teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +1935 -1640
- teradataml/__init__.py +70 -60
- teradataml/_version.py +11 -11
- teradataml/analytics/Transformations.py +2995 -2995
- teradataml/analytics/__init__.py +81 -83
- teradataml/analytics/analytic_function_executor.py +2040 -2010
- teradataml/analytics/analytic_query_generator.py +958 -958
- teradataml/analytics/byom/H2OPredict.py +514 -514
- teradataml/analytics/byom/PMMLPredict.py +437 -437
- teradataml/analytics/byom/__init__.py +14 -14
- teradataml/analytics/json_parser/__init__.py +130 -130
- teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
- teradataml/analytics/json_parser/json_store.py +191 -191
- teradataml/analytics/json_parser/metadata.py +1637 -1637
- teradataml/analytics/json_parser/utils.py +798 -803
- teradataml/analytics/meta_class.py +196 -196
- teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
- teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
- teradataml/analytics/sqle/__init__.py +97 -110
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
- teradataml/analytics/table_operator/__init__.py +10 -10
- teradataml/analytics/uaf/__init__.py +63 -63
- teradataml/analytics/utils.py +693 -692
- teradataml/analytics/valib.py +1603 -1600
- teradataml/automl/__init__.py +1683 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +1011 -0
- teradataml/automl/data_transformation.py +789 -0
- teradataml/automl/feature_engineering.py +1580 -0
- teradataml/automl/feature_exploration.py +554 -0
- teradataml/automl/model_evaluation.py +151 -0
- teradataml/automl/model_training.py +1026 -0
- teradataml/catalog/__init__.py +1 -3
- teradataml/catalog/byom.py +1759 -1716
- teradataml/catalog/function_argument_mapper.py +859 -861
- teradataml/catalog/model_cataloging_utils.py +491 -1510
- teradataml/clients/auth_client.py +133 -0
- teradataml/clients/pkce_client.py +481 -481
- teradataml/common/aed_utils.py +7 -2
- teradataml/common/bulk_exposed_utils.py +111 -111
- teradataml/common/constants.py +1438 -1441
- teradataml/common/deprecations.py +160 -0
- teradataml/common/exceptions.py +73 -73
- teradataml/common/formula.py +742 -742
- teradataml/common/garbagecollector.py +597 -635
- teradataml/common/messagecodes.py +424 -431
- teradataml/common/messages.py +228 -231
- teradataml/common/sqlbundle.py +693 -693
- teradataml/common/td_coltype_code_to_tdtype.py +48 -48
- teradataml/common/utils.py +2424 -2500
- teradataml/common/warnings.py +25 -25
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/config/dummy_file1.cfg +4 -4
- teradataml/config/dummy_file2.cfg +2 -2
- teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
- teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
- teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
- teradataml/context/aed_context.py +217 -217
- teradataml/context/context.py +1091 -999
- teradataml/data/A_loan.csv +19 -19
- teradataml/data/BINARY_REALS_LEFT.csv +11 -11
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
- teradataml/data/B_loan.csv +49 -49
- teradataml/data/BuoyData2.csv +17 -17
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
- teradataml/data/Convolve2RealsLeft.csv +5 -5
- teradataml/data/Convolve2RealsRight.csv +5 -5
- teradataml/data/Convolve2ValidLeft.csv +11 -11
- teradataml/data/Convolve2ValidRight.csv +11 -11
- teradataml/data/DFFTConv_Real_8_8.csv +65 -65
- teradataml/data/Orders1_12mf.csv +24 -24
- teradataml/data/Pi_loan.csv +7 -7
- teradataml/data/SMOOTHED_DATA.csv +7 -7
- teradataml/data/TestDFFT8.csv +9 -9
- teradataml/data/TestRiver.csv +109 -109
- teradataml/data/Traindata.csv +28 -28
- teradataml/data/acf.csv +17 -17
- teradataml/data/adaboost_example.json +34 -34
- teradataml/data/adaboostpredict_example.json +24 -24
- teradataml/data/additional_table.csv +10 -10
- teradataml/data/admissions_test.csv +21 -21
- teradataml/data/admissions_train.csv +41 -41
- teradataml/data/admissions_train_nulls.csv +41 -41
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -13
- teradataml/data/ageandpressure.csv +31 -31
- teradataml/data/antiselect_example.json +36 -36
- teradataml/data/antiselect_input.csv +8 -8
- teradataml/data/antiselect_input_mixed_case.csv +8 -8
- teradataml/data/applicant_external.csv +6 -6
- teradataml/data/applicant_reference.csv +6 -6
- teradataml/data/arima_example.json +9 -9
- teradataml/data/assortedtext_input.csv +8 -8
- teradataml/data/attribution_example.json +33 -33
- teradataml/data/attribution_sample_table.csv +27 -27
- teradataml/data/attribution_sample_table1.csv +6 -6
- teradataml/data/attribution_sample_table2.csv +11 -11
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +42 -42
- teradataml/data/bank_web_clicks2.csv +91 -91
- teradataml/data/bank_web_url.csv +85 -85
- teradataml/data/barrier.csv +2 -2
- teradataml/data/barrier_new.csv +3 -3
- teradataml/data/betweenness_example.json +13 -13
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -8
- teradataml/data/bin_fit_ip.csv +3 -3
- teradataml/data/binary_complex_left.csv +11 -11
- teradataml/data/binary_complex_right.csv +11 -11
- teradataml/data/binary_matrix_complex_left.csv +21 -21
- teradataml/data/binary_matrix_complex_right.csv +21 -21
- teradataml/data/binary_matrix_real_left.csv +21 -21
- teradataml/data/binary_matrix_real_right.csv +21 -21
- teradataml/data/blood2ageandweight.csv +26 -26
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -507
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -11
- teradataml/data/burst_data.csv +5 -5
- teradataml/data/burst_example.json +20 -20
- teradataml/data/byom_example.json +17 -17
- teradataml/data/bytes_table.csv +3 -3
- teradataml/data/cal_housing_ex_raw.csv +70 -70
- teradataml/data/callers.csv +7 -7
- teradataml/data/calls.csv +10 -10
- teradataml/data/cars_hist.csv +33 -33
- teradataml/data/cat_table.csv +24 -24
- teradataml/data/ccm_example.json +31 -31
- teradataml/data/ccm_input.csv +91 -91
- teradataml/data/ccm_input2.csv +13 -13
- teradataml/data/ccmexample.csv +101 -101
- teradataml/data/ccmprepare_example.json +8 -8
- teradataml/data/ccmprepare_input.csv +91 -91
- teradataml/data/cfilter_example.json +12 -12
- teradataml/data/changepointdetection_example.json +18 -18
- teradataml/data/changepointdetectionrt_example.json +8 -8
- teradataml/data/chi_sq.csv +2 -2
- teradataml/data/churn_data.csv +14 -14
- teradataml/data/churn_emission.csv +35 -35
- teradataml/data/churn_initial.csv +3 -3
- teradataml/data/churn_state_transition.csv +5 -5
- teradataml/data/citedges_2.csv +745 -745
- teradataml/data/citvertices_2.csv +1210 -1210
- teradataml/data/clicks2.csv +16 -16
- teradataml/data/clickstream.csv +12 -12
- teradataml/data/clickstream1.csv +11 -11
- teradataml/data/closeness_example.json +15 -15
- teradataml/data/complaints.csv +21 -21
- teradataml/data/complaints_mini.csv +3 -3
- teradataml/data/complaints_testtoken.csv +224 -224
- teradataml/data/complaints_tokens_test.csv +353 -353
- teradataml/data/complaints_traintoken.csv +472 -472
- teradataml/data/computers_category.csv +1001 -1001
- teradataml/data/computers_test1.csv +1252 -1252
- teradataml/data/computers_train1.csv +5009 -5009
- teradataml/data/computers_train1_clustered.csv +5009 -5009
- teradataml/data/confusionmatrix_example.json +9 -9
- teradataml/data/conversion_event_table.csv +3 -3
- teradataml/data/corr_input.csv +17 -17
- teradataml/data/correlation_example.json +11 -11
- teradataml/data/coxhazardratio_example.json +39 -39
- teradataml/data/coxph_example.json +15 -15
- teradataml/data/coxsurvival_example.json +28 -28
- teradataml/data/cpt.csv +41 -41
- teradataml/data/credit_ex_merged.csv +45 -45
- teradataml/data/customer_loyalty.csv +301 -301
- teradataml/data/customer_loyalty_newseq.csv +31 -31
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +146 -146
- teradataml/data/decisionforest_example.json +37 -37
- teradataml/data/decisionforestpredict_example.json +38 -38
- teradataml/data/decisiontree_example.json +21 -21
- teradataml/data/decisiontreepredict_example.json +45 -45
- teradataml/data/dfft2_size4_real.csv +17 -17
- teradataml/data/dfft2_test_matrix16.csv +17 -17
- teradataml/data/dfft2conv_real_4_4.csv +65 -65
- teradataml/data/diabetes.csv +443 -443
- teradataml/data/diabetes_test.csv +89 -89
- teradataml/data/dict_table.csv +5 -5
- teradataml/data/docperterm_table.csv +4 -4
- teradataml/data/docs/__init__.py +1 -1
