teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1303) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1935 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2040 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +798 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1683 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +1011 -0
  31. teradataml/automl/data_transformation.py +789 -0
  32. teradataml/automl/feature_engineering.py +1580 -0
  33. teradataml/automl/feature_exploration.py +554 -0
  34. teradataml/automl/model_evaluation.py +151 -0
  35. teradataml/automl/model_training.py +1026 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/auth_client.py +133 -0
  41. teradataml/clients/pkce_client.py +481 -481
  42. teradataml/common/aed_utils.py +7 -2
  43. teradataml/common/bulk_exposed_utils.py +111 -111
  44. teradataml/common/constants.py +1438 -1441
  45. teradataml/common/deprecations.py +160 -0
  46. teradataml/common/exceptions.py +73 -73
  47. teradataml/common/formula.py +742 -742
  48. teradataml/common/garbagecollector.py +597 -635
  49. teradataml/common/messagecodes.py +424 -431
  50. teradataml/common/messages.py +228 -231
  51. teradataml/common/sqlbundle.py +693 -693
  52. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  53. teradataml/common/utils.py +2424 -2500
  54. teradataml/common/warnings.py +25 -25
  55. teradataml/common/wrapper_utils.py +1 -110
  56. teradataml/config/dummy_file1.cfg +4 -4
  57. teradataml/config/dummy_file2.cfg +2 -2
  58. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  59. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  60. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  61. teradataml/context/aed_context.py +217 -217
  62. teradataml/context/context.py +1091 -999
  63. teradataml/data/A_loan.csv +19 -19
  64. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  65. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  66. teradataml/data/B_loan.csv +49 -49
  67. teradataml/data/BuoyData2.csv +17 -17
  68. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  69. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  70. teradataml/data/Convolve2RealsLeft.csv +5 -5
  71. teradataml/data/Convolve2RealsRight.csv +5 -5
  72. teradataml/data/Convolve2ValidLeft.csv +11 -11
  73. teradataml/data/Convolve2ValidRight.csv +11 -11
  74. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  75. teradataml/data/Orders1_12mf.csv +24 -24
  76. teradataml/data/Pi_loan.csv +7 -7
  77. teradataml/data/SMOOTHED_DATA.csv +7 -7
  78. teradataml/data/TestDFFT8.csv +9 -9
  79. teradataml/data/TestRiver.csv +109 -109
  80. teradataml/data/Traindata.csv +28 -28
  81. teradataml/data/acf.csv +17 -17
  82. teradataml/data/adaboost_example.json +34 -34
  83. teradataml/data/adaboostpredict_example.json +24 -24
  84. teradataml/data/additional_table.csv +10 -10
  85. teradataml/data/admissions_test.csv +21 -21
  86. teradataml/data/admissions_train.csv +41 -41
  87. teradataml/data/admissions_train_nulls.csv +41 -41
  88. teradataml/data/advertising.csv +201 -0
  89. teradataml/data/ageandheight.csv +13 -13
  90. teradataml/data/ageandpressure.csv +31 -31
  91. teradataml/data/antiselect_example.json +36 -36
  92. teradataml/data/antiselect_input.csv +8 -8
  93. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  94. teradataml/data/applicant_external.csv +6 -6
  95. teradataml/data/applicant_reference.csv +6 -6
  96. teradataml/data/arima_example.json +9 -9
  97. teradataml/data/assortedtext_input.csv +8 -8
  98. teradataml/data/attribution_example.json +33 -33
  99. teradataml/data/attribution_sample_table.csv +27 -27
  100. teradataml/data/attribution_sample_table1.csv +6 -6
  101. teradataml/data/attribution_sample_table2.csv +11 -11
  102. teradataml/data/bank_churn.csv +10001 -0
  103. teradataml/data/bank_marketing.csv +11163 -0
  104. teradataml/data/bank_web_clicks1.csv +42 -42
  105. teradataml/data/bank_web_clicks2.csv +91 -91
  106. teradataml/data/bank_web_url.csv +85 -85
  107. teradataml/data/barrier.csv +2 -2
  108. teradataml/data/barrier_new.csv +3 -3
  109. teradataml/data/betweenness_example.json +13 -13
  110. teradataml/data/bike_sharing.csv +732 -0
  111. teradataml/data/bin_breaks.csv +8 -8
  112. teradataml/data/bin_fit_ip.csv +3 -3
  113. teradataml/data/binary_complex_left.csv +11 -11
  114. teradataml/data/binary_complex_right.csv +11 -11
  115. teradataml/data/binary_matrix_complex_left.csv +21 -21
  116. teradataml/data/binary_matrix_complex_right.csv +21 -21
  117. teradataml/data/binary_matrix_real_left.csv +21 -21
  118. teradataml/data/binary_matrix_real_right.csv +21 -21
  119. teradataml/data/blood2ageandweight.csv +26 -26
  120. teradataml/data/bmi.csv +501 -0
  121. teradataml/data/boston.csv +507 -507
  122. teradataml/data/boston2cols.csv +721 -0
  123. teradataml/data/breast_cancer.csv +570 -0
  124. teradataml/data/buoydata_mix.csv +11 -11
  125. teradataml/data/burst_data.csv +5 -5
  126. teradataml/data/burst_example.json +20 -20
  127. teradataml/data/byom_example.json +17 -17
  128. teradataml/data/bytes_table.csv +3 -3
  129. teradataml/data/cal_housing_ex_raw.csv +70 -70
  130. teradataml/data/callers.csv +7 -7
  131. teradataml/data/calls.csv +10 -10
  132. teradataml/data/cars_hist.csv +33 -33
  133. teradataml/data/cat_table.csv +24 -24
  134. teradataml/data/ccm_example.json +31 -31
  135. teradataml/data/ccm_input.csv +91 -91
  136. teradataml/data/ccm_input2.csv +13 -13
  137. teradataml/data/ccmexample.csv +101 -101
  138. teradataml/data/ccmprepare_example.json +8 -8
  139. teradataml/data/ccmprepare_input.csv +91 -91
  140. teradataml/data/cfilter_example.json +12 -12
  141. teradataml/data/changepointdetection_example.json +18 -18
  142. teradataml/data/changepointdetectionrt_example.json +8 -8
  143. teradataml/data/chi_sq.csv +2 -2
  144. teradataml/data/churn_data.csv +14 -14
  145. teradataml/data/churn_emission.csv +35 -35
  146. teradataml/data/churn_initial.csv +3 -3
  147. teradataml/data/churn_state_transition.csv +5 -5
  148. teradataml/data/citedges_2.csv +745 -745
  149. teradataml/data/citvertices_2.csv +1210 -1210
  150. teradataml/data/clicks2.csv +16 -16
  151. teradataml/data/clickstream.csv +12 -12
  152. teradataml/data/clickstream1.csv +11 -11
  153. teradataml/data/closeness_example.json +15 -15
  154. teradataml/data/complaints.csv +21 -21
  155. teradataml/data/complaints_mini.csv +3 -3
  156. teradataml/data/complaints_testtoken.csv +224 -224
  157. teradataml/data/complaints_tokens_test.csv +353 -353
  158. teradataml/data/complaints_traintoken.csv +472 -472
  159. teradataml/data/computers_category.csv +1001 -1001
  160. teradataml/data/computers_test1.csv +1252 -1252
  161. teradataml/data/computers_train1.csv +5009 -5009
  162. teradataml/data/computers_train1_clustered.csv +5009 -5009
  163. teradataml/data/confusionmatrix_example.json +9 -9
  164. teradataml/data/conversion_event_table.csv +3 -3
  165. teradataml/data/corr_input.csv +17 -17
  166. teradataml/data/correlation_example.json +11 -11
  167. teradataml/data/coxhazardratio_example.json +39 -39
  168. teradataml/data/coxph_example.json +15 -15
  169. teradataml/data/coxsurvival_example.json +28 -28
  170. teradataml/data/cpt.csv +41 -41
  171. teradataml/data/credit_ex_merged.csv +45 -45
  172. teradataml/data/customer_loyalty.csv +301 -301
  173. teradataml/data/customer_loyalty_newseq.csv +31 -31
  174. teradataml/data/customer_segmentation_test.csv +2628 -0
  175. teradataml/data/customer_segmentation_train.csv +8069 -0
  176. teradataml/data/dataframe_example.json +146 -146
  177. teradataml/data/decisionforest_example.json +37 -37
  178. teradataml/data/decisionforestpredict_example.json +38 -38
  179. teradataml/data/decisiontree_example.json +21 -21
  180. teradataml/data/decisiontreepredict_example.json +45 -45
  181. teradataml/data/dfft2_size4_real.csv +17 -17
  182. teradataml/data/dfft2_test_matrix16.csv +17 -17
  183. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  184. teradataml/data/diabetes.csv +443 -443
  185. teradataml/data/diabetes_test.csv +89 -89
  186. teradataml/data/dict_table.csv +5 -5
  187. teradataml/data/docperterm_table.csv +4 -4
  188. teradataml/data/docs/__init__.py +1 -1
  189. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  190. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  191. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  192. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  193. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  194. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  195. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  196. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  197. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  198. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  199. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  200. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  201. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  202. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  203. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  204. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  205. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  206. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  207. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  208. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  209. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  210. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  211. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  212. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  213. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  214. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  215. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  216. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  217. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
  218. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
  219. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  220. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
  221. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  222. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  223. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  224. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  225. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  226. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  227. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  228. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  229. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  230. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  231. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  232. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  233. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  234. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  235. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  236. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  237. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  238. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  239. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  240. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  241. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  242. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
  243. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  244. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  245. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  246. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  247. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  248. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  249. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  250. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  251. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
  252. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  253. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  254. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  255. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  256. teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
  257. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  258. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  259. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
  260. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  261. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  262. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  263. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
  264. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  265. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  266. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  267. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
  268. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  269. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  270. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  271. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  272. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  273. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  274. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  275. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  276. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
  277. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  278. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  279. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  280. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  281. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
  282. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
  283. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  284. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  285. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  286. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  287. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  288. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  289. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  290. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  291. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
  292. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  293. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  294. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  295. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  296. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  297. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  298. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  299. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  300. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
  301. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  302. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
  303. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
  304. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  305. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  306. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  307. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  308. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  309. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  310. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  311. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  312. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
  313. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  314. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  315. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  316. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  317. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  318. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  319. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  320. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  321. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  322. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  323. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  324. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
  325. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
  326. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
  327. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  328. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  329. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  330. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  331. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  332. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  333. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  334. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  335. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  336. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  337. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  338. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  339. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  340. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  341. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  342. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  343. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  344. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  345. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  346. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  347. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  348. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  349. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  350. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  351. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  352. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  353. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  354. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  355. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  356. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  357. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  358. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  359. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  360. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  361. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  362. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  363. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  364. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  365. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  366. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  367. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  368. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  369. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  370. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  371. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  372. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  373. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  374. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  375. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  376. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  377. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  378. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  379. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  380. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  381. teradataml/data/dtw_example.json +17 -17
  382. teradataml/data/dtw_t1.csv +11 -11
  383. teradataml/data/dtw_t2.csv +4 -4
  384. teradataml/data/dwt2d_example.json +15 -15
  385. teradataml/data/dwt_example.json +14 -14
  386. teradataml/data/dwt_filter_dim.csv +5 -5
  387. teradataml/data/emission.csv +9 -9
  388. teradataml/data/emp_table_by_dept.csv +19 -19
  389. teradataml/data/employee_info.csv +4 -4
  390. teradataml/data/employee_table.csv +6 -6
  391. teradataml/data/excluding_event_table.csv +2 -2
  392. teradataml/data/finance_data.csv +6 -6
  393. teradataml/data/finance_data2.csv +61 -61
  394. teradataml/data/finance_data3.csv +93 -93
  395. teradataml/data/fish.csv +160 -0
  396. teradataml/data/fm_blood2ageandweight.csv +26 -26
  397. teradataml/data/fmeasure_example.json +11 -11
  398. teradataml/data/followers_leaders.csv +10 -10
  399. teradataml/data/fpgrowth_example.json +12 -12
  400. teradataml/data/frequentpaths_example.json +29 -29
  401. teradataml/data/friends.csv +9 -9
  402. teradataml/data/fs_input.csv +33 -33
  403. teradataml/data/fs_input1.csv +33 -33
  404. teradataml/data/genData.csv +513 -513
  405. teradataml/data/geodataframe_example.json +39 -39
  406. teradataml/data/glass_types.csv +215 -0
  407. teradataml/data/glm_admissions_model.csv +12 -12
  408. teradataml/data/glm_example.json +56 -29
  409. teradataml/data/glml1l2_example.json +28 -28
  410. teradataml/data/glml1l2predict_example.json +54 -54
  411. teradataml/data/glmpredict_example.json +54 -54
  412. teradataml/data/gq_t1.csv +21 -21
  413. teradataml/data/hconvolve_complex_right.csv +5 -5
  414. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  415. teradataml/data/histogram_example.json +11 -11
  416. teradataml/data/hmmdecoder_example.json +78 -78
  417. teradataml/data/hmmevaluator_example.json +24 -24
  418. teradataml/data/hmmsupervised_example.json +10 -10
  419. teradataml/data/hmmunsupervised_example.json +7 -7
  420. teradataml/data/house_values.csv +12 -12
  421. teradataml/data/house_values2.csv +13 -13
  422. teradataml/data/housing_cat.csv +7 -7
  423. teradataml/data/housing_data.csv +9 -9
  424. teradataml/data/housing_test.csv +47 -47
  425. teradataml/data/housing_test_binary.csv +47 -47
  426. teradataml/data/housing_train.csv +493 -493
  427. teradataml/data/housing_train_attribute.csv +4 -4
  428. teradataml/data/housing_train_binary.csv +437 -437
  429. teradataml/data/housing_train_parameter.csv +2 -2
  430. teradataml/data/housing_train_response.csv +493 -493
  431. teradataml/data/housing_train_segment.csv +201 -0
  432. teradataml/data/ibm_stock.csv +370 -370
  433. teradataml/data/ibm_stock1.csv +370 -370
  434. teradataml/data/identitymatch_example.json +21 -21
  435. teradataml/data/idf_table.csv +4 -4
  436. teradataml/data/impressions.csv +101 -101
  437. teradataml/data/inflation.csv +21 -21
  438. teradataml/data/initial.csv +3 -3
  439. teradataml/data/insect2Cols.csv +61 -0
  440. teradataml/data/insect_sprays.csv +12 -12
  441. teradataml/data/insurance.csv +1339 -1339
  442. teradataml/data/interpolator_example.json +12 -12
  443. teradataml/data/iris_altinput.csv +481 -481
  444. teradataml/data/iris_attribute_output.csv +8 -8
  445. teradataml/data/iris_attribute_test.csv +121 -121
  446. teradataml/data/iris_attribute_train.csv +481 -481
  447. teradataml/data/iris_category_expect_predict.csv +31 -31
  448. teradataml/data/iris_data.csv +151 -0
  449. teradataml/data/iris_input.csv +151 -151
  450. teradataml/data/iris_response_train.csv +121 -121
  451. teradataml/data/iris_test.csv +31 -31
  452. teradataml/data/iris_train.csv +121 -121
  453. teradataml/data/join_table1.csv +4 -4
  454. teradataml/data/join_table2.csv +4 -4
  455. teradataml/data/jsons/anly_function_name.json +6 -6
  456. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  457. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  458. teradataml/data/jsons/byom/h2opredict.json +194 -194
