,-2.682252643663885e-01,-1.9165414078060854e+00,2
89
+ 6.876617604053404e-01,3.995906388655187e-01,8.706689241202226e-01,1.1389715344594316e+00,1
90
+ -6.594237575041862e-01,2.5860013074711397e-01,-1.0789456676958853e-01,-6.571476794668623e-01,2
91
+ 1.2666139424327671e+00,9.941190114336296e-02,8.825466421651655e-01,1.6663474477283153e+00,1
92
+ -5.147043090202448e-01,4.231661751075788e-01,1.664985743769336e-01,-3.628990595543804e-01,0
93
+ -1.4551811872033729e+00,-2.601112666425889e-01,-1.1792131172184188e+00,-2.0133278262946055e+00,2
94
+ 5.478498776056571e-01,3.986726520733487e-01,7.846421634878802e-01,9.618524546554021e-01,1
95
+ -1.1305820619922704e+00,1.7452148936845728e+00,1.2897663665351575e+00,-2.4418073358249515e-01,1
96
+ 1.0870238730674753e+00,2.505069029639322e-01,9.445429258602135e-01,1.5420599477343706e+00,1
97
+ -1.3030662803551736e+00,1.7609139431470613e+00,1.2027032681839134e+00,-4.512805539219289e-01,1
98
+ 1.1854735748896452e+00,-3.1893321896882387e+00,-2.8923197733532118e+00,-6.654679379268811e-01,0
99
+ 1.1997789411527688e+00,-3.012273809756705e+00,-2.683049356016844e+00,-5.273840966330254e-01,0
100
+ 5.736306760332632e-02,8.589667464313964e-01,1.0079208492194212e+00,6.546936638370967e-01,1
101
+ 6.841153630480981e-01,-7.452656532642694e-01,-4.283990455431006e-01,3.5841561295091406e-01,0
@@ -0,0 +1,101 @@
1
+ col1,col2,col3,col4,label
2
+ -5.096521817516535e-01,-4.380743016111864e-01,-1.2527953600499262e+00,7.774903558319101e-01,-41
3
+ -6.743326606573761e-01,3.183055827435118e-02,-6.35846078378881e-01,6.764332949464997e-01,3
4
+ -8.877857476301128e-01,-1.980796468223927e+00,-3.479121493261526e-01,1.5634896910398005e-01,-95
5
+ 1.9559123082506942e+00,3.9009332268792646e-01,-6.5240858238702e-01,-3.909533751876011e-01,-25
6
+ 9.77249677148556e-02,5.829536797532936e-01,-3.994490292628752e-01,3.7005588784751875e-01,27
7
+ -1.8430695501566485e+00,-4.779740040404867e-01,-4.7965581400794766e-01,6.203582983435125e-01,-31
8
+ 8.416312640736364e-01,-2.4945858016094885e-01,4.949498165009074e-02,4.9383677628095635e-01,55
9
+ -7.196043885517929e-01,-8.129929885540773e-01,2.745163577239395e-01,-8.909150829955279e-01,-102
10
+ -1.568211160255477e-02,1.6092816829822298e-01,-1.9065349358139935e-01,-3.948495140334503e-01,-42
11
+ -3.090129690471222e-01,-1.6760038063299767e+00,1.15233156478312e+00,1.079618592036821e+00,109
12
+ -7.255973784635843e-01,-1.3833639553950554e+00,-1.582938397335082e+00,6.103793791072052e-01,-115
13
+ 2.303916697683942e+00,-1.0600158227215473e+00,-1.3594970067832082e-01,1.1368913626026953e+00,101
14
+ 5.765908166149409e-01,-2.0829875557799488e-01,3.960067126616453e-01,-1.0930615087305058e+00,-64
15
+ 1.4940790731576061e+00,-2.0515826376580087e-01,3.1306770165090136e-01,-8.540957393017248e-01,-30
16
+ -3.5343174875719907e-01,-1.6164741886510325e+00,-2.918373627478628e-01,-7.614922118116233e-01,-149
17
+ 6.651722238316789e-02,3.024718977397814e-01,-6.343220936809636e-01,-3.627411659871381e-01,-63
18
+ -2.6773353689396645e-01,-1.1280113314700069e+00,2.80441705316296e-01,-9.931236109295807e-01,-112
19
+ -5.973160689653627e-01,-2.37921729736007e-01,-1.4240609089825316e+00,-4.9331988336219407e-01,-160
20
+ 6.433144650629279e-01,-1.5706234086334527e+00,-2.0690367616397173e-01,8.801789120807822e-01,22
21
+ 1.8831506970562544e+00,-1.3477590611424464e+00,-1.2704849984857336e+00,9.693967081580112e-01,-8
22
+ -9.072983643832422e-01,5.194539579613895e-02,7.290905621775369e-01,1.2898291075741067e-01,43
23
+ -1.1054065723247261e-01,1.0201727117157997e+00,-6.920498477843912e-01,1.5363770542457977e+00,120
24
+ -1.1573552591908536e+00,-3.122922511256933e-01,-1.576670161638159e-01,2.2567234972982093e+00,153
25
+ 1.0500020720820478e-02,1.7858704939058352e+00,1.2691209270361992e-01,4.0198936344470165e-01,105
