teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1303) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1935 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2040 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +798 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1683 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +1011 -0
  31. teradataml/automl/data_transformation.py +789 -0
  32. teradataml/automl/feature_engineering.py +1580 -0
  33. teradataml/automl/feature_exploration.py +554 -0
  34. teradataml/automl/model_evaluation.py +151 -0
  35. teradataml/automl/model_training.py +1026 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/auth_client.py +133 -0
  41. teradataml/clients/pkce_client.py +481 -481
  42. teradataml/common/aed_utils.py +7 -2
  43. teradataml/common/bulk_exposed_utils.py +111 -111
  44. teradataml/common/constants.py +1438 -1441
  45. teradataml/common/deprecations.py +160 -0
  46. teradataml/common/exceptions.py +73 -73
  47. teradataml/common/formula.py +742 -742
  48. teradataml/common/garbagecollector.py +597 -635
  49. teradataml/common/messagecodes.py +424 -431
  50. teradataml/common/messages.py +228 -231
  51. teradataml/common/sqlbundle.py +693 -693
  52. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  53. teradataml/common/utils.py +2424 -2500
  54. teradataml/common/warnings.py +25 -25
  55. teradataml/common/wrapper_utils.py +1 -110
  56. teradataml/config/dummy_file1.cfg +4 -4
  57. teradataml/config/dummy_file2.cfg +2 -2
  58. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  59. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  60. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  61. teradataml/context/aed_context.py +217 -217
  62. teradataml/context/context.py +1091 -999
  63. teradataml/data/A_loan.csv +19 -19
  64. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  65. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  66. teradataml/data/B_loan.csv +49 -49
  67. teradataml/data/BuoyData2.csv +17 -17
  68. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  69. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  70. teradataml/data/Convolve2RealsLeft.csv +5 -5
  71. teradataml/data/Convolve2RealsRight.csv +5 -5
  72. teradataml/data/Convolve2ValidLeft.csv +11 -11
  73. teradataml/data/Convolve2ValidRight.csv +11 -11
  74. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  75. teradataml/data/Orders1_12mf.csv +24 -24
  76. teradataml/data/Pi_loan.csv +7 -7
  77. teradataml/data/SMOOTHED_DATA.csv +7 -7
  78. teradataml/data/TestDFFT8.csv +9 -9
  79. teradataml/data/TestRiver.csv +109 -109
  80. teradataml/data/Traindata.csv +28 -28
  81. teradataml/data/acf.csv +17 -17
  82. teradataml/data/adaboost_example.json +34 -34
  83. teradataml/data/adaboostpredict_example.json +24 -24
  84. teradataml/data/additional_table.csv +10 -10
  85. teradataml/data/admissions_test.csv +21 -21
  86. teradataml/data/admissions_train.csv +41 -41
  87. teradataml/data/admissions_train_nulls.csv +41 -41
  88. teradataml/data/advertising.csv +201 -0
  89. teradataml/data/ageandheight.csv +13 -13
  90. teradataml/data/ageandpressure.csv +31 -31
  91. teradataml/data/antiselect_example.json +36 -36
  92. teradataml/data/antiselect_input.csv +8 -8
  93. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  94. teradataml/data/applicant_external.csv +6 -6
  95. teradataml/data/applicant_reference.csv +6 -6
  96. teradataml/data/arima_example.json +9 -9
  97. teradataml/data/assortedtext_input.csv +8 -8
  98. teradataml/data/attribution_example.json +33 -33
  99. teradataml/data/attribution_sample_table.csv +27 -27
  100. teradataml/data/attribution_sample_table1.csv +6 -6
  101. teradataml/data/attribution_sample_table2.csv +11 -11
  102. teradataml/data/bank_churn.csv +10001 -0
  103. teradataml/data/bank_marketing.csv +11163 -0
  104. teradataml/data/bank_web_clicks1.csv +42 -42
  105. teradataml/data/bank_web_clicks2.csv +91 -91
  106. teradataml/data/bank_web_url.csv +85 -85
  107. teradataml/data/barrier.csv +2 -2
  108. teradataml/data/barrier_new.csv +3 -3
  109. teradataml/data/betweenness_example.json +13 -13
  110. teradataml/data/bike_sharing.csv +732 -0
  111. teradataml/data/bin_breaks.csv +8 -8
  112. teradataml/data/bin_fit_ip.csv +3 -3
  113. teradataml/data/binary_complex_left.csv +11 -11
  114. teradataml/data/binary_complex_right.csv +11 -11
  115. teradataml/data/binary_matrix_complex_left.csv +21 -21
  116. teradataml/data/binary_matrix_complex_right.csv +21 -21
  117. teradataml/data/binary_matrix_real_left.csv +21 -21
  118. teradataml/data/binary_matrix_real_right.csv +21 -21
  119. teradataml/data/blood2ageandweight.csv +26 -26
  120. teradataml/data/bmi.csv +501 -0
  121. teradataml/data/boston.csv +507 -507
  122. teradataml/data/boston2cols.csv +721 -0
  123. teradataml/data/breast_cancer.csv +570 -0
  124. teradataml/data/buoydata_mix.csv +11 -11
  125. teradataml/data/burst_data.csv +5 -5
  126. teradataml/data/burst_example.json +20 -20
  127. teradataml/data/byom_example.json +17 -17
  128. teradataml/data/bytes_table.csv +3 -3
  129. teradataml/data/cal_housing_ex_raw.csv +70 -70
  130. teradataml/data/callers.csv +7 -7
  131. teradataml/data/calls.csv +10 -10
  132. teradataml/data/cars_hist.csv +33 -33
  133. teradataml/data/cat_table.csv +24 -24
  134. teradataml/data/ccm_example.json +31 -31
  135. teradataml/data/ccm_input.csv +91 -91
  136. teradataml/data/ccm_input2.csv +13 -13
  137. teradataml/data/ccmexample.csv +101 -101
  138. teradataml/data/ccmprepare_example.json +8 -8
  139. teradataml/data/ccmprepare_input.csv +91 -91
  140. teradataml/data/cfilter_example.json +12 -12
  141. teradataml/data/changepointdetection_example.json +18 -18
  142. teradataml/data/changepointdetectionrt_example.json +8 -8
  143. teradataml/data/chi_sq.csv +2 -2
  144. teradataml/data/churn_data.csv +14 -14
  145. teradataml/data/churn_emission.csv +35 -35
  146. teradataml/data/churn_initial.csv +3 -3
  147. teradataml/data/churn_state_transition.csv +5 -5
  148. teradataml/data/citedges_2.csv +745 -745
  149. teradataml/data/citvertices_2.csv +1210 -1210
  150. teradataml/data/clicks2.csv +16 -16
  151. teradataml/data/clickstream.csv +12 -12
  152. teradataml/data/clickstream1.csv +11 -11
  153. teradataml/data/closeness_example.json +15 -15
  154. teradataml/data/complaints.csv +21 -21
  155. teradataml/data/complaints_mini.csv +3 -3
  156. teradataml/data/complaints_testtoken.csv +224 -224
  157. teradataml/data/complaints_tokens_test.csv +353 -353
  158. teradataml/data/complaints_traintoken.csv +472 -472
  159. teradataml/data/computers_category.csv +1001 -1001
  160. teradataml/data/computers_test1.csv +1252 -1252
  161. teradataml/data/computers_train1.csv +5009 -5009
  162. teradataml/data/computers_train1_clustered.csv +5009 -5009
  163. teradataml/data/confusionmatrix_example.json +9 -9
  164. teradataml/data/conversion_event_table.csv +3 -3
  165. teradataml/data/corr_input.csv +17 -17
  166. teradataml/data/correlation_example.json +11 -11
  167. teradataml/data/coxhazardratio_example.json +39 -39
  168. teradataml/data/coxph_example.json +15 -15
  169. teradataml/data/coxsurvival_example.json +28 -28
  170. teradataml/data/cpt.csv +41 -41
  171. teradataml/data/credit_ex_merged.csv +45 -45
  172. teradataml/data/customer_loyalty.csv +301 -301
  173. teradataml/data/customer_loyalty_newseq.csv +31 -31
  174. teradataml/data/customer_segmentation_test.csv +2628 -0
  175. teradataml/data/customer_segmentation_train.csv +8069 -0
  176. teradataml/data/dataframe_example.json +146 -146
  177. teradataml/data/decisionforest_example.json +37 -37
  178. teradataml/data/decisionforestpredict_example.json +38 -38
  179. teradataml/data/decisiontree_example.json +21 -21
  180. teradataml/data/decisiontreepredict_example.json +45 -45
  181. teradataml/data/dfft2_size4_real.csv +17 -17
  182. teradataml/data/dfft2_test_matrix16.csv +17 -17
  183. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  184. teradataml/data/diabetes.csv +443 -443
  185. teradataml/data/diabetes_test.csv +89 -89
  186. teradataml/data/dict_table.csv +5 -5
  187. teradataml/data/docperterm_table.csv +4 -4
  188. teradataml/data/docs/__init__.py +1 -1
  189. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  190. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  191. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  192. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  193. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  194. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  195. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  196. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  197. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  198. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  199. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  200. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  201. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  202. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  203. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  204. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  205. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  206. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  207. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  208. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  209. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  210. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  211. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  212. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  213. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  214. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  215. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  216. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  217. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
  218. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
  219. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  220. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
  221. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  222. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  223. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  224. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  225. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  226. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  227. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  228. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  229. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  230. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  231. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  232. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  233. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  234. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  235. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  236. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  237. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  238. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  239. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  240. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  241. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  242. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
  243. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  244. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  245. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  246. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  247. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  248. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  249. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  250. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  251. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
  252. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  253. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  254. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  255. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  256. teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
  257. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  258. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  259. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
  260. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  261. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  262. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  263. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
  264. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  265. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  266. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  267. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
  268. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  269. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  270. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  271. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  272. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  273. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  274. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  275. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  276. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
  277. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  278. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  279. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  280. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  281. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
  282. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
  283. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  284. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  285. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  286. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  287. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  288. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  289. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  290. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  291. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
  292. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  293. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  294. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  295. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  296. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  297. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  298. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  299. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  300. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
  301. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  302. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
  303. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
  304. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  305. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  306. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  307. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  308. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  309. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  310. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  311. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  312. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
  313. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  314. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  315. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  316. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  317. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  318. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  319. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  320. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  321. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  322. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  323. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  324. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
  325. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
  326. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
  327. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  328. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  329. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  330. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  331. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  332. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  333. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  334. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  335. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  336. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  337. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  338. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  339. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  340. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  341. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  342. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  343. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  344. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  345. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  346. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  347. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  348. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  349. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  350. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  351. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  352. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  353. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  354. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  355. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  356. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  357. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  358. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  359. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  360. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  361. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  362. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  363. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  364. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  365. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  366. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  367. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  368. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  369. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  370. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  371. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  372. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  373. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  374. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  375. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  376. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  377. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  378. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  379. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  380. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  381. teradataml/data/dtw_example.json +17 -17
  382. teradataml/data/dtw_t1.csv +11 -11
  383. teradataml/data/dtw_t2.csv +4 -4
  384. teradataml/data/dwt2d_example.json +15 -15
  385. teradataml/data/dwt_example.json +14 -14
  386. teradataml/data/dwt_filter_dim.csv +5 -5
  387. teradataml/data/emission.csv +9 -9
  388. teradataml/data/emp_table_by_dept.csv +19 -19
  389. teradataml/data/employee_info.csv +4 -4
  390. teradataml/data/employee_table.csv +6 -6
  391. teradataml/data/excluding_event_table.csv +2 -2
  392. teradataml/data/finance_data.csv +6 -6
  393. teradataml/data/finance_data2.csv +61 -61
  394. teradataml/data/finance_data3.csv +93 -93
  395. teradataml/data/fish.csv +160 -0
  396. teradataml/data/fm_blood2ageandweight.csv +26 -26
  397. teradataml/data/fmeasure_example.json +11 -11
  398. teradataml/data/followers_leaders.csv +10 -10
  399. teradataml/data/fpgrowth_example.json +12 -12
  400. teradataml/data/frequentpaths_example.json +29 -29
  401. teradataml/data/friends.csv +9 -9
  402. teradataml/data/fs_input.csv +33 -33
  403. teradataml/data/fs_input1.csv +33 -33
  404. teradataml/data/genData.csv +513 -513
  405. teradataml/data/geodataframe_example.json +39 -39
  406. teradataml/data/glass_types.csv +215 -0
  407. teradataml/data/glm_admissions_model.csv +12 -12
  408. teradataml/data/glm_example.json +56 -29
  409. teradataml/data/glml1l2_example.json +28 -28
  410. teradataml/data/glml1l2predict_example.json +54 -54
  411. teradataml/data/glmpredict_example.json +54 -54
  412. teradataml/data/gq_t1.csv +21 -21
  413. teradataml/data/hconvolve_complex_right.csv +5 -5
  414. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  415. teradataml/data/histogram_example.json +11 -11
  416. teradataml/data/hmmdecoder_example.json +78 -78
  417. teradataml/data/hmmevaluator_example.json +24 -24
  418. teradataml/data/hmmsupervised_example.json +10 -10
  419. teradataml/data/hmmunsupervised_example.json +7 -7
  420. teradataml/data/house_values.csv +12 -12
  421. teradataml/data/house_values2.csv +13 -13
  422. teradataml/data/housing_cat.csv +7 -7
  423. teradataml/data/housing_data.csv +9 -9
  424. teradataml/data/housing_test.csv +47 -47
  425. teradataml/data/housing_test_binary.csv +47 -47
  426. teradataml/data/housing_train.csv +493 -493
  427. teradataml/data/housing_train_attribute.csv +4 -4
  428. teradataml/data/housing_train_binary.csv +437 -437
  429. teradataml/data/housing_train_parameter.csv +2 -2
  430. teradataml/data/housing_train_response.csv +493 -493
  431. teradataml/data/housing_train_segment.csv +201 -0
  432. teradataml/data/ibm_stock.csv +370 -370
  433. teradataml/data/ibm_stock1.csv +370 -370
  434. teradataml/data/identitymatch_example.json +21 -21
  435. teradataml/data/idf_table.csv +4 -4
  436. teradataml/data/impressions.csv +101 -101
  437. teradataml/data/inflation.csv +21 -21
  438. teradataml/data/initial.csv +3 -3
  439. teradataml/data/insect2Cols.csv +61 -0
  440. teradataml/data/insect_sprays.csv +12 -12
  441. teradataml/data/insurance.csv +1339 -1339
  442. teradataml/data/interpolator_example.json +12 -12
  443. teradataml/data/iris_altinput.csv +481 -481
  444. teradataml/data/iris_attribute_output.csv +8 -8
  445. teradataml/data/iris_attribute_test.csv +121 -121
  446. teradataml/data/iris_attribute_train.csv +481 -481
  447. teradataml/data/iris_category_expect_predict.csv +31 -31
  448. teradataml/data/iris_data.csv +151 -0
  449. teradataml/data/iris_input.csv +151 -151
  450. teradataml/data/iris_response_train.csv +121 -121
  451. teradataml/data/iris_test.csv +31 -31
  452. teradataml/data/iris_train.csv +121 -121
  453. teradataml/data/join_table1.csv +4 -4
  454. teradataml/data/join_table2.csv +4 -4
  455. teradataml/data/jsons/anly_function_name.json +6 -6
  456. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  457. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  458. teradataml/data/jsons/byom/h2opredict.json +194 -194
  459. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  460. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  461. teradataml/data/jsons/paired_functions.json +435 -435
  462. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  463. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  464. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  465. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  466. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  467. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  468. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  469. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  470. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  471. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  472. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  473. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  474. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  475. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  476. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  477. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  478. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  479. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  480. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  481. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  482. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  483. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  484. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  485. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  486. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  487. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  488. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  489. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  490. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  491. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  492. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  493. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  494. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  495. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  496. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  497. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  498. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  499. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  500. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  501. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  502. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  503. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  504. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  505. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  506. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  507. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  508. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  509. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  510. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  511. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  512. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  513. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  514. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  515. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  516. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  517. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  518. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  519. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  520. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  521. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  522. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  523. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  524. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  525. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  526. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  527. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  528. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  529. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  531. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  532. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  533. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  534. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  535. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  536. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  537. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  539. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  540. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  541. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  542. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  543. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  544. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  545. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  546. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  547. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  548. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  549. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  550. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  551. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  552. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  553. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  554. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  555. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  556. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  557. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  558. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  559. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  560. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  561. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  562. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  563. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  564. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  565. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  566. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  567. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  568. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
  569. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  570. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  571. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  572. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  573. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  574. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  575. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  576. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  577. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  578. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  579. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
  580. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  581. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  582. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  583. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
  584. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
  585. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  586. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  587. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
  588. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  589. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  590. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  591. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
  592. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  593. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  594. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  595. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
  596. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  597. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  598. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  599. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  600. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  601. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  602. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  603. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  604. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  605. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  606. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  607. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  608. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  609. teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
  610. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  611. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  612. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  613. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  614. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  615. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  616. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  617. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  618. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
  619. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
  620. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
  621. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  622. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  623. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  624. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  625. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  626. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  627. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  628. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  629. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  630. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  631. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  632. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  633. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  634. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  635. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
  636. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
  637. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