  459. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  460. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  461. teradataml/data/jsons/paired_functions.json +435 -435
  462. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  463. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  464. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  465. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  466. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  467. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  468. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  469. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  470. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  471. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  472. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  473. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  474. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  475. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  476. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  477. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  478. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  479. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  480. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  481. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  482. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  483. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  484. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  485. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  486. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  487. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  488. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  489. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  490. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  491. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  492. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  493. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  494. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  495. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  496. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  497. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  498. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  499. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  500. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  501. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  502. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  503. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  504. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  505. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  506. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  507. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  508. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  509. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  510. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  511. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  512. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  513. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  514. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  515. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  516. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  517. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  518. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  519. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  520. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  521. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  522. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  523. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  524. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  525. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  526. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  527. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  528. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  529. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  531. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  532. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  533. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  534. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  535. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  536. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  537. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  539. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  540. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  541. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  542. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  543. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  544. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  545. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  546. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  547. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  548. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  549. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  550. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  551. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  552. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  553. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  554. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  555. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  556. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  557. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  558. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  559. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  560. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  561. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  562. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  563. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  564. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  565. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  566. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  567. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  568. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
  569. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  570. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  571. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  572. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  573. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  574. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  575. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  576. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  577. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  578. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  579. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
  580. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  581. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  582. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  583. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
  584. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
  585. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  586. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  587. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
  588. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  589. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  590. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  591. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
  592. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  593. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  594. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  595. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
  596. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  597. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  598. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  599. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  600. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  601. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  602. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  603. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  604. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  605. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  606. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  607. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  608. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  609. teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
  610. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  611. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  612. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  613. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  614. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  615. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  616. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  617. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  618. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
  619. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
  620. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
  621. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  622. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  623. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  624. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  625. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  626. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  627. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  628. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  629. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  630. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  631. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  632. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  633. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  634. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  635. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
  636. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
  637. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
  638. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  639. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  640. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  641. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  642. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  643. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  644. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  645. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  646. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  647. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  648. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  649. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  650. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  651. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  653. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  654. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  655. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  656. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  657. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  658. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  659. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  660. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  661. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  662. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  663. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  664. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  665. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  666. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  667. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  668. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  669. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  670. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  671. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  672. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  673. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  674. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  675. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  676. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  677. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  678. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  679. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  680. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  681. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  682. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  683. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  684. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  685. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  686. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  687. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  688. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  689. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  690. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  691. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  692. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  693. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  694. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  695. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  696. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  697. teradataml/data/kmeans_example.json +22 -17
  698. teradataml/data/kmeans_table.csv +10 -0
  699. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  700. teradataml/data/knn_example.json +18 -18
  701. teradataml/data/knnrecommender_example.json +6 -6
  702. teradataml/data/knnrecommenderpredict_example.json +12 -12
  703. teradataml/data/lar_example.json +17 -17
  704. teradataml/data/larpredict_example.json +30 -30
  705. teradataml/data/lc_new_predictors.csv +5 -5
  706. teradataml/data/lc_new_reference.csv +9 -9
  707. teradataml/data/lda_example.json +8 -8
  708. teradataml/data/ldainference_example.json +14 -14
  709. teradataml/data/ldatopicsummary_example.json +8 -8
  710. teradataml/data/levendist_input.csv +13 -13
  711. teradataml/data/levenshteindistance_example.json +10 -10
  712. teradataml/data/linreg_example.json +9 -9
  713. teradataml/data/load_example_data.py +326 -323
  714. teradataml/data/loan_prediction.csv +295 -295
  715. teradataml/data/lungcancer.csv +138 -138
  716. teradataml/data/mappingdata.csv +12 -12
  717. teradataml/data/milk_timeseries.csv +157 -157
  718. teradataml/data/min_max_titanic.csv +4 -4
  719. teradataml/data/minhash_example.json +6 -6
  720. teradataml/data/ml_ratings.csv +7547 -7547
  721. teradataml/data/ml_ratings_10.csv +2445 -2445
  722. teradataml/data/model1_table.csv +5 -5
  723. teradataml/data/model2_table.csv +5 -5
  724. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  725. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  726. teradataml/data/modularity_example.json +12 -12
  727. teradataml/data/movavg_example.json +7 -7
  728. teradataml/data/mtx1.csv +7 -7
  729. teradataml/data/mtx2.csv +13 -13
  730. teradataml/data/multi_model_classification.csv +401 -0
  731. teradataml/data/multi_model_regression.csv +401 -0
  732. teradataml/data/mvdfft8.csv +9 -9
  733. teradataml/data/naivebayes_example.json +9 -9
  734. teradataml/data/naivebayespredict_example.json +19 -19
  735. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  736. teradataml/data/naivebayestextclassifier_example.json +8 -8
  737. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  738. teradataml/data/name_Find_configure.csv +10 -10
  739. teradataml/data/namedentityfinder_example.json +14 -14
  740. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  741. teradataml/data/namedentityfindertrainer_example.json +6 -6
  742. teradataml/data/nb_iris_input_test.csv +31 -31
  743. teradataml/data/nb_iris_input_train.csv +121 -121
  744. teradataml/data/nbp_iris_model.csv +13 -13
  745. teradataml/data/ner_extractor_text.csv +2 -2
  746. teradataml/data/ner_sports_test2.csv +29 -29
  747. teradataml/data/ner_sports_train.csv +501 -501
  748. teradataml/data/nerevaluator_example.json +5 -5
  749. teradataml/data/nerextractor_example.json +18 -18
  750. teradataml/data/nermem_sports_test.csv +17 -17
  751. teradataml/data/nermem_sports_train.csv +50 -50
  752. teradataml/data/nertrainer_example.json +6 -6
  753. teradataml/data/ngrams_example.json +6 -6
  754. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  755. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  756. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  757. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  758. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  759. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  760. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  761. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  762. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  763. teradataml/data/npath_example.json +23 -23
  764. teradataml/data/ntree_example.json +14 -14
  765. teradataml/data/numeric_strings.csv +4 -4
  766. teradataml/data/numerics.csv +4 -4
  767. teradataml/data/ocean_buoy.csv +17 -17
  768. teradataml/data/ocean_buoy2.csv +17 -17
  769. teradataml/data/ocean_buoys.csv +27 -27
  770. teradataml/data/ocean_buoys2.csv +10 -10
  771. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  772. teradataml/data/ocean_buoys_seq.csv +29 -29
  773. teradataml/data/onehot_encoder_train.csv +4 -0
  774. teradataml/data/openml_example.json +92 -0
  775. teradataml/data/optional_event_table.csv +4 -4
  776. teradataml/data/orders1.csv +11 -11
  777. teradataml/data/orders1_12.csv +12 -12
  778. teradataml/data/orders_ex.csv +4 -4
  779. teradataml/data/pack_example.json +8 -8
  780. teradataml/data/package_tracking.csv +19 -19
  781. teradataml/data/package_tracking_pti.csv +18 -18
  782. teradataml/data/pagerank_example.json +13 -13
  783. teradataml/data/paragraphs_input.csv +6 -6
  784. teradataml/data/pathanalyzer_example.json +7 -7
  785. teradataml/data/pathgenerator_example.json +7 -7
  786. teradataml/data/phrases.csv +7 -7
  787. teradataml/data/pivot_example.json +8 -8
  788. teradataml/data/pivot_input.csv +22 -22
  789. teradataml/data/playerRating.csv +31 -31
  790. teradataml/data/postagger_example.json +6 -6
  791. teradataml/data/posttagger_output.csv +44 -44
  792. teradataml/data/production_data.csv +16 -16
  793. teradataml/data/production_data2.csv +7 -7
  794. teradataml/data/randomsample_example.json +31 -31
  795. teradataml/data/randomwalksample_example.json +8 -8
  796. teradataml/data/rank_table.csv +6 -6
  797. teradataml/data/ref_mobile_data.csv +4 -4
  798. teradataml/data/ref_mobile_data_dense.csv +2 -2
  799. teradataml/data/ref_url.csv +17 -17
  800. teradataml/data/restaurant_reviews.csv +7 -7
  801. teradataml/data/river_data.csv +145 -145
  802. teradataml/data/roc_example.json +7 -7
  803. teradataml/data/roc_input.csv +101 -101
  804. teradataml/data/rule_inputs.csv +6 -6
  805. teradataml/data/rule_table.csv +2 -2
  806. teradataml/data/sales.csv +7 -7
  807. teradataml/data/sales_transaction.csv +501 -501
  808. teradataml/data/salesdata.csv +342 -342
  809. teradataml/data/sample_cities.csv +2 -2
  810. teradataml/data/sample_shapes.csv +10 -10
  811. teradataml/data/sample_streets.csv +2 -2
  812. teradataml/data/sampling_example.json +15 -15
  813. teradataml/data/sax_example.json +8 -8
  814. teradataml/data/scale_attributes.csv +3 -0
  815. teradataml/data/scale_example.json +74 -23
  816. teradataml/data/scale_housing.csv +11 -11
  817. teradataml/data/scale_housing_test.csv +6 -6
  818. teradataml/data/scale_input_part_sparse.csv +31 -0
  819. teradataml/data/scale_input_partitioned.csv +16 -0
  820. teradataml/data/scale_input_sparse.csv +11 -0
  821. teradataml/data/scale_parameters.csv +3 -0
  822. teradataml/data/scale_stat.csv +11 -11
  823. teradataml/data/scalebypartition_example.json +13 -13
  824. teradataml/data/scalemap_example.json +13 -13
  825. teradataml/data/scalesummary_example.json +12 -12
  826. teradataml/data/score_category.csv +101 -101
  827. teradataml/data/score_summary.csv +4 -4
  828. teradataml/data/script_example.json +9 -9
  829. teradataml/data/scripts/deploy_script.py +84 -0
  830. teradataml/data/scripts/mapper.R +20 -0
  831. teradataml/data/scripts/mapper.py +15 -15
  832. teradataml/data/scripts/mapper_replace.py +15 -15
  833. teradataml/data/scripts/sklearn/__init__.py +0 -0
  834. teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
  835. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
  836. teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
  837. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
  838. teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
  839. teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
  840. teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
  841. teradataml/data/seeds.csv +10 -10
  842. teradataml/data/sentenceextractor_example.json +6 -6
  843. teradataml/data/sentiment_extract_input.csv +11 -11
  844. teradataml/data/sentiment_train.csv +16 -16
  845. teradataml/data/sentiment_word.csv +20 -20
  846. teradataml/data/sentiment_word_input.csv +19 -19
  847. teradataml/data/sentimentextractor_example.json +24 -24
  848. teradataml/data/sentimenttrainer_example.json +8 -8
  849. teradataml/data/sequence_table.csv +10 -10
  850. teradataml/data/seriessplitter_example.json +7 -7
  851. teradataml/data/sessionize_example.json +17 -17
  852. teradataml/data/sessionize_table.csv +116 -116
  853. teradataml/data/setop_test1.csv +24 -24
  854. teradataml/data/setop_test2.csv +22 -22
  855. teradataml/data/soc_nw_edges.csv +10 -10
  856. teradataml/data/soc_nw_vertices.csv +7 -7
  857. teradataml/data/souvenir_timeseries.csv +167 -167
  858. teradataml/data/sparse_iris_attribute.csv +5 -5
  859. teradataml/data/sparse_iris_test.csv +121 -121
  860. teradataml/data/sparse_iris_train.csv +601 -601
  861. teradataml/data/star1.csv +6 -6
  862. teradataml/data/state_transition.csv +5 -5
  863. teradataml/data/stock_data.csv +53 -53
  864. teradataml/data/stock_movement.csv +11 -11
  865. teradataml/data/stock_vol.csv +76 -76
  866. teradataml/data/stop_words.csv +8 -8
  867. teradataml/data/store_sales.csv +37 -37
  868. teradataml/data/stringsimilarity_example.json +7 -7
  869. teradataml/data/strsimilarity_input.csv +13 -13
  870. teradataml/data/students.csv +101 -101
  871. teradataml/data/svm_iris_input_test.csv +121 -121
  872. teradataml/data/svm_iris_input_train.csv +481 -481
  873. teradataml/data/svm_iris_model.csv +7 -7
  874. teradataml/data/svmdense_example.json +9 -9
  875. teradataml/data/svmdensepredict_example.json +18 -18
  876. teradataml/data/svmsparse_example.json +7 -7
  877. teradataml/data/svmsparsepredict_example.json +13 -13
  878. teradataml/data/svmsparsesummary_example.json +7 -7
  879. teradataml/data/target_mobile_data.csv +13 -13
  880. teradataml/data/target_mobile_data_dense.csv +5 -5
  881. teradataml/data/templatedata.csv +1201 -1201
  882. teradataml/data/templates/open_source_ml.json +9 -0
  883. teradataml/data/teradataml_example.json +150 -1