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
- teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
- teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
- teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
- teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
- teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
- teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
- teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
- teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
- teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
- teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
- teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
- teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
- teradataml/data/dtw_example.json +17 -17
- teradataml/data/dtw_t1.csv +11 -11
- teradataml/data/dtw_t2.csv +4 -4
- teradataml/data/dwt2d_example.json +15 -15
- teradataml/data/dwt_example.json +14 -14
- teradataml/data/dwt_filter_dim.csv +5 -5
- teradataml/data/emission.csv +9 -9
- teradataml/data/emp_table_by_dept.csv +19 -19
- teradataml/data/employee_info.csv +4 -4
- teradataml/data/employee_table.csv +6 -6
- teradataml/data/excluding_event_table.csv +2 -2
- teradataml/data/finance_data.csv +6 -6
- teradataml/data/finance_data2.csv +61 -61
- teradataml/data/finance_data3.csv +93 -93
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -26
- teradataml/data/fmeasure_example.json +11 -11
- teradataml/data/followers_leaders.csv +10 -10
- teradataml/data/fpgrowth_example.json +12 -12
- teradataml/data/frequentpaths_example.json +29 -29
- teradataml/data/friends.csv +9 -9
- teradataml/data/fs_input.csv +33 -33
- teradataml/data/fs_input1.csv +33 -33
- teradataml/data/genData.csv +513 -513
- teradataml/data/geodataframe_example.json +39 -39
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -12
- teradataml/data/glm_example.json +56 -29
- teradataml/data/glml1l2_example.json +28 -28
- teradataml/data/glml1l2predict_example.json +54 -54
- teradataml/data/glmpredict_example.json +54 -54
- teradataml/data/gq_t1.csv +21 -21
- teradataml/data/hconvolve_complex_right.csv +5 -5
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
- teradataml/data/histogram_example.json +11 -11
- teradataml/data/hmmdecoder_example.json +78 -78
- teradataml/data/hmmevaluator_example.json +24 -24
- teradataml/data/hmmsupervised_example.json +10 -10
- teradataml/data/hmmunsupervised_example.json +7 -7
- teradataml/data/house_values.csv +12 -12
- teradataml/data/house_values2.csv +13 -13
- teradataml/data/housing_cat.csv +7 -7
- teradataml/data/housing_data.csv +9 -9
- teradataml/data/housing_test.csv +47 -47
- teradataml/data/housing_test_binary.csv +47 -47
- teradataml/data/housing_train.csv +493 -493
- teradataml/data/housing_train_attribute.csv +4 -4
- teradataml/data/housing_train_binary.csv +437 -437
- teradataml/data/housing_train_parameter.csv +2 -2
- teradataml/data/housing_train_response.csv +493 -493
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -370
- teradataml/data/ibm_stock1.csv +370 -370
- teradataml/data/identitymatch_example.json +21 -21
- teradataml/data/idf_table.csv +4 -4
- teradataml/data/impressions.csv +101 -101
- teradataml/data/inflation.csv +21 -21
- teradataml/data/initial.csv +3 -3
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +12 -12
- teradataml/data/insurance.csv +1339 -1339
- teradataml/data/interpolator_example.json +12 -12
- teradataml/data/iris_altinput.csv +481 -481
- teradataml/data/iris_attribute_output.csv +8 -8
- teradataml/data/iris_attribute_test.csv +121 -121
- teradataml/data/iris_attribute_train.csv +481 -481
- teradataml/data/iris_category_expect_predict.csv +31 -31
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -151
- teradataml/data/iris_response_train.csv +121 -121
- teradataml/data/iris_test.csv +31 -31
- teradataml/data/iris_train.csv +121 -121
- teradataml/data/join_table1.csv +4 -4
- teradataml/data/join_table2.csv +4 -4
- teradataml/data/jsons/anly_function_name.json +6 -6
- teradataml/data/jsons/byom/dataikupredict.json +147 -147
- teradataml/data/jsons/byom/datarobotpredict.json +146 -146
- teradataml/data/jsons/byom/h2opredict.json +194 -194
- teradataml/data/jsons/byom/onnxpredict.json +186 -186
- teradataml/data/jsons/byom/pmmlpredict.json +146 -146
- teradataml/data/jsons/paired_functions.json +435 -435
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
- teradataml/data/kmeans_example.json +22 -17
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +0 -0
- teradataml/data/knn_example.json +18 -18
- teradataml/data/knnrecommender_example.json +6 -6
- teradataml/data/knnrecommenderpredict_example.json +12 -12
- teradataml/data/lar_example.json +17 -17
- teradataml/data/larpredict_example.json +30 -30
- teradataml/data/lc_new_predictors.csv +5 -5
- teradataml/data/lc_new_reference.csv +9 -9
- teradataml/data/lda_example.json +8 -8
- teradataml/data/ldainference_example.json +14 -14
- teradataml/data/ldatopicsummary_example.json +8 -8
- teradataml/data/levendist_input.csv +13 -13
- teradataml/data/levenshteindistance_example.json +10 -10
- teradataml/data/linreg_example.json +9 -9
- teradataml/data/load_example_data.py +326 -323
- teradataml/data/loan_prediction.csv +295 -295
- teradataml/data/lungcancer.csv +138 -138
- teradataml/data/mappingdata.csv +12 -12
- teradataml/data/milk_timeseries.csv +157 -157
- teradataml/data/min_max_titanic.csv +4 -4
- teradataml/data/minhash_example.json +6 -6
- teradataml/data/ml_ratings.csv +7547 -7547
- teradataml/data/ml_ratings_10.csv +2445 -2445
- teradataml/data/model1_table.csv +5 -5
- teradataml/data/model2_table.csv +5 -5
- teradataml/data/models/iris_db_glm_model.pmml +56 -56
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
- teradataml/data/modularity_example.json +12 -12
- teradataml/data/movavg_example.json +7 -7
- teradataml/data/mtx1.csv +7 -7
- teradataml/data/mtx2.csv +13 -13
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -9
- teradataml/data/naivebayes_example.json +9 -9
- teradataml/data/naivebayespredict_example.json +19 -19
- teradataml/data/naivebayestextclassifier2_example.json +6 -6
- teradataml/data/naivebayestextclassifier_example.json +8 -8
- teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
- teradataml/data/name_Find_configure.csv +10 -10
- teradataml/data/namedentityfinder_example.json +14 -14
- teradataml/data/namedentityfinderevaluator_example.json +10 -10
- teradataml/data/namedentityfindertrainer_example.json +6 -6
- teradataml/data/nb_iris_input_test.csv +31 -31
- teradataml/data/nb_iris_input_train.csv +121 -121
- teradataml/data/nbp_iris_model.csv +13 -13
- teradataml/data/ner_extractor_text.csv +2 -2
- teradataml/data/ner_sports_test2.csv +29 -29
- teradataml/data/ner_sports_train.csv +501 -501
- teradataml/data/nerevaluator_example.json +5 -5
- teradataml/data/nerextractor_example.json +18 -18
- teradataml/data/nermem_sports_test.csv +17 -17
- teradataml/data/nermem_sports_train.csv +50 -50
- teradataml/data/nertrainer_example.json +6 -6
- teradataml/data/ngrams_example.json +6 -6
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
- teradataml/data/npath_example.json +23 -23
- teradataml/data/ntree_example.json +14 -14
- teradataml/data/numeric_strings.csv +4 -4
- teradataml/data/numerics.csv +4 -4
- teradataml/data/ocean_buoy.csv +17 -17
- teradataml/data/ocean_buoy2.csv +17 -17
- teradataml/data/ocean_buoys.csv +27 -27
- teradataml/data/ocean_buoys2.csv +10 -10
- teradataml/data/ocean_buoys_nonpti.csv +28 -28
- teradataml/data/ocean_buoys_seq.csv +29 -29
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -4
- teradataml/data/orders1.csv +11 -11
- teradataml/data/orders1_12.csv +12 -12
- teradataml/data/orders_ex.csv +4 -4
- teradataml/data/pack_example.json +8 -8
- teradataml/data/package_tracking.csv +19 -19
- teradataml/data/package_tracking_pti.csv +18 -18
- teradataml/data/pagerank_example.json +13 -13
- teradataml/data/paragraphs_input.csv +6 -6
- teradataml/data/pathanalyzer_example.json +7 -7
- teradataml/data/pathgenerator_example.json +7 -7
- teradataml/data/phrases.csv +7 -7
- teradataml/data/pivot_example.json +8 -8
- teradataml/data/pivot_input.csv +22 -22
- teradataml/data/playerRating.csv +31 -31
- teradataml/data/postagger_example.json +6 -6
- teradataml/data/posttagger_output.csv +44 -44