26
+ -1.1651498407833565e+00,9.008264869541871e-01,4.6566243973045984e-01,-1.5362436862772237e+00,-96
27
+ -4.409226322925914e-01,-2.803554951845091e-01,-3.646935443916854e-01,1.5670385527236397e-01,-29
28
+ 1.9229420264803847e+00,1.4805147914344243e+00,1.8675589604265699e+00,9.060446582753853e-01,295
29
+ -8.034096641738411e-01,-6.895497777502005e-01,-4.5553250351734315e-01,1.747915902505673e-02,-69
30
+ -1.4912575927056055e+00,4.393917012645369e-01,1.6667349537252904e-01,6.350314368921064e-01,51
31
+ 7.610377251469934e-01,1.2167501649282841e-01,4.4386323274542566e-01,3.3367432737426683e-01,79
32
+ 1.1880297923523018e+00,3.169426119248496e-01,9.20858823780819e-01,3.187276529430212e-01,125
33
+ -1.5407970144446248e+00,6.326199420033171e-02,1.565065379653756e-01,2.3218103620027578e-01,1
34
+ -1.936279805846507e+00,1.8877859679382855e-01,5.238910238342056e-01,8.842208704466141e-02,9
35
+ 2.082749780768603e-01,9.766390364837128e-01,3.563663971744019e-01,7.065731681919482e-01,123
36
+ 7.732529774025997e-01,-1.1838806401933177e+00,-2.659172237996741e+00,6.063195243593807e-01,-151
37
+ 2.7992459904323824e-01,-9.815038964295794e-02,9.101789080925919e-01,3.1721821519130206e-01,91
38
+ -5.428614760167177e-01,4.160500462614255e-01,-1.1561824318219127e+00,7.811981017099934e-01,-6
39
+ 1.5327792143584575e+00,1.469358769900285e+00,1.549474256969163e-01,3.7816251960217356e-01,125
40
+ -1.225435518830168e+00,8.443629764015471e-01,-1.0002153473895647e+00,-1.5447710967776116e+00,-199
41
+ -3.5399391125348395e-01,-1.3749512934180188e+00,-6.436184028328905e-01,-2.2234031522244266e+00,-293
42
+ 6.98457149107336e-01,3.77088908626934e-03,9.318483741143037e-01,3.39964983801262e-01,107
43
+ -9.55945000492777e-01,-3.4598177569938643e-01,-4.635959746460942e-01,4.814814737734622e-01,-20
44
+ -8.612256850547025e-01,1.9100649530990337e+00,-2.680033709513804e-01,8.024563957963952e-01,100
45
+ 6.937731526901325e-01,-1.595734381462669e-01,-1.3370155966843916e-01,1.0777438059762627e+00,94
46
+ 6.252314510271875e-01,-1.6020576556067476e+00,-1.1043833394284506e+00,5.2165079260974405e-02,-112
47
+ -7.047002758562337e-01,9.432607249694948e-01,7.471883342046318e-01,-1.188944955203736e+00,-36
48
+ 2.383144774863942e+00,9.444794869904138e-01,-9.128222254441586e-01,1.117016288095853e+00,117
49
+ -3.108861716984717e-01,9.740016626878341e-02,3.990463456401302e-01,-2.77259275642665e+00,-219
50
+ -8.707971491818818e-01,-5.788496647644155e-01,-3.1155253212737266e-01,5.616534222974544e-02,-53
51
+ -1.0707526215105425e+00,1.0544517269311366e+00,-4.0317694697317963e-01,1.2224450703824274e+00,94
52
+ 1.126635922106507e+00,-1.0799315083634233e+00,-1.1474686524111024e+00,-4.3782004474443403e-01,-129
53
+ 4.9374177734918845e-01,-1.1610393903436653e-01,-2.0306844677814944e+00,2.0644928613593194e+00,50
54
+ -1.7020413861440594e-02,3.791517355550818e-01,2.259308950690852e+00,-4.225715166064269e-02,161
55
+ 1.764052345967664e+00,4.001572083672233e-01,9.787379841057392e-01,2.240893199201458e+00,313
56
+ 5.785214977288784e-01,3.49654456993174e-01,-7.64143923906443e-01,-1.4377914738015785e+00,-154
57
+ -1.6138978475579515e+00,-2.127402802139687e-01,-8.954665611936756e-01,3.86902497859262e-01,-66
58
+ 1.6481349322075596e+00,1.6422775548733395e-01,5.672902778526694e-01,-2.226751005151545e-01,58
59
+ -6.37437025552229e-01,-3.9727181432879766e-01,-1.3288057758695562e-01,-2.977908794017283e-01,-61
60
+ 1.7742614225375283e-01,-4.017809362082619e-01,-1.6301983469660446e+00,4.627822555257742e-01,-79
61
+ 2.8634368889227957e-01,6.088438344754508e-01,-1.0452533661469547e+00,1.2111452896827009e+00,62
62
+ 6.722947570124355e-01,4.0746183624111043e-01,-7.699160744453164e-01,5.392491912918173e-01,23