  884. teradataml/data/test_classification.csv +101 -0
  885. teradataml/data/test_loan_prediction.csv +53 -53
  886. teradataml/data/test_pacf_12.csv +37 -37
  887. teradataml/data/test_prediction.csv +101 -0
  888. teradataml/data/test_regression.csv +101 -0
  889. teradataml/data/test_river2.csv +109 -109
  890. teradataml/data/text_inputs.csv +6 -6
  891. teradataml/data/textchunker_example.json +7 -7
  892. teradataml/data/textclassifier_example.json +6 -6
  893. teradataml/data/textclassifier_input.csv +7 -7
  894. teradataml/data/textclassifiertrainer_example.json +6 -6
  895. teradataml/data/textmorph_example.json +5 -5
  896. teradataml/data/textparser_example.json +15 -15
  897. teradataml/data/texttagger_example.json +11 -11
  898. teradataml/data/texttokenizer_example.json +6 -6
  899. teradataml/data/texttrainer_input.csv +11 -11
  900. teradataml/data/tf_example.json +6 -6
  901. teradataml/data/tfidf_example.json +13 -13
  902. teradataml/data/tfidf_input1.csv +201 -201
  903. teradataml/data/tfidf_train.csv +6 -6
  904. teradataml/data/time_table1.csv +535 -535
  905. teradataml/data/time_table2.csv +14 -14
  906. teradataml/data/timeseriesdata.csv +1601 -1601
  907. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  908. teradataml/data/titanic.csv +892 -892
  909. teradataml/data/token_table.csv +696 -696
  910. teradataml/data/train_multiclass.csv +101 -0
  911. teradataml/data/train_regression.csv +101 -0
  912. teradataml/data/train_regression_multiple_labels.csv +101 -0
  913. teradataml/data/train_tracking.csv +27 -27
  914. teradataml/data/transformation_table.csv +5 -5
  915. teradataml/data/transformation_table_new.csv +1 -1
  916. teradataml/data/tv_spots.csv +16 -16
  917. teradataml/data/twod_climate_data.csv +117 -117
  918. teradataml/data/uaf_example.json +475 -475
  919. teradataml/data/univariatestatistics_example.json +8 -8
  920. teradataml/data/unpack_example.json +9 -9
  921. teradataml/data/unpivot_example.json +9 -9
  922. teradataml/data/unpivot_input.csv +8 -8
  923. teradataml/data/us_air_pass.csv +36 -36
  924. teradataml/data/us_population.csv +624 -624
  925. teradataml/data/us_states_shapes.csv +52 -52
  926. teradataml/data/varmax_example.json +17 -17
  927. teradataml/data/vectordistance_example.json +25 -25
  928. teradataml/data/ville_climatedata.csv +121 -121
  929. teradataml/data/ville_tempdata.csv +12 -12
  930. teradataml/data/ville_tempdata1.csv +12 -12
  931. teradataml/data/ville_temperature.csv +11 -11
  932. teradataml/data/waveletTable.csv +1605 -1605
  933. teradataml/data/waveletTable2.csv +1605 -1605
  934. teradataml/data/weightedmovavg_example.json +8 -8
  935. teradataml/data/wft_testing.csv +5 -5
  936. teradataml/data/wine_data.csv +1600 -0
  937. teradataml/data/word_embed_input_table1.csv +5 -5
  938. teradataml/data/word_embed_input_table2.csv +4 -4
  939. teradataml/data/word_embed_model.csv +22 -22
  940. teradataml/data/words_input.csv +13 -13
  941. teradataml/data/xconvolve_complex_left.csv +6 -6
  942. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  943. teradataml/data/xgboost_example.json +35 -35
  944. teradataml/data/xgboostpredict_example.json +31 -31
  945. teradataml/data/ztest_example.json +16 -0
  946. teradataml/dataframe/copy_to.py +1769 -1698
  947. teradataml/dataframe/data_transfer.py +2812 -2745
  948. teradataml/dataframe/dataframe.py +17630 -16946
  949. teradataml/dataframe/dataframe_utils.py +1875 -1740
  950. teradataml/dataframe/fastload.py +794 -603
  951. teradataml/dataframe/indexer.py +424 -424
  952. teradataml/dataframe/setop.py +1179 -1166
  953. teradataml/dataframe/sql.py +10174 -6432
  954. teradataml/dataframe/sql_function_parameters.py +439 -388
  955. teradataml/dataframe/sql_functions.py +652 -652
  956. teradataml/dataframe/sql_interfaces.py +220 -220
  957. teradataml/dataframe/vantage_function_types.py +674 -630
  958. teradataml/dataframe/window.py +693 -692
  959. teradataml/dbutils/__init__.py +3 -3
  960. teradataml/dbutils/dbutils.py +1167 -1150
  961. teradataml/dbutils/filemgr.py +267 -267
  962. teradataml/gen_ai/__init__.py +2 -2
  963. teradataml/gen_ai/convAI.py +472 -472
  964. teradataml/geospatial/__init__.py +3 -3
  965. teradataml/geospatial/geodataframe.py +1105 -1094
  966. teradataml/geospatial/geodataframecolumn.py +392 -387
  967. teradataml/geospatial/geometry_types.py +925 -925
  968. teradataml/hyperparameter_tuner/__init__.py +1 -1
  969. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  970. teradataml/hyperparameter_tuner/utils.py +281 -187
  971. teradataml/lib/aed_0_1.dll +0 -0
  972. teradataml/lib/libaed_0_1.dylib +0 -0
  973. teradataml/lib/libaed_0_1.so +0 -0
  974. teradataml/libaed_0_1.dylib +0 -0
  975. teradataml/libaed_0_1.so +0 -0
  976. teradataml/opensource/__init__.py +1 -0
  977. teradataml/opensource/sklearn/__init__.py +1 -0
  978. teradataml/opensource/sklearn/_class.py +255 -0
  979. teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
  980. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  981. teradataml/opensource/sklearn/constants.py +54 -0
  982. teradataml/options/__init__.py +130 -124
  983. teradataml/options/configure.py +358 -336
  984. teradataml/options/display.py +176 -176
  985. teradataml/plot/__init__.py +2 -2
  986. teradataml/plot/axis.py +1388 -1388
  987. teradataml/plot/constants.py +15 -15
  988. teradataml/plot/figure.py +398 -398
  989. teradataml/plot/plot.py +760 -760
  990. teradataml/plot/query_generator.py +83 -83
  991. teradataml/plot/subplot.py +216 -216
  992. teradataml/scriptmgmt/UserEnv.py +3791 -3761
  993. teradataml/scriptmgmt/__init__.py +3 -3
  994. teradataml/scriptmgmt/lls_utils.py +1719 -1604
  995. teradataml/series/series.py +532 -532
  996. teradataml/series/series_utils.py +71 -71
  997. teradataml/table_operators/Apply.py +949 -917
  998. teradataml/table_operators/Script.py +1718 -1982
  999. teradataml/table_operators/TableOperator.py +1255 -1616
  1000. teradataml/table_operators/__init__.py +2 -3
  1001. teradataml/table_operators/apply_query_generator.py +262 -262
  1002. teradataml/table_operators/query_generator.py +507 -507
  1003. teradataml/table_operators/table_operator_query_generator.py +460 -460
  1004. teradataml/table_operators/table_operator_util.py +631 -639
  1005. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  1006. teradataml/table_operators/templates/dataframe_map.template +176 -176
  1007. teradataml/table_operators/templates/script_executor.template +170 -170
  1008. teradataml/utils/dtypes.py +684 -684
  1009. teradataml/utils/internal_buffer.py +84 -84
  1010. teradataml/utils/print_versions.py +205 -205
  1011. teradataml/utils/utils.py +410 -410
  1012. teradataml/utils/validators.py +2277 -2115
  1013. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
  1014. teradataml-20.0.0.1.dist-info/RECORD +1056 -0
  1015. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
  1016. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
  1017. teradataml/analytics/mle/AdaBoost.py +0 -651
  1018. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1019. teradataml/analytics/mle/Antiselect.py +0 -342
  1020. teradataml/analytics/mle/Arima.py +0 -641
  1021. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1022. teradataml/analytics/mle/Attribution.py +0 -1070
  1023. teradataml/analytics/mle/Betweenness.py +0 -658
  1024. teradataml/analytics/mle/Burst.py +0 -711
  1025. teradataml/analytics/mle/CCM.py +0 -600
  1026. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1027. teradataml/analytics/mle/CFilter.py +0 -460
  1028. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1029. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1030. teradataml/analytics/mle/Closeness.py +0 -737
  1031. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1032. teradataml/analytics/mle/Correlation.py +0 -477
  1033. teradataml/analytics/mle/Correlation2.py +0 -573
  1034. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1035. teradataml/analytics/mle/CoxPH.py +0 -556
  1036. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1037. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1038. teradataml/analytics/mle/DTW.py +0 -623
  1039. teradataml/analytics/mle/DWT.py +0 -564
  1040. teradataml/analytics/mle/DWT2D.py +0 -599
  1041. teradataml/analytics/mle/DecisionForest.py +0 -716
  1042. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1043. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1044. teradataml/analytics/mle/DecisionTree.py +0 -830
  1045. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1046. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1047. teradataml/analytics/mle/FMeasure.py +0 -402
  1048. teradataml/analytics/mle/FPGrowth.py +0 -734
  1049. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1050. teradataml/analytics/mle/GLM.py +0 -558
  1051. teradataml/analytics/mle/GLML1L2.py +0 -547
  1052. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1053. teradataml/analytics/mle/GLMPredict.py +0 -529
  1054. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1055. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1056. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1057. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1058. teradataml/analytics/mle/Histogram.py +0 -561
  1059. teradataml/analytics/mle/IDWT.py +0 -476
  1060. teradataml/analytics/mle/IDWT2D.py +0 -493
  1061. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1062. teradataml/analytics/mle/Interpolator.py +0 -918
  1063. teradataml/analytics/mle/KMeans.py +0 -485
  1064. teradataml/analytics/mle/KNN.py +0 -627
  1065. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1066. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1067. teradataml/analytics/mle/LAR.py +0 -439
  1068. teradataml/analytics/mle/LARPredict.py +0 -478
  1069. teradataml/analytics/mle/LDA.py +0 -548
  1070. teradataml/analytics/mle/LDAInference.py +0 -492
  1071. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1072. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1073. teradataml/analytics/mle/LinReg.py +0 -433
  1074. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1075. teradataml/analytics/mle/MinHash.py +0 -544
  1076. teradataml/analytics/mle/Modularity.py +0 -587
  1077. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1078. teradataml/analytics/mle/NERExtractor.py +0 -595
  1079. teradataml/analytics/mle/NERTrainer.py +0 -458
  1080. teradataml/analytics/mle/NGrams.py +0 -570
  1081. teradataml/analytics/mle/NPath.py +0 -634
  1082. teradataml/analytics/mle/NTree.py +0 -549
  1083. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1084. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1085. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1086. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1087. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1088. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1089. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1090. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1091. teradataml/analytics/mle/POSTagger.py +0 -417
  1092. teradataml/analytics/mle/Pack.py +0 -411
  1093. teradataml/analytics/mle/PageRank.py +0 -535
  1094. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1095. teradataml/analytics/mle/PathGenerator.py +0 -367
  1096. teradataml/analytics/mle/PathStart.py +0 -464
  1097. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1098. teradataml/analytics/mle/Pivot.py +0 -471
  1099. teradataml/analytics/mle/ROC.py +0 -425
  1100. teradataml/analytics/mle/RandomSample.py +0 -637
  1101. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1102. teradataml/analytics/mle/SAX.py +0 -779
  1103. teradataml/analytics/mle/SVMDense.py +0 -677
  1104. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1105. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1106. teradataml/analytics/mle/SVMSparse.py +0 -557
  1107. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1108. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1109. teradataml/analytics/mle/Sampling.py +0 -549
  1110. teradataml/analytics/mle/Scale.py +0 -565
  1111. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1112. teradataml/analytics/mle/ScaleMap.py +0 -378
  1113. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1114. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1115. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1116. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1117. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1118. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1119. teradataml/analytics/mle/Sessionize.py +0 -475
  1120. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1121. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1122. teradataml/analytics/mle/TF.py +0 -389
  1123. teradataml/analytics/mle/TFIDF.py +0 -504
  1124. teradataml/analytics/mle/TextChunker.py +0 -414
  1125. teradataml/analytics/mle/TextClassifier.py +0 -399
  1126. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1127. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1128. teradataml/analytics/mle/TextMorph.py +0 -494
  1129. teradataml/analytics/mle/TextParser.py +0 -623
  1130. teradataml/analytics/mle/TextTagger.py +0 -530
  1131. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1132. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1133. teradataml/analytics/mle/Unpack.py +0 -526
  1134. teradataml/analytics/mle/Unpivot.py +0 -438
  1135. teradataml/analytics/mle/VarMax.py +0 -776
  1136. teradataml/analytics/mle/VectorDistance.py +0 -762
  1137. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1138. teradataml/analytics/mle/XGBoost.py +0 -842
  1139. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1140. teradataml/analytics/mle/__init__.py +0 -123
  1141. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1142. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1143. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1144. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1145. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1146. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1147. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1148. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1149. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1150. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1151. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1152. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1153. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1154. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1155. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1156. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1157. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1158. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1159. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1160. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1161. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1162. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1163. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1164. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1165. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1166. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1167. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1168. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1169. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1170. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1171. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1172. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1173. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1174. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1175. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1176. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1177. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1178. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1179. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1180. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1181. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1182. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1183. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1184. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1185. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1186. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1187. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1188. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1189. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1190. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1191. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1192. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1193. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1194. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1195. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1196. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1197. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1198. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1199. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1200. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1201. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1202. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1203. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1204. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1205. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1206. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1207. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1208. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1209. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1210. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1211. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1212. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1213. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1214. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1215. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1216. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1217. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1218. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1219. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1220. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1221. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1222. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1223. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1224. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1225. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1226. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1227. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1228. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1229. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1230. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1231. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1232. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1233. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1234. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1235. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1236. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1237. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1238. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1239. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1240. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1241. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1242. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1243. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1244. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1245. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1246. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1247. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1248. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1249. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1250. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1251. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1252. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1253. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1254. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1255. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1256. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1257. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1258. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1259. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1260. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1261. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1262. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1263. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1264. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1265. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1266. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1267. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1268. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1269. teradataml/analytics/sqle/Antiselect.py +0 -321
  1270. teradataml/analytics/sqle/Attribution.py +0 -603
  1271. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1272. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1273. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1274. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1275. teradataml/analytics/sqle/NPath.py +0 -632
  1276. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1277. teradataml/analytics/sqle/Pack.py +0 -388
  1278. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1279. teradataml/analytics/sqle/Sessionize.py +0 -390
  1280. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1281. teradataml/analytics/sqle/Unpack.py +0 -503
  1282. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1283. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1284. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1285. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1286. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1287. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1288. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1289. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1290. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1291. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1292. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1293. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1294. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1295. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1296. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1297. teradataml/catalog/model_cataloging.py +0 -980
  1298. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1299. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1300. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1301. teradataml/table_operators/sandbox_container_util.py +0 -643
  1302. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1303. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
@@ -1,926 +1,926 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2021 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner:
9
- #
10
- # This file contains the implementation of Geometry types for
11
- # Teradata Geospatial data types. These implementation allows user
12
- # to create the singlton item like a literal that can be used in
13
- # any Geospatial function call.