- teradataml/data/production_data.csv +16 -16
- teradataml/data/production_data2.csv +7 -7
- teradataml/data/randomsample_example.json +31 -31
- teradataml/data/randomwalksample_example.json +8 -8
- teradataml/data/rank_table.csv +6 -6
- teradataml/data/ref_mobile_data.csv +4 -4
- teradataml/data/ref_mobile_data_dense.csv +2 -2
- teradataml/data/ref_url.csv +17 -17
- teradataml/data/restaurant_reviews.csv +7 -7
- teradataml/data/river_data.csv +145 -145
- teradataml/data/roc_example.json +7 -7
- teradataml/data/roc_input.csv +101 -101
- teradataml/data/rule_inputs.csv +6 -6
- teradataml/data/rule_table.csv +2 -2
- teradataml/data/sales.csv +7 -7
- teradataml/data/sales_transaction.csv +501 -501
- teradataml/data/salesdata.csv +342 -342
- teradataml/data/sample_cities.csv +2 -2
- teradataml/data/sample_shapes.csv +10 -10
- teradataml/data/sample_streets.csv +2 -2
- teradataml/data/sampling_example.json +15 -15
- teradataml/data/sax_example.json +8 -8
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -23
- teradataml/data/scale_housing.csv +11 -11
- teradataml/data/scale_housing_test.csv +6 -6
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -11
- teradataml/data/scalebypartition_example.json +13 -13
- teradataml/data/scalemap_example.json +13 -13
- teradataml/data/scalesummary_example.json +12 -12
- teradataml/data/score_category.csv +101 -101
- teradataml/data/score_summary.csv +4 -4
- teradataml/data/script_example.json +9 -9
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +15 -15
- teradataml/data/scripts/mapper_replace.py +15 -15
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
- teradataml/data/seeds.csv +10 -10
- teradataml/data/sentenceextractor_example.json +6 -6
- teradataml/data/sentiment_extract_input.csv +11 -11
- teradataml/data/sentiment_train.csv +16 -16
- teradataml/data/sentiment_word.csv +20 -20
- teradataml/data/sentiment_word_input.csv +19 -19
- teradataml/data/sentimentextractor_example.json +24 -24
- teradataml/data/sentimenttrainer_example.json +8 -8
- teradataml/data/sequence_table.csv +10 -10
- teradataml/data/seriessplitter_example.json +7 -7
- teradataml/data/sessionize_example.json +17 -17
- teradataml/data/sessionize_table.csv +116 -116
- teradataml/data/setop_test1.csv +24 -24
- teradataml/data/setop_test2.csv +22 -22
- teradataml/data/soc_nw_edges.csv +10 -10
- teradataml/data/soc_nw_vertices.csv +7 -7
- teradataml/data/souvenir_timeseries.csv +167 -167
- teradataml/data/sparse_iris_attribute.csv +5 -5
- teradataml/data/sparse_iris_test.csv +121 -121
- teradataml/data/sparse_iris_train.csv +601 -601
- teradataml/data/star1.csv +6 -6
- teradataml/data/state_transition.csv +5 -5
- teradataml/data/stock_data.csv +53 -53
- teradataml/data/stock_movement.csv +11 -11
- teradataml/data/stock_vol.csv +76 -76
- teradataml/data/stop_words.csv +8 -8
- teradataml/data/store_sales.csv +37 -37
- teradataml/data/stringsimilarity_example.json +7 -7
- teradataml/data/strsimilarity_input.csv +13 -13
- teradataml/data/students.csv +101 -101
- teradataml/data/svm_iris_input_test.csv +121 -121
- teradataml/data/svm_iris_input_train.csv +481 -481
- teradataml/data/svm_iris_model.csv +7 -7
- teradataml/data/svmdense_example.json +9 -9
- teradataml/data/svmdensepredict_example.json +18 -18
- teradataml/data/svmsparse_example.json +7 -7
- teradataml/data/svmsparsepredict_example.json +13 -13
- teradataml/data/svmsparsesummary_example.json +7 -7
- teradataml/data/target_mobile_data.csv +13 -13
- teradataml/data/target_mobile_data_dense.csv +5 -5
- teradataml/data/templatedata.csv +1201 -1201
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +150 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -53
- teradataml/data/test_pacf_12.csv +37 -37
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -109
- teradataml/data/text_inputs.csv +6 -6
- teradataml/data/textchunker_example.json +7 -7
- teradataml/data/textclassifier_example.json +6 -6
- teradataml/data/textclassifier_input.csv +7 -7
- teradataml/data/textclassifiertrainer_example.json +6 -6
- teradataml/data/textmorph_example.json +5 -5
- teradataml/data/textparser_example.json +15 -15
- teradataml/data/texttagger_example.json +11 -11
- teradataml/data/texttokenizer_example.json +6 -6
- teradataml/data/texttrainer_input.csv +11 -11
- teradataml/data/tf_example.json +6 -6
- teradataml/data/tfidf_example.json +13 -13
- teradataml/data/tfidf_input1.csv +201 -201
- teradataml/data/tfidf_train.csv +6 -6
- teradataml/data/time_table1.csv +535 -535
- teradataml/data/time_table2.csv +14 -14
- teradataml/data/timeseriesdata.csv +1601 -1601
- teradataml/data/timeseriesdatasetsd4.csv +105 -105
- teradataml/data/titanic.csv +892 -892
- teradataml/data/token_table.csv +696 -696
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +27 -27
- teradataml/data/transformation_table.csv +5 -5
- teradataml/data/transformation_table_new.csv +1 -1
- teradataml/data/tv_spots.csv +16 -16
- teradataml/data/twod_climate_data.csv +117 -117
- teradataml/data/uaf_example.json +475 -475
- teradataml/data/univariatestatistics_example.json +8 -8
- teradataml/data/unpack_example.json +9 -9
- teradataml/data/unpivot_example.json +9 -9
- teradataml/data/unpivot_input.csv +8 -8
- teradataml/data/us_air_pass.csv +36 -36
- teradataml/data/us_population.csv +624 -624
- teradataml/data/us_states_shapes.csv +52 -52
- teradataml/data/varmax_example.json +17 -17
- teradataml/data/vectordistance_example.json +25 -25
- teradataml/data/ville_climatedata.csv +121 -121
- teradataml/data/ville_tempdata.csv +12 -12
- teradataml/data/ville_tempdata1.csv +12 -12
- teradataml/data/ville_temperature.csv +11 -11
- teradataml/data/waveletTable.csv +1605 -1605
- teradataml/data/waveletTable2.csv +1605 -1605
- teradataml/data/weightedmovavg_example.json +8 -8
- teradataml/data/wft_testing.csv +5 -5
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +5 -5
- teradataml/data/word_embed_input_table2.csv +4 -4
- teradataml/data/word_embed_model.csv +22 -22
- teradataml/data/words_input.csv +13 -13
- teradataml/data/xconvolve_complex_left.csv +6 -6
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
- teradataml/data/xgboost_example.json +35 -35
- teradataml/data/xgboostpredict_example.json +31 -31
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +1769 -1698
- teradataml/dataframe/data_transfer.py +2812 -2745
- teradataml/dataframe/dataframe.py +17630 -16946
- teradataml/dataframe/dataframe_utils.py +1875 -1740
- teradataml/dataframe/fastload.py +794 -603
- teradataml/dataframe/indexer.py +424 -424
- teradataml/dataframe/setop.py +1179 -1166
- teradataml/dataframe/sql.py +10174 -6432
- teradataml/dataframe/sql_function_parameters.py +439 -388
- teradataml/dataframe/sql_functions.py +652 -652
- teradataml/dataframe/sql_interfaces.py +220 -220
- teradataml/dataframe/vantage_function_types.py +674 -630
- teradataml/dataframe/window.py +693 -692
- teradataml/dbutils/__init__.py +3 -3
- teradataml/dbutils/dbutils.py +1167 -1150
- teradataml/dbutils/filemgr.py +267 -267
- teradataml/gen_ai/__init__.py +2 -2
- teradataml/gen_ai/convAI.py +472 -472
- teradataml/geospatial/__init__.py +3 -3
- teradataml/geospatial/geodataframe.py +1105 -1094
- teradataml/geospatial/geodataframecolumn.py +392 -387
- teradataml/geospatial/geometry_types.py +925 -925
- teradataml/hyperparameter_tuner/__init__.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
- teradataml/hyperparameter_tuner/utils.py +281 -187
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +130 -124
- teradataml/options/configure.py +358 -336
- teradataml/options/display.py +176 -176
- teradataml/plot/__init__.py +2 -2
- teradataml/plot/axis.py +1388 -1388
- teradataml/plot/constants.py +15 -15
- teradataml/plot/figure.py +398 -398
- teradataml/plot/plot.py +760 -760
- teradataml/plot/query_generator.py +83 -83
- teradataml/plot/subplot.py +216 -216
- teradataml/scriptmgmt/UserEnv.py +3791 -3761
- teradataml/scriptmgmt/__init__.py +3 -3
- teradataml/scriptmgmt/lls_utils.py +1719 -1604
- teradataml/series/series.py +532 -532
- teradataml/series/series_utils.py +71 -71
- teradataml/table_operators/Apply.py +949 -917
- teradataml/table_operators/Script.py +1718 -1982
- teradataml/table_operators/TableOperator.py +1255 -1616
- teradataml/table_operators/__init__.py +2 -3
- teradataml/table_operators/apply_query_generator.py +262 -262