63
+ -6.945678597313655e-01,-1.4963454032767076e-01,-4.3515355172163744e-01,1.8492637284793418e+00,113
64
+ 7.717905512136674e-01,8.235041539637314e-01,2.16323594928069e+00,1.336527949436392e+00,307
65
+ 1.4944845444913688e+00,-2.0699850250135325e+00,4.2625873077810095e-01,6.769080350302455e-01,48
66
+ -1.3159074105115212e+00,-4.61584604814709e-01,-6.824160532463124e-02,1.7133427216493666e+00,103
67
+ 1.4195316332077967e-01,-3.193284171450952e-01,6.915387510701866e-01,6.947491436560059e-01,99
68
+ -6.72460447775951e-01,-3.595531615405413e-01,-8.13146282044454e-01,-1.7262826023316769e+00,-232
69
+ -1.7558905834377194e+00,4.5093446180591484e-01,-6.840108977372166e-01,1.6595507961898721e+00,79
70
+ 3.7642553115562943e-01,-1.0994007905841945e+00,2.98238174206056e-01,1.3263858966870303e+00,106
71
+ -1.17312340511416e+00,1.9436211856492926e+00,-4.1361898075974735e-01,-7.474548114407578e-01,-51
72
+ -4.980324506923049e-01,1.9295320538169858e+00,9.494208069257608e-01,8.75512413851909e-02,127
73
+ -3.92828182274956e-02,-1.1680934977411974e+00,5.232766605317537e-01,-1.715463312222481e-01,-20
74
+ -1.6981058194322545e+00,3.872804753950634e-01,-2.2555642294021894e+00,-1.0225068436356035e+00,-263
75
+ -5.10805137568873e-01,-1.180632184122412e+00,-2.8182228338654868e-02,4.2833187053041766e-01,-15
76
+ 1.1394006845433007e+00,-1.2348258203536526e+00,4.02341641177549e-01,-6.848100909403132e-01,-51
77
+ 1.4882521937955997e+00,1.8958891760305832e+00,1.1787795711596507e+00,-1.7992483581235091e-01,159
78
+ -1.1268258087567435e+00,-7.306777528648248e-01,-3.8487980918127546e-01,9.4351589317074e-02,-65
79
+ -7.395629963913133e-01,1.5430145954067358e+00,-1.2928569097234486e+00,2.6705086934918293e-01,-26
80
+ 1.3645318481024713e+00,-6.894491845499376e-01,-6.522935999350191e-01,-5.211893123011109e-01,-85
81
+ -8.133642592042029e-01,-1.466424327802514e+00,5.210648764527586e-01,-5.757879698130661e-01,-82
82
+ -4.2171451290578935e-02,-2.868871923899076e-01,-6.16264020956474e-02,-1.0730527629117469e-01,-24
83
+ 8.568306119026912e-01,-6.510255933001469e-01,-1.0342428417844647e+00,6.81594518281627e-01,-14
84
+ -1.188859257784029e+00,-5.068163542986875e-01,-5.963140384505081e-01,-5.256729626954629e-02,-86
85
+ 7.863279621089762e-01,-4.6641909673594306e-01,-9.444462559182504e-01,-4.1004969320254847e-01,-99
86
+ -2.5529898158340787e+00,6.536185954403606e-01,8.644361988595057e-01,-7.421650204064419e-01,-36
87
+ 6.898181645347884e-01,1.3018462295649984e+00,-6.280875596415789e-01,-4.810271184607877e-01,-26
88
+ 1.2302906807277207e+00,1.2023798487844113e+00,-3.873268174079523e-01,-3.0230275057533557e-01,13
89
+ 9.47251967773748e-01,-1.550100930908342e-01,6.140793703460803e-01,9.222066715665268e-01,136
90
+ 6.663830820319143e-01,-4.607197873885533e-01,-1.3342584714027534e+00,-1.3467175057975553e+00,-210
91
+ -1.0321885179355784e-01,4.1059850193837233e-01,1.44043571160878e-01,1.454273506962975e+00,149
92
+ 6.40131526097592e-01,-1.6169560443108344e+00,-2.4326124398935636e-02,-7.380309092056887e-01,-108
93
+ -3.691818379424436e-01,-2.393791775759264e-01,1.0996595958871132e+00,6.552637307225978e-01,116
94
+ 1.068509399316009e+00,-4.5338580385138766e-01,-6.878376110286823e-01,-1.2140774030941206e+00,-146
95
+ -1.3065268517353166e+00,1.658130679618188e+00,-1.1816404512856976e-01,-6.801782039968504e-01,-37
96
+ 8.579239242923363e-01,1.1411018666575734e+00,1.4665787155741776e+00,8.52551939461232e-01,230
97
+ 3.86305518401881e-02,-1.6567151023219537e+00,-9.855107376841507e-01,-1.4718350074635869e+00,-251
98
+ 2.2697546239876076e+00,-1.4543656745987648e+00,4.575851730144607e-02,-1.871838500258336e-01,-16
99
+ -1.0485529650670926e+00,-1.4200179371789752e+00,-1.7062701906250126e+00,1.9507753952317897e+00,-13
100