  638. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  639. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  640. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  641. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  642. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  643. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  644. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  645. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  646. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  647. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  648. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  649. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  650. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  651. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  653. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  654. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  655. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  656. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  657. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  658. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  659. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  660. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  661. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  662. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  663. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  664. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  665. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  666. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  667. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  668. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  669. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  670. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  671. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  672. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  673. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  674. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  675. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  676. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  677. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  678. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  679. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  680. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  681. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  682. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  683. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  684. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  685. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  686. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  687. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  688. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  689. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  690. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  691. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  692. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  693. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  694. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  695. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  696. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  697. teradataml/data/kmeans_example.json +22 -17
  698. teradataml/data/kmeans_table.csv +10 -0
  699. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  700. teradataml/data/knn_example.json +18 -18
  701. teradataml/data/knnrecommender_example.json +6 -6
  702. teradataml/data/knnrecommenderpredict_example.json +12 -12
  703. teradataml/data/lar_example.json +17 -17
  704. teradataml/data/larpredict_example.json +30 -30
  705. teradataml/data/lc_new_predictors.csv +5 -5
  706. teradataml/data/lc_new_reference.csv +9 -9
  707. teradataml/data/lda_example.json +8 -8
  708. teradataml/data/ldainference_example.json +14 -14
  709. teradataml/data/ldatopicsummary_example.json +8 -8
  710. teradataml/data/levendist_input.csv +13 -13
  711. teradataml/data/levenshteindistance_example.json +10 -10
  712. teradataml/data/linreg_example.json +9 -9
  713. teradataml/data/load_example_data.py +326 -323
  714. teradataml/data/loan_prediction.csv +295 -295
  715. teradataml/data/lungcancer.csv +138 -138
  716. teradataml/data/mappingdata.csv +12 -12
  717. teradataml/data/milk_timeseries.csv +157 -157
  718. teradataml/data/min_max_titanic.csv +4 -4
  719. teradataml/data/minhash_example.json +6 -6
  720. teradataml/data/ml_ratings.csv +7547 -7547
  721. teradataml/data/ml_ratings_10.csv +2445 -2445
  722. teradataml/data/model1_table.csv +5 -5
  723. teradataml/data/model2_table.csv +5 -5
  724. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  725. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  726. teradataml/data/modularity_example.json +12 -12
  727. teradataml/data/movavg_example.json +7 -7
  728. teradataml/data/mtx1.csv +7 -7
  729. teradataml/data/mtx2.csv +13 -13
  730. teradataml/data/multi_model_classification.csv +401 -0
  731. teradataml/data/multi_model_regression.csv +401 -0
  732. teradataml/data/mvdfft8.csv +9 -9
  733. teradataml/data/naivebayes_example.json +9 -9
  734. teradataml/data/naivebayespredict_example.json +19 -19
  735. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  736. teradataml/data/naivebayestextclassifier_example.json +8 -8
  737. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  738. teradataml/data/name_Find_configure.csv +10 -10
  739. teradataml/data/namedentityfinder_example.json +14 -14
  740. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  741. teradataml/data/namedentityfindertrainer_example.json +6 -6
  742. teradataml/data/nb_iris_input_test.csv +31 -31
  743. teradataml/data/nb_iris_input_train.csv +121 -121
  744. teradataml/data/nbp_iris_model.csv +13 -13
  745. teradataml/data/ner_extractor_text.csv +2 -2
  746. teradataml/data/ner_sports_test2.csv +29 -29
  747. teradataml/data/ner_sports_train.csv +501 -501
  748. teradataml/data/nerevaluator_example.json +5 -5
  749. teradataml/data/nerextractor_example.json +18 -18
  750. teradataml/data/nermem_sports_test.csv +17 -17
  751. teradataml/data/nermem_sports_train.csv +50 -50
  752. teradataml/data/nertrainer_example.json +6 -6
  753. teradataml/data/ngrams_example.json +6 -6
  754. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  755. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  756. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  757. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  758. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  759. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  760. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  761. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  762. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  763. teradataml/data/npath_example.json +23 -23
  764. teradataml/data/ntree_example.json +14 -14
  765. teradataml/data/numeric_strings.csv +4 -4
  766. teradataml/data/numerics.csv +4 -4
  767. teradataml/data/ocean_buoy.csv +17 -17
  768. teradataml/data/ocean_buoy2.csv +17 -17
  769. teradataml/data/ocean_buoys.csv +27 -27
  770. teradataml/data/ocean_buoys2.csv +10 -10
  771. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  772. teradataml/data/ocean_buoys_seq.csv +29 -29
  773. teradataml/data/onehot_encoder_train.csv +4 -0
  774. teradataml/data/openml_example.json +92 -0
  775. teradataml/data/optional_event_table.csv +4 -4
  776. teradataml/data/orders1.csv +11 -11
  777. teradataml/data/orders1_12.csv +12 -12
  778. teradataml/data/orders_ex.csv +4 -4
  779. teradataml/data/pack_example.json +8 -8
  780. teradataml/data/package_tracking.csv +19 -19
  781. teradataml/data/package_tracking_pti.csv +18 -18
  782. teradataml/data/pagerank_example.json +13 -13
  783. teradataml/data/paragraphs_input.csv +6 -6
  784. teradataml/data/pathanalyzer_example.json +7 -7
  785. teradataml/data/pathgenerator_example.json +7 -7
  786. teradataml/data/phrases.csv +7 -7
  787. teradataml/data/pivot_example.json +8 -8
  788. teradataml/data/pivot_input.csv +22 -22
  789. teradataml/data/playerRating.csv +31 -31
  790. teradataml/data/postagger_example.json +6 -6
  791. teradataml/data/posttagger_output.csv +44 -44
  792. teradataml/data/production_data.csv +16 -16
  793. teradataml/data/production_data2.csv +7 -7
  794. teradataml/data/randomsample_example.json +31 -31
  795. teradataml/data/randomwalksample_example.json +8 -8
  796. teradataml/data/rank_table.csv +6 -6
  797. teradataml/data/ref_mobile_data.csv +4 -4
  798. teradataml/data/ref_mobile_data_dense.csv +2 -2
  799. teradataml/data/ref_url.csv +17 -17
  800. teradataml/data/restaurant_reviews.csv +7 -7
  801. teradataml/data/river_data.csv +145 -145
  802. teradataml/data/roc_example.json +7 -7
  803. teradataml/data/roc_input.csv +101 -101
  804. teradataml/data/rule_inputs.csv +6 -6
  805. teradataml/data/rule_table.csv +2 -2
  806. teradataml/data/sales.csv +7 -7
  807. teradataml/data/sales_transaction.csv +501 -501
  808. teradataml/data/salesdata.csv +342 -342
  809. teradataml/data/sample_cities.csv +2 -2
  810. teradataml/data/sample_shapes.csv +10 -10
  811. teradataml/data/sample_streets.csv +2 -2
  812. teradataml/data/sampling_example.json +15 -15
  813. teradataml/data/sax_example.json +8 -8
  814. teradataml/data/scale_attributes.csv +3 -0
  815. teradataml/data/scale_example.json +74 -23
  816. teradataml/data/scale_housing.csv +11 -11
  817. teradataml/data/scale_housing_test.csv +6 -6
  818. teradataml/data/scale_input_part_sparse.csv +31 -0
  819. teradataml/data/scale_input_partitioned.csv +16 -0
  820. teradataml/data/scale_input_sparse.csv +11 -0
  821. teradataml/data/scale_parameters.csv +3 -0
  822. teradataml/data/scale_stat.csv +11 -11
  823. teradataml/data/scalebypartition_example.json +13 -13
  824. teradataml/data/scalemap_example.json +13 -13
  825. teradataml/data/scalesummary_example.json +12 -12
  826. teradataml/data/score_category.csv +101 -101
  827. teradataml/data/score_summary.csv +4 -4
  828. teradataml/data/script_example.json +9 -9
  829. teradataml/data/scripts/deploy_script.py +84 -0
  830. teradataml/data/scripts/mapper.R +20 -0
  831. teradataml/data/scripts/mapper.py +15 -15
  832. teradataml/data/scripts/mapper_replace.py +15 -15
  833. teradataml/data/scripts/sklearn/__init__.py +0 -0
  834. teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
  835. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
  836. teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
  837. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
  838. teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
  839. teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
  840. teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
  841. teradataml/data/seeds.csv +10 -10
  842. teradataml/data/sentenceextractor_example.json +6 -6
  843. teradataml/data/sentiment_extract_input.csv +11 -11
  844. teradataml/data/sentiment_train.csv +16 -16
  845. teradataml/data/sentiment_word.csv +20 -20
  846. teradataml/data/sentiment_word_input.csv +19 -19
  847. teradataml/data/sentimentextractor_example.json +24 -24
  848. teradataml/data/sentimenttrainer_example.json +8 -8
  849. teradataml/data/sequence_table.csv +10 -10
  850. teradataml/data/seriessplitter_example.json +7 -7
  851. teradataml/data/sessionize_example.json +17 -17
  852. teradataml/data/sessionize_table.csv +116 -116
  853. teradataml/data/setop_test1.csv +24 -24
  854. teradataml/data/setop_test2.csv +22 -22
  855. teradataml/data/soc_nw_edges.csv +10 -10
  856. teradataml/data/soc_nw_vertices.csv +7 -7
  857. teradataml/data/souvenir_timeseries.csv +167 -167
  858. teradataml/data/sparse_iris_attribute.csv +5 -5
  859. teradataml/data/sparse_iris_test.csv +121 -121
  860. teradataml/data/sparse_iris_train.csv +601 -601
  861. teradataml/data/star1.csv +6 -6
  862. teradataml/data/state_transition.csv +5 -5
  863. teradataml/data/stock_data.csv +53 -53
  864. teradataml/data/stock_movement.csv +11 -11
  865. teradataml/data/stock_vol.csv +76 -76
  866. teradataml/data/stop_words.csv +8 -8
  867. teradataml/data/store_sales.csv +37 -37
  868. teradataml/data/stringsimilarity_example.json +7 -7
  869. teradataml/data/strsimilarity_input.csv +13 -13
  870. teradataml/data/students.csv +101 -101
  871. teradataml/data/svm_iris_input_test.csv +121 -121
  872. teradataml/data/svm_iris_input_train.csv +481 -481
  873. teradataml/data/svm_iris_model.csv +7 -7
  874. teradataml/data/svmdense_example.json +9 -9
  875. teradataml/data/svmdensepredict_example.json +18 -18
  876. teradataml/data/svmsparse_example.json +7 -7
  877. teradataml/data/svmsparsepredict_example.json +13 -13
  878. teradataml/data/svmsparsesummary_example.json +7 -7
  879. teradataml/data/target_mobile_data.csv +13 -13
  880. teradataml/data/target_mobile_data_dense.csv +5 -5
  881. teradataml/data/templatedata.csv +1201 -1201
  882. teradataml/data/templates/open_source_ml.json +9 -0
  883. teradataml/data/teradataml_example.json +150 -1
  884. teradataml/data/test_classification.csv +101 -0
  885. teradataml/data/test_loan_prediction.csv +53 -53
  886. teradataml/data/test_pacf_12.csv +37 -37
  887. teradataml/data/test_prediction.csv +101 -0
  888. teradataml/data/test_regression.csv +101 -0
  889. teradataml/data/test_river2.csv +109 -109
  890. teradataml/data/text_inputs.csv +6 -6
  891. teradataml/data/textchunker_example.json +7 -7
  892. teradataml/data/textclassifier_example.json +6 -6
  893. teradataml/data/textclassifier_input.csv +7 -7
  894. teradataml/data/textclassifiertrainer_example.json +6 -6
  895. teradataml/data/textmorph_example.json +5 -5
  896. teradataml/data/textparser_example.json +15 -15
  897. teradataml/data/texttagger_example.json +11 -11
  898. teradataml/data/texttokenizer_example.json +6 -6
  899. teradataml/data/texttrainer_input.csv +11 -11
  900. teradataml/data/tf_example.json +6 -6
  901. teradataml/data/tfidf_example.json +13 -13
  902. teradataml/data/tfidf_input1.csv +201 -201
  903. teradataml/data/tfidf_train.csv +6 -6
  904. teradataml/data/time_table1.csv +535 -535
  905. teradataml/data/time_table2.csv +14 -14
  906. teradataml/data/timeseriesdata.csv +1601 -1601
  907. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  908. teradataml/data/titanic.csv +892 -892
  909. teradataml/data/token_table.csv +696 -696
  910. teradataml/data/train_multiclass.csv +101 -0
  911. teradataml/data/train_regression.csv +101 -0
  912. teradataml/data/train_regression_multiple_labels.csv +101 -0
  913. teradataml/data/train_tracking.csv +27 -27
  914. teradataml/data/transformation_table.csv +5 -5
  915. teradataml/data/transformation_table_new.csv +1 -1
  916. teradataml/data/tv_spots.csv +16 -16
  917. teradataml/data/twod_climate_data.csv +117 -117
  918. teradataml/data/uaf_example.json +475 -475
  919. teradataml/data/univariatestatistics_example.json +8 -8
  920. teradataml/data/unpack_example.json +9 -9
  921. teradataml/data/unpivot_example.json +9 -9
  922. teradataml/data/unpivot_input.csv +8 -8
  923. teradataml/data/us_air_pass.csv +36 -36
  924. teradataml/data/us_population.csv +624 -624
  925. teradataml/data/us_states_shapes.csv +52 -52
  926. teradataml/data/varmax_example.json +17 -17
  927. teradataml/data/vectordistance_example.json +25 -25
  928. teradataml/data/ville_climatedata.csv +121 -121
  929. teradataml/data/ville_tempdata.csv +12 -12
  930. teradataml/data/ville_tempdata1.csv +12 -12
  931. teradataml/data/ville_temperature.csv +11 -11
  932. teradataml/data/waveletTable.csv +1605 -1605
  933. teradataml/data/waveletTable2.csv +1605 -1605
  934. teradataml/data/weightedmovavg_example.json +8 -8
  935. teradataml/data/wft_testing.csv +5 -5
  936. teradataml/data/wine_data.csv +1600 -0
  937. teradataml/data/word_embed_input_table1.csv +5 -5
  938. teradataml/data/word_embed_input_table2.csv +4 -4
  939. teradataml/data/word_embed_model.csv +22 -22
  940. teradataml/data/words_input.csv +13 -13
  941. teradataml/data/xconvolve_complex_left.csv +6 -6
  942. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  943. teradataml/data/xgboost_example.json +35 -35
  944. teradataml/data/xgboostpredict_example.json +31 -31
  945. teradataml/data/ztest_example.json +16 -0
  946. teradataml/dataframe/copy_to.py +1769 -1698
  947. teradataml/dataframe/data_transfer.py +2812 -2745
  948. teradataml/dataframe/dataframe.py +17630 -16946
  949. teradataml/dataframe/dataframe_utils.py +1875 -1740
  950. teradataml/dataframe/fastload.py +794 -603
  951. teradataml/dataframe/indexer.py +424 -424
  952. teradataml/dataframe/setop.py +1179 -1166
  953. teradataml/dataframe/sql.py +10174 -6432
  954. teradataml/dataframe/sql_function_parameters.py +439 -388
  955. teradataml/dataframe/sql_functions.py +652 -652
  956. teradataml/dataframe/sql_interfaces.py +220 -220
  957. teradataml/dataframe/vantage_function_types.py +674 -630
  958. teradataml/dataframe/window.py +693 -692
  959. teradataml/dbutils/__init__.py +3 -3
  960. teradataml/dbutils/dbutils.py +1167 -1150
  961. teradataml/dbutils/filemgr.py +267 -267
  962. teradataml/gen_ai/__init__.py +2 -2
  963. teradataml/gen_ai/convAI.py +472 -472
  964. teradataml/geospatial/__init__.py +3 -3
  965. teradataml/geospatial/geodataframe.py +1105 -1094
  966. teradataml/geospatial/geodataframecolumn.py +392 -387
  967. teradataml/geospatial/geometry_types.py +925 -925
  968. teradataml/hyperparameter_tuner/__init__.py +1 -1
  969. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  970. teradataml/hyperparameter_tuner/utils.py +281 -187
  971. teradataml/lib/aed_0_1.dll +0 -0
  972. teradataml/lib/libaed_0_1.dylib +0 -0
  973. teradataml/lib/libaed_0_1.so +0 -0
  974. teradataml/libaed_0_1.dylib +0 -0
  975. teradataml/libaed_0_1.so +0 -0
  976. teradataml/opensource/__init__.py +1 -0
  977. teradataml/opensource/sklearn/__init__.py +1 -0
  978. teradataml/opensource/sklearn/_class.py +255 -0
  979. teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
  980. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  981. teradataml/opensource/sklearn/constants.py +54 -0
  982. teradataml/options/__init__.py +130 -124
  983. teradataml/options/configure.py +358 -336
  984. teradataml/options/display.py +176 -176
  985. teradataml/plot/__init__.py +2 -2
  986. teradataml/plot/axis.py +1388 -1388
  987. teradataml/plot/constants.py +15 -15
  988. teradataml/plot/figure.py +398 -398
  989. teradataml/plot/plot.py +760 -760
  990. teradataml/plot/query_generator.py +83 -83
  991. teradataml/plot/subplot.py +216 -216
  992. teradataml/scriptmgmt/UserEnv.py +3791 -3761
  993. teradataml/scriptmgmt/__init__.py +3 -3
  994. teradataml/scriptmgmt/lls_utils.py +1719 -1604
  995. teradataml/series/series.py +532 -532
  996. teradataml/series/series_utils.py +71 -71
  997. teradataml/table_operators/Apply.py +949 -917
  998. teradataml/table_operators/Script.py +1718 -1982
  999. teradataml/table_operators/TableOperator.py +1255 -1616
  1000. teradataml/table_operators/__init__.py +2 -3
  1001. teradataml/table_operators/apply_query_generator.py +262 -262
  1002. teradataml/table_operators/query_generator.py +507 -507
  1003. teradataml/table_operators/table_operator_query_generator.py +460 -460
  1004. teradataml/table_operators/table_operator_util.py +631 -639
  1005. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  1006. teradataml/table_operators/templates/dataframe_map.template +176 -176
  1007. teradataml/table_operators/templates/script_executor.template +170 -170
  1008. teradataml/utils/dtypes.py +684 -684
  1009. teradataml/utils/internal_buffer.py +84 -84
  1010. teradataml/utils/print_versions.py +205 -205
  1011. teradataml/utils/utils.py +410 -410
  1012. teradataml/utils/validators.py +2277 -2115
  1013. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
  1014. teradataml-20.0.0.1.dist-info/RECORD +1056 -0
  1015. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
  1016. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
  1017. teradataml/analytics/mle/AdaBoost.py +0 -651
  1018. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1019. teradataml/analytics/mle/Antiselect.py +0 -342
  1020. teradataml/analytics/mle/Arima.py +0 -641
  1021. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1022. teradataml/analytics/mle/Attribution.py +0 -1070
  1023. teradataml/analytics/mle/Betweenness.py +0 -658
  1024. teradataml/analytics/mle/Burst.py +0 -711
  1025. teradataml/analytics/mle/CCM.py +0 -600
  1026. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1027. teradataml/analytics/mle/CFilter.py +0 -460
  1028. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1029. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1030. teradataml/analytics/mle/Closeness.py +0 -737
  1031. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1032. teradataml/analytics/mle/Correlation.py +0 -477
  1033. teradataml/analytics/mle/Correlation2.py +0 -573
  1034. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1035. teradataml/analytics/mle/CoxPH.py +0 -556
  1036. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1037. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1038. teradataml/analytics/mle/DTW.py +0 -623
  1039. teradataml/analytics/mle/DWT.py +0 -564
  1040. teradataml/analytics/mle/DWT2D.py +0 -599
  1041. teradataml/analytics/mle/DecisionForest.py +0 -716
  1042. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1043. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1044. teradataml/analytics/mle/DecisionTree.py +0 -830
  1045. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1046. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1047. teradataml/analytics/mle/FMeasure.py +0 -402
  1048. teradataml/analytics/mle/FPGrowth.py +0 -734
  1049. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1050. teradataml/analytics/mle/GLM.py +0 -558
  1051. teradataml/analytics/mle/GLML1L2.py +0 -547
  1052. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1053. teradataml/analytics/mle/GLMPredict.py +0 -529
  1054. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1055. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1056. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1057. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1058. teradataml/analytics/mle/Histogram.py +0 -561
  1059. teradataml/analytics/mle/IDWT.py +0 -476
  1060. teradataml/analytics/mle/IDWT2D.py +0 -493
  1061. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1062. teradataml/analytics/mle/Interpolator.py +0 -918
  1063. teradataml/analytics/mle/KMeans.py +0 -485
  1064. teradataml/analytics/mle/KNN.py +0 -627
  1065. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1066. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1067. teradataml/analytics/mle/LAR.py +0 -439
  1068. teradataml/analytics/mle/LARPredict.py +0 -478
  1069. teradataml/analytics/mle/LDA.py +0 -548
  1070. teradataml/analytics/mle/LDAInference.py +0 -492
  1071. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1072. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1073. teradataml/analytics/mle/LinReg.py +0 -433
  1074. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1075. teradataml/analytics/mle/MinHash.py +0 -544
  1076. teradataml/analytics/mle/Modularity.py +0 -587
  1077. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1078. teradataml/analytics/mle/NERExtractor.py +0 -595
  1079. teradataml/analytics/mle/NERTrainer.py +0 -458
  1080. teradataml/analytics/mle/NGrams.py +0 -570
  1081. teradataml/analytics/mle/NPath.py +0 -634
  1082. teradataml/analytics/mle/NTree.py +0 -549
  1083. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1084. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1085. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1086. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1087. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1088. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1089. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1090. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1091. teradataml/analytics/mle/POSTagger.py +0 -417
  1092. teradataml/analytics/mle/Pack.py +0 -411
  1093. teradataml/analytics/mle/PageRank.py +0 -535
  1094. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1095. teradataml/analytics/mle/PathGenerator.py +0 -367
  1096. teradataml/analytics/mle/PathStart.py +0 -464
  1097. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1098. teradataml/analytics/mle/Pivot.py +0 -471
  1099. teradataml/analytics/mle/ROC.py +0 -425
  1100. teradataml/analytics/mle/RandomSample.py +0 -637
  1101. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1102. teradataml/analytics/mle/SAX.py +0 -779
  1103. teradataml/analytics/mle/SVMDense.py +0 -677
  1104. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1105. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1106. teradataml/analytics/mle/SVMSparse.py +0 -557
  1107. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1108. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1109. teradataml/analytics/mle/Sampling.py +0 -549
  1110. teradataml/analytics/mle/Scale.py +0 -565
  1111. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1112. teradataml/analytics/mle/ScaleMap.py +0 -378
  1113. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1114. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1115. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1116. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1117. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1118. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1119. teradataml/analytics/mle/Sessionize.py +0 -475
  1120. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1121. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1122. teradataml/analytics/mle/TF.py +0 -389
  1123. teradataml/analytics/mle/TFIDF.py +0 -504
  1124. teradataml/analytics/mle/TextChunker.py +0 -414
  1125. teradataml/analytics/mle/TextClassifier.py +0 -399
  1126. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1127. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1128. teradataml/analytics/mle/TextMorph.py +0 -494
  1129. teradataml/analytics/mle/TextParser.py +0 -623
  1130. teradataml/analytics/mle/TextTagger.py +0 -530
  1131. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1132. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1133. teradataml/analytics/mle/Unpack.py +0 -526
  1134. teradataml/analytics/mle/Unpivot.py +0 -438
  1135. teradataml/analytics/mle/VarMax.py +0 -776
  1136. teradataml/analytics/mle/VectorDistance.py +0 -762
  1137. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1138. teradataml/analytics/mle/XGBoost.py +0 -842
  1139. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1140. teradataml/analytics/mle/__init__.py +0 -123
  1141. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1142. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1143. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1144. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1145. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1146. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1147. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1148. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1149. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1150. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1151. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1152. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1153. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1154. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1155. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1156. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1157. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1158. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1159. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1160. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1161. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1162. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1163. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1164. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1165. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1166. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1167. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1168. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1169. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1170. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1171. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1172. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1173. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1174. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1175. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1176. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1177. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1178. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1179. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1180. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1181. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1182. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1183. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1184. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1185. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1186. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1187. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1188. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1189. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1190. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1191. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1192. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1193. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1194. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1195. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1196. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1197. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1198. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1199. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1200. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1201. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1202. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1203. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1204. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1205. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1206. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1207. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1208. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1209. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1210. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1211. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1212. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1213. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1214. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1215. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1216. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1217. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1218. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1219. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1220. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1221. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1222. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1223. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1224. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1225. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1226. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1227. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1228. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1229. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1230. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1231. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1232. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1233. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1234. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1235. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1236. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1237. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1238. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1239. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1240. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1241. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1242. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1243. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1244. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1245. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1246. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1247. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1248. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1249. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1250. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1251. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1252. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1253. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1254. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1255. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1256. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1257. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1258. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1259. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1260. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1261. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1262. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1263. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1264. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1265. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1266. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1267. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1268. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1269. teradataml/analytics/sqle/Antiselect.py +0 -321
  1270. teradataml/analytics/sqle/Attribution.py +0 -603
  1271. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1272. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1273. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1274. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1275. teradataml/analytics/sqle/NPath.py +0 -632
  1276. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1277. teradataml/analytics/sqle/Pack.py +0 -388
  1278. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1279. teradataml/analytics/sqle/Sessionize.py +0 -390
  1280. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1281. teradataml/analytics/sqle/Unpack.py +0 -503
  1282. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1283. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1284. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1285. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1286. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1287. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1288. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1289. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1290. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1291. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1292. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1293. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1294. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1295. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1296. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1297. teradataml/catalog/model_cataloging.py +0 -980
  1298. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1299. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1300. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1301. teradataml/table_operators/sandbox_container_util.py +0 -643
  1302. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1303. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
@@ -1,1441 +1,1438 @@
1
- # -*- coding: utf-8 -*-
2
- """
3
- Unpublished work.