- teradataml/table_operators/query_generator.py +507 -507
- teradataml/table_operators/table_operator_query_generator.py +460 -460
- teradataml/table_operators/table_operator_util.py +631 -639
- teradataml/table_operators/templates/dataframe_apply.template +184 -184
- teradataml/table_operators/templates/dataframe_map.template +176 -176
- teradataml/table_operators/templates/script_executor.template +170 -170
- teradataml/utils/dtypes.py +684 -684
- teradataml/utils/internal_buffer.py +84 -84
- teradataml/utils/print_versions.py +205 -205
- teradataml/utils/utils.py +410 -410
- teradataml/utils/validators.py +2277 -2115
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
- teradataml-20.0.0.1.dist-info/RECORD +1056 -0
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- teradataml-17.20.0.7.dist-info/RECORD +0 -1280
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,101 @@
|
|
|
1
|
+
col1,col2,col3,col4,label
|
|
2
|
+
-2.205721671526727e+00,2.8321466994682485e+00,1.867520275756581e+00,-8.64610731175433e-01,2
|
|
3
|
+
5.940271318831895e-01,5.731635150667003e-01,1.0103778829203267e+00,1.1384304963082261e+00,1
|
|
4
|
+
-6.054157973815384e-01,1.4695402199005276e+00,1.2967080804064262e+00,2.3190739909406444e-01,1
|
|
5
|
+
-1.6894137543326657e+00,1.0128345292844416e+00,1.2041909133795903e-01,-1.4461113899493347e+00,0
|
|
6
|
+
1.4337012132131193e+00,1.1270982601480961e-02,8.842657677773155e-01,1.8175270928859488e+00,1
|
|
7
|
+
2.4885701724207623e+00,-3.549097277006048e+00,-2.5077599004831708e+00,7.356663373754904e-01,0
|
|
8
|
+
8.149522883609237e-01,5.503151982707637e-01,1.11878775783329e+00,1.401835188746393e+00,0
|
|
9
|
+
1.5281758325825747e+00,-2.3937359839840564e+00,-1.7827382154867717e+00,3.0647655778895677e-01,0
|
|
10
|
+
-7.231680381760497e-02,9.918424852420743e-01,1.079616747055318e+00,5.810616458714633e-01,1
|
|
11
|
+
1.3532962753060973e+00,4.7806978517759646e-01,1.3641878049920808e+00,2.032460019376548e+00,1
|
|
12
|
+
1.7944511285596305e+00,5.182422233568129e-03,1.0966560501920106e+00,2.2688059912400154e+00,1
|
|
13
|
+
-1.4406868036855542e+00,1.3672637265065073e+00,6.731149622919457e-01,-8.91859919596895e-01,2
|
|
14
|
+
1.0992130836331504e-01,7.31244993359142e-01,8.951838770205742e-01,6.344620899857935e-01,1
|
|
15
|
+
-2.237552093695031e-01,1.8746721928084975e+00,1.9876466987502077e+00,9.883432156504453e-01,2
|
|
16
|
+
-2.100171129389473e+00,3.25103561435169e+00,2.406205156499104e+00,-4.4740722040698255e-01,2
|
|
17
|
+
9.701689943235585e-01,2.715962651517618e+00,3.666420101713081e+00,3.0658351416540803e+00,2
|
|
18
|
+
1.5315292034557055e+00,-3.2146218570770673e+00,-2.7106129772347356e+00,-2.4575503581531644e-01,0
|
|
19
|
+
1.3548998580811358e+00,-7.684162017813859e-01,-4.6877475804735114e-02,1.189512293349728e+00,0
|
|
20
|
+
-8.792651612207568e-01,7.484493033727162e-01,3.133806659361569e-01,-6.026121615130622e-01,2
|
|
21
|
+
6.42326369627201e-01,7.224830478949127e-01,1.2088889821652882e+00,1.3006240785861745e+00,1
|
|
22
|
+
2.7338999623284566e+00,-3.3530163052983015e+00,-2.1365085488245463e+00,1.17828765193378e+00,0
|
|
23
|
+
1.9975244659770346e+00,-2.4389050415716804e+00,-1.5486055326123547e+00,8.68357117306938e-01,0
|
|
24
|
+
1.2718670663208493e+00,-2.011151501336602e+00,-1.505141465791385e+00,2.422631832248353e-01,0
|
|
25
|
+
2.136461755763499e+00,-1.5364082708131555e-01,1.1246349676118002e+00,2.592892344744437e+00,1
|
|
26
|
+
-1.0463767387971428e+00,2.072521277771624e+00,1.7117300074560142e+00,8.399456600014976e-02,2
|
|
27
|
+
1.1564733856410392e-01,-6.922233327553984e-02,-8.11815766831625e-03,9.906710440047184e-02,2
|
|
28
|
+
-4.4474939960166104e-01,1.3294467657724653e+00,1.2356714816573484e+00,3.397636558606848e-01,2
|
|
29
|
+
7.230329735069526e-01,2.9416709820726694e-01,7.727443327252768e-01,1.1121588558743056e+00,1
|
|
30
|
+
1.8324086110597337e+00,-1.4464361654391522e-01,9.500036754107359e-01,2.2151584739657757e+00,1
|
|
31
|
+
-8.949735251150521e-01,-8.767003797681986e-01,-1.5371644824583068e+00,-1.724104081471264e+00,2
|
|
32
|
+
3.1968254396685936e-02,1.913592148745129e+00,2.1871813975599217e+00,1.337548543158305e+00,2
|
|
33
|
+
-5.295010766779764e-01,2.350991115051295e+00,2.341376260856668e+00,9.252620699459992e-01,2
|
|
34
|
+
9.786561706856266e-01,-1.1000141572577344e+00,-6.512227888382562e-01,4.897621895981188e-01,0
|
|
35
|
+
4.2548084865062585e-01,5.233019460721258e-01,8.5144036205131e-01,8.918594263562661e-01,2
|
|
36
|
+
1.1728175256640287e+00,-1.317817518737321e+00,-7.799300261798354e-01,5.872238155060185e-01,0
|
|
37
|
+
-2.443584186885214e+00,2.067475618266378e+00,8.566996977399313e-01,-1.683243206354091e+00,2
|
|
38
|
+
-4.2276158128364316e-01,9.962973150485089e-01,8.716398875000242e-01,1.416843474291939e-01,1
|
|
39
|
+
-1.44373025698074e+00,4.889292679846961e-01,-3.2372692196790664e-01,-1.4911102232017974e+00,2
|
|
40
|
+
-1.1383027829290153e+00,6.522942624341397e-01,4.699454855271057e-02,-9.947999509194593e-01,0
|
|
41
|
+
-3.819387970225214e-01,1.3012321927073194e+00,1.2418899561079297e+00,3.9992879512283885e-01,2
|
|
42
|
+
-5.620225253397535e-01,1.1406209196108452e+00,9.504801123771934e-01,6.371761918700547e-02,1
|
|
43
|
+
1.3896125676249422e+00,-1.813539813342489e+00,-1.2097102079438988e+00,5.248613166717124e-01,0
|
|
44
|
+
2.4758463851522423e+00,-2.7699095019421134e+00,-1.632817392094593e+00,1.2478023877400806e+00,0
|
|
45
|
+
7.216694959200303e-01,6.439541745313729e-01,1.1681601352955355e+00,1.3475524460049013e+00,1
|
|
46
|
+
3.5117341307021976e-01,7.865417025029074e-01,1.104473791055926e+00,9.765004807424893e-01,1
|
|
47
|
+
1.0928025721211885e+00,-2.450891113723896e+00,-2.1121329741692842e+00,-2.818777717308639e-01,0
|
|
48
|
+
4.06969474139137e-01,-1.293708995112314e+00,-1.2181522624172572e+00,-3.632305276501736e-01,0
|
|
49
|
+
-2.8978824993367214e-01,8.584007011351746e-01,7.962582402668705e-01,2.1607042095682255e-01,1
|
|
50
|
+
1.5794848586078107e+00,2.4036701107416447e-01,1.232406436289369e+00,2.156862942201161e+00,1
|
|
51
|
+
2.187442228125731e-01,5.381709070736012e-01,7.426160615751836e-01,6.409570872742335e-01,0
|
|
52
|
+
2.899023433706116e-02,9.062299083374733e-01,1.0442144720383355e+00,6.509150594771294e-01,2
|
|
53
|
+
1.3440332436583258e+00,-2.21099259420037e+00,-1.6876574324327382e+00,1.9789592795943634e-01,0
|
|
54
|
+
1.6923510885431092e-02,1.0102640077753082e+00,1.1547310815609215e+00,7.062051585628684e-01,0
|
|
55
|
+
1.4215775327822588e+00,1.9869880523788785e-01,1.0892175508257465e+00,1.9292765047980258e+00,1
|
|
56
|
+
3.6912216908338134e+00,-4.470425720631566e+00,-2.8204054510606804e+00,1.6293255501210493e+00,0
|
|
57
|
+
6.332591353317139e-01,3.0700517694412093e+00,3.8627421878639634e+00,2.880555411710709e+00,2
|
|
58
|
+
3.0531860792932e-01,-4.082079183733004e-01,-2.7683200118227136e-01,1.0871309272144247e-01,0
|
|
59
|
+
-2.6801299823628943e-01,3.9906192591818734e-01,2.8914806997917264e-01,-6.78188681878136e-02,2
|
|
60
|
+
-2.3211053667726502e+00,1.4864815236970312e+00,2.729906061625348e-01,-1.9224736688285549e+00,2
|
|
61
|
+
-2.208311803057051e+00,1.935678427118546e+00,8.504116645498019e-01,-1.475581377056579e+00,2
|
|
62
|
+
-2.107272113227528e+00,7.626468501171743e-01,-4.1699943957372354e-01,-2.1432086713395053e+00,2
|
|
63
|
+
2.9694595761429632e-02,-2.5440001583966276e-01,-2.7013823965968264e-01,-1.3496743889872453e-01,0
|
|
64
|
+
-1.6197484336106305e+00,3.1027604625119354e+00,2.530269084921403e+00,5.8559196213358256e-02,2
|
|
65
|
+
-1.8289652217246832e-01,7.526089522376019e-01,7.413914051536741e-01,2.7929475339269505e-01,1
|
|
66
|
+
1.4902072871374412e+00,-2.346045368544701e+00,-1.7517932706337538e+00,2.9087420866346947e-01,0
|
|
67
|
+
-1.275082312584234e+00,1.1264845797831589e+00,5.010216351026264e-01,-8.460230272623603e-01,2
|
|
68
|
+
3.313141452859733e+00,-2.972407538112374e+00,-1.35324756917722e+00,2.1675232841387126e+00,0
|
|
69
|
+
-2.071560256193874e+00,1.3027473941274694e+00,2.1654344712218576e-01,-1.73200131044599e+00,2
|
|
70
|
+
1.8849462993797015e+00,-2.4685968831056182e-01,8.661474697994327e-01,2.2121908310936034e+00,1
|
|
71
|
+
-2.8692000017174224e-01,1.048557834557211e+00,1.0134149122848968e+00,3.485956144249277e-01,1
|
|
72
|
+
1.2393621157594457e+00,-1.419355998341882e+00,-8.545043287817928e-01,6.023976406486208e-01,0
|
|
73
|
+
5.692383222031177e-01,6.852597418410251e-01,1.1222940842634186e+00,1.183125572776162e+00,1