+ 1.8675579901499675e+00,-9.77277879876411e-01,9.500884175255894e-01,-1.513572082976979e-01,55
101
+ -7.447548220484399e-01,-8.264385386590144e-01,-9.84525244254323e-02,-6.634782863621074e-01,-108
@@ -0,0 +1,101 @@
1
+ col1,col2,col3,col4,label1,label2
2
+ -1.980796468223927e+00,-3.479121493261526e-01,-8.877857476301128e-01,1.5634896910398005e-01,-170,-203
3
+ -1.595734381462669e-01,-1.3370155966843916e-01,6.937731526901325e-01,1.0777438059762627e+00,0,82
4
+ -2.0829875557799488e-01,3.960067126616453e-01,5.765908166149409e-01,-1.0930615087305058e+00,15,-65
5
+ -2.803554951845091e-01,-3.646935443916854e-01,-4.409226322925914e-01,1.5670385527236397e-01,-47,-38
6
+ -1.6567151023219537e+00,-9.855107376841507e-01,3.86305518401881e-02,-1.4718350074635869e+00,-169,-276
7
+ 3.49654456993174e-01,-7.64143923906443e-01,5.785214977288784e-01,-1.4377914738015785e+00,-10,-73
8
+ 3.183055827435118e-02,-6.35846078378881e-01,-6.743326606573761e-01,6.764332949464997e-01,-44,9
9
+ 3.791517355550818e-01,2.259308950690852e+00,-1.7020413861440594e-02,-4.225715166064269e-02,147,93
10
+ -8.129929885540773e-01,2.745163577239395e-01,-7.196043885517929e-01,-8.909150829955279e-01,-57,-151
11
+ -1.1838806401933177e+00,-2.659172237996741e+00,7.732529774025997e-01,6.063195243593807e-01,-206,-109
12
+ -6.895497777502005e-01,-4.5553250351734315e-01,-8.034096641738411e-01,1.747915902505673e-02,-87,-99
13
+ -1.4963454032767076e-01,-4.3515355172163744e-01,-6.945678597313655e-01,1.8492637284793418e+00,-42,82
14
+ -3.122922511256933e-01,-1.576670161638159e-01,-1.1573552591908536e+00,2.2567234972982093e+00,-46,88
15
+ 9.432607249694948e-01,7.471883342046318e-01,-7.047002758562337e-01,-1.188944955203736e+00,86,-4
16
+ 4.393917012645369e-01,1.6667349537252904e-01,-1.4912575927056055e+00,6.350314368921064e-01,10,37
17
+ -3.9727181432879766e-01,-1.3288057758695562e-01,-6.37437025552229e-01,-2.977908794017283e-01,-48,-81
18
+ 1.7858704939058352e+00,1.2691209270361992e-01,1.0500020720820478e-02,4.0198936344470165e-01,129,189
19
+ -4.380743016111864e-01,-1.2527953600499262e+00,-5.096521817516535e-01,7.774903558319101e-01,-105,-36
20
+ 1.6422775548733395e-01,5.672902778526694e-01,1.6481349322075596e+00,-2.226751005151545e-01,75,70
21
+ 3.9009332268792646e-01,-6.5240858238702e-01,1.9559123082506942e+00,-3.909533751876011e-01,29,54
22
+ 1.4805147914344243e+00,1.8675589604265699e+00,1.9229420264803847e+00,9.060446582753853e-01,243,313
23
+ 3.872804753950634e-01,-2.2555642294021894e+00,-1.6981058194322545e+00,-1.0225068436356035e+00,-134,-160
24
+ -1.3477590611424464e+00,-1.2704849984857336e+00,1.8831506970562544e+00,9.693967081580112e-01,-118,-21
25
+ 5.829536797532936e-01,-3.994490292628752e-01,9.77249677148556e-02,3.7005588784751875e-01,20,69
26
+ 3.169426119248496e-01,9.20858823780819e-01,1.1880297923523018e+00,3.187276529430212e-01,96,117
27
+ -1.6020576556067476e+00,-1.1043833394284506e+00,6.252314510271875e-01,5.2165079260974405e-02,-155,-147
28
+ -4.779740040404867e-01,-4.7965581400794766e-01,-1.8430695501566485e+00,6.203582983435125e-01,-94,-74
29
+ 1.0201727117157997e+00,-6.920498477843912e-01,-1.1054065723247261e-01,1.5363770542457977e+00,33,175
30
+ -2.0515826376580087e-01,3.1306770165090136e-01,1.4940790731576061e+00,-8.540957393017248e-01,31,-18
31
+ -9.77277879876411e-01,9.500884175255894e-01,1.8675579901499675e+00,-1.513572082976979e-01,23,-6
32
+ 3.024718977397814e-01,-6.343220936809636e-01,6.651722238316789e-02,-3.627411659871381e-01,-13,-14
33
+ -7.306777528648248e-01,-3.8487980918127546e-01,-1.1268258087567435e+00,9.4351589317074e-02,-93,-106
34
+ 8.443629764015471e-01,-1.0002153473895647e+00,-1.225435518830168e+00,-1.5447710967776116e+00,-27,-105
35
+ -3.4598177569938643e-01,-4.635959746460942e-01,-9.55945000492777e-01,4.814814737734622e-01,-66,-41