4
- Copyright (c) 2018 by Teradata Corporation. All rights reserved.
5
- TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
6
-
7
- Primary Owner: ellen.nolan@teradata.com
8
- Secondary Owner: PankajVinod.Purandare@teradata.com
9
-
10
- teradataml.common.constants
11
- ----------
12
- A class for holding all constants
13
- """
14
- import re
15
- import sqlalchemy
16
- from enum import Enum
17
- from teradataml.options.configure import configure
18
- from teradatasqlalchemy.types import (INTEGER, SMALLINT, BIGINT, BYTEINT, DECIMAL, FLOAT, NUMBER, VARCHAR)
19
- from teradatasqlalchemy.types import (DATE, TIME, TIMESTAMP)
20
- from teradatasqlalchemy.types import (BYTE, VARBYTE, BLOB)
21
- from teradatasqlalchemy import (GEOMETRY, MBR, MBB)
22
-
23
-
24
- class SQLConstants(Enum):
25
- SQL_BASE_QUERY = 1
26
- SQL_SAMPLE_QUERY = 2
27
- SQL_SAMPLE_WITH_WHERE_QUERY = 3
28
- SQL_CREATE_VOLATILE_TABLE_FROM_QUERY_WITH_DATA = 4
29
- SQL_CREATE_VOLATILE_TABLE_FROM_QUERY_WITHOUT_DATA = 5
30
- SQL_CREATE_VOLATILE_TABLE_USING_COLUMNS = 6
31
- SQL_CREATE_TABLE_FROM_QUERY_WITH_DATA = 7
32
- SQL_HELP_COLUMNS = 8
33
- SQL_DROP_TABLE = 9
34
- SQL_DROP_VIEW = 10
35
- SQL_NROWS_FROM_QUERY = 11
36
- SQL_TOP_NROWS_FROM_TABLEORVIEW = 12
37
- SQL_INSERT_INTO_TABLE_VALUES = 13
38
- SQL_SELECT_COLUMNNAMES_FROM = 14
39
- SQL_SELECT_DATABASE = 15
40
- SQL_HELP_VOLATILE_TABLE = 16
41
- SQL_SELECT_TABLE_NAME = 17
42
- SQL_CREATE_VIEW = 18
43
- SQL_SELECT_USER = 19
44
- SQL_HELP_VIEW = 20
45
- SQL_HELP_TABLE = 21
46
- SQL_HELP_INDEX = 22
47
- SQL_INSERT_ALL_FROM_TABLE = 23
48
- SQL_SELECT_DATABASENAME = 24
49
- SQL_AND_TABLE_KIND = 25
50
- SQL_AND_TABLE_NAME = 26
51
- SQL_AND_TABLE_NAME_LIKE = 27
52
- SQL_CREATE_TABLE_USING_COLUMNS = 28
53
- SQL_DELETE_ALL_ROWS = 29
54
- SQL_DELETE_SPECIFIC_ROW = 30
55
- SQL_EXEC_STORED_PROCEDURE = 31
56
- CONSTRAINT = ["check_constraint", "primary_key_constraint",
57
- "foreign_key_constraint", "unique_key_constraint"]
58
-
59
-
60
- class TeradataConstants(Enum):
61
- TERADATA_VIEW = 1
62
- TERADATA_TABLE = 2
63
- TERADATA_SCRIPT = 3
64
- TERADATA_LOCAL_SCRIPT = 4
65
- CONTAINER = 5
66
- TERADATA_TEXT_FILE = 6
67
- TABLE_COLUMN_LIMIT = 2048
68
- TERADATA_JOINS = ["inner", "left", "right", "full", "cross"]
69
- TERADATA_JOIN_OPERATORS = ['>=', '<=', '<>', '!=', '>', '<', '=']
70
- # Order of operators
71
- # shouldn't be changed. This is the order in which join condition is tested - first, operators
72
- # with two characters and then the operators with single character.
73
- SUPPORTED_ENGINES = {"ENGINE_ML" : {"name" : "mle", "file" : "mlengine_alias_definitions"},
74
- "ENGINE_SQL" : {"name" : "sqle", "file" : "sqlengine_alias_definitions"}}
75
- SUPPORTED_VANTAGE_VERSIONS = {"vantage1.0": "v1.0", "vantage1.1": "v1.1",
76
- "vantage1.3": "v1.3", "vantage2.0": "v1.1"}
77
- RANGE_SEPARATORS = [":"]
78
-
79
-
80
- class AEDConstants(Enum):
81
- AED_NODE_NOT_EXECUTED = 0
82
- AED_NODE_EXECUTED = 1
83
- AED_DB_OBJECT_NAME_BUFFER_SIZE = 128
84
- AED_NODE_TYPE_BUFFER_SIZE = 32
85
- AED_ASSIGN_DROP_EXISITING_COLUMNS = "Y"
86
- AED_ASSIGN_DO_NOT_DROP_EXISITING_COLUMNS = "N"
87
- AED_QUERY_NODE_TYPE_ML_QUERY_SINGLE_OUTPUT = "ml_query_single_output"
88
- AED_QUERY_NODE_TYPE_ML_QUERY_MULTI_OUTPUT = "ml_query_multi_output"
89
- AED_QUERY_NODE_TYPE_REFERENCE = "reference"
90
-
91
-
92
- class SourceType(Enum):
93
- TABLE = "TABLE"
94
- QUERY = "QUERY"
95
-
96
-
97
- class PythonTypes(Enum):
98
- PY_NULL_TYPE = "nulltype"
99
- PY_INT_TYPE = "int"
100
- PY_FLOAT_TYPE = "float"
101
- PY_STRING_TYPE = "str"
102
- PY_DECIMAL_TYPE = "decimal.Decimal"
103
- PY_DATETIME_TYPE = "datetime.datetime"
104
- PY_TIME_TYPE = "datetime.time"
105
- PY_DATE_TYPE = "datetime.date"
106
- PY_BYTES_TYPE = "bytes"
107
-
108
-
109
- class TeradataTypes(Enum):
110
- TD_INTEGER_TYPES = [INTEGER, BYTEINT, SMALLINT, BIGINT, sqlalchemy.sql.sqltypes.Integer]
111
- TD_INTEGER_CODES = ["I", "I1", "I2", "I8"]
112
- TD_FLOAT_TYPES = [FLOAT, sqlalchemy.sql.sqltypes.Numeric]
113
- TD_FLOAT_CODES = ["F"]
114
- TD_DECIMAL_TYPES = [DECIMAL, NUMBER]
115
- TD_DECIMAL_CODES = ["D", "N"]
116
- TD_BYTE_TYPES = [BYTE, VARBYTE, BLOB]
117
- TD_BYTE_CODES = ["BF", "BV", "BO"]
118
- TD_DATETIME_TYPES = [TIMESTAMP, sqlalchemy.sql.sqltypes.DateTime]
119
- TD_DATETIME_CODES = ["TS", "SZ"]
120
- TD_TIME_TYPES = [TIME, sqlalchemy.sql.sqltypes.Time]
121
- TD_TIME_CODES = ["AT", "TZ"]
122
- TD_DATE_TYPES = [DATE, sqlalchemy.sql.sqltypes.Date]
123
- TD_DATE_CODES = ["DA"]
124
- TD_NULL_TYPE = "NULLTYPE"
125
-
126
-
127
- class TeradataTableKindConstants(Enum):
128
- VOLATILE = "volatile"
129
- TABLE = "table"
130
- VIEW = "view"
131
- TEMP = "temp"
132
- ALL = "all"
133
- ML_PATTERN = "ml_%"
134
- VOLATILE_TABLE_NAME = 'Table Name'
135
- REGULAR_TABLE_NAME = 'TableName'
136
-
137
-
138
- class SQLPattern(Enum):
139
- SQLMR = re.compile(r"SELECT \* FROM .*\((\s*.*)*\) as .*", re.IGNORECASE)
140
- DRIVER_FUNC_SQLMR = re.compile(r".*OUT\s+TABLE.*", re.IGNORECASE)
141
- SQLMR_REFERENCE_NODE = re.compile("reference:.*:.*", re.IGNORECASE)
142
-
143
-
144
- class FunctionArgumentMapperConstants(Enum):
145
- # Mapper related
146
- SQL_TO_TDML = "sql_to_tdml"
147
- TDML_TO_SQL = "tdml_to_sql"
148
- ALTERNATE_TO = "alternate_to"
149
- TDML_NAME = "tdml_name"
150
- TDML_TYPE = "tdml_type"
151
- USED_IN_SEQUENCE_INPUT_BY = "used_in_sequence_by"
152
- USED_IN_FORMULA = "used_in_formula"
153
- INPUTS = "inputs"
154
- OUTPUTS = "outputs"
155
- ARGUMENTS = "arguments"
156
- DEPENDENT_ATTR = "dependent"
157
- INDEPENDENT_ATTR = "independent"
158
- TDML_FORMULA_NAME = "formula"
159
- DEFAULT_OUTPUT = "__default_output__"
160
- DEFAULT_OUTPUT_TDML_NAME_SINGLE = "result"
161
- DEFAULT_OUTPUT_TDML_NAME_MULTIPLE = "output"
162
-
163
- # JSON related
164
- ALLOWS_LISTS = "allowsLists"
165
- DATATYPE = "datatype"
166
- BOOL_TYPE = "BOOLEAN"
167
- INT_TYPE = ["INTEGER", "LONG"]
168
- FLOAT_TYPE = ["DOUBLE", "DOUBLE PRECISION", "FLOAT"]
169
- INPUT_TABLES = "input_tables"
170
- OUTPUT_TABLES = "output_tables"
171
- ARGUMENT_CLAUSES = "argument_clauses"
172
- R_NAME = "rName"
173
- NAME = "name"
174
- FUNCTION_TDML_NAME = "function_tdml_name"
175
- R_FOMULA_USAGE = "rFormulaUsage"
176
- R_ORDER_NUM = "rOrderNum"
177
- TDML_SEQUENCE_COLUMN_NAME = "sequence_column"
178
-
179
-
180
- class ModelCatalogingConstants(Enum):
181
- MODEL_CATALOG_DB = "TD_ModelCataloging"
182
- MODEL_ENGINE_ML = "ML Engine"
183
- MODEL_ENGINE_ADVSQL = "Advanced SQL Engine"
184
-
185
- MODEL_TDML = "teradataml"
186
-
187
- # Stored Procedure Names
188
- SAVE_MODEL = "SYSLIB.SaveModel"
189
- DELETE_MODEL = "SYSLIB.DeleteModel"
190
- PUBLISH_MODEL = "SYSLIB.PublishModel"
191
-
192
- # ModelCataloging Direct Views
193
- MODELS = "ModelsV"
194
- MODELS_DETAILS = "ModelDetailsV"
195
- MODELS_OBJECTS = "ModelObjectsV"
196
- MODELS_ATTRS = "ModelAttributesV"
197
- MODELS_PERF = "ModelPerformanceV"
198
- MODELS_LOC = "ModelLocationV"
199
-
200
- # ModelCataloging Derived Views
201
- MODELSX = "ModelsVX"
202
- MODELS_DETAILSX = "ModelDetailsVX"
203
- MODELS_INPUTSX = "ModelTrainingDataVX"
204
-
205
- # Columns names used for Filter
206
- MODEL_NAME = "Name"
207
- MODEL_ID = "ModelId"
208
- CREATED_BY = "CreatedBy"
209
- MODEL_ACCESS = "ModelAccess"
210
- MODEL_DERIVED_NAME = "ModelName"
211
- MODEL_DERIVED_ALGORITHM = "ModelAlgorithm"
212
- MODEL_DERIVED_PREDICTION_TYPE = "ModelPredictionType"
213
- MODEL_DERIVED_BUILD_TIME = "ModelBuildTime"
214
- MODEL_DERIVED_TARGET_COLUMN = "ModelTargetColumn"
215
- MODEL_DERIVED_GENENG = "ModelGeneratingEngine"
216
- MODEL_DERIVED_GENCLIENT = "ModelGeneratingClient"
217
- MODEL_ATTR_CLIENT_NAME = "ClientSpecificAttributeName"
218
- MODEL_ATTR_NAME = "AttributeName"
219
- MODEL_ATTR_VALUE = "AttributeValue"
220
- MODEL_ATTR_VALUEC = "AttributeValueC"
221
- MODEL_CLIENT_CLASS_KEY = "__class_name__"
222
- MODEL_INPUT_NROWS = "NRows"
223
- MODEL_INPUT_NCOLS = "NCols"
224
-
225
- MODEL_OBJ_NAME = "TableReferenceName"
226
- MODEL_OBJ_CLIENT_NAME = "ClientSpecificTableReferenceName"
227
- MODEL_OBJ_TABLE_NAME = "TableName"
228
-
229
- MODEL_INPUT_NAME = "InputName"
230
- MODEL_INPUT_CLIENT_NAME = "ClientSpecificInputName"
231
- MODEL_INPUT_TABLE_NAME = "TableName"
232
-
233
- MODEL_LIST_LIST = ['ModelName','ModelAlgorithm','ModelGeneratingEngine',
234
- 'ModelGeneratingClient','CreatedBy','CreatedDate']
235
-
236
- # Valid and default status and access
237
- MODEL_VALID_STATUS = ['ACTIVE', 'RETIRED', 'CANDIDATE', 'PRODUCTION', 'IN-DEVELOPMENT']
238
- DEFAULT_SAVE_STATUS = 'In-Development'
239
- DEFAULT_SAVE_ACCESS = 'Private'
240
- PUBLIC_ACCESS = 'Public'
241
-
242
- # Expected Prediction Types
243
- PREDICTION_TYPE_CLASSIFICATION = 'CLASSIFICATION'
244
- PREDICTION_TYPE_REGRESSION = 'REGRESSION'
245
- PREDICTION_TYPE_CLUSTERING = 'CLUSTERING'
246
- PREDICTION_TYPE_OTHER = 'OTHER'
247
-
248
- # License parameters
249
- LICENSE_SOURCE = ['string', 'file', 'column']
250
-
251
-
252
- class CopyToConstants(Enum):
253
- DBAPI_BATCHSIZE = 16383
254
-
255
-
256
- class PTITableConstants(Enum):
257
- PATTERN_TIMEZERO_DATE = r"^DATE\s+'(.*)'$"
258
- TD_SEQNO = 'TD_SEQNO'
259
- TD_TIMECODE = 'TD_TIMECODE'
260
- TD_TIMEBUCKET = 'TD_TIMEBUCKET'
261
- TSCOLTYPE_TIMEBUCKET = 'TB'
262
- TSCOLTYPE_TIMECODE = 'TC'
263
- VALID_TIMEBUCKET_DURATIONS_FORMAL = ['CAL_YEARS', 'CAL_MONTHS', 'CAL_DAYS', 'WEEKS', 'DAYS', 'HOURS', 'MINUTES',
264
- 'SECONDS', 'MILLISECONDS', 'MICROSECONDS']
265
- VALID_TIMEBUCKET_DURATIONS_SHORTHAND = ['cy', 'cyear', 'cyears',
266
- 'cm', 'cmonth', 'cmonths',
267
- 'cd', 'cday', 'cdays',
268
- 'w', 'week', 'weeks',
269
- 'd', 'day', 'days',
270
- 'h', 'hr', 'hrs', 'hour', 'hours',
271
- 'm', 'mins', 'minute', 'minutes',
272
- 's', 'sec', 'secs', 'second', 'seconds',
273
- 'ms', 'msec', 'msecs', 'millisecond', 'milliseconds',
274
- 'us', 'usec', 'usecs', 'microsecond', 'microseconds']
275
- PATTERN_TIMEBUCKET_DURATION_SHORT = "^([0-9]+){}$"
276
- PATTERN_TIMEBUCKET_DURATION_FORMAL = r"^{}\(([0-9]+)\)$"
277
- VALID_TIMECODE_DATATYPES = [TIMESTAMP, DATE]
278
- VALID_SEQUENCE_COL_DATATYPES = [INTEGER]
279
- TIMEBUCKET_DURATION_FORMAT_MAPPER = {'cy': 'CAL_YEARS({})',
280
- 'cyear': 'CAL_YEARS({})',
281
- 'cyears': 'CAL_YEARS({})',
282
- 'cm': 'CAL_MONTHS({})',
283
- 'cmonth': 'CAL_MONTHS({})',
284
- 'cmonths': 'CAL_MONTHS({})',
285
- 'cd': 'CAL_DAYS({})',
286
- 'cday': 'CAL_DAYS({})',
287
- 'cdays': 'CAL_DAYS({})',
288
- 'w': 'WEEKS({})',
289
- 'week': 'WEEKS({})',
290
- 'weeks': 'WEEKS({})',
291
- 'd': 'DAYS({})',
292
- 'day': 'DAYS({})',
293
- 'days': 'DAYS({})',
294
- 'h': 'HOURS({})',
295
- 'hr': 'HOURS({})',
296
- 'hrs': 'HOURS({})',
297
- 'hour': 'HOURS({})',
298
- 'hours': 'HOURS({})',
299
- 'm': 'MINUTES({})',
300
- 'mins': 'MINUTES({})',
301
- 'minute': 'MINUTES({})',
302
- 'minutes': 'MINUTES({})',
303
- 's': 'SECONDS({})',
304
- 'sec': 'SECONDS({})',
305
- 'secs': 'SECONDS({})',
306
- 'second': 'SECONDS({})',
307
- 'seconds': 'SECONDS({})',
308
- 'ms': 'MILLISECONDS({})',
309
- 'msec': 'MILLISECONDS({})',
310
- 'msecs': 'MILLISECONDS({})',
311
- 'millisecond': 'MILLISECONDS({})',
312
- 'milliseconds': 'MILLISECONDS({})',
313
- 'us': 'MICROSECONDS({})',
314
- 'usec': 'MICROSECONDS({})',
315
- 'usecs': 'MICROSECONDS({})',
316
- 'microsecond': 'MICROSECONDS({})',
317
- 'microseconds': 'MICROSECONDS({})'}
318
-
319
-
320
- class GeospatialConstants(Enum):
321
- """ Holds all Geospatial functionality specific constants. """
322
-
323
- # This dictionary maps teradataml name of the Geospatial function to
324
- # SQL function name.
325
- # This dictionary contains entries for the functions which are
326
- # exposed as "Property" of teradataml GeoDataFrame or
327
- # teradataml GeoDataFrameColumn.
328
- PROPERTY_TO_NO_ARG_SQL_FUNCTION_NAME = {
329
- ## *** ST_Geometry Methods *** ##
330
- "boundary": lambda x: "ST_Boundary",
331
- "centroid": lambda x: "ST_Centroid",
332
- "convex_hull": lambda x: "ST_ConvexHull",
333
- "coord_dim": lambda x: "ST_CoordDim",
334
- "dimension": lambda x: "ST_Dimension",
335
- "geom_type": lambda x: "ST_GeometryType",
336
- "is_3D": lambda x: "ST_Is3D",
337
- "is_empty": lambda x: "ST_IsEmpty",
338
- "is_simple": lambda x: "ST_IsSimple",
339
- "is_valid": lambda x: "ST_IsValid",
340
- "max_x": lambda x: "ST_MaxX" if isinstance(x, GEOMETRY) else "XMax",
341
- "max_y": lambda x: "ST_MaxY" if isinstance(x, GEOMETRY) else "YMax",
342
- "max_z": lambda x: "ST_MaxZ" if isinstance(x, GEOMETRY) else "ZMax",
343
- "min_x": lambda x: "ST_MinX" if isinstance(x, GEOMETRY) else "XMin",
344
- "min_y": lambda x: "ST_MinY" if isinstance(x, GEOMETRY) else "YMin",
345
- "min_z": lambda x: "ST_MinZ" if isinstance(x, GEOMETRY) else "ZMin",
346
- "srid": lambda x: "ST_SRID",
347
-
348
- ## *** Geometry Type ST_Point Methods *** ##
349
- "x": lambda x: "ST_X",
350
- "y": lambda x: "ST_Y",
351
- "z": lambda x: "ST_Z",
352
-
353
- ## *** Geometry Type ST_LineString Methods *** ##
354
- "is_closed_3D": lambda x: "ST_3DIsClosed",
355
- "is_closed": lambda x: "ST_IsClosed",
356
- "is_ring": lambda x: "ST_IsRing",
357
-
358
- ## *** Geometry Type ST_Polygon Methods *** ##
359
- "area": lambda x: "ST_Area",
360
- "exterior": lambda x: "ST_ExteriorRing",
361
- "perimeter": lambda x: "ST_Perimeter"
362
- }
363
-
364
- # This dictionary maps teradataml name of the Geospatial function to
365
- # SQL function name.
366
- # This dictionary contains entries for the functions which are
367
- # exposed as "Methods" of teradataml GeoDataFrame or
368
- # teradataml GeoDataFrameColumn, but does not accept any argument.