|
|
74
|
+
-2.5663597322215495e+00,1.6266442739525337e+00,2.826875793701432e-01,-2.1370657552337575e+00,2
|
|
75
|
+
8.658254600723946e-01,2.870161120982609e-01,8.514422335769642e-01,1.2875707908091423e+00,1
|
|
76
|
+
-8.930136272452173e-01,6.177765279132996e-03,-5.358340907741215e-01,-1.1231415554924216e+00,2
|
|
77
|
+
4.171803637611743e-01,5.976496646608869e-01,9.30617113224727e-01,9.317800757827368e-01,1
|
|
78
|
+
1.0384584448767356e+00,-1.237269632959174e+00,-7.703563209383606e-01,4.7221264234321547e-01,0
|
|
79
|
+
-8.82437002901284e-02,-5.535047087736443e-01,-6.806596537280936e-01,-4.8660937000358284e-01,0
|
|
80
|
+
-2.2332945259620884e+00,2.384623575296672e+00,1.3437980496009692e+00,-1.202786826385931e+00,2
|
|
81
|
+
-1.5440535021499295e+00,6.153247321744232e-01,-2.4152710035941571e-01,-1.5320756693521462e+00,2
|
|
82
|
+
-1.2165112758892604e-01,1.6504820132700906e+00,1.7957459076734437e+00,9.652633608191348e-01,2
|
|
83
|
+
8.921338069304287e-01,-1.421006996282316e+00,-1.06744279048931e+00,1.629417336042811e-01,0
|
|
84
|
+
1.8951379768016638e+00,-2.5615682863538596e+00,-1.749797731405485e+00,6.559543109437884e-01,0
|
|
85
|
+
2.2823687017116767e-01,7.967217856594284e-01,1.0412770490561085e+00,8.282078179308016e-01,1
|
|
86
|
+
7.092165932574367e-01,2.837712488204607e-01,7.525692379086388e-01,1.0876700553283503e+00,1
|
|
87
|
+
6.918654910072527e-01,-1.3217318950534493e+00,-1.0767185485836799e+00,-2.2577575794245686e-02,0
|
|
88
|
+
-1.954106899174266e+00,8.117901024390465e-01,-2.682252643663885e-01,-1.9165414078060854e+00,2
|
|
89
|
+
6.876617604053404e-01,3.995906388655187e-01,8.706689241202226e-01,1.1389715344594316e+00,1
|
|
90
|
+
-6.594237575041862e-01,2.5860013074711397e-01,-1.0789456676958853e-01,-6.571476794668623e-01,2
|
|
91
|
+
1.2666139424327671e+00,9.941190114336296e-02,8.825466421651655e-01,1.6663474477283153e+00,1
|
|
92
|
+
-5.147043090202448e-01,4.231661751075788e-01,1.664985743769336e-01,-3.628990595543804e-01,0
|
|
93
|
+
-1.4551811872033729e+00,-2.601112666425889e-01,-1.1792131172184188e+00,-2.0133278262946055e+00,2
|
|
94
|
+
5.478498776056571e-01,3.986726520733487e-01,7.846421634878802e-01,9.618524546554021e-01,1
|
|
95
|
+
-1.1305820619922704e+00,1.7452148936845728e+00,1.2897663665351575e+00,-2.4418073358249515e-01,1
|
|
96
|
+
1.0870238730674753e+00,2.505069029639322e-01,9.445429258602135e-01,1.5420599477343706e+00,1
|
|
97
|
+
-1.3030662803551736e+00,1.7609139431470613e+00,1.2027032681839134e+00,-4.512805539219289e-01,1
|
|
98
|
+
1.1854735748896452e+00,-3.1893321896882387e+00,-2.8923197733532118e+00,-6.654679379268811e-01,0
|
|
99
|
+
1.1997789411527688e+00,-3.012273809756705e+00,-2.683049356016844e+00,-5.273840966330254e-01,0
|
|
100
|
+
5.736306760332632e-02,8.589667464313964e-01,1.0079208492194212e+00,6.546936638370967e-01,1
|
|
101
|
+
6.841153630480981e-01,-7.452656532642694e-01,-4.283990455431006e-01,3.5841561295091406e-01,0
|
|
@@ -0,0 +1,101 @@
|
|
|
1
|
+
col1,col2,col3,col4,label
|
|
2
|
+
-5.096521817516535e-01,-4.380743016111864e-01,-1.2527953600499262e+00,7.774903558319101e-01,-41
|
|
3
|
+
-6.743326606573761e-01,3.183055827435118e-02,-6.35846078378881e-01,6.764332949464997e-01,3
|
|
4
|
+
-8.877857476301128e-01,-1.980796468223927e+00,-3.479121493261526e-01,1.5634896910398005e-01,-95
|
|
5
|
+
1.9559123082506942e+00,3.9009332268792646e-01,-6.5240858238702e-01,-3.909533751876011e-01,-25
|
|
6
|
+
9.77249677148556e-02,5.829536797532936e-01,-3.994490292628752e-01,3.7005588784751875e-01,27
|
|
7
|
+
-1.8430695501566485e+00,-4.779740040404867e-01,-4.7965581400794766e-01,6.203582983435125e-01,-31
|
|
8
|
+
8.416312640736364e-01,-2.4945858016094885e-01,4.949498165009074e-02,4.9383677628095635e-01,55
|
|
9
|
+
-7.196043885517929e-01,-8.129929885540773e-01,2.745163577239395e-01,-8.909150829955279e-01,-102
|
|
10
|
+
-1.568211160255477e-02,1.6092816829822298e-01,-1.9065349358139935e-01,-3.948495140334503e-01,-42
|
|
11
|
+
-3.090129690471222e-01,-1.6760038063299767e+00,1.15233156478312e+00,1.079618592036821e+00,109
|
|
12
|
+
-7.255973784635843e-01,-1.3833639553950554e+00,-1.582938397335082e+00,6.103793791072052e-01,-115
|
|
13
|
+
2.303916697683942e+00,-1.0600158227215473e+00,-1.3594970067832082e-01,1.1368913626026953e+00,101
|
|
14
|
+
5.765908166149409e-01,-2.0829875557799488e-01,3.960067126616453e-01,-1.0930615087305058e+00,-64
|
|
15
|
+
1.4940790731576061e+00,-2.0515826376580087e-01,3.1306770165090136e-01,-8.540957393017248e-01,-30
|
|
16
|
+
-3.5343174875719907e-01,-1.6164741886510325e+00,-2.918373627478628e-01,-7.614922118116233e-01,-149
|
|
17
|
+
6.651722238316789e-02,3.024718977397814e-01,-6.343220936809636e-01,-3.627411659871381e-01,-63
|
|
18
|
+
-2.6773353689396645e-01,-1.1280113314700069e+00,2.80441705316296e-01,-9.931236109295807e-01,-112
|
|
19
|
+
-5.973160689653627e-01,-2.37921729736007e-01,-1.4240609089825316e+00,-4.9331988336219407e-01,-160
|
|
20
|
+
6.433144650629279e-01,-1.5706234086334527e+00,-2.0690367616397173e-01,8.801789120807822e-01,22
|
|
21
|
+
1.8831506970562544e+00,-1.3477590611424464e+00,-1.2704849984857336e+00,9.693967081580112e-01,-8
|
|
22
|
+
-9.072983643832422e-01,5.194539579613895e-02,7.290905621775369e-01,1.2898291075741067e-01,43
|
|
23
|
+
-1.1054065723247261e-01,1.0201727117157997e+00,-6.920498477843912e-01,1.5363770542457977e+00,120
|
|
24
|
+
-1.1573552591908536e+00,-3.122922511256933e-01,-1.576670161638159e-01,2.2567234972982093e+00,153
|
|
25
|
+
1.0500020720820478e-02,1.7858704939058352e+00,1.2691209270361992e-01,4.0198936344470165e-01,105
|
|
26
|
+
-1.1651498407833565e+00,9.008264869541871e-01,4.6566243973045984e-01,-1.5362436862772237e+00,-96
|
|
27
|
+
-4.409226322925914e-01,-2.803554951845091e-01,-3.646935443916854e-01,1.5670385527236397e-01,-29
|
|
28
|
+
1.9229420264803847e+00,1.4805147914344243e+00,1.8675589604265699e+00,9.060446582753853e-01,295
|
|
29
|
+
-8.034096641738411e-01,-6.895497777502005e-01,-4.5553250351734315e-01,1.747915902505673e-02,-69
|
|
30
|
+
-1.4912575927056055e+00,4.393917012645369e-01,1.6667349537252904e-01,6.350314368921064e-01,51
|
|
31
|
+
7.610377251469934e-01,1.2167501649282841e-01,4.4386323274542566e-01,3.3367432737426683e-01,79
|
|
32
|
+
1.1880297923523018e+00,3.169426119248496e-01,9.20858823780819e-01,3.187276529430212e-01,125
|
|
33
|
+
-1.5407970144446248e+00,6.326199420033171e-02,1.565065379653756e-01,2.3218103620027578e-01,1
|
|
34
|
+
-1.936279805846507e+00,1.8877859679382855e-01,5.238910238342056e-01,8.842208704466141e-02,9
|
|
35
|
+
2.082749780768603e-01,9.766390364837128e-01,3.563663971744019e-01,7.065731681919482e-01,123
|
|
36
|
+
7.732529774025997e-01,-1.1838806401933177e+00,-2.659172237996741e+00,6.063195243593807e-01,-151
|
|
37
|
+
2.7992459904323824e-01,-9.815038964295794e-02,9.101789080925919e-01,3.1721821519130206e-01,91
|
|
38
|
+
-5.428614760167177e-01,4.160500462614255e-01,-1.1561824318219127e+00,7.811981017099934e-01,-6
|
|
39
|
+
1.5327792143584575e+00,1.469358769900285e+00,1.549474256969163e-01,3.7816251960217356e-01,125
|
|
40
|
+
-1.225435518830168e+00,8.443629764015471e-01,-1.0002153473895647e+00,-1.5447710967776116e+00,-199
|
|
41
|
+
-3.5399391125348395e-01,-1.3749512934180188e+00,-6.436184028328905e-01,-2.2234031522244266e+00,-293
|
|
42
|
+
6.98457149107336e-01,3.77088908626934e-03,9.318483741143037e-01,3.39964983801262e-01,107
|
|
43
|
+
-9.55945000492777e-01,-3.4598177569938643e-01,-4.635959746460942e-01,4.814814737734622e-01,-20
|
|
44
|
+
-8.612256850547025e-01,1.9100649530990337e+00,-2.680033709513804e-01,8.024563957963952e-01,100
|
|
45
|
+
6.937731526901325e-01,-1.595734381462669e-01,-1.3370155966843916e-01,1.0777438059762627e+00,94
|
|
46
|
+
6.252314510271875e-01,-1.6020576556067476e+00,-1.1043833394284506e+00,5.2165079260974405e-02,-112
|
|
47
|
+
-7.047002758562337e-01,9.432607249694948e-01,7.471883342046318e-01,-1.188944955203736e+00,-36
|
|
48
|
+
2.383144774863942e+00,9.444794869904138e-01,-9.128222254441586e-01,1.117016288095853e+00,117
|
|
49
|
+
-3.108861716984717e-01,9.740016626878341e-02,3.990463456401302e-01,-2.77259275642665e+00,-219
|
|
50
|
+
-8.707971491818818e-01,-5.788496647644155e-01,-3.1155253212737266e-01,5.616534222974544e-02,-53
|
|
51
|
+
-1.0707526215105425e+00,1.0544517269311366e+00,-4.0317694697317963e-01,1.2224450703824274e+00,94
|
|
52
|
+