36
+ 5.194539579613895e-02,7.290905621775369e-01,-9.072983643832422e-01,1.2898291075741067e-01,24,3
37
+ 9.008264869541871e-01,4.6566243973045984e-01,-1.1651498407833565e+00,-1.5362436862772237e+00,57,-56
38
+ -1.1280113314700069e+00,2.80441705316296e-01,-2.6773353689396645e-01,-9.931236109295807e-01,-69,-170
39
+ -1.3749512934180188e+00,-6.436184028328905e-01,-3.5399391125348395e-01,-2.2234031522244266e+00,-141,-309
40
+ -1.6760038063299767e+00,1.15233156478312e+00,-3.090129690471222e-01,1.079618592036821e+00,-53,-48
41
+ 1.2167501649282841e-01,4.4386323274542566e-01,7.610377251469934e-01,3.3367432737426683e-01,48,72
42
+ 1.8877859679382855e-01,5.238910238342056e-01,-1.936279805846507e+00,8.842208704466141e-02,1,-28
43
+ 1.6092816829822298e-01,-1.9065349358139935e-01,-1.568211160255477e-02,-3.948495140334503e-01,0,-19
44
+ 9.766390364837128e-01,3.563663971744019e-01,2.082749780768603e-01,7.065731681919482e-01,91,153
45
+ 4.001572083672233e-01,9.787379841057392e-01,1.764052345967664e+00,2.240893199201458e+00,123,282
46
+ 6.088438344754508e-01,-1.0452533661469547e+00,2.8634368889227957e-01,1.2111452896827009e+00,-6,119
47
+ -4.017809362082619e-01,-1.6301983469660446e+00,1.7742614225375283e-01,4.627822555257742e-01,-110,-42
48
+ 1.469358769900285e+00,1.549474256969163e-01,1.5327792143584575e+00,3.7816251960217356e-01,140,212
49
+ -8.264385386590144e-01,-9.84525244254323e-02,-7.447548220484399e-01,-6.634782863621074e-01,-78,-148
50
+ -9.815038964295794e-02,9.101789080925919e-01,2.7992459904323824e-01,3.1721821519130206e-01,49,49
51
+ 6.326199420033171e-02,1.565065379653756e-01,-1.5407970144446248e+00,2.3218103620027578e-01,-18,-26
52
+ 8.235041539637314e-01,2.16323594928069e+00,7.717905512136674e-01,1.336527949436392e+00,193,254
53
+ 9.740016626878341e-02,3.990463456401302e-01,-3.108861716984717e-01,-2.77259275642665e+00,13,-187
54
+ -6.894491845499376e-01,-6.522935999350191e-01,1.3645318481024713e+00,-5.211893123011109e-01,-55,-69
55
+ 1.9100649530990337e+00,-2.680033709513804e-01,-8.612256850547025e-01,8.024563957963952e-01,99,187
56
+ 4.160500462614255e-01,-1.1561824318219127e+00,-5.428614760167177e-01,7.811981017099934e-01,-43,40
57
+ -2.37921729736007e-01,-1.4240609089825316e+00,-5.973160689653627e-01,-4.9331988336219407e-01,-107,-116
58
+ -1.1610393903436653e-01,-2.0306844677814944e+00,4.9374177734918845e-01,2.0644928613593194e+00,-101,95
59
+ 9.444794869904138e-01,-9.128222254441586e-01,2.383144774863942e+00,1.117016288095853e+00,66,218
60
+ -1.0600158227215473e+00,-1.3594970067832082e-01,2.303916697683942e+00,1.1368913626026953e+00,-28,62
61
+ -5.788496647644155e-01,-3.1155253212737266e-01,-8.707971491818818e-01,5.616534222974544e-02,-73,-85
62
+ 1.0544517269311366e+00,-4.0317694697317963e-01,-1.0707526215105425e+00,1.2224450703824274e+00,31,131
63
+ -1.0799315083634233e+00,-1.1474686524111024e+00,1.126635922106507e+00,-4.3782004474443403e-01,-113,-119
64
+ 1.1411018666575734e+00,1.4665787155741776e+00,8.579239242923363e-01,8.52551939461232e-01,177,231
65
+ -2.4945858016094885e-01,4.949498165009074e-02,8.416312640736364e-01,4.9383677628095635e-01,4,43
66
+ -1.3833639553950554e+00,-1.582938397335082e+00,-7.255973784635843e-01,6.103793791072052e-01,-192,-147
67
+ -2.127402802139687e-01,-8.954665611936756e-01,-1.6138978475579515e+00,3.86902497859262e-01,-94,-71
68
+ -1.4200179371789752e+00,-1.7062701906250126e+00,-1.0485529650670926e+00,1.9507753952317897e+00,-204,-70
69
+ -1.6164741886510325e+00,-2.918373627478628e-01,-3.5343174875719907e-01,-7.614922118116233e-01,-134,-216
70
+ 4.0746183624111043e-01,-7.699160744453164e-01,6.722947570124355e-01,5.392491912918173e-01,1,75
71