369
- METHOD_TO_NO_ARG_SQL_FUNCTION_NAME = {
370
- ## *** ST_Geometry Methods *** ##
371
- "mbb": lambda x: "MBB",
372
- "to_binary": lambda x: "ST_AsBinary",
373
- "to_text": lambda x: "ST_AsText",
374
- "envelope": lambda x: "ST_Envelope",
375
- "mbr": lambda x: "ST_MBR",
376
-
377
- ## *** Geometry Type ST_LineString Methods *** ##
378
- "length_3D": lambda x: "ST_3DLength",
379
- "end_point": lambda x: "ST_EndPoint",
380
- "length": lambda x: "ST_Length",
381
- "num_points": lambda x: "ST_NumPoints",
382
- "start_point": lambda x: "ST_StartPoint",
383
-
384
- ## *** Geometry Type ST_Polygon Methods *** ##
385
- "num_interior_ring": lambda x: "ST_NumInteriorRing",
386
- "point_on_surface": lambda x: "ST_PointOnSurface",
387
-
388
- ## *** Geometry Type ST_GeomCollection Methods *** ##
389
- "num_geometry": lambda x: "ST_NumGeometries",
390
-
391
- ## *** Geometry Type ST_Geomsequence Methods *** ##
392
- "get_final_timestamp": lambda x: "GetFinalT",
393
- "get_init_timestamp": lambda x: "GetInitT",
394
- "get_user_field_count": lambda x: "GetUserFldCount"
395
- }
396
-
397
- # This dictionary maps teradataml name of the Geospatial function to
398
- # SQL function name.
399
- # This dictionary contains entries for the functions which are
400
- # exposed as "Methods" of teradataml GeoDataFrame or
401
- # teradataml GeoDataFrameColumn that accepts argument(s).
402
- METHOD_TO_ARG_ACCEPTING_SQL_FUNCTION_NAME = {
403
- ## *** Minimum Bounding Type Methods *** ##
404
- "intersects": lambda x: "ST_Intersects" if isinstance(x, GEOMETRY) else "Intersects",
405
-
406
- ## *** ST_Geometry Methods *** ##
407
- "buffer": lambda x: "ST_Buffer",
408
- "contains": lambda x: "ST_Contains",
409
- "crosses": lambda x: "ST_Crosses",
410
- "difference": lambda x: "ST_Difference", # M
411
- "disjoint": lambda x: "ST_Disjoint",
412
- "distance": lambda x: "ST_Distance", # M
413
- "distance_3D": lambda x: "ST_3DDistance", # M
414
- "geom_equals": lambda x: "ST_Equals",
415
- "intersection": lambda x: "ST_Intersection",
416
- #"intersect": lambda x: "ST_Intersect", # M
417
- "make_2D": lambda x: "Make_2D",
418
- "overlaps": lambda x: "ST_Overlaps",
419
- "relates": lambda x: "ST_Relate",
420
- "simplify": lambda x: "SimplifyPreserveTopology",
421
- "sym_difference": lambda x: "ST_SymDifference", # M
422
- "touches": lambda x: "ST_Touches",
423
- "transform": lambda x: "ST_Transform",
424
- "union": lambda x: "ST_Union",
425
- "within": lambda x: "ST_Within",
426
- "wkb_geom_to_sql": lambda x: "ST_WKBToSQL", # M
427
- "wkt_geom_to_sql": lambda x: "ST_WKTToSQL", # M
428
- "set_srid": lambda x: "ST_SRID",
429
-
430
- ## *** Geometry Type ST_Point Methods *** ##
431
- "set_x": lambda x: "ST_X",
432
- "set_y": lambda x: "ST_Y",
433
- "set_z": lambda x: "ST_Z",
434
- "spherical_buffer": lambda x: "ST_SphericalBufferMBR", # M
435
- "spherical_distance": lambda x: "ST_SphericalDistance", # M
436
- "spheroidal_buffer": lambda x: "ST_SpheroidalBufferMBR", # M
437
- "spheroidal_distance": lambda x: "ST_SpheroidalDistance", # M
438
-
439
- ## *** Geometry Type ST_LineString Methods *** ##
440
- "line_interpolate_point": lambda x: "ST_Line_Interpolate_Point",
441
- "point": lambda x: "ST_PointN",
442
-
443
- ## *** Geometry Type ST_Polygon Methods *** ##
444
- "set_exterior": lambda x: "ST_ExteriorRing",
445
- "interiors": lambda x: "ST_InteriorRingN",
446
-
447
- ## *** Geometry Type ST_GeomCollection Methods *** ##
448
- "geom_component": lambda x: "ST_GeometryN",
449
-
450
- ## *** Geometry Type ST_Geomsequence Methods *** ##
451
- "clip": lambda x: "Clip",
452
- "get_user_field": lambda x: "GetUserFld",
453
- "point_heading": lambda x: "HeadingN",
454
- "get_link": lambda x: "LinkID",
455
- "set_link": lambda x: "LinkID",
456
- "speed": lambda x: "SpeedN",
457
-
458
- ## *** Filtering Functions and Methods *** ##
459
- "intersects_mbb": lambda x: "Intersects_MBB",
460
- "mbb_filter": lambda x: "MBB_Filter",
461
- "mbr_filter": lambda x: "MBR_Filter",
462
- "within_mbb": lambda x: "Within_MBB"
463
- }
464
-
465
-
466
- class OutputStyle(Enum):
467
- OUTPUT_TABLE = 'TABLE'
468
- OUTPUT_VIEW = 'VIEW'
469
-
470
-
471
- class TableOperatorConstants(Enum):
472
- # Template of the intermediate script that will be generated.
473
- MAP_TEMPLATE = "dataframe_map.template"
474
- # Template of the intermediate script that will be generated.
475
- APPLY_TEMPLATE = "dataframe_apply.template"
476
- # In-DB execution mode.
477
- INDB_EXEC = "IN-DB"
478
- # Local execution mode.
479
- LOCAL_EXEC = "LOCAL"
480
- # Sandbox execution mode.
481
- SANDBOX_EXEC = "SANDBOX"
482
- # Remote user environment mode.
483
- REMOTE_EXEC = "REMOTE"
484
-
485
- EXEC_MODE = [LOCAL_EXEC, SANDBOX_EXEC, INDB_EXEC, REMOTE_EXEC]
486
- # map_row operation.
487
- MAP_ROW_OP = "map_row"
488
- # map_partition operation.
489
- MAP_PARTITION_OP = "map_partition"
490
- # apply operation.
491
- APPLY_OP = "apply"
492
- # Template of the script_executor that will be used to generate the temporary script_executor file.
493
- SCRIPT_TEMPLATE = "script_executor.template"
494
- # Log Type.
495
- SCRIPT_LOG = "SCRIPT"
496
- APPLY_LOG = "APPLY"
497
- LOG_TYPE = [SCRIPT_LOG, APPLY_LOG]
498
- # Query for viewing last n lines of script log.
499
- SCRIPT_LOG_QUERY = "SELECT * FROM SCRIPT (SCRIPT_COMMAND " \
500
- "('tail -n {} /var/opt/teradata/tdtemp/uiflib/scriptlog') " \
501
- "RETURNS ('scriptlog VARCHAR({})') )"
502
-
503
- BYOM_LOG = "BYOM"
504
- # Query for viewing last n lines of script log.
505
- BYOM_LOG_QUERY = "SELECT * FROM SCRIPT (SCRIPT_COMMAND " \
506
- "('tail -n {} /var/opt/teradata/byom/byom.log') " \
507
- "RETURNS ('byomlog VARCHAR({})'))"
508
-
509
- APPLY_LOG_QUERY = "SELECT LogDateTime, LogMessage, Level FROM syslib.LoggingOp({} {} {}) as dt"
510
-
511
- # Check if Python interpretor and add-ons are installed or not.
512
- # Location of In-DB packages is indicated by configure.indb_install_location.
513
- CHECK_PYTHON_INSTALLED = """SELECT distinct * FROM SCRIPT(
514
- ON (select 1) PARTITION BY ANY
515
- SCRIPT_COMMAND('{}/bin/pip3 --version')
516
- returns('package VARCHAR(256)'))
517
- """.format(configure.indb_install_location)
518
-
519
- # Script Query to get Python packages and corresponding versions.
520
- # Location of In-DB packages is indicated by configure.indb_install_location.
521
- partial_version_query = "SELECT distinct * FROM SCRIPT( ON (select 1) " \
522
- "PARTITION BY ANY SCRIPT_COMMAND('{}/bin/pip3 freeze | "\
523
- .format(configure.indb_install_location)
524
- PACKAGE_VERSION_QUERY = partial_version_query + "{0}awk -F ''=='' " \
525
- "''{{print $1, $2}}''') " \
526
- "delimiter(' ') " \
527
- "returns('package VARCHAR({1}), " \
528
- "version VARCHAR({1})'))"
529
-
530
- class ValibConstants(Enum):
531
- # A dictionary that maps teradataml name of the exposed VALIB function name
532
- # to Vantage VALIB SQL function name.
533
- TERADATAML_VALIB_SQL_FUNCTION_NAME_MAP = {
534
- "AdaptiveHistogram": "AdaptiveHistogram",
535
- "Explore": "DataExplorer",
536
- "Frequency": "Frequency",
537
- "Histogram": "Histogram",
538
- "Overlap": "Overlap",
539
- "Statistics": "Statistics",
540
- "TextAnalyzer": "TextFieldAnalyzer",
541
- "Values": "Values",
542
- "Association": "Association",
543
- "KMeans": "Kmeans",
544
- "KMeansPredict": "KmeansScore",
545
- "DecisionTree": "DecisionTree",
546
- "DecisionTreePredict": "DecisionTreeScore",
547
- "DecisionTreeEvaluator": "DecisionTreeScore",
548
- "Matrix": "Matrix",
549
- "LinReg": "Linear",
550
- "LinRegPredict": "LinearScore",
551
- "LinRegEvaluator": "LinearScore",
552
- "LogReg": "Logistic",
553
- "LogRegPredict": "LogisticScore",
554
- "LogRegEvaluator": "LogisticScore",
555
- "PCA": "Factor",
556
- "PCAPredict": "FactorScore",
557
- "PCAEvaluator": "FactorScore",
558
- "ParametricTest": "ParametricTest",
559
- "BinomialTest": "BinomialTest",
560
- "KSTest": "KSTest",
561
- "ChiSquareTest": "ChiSquareTest",
562
- "RankTest": "RankTest",
563
- "BinCode": "vartran",
564
- "Derive": "vartran",
565
- "DesignCode": "vartran",
566
- "Fillna": "vartran",
567
- "Recode": "vartran",
568
- "Rescale": "vartran",
569
- "Sigmoid": "vartran",
570
- "ZScore": "vartran",
571
- "Transform": "vartran",
572
- "XmlToHtmlReport": "report"
573
- }
574
-
575
- # A dictionary that maps Vantage VALIB SQL function name to a dictionary
576
- # mapping a teradataml name of input argument to another dictionary containing
577
- # Vantage SQL equivalent arguments, specified with "database_arg" and
578
- # "table_arg" keys.
579
- # In teradataml, input argument is a DataFrame, which contains both database and table name
580
- # information. We shall just map that to Vantage SQL input table arguments.
581
- # ---------------------------------------------------------------------------------
582
- # NOTE:
583
- # Add an entry in this map,
584
- # 1. If and only if VALIB function accepts multiple input arguments.
585
- # 2. Default argument for input is "data". Don't add an entry for it.
586
- # 3. Add entry for only other input arguments.
587
- # ---------------------------------------------------------------------------------
588
- VALIB_FUNCTION_MULTIINPUT_ARGUMENT_MAP = {
589
- "ASSOCIATION": {
590
- "description_data": {
591
- "database_arg": "descriptiondatabase",
592
- "table_arg": "descriptiontable"
593
- },
594
- "hierarchy_data": {
595
- "database_arg": "hierarchydatabase",
596
- "table_arg": "hierarchytable"
597
- },
598
- "left_lookup_data": {
599
- "database_arg": "leftlookupdatabase",
600
- "table_arg": "leftlookuptable"
601
- },
602
- "right_lookup_data": {
603
- "database_arg": "rightlookupdatabase",
604
- "table_arg": "rightlookuptable"
605
- },
606
- "reduced_data": {
607
- "database_arg": "reducedinputdatabase",
608
- "table_arg": "reducedinputtable"
609
- }
610
- },
611
-
612
- "KMEANSSCORE": {
613
- "model": {
614
- "database_arg": "modeldatabase",
615
- "table_arg": "modeltablename"
616
- }
617
- },
618
-
619
- "DECISIONTREESCORE": {
620
- "model": {
621
- "database_arg": "modeldatabase",
622
- "table_arg": "modeltablename"
623
- }
624
- },
625
-
626
- "LINEARSCORE": {
627
- "model": {
628
- "database_arg": "modeldatabase",
629
- "table_arg": "modeltablename"
630
- }
631
- },
632
-
633
- "LOGISTIC": {
634
- "matrix_data": {
635
- "database_arg": "matrixdatabase",
636
- "table_arg": "matrixtablename"
637
- }
638
- },
639
-
640
- "LOGISTICSCORE": {
641
- "model": {
642
- "database_arg": "modeldatabase",
643
- "table_arg": "modeltablename"
644
- }
645
- },
646
-
647
- "FACTORSCORE": {
648
- "model": {
649
- "database_arg": "modeldatabase",
650
- "table_arg": "modeltablename"
651
- }
652
- }
653
- }
654
-
655
- # A dictionary that maps Vantage VALIB SQL function name to a dictionary of SQL output
656
- # arguments of the function.
657
- # This values dictionary will map:
658
- # 1. "db" key to SQL output argument that accepts database name where output
659
- # table will be created.
660
- # 2. "tbls" key to a list of SQL output argument that accepts table name.
661
- # 3. "mandatory_output_extensions" key to the dictionary of extensions to teradataml
662
- # output argument names. The tables in this extension mapper are generated
663
- # irrespective of whether the function is scoring/evaluator/any other function.
664
- # 4. "evaluator_output_extensions" key to the dictionary of extensions to teradataml
665
- # output argument names. The tables in this extension mapper are generated
666
- # only when the function is evaluator function. When these tables are generated,
667
- # tables that do not have extensions will not be generated (feature of evaluator
668
- # functions.
669
- # In teradataml, output arguments are not accepted from user, but are created and used
670
- # internally.
671
- # ---------------------------------------------------------------------------------
672
- # NOTES:
673
- # 1. Add an entry in this map, if VALIB function
674
- # a. Generates multiple output tables OR
675
- # b. Output argument names are not same as default output argument names:
676
- # 'outputdatabase' and 'outputtablename'.
677
- # 2. No need to add an entry for default argument for output.
678
- # ---------------------------------------------------------------------------------
679
- VALIB_FUNCTION_OUTPUT_ARGUMENT_MAP = {
680
- "DATAEXPLORER": {
681
- "db": "outputdatabase",
682
- "tbls": ["frequencyoutputtablename",
683
- "histogramoutputtablename",
684
- "statisticsoutputtablename",
685
- "valuesoutputtablename"]
686
- },
687
-
688
- "LINEAR": {
689
- "db": "outputdatabase",
690
- "tbls": "outputtablename",
691
- "mandatory_output_extensions": {"_rpt": "statistical_measures",
692
- "_txt": "xml_reports"}
693
- },
694
-
695
- "LINEARSCORE": {
696
- "db": "outputdatabase",
697
- "tbls": "outputtablename",
698
- "evaluator_output_extensions": {"_txt": "result"}
699
- },
700
-
701
- "LOGISTIC": {
702
- "db": "outputdatabase",
703
- "tbls": "outputtablename",
704
- "mandatory_output_extensions": {"_rpt": "statistical_measures",
705
- "_txt": "xml_reports"}
706
- },
707
-
708
- "LOGISTICSCORE": {
709
- "db": "outputdatabase",
710
- "tbls": "outputtablename",
711
- "evaluator_output_extensions": {"_txt": "result"}
712
- },
713
-
714
- "DECISIONTREESCORE": {
715
- "db": "outputdatabase",
716
- "tbls": "outputtablename",
717
- "mandatory_output_extensions": {"_1": "profile_result_1",
718
- "_2": "profile_result_2"},
719
- "evaluator_output_extensions": {"_rpt": "result"}
720
- },
721
-
722
- "FACTORSCORE": {
723
- "db": "outputdatabase",
724
- "tbls": "outputtablename",
725
- "evaluator_output_extensions": {"_rpt": "result"}
726
- },
727
-
728
- "TEXTFIELDANALYZER": {
729
- "db": "outputdatabase",
730
- "tbls": "outputtablename",
731
- "mandatory_output_extensions": {"_rpt": "data_type_matrix"}
732
- }
733
- }
734
-
735
- # A dictionary that maps Vantage VALIB SQL function name to a dictionary mapping
736
- # SQL Output table argument name to teradataml exposed output argument name.
737
- # ---------------------------------------------------------------------------------
738
- # NOTES:
739
- # 1. Add an entry in this map, if VALIB function generates multiple output tables.
740
- # 2. No need to add an entry for default argument for output.
741
- # 3. Default exposed output argument name is "result".
742
- # ---------------------------------------------------------------------------------
743
- TERADATAML_VALIB_MULTIOUTPUT_ATTR_MAP = {
744
- "DATAEXPLORER": {
745
- "frequencyoutputtablename": "frequency_output",
746
- "histogramoutputtablename": "histogram_output",
747
- "statisticsoutputtablename": "statistics_output",
748
- "valuesoutputtablename": "values_output"
749
- },
750
-
751
- "LINEAR": {
752
- "outputtablename": "model",
753
- "_rpt": "statistical_measures",
754
- "_txt": "xml_reports"
755
- },
756
-
757
- "LOGISTIC": {
758
- "outputtablename": "model",
759
- "_rpt": "statistical_measures",
760
- "_txt": "xml_reports"
761
- },
762
-
763
- "DECISIONTREESCORE": {
764
- "outputtablename": "result",
765
- "_1": "profile_result_1",
766
- "_2": "profile_result_2"
767
- },
768
-
769
- "TEXTFIELDANALYZER": {
770
- "outputtablename": "result",
771
- "_rpt": "data_type_matrix"
772
- }
773
- }
774
-
775
- # A dictionary that maps Vantage VALIB Teradataml function name to a dictionary mapping
776
- # SQL Output table argument name to teradataml exposed output argument name.
777
- # ---------------------------------------------------------------------------------
778
- # NOTES:
779
- # 1. Add an entry in this map, if VALIB evaluator function generates tables with
780
- # extension(s) or multiple output tables.
781
- # 2. This mapper is specific to Evaluator functions. "__multioutput_attr_map" of VALIB
782
- # object is replaced with this mapper if the function is evaluator function.
783
- # ---------------------------------------------------------------------------------
784
- TERDATAML_EVALUATOR_OUTPUT_ATTR_MAP = {
785
- "DecisionTreeEvaluator": {
786
- "_rpt": "result",
787
- "_1": "profile_result_1",
788
- "_2": "profile_result_2"
789
- },
790
-
791
- "LinRegEvaluator": {
792
- "_txt": "result"
793
- },
794
-
795
- "LogRegEvaluator": {
796
- "_txt": "result"
797
- },
798
-
799
- "PCAEvaluator": {
800
- "_rpt": "result"
801
- }
802
- }
803
-
804
- # A dictionary that maps Vantage VALIB SQL function name to:
805
- # 1. A dictionary mapping teradataml exposed name of the argument to SQL function
806
- # argument name. OR
807
- # 2. Just a list of SQL function argument names supported by the function.
808
- # ---------------------------------------------------------------------------------
809
- # NOTES:
810
- # 1. Add an entry in this map, if argument names in teradataml are different from
811
- # SQL function argument names.
812
- # 2. No need to add an entry if all argument names are same as that of the SQL Function
813
- # argument.
814
- # 3. The argument "scoring_method" is added internally based on the teradataml function
815
- # name.
816
- # ---------------------------------------------------------------------------------
817
- TERADATAML_VALIB_FUNCTION_ARGUMENT_MAP = {
818
- # 'overwrite' argument is not needed, as we will generate table names internally.