1.126635922106507e+00,-1.0799315083634233e+00,-1.1474686524111024e+00,-4.3782004474443403e-01,-129
|
|
53
|
+
4.9374177734918845e-01,-1.1610393903436653e-01,-2.0306844677814944e+00,2.0644928613593194e+00,50
|
|
54
|
+
-1.7020413861440594e-02,3.791517355550818e-01,2.259308950690852e+00,-4.225715166064269e-02,161
|
|
55
|
+
1.764052345967664e+00,4.001572083672233e-01,9.787379841057392e-01,2.240893199201458e+00,313
|
|
56
|
+
5.785214977288784e-01,3.49654456993174e-01,-7.64143923906443e-01,-1.4377914738015785e+00,-154
|
|
57
|
+
-1.6138978475579515e+00,-2.127402802139687e-01,-8.954665611936756e-01,3.86902497859262e-01,-66
|
|
58
|
+
1.6481349322075596e+00,1.6422775548733395e-01,5.672902778526694e-01,-2.226751005151545e-01,58
|
|
59
|
+
-6.37437025552229e-01,-3.9727181432879766e-01,-1.3288057758695562e-01,-2.977908794017283e-01,-61
|
|
60
|
+
1.7742614225375283e-01,-4.017809362082619e-01,-1.6301983469660446e+00,4.627822555257742e-01,-79
|
|
61
|
+
2.8634368889227957e-01,6.088438344754508e-01,-1.0452533661469547e+00,1.2111452896827009e+00,62
|
|
62
|
+
6.722947570124355e-01,4.0746183624111043e-01,-7.699160744453164e-01,5.392491912918173e-01,23
|
|
63
|
+
-6.945678597313655e-01,-1.4963454032767076e-01,-4.3515355172163744e-01,1.8492637284793418e+00,113
|
|
64
|
+
7.717905512136674e-01,8.235041539637314e-01,2.16323594928069e+00,1.336527949436392e+00,307
|
|
65
|
+
1.4944845444913688e+00,-2.0699850250135325e+00,4.2625873077810095e-01,6.769080350302455e-01,48
|
|
66
|
+
-1.3159074105115212e+00,-4.61584604814709e-01,-6.824160532463124e-02,1.7133427216493666e+00,103
|
|
67
|
+
1.4195316332077967e-01,-3.193284171450952e-01,6.915387510701866e-01,6.947491436560059e-01,99
|
|
68
|
+
-6.72460447775951e-01,-3.595531615405413e-01,-8.13146282044454e-01,-1.7262826023316769e+00,-232
|
|
69
|
+
-1.7558905834377194e+00,4.5093446180591484e-01,-6.840108977372166e-01,1.6595507961898721e+00,79
|
|
70
|
+
3.7642553115562943e-01,-1.0994007905841945e+00,2.98238174206056e-01,1.3263858966870303e+00,106
|
|
71
|
+
-1.17312340511416e+00,1.9436211856492926e+00,-4.1361898075974735e-01,-7.474548114407578e-01,-51
|
|
72
|
+
-4.980324506923049e-01,1.9295320538169858e+00,9.494208069257608e-01,8.75512413851909e-02,127
|
|
73
|
+
-3.92828182274956e-02,-1.1680934977411974e+00,5.232766605317537e-01,-1.715463312222481e-01,-20
|
|
74
|
+
-1.6981058194322545e+00,3.872804753950634e-01,-2.2555642294021894e+00,-1.0225068436356035e+00,-263
|
|
75
|
+
-5.10805137568873e-01,-1.180632184122412e+00,-2.8182228338654868e-02,4.2833187053041766e-01,-15
|
|
76
|
+
1.1394006845433007e+00,-1.2348258203536526e+00,4.02341641177549e-01,-6.848100909403132e-01,-51
|
|
77
|
+
1.4882521937955997e+00,1.8958891760305832e+00,1.1787795711596507e+00,-1.7992483581235091e-01,159
|
|
78
|
+
-1.1268258087567435e+00,-7.306777528648248e-01,-3.8487980918127546e-01,9.4351589317074e-02,-65
|
|
79
|
+
-7.395629963913133e-01,1.5430145954067358e+00,-1.2928569097234486e+00,2.6705086934918293e-01,-26
|
|
80
|
+
1.3645318481024713e+00,-6.894491845499376e-01,-6.522935999350191e-01,-5.211893123011109e-01,-85
|
|
81
|
+
-8.133642592042029e-01,-1.466424327802514e+00,5.210648764527586e-01,-5.757879698130661e-01,-82
|
|
82
|
+
-4.2171451290578935e-02,-2.868871923899076e-01,-6.16264020956474e-02,-1.0730527629117469e-01,-24
|
|
83
|
+
8.568306119026912e-01,-6.510255933001469e-01,-1.0342428417844647e+00,6.81594518281627e-01,-14
|
|
84
|
+
-1.188859257784029e+00,-5.068163542986875e-01,-5.963140384505081e-01,-5.256729626954629e-02,-86
|
|
85
|
+
7.863279621089762e-01,-4.6641909673594306e-01,-9.444462559182504e-01,-4.1004969320254847e-01,-99
|
|
86
|
+
-2.5529898158340787e+00,6.536185954403606e-01,8.644361988595057e-01,-7.421650204064419e-01,-36
|
|
87
|
+
6.898181645347884e-01,1.3018462295649984e+00,-6.280875596415789e-01,-4.810271184607877e-01,-26
|
|
88
|
+
1.2302906807277207e+00,1.2023798487844113e+00,-3.873268174079523e-01,-3.0230275057533557e-01,13
|
|
89
|
+
9.47251967773748e-01,-1.550100930908342e-01,6.140793703460803e-01,9.222066715665268e-01,136
|
|
90
|
+
6.663830820319143e-01,-4.607197873885533e-01,-1.3342584714027534e+00,-1.3467175057975553e+00,-210
|
|
91
|
+
-1.0321885179355784e-01,4.1059850193837233e-01,1.44043571160878e-01,1.454273506962975e+00,149
|
|
92
|
+
6.40131526097592e-01,-1.6169560443108344e+00,-2.4326124398935636e-02,-7.380309092056887e-01,-108
|
|
93
|
+
-3.691818379424436e-01,-2.393791775759264e-01,1.0996595958871132e+00,6.552637307225978e-01,116
|
|
94
|
+
1.068509399316009e+00,-4.5338580385138766e-01,-6.878376110286823e-01,-1.2140774030941206e+00,-146
|
|
95
|
+
-1.3065268517353166e+00,1.658130679618188e+00,-1.1816404512856976e-01,-6.801782039968504e-01,-37
|
|
96
|
+
8.579239242923363e-01,1.1411018666575734e+00,1.4665787155741776e+00,8.52551939461232e-01,230
|
|
97
|
+
3.86305518401881e-02,-1.6567151023219537e+00,-9.855107376841507e-01,-1.4718350074635869e+00,-251
|
|
98
|
+
2.2697546239876076e+00,-1.4543656745987648e+00,4.575851730144607e-02,-1.871838500258336e-01,-16
|
|
99
|
+
-1.0485529650670926e+00,-1.4200179371789752e+00,-1.7062701906250126e+00,1.9507753952317897e+00,-13
|
|
100
|
+
1.8675579901499675e+00,-9.77277879876411e-01,9.500884175255894e-01,-1.513572082976979e-01,55
|
|
101
|
+
-7.447548220484399e-01,-8.264385386590144e-01,-9.84525244254323e-02,-6.634782863621074e-01,-108
|
|
@@ -0,0 +1,101 @@
|
|
|
1
|
+
col1,col2,col3,col4,label1,label2
|
|
2
|
+
-1.980796468223927e+00,-3.479121493261526e-01,-8.877857476301128e-01,1.5634896910398005e-01,-170,-203
|
|
3
|
+
-1.595734381462669e-01,-1.3370155966843916e-01,6.937731526901325e-01,1.0777438059762627e+00,0,82
|
|
4
|
+
-2.0829875557799488e-01,3.960067126616453e-01,5.765908166149409e-01,-1.0930615087305058e+00,15,-65
|
|
5
|
+
-2.803554951845091e-01,-3.646935443916854e-01,-4.409226322925914e-01,1.5670385527236397e-01,-47,-38
|
|
6
|
+
-1.6567151023219537e+00,-9.855107376841507e-01,3.86305518401881e-02,-1.4718350074635869e+00,-169,-276
|
|
7
|
+
3.49654456993174e-01,-7.64143923906443e-01,5.785214977288784e-01,-1.4377914738015785e+00,-10,-73
|
|
8
|
+
3.183055827435118e-02,-6.35846078378881e-01,-6.743326606573761e-01,6.764332949464997e-01,-44,9
|
|
9
|
+
3.791517355550818e-01,2.259308950690852e+00,-1.7020413861440594e-02,-4.225715166064269e-02,147,93
|
|
10
|
+
-8.129929885540773e-01,2.745163577239395e-01,-7.196043885517929e-01,-8.909150829955279e-01,-57,-151
|
|
11
|
+
-1.1838806401933177e+00,-2.659172237996741e+00,7.732529774025997e-01,6.063195243593807e-01,-206,-109
|
|
12
|
+
-6.895497777502005e-01,-4.5553250351734315e-01,-8.034096641738411e-01,1.747915902505673e-02,-87,-99
|
|
13
|
+
-1.4963454032767076e-01,-4.3515355172163744e-01,-6.945678597313655e-01,1.8492637284793418e+00,-42,82
|
|
14
|
+
-3.122922511256933e-01,-1.576670161638159e-01,-1.1573552591908536e+00,2.2567234972982093e+00,-46,88
|
|
15
|
+
9.432607249694948e-01,7.471883342046318e-01,-7.047002758562337e-01,-1.188944955203736e+00,86,-4
|
|
16
|
+
4.393917012645369e-01,1.6667349537252904e-01,-1.4912575927056055e+00,6.350314368921064e-01,10,37
|
|
17
|
+
-3.9727181432879766e-01,-1.3288057758695562e-01,-6.37437025552229e-01,-2.977908794017283e-01,-48,-81
|
|
18
|
+
1.7858704939058352e+00,1.2691209270361992e-01,1.0500020720820478e-02,4.0198936344470165e-01,129,189
|
|
19
|
+
-4.380743016111864e-01,-1.2527953600499262e+00,-5.096521817516535e-01,7.774903558319101e-01,-105,-36
|
|
20
|
+
1.6422775548733395e-01,5.672902778526694e-01,1.6481349322075596e+00,-2.226751005151545e-01,75,70
|
|
21
|
+
3.9009332268792646e-01,-6.5240858238702e-01,1.9559123082506942e+00,-3.909533751876011e-01,29,54
|
|
22
|
+
1.4805147914344243e+00,1.8675589604265699e+00,1.9229420264803847e+00,9.060446582753853e-01,243,313
|
|
23
|
+
3.872804753950634e-01,-2.2555642294021894e+00,-1.6981058194322545e+00,-1.0225068436356035e+00,-134,-160
|
|
24
|
+
-1.3477590611424464e+00,-1.2704849984857336e+00,1.8831506970562544e+00,9.693967081580112e-01,-118,-21
|
|
25
|
+
5.829536797532936e-01,-3.994490292628752e-01,9.77249677148556e-02,3.7005588784751875e-01,20,69
|
|
26
|
+
3.169426119248496e-01,9.20858823780819e-01,1.1880297923523018e+00,3.187276529430212e-01,96,117
|
|
27
|
+
-1.6020576556067476e+00,-1.1043833394284506e+00,6.252314510271875e-01,5.2165079260974405e-02,-155,-147
|
|
28
|
+
-4.779740040404867e-01,-4.7965581400794766e-01,-1.8430695501566485e+00,6.203582983435125e-01,-94,-74
|
|
29
|
+