+ -2.0699850250135325e+00,4.2625873077810095e-01,1.4944845444913688e+00,6.769080350302455e-01,-84,-70
72
+ -4.61584604814709e-01,-6.824160532463124e-02,-1.3159074105115212e+00,1.7133427216493666e+00,-56,34
73
+ -3.193284171450952e-01,6.915387510701866e-01,1.4195316332077967e-01,6.947491436560059e-01,21,45
74
+ -3.595531615405413e-01,-8.13146282044454e-01,-6.72460447775951e-01,-1.7262826023316769e+00,-87,-200
75
+ 3.77088908626934e-03,9.318483741143037e-01,6.98457149107336e-01,3.39964983801262e-01,66,74
76
+ -1.0994007905841945e+00,2.98238174206056e-01,3.7642553115562943e-01,1.3263858966870303e+00,-46,18
77
+ 1.9436211856492926e+00,-4.1361898075974735e-01,-1.17312340511416e+00,-7.474548114407578e-01,82,66
78
+ 1.9295320538169858e+00,9.494208069257608e-01,-4.980324506923049e-01,8.75512413851909e-02,172,185
79
+ -1.1680934977411974e+00,5.232766605317537e-01,-3.92828182274956e-02,-1.715463312222481e-01,-51,-101
80
+ -1.4543656745987648e+00,4.575851730144607e-02,2.2697546239876076e+00,-1.871838500258336e-01,-49,-62
81
+ -1.180632184122412e+00,-2.8182228338654868e-02,-5.10805137568873e-01,4.2833187053041766e-01,-90,-91
82
+ -1.2348258203536526e+00,4.02341641177549e-01,1.1394006845433007e+00,-6.848100909403132e-01,-40,-106
83
+ 1.8958891760305832e+00,1.1787795711596507e+00,1.4882521937955997e+00,-1.7992483581235091e-01,222,238
84
+ 4.5093446180591484e-01,-6.840108977372166e-01,-1.7558905834377194e+00,1.6595507961898721e+00,-37,78
85
+ 1.5430145954067358e+00,-1.2928569097234486e+00,-7.395629963913133e-01,2.6705086934918293e-01,19,92
86
+ -1.5706234086334527e+00,-2.0690367616397173e-01,6.433144650629279e-01,8.801789120807822e-01,-101,-59
87
+ -1.466424327802514e+00,5.210648764527586e-01,-8.133642592042029e-01,-5.757879698130661e-01,-89,-182
88
+ -2.868871923899076e-01,-6.16264020956474e-02,-4.2171451290578935e-02,-1.0730527629117469e-01,-23,-36
89
+ -6.510255933001469e-01,-1.0342428417844647e+00,8.568306119026912e-01,6.81594518281627e-01,-80,-8
90
+ -5.068163542986875e-01,-5.963140384505081e-01,-1.188859257784029e+00,-5.256729626954629e-02,-91,-105
91
+ -4.6641909673594306e-01,-9.444462559182504e-01,7.863279621089762e-01,-4.1004969320254847e-01,-68,-69
92
+ 6.536185954403606e-01,8.644361988595057e-01,-2.5529898158340787e+00,-7.421650204064419e-01,36,-58
93
+ 1.3018462295649984e+00,-6.280875596415789e-01,6.898181645347884e-01,-4.810271184607877e-01,66,86
94
+ 1.2023798487844113e+00,-3.873268174079523e-01,1.2302906807277207e+00,-3.0230275057533557e-01,84,115
95
+ -1.550100930908342e-01,6.140793703460803e-01,9.47251967773748e-01,9.222066715665268e-01,45,101
96
+ -4.607197873885533e-01,-1.3342584714027534e+00,6.663830820319143e-01,-1.3467175057975553e+00,-94,-151
97
+ 4.1059850193837233e-01,1.44043571160878e-01,-1.0321885179355784e-01,1.454273506962975e+00,37,139
98
+ -1.6169560443108344e+00,-2.4326124398935636e-02,6.40131526097592e-01,-7.380309092056887e-01,-99,-173
99
+ -2.393791775759264e-01,1.0996595958871132e+00,-3.691818379424436e-01,6.552637307225978e-01,38,43
100
+ -4.5338580385138766e-01,-6.878376110286823e-01,1.068509399316009e+00,-1.2140774030941206e+00,-49,-109
101
+ 1.658130679618188e+00,-1.1816404512856976e-01,-1.3065268517353166e+00,-6.801782039968504e-01,76,49
@@ -1,28 +1,28 @@
1
- seq_no,train_id,schedule_date,source,next_station,destination,geo_tag,arrival_time,departure_time
2
- 11,210,2016-03-26,Wilmington,Sharon Hill,Norristown,POINT (-75.27786 39.90135),2016-03-26 11:26:00,2016-03-26 11:27:00
3
- 16,210,2016-03-26,Wilmington,Suburban Station,Norristown,POINT (-75.18373 39.95694),2016-03-26 11:51:00,2016-03-26 11:53:00
4
- 10,210,2016-03-26,Wilmington,Folcroft,Norristown,POINT (-75.29005 39.89624),2016-03-26 11:23:01,2016-03-26 11:23:45
5
- 26,210,2016-03-26,Wilmington,Main St,Norristown,POINT (-75.34562 40.11321),2016-03-26 12:33:05,2016-03-26 12:34:11