819
- "ADAPTIVEHISTOGRAM": {
820
- "columns": "columns",
821
- "bins": "bins",
822
- "exclude_columns": "columnstoexclude",
823
- "spike_threshold": "spikethreshold",
824
- "subdivision_method": "subdivisionmethod",
825
- "subdivision_threshold": "subdivisionthreshold",
826
- "filter": "where",
827
- "gen_sql_only": "gensqlonly"
828
- },
829
-
830
- "DATAEXPLORER": {
831
- "columns": "columns",
832
- "bins": "bins",
833
- "bin_style": "binstyle",
834
- "max_comb_values": "maxnumcombvalues",
835
- "max_unique_char_values": "maxuniquecharvalues",
836
- "max_unique_num_values": "maxuniquenumvalues",
837
- "min_comb_rows": "minrowsforcomb",
838
- "restrict_freq": "restrictedfreqproc",
839
- "restrict_threshold": "restrictedthreshold",
840
- "statistical_method": "statisticalmethod",
841
- "stats_options": "statsoptions",
842
- "distinct": "uniques",
843
- "filter": "where",
844
- "gen_sql": "gensql"
845
- },
846
-
847
- "FREQUENCY": {
848
- "columns": "columns",
849
- "exclude_columns": "columnstoexclude",
850
- "cumulative_option": "cumulativeoption",
851
- "agg_filter": "having",
852
- "min_percentage": "minimumpercentage",
853
- "pairwise_columns": "pairwisecolumns",
854
- "stats_columns": "statisticscolumns",
855
- "style": "style",
856
- "top_n": "topvalues",
857
- "filter": "where",
858
- "gen_sql_only": "gensqlonly"
859
- },
860
-
861
- "HISTOGRAM": {
862
- "columns": "columns",
863
- "bins": "bins",
864
- "bins_with_boundaries": "binwithminmax",
865
- "boundaries": "boundaries",
866
- "quantiles": "quantiles",
867
- "widths": "widths",
868
- "exclude_columns": "columnstoexclude",
869
- "overlay_columns": "overlaycolumns",
870
- "stats_columns": "statisticscolumns",
871
- "hist_style": "style",
872
- "filter": "where",
873
- "gen_sql_only": "gensqlonly"
874
- },
875
-
876
- "STATISTICS": {
877
- "columns": "columns",
878
- "exclude_columns": "columnstoexclude",
879
- "extended_options": "extendedoptions",
880
- "group_columns": "groupby",
881
- "statistical_method": "statisticalmethod",
882
- "stats_options": "statsoptions",
883
- "filter": "where",
884
- "gen_sql_only": "gensqlonly"
885
- },
886
-
887
- "TEXTFIELDANALYZER": {
888
- "columns": "columns",
889
- "exclude_columns": "columnstoexclude",
890
- "analyze_numerics": "extendednumericanalysis",
891
- "analyze_unicode": "extendedunicodeanalysis",
892
- "gen_sql_only": "gensqlonly"
893
- },
894
-
895
- "VALUES": {
896
- "columns": "columns",
897
- "exclude_columns": "columnstoexclude",
898
- "group_columns": "groupby",
899
- "distinct": "uniques",
900
- "filter": "where",
901
- "gen_sql_only": "gensqlonly"
902
- },
903
-
904
- "ASSOCIATION": {
905
- "group_column": "groupcolumn",
906
- "item_column": "itemcolumn",
907
- "combinations": "combinations",
908
- "description_identifier": "descriptionidentifier",
909
- "description_column": "descriptioncolumn",
910
- "group_count": "groupcount",
911
- "low_level_column": "hierarchyitemcolumn",
912
- "high_level_column": "hierarchycolumn",
913
- "left_lookup_column": "leftlookupcolumn",
914
- "right_lookup_column": "rightlookupcolumn",
915
- "min_confidence": "minimumconfidence",
916
- "min_lift": "minimumlift",
917
- "min_support": "minimumsupport",
918
- "min_zscore": "minimumzscore",
919
- "order_prob": "orderingprobability",
920
- "process_type": "processtype",
921
- "relaxed_order": "relaxedordering",
922
- "sequence_column": "sequencecolumn",
923
- "filter": "where",
924
- "no_support_results": "dropsupporttables",
925
- "support_result_prefix": "resulttableprefix",
926
- "gen_sql_only": "gensqlonly"
927
- },
928
-
929
- "KMEANS": {
930
- "columns": "columns",
931
- "centers": "kvalue",
932
- "exclude_columns": "columnstoexclude",
933
- "continuation": "continuation",
934
- "max_iter": "iterations",
935
- "operator_database": "operatordatabase",
936
- "threshold": "threshold"
937
- },
938
-
939
- "KMEANSSCORE": {
940
- "index_columns": "index",
941
- "cluster_column": "clustername",
942
- "fallback": "fallback",
943
- "operator_database": "operatordatabase",
944
- "accumulate": "retain"
945
- },
946
-
947
- "DECISIONTREE": {
948
- "columns": "columns",
949
- "response_column": "dependent",
950
- "algorithm": "algorithm",
951
- "binning": "binning",
952
- "exclude_columns": "columnstoexclude",
953
- "max_depth": "max_depth",
954
- "num_splits": "min_records",
955
- "operator_database": "operatordatabase",
956
- "pruning": "pruning"
957
- },
958
-
959
- "DECISIONTREESCORE": {
960
- "include_confidence": "includeconfidence",
961
- "index_columns": "index",
962
- "response_column": "predicted",
963
- "profile": "profiletables",
964
- "accumulate": "retain",
965
- "targeted_value": "targetedvalue",
966
- "gen_sql_only": "gensqlonly"
967
- },
968
-
969
- "MATRIX": {
970
- "columns": "columns",
971
- "exclude_columns": "columnstoexclude",
972
- "group_columns": "groupby",
973
- "matrix_output": "matrixoutput",
974
- "type": "matrixtype",
975
- "handle_nulls": "nullhandling",
976
- "filter": "where"
977
- },
978
-
979
- "LINEAR": {
980
- "columns": "columns",
981
- "response_column": "dependent",
982
- "backward": "backward",
983
- "backward_only": "backwardonly",
984
- "exclude_columns": "columnstoexclude",
985
- "cond_ind_threshold": "conditionindexthreshold",
986
- "constant": "constant",
987
- "entrance_criterion": "enter",
988
- "forward": "forward",
989
- "forward_only": "forwardonly",
990
- "group_columns": "groupby",
991
- "matrix_input": "matrixinput",
992
- "near_dep_report": "neardependencyreport",
993
- "remove_criterion": "remove",
994
- "stats_output": "statstable",
995
- "stepwise": "stepwise",
996
- "use_fstat": "usefstat",
997
- "use_pvalue": "usepvalue",
998
- "variance_prop_threshold": "varianceproportionthreshold"
999
- },
1000
-
1001
- "LINEARSCORE": {
1002
- "index_columns": "index",
1003
- "response_column": "predicted",
1004
- "residual_column": "residual",
1005
- "accumulate": "retain",
1006
- "gen_sql_only": "gensqlonly"
1007
- },
1008
-
1009
- "LOGISTIC": {
1010
- "columns": "columns",
1011
- "response_column": "dependent",
1012
- "backward": "backward",
1013
- "backward_only": "backwardonly",
1014
- "exclude_columns": "columnstoexclude",
1015
- "cond_ind_threshold": "conditionindexthreshold",
1016
- "constant": "constant",
1017
- "convergence": "convergence",
1018
- "entrance_criterion": "enter",
1019
- "forward": "forward",
1020
- "forward_only": "forwardonly",
1021
- "group_columns": "groupby",
1022
- "lift_output": "lifttable",
1023
- "max_iter": "maxiterations",
1024
- "mem_size": "memorysize",
1025
- "near_dep_report": "neardependencyreport",
1026
- "remove_criterion": "remove",
1027
- "response_value": "response",
1028
- "sample": "sample",
1029
- "stats_output": "statstable",
1030
- "stepwise": "stepwise",
1031
- "success_output": "successtable",
1032
- "start_threshold": "thresholdbegin",
1033
- "end_threshold": "thresholdend",
1034
- "increment_threshold": "thresholdincrement",
1035
- "threshold_output": "thresholdtable",
1036
- "variance_prop_threshold": "varianceproportionthreshold"
1037
- },
1038
-
1039
- "LOGISTICSCORE": {
1040
- "estimate_column": "estimate",
1041
- "index_columns": "index",
1042
- "prob_column": "probability",
1043
- "accumulate": "retain",
1044
- "prob_threshold": "threshold",
1045
- "start_threshold": "thresholdbegin",
1046
- "end_threshold": "thresholdend",
1047
- "increment_threshold": "thresholdincrement",
1048
- "gen_sql_only": "gensqlonly"
1049
-
1050
- # The following 3 arguments three should not be present for LogRegPredict function
1051
- # where as when the function is LogRegEvaluator, at least one of these should be
1052
- # present. By default (i.e., when these are not provided in LogRegEvaluator SQL), the
1053
- # function takes 'True' for these arguments. So, by commenting these we are providing
1054
- # all three tables in XML that is generated by the LogRegEvaluator function.
1055
- # "threshold_output": "thresholdtable",
1056
- # "lift_output": "lifttable",
1057
- # "success_output": "successtable"
1058
- },
1059
-
1060
- "FACTOR": {
1061
- "columns": "columns",
1062
- "exclude_columns": "columnstoexclude",
1063
- "cond_ind_threshold": "conditionindexthreshold",
1064
- "min_eigen": "eigenmin",
1065
- "load_report": "factorloadingsreport",
1066
- "vars_load_report": "factorvariablesloadingsreport",
1067
- "vars_report": "factorvariablesreport",
1068
- "gamma": "gamma",
1069
- "group_columns": "groupby",
1070
- "matrix_input": "matrixinput",
1071
- "matrix_type": "matrixtype",
1072
- "near_dep_report": "neardependencyreport",
1073
- "rotation_type": "rotationtype",
1074
- "load_threshold": "thresholdloading",
1075
- "percent_threshold": "thresholdpercent",
1076
- "variance_prop_threshold": "varianceproportionthreshold"
1077
- },
1078
-
1079
- "FACTORSCORE": {
1080
- "index_columns": "index",
1081
- "accumulate": "retain",
1082
- "gen_sql_only": "gensqlonly"
1083
- },
1084
-
1085
- "PARAMETRICTEST": {
1086
- "columns": "columns",
1087
- "dependent_column": "columnofinterest",
1088
- "equal_variance": "equalvariance",
1089
- "fallback": "fallback",
1090
- "first_column": "firstcolumn",
1091
- "first_column_values": "firstcolumnvalues",
1092
- "group_columns": "groupby",
1093
- "allow_duplicates": "multiset",
1094
- "paired": "paired",
1095
- "second_column": "secondcolumn",
1096
- "second_column_values": "secondcolumnvalues",
1097
- "stats_database": "statsdatabase",
1098
- "style": "teststyle",
1099
- "probability_threshold": "thresholdprobability",
1100
- "with_indicator": "withindicator",
1101
- "gen_sql_only": "gensqlonly"
1102
- },
1103
-
1104
- "BINOMIALTEST": {
1105
- "first_column": "firstcolumn",
1106
- "binomial_prob": "binomialprobability",
1107
- "exact_matches": "exactmatches",
1108
- "fallback": "fallback",
1109
- "group_columns": "groupby",
1110
- "allow_duplicates": "multiset",
1111
- "second_column": "secondcolumn",
1112
- "single_tail": "singletail",
1113
- "stats_database": "statsdatabase",
1114
- "style": "teststyle",
1115
- "probability_threshold": "thresholdprobability",
1116
- "gen_sql_only": "gensqlonly"
1117
- },
1118
-
1119
- "KSTEST": {
1120
- "columns": "columns",
1121
- "dependent_column": "columnofinterest",
1122
- "fallback": "fallback",
1123
- "group_columns": "groupby",
1124
- "allow_duplicates": "multiset",
1125
- "stats_database": "statsdatabase",
1126
- "style": "teststyle",
1127
- "probability_threshold": "thresholdprobability",
1128
- "gen_sql_only": "gensqlonly"
1129
- },
1130
-
1131
- "CHISQUARETEST": {
1132
- "columns": "columns",
1133
- "dependent_column": "columnofinterest",
1134
- "fallback": "fallback",
1135
- "first_columns": "firstcolumns",
1136
- "group_columns": "groupby",
1137
- "allow_duplicates": "multiset",
1138
- "second_columns": "secondcolumns",
1139
- "stats_database": "statsdatabase",
1140
- "style": "teststyle",
1141
- "probability_threshold": "thresholdprobability",
1142
- "gen_sql_only": "gensqlonly"
1143
- },
1144
-
1145
- "RANKTEST": {
1146
- "block_column": "blockcolumn",
1147
- "columns": "columns",
1148
- "dependent_column": "columnofinterest",
1149
- "fallback": "fallback",
1150
- "first_column": "firstcolumn",
1151
- "group_columns": "groupby",
1152
- "include_zero": "includezero",
1153
- "independent": "independent",
1154
- "allow_duplicates": "multiset",
1155
- "second_column": "secondcolumn",
1156
- "single_tail": "singletail",
1157
- "stats_database": "statsdatabase",
1158
- "style": "teststyle",
1159
- "probability_threshold": "thresholdprobability",
1160
- "treatment_column": "treatmentcolumn",
1161
- "gen_sql_only": "gensqlonly"
1162
- },
1163
-
1164
- "VARTRAN": {
1165
- "fallback": "fallback",
1166
- "index_columns": "index",
1167
- "unique_index": "indexunique",
1168
- "key_columns": "keycolumns",
1169
- "allow_duplicates": "multiset",
1170
- "nopi": "noindex",
1171
- "filter": "whereclause",
1172
- "gen_sql_only": "gensqlonly"
1173
- },
1174
-
1175
- "REPORT": {
1176
- "analysis_type": "analysistype",
1177
- "filter": "where",
1178
- "gen_sql_only": "gensqlonly"
1179
- }
1180
- }
1181
-
1182
- # Arguments to ignore - These are the arguments, that are not processed currently.
1183
- # TODO: Support can be added to these in later stages.
1184
- IGNORE_ARGUMENTS = ["overwrite", "ouputstyle", "samplescoresize"]
1185
-
1186
- # Output DataFrame default argument name.
1187
- DEFAULT_OUTPUT_VAR = "result"
1188
-
1189
- # Output DataFrame result list name.
1190
- OUTPUT_DATAFRAME_RESULTS = "_valib_results"
1191
-
1192
- # Scoring method SQL argument name and values.
1193
- SCORING_METHOD_ARG_NAME = "scoringmethod"
1194
- SCORING_METHOD_ARG_VALUE = {
1195
- "default": "score",
1196
- # TODO: Replace "scoreandevaluate" with "evaluate" because for FactorScore, using
1197
- # scoringmethod as evaluate is producing result to the console and table is not
1198
- # generated.
1199
- "non-default": "scoreandevaluate"
1200
- }
1201
-
1202
- # Map between function category and corresponding list of function names.
1203
- CATEGORY_VAL_FUNCS_MAP = {
1204
- "Descriptive Statistics": ["AdaptiveHistogram", "Explore", "Frequency", "Histogram", "Overlap",
1205
- "Statistics", "TextAnalyzer", "Values"],
1206
- "Variable Transformation": ["BinCode", "Derive", "DesignCode", "Fillna", "Recode", "Rescale", "Retain",
1207
- "Sigmoid", "Transform", "ZScore"],
1208
- "Statistical Test": ["BinomialTest", "ChiSquareTest", "KSTest", "ParametricTest", "RankTest"],
1209
- "Model Training": ["Association", "KMeans", "DecisionTree", "Matrix", "LinReg", "LogReg", "PCA"],
1210
- "Model Scoring/Prediction": ["DecisionTreePredict", "DecisionTreeEvaluator", "KMeansPredict", "LinRegPredict",
1211
- "LinRegEvaluator", "LogRegPredict", "LogRegEvaluator", "PCAPredict",
1212
- "PCAEvaluator"],
1213
- "Helper": ["XmlToHtmlReport"]}
1214
-
1215
-
1216
- class SQLFunctionConstants(Enum):
1217
- # Dictionary maps teradataml name of the Aggregate function to
1218
- # SQL function name.
1219
- AGGREGATE_FUNCTION_MAPPER = {"avg": "AVG",
1220
- "corr": "CORR",
1221
- "covar_pop": "COVAR_POP",
1222
- "covar_samp": "COVAR_SAMP",
1223
- "cume_dist": "CUME_DIST",
1224
- "dense_rank": "DENSE_RANK",
1225
- "first_value": "FIRST_VALUE",
1226
- "last_value": "LAST_VALUE",
1227
- "lag": "LAG",
1228
- "lead": "LEAD",
1229
- "percent_rank": "PERCENT_RANK",
1230
- "percentile_disc": "PERCENTILE_DISC",
1231
- "rank": "RANK",
1232
- "regr_avgx": "REGR_AVGX",
1233
- "regr_avgy": "REGR_AVGY",
1234
- "regr_count": "REGR_COUNT",
1235
- "regr_intercept": "REGR_INTERCEPT",
1236
- "regr_r2": "REGR_R2",
1237
- "regr_slope": "REGR_SLOPE",
1238
- "regr_sxx": "REGR_SXX",
1239
- "regr_sxy": "REGR_SXY",
1240
- "regr_syy": "REGR_SYY",
1241
- "row_number": "ROW_NUMBER",
1242
- "csum": "CSUM",
1243
- "msum": "MSUM",
1244
- "mavg": "MAVG",
1245
- "mdiff": "MDIFF",
1246
- "mlinreg": "MLINREG",
1247
- "quantile": "QUANTILE",
1248
- "percentile": "PERCENTILE"
1249
- }
1250
-
1251
- SQL_FUNCTION_MAPPER = {
1252
- # Hyperbolic functions
1253
- "acosh": "ACOSH",
1254
- "asinh": "ASINH",
1255
- "atanh": "ATANH",
1256
- "cosh": "COSH",
1257
- "sinh": "SINH",
1258
- "tanh": "TANH",
1259
- # Trigonometric functions
1260
- "acos": "ACOS",
1261
- "asin": "ASIN",
1262
- "atan": "ATAN",
1263
- "atan2": "ATAN2",
1264
- "cos": "COS",
1265
- "sin": "SIN",
1266
- "tan": "TAN",
1267
- # Maths function
1268
- "abs": "ABS",
1269
- "ceil": "CEILING",
1270
- "ceiling": "CEILING",
1271
- "degrees": "DEGREES",
1272
- "exp": "EXP",
1273
- "floor": "FLOOR",
1274
- "ln": "LN",
1275
- "log10": "LOG",
1276
- "pmod": "MOD",
1277
- "mod": "MOD",
1278
- "nullifzero": "NULLIFZERO",
1279
- "pow": "POWER",
1280
- "power": "POWER",
1281
- "radians": "RADIANS",
1282
- "round": "ROUND",
1283
- "sign": "SIGN",
1284
- "signum": "SIGN",
1285
- "sqrt": "SQRT",
1286
- "trunc": "TRUNC",
1287
- "width_bucket": "WIDTH_BUCKET",
1288
- "zeroifnull": "ZEROIFNULL",
1289
-
1290
- # String Functions
1291
- "ascii": "ASCII",
1292
- "char2hexint": "CHAR2HEXINT",
1293
- "chr": "CHR",
1294
- "char": "CHR",
1295
- "character_length": "LENGTH",
1296
- "char_length": "LENGTH",
1297
- "edit_distance": "EDITDISTANCE",
1298
- "index": "INDEX",
1299
- "initcap": "INITCAP",
1300
- "instr": "INSTR",
1301
- "lcase": "LOWER",
1302
- "left": "LEFT",
1303
- "length": "LENGTH",
1304
- "levenshtein": "EDITDISTANCE",
1305
- "locate": "LOCATE",
1306
- "lower": "LOWER",
1307
- "lpad": "LPAD",
1308
- "ltrim": "LTRIM",
1309
- "ngram": "NGRAM",
1310
- "nvp": "NVP",
1311
- "oreplace": "OREPLACE",
1312
- "otranslate": "OTRANSLATE",
1313
- "replace": "OREPLACE",
1314
- "reverse": "REVERSE",
1315
- "right": "RIGHT",
1316
- "rpad": "RPAD",
1317
- "rtrim": "RTRIM",
1318
- "soundex": "SOUNDEX",
1319
- "string_cs": "STRING_CS",
1320
- "translate": "OTRANSLATE",
1321
- "upper": "UPPER",
1322
-
1323
- # Byte Functions
1324
- "bit_and": "BITAND",
1325
- "bit_get": "GETBIT",
1326
- "bit_or": "BITOR",
1327
- "bit_xor": "BITXOR",
1328
- "bitand": "BITAND",
1329
- "bitnot": "BITNOT",
1330
- "bitor": "BITOR",
1331
- "bitwise_not": "BITNOT",
1332
- "bitwiseNOT": "BITNOT",
1333
- "bitxor": "BITXOR",
1334
- "countset": "COUNTSET",
1335
- "getbit": "GETBIT",
1336
- "rotateleft": "ROTATELEFT",
1337
- "rotateright": "ROTATERIGHT",
1338
- "setbit": "SETBIT",
1339
- "shiftleft": "SHIFTLEFT",
1340
- "shiftright": "SHIFTRIGHT",
1341
- "subbitstr": "SUBBITSTR",
1342
- "to_byte": "TO_BYTE",
1343
-
1344
- # Regular Expression Functions
1345
- "regexp_instr": "REGEXP_INSTR",
1346
- "regexp_replace": "REGEXP_REPLACE",
1347
- "regexp_similar": "REGEXP_SIMILAR",
1348
- "regexp_substr": "REGEXP_SUBSTR"
1349
- }
1350
-
1351
-
1352
- class TDMLFrameworkKeywords(Enum):
1353
- # Variable which stores the default keyword arguments passed
1354
- # to Aggregate function.
1355
- AGGREGATE_FUNCTION_DEFAULT_ARGUMENTS = ["window_properties",
1356
- "percentile",
1357
- "as_time_series_aggregate",
1358
- "describe_op",
1359
- "drop_columns"
1360
- ]
1361
-
1362
-
1363
- class TeradataReservedKeywords(Enum):
1364
- # A List which stores Teradata Reserved Keywords.