1.0201727117157997e+00,-6.920498477843912e-01,-1.1054065723247261e-01,1.5363770542457977e+00,33,175
|
|
30
|
+
-2.0515826376580087e-01,3.1306770165090136e-01,1.4940790731576061e+00,-8.540957393017248e-01,31,-18
|
|
31
|
+
-9.77277879876411e-01,9.500884175255894e-01,1.8675579901499675e+00,-1.513572082976979e-01,23,-6
|
|
32
|
+
3.024718977397814e-01,-6.343220936809636e-01,6.651722238316789e-02,-3.627411659871381e-01,-13,-14
|
|
33
|
+
-7.306777528648248e-01,-3.8487980918127546e-01,-1.1268258087567435e+00,9.4351589317074e-02,-93,-106
|
|
34
|
+
8.443629764015471e-01,-1.0002153473895647e+00,-1.225435518830168e+00,-1.5447710967776116e+00,-27,-105
|
|
35
|
+
-3.4598177569938643e-01,-4.635959746460942e-01,-9.55945000492777e-01,4.814814737734622e-01,-66,-41
|
|
36
|
+
5.194539579613895e-02,7.290905621775369e-01,-9.072983643832422e-01,1.2898291075741067e-01,24,3
|
|
37
|
+
9.008264869541871e-01,4.6566243973045984e-01,-1.1651498407833565e+00,-1.5362436862772237e+00,57,-56
|
|
38
|
+
-1.1280113314700069e+00,2.80441705316296e-01,-2.6773353689396645e-01,-9.931236109295807e-01,-69,-170
|
|
39
|
+
-1.3749512934180188e+00,-6.436184028328905e-01,-3.5399391125348395e-01,-2.2234031522244266e+00,-141,-309
|
|
40
|
+
-1.6760038063299767e+00,1.15233156478312e+00,-3.090129690471222e-01,1.079618592036821e+00,-53,-48
|
|
41
|
+
1.2167501649282841e-01,4.4386323274542566e-01,7.610377251469934e-01,3.3367432737426683e-01,48,72
|
|
42
|
+
1.8877859679382855e-01,5.238910238342056e-01,-1.936279805846507e+00,8.842208704466141e-02,1,-28
|
|
43
|
+
1.6092816829822298e-01,-1.9065349358139935e-01,-1.568211160255477e-02,-3.948495140334503e-01,0,-19
|
|
44
|
+
9.766390364837128e-01,3.563663971744019e-01,2.082749780768603e-01,7.065731681919482e-01,91,153
|
|
45
|
+
4.001572083672233e-01,9.787379841057392e-01,1.764052345967664e+00,2.240893199201458e+00,123,282
|
|
46
|
+
6.088438344754508e-01,-1.0452533661469547e+00,2.8634368889227957e-01,1.2111452896827009e+00,-6,119
|
|
47
|
+
-4.017809362082619e-01,-1.6301983469660446e+00,1.7742614225375283e-01,4.627822555257742e-01,-110,-42
|
|
48
|
+
1.469358769900285e+00,1.549474256969163e-01,1.5327792143584575e+00,3.7816251960217356e-01,140,212
|
|
49
|
+
-8.264385386590144e-01,-9.84525244254323e-02,-7.447548220484399e-01,-6.634782863621074e-01,-78,-148
|
|
50
|
+
-9.815038964295794e-02,9.101789080925919e-01,2.7992459904323824e-01,3.1721821519130206e-01,49,49
|
|
51
|
+
6.326199420033171e-02,1.565065379653756e-01,-1.5407970144446248e+00,2.3218103620027578e-01,-18,-26
|
|
52
|
+
8.235041539637314e-01,2.16323594928069e+00,7.717905512136674e-01,1.336527949436392e+00,193,254
|
|
53
|
+
9.740016626878341e-02,3.990463456401302e-01,-3.108861716984717e-01,-2.77259275642665e+00,13,-187
|
|
54
|
+
-6.894491845499376e-01,-6.522935999350191e-01,1.3645318481024713e+00,-5.211893123011109e-01,-55,-69
|
|
55
|
+
1.9100649530990337e+00,-2.680033709513804e-01,-8.612256850547025e-01,8.024563957963952e-01,99,187
|
|
56
|
+
4.160500462614255e-01,-1.1561824318219127e+00,-5.428614760167177e-01,7.811981017099934e-01,-43,40
|
|
57
|
+
-2.37921729736007e-01,-1.4240609089825316e+00,-5.973160689653627e-01,-4.9331988336219407e-01,-107,-116
|
|
58
|
+
-1.1610393903436653e-01,-2.0306844677814944e+00,4.9374177734918845e-01,2.0644928613593194e+00,-101,95
|
|
59
|
+
9.444794869904138e-01,-9.128222254441586e-01,2.383144774863942e+00,1.117016288095853e+00,66,218
|
|
60
|
+
-1.0600158227215473e+00,-1.3594970067832082e-01,2.303916697683942e+00,1.1368913626026953e+00,-28,62
|
|
61
|
+
-5.788496647644155e-01,-3.1155253212737266e-01,-8.707971491818818e-01,5.616534222974544e-02,-73,-85
|
|
62
|
+
1.0544517269311366e+00,-4.0317694697317963e-01,-1.0707526215105425e+00,1.2224450703824274e+00,31,131
|
|
63
|
+
-1.0799315083634233e+00,-1.1474686524111024e+00,1.126635922106507e+00,-4.3782004474443403e-01,-113,-119
|
|
64
|
+
1.1411018666575734e+00,1.4665787155741776e+00,8.579239242923363e-01,8.52551939461232e-01,177,231
|
|
65
|
+
-2.4945858016094885e-01,4.949498165009074e-02,8.416312640736364e-01,4.9383677628095635e-01,4,43
|
|
66
|
+
-1.3833639553950554e+00,-1.582938397335082e+00,-7.255973784635843e-01,6.103793791072052e-01,-192,-147
|
|
67
|
+
-2.127402802139687e-01,-8.954665611936756e-01,-1.6138978475579515e+00,3.86902497859262e-01,-94,-71
|
|
68
|
+
-1.4200179371789752e+00,-1.7062701906250126e+00,-1.0485529650670926e+00,1.9507753952317897e+00,-204,-70
|
|
69
|
+
-1.6164741886510325e+00,-2.918373627478628e-01,-3.5343174875719907e-01,-7.614922118116233e-01,-134,-216
|
|
70
|
+
4.0746183624111043e-01,-7.699160744453164e-01,6.722947570124355e-01,5.392491912918173e-01,1,75
|
|
71
|
+
-2.0699850250135325e+00,4.2625873077810095e-01,1.4944845444913688e+00,6.769080350302455e-01,-84,-70
|
|
72
|
+
-4.61584604814709e-01,-6.824160532463124e-02,-1.3159074105115212e+00,1.7133427216493666e+00,-56,34
|
|
73
|
+
-3.193284171450952e-01,6.915387510701866e-01,1.4195316332077967e-01,6.947491436560059e-01,21,45
|
|
74
|
+
-3.595531615405413e-01,-8.13146282044454e-01,-6.72460447775951e-01,-1.7262826023316769e+00,-87,-200
|
|
75
|
+
3.77088908626934e-03,9.318483741143037e-01,6.98457149107336e-01,3.39964983801262e-01,66,74
|
|
76
|
+
-1.0994007905841945e+00,2.98238174206056e-01,3.7642553115562943e-01,1.3263858966870303e+00,-46,18
|
|
77
|
+
1.9436211856492926e+00,-4.1361898075974735e-01,-1.17312340511416e+00,-7.474548114407578e-01,82,66
|
|
78
|
+
1.9295320538169858e+00,9.494208069257608e-01,-4.980324506923049e-01,8.75512413851909e-02,172,185
|
|
79
|
+
-1.1680934977411974e+00,5.232766605317537e-01,-3.92828182274956e-02,-1.715463312222481e-01,-51,-101
|
|
80
|
+
-1.4543656745987648e+00,4.575851730144607e-02,2.2697546239876076e+00,-1.871838500258336e-01,-49,-62
|
|
81
|
+
-1.180632184122412e+00,-2.8182228338654868e-02,-5.10805137568873e-01,4.2833187053041766e-01,-90,-91
|
|
82
|
+
-1.2348258203536526e+00,4.02341641177549e-01,1.1394006845433007e+00,-6.848100909403132e-01,-40,-106
|
|
83
|
+
1.8958891760305832e+00,1.1787795711596507e+00,1.4882521937955997e+00,-1.7992483581235091e-01,222,238
|
|
84
|
+
4.5093446180591484e-01,-6.840108977372166e-01,-1.7558905834377194e+00,1.6595507961898721e+00,-37,78
|
|
85
|
+
1.5430145954067358e+00,-1.2928569097234486e+00,-7.395629963913133e-01,2.6705086934918293e-01,19,92
|
|
86
|
+
-1.5706234086334527e+00,-2.0690367616397173e-01,6.433144650629279e-01,8.801789120807822e-01,-101,-59
|
|
87
|
+
-1.466424327802514e+00,5.210648764527586e-01,-8.133642592042029e-01,-5.757879698130661e-01,-89,-182
|
|
88
|
+
-2.868871923899076e-01,-6.16264020956474e-02,-4.2171451290578935e-02,-1.0730527629117469e-01,-23,-36
|
|
89
|
+
-6.510255933001469e-01,-1.0342428417844647e+00,8.568306119026912e-01,6.81594518281627e-01,-80,-8
|
|
90
|
+
-5.068163542986875e-01,-5.963140384505081e-01,-1.188859257784029e+00,-5.256729626954629e-02,-91,-105
|
|
91
|
+
-4.6641909673594306e-01,-9.444462559182504e-01,7.863279621089762e-01,-4.1004969320254847e-01,-68,-69
|
|
92
|
+
6.536185954403606e-01,8.644361988595057e-01,-2.5529898158340787e+00,-7.421650204064419e-01,36,-58
|
|
93
|
+
1.3018462295649984e+00,-6.280875596415789e-01,6.898181645347884e-01,-4.810271184607877e-01,66,86
|
|
94
|
+
1.2023798487844113e+00,-3.873268174079523e-01,1.2302906807277207e+00,-3.0230275057533557e-01,84,115
|
|
95
|
+
-1.550100930908342e-01,6.140793703460803e-01,9.47251967773748e-01,9.222066715665268e-01,45,101
|
|
96
|
+
-4.607197873885533e-01,-1.3342584714027534e+00,6.663830820319143e-01,-1.3467175057975553e+00,-94,-151
|
|
97
|
+
4.1059850193837233e-01,1.44043571160878e-01,-1.0321885179355784e-01,1.454273506962975e+00,37,139
|
|
98
|
+
-1.6169560443108344e+00,-2.4326124398935636e-02,6.40131526097592e-01,-7.380309092056887e-01,-99,-173
|
|
99
|
+
-2.393791775759264e-01,1.0996595958871132e+00,-3.691818379424436e-01,6.552637307225978e-01,38,43
|
|
100
|
+
-4.5338580385138766e-01,-6.878376110286823e-01,1.068509399316009e+00,-1.2140774030941206e+00,-49,-109
|
|
101
|
+
1.658130679618188e+00,-1.1816404512856976e-01,-1.3065268517353166e+00,-6.801782039968504e-01,76,49
|
|
@@ -1,28 +1,28 @@
|
|
|
1
|
-
seq_no,train_id,schedule_date,source,next_station,destination,geo_tag,arrival_time,departure_time
|
|
2
|
-
11,210,2016-03-26,Wilmington,Sharon Hill,Norristown,POINT (-75.27786 39.90135),2016-03-26 11:26:00,2016-03-26 11:27:00
|
|
3
|
-
16,210,2016-03-26,Wilmington,Suburban Station,Norristown,POINT (-75.18373 39.95694),2016-03-26 11:51:00,2016-03-26 11:53:00