14
- #
15
- # ##################################################################
16
- from teradataml.common.messagecodes import MessageCodes
17
- from teradataml.common.messages import Messages
18
- from teradataml.utils.dtypes import _str_list, _int_list, \
19
- _int_float_list, _int_float_tuple_list
20
- from teradataml.utils.validators import _Validators
21
- VANTAGE_EMPTY_GEOM_FMT = "EMPTY"
22
-
23
- class GeometryType(object):
24
- """ Base class for Geospatial Geometry Types. """
25
-
26
- def __init__(self, *args):
27
- """ Constructor for Geometry object. """
28
- self._is_empty = True
29
- self.coordinates = VANTAGE_EMPTY_GEOM_FMT
30
- self._str_fmt = "{} {}"
31
-
32
- if args and args[0] is not None:
33
- self._is_empty = False
34
- self.coordinates = []
35
- self._str_fmt = "{}{}"
36
-
37
- def __str__(self):
38
- """ Return String Representation for a Geometry object. """
39
- return self._str_fmt.format(self.__class__.__name__,
40
- self._coords_vantage_fmt)
41
-
42
- def _vantage_str_(self):
43
- """ Return Vantage String Representation for a Geometry object. """
44
- return "new ST_Geometry('{}')".format(str(self))
45
-
46
- @property
47
- def coords(self):
48
- """ Returns the coordinates of the Geometry object. """
49
- return self.coordinates
50
-
51
- @property
52
- def geom_type(self):
53
- """ Returns the type of a Geometry. """
54
- return self.__class__.__name__
55
-
56
- def __getattr__(self, item):
57
- """"""
58
- # TODO::
59
- # Add a code to create a table with ST_Geometry column and insert
60
- # the value for the Geometry object in the same, when any
61
- # Geospatial function is executed.
62
- # Creating table and then GeoDataFrame on top of the created table,
63
- # will enable us to execute any Geospatial function on the
64
- # Geometry Type Object and return the results, just like shapely
65
- # library does.
66
- # Doing this will not require any additional things to be implemented.
67
- # This is what the workflow should look like when any function
68
- # (geospatial) executed on any of the Geometry Types object:
69
- # 1. We will enter this function, validate that the function being
70
- # executed is Geospatial.
71
- # 2. Check if self._geodf is set or not. If set go to 4.
72
- # 3. If not set, then create a table with geospatial data type
73
- # (ST_GEOMETRY) column.
74
- # i. Get the table name from UtilFuncs get table name
75
- # functionality. Should be GCed at the end.
76
- # ii. Insert the User passed data in the table.
77
- # iii. Set the self._geodf to the GeoDataFrame() on the created
78
- # table.
79
- # 4. If set, then just call the function on the self._geodf.
80
- # For example, self._geodf.<func_name>(...)
81
- "TODO"
82
-
83
- class Point(GeometryType):
84
- """
85
- Class Point enables end user to create an object for the single Point
86
- using the coordinates. Allows user to use the same in GeoDataFrame
87
- manipulation and processing.
88
- """
89
- def __init__(self, *coordinates):
90
- """
91
- DESCRIPTION:
92
- Enables end user to create an object for the single Point
93
- using the coordinates. Allows user to use the same in GeoDataFrame
94
- manipulation and processing using any Geospatial function.
95
-
96
- PARAMETERS:
97
- *coordinates:
98
- Optional Argument.
99
- Specifies the coordinates of a Point. Coordinates must be
100
- specified in positional fashion.
101
- If coordinates are not passed, an object for empty point is
102
- created.
103
- When coordinates are passed, one must pass either 2 or 3
104
- values to define a Point in 2-dimentions or 3-dimentions.
105
- Types: int, float
106
-
107
- RETURNS:
108
- Point
109
-
110
- RAISES:
111
- TeradataMlException, TypeError, ValueError
112
-
113
- EXAMPLES:
114
- >>> from teradataml import Point
115
-
116
- # Example 1: Create a Point in 2D, using x and y coordinates.
117
- >>> p1 = Point(0, 20)
118
- >>> # Print the coordinates.
119
- >>> print(p1.coords)
120
- (0, 20)
121
- >>> # Print the geometry type.
122
- >>> p1.geom_type
123
- 'Point'
124
- >>>
125
-
126
- # Example 2: Create a Point in 3D, using x, y and z coordinates.
127
- >>> p2 = Point(0, 20, 30)
128
- >>> # Print the coordinates.
129
- >>> print(p2.coords)
130
- (0, 20, 30)
131
- >>>
132
-
133
- # Example 3: Create an empty Point.
134
- >>> pe = Point()
135
- >>> # Print the coordinates.
136
- >>> print(pe.coords)
137
- EMPTY
138
- >>>
139
- """
140
- super(Point, self).__init__(*coordinates)
141
-
142
- if len(coordinates) == 1 and isinstance(coordinates[0], tuple):
143
- # Create a Point by directly passing a tuple.
144
- coordinates = coordinates[0]
145
- elif len(coordinates) > 3 or len(coordinates) == 1:
146
- # TODO - Error handling.
147
- raise Exception("Must pass 2 or 3 coordinates.")
148
-
149
- if not self._is_empty:
150
- for co in coordinates:
151
- arg_info = [["coordinates", co, False, (int, float)]]
152
- _Validators()._validate_function_arguments(arg_info)
153
-
154
- self.x = coordinates[0]
155
- self.y = coordinates[1]
156
- self.z = None
157
- if len(coordinates) == 3:
158
- self.z = coordinates[2]
159
-
160
- @property
161
- def coords(self):
162
- """ Returns the coordinates of the Point Geometry object. """
163
- if self._is_empty:
164
- return VANTAGE_EMPTY_GEOM_FMT
165
- else:
166
- return (self.x, self.y) if self.z is None else (
167
- self.x, self.y, self.z)
168
-
169
- @property
170
- def _coords_vantage_fmt(self):
171
- """
172
- Returns the coordinates of the Point Geometry object in Vantage format.
173
- """
174
- if self._is_empty:
175
- return VANTAGE_EMPTY_GEOM_FMT
176
- else:
177
- return "({})".format(" ".join(map(str, self.coords)))
178
-
179
- class LineString(GeometryType):
180
- """
181
- Class LineString enables end user to create an object for the single
182
- LineString using the coordinates. Allows user to use the same in
183
- GeoDataFrame manipulation and processing.
184
- """
185
- def __init__(self, coordinates=None):
186
- """
187
- DESCRIPTION:
188
- Enables end user to create an object for the single LineString
189
- using the coordinates. Allows user to use the same in GeoDataFrame
190
- manipulation and processing using any Geospatial function.
191
-
192
- PARAMETERS:
193
- coordinates:
194
- Optional Argument.
195
- Specifies the coordinates of a Line. While passing coordinates
196
- for a line, one must always pass coordinates in list of either
197
- two-tuples for 2D or list of three-tuples for 3D.
198
- Argument also accepts list of Points as well instead of tuples.
199
- If coordinates are not passed, an object for empty line is
200
- created.
201
- Types: List of
202
- a. Point geometry objects or
203
- b. two-tuple of int or float or
204
- c. three-tuple of int or float or
205
- d. Mix of any of the above.
206
-
207
- RETURNS:
208
- LineString
209
-
210
- RAISES:
211
- TeradataMlException, TypeError, ValueError
212
-
213
- EXAMPLES:
214
- >>> from teradataml import Point, LineString
215
-
216
- # Example 1: Create a LineString in 2D, using x and y coordinates.
217
- >>> l1 = LineString([(0, 0), (0, 20), (20, 20)])
218
- >>> # Print the coordinates.
219
- >>> print(l1.coords)
220
- [(0, 0), (0, 20), (20, 20)]
221
- >>> # Print the geometry type.
222
- >>> l1.geom_type
223
- 'LineString'
224
- >>>
225
-
226
- # Example 2: Create a LineString in 3D, using x, y and z coordinates.
227
- >>> l2 = LineString([(0, 0, 1), (0, 1, 3), (1, 3, 6), (3, 3, 6),
228
- ... (3, 6, 1), (6, 3, 3), (3, 3, 0)])
229
- >>> # Print the coordinates.
230
- >>> print(l1.coords)
231
- [(0, 0), (0, 20), (20, 20)]
232
- >>>
233
-
234
- # Example 3: Create a LineString using Point geometry objects.
235
- # Create some Points in 2D, using x and y coordinates.
236
- >>> p1 = Point(0, 20)
237
- >>> p2 = Point(0, 0)
238
- >>> p3 = Point(20, 20)
239
- >>> l3 = LineString([p1, p2, p3])
240
- >>> # Print the coordinates.
241
- >>> print(l3.coords)
242
- [(0, 20), (0, 0), (20, 20)]
243
- >>>
244
-
245
- # Example 4: Create a LineString using mix of Point geometry objects
246
- # and coordinates.
247
- >>> p1 = Point(0, 20)
248
- >>> p2 = Point(20, 20)
249
- >>> l4 = LineString([(0, 0), p1, p2, (20, 0)])
250
- >>> # Print the coordinates.
251
- >>> print(l4.coords)
252
- [(0, 0), (0, 20), (20, 20), (20, 0)]
253
- >>>
254
-
255
- # Example 5: Create an empty LineString.
256
- >>> le = LineString()
257
- >>> # Print the coordinates.
258
- >>> print(le.coords)
259
- EMPTY
260
- >>>
261
- """
262
- super(LineString, self).__init__(coordinates)
263
- if coordinates is not None:
264
- # Argument validations.
265
- arg_info = [["coordinates", coordinates, False, (list, Point, tuple)]]
266
- _Validators()._validate_function_arguments(arg_info)
267
-
268
- # List of two-tuples or three-tuples or Point or mix.
269
- for co in coordinates:
270
- if isinstance(co, Point):
271
- self.coordinates.append(co.coords)
272
- else:
273
- # Validate coordinates
274
- Point(*co)
275
- self.coordinates.append(co)
276
-
277
- @property
278
- def _coords_vantage_fmt(self):
279
- """
280
- Returns the coordinates of the LineString Geometry object in Vantage format.
281
- """
282
- if self._is_empty:
283
- return VANTAGE_EMPTY_GEOM_FMT
284
- else:
285
- return "({})".format(
286
- ", ".join(map(lambda x: " ".join(map(str, x)), self.coords)))
287
-
288
- class Polygon(GeometryType):
289
- """
290
- Class Polygon enables end user to create an object for the single Polygon
291
- using the coordinates. Allows user to use the same in GeoDataFrame
292
- manipulation and processing.
293
- """
294
- def __init__(self, coordinates=None):
295
- """
296
- DESCRIPTION:
297
- Enables end user to create an object for the single Polygon
298
- using the coordinates. Allows user to use the same in GeoDataFrame
299
- manipulation and processing using any Geospatial function.
300
-
301
- PARAMETERS:
302
- coordinates:
303
- Optional Argument.
304
- Specifies the coordinates of a polygon. While passing coordinates
305
- for a polygon, one must always pass coordinates in list of either
306
- two-tuples for 2D or list of three-tuples for 3D.
307
- Argument also accepts list of Point and/or LineString as well
308
- instead of tuples.
309
- If coordinates are not passed, an object for empty polygon is
310
- created.
311
- Types: List of
312
- a. two-tuple of int or float or
313
- b. three-tuple of int or float or
314
- c. Point geometry objects or
315
- d. LineString geometry objects or
316
- e. Mix of any of the above.
317
-
318
- RETURNS:
319
- Polygon
320
-
321
- RAISES:
322
- TeradataMlException, TypeError, ValueError
323
-
324
- EXAMPLES:
325
- >>> from teradataml import Point, LineString, Polygon
326
-
327
- # Example 1: Create a Polygon in 2D, using x and y coordinates.
328
- >>> go1 = Polygon([(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)])
329
- >>> # Print the coordinates.
330
- >>> print(go1.coords)
331
- [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
332
- >>> # Print the geometry type.
333
- >>> go1.geom_type
334
- 'Polygon'
335
- >>>
336
-
337
- # Example 2: Create a Polygon in 3D, using x, y and z coordinates.
338
- >>> go2 = Polygon([(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20),
339
- ... (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20),
340
- ... (0, 0, 0)])
341
- >>> # Print the coordinates.
342
- >>> print(go2.coords)
343
- [(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20), (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20), (0, 0, 0)]
344
- >>>
345
-
346
- # Example 3: Create a Polygon using Point geometry objects.
347
- # Create Point objects in 2D, using x and y coordinates.
348
- >>> p1 = Point(0, 0)
349
- >>> p2 = Point(0, 20)
350
- >>> p3 = Point(20, 20)
351
- >>> p4 = Point(20, 0)
352
- >>> go3 = Polygon([p1, p2, p3, p4, p1])
353
- >>> # Print the coordinates.
354
- >>> print(go3.coords)
355
- [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
356
- >>>
357
-
358
- # Example 4: Create a Polygon using LineString geometry objects.
359
- # Create some LineString objects in 2D, using x and y coordinates.
360
- >>> l1 = LineString([(0, 0), (0, 20), (20, 20)])
361
- >>> l2 = LineString([(20, 0), (0, 0)])
362
- >>> go4 = Polygon([l1, l2])
363
- >>> # Print the coordinates.
364
- >>> print(go4.coords)
365
- [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
366
- >>>
367
-
368
- # Example 5: Create a Polygon using mix of Point, LineString
369
- # geometry objects and coordinates.
370
- >>> p1 = Point(0, 0)
371
- >>> l1 = LineString([p1, (0, 20), (20, 20)])
372
- >>> go5 = Polygon([l1, (20, 0), p1])
373
- >>> # Print the coordinates.
374
- >>> print(go5.coords)
375
- [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
376
- >>>
377
-
378
- # Example 6: Create an empty Polygon.
379
- >>> poe = Polygon()
380
- >>> # Print the coordinates.
381
- >>> print(poe.coords)
382
- EMPTY
383
- >>>
384
- """
385
- super(Polygon, self).__init__(coordinates)
386
- if coordinates is not None:
387
- # Argument validation.
388
- acc_types = (list, Point, LineString, tuple)
389
- arg_info = [["coordinates", coordinates, False, acc_types]]
390
- _Validators()._validate_function_arguments(arg_info)
391
-
392
- # List of two-tuples or three-tuples or LineString or Point or mix.
393
- for co in coordinates:
394
- if isinstance(co, (Point)):
395
- self.coordinates.append(co.coords)
396
- elif isinstance(co, LineString):
397
- for lco in co.coords:
398
- self.coordinates.append(lco)
399
- else:
400
- # Validate individual coordinates passed.
401
- Point(*co)
402
- self.coordinates.append(co)
403
-
404
- @property
405
- def _coords_vantage_fmt(self):
406
- """
407
- Returns the coordinates of the Polygon Geometry object in Vantage format.
408
- """
409
- if self._is_empty:
410
- return VANTAGE_EMPTY_GEOM_FMT
411
- else:
412
- return "(({}))".format(
413
- ", ".join(map(lambda x: " ".join(map(str, x)), self.coords)))
414
-
415
- class MultiPoint(GeometryType):
416
- """
417
- Class MultiPoint enables end user to create an object holding multiple
418
- Point geometry objects. Allows user to use the same in GeoDataFrame
419
- manipulation and processing.
420
- """
421
- def __init__(self, points=None):
422
- """
423
- DESCRIPTION:
424
- Enables end user to create an object holding the multiple Point
425
- geometry objects. Allows user to use the same in GeoDataFrame
426
- manipulation and processing using any Geospatial function.
427
-
428
- PARAMETERS:
429
- points:
430
- Optional Argument.