1365
- TERADATA_RESERVED_WORDS = ["INPUT",
1366
- "THRESHOLD",
1367
- "CHECK",
1368
- "SUMMARY",
1369
- "HASH",
1370
- "METHOD",
1371
- "TYPE"
1372
- ]
1373
-
1374
- class TeradataAnalyticFunctionTypes(Enum):
1375
- SQLE = "FASTPATH"
1376
- UAF = "UAF"
1377
- TABLEOPERATOR = "TABLE_OPERATOR"
1378
- BYOM = "BYOM"
1379
-
1380
-
1381
- class TeradataAnalyticFunctionInfo(Enum):
1382
-
1383
- FASTPATH = {"func_type": "sqle", "lowest_version": "16.20", "display_function_type_name" :"SQLE"}
1384
- UAF = {"func_type": "uaf", "lowest_version": "17.20", "display_function_type_name": "UAF",
1385
- "metadata_class" : "_AnlyFuncMetadataUAF"}
1386
- TABLE_OPERATOR = {"func_type": "tableoperator", "lowest_version": "17.00 ",
1387
- "display_function_type_name" :"TABLE OPERATOR"}
1388
- BYOM = {"func_type": "byom", "lowest_version": None, "display_function_type_name": "BYOM"}
1389
-
1390
- class TeradataUAFSpecificArgs(Enum):
1391
- INPUT_MODE = "input_mode"
1392
- OUTPUT_FMT_CONTENT = "output_fmt_content"
1393
- OUTPUT_FMT_INDEX = "output_fmt_index"
1394
- OUTPUT_FMT_INDEX_STYLE = "output_fmt_index_style"
1395
-
1396
- class Query(Enum):
1397
- VANTAGE_VERSION = "SELECT InfoData FROM DBC.DBCInfoV where InfoKey = 'VERSION'"
1398
-
1399
- class DriverEscapeFunctions(Enum):
1400
- # Holds variables for the teradatasql driver escape functions to be used
1401
- NATIVE_SQL = "{fn teradata_nativesql}"
1402
- AUTOCOMMIT_ON = "{fn teradata_autocommit_on}"
1403
- AUTOCOMMIT_OFF = "{fn teradata_autocommit_off}"
1404
- LOGON_SEQ_NUM = "{fn teradata_logon_sequence_number}"
1405
- GET_ERRORS = "{fn teradata_get_errors}"
1406
- GET_WARNINGS = "{fn teradata_get_warnings}"
1407
- REQUIRE_FASTLOAD = "{fn teradata_require_fastload}"
1408
- READ_CSV = "{{fn teradata_read_csv({0})}}"
1409
- TRY_FASTEXPORT = "{fn teradata_try_fastexport}"
1410
- REQUIRE_FASTEXPORT = "{fn teradata_require_fastexport}"
1411
- OPEN_SESSIONS = "{{fn teradata_sessions({0})}}"
1412
- WRITE_TO_CSV = "{{fn teradata_write_csv({0})}}"
1413
- FIELD_QUOTE = "{{fn teradata_field_quote({0})}}"
1414
- FIELD_SEP = "{{fn teradata_field_sep({0})}}"
1415
-
1416
-
1417
- class HTTPRequest(Enum):
1418
- # Holds variable names for HTTP calls.
1419
- GET = "get"
1420
- POST = "post"
1421
- PUT = "put"
1422
- DELETE = "delete"
1423
-
1424
-
1425
- class AsyncStatusColumns(Enum):
1426
- # Holds variable names for Async status DF columns.
1427
- RUN_ID = "Run Id"
1428
- RUN_DESCRIPTION = "Run Description"
1429
- STATUS = "Status"
1430
- TIMESTAMP = "Timestamp"
1431
- ADDITIONAL_DETAILS = "Additional Details"
1432
-
1433
-
1434
- class CloudProvider(Enum):
1435
- # Holds variable names for Cloud Providers.
1436
- AWS = "AWS"
1437
- AZURE = "Azure"
1438
- # 'x-ms-version' has 2 allowed constant values '2019-12-12'
1439
- # and '2018-03-28', using the latest one.
1440
- X_MS_VERSION = "2019-12-12"
1441
- X_MS_BLOB_TYPE = "BlockBlob"
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ Unpublished work.
4
+ Copyright (c) 2018 by Teradata Corporation. All rights reserved.
5
+ TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
6
+
7
+ Primary Owner: ellen.nolan@teradata.com
8
+ Secondary Owner: PankajVinod.Purandare@teradata.com
9
+
10
+ teradataml.common.constants
11
+ ----------
12
+ A class for holding all constants
13
+ """
14
+ import re
15
+ import sqlalchemy
16
+ from enum import Enum
17
+ from teradataml.options.configure import configure
18
+ from teradatasqlalchemy.types import (INTEGER, SMALLINT, BIGINT, BYTEINT, DECIMAL, FLOAT, NUMBER, VARCHAR)
19
+ from teradatasqlalchemy.types import (DATE, TIME, TIMESTAMP)
20
+ from teradatasqlalchemy.types import (BYTE, VARBYTE, BLOB)
21
+ from teradatasqlalchemy import (GEOMETRY, MBR, MBB)
22
+
23
+
24
+ class SQLConstants(Enum):
25
+ SQL_BASE_QUERY = 1
26
+ SQL_SAMPLE_QUERY = 2
27
+ SQL_SAMPLE_WITH_WHERE_QUERY = 3
28
+ SQL_CREATE_VOLATILE_TABLE_FROM_QUERY_WITH_DATA = 4
29
+ SQL_CREATE_VOLATILE_TABLE_FROM_QUERY_WITHOUT_DATA = 5
30
+ SQL_CREATE_VOLATILE_TABLE_USING_COLUMNS = 6
31
+ SQL_CREATE_TABLE_FROM_QUERY_WITH_DATA = 7
32
+ SQL_HELP_COLUMNS = 8
33
+ SQL_DROP_TABLE = 9
34
+ SQL_DROP_VIEW = 10
35
+ SQL_NROWS_FROM_QUERY = 11
36
+ SQL_TOP_NROWS_FROM_TABLEORVIEW = 12
37
+ SQL_INSERT_INTO_TABLE_VALUES = 13
38
+ SQL_SELECT_COLUMNNAMES_FROM = 14
39
+ SQL_SELECT_DATABASE = 15
40
+ SQL_HELP_VOLATILE_TABLE = 16
41
+ SQL_SELECT_TABLE_NAME = 17
42
+ SQL_CREATE_VIEW = 18
43
+ SQL_SELECT_USER = 19
44
+ SQL_HELP_VIEW = 20
45
+ SQL_HELP_TABLE = 21
46
+ SQL_HELP_INDEX = 22
47
+ SQL_INSERT_ALL_FROM_TABLE = 23
48
+ SQL_SELECT_DATABASENAME = 24
49
+ SQL_AND_TABLE_KIND = 25
50
+ SQL_AND_TABLE_NAME = 26
51
+ SQL_AND_TABLE_NAME_LIKE = 27
52
+ SQL_CREATE_TABLE_USING_COLUMNS = 28
53
+ SQL_DELETE_ALL_ROWS = 29
54
+ SQL_DELETE_SPECIFIC_ROW = 30
55
+ SQL_EXEC_STORED_PROCEDURE = 31
56
+ CONSTRAINT = ["check_constraint", "primary_key_constraint",
57
+ "foreign_key_constraint", "unique_key_constraint"]
58
+
59
+
60
+ class TeradataConstants(Enum):
61
+ TERADATA_VIEW = 1
62
+ TERADATA_TABLE = 2
63
+ TERADATA_SCRIPT = 3
64
+ TERADATA_LOCAL_SCRIPT = 4
65
+ CONTAINER = 5
66
+ TERADATA_TEXT_FILE = 6
67
+ TERADATA_APPLY = 7
68
+ TERADATA_VOLATILE_TABLE = 8
69
+ TABLE_COLUMN_LIMIT = 2048
70
+ TERADATA_JOINS = ["inner", "left", "right", "full", "cross"]
71
+ TERADATA_JOIN_OPERATORS = ['>=', '<=', '<>', '!=', '>', '<', '=']
72
+ # Order of operators
73
+ # shouldn't be changed. This is the order in which join condition is tested - first, operators
74
+ # with two characters and then the operators with single character.
75
+ SUPPORTED_ENGINES = {"ENGINE_SQL" : {"name" : "sqle", "file" : "sqlengine_alias_definitions"}}
76
+ SUPPORTED_VANTAGE_VERSIONS = {"vantage1.0": "v1.0", "vantage1.1": "v1.1",
77
+ "vantage1.3": "v1.3", "vantage2.0": "v1.1"}
78
+ RANGE_SEPARATORS = [":"]
79
+
80
+
81
+ class AEDConstants(Enum):
82
+ AED_NODE_NOT_EXECUTED = 0
83
+ AED_NODE_EXECUTED = 1
84
+ AED_DB_OBJECT_NAME_BUFFER_SIZE = 128
85
+ AED_NODE_TYPE_BUFFER_SIZE = 32
86
+ AED_ASSIGN_DROP_EXISITING_COLUMNS = "Y"
87
+ AED_ASSIGN_DO_NOT_DROP_EXISITING_COLUMNS = "N"
88
+ AED_QUERY_NODE_TYPE_ML_QUERY_SINGLE_OUTPUT = "ml_query_single_output"
89
+ AED_QUERY_NODE_TYPE_ML_QUERY_MULTI_OUTPUT = "ml_query_multi_output"
90
+ AED_QUERY_NODE_TYPE_REFERENCE = "reference"
91
+
92
+
93
+ class SourceType(Enum):
94
+ TABLE = "TABLE"
95
+ QUERY = "QUERY"
96
+
97
+
98
+ class PythonTypes(Enum):
99
+ PY_NULL_TYPE = "nulltype"
100
+ PY_INT_TYPE = "int"
101
+ PY_FLOAT_TYPE = "float"
102
+ PY_STRING_TYPE = "str"
103
+ PY_DECIMAL_TYPE = "decimal.Decimal"
104
+ PY_DATETIME_TYPE = "datetime.datetime"
105
+ PY_TIME_TYPE = "datetime.time"
106
+ PY_DATE_TYPE = "datetime.date"
107
+ PY_BYTES_TYPE = "bytes"
108
+
109
+
110
+ class TeradataTypes(Enum):
111
+ TD_INTEGER_TYPES = [INTEGER, BYTEINT, SMALLINT, BIGINT, sqlalchemy.sql.sqltypes.Integer]
112
+ TD_INTEGER_CODES = ["I", "I1", "I2", "I8"]
113
+ TD_FLOAT_TYPES = [FLOAT, sqlalchemy.sql.sqltypes.Numeric]
114
+ TD_FLOAT_CODES = ["F"]
115
+ TD_DECIMAL_TYPES = [DECIMAL, NUMBER]
116
+ TD_DECIMAL_CODES = ["D", "N"]
117
+ TD_BYTE_TYPES = [BYTE, VARBYTE, BLOB]
118
+ TD_BYTE_CODES = ["BF", "BV", "BO"]
119
+ TD_DATETIME_TYPES = [TIMESTAMP, sqlalchemy.sql.sqltypes.DateTime]
120
+ TD_DATETIME_CODES = ["TS", "SZ"]
121
+ TD_TIME_TYPES = [TIME, sqlalchemy.sql.sqltypes.Time]
122
+ TD_TIME_CODES = ["AT", "TZ"]
123
+ TD_DATE_TYPES = [DATE, sqlalchemy.sql.sqltypes.Date]
124
+ TD_DATE_CODES = ["DA"]
125
+ TD_NULL_TYPE = "NULLTYPE"
126
+
127
+
128
+ class TeradataTableKindConstants(Enum):
129
+ VOLATILE = "volatile"
130
+ TABLE = "table"
131
+ VIEW = "view"
132
+ TEMP = "temp"
133
+ ALL = "all"
134
+ ML_PATTERN = "ml_%"
135
+ VOLATILE_TABLE_NAME = 'Table Name'
136
+ REGULAR_TABLE_NAME = 'TableName'
137
+
138
+
139
+ class SQLPattern(Enum):
140
+ SQLMR = re.compile(r"SELECT \* FROM .*\((\s*.*)*\) as .*", re.IGNORECASE)
141
+ DRIVER_FUNC_SQLMR = re.compile(r".*OUT\s+TABLE.*", re.IGNORECASE)
142
+ SQLMR_REFERENCE_NODE = re.compile("reference:.*:.*", re.IGNORECASE)
143
+
144
+
145
+ class FunctionArgumentMapperConstants(Enum):
146
+ # Mapper related
147
+ SQL_TO_TDML = "sql_to_tdml"
148
+ TDML_TO_SQL = "tdml_to_sql"
149
+ ALTERNATE_TO = "alternate_to"
150
+ TDML_NAME = "tdml_name"
151
+ TDML_TYPE = "tdml_type"
152
+ USED_IN_SEQUENCE_INPUT_BY = "used_in_sequence_by"
153
+ USED_IN_FORMULA = "used_in_formula"
154
+ INPUTS = "inputs"
155
+ OUTPUTS = "outputs"
156
+ ARGUMENTS = "arguments"
157
+ DEPENDENT_ATTR = "dependent"
158
+ INDEPENDENT_ATTR = "independent"
159
+ TDML_FORMULA_NAME = "formula"
160
+ DEFAULT_OUTPUT = "__default_output__"
161
+ DEFAULT_OUTPUT_TDML_NAME_SINGLE = "result"
162
+ DEFAULT_OUTPUT_TDML_NAME_MULTIPLE = "output"
163
+
164
+ # JSON related
165
+ ALLOWS_LISTS = "allowsLists"
166
+ DATATYPE = "datatype"
167
+ BOOL_TYPE = "BOOLEAN"
168
+ INT_TYPE = ["INTEGER", "LONG"]
169
+ FLOAT_TYPE = ["DOUBLE", "DOUBLE PRECISION", "FLOAT"]
170
+ INPUT_TABLES = "input_tables"
171
+ OUTPUT_TABLES = "output_tables"
172
+ ARGUMENT_CLAUSES = "argument_clauses"
173
+ R_NAME = "rName"
174
+ NAME = "name"
175
+ FUNCTION_TDML_NAME = "function_tdml_name"
176
+ R_FOMULA_USAGE = "rFormulaUsage"
177
+ R_ORDER_NUM = "rOrderNum"
178
+ TDML_SEQUENCE_COLUMN_NAME = "sequence_column"
179
+
180
+
181
+ class ModelCatalogingConstants(Enum):
182
+ MODEL_CATALOG_DB = "TD_ModelCataloging"
183
+ MODEL_ENGINE_ADVSQL = "Advanced SQL Engine"
184
+
185
+ # ModelCataloging Direct Views
186
+ MODELS = "ModelsV"
187
+
188
+ # ModelCataloging Derived Views
189
+ MODELSX = "ModelsVX"
190
+
191
+ # Columns names used for Filter
192
+ CREATED_BY = "CreatedBy"
193
+
194
+ # Expected Prediction Types
195
+ PREDICTION_TYPE_CLASSIFICATION = 'CLASSIFICATION'
196
+ PREDICTION_TYPE_REGRESSION = 'REGRESSION'
197
+ PREDICTION_TYPE_CLUSTERING = 'CLUSTERING'
198
+ PREDICTION_TYPE_OTHER = 'OTHER'
199
+
200
+ # License parameters
201
+ LICENSE_SOURCE = ['string', 'file', 'column']
202
+
203
+
204
+ class CopyToConstants(Enum):
205
+ DBAPI_BATCHSIZE = 16383
206
+
207
+
208
+ class PTITableConstants(Enum):
209
+ PATTERN_TIMEZERO_DATE = r"^DATE\s+'(.*)'$"
210
+ TD_SEQNO = 'TD_SEQNO'
211
+ TD_TIMECODE = 'TD_TIMECODE'
212
+ TD_TIMEBUCKET = 'TD_TIMEBUCKET'
213
+ TSCOLTYPE_TIMEBUCKET = 'TB'
214
+ TSCOLTYPE_TIMECODE = 'TC'
215
+ VALID_TIMEBUCKET_DURATIONS_FORMAL = ['CAL_YEARS', 'CAL_MONTHS', 'CAL_DAYS', 'WEEKS', 'DAYS', 'HOURS', 'MINUTES',
216
+ 'SECONDS', 'MILLISECONDS', 'MICROSECONDS']
217
+ VALID_TIMEBUCKET_DURATIONS_SHORTHAND = ['cy', 'cyear', 'cyears',
218
+ 'cm', 'cmonth', 'cmonths',
219
+ 'cd', 'cday', 'cdays',
220
+ 'w', 'week', 'weeks',
221
+ 'd', 'day', 'days',
222
+ 'h', 'hr', 'hrs', 'hour', 'hours',
223
+ 'm', 'mins', 'minute', 'minutes',
224
+ 's', 'sec', 'secs', 'second', 'seconds',
225
+ 'ms', 'msec', 'msecs', 'millisecond', 'milliseconds',
226
+ 'us', 'usec', 'usecs', 'microsecond', 'microseconds']
227
+ PATTERN_TIMEBUCKET_DURATION_SHORT = "^([0-9]+){}$"
228
+ PATTERN_TIMEBUCKET_DURATION_FORMAL = r"^{}\(([0-9]+)\)$"
229
+ VALID_TIMECODE_DATATYPES = [TIMESTAMP, DATE]
230
+ VALID_SEQUENCE_COL_DATATYPES = [INTEGER]
231
+ TIMEBUCKET_DURATION_FORMAT_MAPPER = {'cy': 'CAL_YEARS({})',
232
+ 'cyear': 'CAL_YEARS({})',
233
+ 'cyears': 'CAL_YEARS({})',
234
+ 'cm': 'CAL_MONTHS({})',
235
+ 'cmonth': 'CAL_MONTHS({})',
236
+ 'cmonths': 'CAL_MONTHS({})',
237
+ 'cd': 'CAL_DAYS({})',
238
+ 'cday': 'CAL_DAYS({})',
239
+ 'cdays': 'CAL_DAYS({})',
240
+ 'w': 'WEEKS({})',
241
+ 'week': 'WEEKS({})',
242
+ 'weeks': 'WEEKS({})',
243
+ 'd': 'DAYS({})',
244
+ 'day': 'DAYS({})',
245
+ 'days': 'DAYS({})',
246
+ 'h': 'HOURS({})',
247
+ 'hr': 'HOURS({})',
248
+ 'hrs': 'HOURS({})',
249
+ 'hour': 'HOURS({})',
250
+ 'hours': 'HOURS({})',
251
+ 'm': 'MINUTES({})',
252
+ 'mins': 'MINUTES({})',
253
+ 'minute': 'MINUTES({})',
254
+ 'minutes': 'MINUTES({})',
255
+ 's': 'SECONDS({})',
256
+ 'sec': 'SECONDS({})',
257
+ 'secs': 'SECONDS({})',
258
+ 'second': 'SECONDS({})',
259
+ 'seconds': 'SECONDS({})',
260
+ 'ms': 'MILLISECONDS({})',
261
+ 'msec': 'MILLISECONDS({})',
262
+ 'msecs': 'MILLISECONDS({})',
263
+ 'millisecond': 'MILLISECONDS({})',
264
+ 'milliseconds': 'MILLISECONDS({})',
265
+ 'us': 'MICROSECONDS({})',
266
+ 'usec': 'MICROSECONDS({})',
267
+ 'usecs': 'MICROSECONDS({})',
268
+ 'microsecond': 'MICROSECONDS({})',
269
+ 'microseconds': 'MICROSECONDS({})'}
270
+
271
+
272
+ class GeospatialConstants(Enum):
273
+ """ Holds all Geospatial functionality specific constants. """
274
+
275
+ # This dictionary maps teradataml name of the Geospatial function to
276
+ # SQL function name.
277
+ # This dictionary contains entries for the functions which are
278
+ # exposed as "Property" of teradataml GeoDataFrame or
279
+ # teradataml GeoDataFrameColumn.
280
+ PROPERTY_TO_NO_ARG_SQL_FUNCTION_NAME = {
281
+ ## *** ST_Geometry Methods *** ##
282
+ "boundary": lambda x: "ST_Boundary",
283
+ "centroid": lambda x: "ST_Centroid",
284
+ "convex_hull": lambda x: "ST_ConvexHull",
285
+ "coord_dim": lambda x: "ST_CoordDim",
286
+ "dimension": lambda x: "ST_Dimension",
287
+ "geom_type": lambda x: "ST_GeometryType",
288
+ "is_3D": lambda x: "ST_Is3D",
289
+ "is_empty": lambda x: "ST_IsEmpty",
290
+ "is_simple": lambda x: "ST_IsSimple",
291
+ "is_valid": lambda x: "ST_IsValid",
292
+ "max_x": lambda x: "ST_MaxX" if isinstance(x, GEOMETRY) else "XMax",
293
+ "max_y": lambda x: "ST_MaxY" if isinstance(x, GEOMETRY) else "YMax",
294
+ "max_z": lambda x: "ST_MaxZ" if isinstance(x, GEOMETRY) else "ZMax",
295
+ "min_x": lambda x: "ST_MinX" if isinstance(x, GEOMETRY) else "XMin",
296
+ "min_y": lambda x: "ST_MinY" if isinstance(x, GEOMETRY) else "YMin",
297
+ "min_z": lambda x: "ST_MinZ" if isinstance(x, GEOMETRY) else "ZMin",
298
+ "srid": lambda x: "ST_SRID",
299
+
300
+ ## *** Geometry Type ST_Point Methods *** ##
301
+ "x": lambda x: "ST_X",
302
+ "y": lambda x: "ST_Y",
303
+ "z": lambda x: "ST_Z",
304
+
305
+ ## *** Geometry Type ST_LineString Methods *** ##
306
+ "is_closed_3D": lambda x: "ST_3DIsClosed",
307
+ "is_closed": lambda x: "ST_IsClosed",
308
+ "is_ring": lambda x: "ST_IsRing",
309
+
310
+ ## *** Geometry Type ST_Polygon Methods *** ##
311
+ "area": lambda x: "ST_Area",
312
+ "exterior": lambda x: "ST_ExteriorRing",
313
+ "perimeter": lambda x: "ST_Perimeter"
314
+ }
315
+
316
+ # This dictionary maps teradataml name of the Geospatial function to
317
+ # SQL function name.
318
+ # This dictionary contains entries for the functions which are
319
+ # exposed as "Methods" of teradataml GeoDataFrame or
320
+ # teradataml GeoDataFrameColumn, but does not accept any argument.