6
- 24,210,2016-03-26,Wilmington,Conshohocken,Norristown,POINT (-75.28487 40.07404),2016-03-26 12:25:06,2016-03-26 12:26:01
7
- 3,210,2016-03-26,Wilmington,Highland Ave,Norristown,POINT (-75.4199 39.82172),2016-03-26 10:52:05,2016-03-26 10:53:45
8
- 1,210,2016-03-26,Wilmington,Claymont,Norristown,POINT (-75.5536 39.7374),2016-03-26 10:41:02,2016-03-26 10:43:01
9
- 20,210,2016-03-26,Wilmington,Allegheny,Norristown,POINT (-75.15496 39.99343),2016-03-26 12:10:06,2016-03-26 12:12:45
10
- 18,210,2016-03-26,Wilmington,Temple U,Norristown,POINT (-75.15358 39.95547),2016-03-26 12:04:01,2016-03-26 12:05:30
11
- 8,210,2016-03-26,Wilmington,Norwood,Norristown,POINT (-75.31239 39.88648),2016-03-26 11:15:06,2016-03-26 11:16:01
12
- 25,210,2016-03-26,Wilmington,Norristown TC,Norristown,POINT (-75.30747 40.07137),2016-03-26 12:28:06,2016-03-26 12:29:01
13
- 19,210,2016-03-26,Wilmington,North Broad St,Norristown,POINT (-75.14987 39.9806),2016-03-26 12:07:06,2016-03-26 12:08:00
14
- 15,210,2016-03-26,Wilmington,30th Street Station,Norristown,POINT (-75.1912 39.9471),2016-03-26 11:45:00,2016-03-26 11:48:00
15
- 14,210,2016-03-26,Wilmington,University City,Norristown,POINT (-75.25526 39.9127),2016-03-26 11:38:00,2016-03-26 11:40:01
16
- 6,210,2016-03-26,Wilmington,Ridley Park,Norristown,POINT (-75.33168 39.87122),2016-03-26 11:07:06,2016-03-26 11:08:00
17
- 23,210,2016-03-26,Wilmington,Spring Mill,Norristown,POINT (-75.26685 40.05845),2016-03-26 12:21:36,2016-03-26 12:23:01
18
- 21,210,2016-03-26,Wilmington,Wissahickon,Norristown,POINT (-75.19327 40.01151),2016-03-26 12:14:06,2016-03-26 12:15:00
19
- 7,210,2016-03-26,Wilmington,Prospect Park,Norristown,POINT (-75.32306 39.88002),2016-03-26 11:10:06,2016-03-26 11:11:40
20
- 22,210,2016-03-26,Wilmington,Ivy Ridge,Norristown,POINT (-75.225 40.02694),2016-03-26 12:18:01,2016-03-26 12:19:45
21
- 12,210,2016-03-26,Wilmington,Curtis Park,Norristown,POINT (-75.27096 39.9043),2016-03-26 11:30:06,2016-03-26 11:31:45
22
- 27,210,2016-03-26,Wilmington,Elm St,Norristown,POINT (-75.34864 40.11735),2016-03-26 12:36:06,2016-03-26 12:37:45
23
- 4,210,2016-03-26,Wilmington,Chester TC,Norristown,POINT (-75.39316 39.83367),2016-03-26 10:56:01,2016-03-26 10:57:00
24
- 2,210,2016-03-26,Wilmington,Marcus Hook,Norristown,POINT (-75.45059 39.79994),2016-03-26 10:46:06,2016-03-26 10:47:01
25
- 5,210,2016-03-26,Wilmington,Crum Lynne,Norristown,POINT (-75.3616 39.84893),2016-03-26 11:03:06,2016-03-26 11:04:00
26
- 9,210,2016-03-26,Wilmington,Glenolden,Norristown,POINT (-75.30364 39.89061),2016-03-26 11:19:06,2016-03-26 11:20:45
27
- 13,210,2016-03-26,Wilmington,Darby,Norristown,POINT (-75.26636 39.90706),2016-03-26 11:33:00,2016-03-26 11:34:45
1
+ seq_no,train_id,schedule_date,source,next_station,destination,geo_tag,arrival_time,departure_time
2
+ 11,210,2016-03-26,Wilmington,Sharon Hill,Norristown,POINT (-75.27786 39.90135),2016-03-26 11:26:00,2016-03-26 11:27:00
3
+ 16,210,2016-03-26,Wilmington,Suburban Station,Norristown,POINT (-75.18373 39.95694),2016-03-26 11:51:00,2016-03-26 11:53:00
4
+ 10,210,2016-03-26,Wilmington,Folcroft,Norristown,POINT (-75.29005 39.89624),2016-03-26 11:23:01,2016-03-26 11:23:45
5
+ 26,210,2016-03-26,Wilmington,Main St,Norristown,POINT (-75.34562 40.11321),2016-03-26 12:33:05,2016-03-26 12:34:11
6
+ 24,210,2016-03-26,Wilmington,Conshohocken,Norristown,POINT (-75.28487 40.07404),2016-03-26 12:25:06,2016-03-26 12:26:01
7
+ 3,210,2016-03-26,Wilmington,Highland Ave,Norristown,POINT (-75.4199 39.82172),2016-03-26 10:52:05,2016-03-26 10:53:45
8
+ 1,210,2016-03-26,Wilmington,Claymont,Norristown,POINT (-75.5536 39.7374),2016-03-26 10:41:02,2016-03-26 10:43:01
9