431
- Specifies the list of points. If no points are passed, an object
432
- for empty MultiPoint is created.
433
- Types: List of Point objects
434
-
435
- RETURNS:
436
- MultiPoint
437
-
438
- RAISES:
439
- TeradataMlException, TypeError, ValueError
440
-
441
- EXAMPLES:
442
- >>> from teradataml import Point, MultiPoint
443
-
444
- # Example 1: Create a MultiPoint in 2D, using x and y coordinates.
445
- >>> p1 = Point(0, 0)
446
- >>> p2 = Point(0, 20)
447
- >>> p3 = Point(20, 20)
448
- >>> p4 = Point(20, 0)
449
- >>> go1 = MultiPoint([p1, p2, p3, p4, p1])
450
- >>> # Print the coordinates.
451
- >>> print(go1.coords)
452
- [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
453
- >>> # Print the geometry type.
454
- >>> print(go1.geom_type)
455
- MultiPoint
456
- >>>
457
-
458
- # Example 2: Create an empty MultiPoint.
459
- >>> poe = MultiPoint()
460
- >>> # Print the coordinates.
461
- >>> print(poe.coords)
462
- EMPTY
463
- >>>
464
- """
465
- super(MultiPoint, self).__init__(points)
466
- if points is not None:
467
- # Argument validation.
468
- acc_types = (list, Point)
469
- arg_info = [["points", points, False, acc_types]]
470
- _Validators()._validate_function_arguments(arg_info)
471
-
472
- self.points = points
473
- for po in points:
474
- self.coordinates.append(po.coords)
475
-
476
- @property
477
- def _coords_vantage_fmt(self):
478
- """
479
- Returns the coordinates of the MultiPoint Geometry object in Vantage
480
- format.
481
- """
482
- if self._is_empty:
483
- return VANTAGE_EMPTY_GEOM_FMT
484
- else:
485
- return "({})".format(
486
- ", ".join([pnt._coords_vantage_fmt for pnt in self.points]))
487
-
488
- class MultiLineString(GeometryType):
489
- """
490
- Class MultiLineString enables end user to create an object holding multiple
491
- LineString geometry objects. Allows user to use the same in GeoDataFrame
492
- manipulation and processing.
493
- """
494
- def __init__(self, lines=None):
495
- """
496
- DESCRIPTION:
497
- Enables end user to create an object holding the multiple LineString
498
- geometry objects. Allows user to use the same in GeoDataFrame
499
- manipulation and processing using any Geospatial function.
500
-
501
- PARAMETERS:
502
- lines:
503
- Optional Argument.
504
- Specifies the list of lines. If no lines are passed, an object
505
- for empty MultiLineString is created.
506
- Types: List of LineString objects
507
-
508
- RETURNS:
509
- MultiLineString
510
-
511
- RAISES:
512
- TeradataMlException, TypeError, ValueError
513
-
514
- EXAMPLES:
515
- >>> from teradataml import LineString, MultiLineString
516
-
517
- # Example 1: Create a MultiLineString in 2D, using x and y coordinates.
518
- >>> l1 = LineString([(1, 3), (3, 0), (0, 1)])
519
- >>> l2 = LineString([(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)])
520
- >>> go1 = MultiLineString([l1, l2])
521
- >>> # Print the coordinates.
522
- >>> print(go1.coords)
523
- [[(1, 3), (3, 0), (0, 1)], [(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)]]
524
- >>> # Print the geometry type.
525
- >>> print(go1.geom_type)
526
- MultiLineString
527
- >>>
528
-
529
- # Example 2: Create an empty MultiLineString.
530
- >>> mls = MultiLineString()
531
- >>> # Print the coordinates.
532
- >>> print(mls.coords)
533
- EMPTY
534
- >>>
535
- """
536
- super(MultiLineString, self).__init__(lines)
537
- if lines is not None:
538
- # Argument validation.
539
- acc_types = (list, LineString)
540
- arg_info = [["lines", lines, False, acc_types]]
541
- _Validators()._validate_function_arguments(arg_info)
542
-
543
- self.lines = lines
544
- for po in lines:
545
- self.coordinates.append(po.coords)
546
-
547
- @property
548
- def _coords_vantage_fmt(self):
549
- """
550
- Returns the coordinates of the MultiLineString Geometry object in
551
- Vantage format.
552
- """
553
- if self._is_empty:
554
- return VANTAGE_EMPTY_GEOM_FMT
555
- else:
556
- return "({})".format(
557
- ", ".join([line._coords_vantage_fmt for line in self.lines]))
558
-
559
- class MultiPolygon(GeometryType):
560
- """
561
- Class MultiPolygon enables end user to create an object holding multiple
562
- Polygon geometry objects. Allows user to use the same in GeoDataFrame
563
- manipulation and processing.
564
- """
565
- def __init__(self, polygons=None):
566
- """
567
- DESCRIPTION:
568
- Enables end user to create an object holding the multiple Polygon
569
- geometry objects. Allows user to use the same in GeoDataFrame
570
- manipulation and processing using any Geospatial function.
571
-
572
- PARAMETERS:
573
- polygons:
574
- Optional Argument.
575
- Specifies the list of polygons. If no polygons are passed, an
576
- object for empty MultiPolygon is created.
577
- Types: List of Polygon objects
578
-
579
- RETURNS:
580
- MultiPolygon
581
-
582
- RAISES:
583
- TeradataMlException, TypeError, ValueError
584
-
585
- EXAMPLES:
586
- >>> from teradataml import Polygon, MultiPolygon
587
-
588
- # Example 1: Create a MultiPolygon in 2D, using x and y coordinates.
589
- >>> po1 = Polygon([(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)])
590
- >>> po2 = Polygon([(0.6, 0.8), (0.6, 20.8), (20.6, 20.8), (20.6, 0.8), (0.6, 0.8)])
591
- >>> go1 = MultiPolygon([po1, po2])
592
- >>> # Print the coordinates.
593
- >>> print(go1.coords)
594
- [[(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)], [(0.6, 0.8), (0.6, 20.8), (20.6, 20.8), (20.6, 0.8), (0.6, 0.8)]]
595
- >>> # Print the geometry type.
596
- >>> print(go1.geom_type)
597
- MultiPolygon
598
- >>>
599
-
600
- # Example 2: Create an empty MultiPolygon.
601
- >>> poe = MultiPolygon()
602
- >>> # Print the coordinates.
603
- >>> print(poe.coords)
604
- EMPTY
605
- >>>
606
- """
607
- super(MultiPolygon, self).__init__(polygons)
608
- if polygons is not None:
609
- # Argument validation.
610
- acc_types = (list, Polygon)
611
- arg_info = [["polygons", polygons, False, acc_types]]
612
- _Validators()._validate_function_arguments(arg_info)
613
-
614
- self.polygons = polygons
615
- for po in polygons:
616
- self.coordinates.append(po.coords)
617
-
618
- @property
619
- def _coords_vantage_fmt(self):
620
- """
621
- Returns the coordinates of the MultiPolygon Geometry object in Vantage
622
- format.
623
- """
624
- if self._is_empty:
625
- return VANTAGE_EMPTY_GEOM_FMT
626
- else:
627
- return "({})".format(
628
- ", ".join([pnt._coords_vantage_fmt for pnt in self.polygons]))
629
-
630
- class GeometryCollection(GeometryType):
631
- """
632
- Class GeometryCollection enables end user to create an object for the
633
- single GeometryCollection, i.e., collection of different geometry objects
634
- using the geometries. This allows user to use the same in GeoDataFrame
635
- manipulation and processing.
636
- """
637
- def __init__(self, geometries=None):
638
- """
639
- DESCRIPTION:
640
- Enables end user to create an object holding the multiple types of
641
- geometry objects. Allows user to use the same in GeoDataFrame
642
- manipulation and processing using any Geospatial function.
643
-
644
- PARAMETERS:
645
- geoms:
646
- Optional Argument.
647
- Specifies the list of different geometry types.
648
- If no geometries are are passed, an object for empty
649
- GeometryCollection is created.
650
- Types: List of geometry objects of types:
651
- 1. Point
652
- 2. LineString
653
- 3. Polygon
654
- 4. MultiPoint
655
- 5. MultiLineString
656
- 6. MultiPolygon
657
- 7. GeometryCollection
658
- 8. Mixture of any of these.
659
-
660
- RETURNS:
661
- GeometryCollection
662
-
663
- RAISES:
664
- TeradataMlException, TypeError, ValueError
665
-
666
- EXAMPLES:
667
- >>> from teradataml import Point, LineString, Polygon, MultiPoint,
668
- ... MultiLineString, MultiPolygon, GeometryCollection
669
-
670
- # Example 1: Create a GeometryCollection object with all geometries.
671
- >>> # Create Point objects.
672
- >>> p1 = Point(1, 1)
673
- >>> p2 = Point()
674
- >>> p3 = Point(6, 3)
675
- >>> p4 = Point(10, 5)
676
- >>> p5 = Point()
677
- >>>
678
- >>> # Create LineString Objects.
679
- >>> l1 = LineString([(1, 3), (3, 0), (0, 1)])
680
- >>> l2 = LineString([(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)])
681
- >>> l3 = LineString()
682
- >>>
683
- >>> # Create Polygon Objects.
684
- >>> po1 = Polygon([(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20),
685
- ... (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20),
686
- ... (0, 0, 0)])
687
- >>> po2 = Polygon([(0, 0, 0), (0, 0, 20.435), (0, 20.435, 0),
688
- ... (0, 20.435, 20.435), (20.435, 0, 0), (20.435, 0, 20.435),
689
- ... (20.435, 20.435, 0), (20.435, 20.435, 20.435),
690
- ... (0, 0, 0)])
691
- >>> po3 = Polygon()
692
- >>>
693
- >>> # Create MultiPolygon Object.
694
- >>> mpol = MultiPolygon([po1, Polygon(), po2])
695
- >>>
696
- >>> # Create MultiLineString Object.
697
- >>> mlin = MultiLineString([l1, l2, l3])
698
- >>>
699
- >>> # Create MultiPoint Object.
700
- >>> mpnt = MultiPoint([p1, p2, p3, p4, p5])
701
- >>>
702
- >>> # Create a GeometryCollection object.
703
- >>> gc1 = GeometryCollection([p1, p2, l1, l3, po2, po3, po1, mpol, mlin, mpnt])
704
- >>> # Print the coordinates.
705
- >>> print(gc1.coords)
706
- [(1, 1), 'EMPTY', [(1, 3), (3, 0), (0, 1)], 'EMPTY', [(0, 0, 0), (0, 0, 20.435), (0, 20.435, 0), (0, 20.435, 20.435), (20.435, 0, 0), (20.435, 0, 20.435), (20.435, 20.435, 0), (20.435, 20.435, 20.435), (0, 0, 0)], 'EMPTY', [(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20), (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20), (0, 0, 0)], [[(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20), (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20), (0, 0, 0)], 'EMPTY', [(0, 0, 0), (0, 0, 20.435), (0, 20.435, 0), (0, 20.435, 20.435), (20.435, 0, 0), (20.435, 0, 20.435), (20.435, 20.435, 0), (20.435, 20.435, 20.435), (0, 0, 0)]], [[(1, 3), (3, 0), (0, 1)], [(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)], 'EMPTY'], [(1, 1), 'EMPTY', (6, 3), (10, 5), 'EMPTY']]
707
- >>> # Print the geometry type.
708
- >>> print(gc1.geom_type)
709
- GeometryCollection
710
- >>>
711
-
712
- # Example 2: Create an empty GeometryCollection.
713
- >>> gc2 = GeometryCollection()
714
- >>> # Print the coordinates.
715
- >>> print(gc2.coords)
716
- EMPTY
717
- >>>
718
- """
719
- super(GeometryCollection, self).__init__(geometries)
720
- if geometries is not None:
721
- # Argument validation.
722
- acc_types = (list, Point, LineString, Polygon, MultiPoint,
723
- MultiLineString, MultiPolygon, GeometryCollection)
724
- arg_info = [["geometries", geometries, False, acc_types]]
725
- _Validators()._validate_function_arguments(arg_info)
726
-
727
- self.geometries = geometries
728
- for geo in geometries:
729
- self.coordinates.append(geo.coords)
730
-
731
- @property
732
- def _coords_vantage_fmt(self):
733
- """
734
- Returns the coordinates of the GeometryCollection Geometry object in
735
- Vantage format.
736
- """
737
- if self._is_empty:
738
- return VANTAGE_EMPTY_GEOM_FMT
739
- else:
740
- return "({})".format(
741
- ", ".join(map(str, self.geometries)))
742
-
743
- class GeoSequence(LineString):
744
- """
745
- Class GeoSequence enables end user to create an object for the
746
- LineString geometry objects with tracking information such as
747
- timestamp. This allows user to use the same in GeoDataFrame
748
- manipulation and processing.
749
- """
750
- def __init__(self, coordinates=None, timestamps=None, link_ids=None,
751
- user_field_count=0, user_fields=None):
752
- """
753
- DESCRIPTION:
754
- Enables end user to create an object holding the LineString
755
- geometry objects with tracking information such as timestamps.
756
- Allows user to use the same in GeoDataFrame manipulation and
757
- processing using any Geospatial function.
758
-
759
- PARAMETERS:
760
- coordinates:
761
- Optional Argument.
762
- Specifies the list of coordinates of a Point. While passing
763
- coordinates, one must always pass coordinates in list of either
764
- two-tuples for 2D or list of three-tuples for 3D.
765
- Argument also accepts list of Points as well instead of tuples.
766
- If coordinates are not passed, an object for empty line is
767
- created.
768
- Types: List of
769
- a. Point geometry objects or
770
- b. two-tuple of int or float or
771
- c. three-tuple of int or float or
772
- d. Mix of any of the above.
773
-
774
- timestamps:
775
- Optional Argument.
776
- Specifies the list of timestamp values for each coordinate with
777
- the following format:
778
- yyyy-mm-dd hh:mi:ss.ms
779
- The first timestamp value is associated with the first point, the
780
- second timestamp value is associated with the second point, and
781
- so forth.
782
- Note:
783
- You must specify n timestamp values, where n is the number of
784
- points in the geosequence.
785
- Types: list of strings
786
-
787
- link_ids:
788
- Optional Argument.
789
- Specifies the list of values for the ID of the link on the road
790
- network for a point in the geosequence.
791
- This value is reserved for a future release.
792
- The first link ID value is associated with the first point, the
793
- second link ID value is associated with the second point, and
794
- so forth.
795
- Note:
796
- You must specify n link ID values, where n is the number of
797
- points in the geosequence.
798
- Types: list of ints
799
-
800
- user_field_count:
801
- Optional Argument.
802
- Specifies the value that represents the number of user field
803
- elements for each point in the geosequence.
804
- A value of 0 indicates that no user field elements appear after
805
- count in the character string.