321
+ METHOD_TO_NO_ARG_SQL_FUNCTION_NAME = {
322
+ ## *** ST_Geometry Methods *** ##
323
+ "mbb": lambda x: "MBB",
324
+ "to_binary": lambda x: "ST_AsBinary",
325
+ "to_text": lambda x: "ST_AsText",
326
+ "envelope": lambda x: "ST_Envelope",
327
+ "mbr": lambda x: "ST_MBR",
328
+
329
+ ## *** Geometry Type ST_LineString Methods *** ##
330
+ "length_3D": lambda x: "ST_3DLength",
331
+ "end_point": lambda x: "ST_EndPoint",
332
+ "length": lambda x: "ST_Length",
333
+ "num_points": lambda x: "ST_NumPoints",
334
+ "start_point": lambda x: "ST_StartPoint",
335
+
336
+ ## *** Geometry Type ST_Polygon Methods *** ##
337
+ "num_interior_ring": lambda x: "ST_NumInteriorRing",
338
+ "point_on_surface": lambda x: "ST_PointOnSurface",
339
+
340
+ ## *** Geometry Type ST_GeomCollection Methods *** ##
341
+ "num_geometry": lambda x: "ST_NumGeometries",
342
+
343
+ ## *** Geometry Type ST_Geomsequence Methods *** ##
344
+ "get_final_timestamp": lambda x: "GetFinalT",
345
+ "get_init_timestamp": lambda x: "GetInitT",
346
+ "get_user_field_count": lambda x: "GetUserFldCount"
347
+ }
348
+
349
+ # This dictionary maps teradataml name of the Geospatial function to
350
+ # SQL function name.
351
+ # This dictionary contains entries for the functions which are
352
+ # exposed as "Methods" of teradataml GeoDataFrame or
353
+ # teradataml GeoDataFrameColumn that accepts argument(s).
354
+ METHOD_TO_ARG_ACCEPTING_SQL_FUNCTION_NAME = {
355
+ ## *** Minimum Bounding Type Methods *** ##
356
+ "intersects": lambda x: "ST_Intersects" if isinstance(x, GEOMETRY) else "Intersects",
357
+
358
+ ## *** ST_Geometry Methods *** ##
359
+ "buffer": lambda x: "ST_Buffer",
360
+ "contains": lambda x: "ST_Contains",
361
+ "crosses": lambda x: "ST_Crosses",
362
+ "difference": lambda x: "ST_Difference", # M
363
+ "disjoint": lambda x: "ST_Disjoint",
364
+ "distance": lambda x: "ST_Distance", # M
365
+ "distance_3D": lambda x: "ST_3DDistance", # M
366
+ "geom_equals": lambda x: "ST_Equals",
367
+ "intersection": lambda x: "ST_Intersection",
368
+ #"intersect": lambda x: "ST_Intersect", # M
369
+ "make_2D": lambda x: "Make_2D",
370
+ "overlaps": lambda x: "ST_Overlaps",
371
+ "relates": lambda x: "ST_Relate",
372
+ "simplify": lambda x: "SimplifyPreserveTopology",
373
+ "sym_difference": lambda x: "ST_SymDifference", # M
374
+ "touches": lambda x: "ST_Touches",
375
+ "transform": lambda x: "ST_Transform",
376
+ "union": lambda x: "ST_Union",
377
+ "within": lambda x: "ST_Within",
378
+ "wkb_geom_to_sql": lambda x: "ST_WKBToSQL", # M
379
+ "wkt_geom_to_sql": lambda x: "ST_WKTToSQL", # M
380
+ "set_srid": lambda x: "ST_SRID",
381
+
382
+ ## *** Geometry Type ST_Point Methods *** ##
383
+ "set_x": lambda x: "ST_X",
384
+ "set_y": lambda x: "ST_Y",
385
+ "set_z": lambda x: "ST_Z",
386
+ "spherical_buffer": lambda x: "ST_SphericalBufferMBR", # M
387
+ "spherical_distance": lambda x: "ST_SphericalDistance", # M
388
+ "spheroidal_buffer": lambda x: "ST_SpheroidalBufferMBR", # M
389
+ "spheroidal_distance": lambda x: "ST_SpheroidalDistance", # M
390
+
391
+ ## *** Geometry Type ST_LineString Methods *** ##
392
+ "line_interpolate_point": lambda x: "ST_Line_Interpolate_Point",
393
+ "point": lambda x: "ST_PointN",
394
+
395
+ ## *** Geometry Type ST_Polygon Methods *** ##
396
+ "set_exterior": lambda x: "ST_ExteriorRing",
397
+ "interiors": lambda x: "ST_InteriorRingN",
398
+
399
+ ## *** Geometry Type ST_GeomCollection Methods *** ##
400
+ "geom_component": lambda x: "ST_GeometryN",
401
+
402
+ ## *** Geometry Type ST_Geomsequence Methods *** ##
403
+ "clip": lambda x: "Clip",
404
+ "get_user_field": lambda x: "GetUserFld",
405
+ "point_heading": lambda x: "HeadingN",
406
+ "get_link": lambda x: "LinkID",
407
+ "set_link": lambda x: "LinkID",
408
+ "speed": lambda x: "SpeedN",
409
+
410
+ ## *** Filtering Functions and Methods *** ##
411
+ "intersects_mbb": lambda x: "Intersects_MBB",
412
+ "mbb_filter": lambda x: "MBB_Filter",
413
+ "mbr_filter": lambda x: "MBR_Filter",
414
+ "within_mbb": lambda x: "Within_MBB"
415
+ }
416
+
417
+
418
+ class OutputStyle(Enum):
419
+ OUTPUT_TABLE = 'TABLE'
420
+ OUTPUT_VIEW = 'VIEW'
421
+
422
+
423
+ class TableOperatorConstants(Enum):
424
+ # Template of the intermediate script that will be generated.
425
+ MAP_TEMPLATE = "dataframe_map.template"
426
+ # Template of the intermediate script that will be generated.
427
+ APPLY_TEMPLATE = "dataframe_apply.template"
428
+ # In-DB execution mode.
429
+ INDB_EXEC = "IN-DB"
430
+ # Local execution mode.
431
+ LOCAL_EXEC = "LOCAL"
432
+ # Remote user environment mode.
433
+ REMOTE_EXEC = "REMOTE"
434
+
435
+ EXEC_MODE = [LOCAL_EXEC, INDB_EXEC, REMOTE_EXEC]
436
+ # map_row operation.
437
+ MAP_ROW_OP = "map_row"
438
+ # map_partition operation.
439
+ MAP_PARTITION_OP = "map_partition"
440
+ # apply operation.
441
+ APPLY_OP = "apply"
442
+ # Template of the script_executor that will be used to generate the temporary script_executor file.
443
+ SCRIPT_TEMPLATE = "script_executor.template"
444
+ # Log Type.
445
+ SCRIPT_LOG = "SCRIPT"
446
+ APPLY_LOG = "APPLY"
447
+ LOG_TYPE = [SCRIPT_LOG, APPLY_LOG]
448
+ # Query for viewing last n lines of script log.
449
+ SCRIPT_LOG_QUERY = "SELECT * FROM SCRIPT (SCRIPT_COMMAND " \
450
+ "('tail -n {} /var/opt/teradata/tdtemp/uiflib/scriptlog') " \
451
+ "RETURNS ('scriptlog VARCHAR({})') )"
452
+
453
+ BYOM_LOG = "BYOM"
454
+ # Query for viewing last n lines of script log.
455
+ BYOM_LOG_QUERY = "SELECT * FROM SCRIPT (SCRIPT_COMMAND " \
456
+ "('tail -n {} /var/opt/teradata/byom/byom.log') " \
457
+ "RETURNS ('byomlog VARCHAR({})'))"
458
+
459
+ APPLY_LOG_QUERY = "SELECT LogDateTime, LogMessage, Level FROM syslib.LoggingOp({} {} {}) as dt"
460
+
461
+ # Check if Python interpretor and add-ons are installed or not.
462
+ # Location of In-DB packages is indicated by configure.indb_install_location.
463
+ CHECK_PYTHON_INSTALLED = """SELECT distinct * FROM SCRIPT(
464
+ ON (select 1) PARTITION BY ANY
465
+ SCRIPT_COMMAND('{}/bin/pip3 --version')
466
+ returns('package VARCHAR(256)'))
467
+ """
468
+
469
+ # Script Query to get Python packages and corresponding versions.
470
+ # Location of In-DB packages is indicated by configure.indb_install_location.
471
+ partial_version_query = "SELECT distinct * FROM SCRIPT( ON (select 1) " \
472
+ "PARTITION BY ANY SCRIPT_COMMAND('{0}/bin/pip3 freeze | "
473
+
474
+ PACKAGE_VERSION_QUERY = partial_version_query + "{1}awk -F ''=='' " \
475
+ "''{{print $1, $2}}''') " \
476
+ "delimiter(' ') " \
477
+ "returns('package VARCHAR({2}), " \
478
+ "version VARCHAR({2})'))"
479
+
480
+ class ValibConstants(Enum):
481
+ # A dictionary that maps teradataml name of the exposed VALIB function name
482
+ # to Vantage VALIB SQL function name.
483
+ TERADATAML_VALIB_SQL_FUNCTION_NAME_MAP = {
484
+ "AdaptiveHistogram": "AdaptiveHistogram",
485
+ "Explore": "DataExplorer",
486
+ "Frequency": "Frequency",
487
+ "Histogram": "Histogram",
488
+ "Overlap": "Overlap",
489
+ "Statistics": "Statistics",
490
+ "TextAnalyzer": "TextFieldAnalyzer",
491
+ "Values": "Values",
492
+ "Association": "Association",
493
+ "KMeans": "Kmeans",
494
+ "KMeansPredict": "KmeansScore",
495
+ "DecisionTree": "DecisionTree",
496
+ "DecisionTreePredict": "DecisionTreeScore",
497
+ "DecisionTreeEvaluator": "DecisionTreeScore",
498
+ "Matrix": "Matrix",
499
+ "LinReg": "Linear",
500
+ "LinRegPredict": "LinearScore",
501
+ "LinRegEvaluator": "LinearScore",
502
+ "LogReg": "Logistic",
503
+ "LogRegPredict": "LogisticScore",
504
+ "LogRegEvaluator": "LogisticScore",
505
+ "PCA": "Factor",
506
+ "PCAPredict": "FactorScore",
507
+ "PCAEvaluator": "FactorScore",
508
+ "ParametricTest": "ParametricTest",
509
+ "BinomialTest": "BinomialTest",
510
+ "KSTest": "KSTest",
511
+ "ChiSquareTest": "ChiSquareTest",
512
+ "RankTest": "RankTest",
513
+ "BinCode": "vartran",
514
+ "Derive": "vartran",
515
+ "DesignCode": "vartran",
516
+ "Fillna": "vartran",
517
+ "Recode": "vartran",
518
+ "Rescale": "vartran",
519
+ "Sigmoid": "vartran",
520
+ "ZScore": "vartran",
521
+ "Transform": "vartran",
522
+ "XmlToHtmlReport": "report"
523
+ }
524
+
525
+ # A dictionary that maps Vantage VALIB SQL function name to a dictionary
526
+ # mapping a teradataml name of input argument to another dictionary containing
527
+ # Vantage SQL equivalent arguments, specified with "database_arg" and
528
+ # "table_arg" keys.
529
+ # In teradataml, input argument is a DataFrame, which contains both database and table name
530
+ # information. We shall just map that to Vantage SQL input table arguments.
531
+ # ---------------------------------------------------------------------------------
532
+ # NOTE:
533
+ # Add an entry in this map,
534
+ # 1. If and only if VALIB function accepts multiple input arguments.
535
+ # 2. Default argument for input is "data". Don't add an entry for it.
536
+ # 3. Add entry for only other input arguments.
537
+ # ---------------------------------------------------------------------------------
538
+ VALIB_FUNCTION_MULTIINPUT_ARGUMENT_MAP = {
539
+ "ASSOCIATION": {
540
+ "description_data": {
541
+ "database_arg": "descriptiondatabase",
542
+ "table_arg": "descriptiontable"
543
+ },
544
+ "hierarchy_data": {
545
+ "database_arg": "hierarchydatabase",
546
+ "table_arg": "hierarchytable"
547
+ },
548
+ "left_lookup_data": {
549
+ "database_arg": "leftlookupdatabase",
550
+ "table_arg": "leftlookuptable"
551
+ },
552
+ "right_lookup_data": {
553
+ "database_arg": "rightlookupdatabase",
554
+ "table_arg": "rightlookuptable"
555
+ },
556
+ "reduced_data": {
557
+ "database_arg": "reducedinputdatabase",
558
+ "table_arg": "reducedinputtable"
559
+ }
560
+ },
561
+
562
+ "KMEANSSCORE": {
563
+ "model": {
564
+ "database_arg": "modeldatabase",
565
+ "table_arg": "modeltablename"
566
+ }
567
+ },
568
+
569
+ "DECISIONTREESCORE": {
570
+ "model": {
571
+ "database_arg": "modeldatabase",
572
+ "table_arg": "modeltablename"
573
+ }
574
+ },
575
+
576
+ "LINEARSCORE": {
577
+ "model": {
578
+ "database_arg": "modeldatabase",
579
+ "table_arg": "modeltablename"
580
+ }
581
+ },
582
+
583
+ "LOGISTIC": {
584
+ "matrix_data": {
585
+ "database_arg": "matrixdatabase",
586
+ "table_arg": "matrixtablename"
587
+ }
588
+ },
589
+
590
+ "LOGISTICSCORE": {
591
+ "model": {
592
+ "database_arg": "modeldatabase",
593
+ "table_arg": "modeltablename"
594
+ }
595
+ },
596
+
597
+ "FACTORSCORE": {
598
+ "model": {
599
+ "database_arg": "modeldatabase",
600
+ "table_arg": "modeltablename"
601
+ }
602
+ }
603
+ }
604
+
605
+ # A dictionary that maps Vantage VALIB SQL function name to a dictionary of SQL output
606
+ # arguments of the function.
607
+ # This values dictionary will map:
608
+ # 1. "db" key to SQL output argument that accepts database name where output
609
+ # table will be created.
610
+ # 2. "tbls" key to a list of SQL output argument that accepts table name.
611
+ # 3. "mandatory_output_extensions" key to the dictionary of extensions to teradataml
612
+ # output argument names. The tables in this extension mapper are generated
613
+ # irrespective of whether the function is scoring/evaluator/any other function.
614
+ # 4. "evaluator_output_extensions" key to the dictionary of extensions to teradataml
615
+ # output argument names. The tables in this extension mapper are generated
616
+ # only when the function is evaluator function. When these tables are generated,
617
+ # tables that do not have extensions will not be generated (feature of evaluator
618
+ # functions.
619
+ # In teradataml, output arguments are not accepted from user, but are created and used
620
+ # internally.
621
+ # ---------------------------------------------------------------------------------
622
+ # NOTES:
623
+ # 1. Add an entry in this map, if VALIB function
624
+ # a. Generates multiple output tables OR
625
+ # b. Output argument names are not same as default output argument names:
626
+ # 'outputdatabase' and 'outputtablename'.
627
+ # 2. No need to add an entry for default argument for output.
628
+ # ---------------------------------------------------------------------------------
629
+ VALIB_FUNCTION_OUTPUT_ARGUMENT_MAP = {
630
+ "DATAEXPLORER": {
631
+ "db": "outputdatabase",
632
+ "tbls": ["frequencyoutputtablename",
633
+ "histogramoutputtablename",
634
+ "statisticsoutputtablename",
635
+ "valuesoutputtablename"]
636
+ },
637
+
638
+ "LINEAR": {
639
+ "db": "outputdatabase",
640
+ "tbls": "outputtablename",
641
+ "mandatory_output_extensions": {"_rpt": "statistical_measures",
642
+ "_txt": "xml_reports"}
643
+ },
644
+
645
+ "LINEARSCORE": {
646
+ "db": "outputdatabase",
647
+ "tbls": "outputtablename",
648
+ "evaluator_output_extensions": {"_txt": "result"}
649
+ },
650
+
651
+ "LOGISTIC": {
652
+ "db": "outputdatabase",
653
+ "tbls": "outputtablename",
654
+ "mandatory_output_extensions": {"_rpt": "statistical_measures",
655
+ "_txt": "xml_reports"}
656
+ },
657
+
658
+ "LOGISTICSCORE": {
659
+ "db": "outputdatabase",
660
+ "tbls": "outputtablename",
661
+ "evaluator_output_extensions": {"_txt": "result"}
662
+ },
663
+
664
+ "DECISIONTREESCORE": {
665
+ "db": "outputdatabase",
666
+ "tbls": "outputtablename",
667
+ "mandatory_output_extensions": {"_1": "profile_result_1",
668
+ "_2": "profile_result_2"},
669
+ "evaluator_output_extensions": {"_rpt": "result"}
670
+ },
671
+
672
+ "FACTORSCORE": {
673
+ "db": "outputdatabase",
674
+ "tbls": "outputtablename",
675
+ "evaluator_output_extensions": {"_rpt": "result"}
676
+ },
677
+
678
+ "TEXTFIELDANALYZER": {
679
+ "db": "outputdatabase",
680
+ "tbls": "outputtablename",
681
+ "mandatory_output_extensions": {"_rpt": "data_type_matrix"}
682
+ }
683
+ }
684
+
685
+ # A dictionary that maps Vantage VALIB SQL function name to a dictionary mapping
686
+ # SQL Output table argument name to teradataml exposed output argument name.
687
+ # ---------------------------------------------------------------------------------
688
+ # NOTES:
689
+ # 1. Add an entry in this map, if VALIB function generates multiple output tables.
690
+ # 2. No need to add an entry for default argument for output.
691
+ # 3. Default exposed output argument name is "result".
692
+ # ---------------------------------------------------------------------------------
693
+ TERADATAML_VALIB_MULTIOUTPUT_ATTR_MAP = {
694
+ "DATAEXPLORER": {
695
+ "frequencyoutputtablename": "frequency_output",
696
+ "histogramoutputtablename": "histogram_output",
697
+ "statisticsoutputtablename": "statistics_output",
698
+ "valuesoutputtablename": "values_output"
699
+ },
700
+
701
+ "LINEAR": {
702
+ "outputtablename": "model",
703
+ "_rpt": "statistical_measures",
704
+ "_txt": "xml_reports"
705
+ },
706
+
707
+ "LOGISTIC": {
708
+ "outputtablename": "model",
709
+ "_rpt": "statistical_measures",
710
+ "_txt": "xml_reports"
711
+ },
712
+
713
+ "DECISIONTREESCORE": {
714
+ "outputtablename": "result",
715
+ "_1": "profile_result_1",
716
+ "_2": "profile_result_2"
717
+ },
718
+
719
+ "TEXTFIELDANALYZER": {
720
+ "outputtablename": "result",
721
+ "_rpt": "data_type_matrix"
722
+ }
723
+ }
724
+
725
+ # A dictionary that maps Vantage VALIB Teradataml function name to a dictionary mapping
726
+ # SQL Output table argument name to teradataml exposed output argument name.
727
+ # ---------------------------------------------------------------------------------
728
+ # NOTES:
729
+ # 1. Add an entry in this map, if VALIB evaluator function generates tables with
730
+ # extension(s) or multiple output tables.
731
+ # 2. This mapper is specific to Evaluator functions. "__multioutput_attr_map" of VALIB
732
+ # object is replaced with this mapper if the function is evaluator function.
733
+ # ---------------------------------------------------------------------------------
734
+ TERDATAML_EVALUATOR_OUTPUT_ATTR_MAP = {
735
+ "DecisionTreeEvaluator": {
736
+ "_rpt": "result",
737
+ "_1": "profile_result_1",
738
+ "_2": "profile_result_2"
739
+ },
740
+
741
+ "LinRegEvaluator": {
742
+ "_txt": "result"
743
+ },
744
+
745
+ "LogRegEvaluator": {
746
+ "_txt": "result"
747
+ },
748
+
749
+ "PCAEvaluator": {
750
+ "_rpt": "result"
751
+ }
752
+ }
753
+
754
+ # A dictionary that maps Vantage VALIB SQL function name to:
755
+ # 1. A dictionary mapping teradataml exposed name of the argument to SQL function
756
+ # argument name. OR
757
+ # 2. Just a list of SQL function argument names supported by the function.
758
+ # ---------------------------------------------------------------------------------
759
+ # NOTES:
760
+ # 1. Add an entry in this map, if argument names in teradataml are different from
761
+ # SQL function argument names.
762
+ # 2. No need to add an entry if all argument names are same as that of the SQL Function
763
+ # argument.
764
+ # 3. The argument "scoring_method" is added internally based on the teradataml function
765
+ # name.
766
+ # ---------------------------------------------------------------------------------
767
+ TERADATAML_VALIB_FUNCTION_ARGUMENT_MAP = {
768
+ # 'overwrite' argument is not needed, as we will generate table names internally.