|
|
4
|
-
10,210,2016-03-26,Wilmington,Folcroft,Norristown,POINT (-75.29005 39.89624),2016-03-26 11:23:01,2016-03-26 11:23:45
|
|
5
|
-
26,210,2016-03-26,Wilmington,Main St,Norristown,POINT (-75.34562 40.11321),2016-03-26 12:33:05,2016-03-26 12:34:11
|
|
6
|
-
24,210,2016-03-26,Wilmington,Conshohocken,Norristown,POINT (-75.28487 40.07404),2016-03-26 12:25:06,2016-03-26 12:26:01
|
|
7
|
-
3,210,2016-03-26,Wilmington,Highland Ave,Norristown,POINT (-75.4199 39.82172),2016-03-26 10:52:05,2016-03-26 10:53:45
|
|
8
|
-
1,210,2016-03-26,Wilmington,Claymont,Norristown,POINT (-75.5536 39.7374),2016-03-26 10:41:02,2016-03-26 10:43:01
|
|
9
|
-
20,210,2016-03-26,Wilmington,Allegheny,Norristown,POINT (-75.15496 39.99343),2016-03-26 12:10:06,2016-03-26 12:12:45
|
|
10
|
-
18,210,2016-03-26,Wilmington,Temple U,Norristown,POINT (-75.15358 39.95547),2016-03-26 12:04:01,2016-03-26 12:05:30
|
|
11
|
-
8,210,2016-03-26,Wilmington,Norwood,Norristown,POINT (-75.31239 39.88648),2016-03-26 11:15:06,2016-03-26 11:16:01
|
|
12
|
-
25,210,2016-03-26,Wilmington,Norristown TC,Norristown,POINT (-75.30747 40.07137),2016-03-26 12:28:06,2016-03-26 12:29:01
|
|
13
|
-
19,210,2016-03-26,Wilmington,North Broad St,Norristown,POINT (-75.14987 39.9806),2016-03-26 12:07:06,2016-03-26 12:08:00
|
|
14
|
-
15,210,2016-03-26,Wilmington,30th Street Station,Norristown,POINT (-75.1912 39.9471),2016-03-26 11:45:00,2016-03-26 11:48:00
|
|
15
|
-
14,210,2016-03-26,Wilmington,University City,Norristown,POINT (-75.25526 39.9127),2016-03-26 11:38:00,2016-03-26 11:40:01
|
|
16
|
-
6,210,2016-03-26,Wilmington,Ridley Park,Norristown,POINT (-75.33168 39.87122),2016-03-26 11:07:06,2016-03-26 11:08:00
|
|
17
|
-
23,210,2016-03-26,Wilmington,Spring Mill,Norristown,POINT (-75.26685 40.05845),2016-03-26 12:21:36,2016-03-26 12:23:01
|
|
18
|
-
21,210,2016-03-26,Wilmington,Wissahickon,Norristown,POINT (-75.19327 40.01151),2016-03-26 12:14:06,2016-03-26 12:15:00
|
|
19
|
-
7,210,2016-03-26,Wilmington,Prospect Park,Norristown,POINT (-75.32306 39.88002),2016-03-26 11:10:06,2016-03-26 11:11:40
|
|
20
|
-
22,210,2016-03-26,Wilmington,Ivy Ridge,Norristown,POINT (-75.225 40.02694),2016-03-26 12:18:01,2016-03-26 12:19:45
|
|
21
|
-
12,210,2016-03-26,Wilmington,Curtis Park,Norristown,POINT (-75.27096 39.9043),2016-03-26 11:30:06,2016-03-26 11:31:45
|
|
22
|
-
27,210,2016-03-26,Wilmington,Elm St,Norristown,POINT (-75.34864 40.11735),2016-03-26 12:36:06,2016-03-26 12:37:45
|
|
23
|
-
4,210,2016-03-26,Wilmington,Chester TC,Norristown,POINT (-75.39316 39.83367),2016-03-26 10:56:01,2016-03-26 10:57:00
|
|
24
|
-
2,210,2016-03-26,Wilmington,Marcus Hook,Norristown,POINT (-75.45059 39.79994),2016-03-26 10:46:06,2016-03-26 10:47:01
|
|
25
|
-
5,210,2016-03-26,Wilmington,Crum Lynne,Norristown,POINT (-75.3616 39.84893),2016-03-26 11:03:06,2016-03-26 11:04:00
|
|
26
|
-
9,210,2016-03-26,Wilmington,Glenolden,Norristown,POINT (-75.30364 39.89061),2016-03-26 11:19:06,2016-03-26 11:20:45
|
|
27
|
-
13,210,2016-03-26,Wilmington,Darby,Norristown,POINT (-75.26636 39.90706),2016-03-26 11:33:00,2016-03-26 11:34:45
|
|
1
|
+
seq_no,train_id,schedule_date,source,next_station,destination,geo_tag,arrival_time,departure_time
|
|
2
|
+
11,210,2016-03-26,Wilmington,Sharon Hill,Norristown,POINT (-75.27786 39.90135),2016-03-26 11:26:00,2016-03-26 11:27:00
|
|
3
|
+
16,210,2016-03-26,Wilmington,Suburban Station,Norristown,POINT (-75.18373 39.95694),2016-03-26 11:51:00,2016-03-26 11:53:00
|
|
4
|
+
10,210,2016-03-26,Wilmington,Folcroft,Norristown,POINT (-75.29005 39.89624),2016-03-26 11:23:01,2016-03-26 11:23:45
|
|
5
|
+
26,210,2016-03-26,Wilmington,Main St,Norristown,POINT (-75.34562 40.11321),2016-03-26 12:33:05,2016-03-26 12:34:11
|
|
6
|
+
24,210,2016-03-26,Wilmington,Conshohocken,Norristown,POINT (-75.28487 40.07404),2016-03-26 12:25:06,2016-03-26 12:26:01
|
|
7
|
+
3,210,2016-03-26,Wilmington,Highland Ave,Norristown,POINT (-75.4199 39.82172),2016-03-26 10:52:05,2016-03-26 10:53:45
|
|
8
|
+
1,210,2016-03-26,Wilmington,Claymont,Norristown,POINT (-75.5536 39.7374),2016-03-26 10:41:02,2016-03-26 10:43:01
|
|
9
|
+
20,210,2016-03-26,Wilmington,Allegheny,Norristown,POINT (-75.15496 39.99343),2016-03-26 12:10:06,2016-03-26 12:12:45
|
|
10
|
+
18,210,2016-03-26,Wilmington,Temple U,Norristown,POINT (-75.15358 39.95547),2016-03-26 12:04:01,2016-03-26 12:05:30
|
|
11
|
+
8,210,2016-03-26,Wilmington,Norwood,Norristown,POINT (-75.31239 39.88648),2016-03-26 11:15:06,2016-03-26 11:16:01
|
|
12
|
+
25,210,2016-03-26,Wilmington,Norristown TC,Norristown,POINT (-75.30747 40.07137),2016-03-26 12:28:06,2016-03-26 12:29:01
|
|
13
|
+
19,210,2016-03-26,Wilmington,North Broad St,Norristown,POINT (-75.14987 39.9806),2016-03-26 12:07:06,2016-03-26 12:08:00
|
|
14
|
+
15,210,2016-03-26,Wilmington,30th Street Station,Norristown,POINT (-75.1912 39.9471),2016-03-26 11:45:00,2016-03-26 11:48:00
|
|
15
|
+
14,210,2016-03-26,Wilmington,University City,Norristown,POINT (-75.25526 39.9127),2016-03-26 11:38:00,2016-03-26 11:40:01
|
|
16
|
+
6,210,2016-03-26,Wilmington,Ridley Park,Norristown,POINT (-75.33168 39.87122),2016-03-26 11:07:06,2016-03-26 11:08:00
|
|
17
|
+
23,210,2016-03-26,Wilmington,Spring Mill,Norristown,POINT (-75.26685 40.05845),2016-03-26 12:21:36,2016-03-26 12:23:01
|
|
18
|
+
21,210,2016-03-26,Wilmington,Wissahickon,Norristown,POINT (-75.19327 40.01151),2016-03-26 12:14:06,2016-03-26 12:15:00
|
|
19
|
+
7,210,2016-03-26,Wilmington,Prospect Park,Norristown,POINT (-75.32306 39.88002),2016-03-26 11:10:06,2016-03-26 11:11:40
|
|
20
|
+
22,210,2016-03-26,Wilmington,Ivy Ridge,Norristown,POINT (-75.225 40.02694),2016-03-26 12:18:01,2016-03-26 12:19:45
|
|
21
|
+
12,210,2016-03-26,Wilmington,Curtis Park,Norristown,POINT (-75.27096 39.9043),2016-03-26 11:30:06,2016-03-26 11:31:45
|
|
22
|
+
27,210,2016-03-26,Wilmington,Elm St,Norristown,POINT (-75.34864 40.11735),2016-03-26 12:36:06,2016-03-26 12:37:45
|
|
23
|
+
4,210,2016-03-26,Wilmington,Chester TC,Norristown,POINT (-75.39316 39.83367),2016-03-26 10:56:01,2016-03-26 10:57:00
|
|
24
|
+
2,210,2016-03-26,Wilmington,Marcus Hook,Norristown,POINT (-75.45059 39.79994),2016-03-26 10:46:06,2016-03-26 10:47:01
|
|
25
|
+
5,210,2016-03-26,Wilmington,Crum Lynne,Norristown,POINT (-75.3616 39.84893),2016-03-26 11:03:06,2016-03-26 11:04:00
|
|
26
|
+
9,210,2016-03-26,Wilmington,Glenolden,Norristown,POINT (-75.30364 39.89061),2016-03-26 11:19:06,2016-03-26 11:20:45
|
|
27
|
+
13,210,2016-03-26,Wilmington,Darby,Norristown,POINT (-75.26636 39.90706),2016-03-26 11:33:00,2016-03-26 11:34:45
|
|
28
28
|
17,210,2016-03-26,Wilmington,Jefferson Station,Norristown,POINT (-75.1677778 39.9538889),2016-03-26 11:56:06,2016-03-26 11:58:17
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
TargetColumn,transformation,Parameters,DefaultValue
|
|
2
|
-
sepal_length,log,{"base":10},10
|
|
3
|
-
sepal_width,abs,{},10
|
|
4
|
-
petal_length,exp,{},10
|
|
5
|
-
petal_width,sigmoid,{},10
|
|
1
|
+
TargetColumn,transformation,Parameters,DefaultValue
|
|
2
|
+
sepal_length,log,{"base":10},10
|
|
3
|
+
sepal_width,abs,{},10
|
|
4
|
+
petal_length,exp,{},10
|
|
5
|
+
petal_width,sigmoid,{},10
|
|
6
6
|
id,tanh,{},10
|
|
@@ -1,2 +1,2 @@
|
|
|
1
|
-
TargetColumn,transformation,Parameters,DefaultValue
|
|
1
|
+
TargetColumn,transformation,Parameters,DefaultValue
|
|
2
2
|
fare,log,{"base":10},10
|
teradataml/data/tv_spots.csv
CHANGED
|
@@ -1,16 +1,16 @@
|
|
|
1
|
-
"ts","tv_imp"
|
|
2
|
-
"2012-01-01","ad1"
|
|
3
|
-
"2012-01-03","ad3"
|
|
4
|
-
"2012-01-06","ad6"
|
|
5
|
-
"2012-01-14","ad14"
|
|
6
|
-
"2012-01-11","ad11"
|
|
7
|
-
"2012-01-15","ad15"
|
|
8
|
-
"2012-01-07","ad7"
|
|
9
|
-
"2012-01-13","ad13"
|
|
10
|
-
"2012-01-05","ad5"
|
|
11
|
-
"2012-01-12","ad12"
|
|
12
|
-
"2012-01-08","ad8"
|
|
13
|
-
"2012-01-10","ad10"
|
|
14
|
-
"2012-01-04","ad4"
|
|
15
|
-
"2012-01-09","ad9"
|
|
16
|
-
"2012-01-02","ad2"
|
|
1
|
+
"ts","tv_imp"
|
|
2
|
+
"2012-01-01","ad1"
|
|
3
|
+
"2012-01-03","ad3"
|
|
4
|
+
"2012-01-06","ad6"
|
|
5
|
+
"2012-01-14","ad14"
|
|
6
|
+
"2012-01-11","ad11"
|
|
7
|
+
"2012-01-15","ad15"
|
|
8
|
+
"2012-01-07","ad7"
|
|
9
|
+
"2012-01-13","ad13"
|
|
10
|
+
"2012-01-05","ad5"
|
|
11
|
+
"2012-01-12","ad12"
|
|
12
|
+
"2012-01-08","ad8"
|
|
13
|
+
"2012-01-10","ad10"
|
|
14
|
+
"2012-01-04","ad4"
|
|
15
|
+
"2012-01-09","ad9"
|
|
16
|
+
"2012-01-02","ad2"
|