806
- Default Value: 0
807
- Types: int
808
-
809
- user_fields:
810
- Optional Argument.
811
- Specifies the list of user field tuples that represents a value to
812
- associated with a point. For example, certain tracking systems may
813
- associate velocity, direction, and acceleration values with each point.
814
- Note:
815
- 1. You must specify count groups of n user field values (where n is
816
- the number of points in the geosequence).
817
- 2. The first group provides the first user field values for each point,
818
- the second group provides the second user field values for each point,
819
- and so forth.
820
- 3. Each group can be formed using a tuple.
821
- Types: list of tuples of ints or floats
822
-
823
- RETURNS:
824
- GeoSequence
825
-
826
- RAISES:
827
- TeradataMlException, TypeError, ValueError
828
-
829
- EXAMPLES:
830
- >>> from teradataml import Point, GeoSequence
831
-
832
- # Example 1: Create a GeoSequence with 2D points and no user fields.
833
- >>> coordinates = [(1, 3), (3, 0), (0, 1)]
834
- >>> timestamps = ["2008-03-17 10:34:03.53", "2008-03-17 10:38:25.21", "2008-03-17 10:41:41.48"]
835
- >>> link_ids = [1001, 1002, 1003]
836
- >>> gs1 = GeoSequence(coordinates=coordinates, timestamps=timestamps, link_ids=link_ids)
837
- >>> gs1.coords
838
- [(1, 3), (3, 0), (0, 1)]
839
- >>> str(gs1)
840
- 'GeoSequence((1 3, 3 0, 0 1), (2008-03-17 10:34:03.53, 2008-03-17 10:38:25.21, 2008-03-17 10:41:41.48), (1001, 1002, 1003), (0))'
841
- >>>
842
-
843
- # Example 2: Create a GeoSequence with 3D points and 2 user fields.
844
- # Note that coordinates can be provided as tuple of ints/floats
845
- # or Point objects.
846
- >>> p1 = (3, 0, 6)
847
- >>> coordinates = [(1, 3, 6), p1, (6, 0, 1)]
848
- >>> timestamps = ["2008-03-17 10:34:03.53", "2008-03-17 10:38:25.21", "2008-03-17 10:41:41.48"]
849
- >>> link_ids = [1001, 1002, 1003]
850
- >>> user_fields = [(1, 2), (3, 4), (5, 6)]
851
- >>> gs2 = GeoSequence(coordinates=coordinates, timestamps=timestamps, link_ids=link_ids,
852
- ... user_field_count=2, user_fields=user_fields)
853
- >>> gs2.coords
854
- [(1, 3, 6), (3, 0, 6), (6, 0, 1)]
855
- >>> str(gs2)
856
- 'GeoSequence((1 3 6, 3 0 6, 6 0 1), (2008-03-17 10:34:03.53, 2008-03-17 10:38:25.21, 2008-03-17 10:41:41.48), (1001, 1002, 1003), (2, 1, 2, 3, 4, 5, 6))'
857
- >>>
858
-
859
- # Example 3: Create an empty GeoSequence.
860
- >>> gs3 = GeoSequence()
861
- >>> # Print the coordinates.
862
- >>> print(gc3.coords)
863
- EMPTY
864
- >>>
865
- """
866
- self.timestamps = timestamps
867
- self.user_field_count = user_field_count
868
- self.link_ids = link_ids
869
- self.user_fields = user_fields
870
-
871
- super(GeoSequence, self).__init__(coordinates)
872
- all_args_provided = all([coordinates, self.timestamps, self.link_ids])
873
- any_args_provided = any([coordinates, self.timestamps, self.link_ids])
874
-
875
- if any_args_provided:
876
- if not all_args_provided:
877
- raise ValueError("Either provide all (coordinates, timestamps, link_ids) or None.")
878
-
879
- if all_args_provided:
880
- arg_info = []
881
- arg_info.append(["timestamps", self.timestamps, True, _str_list])
882
- arg_info.append(["link_ids", self.link_ids, True, _int_list])
883
- arg_info.append(["user_field_count", self.user_field_count, True, int])
884
- arg_info.append(["user_fields", self.user_fields, True,
885
- (_int_float_tuple_list, _int_float_list)])
886
- _Validators()._validate_function_arguments(arg_info)
887
-
888
- _Validators._validate_list_lengths_equal(self.coordinates, "coordinates",
889
- self.timestamps, "timestamps")
890
- _Validators._validate_list_lengths_equal(self.coordinates, "coordinates",
891
- self.link_ids, "link_ids")
892
- if self.user_fields is not None:
893
- _Validators._validate_list_lengths_equal(self.coordinates, "coordinates",
894
- self.user_fields, "user_fields")
895
-
896
- for uf in self.user_fields:
897
- if isinstance(uf, tuple):
898
- if len(uf) != self.user_field_count:
899
- err_ = Messages.get_message(MessageCodes.GEOSEQ_USER_FIELD_NUM)
900
- raise ValueError(err_)
901
-
902
- @property
903
- def _coords_vantage_fmt(self):
904
- """
905
- Returns the coordinates of the GeometryCollection Geometry object in
906
- Vantage format.
907
- """
908
- if self._is_empty:
909
- return VANTAGE_EMPTY_GEOM_FMT
910
- else:
911
- coords = "({})".format(
912
- ", ".join(map(lambda x: " ".join(map(str, x)),
913
- self.coords)))
914
- ts = "({})".format(", ".join(self.timestamps))
915
- ids = "({})".format(", ".join(map(str, self.link_ids)))
916
- ufs = [self.user_field_count]
917
- if self.user_fields is not None:
918
- for uf in self.user_fields:
919
- if not isinstance(uf, tuple):
920
- ufs.append(uf)
921
- else:
922
- ufs.append(", ".join(map(str, list(uf))))
923
-
924
- uf = "({})".format(", ".join(map(str, ufs)))
925
- return "({}, {}, {}, {})".format(coords, ts, ids, uf)
1
+ #!/usr/bin/python
2
+ # ##################################################################
3
+ #
4
+ # Copyright 2021 Teradata. All rights reserved.
5
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
6
+ #
7
+ # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
+ # Secondary Owner:
9
+ #
10
+ # This file contains the implementation of Geometry types for
11
+ # Teradata Geospatial data types. These implementation allows user
12
+ # to create the singlton item like a literal that can be used in
13
+ # any Geospatial function call.
14
+ #
15
+ # ##################################################################
16
+ from teradataml.common.messagecodes import MessageCodes
17
+ from teradataml.common.messages import Messages
18
+ from teradataml.utils.dtypes import _str_list, _int_list, \
19
+ _int_float_list, _int_float_tuple_list
20
+ from teradataml.utils.validators import _Validators
21
+ VANTAGE_EMPTY_GEOM_FMT = "EMPTY"
22
+
23
+ class GeometryType(object):
24
+ """ Base class for Geospatial Geometry Types. """
25
+
26
+ def __init__(self, *args):
27
+ """ Constructor for Geometry object. """
28
+ self._is_empty = True
29
+ self.coordinates = VANTAGE_EMPTY_GEOM_FMT
30
+ self._str_fmt = "{} {}"
31
+
32
+ if args and args[0] is not None:
33
+ self._is_empty = False
34
+ self.coordinates = []
35
+ self._str_fmt = "{}{}"
36
+
37
+ def __str__(self):
38
+ """ Return String Representation for a Geometry object. """
39
+ return self._str_fmt.format(self.__class__.__name__,
40
+ self._coords_vantage_fmt)
41
+
42
+ def _vantage_str_(self):
43
+ """ Return Vantage String Representation for a Geometry object. """
44
+ return "new ST_Geometry('{}')".format(str(self))
45
+
46
+ @property
47
+ def coords(self):
48
+ """ Returns the coordinates of the Geometry object. """
49
+ return self.coordinates
50
+
51
+ @property
52
+ def geom_type(self):
53
+ """ Returns the type of a Geometry. """
54
+ return self.__class__.__name__
55
+
56
+ def __getattr__(self, item):
57
+ """"""
58
+ # TODO::
59
+ # Add a code to create a table with ST_Geometry column and insert
60
+ # the value for the Geometry object in the same, when any
61
+ # Geospatial function is executed.
62
+ # Creating table and then GeoDataFrame on top of the created table,
63
+ # will enable us to execute any Geospatial function on the
64
+ # Geometry Type Object and return the results, just like shapely
65
+ # library does.
66
+ # Doing this will not require any additional things to be implemented.
67
+ # This is what the workflow should look like when any function
68
+ # (geospatial) executed on any of the Geometry Types object:
69
+ # 1. We will enter this function, validate that the function being
70
+ # executed is Geospatial.
71
+ # 2. Check if self._geodf is set or not. If set go to 4.
72
+ # 3. If not set, then create a table with geospatial data type
73
+ # (ST_GEOMETRY) column.
74
+ # i. Get the table name from UtilFuncs get table name
75
+ # functionality. Should be GCed at the end.
76
+ # ii. Insert the User passed data in the table.
77
+ # iii. Set the self._geodf to the GeoDataFrame() on the created
78
+ # table.
79
+ # 4. If set, then just call the function on the self._geodf.
80
+ # For example, self._geodf.<func_name>(...)
81
+ "TODO"
82
+
83
+ class Point(GeometryType):
84
+ """
85
+ Class Point enables end user to create an object for the single Point
86
+ using the coordinates. Allows user to use the same in GeoDataFrame
87
+ manipulation and processing.
88
+ """
89
+ def __init__(self, *coordinates):
90
+ """
91
+ DESCRIPTION:
92
+ Enables end user to create an object for the single Point
93
+ using the coordinates. Allows user to use the same in GeoDataFrame
94
+ manipulation and processing using any Geospatial function.
95
+
96
+ PARAMETERS:
97
+ *coordinates:
98
+ Optional Argument.
99
+ Specifies the coordinates of a Point. Coordinates must be
100
+ specified in positional fashion.
101
+ If coordinates are not passed, an object for empty point is
102
+ created.
103
+ When coordinates are passed, one must pass either 2 or 3
104
+ values to define a Point in 2-dimentions or 3-dimentions.
105
+ Types: int, float
106
+
107
+ RETURNS:
108
+ Point
109
+
110
+ RAISES:
111
+ TeradataMlException, TypeError, ValueError
112
+
113
+ EXAMPLES:
114
+ >>> from teradataml import Point
115
+
116
+ # Example 1: Create a Point in 2D, using x and y coordinates.
117
+ >>> p1 = Point(0, 20)
118
+ >>> # Print the coordinates.
119
+ >>> print(p1.coords)
120
+ (0, 20)
121
+ >>> # Print the geometry type.
122
+ >>> p1.geom_type
123
+ 'Point'
124
+ >>>
125
+
126
+ # Example 2: Create a Point in 3D, using x, y and z coordinates.
127
+ >>> p2 = Point(0, 20, 30)
128
+ >>> # Print the coordinates.
129
+ >>> print(p2.coords)
130
+ (0, 20, 30)
131
+ >>>
132
+
133
+ # Example 3: Create an empty Point.
134
+ >>> pe = Point()
135
+ >>> # Print the coordinates.
136
+ >>> print(pe.coords)
137
+ EMPTY
138
+ >>>
139
+ """
140
+ super(Point, self).__init__(*coordinates)
141
+
142
+ if len(coordinates) == 1 and isinstance(coordinates[0], tuple):
143
+ # Create a Point by directly passing a tuple.
144
+ coordinates = coordinates[0]
145
+ elif len(coordinates) > 3 or len(coordinates) == 1:
146
+ # TODO - Error handling.
147
+ raise Exception("Must pass 2 or 3 coordinates.")
148
+
149
+ if not self._is_empty:
150
+ for co in coordinates:
151
+ arg_info = [["coordinates", co, False, (int, float)]]
152
+ _Validators()._validate_function_arguments(arg_info)
153
+
154
+ self.x = coordinates[0]
155
+ self.y = coordinates[1]
156
+ self.z = None
157
+ if len(coordinates) == 3:
158
+ self.z = coordinates[2]
159
+
160
+ @property
161
+ def coords(self):
162
+ """ Returns the coordinates of the Point Geometry object. """
163
+ if self._is_empty:
164
+ return VANTAGE_EMPTY_GEOM_FMT
165
+ else:
166
+ return (self.x, self.y) if self.z is None else (
167
+ self.x, self.y, self.z)
168
+
169
+ @property
170
+ def _coords_vantage_fmt(self):
171
+ """
172
+ Returns the coordinates of the Point Geometry object in Vantage format.
173
+ """
174
+ if self._is_empty:
175
+ return VANTAGE_EMPTY_GEOM_FMT
176
+ else:
177
+ return "({})".format(" ".join(map(str, self.coords)))
178
+
179
+ class LineString(GeometryType):
180
+ """
181
+ Class LineString enables end user to create an object for the single
182
+ LineString using the coordinates. Allows user to use the same in
183
+ GeoDataFrame manipulation and processing.
184
+ """
185
+ def __init__(self, coordinates=None):
186
+ """
187
+ DESCRIPTION:
188
+ Enables end user to create an object for the single LineString
189
+ using the coordinates. Allows user to use the same in GeoDataFrame
190
+ manipulation and processing using any Geospatial function.
191
+
192
+ PARAMETERS:
193
+ coordinates:
194
+ Optional Argument.
195
+ Specifies the coordinates of a Line. While passing coordinates
196
+ for a line, one must always pass coordinates in list of either
197
+ two-tuples for 2D or list of three-tuples for 3D.
198
+ Argument also accepts list of Points as well instead of tuples.
199
+ If coordinates are not passed, an object for empty line is
200
+ created.
201
+ Types: List of
202
+ a. Point geometry objects or
203
+ b. two-tuple of int or float or
204
+ c. three-tuple of int or float or
205
+ d. Mix of any of the above.
206
+
207
+ RETURNS:
208
+ LineString
209
+
210
+ RAISES:
211
+ TeradataMlException, TypeError, ValueError
212
+
213
+ EXAMPLES:
214
+ >>> from teradataml import Point, LineString
215
+
216
+ # Example 1: Create a LineString in 2D, using x and y coordinates.
217
+ >>> l1 = LineString([(0, 0), (0, 20), (20, 20)])
218
+ >>> # Print the coordinates.
219
+ >>> print(l1.coords)
220
+ [(0, 0), (0, 20), (20, 20)]
221
+ >>> # Print the geometry type.
222
+ >>> l1.geom_type
223
+ 'LineString'
224
+ >>>
225
+
226
+ # Example 2: Create a LineString in 3D, using x, y and z coordinates.
227
+ >>> l2 = LineString([(0, 0, 1), (0, 1, 3), (1, 3, 6), (3, 3, 6),
228
+ ... (3, 6, 1), (6, 3, 3), (3, 3, 0)])
229
+ >>> # Print the coordinates.