+ 20,210,2016-03-26,Wilmington,Allegheny,Norristown,POINT (-75.15496 39.99343),2016-03-26 12:10:06,2016-03-26 12:12:45
10
+ 18,210,2016-03-26,Wilmington,Temple U,Norristown,POINT (-75.15358 39.95547),2016-03-26 12:04:01,2016-03-26 12:05:30
11
+ 8,210,2016-03-26,Wilmington,Norwood,Norristown,POINT (-75.31239 39.88648),2016-03-26 11:15:06,2016-03-26 11:16:01
12
+ 25,210,2016-03-26,Wilmington,Norristown TC,Norristown,POINT (-75.30747 40.07137),2016-03-26 12:28:06,2016-03-26 12:29:01
13
+ 19,210,2016-03-26,Wilmington,North Broad St,Norristown,POINT (-75.14987 39.9806),2016-03-26 12:07:06,2016-03-26 12:08:00
14
+ 15,210,2016-03-26,Wilmington,30th Street Station,Norristown,POINT (-75.1912 39.9471),2016-03-26 11:45:00,2016-03-26 11:48:00
15
+ 14,210,2016-03-26,Wilmington,University City,Norristown,POINT (-75.25526 39.9127),2016-03-26 11:38:00,2016-03-26 11:40:01
16
+ 6,210,2016-03-26,Wilmington,Ridley Park,Norristown,POINT (-75.33168 39.87122),2016-03-26 11:07:06,2016-03-26 11:08:00
17
+ 23,210,2016-03-26,Wilmington,Spring Mill,Norristown,POINT (-75.26685 40.05845),2016-03-26 12:21:36,2016-03-26 12:23:01
18
+ 21,210,2016-03-26,Wilmington,Wissahickon,Norristown,POINT (-75.19327 40.01151),2016-03-26 12:14:06,2016-03-26 12:15:00
19
+ 7,210,2016-03-26,Wilmington,Prospect Park,Norristown,POINT (-75.32306 39.88002),2016-03-26 11:10:06,2016-03-26 11:11:40
20
+ 22,210,2016-03-26,Wilmington,Ivy Ridge,Norristown,POINT (-75.225 40.02694),2016-03-26 12:18:01,2016-03-26 12:19:45
21
+ 12,210,2016-03-26,Wilmington,Curtis Park,Norristown,POINT (-75.27096 39.9043),2016-03-26 11:30:06,2016-03-26 11:31:45
22
+ 27,210,2016-03-26,Wilmington,Elm St,Norristown,POINT (-75.34864 40.11735),2016-03-26 12:36:06,2016-03-26 12:37:45
23
+ 4,210,2016-03-26,Wilmington,Chester TC,Norristown,POINT (-75.39316 39.83367),2016-03-26 10:56:01,2016-03-26 10:57:00
24
+ 2,210,2016-03-26,Wilmington,Marcus Hook,Norristown,POINT (-75.45059 39.79994),2016-03-26 10:46:06,2016-03-26 10:47:01
25
+ 5,210,2016-03-26,Wilmington,Crum Lynne,Norristown,POINT (-75.3616 39.84893),2016-03-26 11:03:06,2016-03-26 11:04:00
26
+ 9,210,2016-03-26,Wilmington,Glenolden,Norristown,POINT (-75.30364 39.89061),2016-03-26 11:19:06,2016-03-26 11:20:45
27
+ 13,210,2016-03-26,Wilmington,Darby,Norristown,POINT (-75.26636 39.90706),2016-03-26 11:33:00,2016-03-26 11:34:45
28
28
  17,210,2016-03-26,Wilmington,Jefferson Station,Norristown,POINT (-75.1677778 39.9538889),2016-03-26 11:56:06,2016-03-26 11:58:17
@@ -1,6 +1,6 @@
1
- TargetColumn,transformation,Parameters,DefaultValue
2
- sepal_length,log,{"base":10},10
3
- sepal_width,abs,{},10
4
- petal_length,exp,{},10
5
- petal_width,sigmoid,{},10
1
+ TargetColumn,transformation,Parameters,DefaultValue
2
+ sepal_length,log,{"base":10},10
3
+ sepal_width,abs,{},10
4
+ petal_length,exp,{},10
5
+ petal_width,sigmoid,{},10
6
6
  id,tanh,{},10
@@ -1,2 +1,2 @@
1
- TargetColumn,transformation,Parameters,DefaultValue
1
+ TargetColumn,transformation,Parameters,DefaultValue
2
2
  fare,log,{"base":10},10
@@ -1,16 +1,16 @@
1
- "ts","tv_imp"
2
- "2012-01-01","ad1"
3
- "2012-01-03","ad3"
4
- "2012-01-06","ad6"
5
- "2012-01-14","ad14"
6
- "2012-01-11","ad11"
7
- "2012-01-15","ad15"
8
- "2012-01-07","ad7"
9
- "2012-01-13","ad13"
10
- "2012-01-05","ad5"
11
- "2012-01-12","ad12"
12
- "2012-01-08","ad8"
13
- "2012-01-10","ad10"
14
- "2012-01-04","ad4"
15
- "2012-01-09","ad9"
16
- "2012-01-02","ad2"
1
+ "ts","tv_imp"
2
+ "2012-01-01","ad1"
3
+ "2012-01-03","ad3"
4
+ "2012-01-06","ad6"
5
+ "2012-01-14","ad14"
6
+ "2012-01-11","ad11"
7
+ "2012-01-15","ad15"
8
+ "2012-01-07","ad7"
9
+ "2012-01-13","ad13"
10
+ "2012-01-05","ad5"
11
+ "2012-01-12","ad12"
12
+ "2012-01-08","ad8"
13
+ "2012-01-10","ad10"
14
+ "2012-01-04","ad4"
15
+ "2012-01-09","ad9"
16
+ "2012-01-02","ad2"