230
+ >>> print(l1.coords)
231
+ [(0, 0), (0, 20), (20, 20)]
232
+ >>>
233
+
234
+ # Example 3: Create a LineString using Point geometry objects.
235
+ # Create some Points in 2D, using x and y coordinates.
236
+ >>> p1 = Point(0, 20)
237
+ >>> p2 = Point(0, 0)
238
+ >>> p3 = Point(20, 20)
239
+ >>> l3 = LineString([p1, p2, p3])
240
+ >>> # Print the coordinates.
241
+ >>> print(l3.coords)
242
+ [(0, 20), (0, 0), (20, 20)]
243
+ >>>
244
+
245
+ # Example 4: Create a LineString using mix of Point geometry objects
246
+ # and coordinates.
247
+ >>> p1 = Point(0, 20)
248
+ >>> p2 = Point(20, 20)
249
+ >>> l4 = LineString([(0, 0), p1, p2, (20, 0)])
250
+ >>> # Print the coordinates.
251
+ >>> print(l4.coords)
252
+ [(0, 0), (0, 20), (20, 20), (20, 0)]
253
+ >>>
254
+
255
+ # Example 5: Create an empty LineString.
256
+ >>> le = LineString()
257
+ >>> # Print the coordinates.
258
+ >>> print(le.coords)
259
+ EMPTY
260
+ >>>
261
+ """
262
+ super(LineString, self).__init__(coordinates)
263
+ if coordinates is not None:
264
+ # Argument validations.
265
+ arg_info = [["coordinates", coordinates, False, (list, Point, tuple)]]
266
+ _Validators()._validate_function_arguments(arg_info)
267
+
268
+ # List of two-tuples or three-tuples or Point or mix.
269
+ for co in coordinates:
270
+ if isinstance(co, Point):
271
+ self.coordinates.append(co.coords)
272
+ else:
273
+ # Validate coordinates
274
+ Point(*co)
275
+ self.coordinates.append(co)
276
+
277
+ @property
278
+ def _coords_vantage_fmt(self):
279
+ """
280
+ Returns the coordinates of the LineString Geometry object in Vantage format.
281
+ """
282
+ if self._is_empty:
283
+ return VANTAGE_EMPTY_GEOM_FMT
284
+ else:
285
+ return "({})".format(
286
+ ", ".join(map(lambda x: " ".join(map(str, x)), self.coords)))
287
+
288
+ class Polygon(GeometryType):
289
+ """
290
+ Class Polygon enables end user to create an object for the single Polygon
291
+ using the coordinates. Allows user to use the same in GeoDataFrame
292
+ manipulation and processing.
293
+ """
294
+ def __init__(self, coordinates=None):
295
+ """
296
+ DESCRIPTION:
297
+ Enables end user to create an object for the single Polygon
298
+ using the coordinates. Allows user to use the same in GeoDataFrame
299
+ manipulation and processing using any Geospatial function.
300
+
301
+ PARAMETERS:
302
+ coordinates:
303
+ Optional Argument.
304
+ Specifies the coordinates of a polygon. While passing coordinates
305
+ for a polygon, one must always pass coordinates in list of either
306
+ two-tuples for 2D or list of three-tuples for 3D.
307
+ Argument also accepts list of Point and/or LineString as well
308
+ instead of tuples.
309
+ If coordinates are not passed, an object for empty polygon is
310
+ created.
311
+ Types: List of
312
+ a. two-tuple of int or float or
313
+ b. three-tuple of int or float or
314
+ c. Point geometry objects or
315
+ d. LineString geometry objects or
316
+ e. Mix of any of the above.
317
+
318
+ RETURNS:
319
+ Polygon
320
+
321
+ RAISES:
322
+ TeradataMlException, TypeError, ValueError
323
+
324
+ EXAMPLES:
325
+ >>> from teradataml import Point, LineString, Polygon
326
+
327
+ # Example 1: Create a Polygon in 2D, using x and y coordinates.
328
+ >>> go1 = Polygon([(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)])
329
+ >>> # Print the coordinates.
330
+ >>> print(go1.coords)
331
+ [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
332
+ >>> # Print the geometry type.
333
+ >>> go1.geom_type
334
+ 'Polygon'
335
+ >>>
336
+
337
+ # Example 2: Create a Polygon in 3D, using x, y and z coordinates.
338
+ >>> go2 = Polygon([(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20),
339
+ ... (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20),
340
+ ... (0, 0, 0)])
341
+ >>> # Print the coordinates.
342
+ >>> print(go2.coords)
343
+ [(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20), (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20), (0, 0, 0)]
344
+ >>>
345
+
346
+ # Example 3: Create a Polygon using Point geometry objects.
347
+ # Create Point objects in 2D, using x and y coordinates.
348
+ >>> p1 = Point(0, 0)
349
+ >>> p2 = Point(0, 20)
350
+ >>> p3 = Point(20, 20)
351
+ >>> p4 = Point(20, 0)
352
+ >>> go3 = Polygon([p1, p2, p3, p4, p1])
353
+ >>> # Print the coordinates.
354
+ >>> print(go3.coords)
355
+ [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
356
+ >>>
357
+
358
+ # Example 4: Create a Polygon using LineString geometry objects.
359
+ # Create some LineString objects in 2D, using x and y coordinates.
360
+ >>> l1 = LineString([(0, 0), (0, 20), (20, 20)])
361
+ >>> l2 = LineString([(20, 0), (0, 0)])
362
+ >>> go4 = Polygon([l1, l2])
363
+ >>> # Print the coordinates.
364
+ >>> print(go4.coords)
365
+ [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
366
+ >>>
367
+
368
+ # Example 5: Create a Polygon using mix of Point, LineString
369
+ # geometry objects and coordinates.
370
+ >>> p1 = Point(0, 0)
371
+ >>> l1 = LineString([p1, (0, 20), (20, 20)])
372
+ >>> go5 = Polygon([l1, (20, 0), p1])
373
+ >>> # Print the coordinates.
374
+ >>> print(go5.coords)
375
+ [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
376
+ >>>
377
+
378
+ # Example 6: Create an empty Polygon.
379
+ >>> poe = Polygon()
380
+ >>> # Print the coordinates.
381
+ >>> print(poe.coords)
382
+ EMPTY
383
+ >>>
384
+ """
385
+ super(Polygon, self).__init__(coordinates)
386
+ if coordinates is not None:
387
+ # Argument validation.
388
+ acc_types = (list, Point, LineString, tuple)
389
+ arg_info = [["coordinates", coordinates, False, acc_types]]
390
+ _Validators()._validate_function_arguments(arg_info)
391
+
392
+ # List of two-tuples or three-tuples or LineString or Point or mix.
393
+ for co in coordinates:
394
+ if isinstance(co, (Point)):
395
+ self.coordinates.append(co.coords)
396
+ elif isinstance(co, LineString):
397
+ for lco in co.coords:
398
+ self.coordinates.append(lco)
399
+ else:
400
+ # Validate individual coordinates passed.
401
+ Point(*co)
402
+ self.coordinates.append(co)
403
+
404
+ @property
405
+ def _coords_vantage_fmt(self):
406
+ """
407
+ Returns the coordinates of the Polygon Geometry object in Vantage format.
408
+ """
409
+ if self._is_empty:
410
+ return VANTAGE_EMPTY_GEOM_FMT
411
+ else:
412
+ return "(({}))".format(
413
+ ", ".join(map(lambda x: " ".join(map(str, x)), self.coords)))
414
+
415
+ class MultiPoint(GeometryType):
416
+ """
417
+ Class MultiPoint enables end user to create an object holding multiple
418
+ Point geometry objects. Allows user to use the same in GeoDataFrame
419
+ manipulation and processing.
420
+ """
421
+ def __init__(self, points=None):
422
+ """
423
+ DESCRIPTION:
424
+ Enables end user to create an object holding the multiple Point
425
+ geometry objects. Allows user to use the same in GeoDataFrame
426
+ manipulation and processing using any Geospatial function.
427
+
428
+ PARAMETERS:
429
+ points:
430
+ Optional Argument.
431
+ Specifies the list of points. If no points are passed, an object
432
+ for empty MultiPoint is created.
433
+ Types: List of Point objects
434
+
435
+ RETURNS:
436
+ MultiPoint
437
+
438
+ RAISES:
439
+ TeradataMlException, TypeError, ValueError
440
+
441
+ EXAMPLES:
442
+ >>> from teradataml import Point, MultiPoint
443
+
444
+ # Example 1: Create a MultiPoint in 2D, using x and y coordinates.
445
+ >>> p1 = Point(0, 0)
446
+ >>> p2 = Point(0, 20)
447
+ >>> p3 = Point(20, 20)
448
+ >>> p4 = Point(20, 0)
449
+ >>> go1 = MultiPoint([p1, p2, p3, p4, p1])
450
+ >>> # Print the coordinates.
451
+ >>> print(go1.coords)
452
+ [(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
453
+ >>> # Print the geometry type.
454
+ >>> print(go1.geom_type)
455
+ MultiPoint
456
+ >>>
457
+
458
+ # Example 2: Create an empty MultiPoint.
459
+ >>> poe = MultiPoint()
460
+ >>> # Print the coordinates.
461
+ >>> print(poe.coords)
462
+ EMPTY
463
+ >>>
464
+ """
465
+ super(MultiPoint, self).__init__(points)
466
+ if points is not None:
467
+ # Argument validation.
468
+ acc_types = (list, Point)
469
+ arg_info = [["points", points, False, acc_types]]
470
+ _Validators()._validate_function_arguments(arg_info)
471
+
472
+ self.points = points
473
+ for po in points:
474
+ self.coordinates.append(po.coords)
475
+
476
+ @property
477
+ def _coords_vantage_fmt(self):
478
+ """
479
+ Returns the coordinates of the MultiPoint Geometry object in Vantage
480
+ format.
481
+ """
482
+ if self._is_empty:
483
+ return VANTAGE_EMPTY_GEOM_FMT
484
+ else:
485
+ return "({})".format(
486
+ ", ".join([pnt._coords_vantage_fmt for pnt in self.points]))
487
+
488
+ class MultiLineString(GeometryType):
489
+ """
490
+ Class MultiLineString enables end user to create an object holding multiple
491
+ LineString geometry objects. Allows user to use the same in GeoDataFrame
492
+ manipulation and processing.
493
+ """
494
+ def __init__(self, lines=None):
495
+ """
496
+ DESCRIPTION:
497
+ Enables end user to create an object holding the multiple LineString
498
+ geometry objects. Allows user to use the same in GeoDataFrame
499
+ manipulation and processing using any Geospatial function.
500
+
501
+ PARAMETERS:
502
+ lines:
503
+ Optional Argument.
504
+ Specifies the list of lines. If no lines are passed, an object
505
+ for empty MultiLineString is created.
506
+ Types: List of LineString objects
507
+
508
+ RETURNS:
509
+ MultiLineString
510
+
511
+ RAISES:
512
+ TeradataMlException, TypeError, ValueError
513
+
514
+ EXAMPLES:
515
+ >>> from teradataml import LineString, MultiLineString
516
+
517
+ # Example 1: Create a MultiLineString in 2D, using x and y coordinates.
518
+ >>> l1 = LineString([(1, 3), (3, 0), (0, 1)])
519
+ >>> l2 = LineString([(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)])
520
+ >>> go1 = MultiLineString([l1, l2])
521
+ >>> # Print the coordinates.
522
+ >>> print(go1.coords)
523
+ [[(1, 3), (3, 0), (0, 1)], [(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)]]
524
+ >>> # Print the geometry type.
525
+ >>> print(go1.geom_type)
526
+ MultiLineString
527
+ >>>
528
+
529
+ # Example 2: Create an empty MultiLineString.
530
+ >>> mls = MultiLineString()
531
+ >>> # Print the coordinates.
532
+ >>> print(mls.coords)
533
+ EMPTY
534
+ >>>
535
+ """
536
+ super(MultiLineString, self).__init__(lines)
537
+ if lines is not None:
538
+ # Argument validation.
539
+ acc_types = (list, LineString)
540
+ arg_info = [["lines", lines, False, acc_types]]
541
+ _Validators()._validate_function_arguments(arg_info)
542
+
543
+ self.lines = lines
544
+ for po in lines:
545
+ self.coordinates.append(po.coords)
546
+
547
+ @property
548
+ def _coords_vantage_fmt(self):
549
+ """
550
+ Returns the coordinates of the MultiLineString Geometry object in
551
+ Vantage format.
552
+ """
553
+ if self._is_empty:
554
+ return VANTAGE_EMPTY_GEOM_FMT
555
+ else:
556
+ return "({})".format(
557
+ ", ".join([line._coords_vantage_fmt for line in self.lines]))
558
+
559
+ class MultiPolygon(GeometryType):
560
+ """
561
+ Class MultiPolygon enables end user to create an object holding multiple
562
+ Polygon geometry objects. Allows user to use the same in GeoDataFrame
563
+ manipulation and processing.
564
+ """
565
+ def __init__(self, polygons=None):
566
+ """
567
+ DESCRIPTION:
568
+ Enables end user to create an object holding the multiple Polygon
569
+ geometry objects. Allows user to use the same in GeoDataFrame
570
+ manipulation and processing using any Geospatial function.
571
+
572
+ PARAMETERS:
573
+ polygons:
574
+ Optional Argument.
575
+ Specifies the list of polygons. If no polygons are passed, an
576
+ object for empty MultiPolygon is created.
577
+ Types: List of Polygon objects
578
+
579
+ RETURNS:
580
+ MultiPolygon
581
+
582
+ RAISES:
583
+ TeradataMlException, TypeError, ValueError
584
+
585
+ EXAMPLES:
586
+ >>> from teradataml import Polygon, MultiPolygon
587
+
588
+ # Example 1: Create a MultiPolygon in 2D, using x and y coordinates.
589
+ >>> po1 = Polygon([(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)])
590
+ >>> po2 = Polygon([(0.6, 0.8), (0.6, 20.8), (20.6, 20.8), (20.6, 0.8), (0.6, 0.8)])
591
+ >>> go1 = MultiPolygon([po1, po2])
592
+ >>> # Print the coordinates.
593
+ >>> print(go1.coords)
594
+ [[(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)], [(0.6, 0.8), (0.6, 20.8), (20.6, 20.8), (20.6, 0.8), (0.6, 0.8)]]
595
+ >>> # Print the geometry type.
596
+ >>> print(go1.geom_type)
597
+ MultiPolygon
598
+ >>>
599
+
600
+ # Example 2: Create an empty MultiPolygon.
601
+ >>> poe = MultiPolygon()
602
+ >>> # Print the coordinates.
603
+ >>> print(poe.coords)
604
+ EMPTY
605
+ >>>
606
+ """
607
+ super(MultiPolygon, self).__init__(polygons)
608
+ if polygons is not None:
609
+ # Argument validation.
610
+ acc_types = (list, Polygon)
611
+ arg_info = [["polygons", polygons, False, acc_types]]
612
+ _Validators()._validate_function_arguments(arg_info)
613
+
614
+ self.polygons = polygons
615
+ for po in polygons:
616
+ self.coordinates.append(po.coords)
617
+
618
+ @property
619
+ def _coords_vantage_fmt(self):
620
+ """
621
+ Returns the coordinates of the MultiPolygon Geometry object in Vantage
622
+ format.
623
+ """
624
+ if self._is_empty:
625
+ return VANTAGE_EMPTY_GEOM_FMT
626
+ else:
627
+ return "({})".format(
628
+ ", ".join([pnt._coords_vantage_fmt for pnt in self.polygons]))
629
+
630
+ class GeometryCollection(GeometryType):
631
+ """
632
+ Class GeometryCollection enables end user to create an object for the
633
+ single GeometryCollection, i.e., collection of different geometry objects
634
+ using the geometries. This allows user to use the same in GeoDataFrame
635
+ manipulation and processing.
636
+ """
637
+ def __init__(self, geometries=None):
638
+ """
639
+ DESCRIPTION:
640
+ Enables end user to create an object holding the multiple types of
641
+ geometry objects. Allows user to use the same in GeoDataFrame
642
+ manipulation and processing using any Geospatial function.
643
+
644
+ PARAMETERS:
645
+ geoms:
646
+ Optional Argument.
647
+ Specifies the list of different geometry types.
648
+ If no geometries are are passed, an object for empty
649
+ GeometryCollection is created.
650
+ Types: List of geometry objects of types:
651
+ 1. Point
652
+ 2. LineString
653
+ 3. Polygon
654
+ 4. MultiPoint
655
+ 5. MultiLineString
656
+ 6. MultiPolygon
657
+ 7. GeometryCollection
658
+ 8. Mixture of any of these.
659
+
660
+ RETURNS:
661
+ GeometryCollection
662
+
663
+ RAISES:
664
+ TeradataMlException, TypeError, ValueError
665
+
666
+ EXAMPLES:
667
+ >>> from teradataml import Point, LineString, Polygon, MultiPoint,
668
+ ... MultiLineString, MultiPolygon, GeometryCollection
669
+
670
+ # Example 1: Create a GeometryCollection object with all geometries.
671
+ >>> # Create Point objects.
672
+ >>> p1 = Point(1, 1)
673
+ >>> p2 = Point()
674
+ >>> p3 = Point(6, 3)
675
+ >>> p4 = Point(10, 5)
676
+ >>> p5 = Point()
677
+ >>>
678
+ >>> # Create LineString Objects.
679
+ >>> l1 = LineString([(1, 3), (3, 0), (0, 1)])
680
+ >>> l2 = LineString([(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)])
681
+ >>> l3 = LineString()
682
+ >>>
683
+ >>> # Create Polygon Objects.
684
+ >>> po1 = Polygon([(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20),
685
+ ... (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20),
686
+ ... (0, 0, 0)])
687
+ >>> po2 = Polygon([(0, 0, 0), (0, 0, 20.435), (0, 20.435, 0),
688
+ ... (0, 20.435, 20.435), (20.435, 0, 0), (20.435, 0, 20.435),
689
+ ... (20.435, 20.435, 0), (20.435, 20.435, 20.435),
690
+ ... (0, 0, 0)])
691
+ >>> po3 = Polygon()
692
+ >>>
693
+ >>> # Create MultiPolygon Object.
694
+ >>> mpol = MultiPolygon([po1, Polygon(), po2])
695
+ >>>
696
+ >>> # Create MultiLineString Object.
697
+ >>> mlin = MultiLineString([l1, l2, l3])
698
+ >>>
699
+ >>> # Create MultiPoint Object.
700
+ >>> mpnt = MultiPoint([p1, p2, p3, p4, p5])
701
+ >>>
702
+ >>> # Create a GeometryCollection object.
703
+ >>> gc1 = GeometryCollection([p1, p2, l1, l3, po2, po3, po1, mpol, mlin, mpnt])
704
+ >>> # Print the coordinates.
705
+ >>> print(gc1.coords)
706
+ [(1, 1), 'EMPTY', [(1, 3), (3, 0), (0, 1)], 'EMPTY', [(0, 0, 0), (0, 0, 20.435), (0, 20.435, 0), (0, 20.435, 20.435), (20.435, 0, 0), (20.435, 0, 20.435), (20.435, 20.435, 0), (20.435, 20.435, 20.435), (0, 0, 0)], 'EMPTY', [(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20), (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20), (0, 0, 0)], [[(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20), (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20), (0, 0, 0)], 'EMPTY', [(0, 0, 0), (0, 0, 20.435), (0, 20.435, 0), (0, 20.435, 20.435), (20.435, 0, 0), (20.435, 0, 20.435), (20.435, 20.435, 0), (20.435, 20.435, 20.435), (0, 0, 0)]], [[(1, 3), (3, 0), (0, 1)], [(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)], 'EMPTY'], [(1, 1), 'EMPTY', (6, 3), (10, 5), 'EMPTY']]
707
+ >>> # Print the geometry type.
708
+ >>> print(gc1.geom_type)
709
+ GeometryCollection
710
+ >>>
711
+
712
+ # Example 2: Create an empty GeometryCollection.
713
+ >>> gc2 = GeometryCollection()
714
+ >>> # Print the coordinates.
715
+ >>> print(gc2.coords)
716
+ EMPTY
717
+ >>>
718
+ """
719
+ super(GeometryCollection, self).__init__(geometries)
720
+ if geometries is not None:
721
+ # Argument validation.
722
+ acc_types = (list, Point, LineString, Polygon, MultiPoint,
723
+ MultiLineString, MultiPolygon, GeometryCollection)
724
+ arg_info = [["geometries", geometries, False, acc_types]]
725
+ _Validators()._validate_function_arguments(arg_info)
726
+
727
+ self.geometries = geometries
728
+ for geo in geometries:
729
+ self.coordinates.append(geo.coords)
730
+
731
+ @property
732
+ def _coords_vantage_fmt(self):
733
+ """
734
+ Returns the coordinates of the GeometryCollection Geometry object in
735
+ Vantage format.
736
+ """
737
+ if self._is_empty:
738
+ return VANTAGE_EMPTY_GEOM_FMT
739
+ else:
740
+ return "({})".format(
741
+ ", ".join(map(str, self.geometries)))
742
+
743
+ class GeoSequence(LineString):
744
+ """
745
+ Class GeoSequence enables end user to create an object for the
746
+ LineString geometry objects with tracking information such as
747
+ timestamp. This allows user to use the same in GeoDataFrame
748
+ manipulation and processing.
749
+ """
750
+ def __init__(self, coordinates=None, timestamps=None, link_ids=None,
751
+ user_field_count=0, user_fields=None):
752
+ """
753
+ DESCRIPTION:
754
+ Enables end user to create an object holding the LineString
755
+ geometry objects with tracking information such as timestamps.
756
+ Allows user to use the same in GeoDataFrame manipulation and
757
+ processing using any Geospatial function.
758
+
759
+ PARAMETERS:
760
+ coordinates:
761
+ Optional Argument.
762
+ Specifies the list of coordinates of a Point. While passing
763
+ coordinates, one must always pass coordinates in list of either
764
+ two-tuples for 2D or list of three-tuples for 3D.
765
+ Argument also accepts list of Points as well instead of tuples.
766
+ If coordinates are not passed, an object for empty line is
767
+ created.
768
+ Types: List of
769
+ a. Point geometry objects or
770
+ b. two-tuple of int or float or
771
+ c. three-tuple of int or float or
772
+ d. Mix of any of the above.
773
+
774
+ timestamps:
775
+ Optional Argument.
776
+ Specifies the list of timestamp values for each coordinate with
777
+ the following format:
778
+ yyyy-mm-dd hh:mi:ss.ms
779
+ The first timestamp value is associated with the first point, the
780
+ second timestamp value is associated with the second point, and
781
+ so forth.
782
+ Note:
783
+ You must specify n timestamp values, where n is the number of
784
+ points in the geosequence.
785
+ Types: list of strings
786
+
787
+ link_ids:
788
+ Optional Argument.
789
+ Specifies the list of values for the ID of the link on the road
790
+ network for a point in the geosequence.
791
+ This value is reserved for a future release.
792
+ The first link ID value is associated with the first point, the
793
+ second link ID value is associated with the second point, and
794
+ so forth.
795
+ Note:
796
+ You must specify n link ID values, where n is the number of
797
+ points in the geosequence.
798
+ Types: list of ints
799
+
800
+ user_field_count:
801
+ Optional Argument.
802
+ Specifies the value that represents the number of user field
803
+ elements for each point in the geosequence.
804
+ A value of 0 indicates that no user field elements appear after
805
+ count in the character string.
806
+ Default Value: 0
807
+ Types: int
808
+
809
+ user_fields:
810
+ Optional Argument.
811
+ Specifies the list of user field tuples that represents a value to
812
+ associated with a point. For example, certain tracking systems may
813
+ associate velocity, direction, and acceleration values with each point.
814
+ Note:
815
+ 1. You must specify count groups of n user field values (where n is
816
+ the number of points in the geosequence).
817
+ 2. The first group provides the first user field values for each point,
818
+ the second group provides the second user field values for each point,
819
+ and so forth.
820
+ 3. Each group can be formed using a tuple.
821
+ Types: list of tuples of ints or floats
822
+
823
+ RETURNS:
824
+ GeoSequence
825
+
826
+ RAISES:
827
+ TeradataMlException, TypeError, ValueError
828
+
829
+ EXAMPLES:
830
+ >>> from teradataml import Point, GeoSequence
831
+
832
+ # Example 1: Create a GeoSequence with 2D points and no user fields.
833
+ >>> coordinates = [(1, 3), (3, 0), (0, 1)]
834
+ >>> timestamps = ["2008-03-17 10:34:03.53", "2008-03-17 10:38:25.21", "2008-03-17 10:41:41.48"]
835
+ >>> link_ids = [1001, 1002, 1003]
836
+ >>> gs1 = GeoSequence(coordinates=coordinates, timestamps=timestamps, link_ids=link_ids)
837
+ >>> gs1.coords
838
+ [(1, 3), (3, 0), (0, 1)]
839
+ >>> str(gs1)
840
+ 'GeoSequence((1 3, 3 0, 0 1), (2008-03-17 10:34:03.53, 2008-03-17 10:38:25.21, 2008-03-17 10:41:41.48), (1001, 1002, 1003), (0))'
841
+ >>>
842
+
843
+ # Example 2: Create a GeoSequence with 3D points and 2 user fields.
844
+ # Note that coordinates can be provided as tuple of ints/floats
845
+ # or Point objects.
846
+ >>> p1 = (3, 0, 6)
847
+ >>> coordinates = [(1, 3, 6), p1, (6, 0, 1)]
848
+ >>> timestamps = ["2008-03-17 10:34:03.53", "2008-03-17 10:38:25.21", "2008-03-17 10:41:41.48"]
849
+ >>> link_ids = [1001, 1002, 1003]
850
+ >>> user_fields = [(1, 2), (3, 4), (5, 6)]
851
+ >>> gs2 = GeoSequence(coordinates=coordinates, timestamps=timestamps, link_ids=link_ids,
852
+ ... user_field_count=2, user_fields=user_fields)
853
+ >>> gs2.coords
854
+ [(1, 3, 6), (3, 0, 6), (6, 0, 1)]
855
+ >>> str(gs2)
856
+ 'GeoSequence((1 3 6, 3 0 6, 6 0 1), (2008-03-17 10:34:03.53, 2008-03-17 10:38:25.21, 2008-03-17 10:41:41.48), (1001, 1002, 1003), (2, 1, 2, 3, 4, 5, 6))'
857
+ >>>
858
+
859
+ # Example 3: Create an empty GeoSequence.
860
+ >>> gs3 = GeoSequence()
861
+ >>> # Print the coordinates.
862
+ >>> print(gc3.coords)
863
+ EMPTY
864
+ >>>
865
+ """
866
+ self.timestamps = timestamps
867
+ self.user_field_count = user_field_count
868
+ self.link_ids = link_ids
869
+ self.user_fields = user_fields
870
+
871
+ super(GeoSequence, self).__init__(coordinates)
872
+ all_args_provided = all([coordinates, self.timestamps, self.link_ids])
873
+ any_args_provided = any([coordinates, self.timestamps, self.link_ids])
874
+
875
+ if any_args_provided:
876
+ if not all_args_provided:
877
+ raise ValueError("Either provide all (coordinates, timestamps, link_ids) or None.")
878
+
879
+ if all_args_provided:
880
+ arg_info = []
881
+ arg_info.append(["timestamps", self.timestamps, True, _str_list])
882
+ arg_info.append(["link_ids", self.link_ids, True, _int_list])
883
+ arg_info.append(["user_field_count", self.user_field_count, True, int])
884
+ arg_info.append(["user_fields", self.user_fields, True,
885
+ (_int_float_tuple_list, _int_float_list)])
886
+ _Validators()._validate_function_arguments(arg_info)
887
+
888
+ _Validators._validate_list_lengths_equal(self.coordinates, "coordinates",
889
+ self.timestamps, "timestamps")
890
+ _Validators._validate_list_lengths_equal(self.coordinates, "coordinates",
891
+ self.link_ids, "link_ids")
892
+ if self.user_fields is not None:
893
+ _Validators._validate_list_lengths_equal(self.coordinates, "coordinates",
894
+ self.user_fields, "user_fields")
895
+
896
+ for uf in self.user_fields:
897
+ if isinstance(uf, tuple):
898
+ if len(uf) != self.user_field_count:
899
+ err_ = Messages.get_message(MessageCodes.GEOSEQ_USER_FIELD_NUM)
900
+ raise ValueError(err_)
901
+
902
+ @property
903
+ def _coords_vantage_fmt(self):
904
+ """
905
+ Returns the coordinates of the GeometryCollection Geometry object in
906
+ Vantage format.
907
+ """
908
+ if self._is_empty:
909
+ return VANTAGE_EMPTY_GEOM_FMT
910
+ else:
911
+ coords = "({})".format(
912
+ ", ".join(map(lambda x: " ".join(map(str, x)),
913
+ self.coords)))
914
+ ts = "({})".format(", ".join(self.timestamps))
915
+ ids = "({})".format(", ".join(map(str, self.link_ids)))
916
+ ufs = [self.user_field_count]
917
+ if self.user_fields is not None:
918
+ for uf in self.user_fields:
919
+ if not isinstance(uf, tuple):
920
+ ufs.append(uf)
921
+ else:
922
+ ufs.append(", ".join(map(str, list(uf))))
923
+
924
+ uf = "({})".format(", ".join(map(str, ufs)))
925
+ return "({}, {}, {}, {})".format(coords, ts, ids, uf)
926
926