769
+ "ADAPTIVEHISTOGRAM": {
770
+ "columns": "columns",
771
+ "bins": "bins",
772
+ "exclude_columns": "columnstoexclude",
773
+ "spike_threshold": "spikethreshold",
774
+ "subdivision_method": "subdivisionmethod",
775
+ "subdivision_threshold": "subdivisionthreshold",
776
+ "filter": "where",
777
+ "gen_sql_only": "gensqlonly"
778
+ },
779
+
780
+ "DATAEXPLORER": {
781
+ "columns": "columns",
782
+ "bins": "bins",
783
+ "bin_style": "binstyle",
784
+ "max_comb_values": "maxnumcombvalues",
785
+ "max_unique_char_values": "maxuniquecharvalues",
786
+ "max_unique_num_values": "maxuniquenumvalues",
787
+ "min_comb_rows": "minrowsforcomb",
788
+ "restrict_freq": "restrictedfreqproc",
789
+ "restrict_threshold": "restrictedthreshold",
790
+ "statistical_method": "statisticalmethod",
791
+ "stats_options": "statsoptions",
792
+ "distinct": "uniques",
793
+ "filter": "where",
794
+ "gen_sql": "gensql"
795
+ },
796
+
797
+ "FREQUENCY": {
798
+ "columns": "columns",
799
+ "exclude_columns": "columnstoexclude",
800
+ "cumulative_option": "cumulativeoption",
801
+ "agg_filter": "having",
802
+ "min_percentage": "minimumpercentage",
803
+ "pairwise_columns": "pairwisecolumns",
804
+ "stats_columns": "statisticscolumns",
805
+ "style": "style",
806
+ "top_n": "topvalues",
807
+ "filter": "where",
808
+ "gen_sql_only": "gensqlonly"
809
+ },
810
+
811
+ "HISTOGRAM": {
812
+ "columns": "columns",
813
+ "bins": "bins",
814
+ "bins_with_boundaries": "binwithminmax",
815
+ "boundaries": "boundaries",
816
+ "quantiles": "quantiles",
817
+ "widths": "widths",
818
+ "exclude_columns": "columnstoexclude",
819
+ "overlay_columns": "overlaycolumns",
820
+ "stats_columns": "statisticscolumns",
821
+ "hist_style": "style",
822
+ "filter": "where",
823
+ "gen_sql_only": "gensqlonly"
824
+ },
825
+
826
+ "STATISTICS": {
827
+ "columns": "columns",
828
+ "exclude_columns": "columnstoexclude",
829
+ "extended_options": "extendedoptions",
830
+ "group_columns": "groupby",
831
+ "statistical_method": "statisticalmethod",
832
+ "stats_options": "statsoptions",
833
+ "filter": "where",
834
+ "gen_sql_only": "gensqlonly"
835
+ },
836
+
837
+ "TEXTFIELDANALYZER": {
838
+ "columns": "columns",
839
+ "exclude_columns": "columnstoexclude",
840
+ "analyze_numerics": "extendednumericanalysis",
841
+ "analyze_unicode": "extendedunicodeanalysis",
842
+ "gen_sql_only": "gensqlonly"
843
+ },
844
+
845
+ "VALUES": {
846
+ "columns": "columns",
847
+ "exclude_columns": "columnstoexclude",
848
+ "group_columns": "groupby",
849
+ "distinct": "uniques",
850
+ "filter": "where",
851
+ "gen_sql_only": "gensqlonly"
852
+ },
853
+
854
+ "ASSOCIATION": {
855
+ "group_column": "groupcolumn",
856
+ "item_column": "itemcolumn",
857
+ "combinations": "combinations",
858
+ "description_identifier": "descriptionidentifier",
859
+ "description_column": "descriptioncolumn",
860
+ "group_count": "groupcount",
861
+ "low_level_column": "hierarchyitemcolumn",
862
+ "high_level_column": "hierarchycolumn",
863
+ "left_lookup_column": "leftlookupcolumn",
864
+ "right_lookup_column": "rightlookupcolumn",
865
+ "min_confidence": "minimumconfidence",
866
+ "min_lift": "minimumlift",
867
+ "min_support": "minimumsupport",
868
+ "min_zscore": "minimumzscore",
869
+ "order_prob": "orderingprobability",
870
+ "process_type": "processtype",
871
+ "relaxed_order": "relaxedordering",
872
+ "sequence_column": "sequencecolumn",
873
+ "filter": "where",
874
+ "no_support_results": "dropsupporttables",
875
+ "support_result_prefix": "resulttableprefix",
876
+ "gen_sql_only": "gensqlonly"
877
+ },
878
+
879
+ "KMEANS": {
880
+ "columns": "columns",
881
+ "centers": "kvalue",
882
+ "exclude_columns": "columnstoexclude",
883
+ "continuation": "continuation",
884
+ "max_iter": "iterations",
885
+ "operator_database": "operatordatabase",
886
+ "threshold": "threshold"
887
+ },
888
+
889
+ "KMEANSSCORE": {
890
+ "index_columns": "index",
891
+ "cluster_column": "clustername",
892
+ "fallback": "fallback",
893
+ "operator_database": "operatordatabase",
894
+ "accumulate": "retain"
895
+ },
896
+
897
+ "DECISIONTREE": {
898
+ "columns": "columns",
899
+ "response_column": "dependent",
900
+ "algorithm": "algorithm",
901
+ "binning": "binning",
902
+ "exclude_columns": "columnstoexclude",
903
+ "max_depth": "max_depth",
904
+ "num_splits": "min_records",
905
+ "operator_database": "operatordatabase",
906
+ "pruning": "pruning"
907
+ },
908
+
909
+ "DECISIONTREESCORE": {
910
+ "include_confidence": "includeconfidence",
911
+ "index_columns": "index",
912
+ "response_column": "predicted",
913
+ "profile": "profiletables",
914
+ "accumulate": "retain",
915
+ "targeted_value": "targetedvalue",
916
+ "gen_sql_only": "gensqlonly"
917
+ },
918
+
919
+ "MATRIX": {
920
+ "columns": "columns",
921
+ "exclude_columns": "columnstoexclude",
922
+ "group_columns": "groupby",
923
+ "matrix_output": "matrixoutput",
924
+ "type": "matrixtype",
925
+ "handle_nulls": "nullhandling",
926
+ "filter": "where"
927
+ },
928
+
929
+ "LINEAR": {
930
+ "columns": "columns",
931
+ "response_column": "dependent",
932
+ "backward": "backward",
933
+ "backward_only": "backwardonly",
934
+ "exclude_columns": "columnstoexclude",
935
+ "cond_ind_threshold": "conditionindexthreshold",
936
+ "constant": "constant",
937
+ "entrance_criterion": "enter",
938
+ "forward": "forward",
939
+ "forward_only": "forwardonly",
940
+ "group_columns": "groupby",
941
+ "matrix_input": "matrixinput",
942
+ "near_dep_report": "neardependencyreport",
943
+ "remove_criterion": "remove",
944
+ "stats_output": "statstable",
945
+ "stepwise": "stepwise",
946
+ "use_fstat": "usefstat",
947
+ "use_pvalue": "usepvalue",
948
+ "variance_prop_threshold": "varianceproportionthreshold"
949
+ },
950
+
951
+ "LINEARSCORE": {
952
+ "index_columns": "index",
953
+ "response_column": "predicted",
954
+ "residual_column": "residual",
955
+ "accumulate": "retain",
956
+ "gen_sql_only": "gensqlonly"
957
+ },
958
+
959
+ "LOGISTIC": {
960
+ "columns": "columns",
961
+ "response_column": "dependent",
962
+ "backward": "backward",
963
+ "backward_only": "backwardonly",
964
+ "exclude_columns": "columnstoexclude",
965
+ "cond_ind_threshold": "conditionindexthreshold",
966
+ "constant": "constant",
967
+ "convergence": "convergence",
968
+ "entrance_criterion": "enter",
969
+ "forward": "forward",
970
+ "forward_only": "forwardonly",
971
+ "group_columns": "groupby",
972
+ "lift_output": "lifttable",
973
+ "max_iter": "maxiterations",
974
+ "mem_size": "memorysize",
975
+ "near_dep_report": "neardependencyreport",
976
+ "remove_criterion": "remove",
977
+ "response_value": "response",
978
+ "sample": "sample",
979
+ "stats_output": "statstable",
980
+ "stepwise": "stepwise",
981
+ "success_output": "successtable",
982
+ "start_threshold": "thresholdbegin",
983
+ "end_threshold": "thresholdend",
984
+ "increment_threshold": "thresholdincrement",
985
+ "threshold_output": "thresholdtable",
986
+ "variance_prop_threshold": "varianceproportionthreshold"
987
+ },
988
+
989
+ "LOGISTICSCORE": {
990
+ "estimate_column": "estimate",
991
+ "index_columns": "index",
992
+ "prob_column": "probability",
993
+ "accumulate": "retain",
994
+ "prob_threshold": "threshold",
995
+ "start_threshold": "thresholdbegin",
996
+ "end_threshold": "thresholdend",
997
+ "increment_threshold": "thresholdincrement",
998
+ "gen_sql_only": "gensqlonly"
999
+
1000
+ # The following 3 arguments three should not be present for LogRegPredict function
1001
+ # where as when the function is LogRegEvaluator, at least one of these should be
1002
+ # present. By default (i.e., when these are not provided in LogRegEvaluator SQL), the
1003
+ # function takes 'True' for these arguments. So, by commenting these we are providing
1004
+ # all three tables in XML that is generated by the LogRegEvaluator function.
1005
+ # "threshold_output": "thresholdtable",
1006
+ # "lift_output": "lifttable",
1007
+ # "success_output": "successtable"
1008
+ },
1009
+
1010
+ "FACTOR": {
1011
+ "columns": "columns",
1012
+ "exclude_columns": "columnstoexclude",
1013
+ "cond_ind_threshold": "conditionindexthreshold",
1014
+ "min_eigen": "eigenmin",
1015
+ "load_report": "factorloadingsreport",
1016
+ "vars_load_report": "factorvariablesloadingsreport",
1017
+ "vars_report": "factorvariablesreport",
1018
+ "gamma": "gamma",
1019
+ "group_columns": "groupby",
1020
+ "matrix_input": "matrixinput",
1021
+ "matrix_type": "matrixtype",
1022
+ "near_dep_report": "neardependencyreport",
1023
+ "rotation_type": "rotationtype",
1024
+ "load_threshold": "thresholdloading",
1025
+ "percent_threshold": "thresholdpercent",
1026
+ "variance_prop_threshold": "varianceproportionthreshold"
1027
+ },
1028
+
1029
+ "FACTORSCORE": {
1030
+ "index_columns": "index",
1031
+ "accumulate": "retain",
1032
+ "gen_sql_only": "gensqlonly"
1033
+ },
1034
+
1035
+ "PARAMETRICTEST": {
1036
+ "columns": "columns",
1037
+ "dependent_column": "columnofinterest",
1038
+ "equal_variance": "equalvariance",
1039
+ "fallback": "fallback",
1040
+ "first_column": "firstcolumn",
1041
+ "first_column_values": "firstcolumnvalues",
1042
+ "group_columns": "groupby",
1043
+ "allow_duplicates": "multiset",
1044
+ "paired": "paired",
1045
+ "second_column": "secondcolumn",
1046
+ "second_column_values": "secondcolumnvalues",
1047
+ "stats_database": "statsdatabase",
1048
+ "style": "teststyle",
1049
+ "probability_threshold": "thresholdprobability",
1050
+ "with_indicator": "withindicator",
1051
+ "gen_sql_only": "gensqlonly"
1052
+ },
1053
+
1054
+ "BINOMIALTEST": {
1055
+ "first_column": "firstcolumn",
1056
+ "binomial_prob": "binomialprobability",
1057
+ "exact_matches": "exactmatches",
1058
+ "fallback": "fallback",
1059
+ "group_columns": "groupby",
1060
+ "allow_duplicates": "multiset",
1061
+ "second_column": "secondcolumn",
1062
+ "single_tail": "singletail",
1063
+ "stats_database": "statsdatabase",
1064
+ "style": "teststyle",
1065
+ "probability_threshold": "thresholdprobability",
1066
+ "gen_sql_only": "gensqlonly"
1067
+ },
1068
+
1069
+ "KSTEST": {
1070
+ "columns": "columns",
1071
+ "dependent_column": "columnofinterest",
1072
+ "fallback": "fallback",
1073
+ "group_columns": "groupby",
1074
+ "allow_duplicates": "multiset",
1075
+ "stats_database": "statsdatabase",
1076
+ "style": "teststyle",
1077
+ "probability_threshold": "thresholdprobability",
1078
+ "gen_sql_only": "gensqlonly"
1079
+ },
1080
+
1081
+ "CHISQUARETEST": {
1082
+ "columns": "columns",
1083
+ "dependent_column": "columnofinterest",
1084
+ "fallback": "fallback",
1085
+ "first_columns": "firstcolumns",
1086
+ "group_columns": "groupby",
1087
+ "allow_duplicates": "multiset",
1088
+ "second_columns": "secondcolumns",
1089
+ "stats_database": "statsdatabase",
1090
+ "style": "teststyle",
1091
+ "probability_threshold": "thresholdprobability",
1092
+ "gen_sql_only": "gensqlonly"
1093
+ },
1094
+
1095
+ "RANKTEST": {
1096
+ "block_column": "blockcolumn",
1097
+ "columns": "columns",
1098
+ "dependent_column": "columnofinterest",
1099
+ "fallback": "fallback",
1100
+ "first_column": "firstcolumn",
1101
+ "group_columns": "groupby",
1102
+ "include_zero": "includezero",
1103
+ "independent": "independent",
1104
+ "allow_duplicates": "multiset",
1105
+ "second_column": "secondcolumn",
1106
+ "single_tail": "singletail",
1107
+ "stats_database": "statsdatabase",
1108
+ "style": "teststyle",
1109
+ "probability_threshold": "thresholdprobability",
1110
+ "treatment_column": "treatmentcolumn",
1111
+ "gen_sql_only": "gensqlonly"
1112
+ },
1113
+
1114
+ "VARTRAN": {
1115
+ "fallback": "fallback",
1116
+ "index_columns": "index",
1117
+ "unique_index": "indexunique",
1118
+ "key_columns": "keycolumns",
1119
+ "allow_duplicates": "multiset",
1120
+ "nopi": "noindex",
1121
+ "filter": "whereclause",
1122
+ "gen_sql_only": "gensqlonly"
1123
+ },
1124
+
1125
+ "REPORT": {
1126
+ "analysis_type": "analysistype",
1127
+ "filter": "where",
1128
+ "gen_sql_only": "gensqlonly"
1129
+ }
1130
+ }
1131
+
1132
+ # Arguments to ignore - These are the arguments, that are not processed currently.
1133
+ # TODO: Support can be added to these in later stages.
1134
+ IGNORE_ARGUMENTS = ["overwrite", "ouputstyle", "samplescoresize"]
1135
+
1136
+ # Output DataFrame default argument name.
1137
+ DEFAULT_OUTPUT_VAR = "result"
1138
+
1139
+ # Output DataFrame result list name.
1140
+ OUTPUT_DATAFRAME_RESULTS = "_valib_results"
1141
+
1142
+ # Scoring method SQL argument name and values.
1143
+ SCORING_METHOD_ARG_NAME = "scoringmethod"
1144
+ SCORING_METHOD_ARG_VALUE = {
1145
+ "default": "score",
1146
+ # TODO: Replace "scoreandevaluate" with "evaluate" because for FactorScore, using
1147
+ # scoringmethod as evaluate is producing result to the console and table is not
1148
+ # generated.
1149
+ "non-default": "scoreandevaluate"
1150
+ }
1151
+
1152
+ # Map between function category and corresponding list of function names.
1153
+ CATEGORY_VAL_FUNCS_MAP = {
1154
+ "Descriptive Statistics": ["AdaptiveHistogram", "Explore", "Frequency", "Histogram", "Overlap",
1155
+ "Statistics", "TextAnalyzer", "Values"],
1156
+ "Variable Transformation": ["BinCode", "Derive", "DesignCode", "Fillna", "Recode", "Rescale", "Retain",
1157
+ "Sigmoid", "Transform", "ZScore"],
1158
+ "Statistical Test": ["BinomialTest", "ChiSquareTest", "KSTest", "ParametricTest", "RankTest"],
1159
+ "Model Training": ["Association", "KMeans", "DecisionTree", "Matrix", "LinReg", "LogReg", "PCA"],
1160
+ "Model Scoring/Prediction": ["DecisionTreePredict", "DecisionTreeEvaluator", "KMeansPredict", "LinRegPredict",
1161
+ "LinRegEvaluator", "LogRegPredict", "LogRegEvaluator", "PCAPredict",
1162
+ "PCAEvaluator"],
1163
+ "Helper": ["XmlToHtmlReport"]}
1164
+
1165
+
1166
+ class SQLFunctionConstants(Enum):
1167
+ # Dictionary maps teradataml name of the Aggregate function to
1168
+ # SQL function name.
1169
+ AGGREGATE_FUNCTION_MAPPER = {"avg": "AVG",
1170
+ "corr": "CORR",
1171
+ "covar_pop": "COVAR_POP",
1172
+ "covar_samp": "COVAR_SAMP",
1173
+ "cume_dist": "CUME_DIST",
1174
+ "dense_rank": "DENSE_RANK",
1175
+ "first_value": "FIRST_VALUE",
1176
+ "last_value": "LAST_VALUE",
1177
+ "lag": "LAG",
1178
+ "lead": "LEAD",
1179
+ "percent_rank": "PERCENT_RANK",
1180
+ "percentile_disc": "PERCENTILE_DISC",
1181
+ "rank": "RANK",
1182
+ "regr_avgx": "REGR_AVGX",
1183
+ "regr_avgy": "REGR_AVGY",
1184
+ "regr_count": "REGR_COUNT",
1185
+ "regr_intercept": "REGR_INTERCEPT",
1186
+ "regr_r2": "REGR_R2",
1187
+ "regr_slope": "REGR_SLOPE",
1188
+ "regr_sxx": "REGR_SXX",
1189
+ "regr_sxy": "REGR_SXY",
1190
+ "regr_syy": "REGR_SYY",
1191
+ "row_number": "ROW_NUMBER",
1192
+ "csum": "CSUM",
1193
+ "msum": "MSUM",
1194
+ "mavg": "MAVG",
1195
+ "mdiff": "MDIFF",
1196
+ "mlinreg": "MLINREG",
1197
+ "quantile": "QUANTILE",
1198
+ "percentile": "PERCENTILE"
1199
+ }
1200
+
1201
+ SQL_FUNCTION_MAPPER = {
1202
+ # Hyperbolic functions
1203
+ "acosh": "ACOSH",
1204
+ "asinh": "ASINH",
1205
+ "atanh": "ATANH",
1206
+ "cosh": "COSH",
1207
+ "sinh": "SINH",
1208
+ "tanh": "TANH",
1209
+ # Trigonometric functions
1210
+ "acos": "ACOS",
1211
+ "asin": "ASIN",
1212
+ "atan": "ATAN",
1213
+ "atan2": "ATAN2",
1214
+ "cos": "COS",
1215
+ "sin": "SIN",
1216
+ "tan": "TAN",
1217
+ # Maths function
1218
+ "abs": "ABS",
1219
+ "ceil": "CEILING",
1220
+ "ceiling": "CEILING",
1221
+ "degrees": "DEGREES",
1222
+ "exp": "EXP",
1223
+ "floor": "FLOOR",
1224
+ "ln": "LN",
1225
+ "log10": "LOG",
1226
+ "pmod": "MOD",
1227
+ "mod": "MOD",
1228
+ "nullifzero": "NULLIFZERO",
1229
+ "pow": "POWER",
1230
+ "power": "POWER",
1231
+ "radians": "RADIANS",
1232
+ "round": "ROUND",
1233
+ "sign": "SIGN",
1234
+ "signum": "SIGN",
1235
+ "sqrt": "SQRT",
1236
+ "width_bucket": "WIDTH_BUCKET",
1237
+ "zeroifnull": "ZEROIFNULL",
1238
+
1239
+ # String Functions
1240
+ "ascii": "ASCII",
1241
+ "char2hexint": "CHAR2HEXINT",
1242
+ "chr": "CHR",
1243
+ "char": "CHR",
1244
+ "character_length": "LENGTH",
1245
+ "char_length": "LENGTH",
1246
+ "edit_distance": "EDITDISTANCE",
1247
+ "index": "INDEX",
1248
+ "initcap": "INITCAP",
1249
+ "instr": "INSTR",
1250
+ "lcase": "LOWER",
1251
+ "left": "LEFT",
1252
+ "length": "LENGTH",
1253
+ "levenshtein": "EDITDISTANCE",
1254
+ "locate": "LOCATE",
1255
+ "lower": "LOWER",
1256
+ "lpad": "LPAD",
1257
+ "ltrim": "LTRIM",
1258
+ "ngram": "NGRAM",
1259
+ "nvp": "NVP",
1260
+ "oreplace": "OREPLACE",
1261
+ "otranslate": "OTRANSLATE",
1262
+ "reverse": "REVERSE",
1263
+ "right": "RIGHT",
1264
+ "rpad": "RPAD",
1265
+ "rtrim": "RTRIM",
1266
+ "soundex": "SOUNDEX",
1267
+ "string_cs": "STRING_CS",
1268
+ "translate": "OTRANSLATE",
1269
+ "upper": "UPPER",
1270
+
1271
+ # Byte Functions
1272
+ "bit_and": "BITAND",
1273
+ "bit_get": "GETBIT",
1274
+ "bit_or": "BITOR",
1275
+ "bit_xor": "BITXOR",
1276
+ "bitand": "BITAND",
1277
+ "bitnot": "BITNOT",
1278
+ "bitor": "BITOR",
1279
+ "bitwise_not": "BITNOT",
1280
+ "bitwiseNOT": "BITNOT",
1281
+ "bitxor": "BITXOR",
1282
+ "countset": "COUNTSET",
1283
+ "getbit": "GETBIT",
1284
+ "rotateleft": "ROTATELEFT",
1285
+ "rotateright": "ROTATERIGHT",
1286
+ "setbit": "SETBIT",
1287
+ "shiftleft": "SHIFTLEFT",
1288
+ "shiftright": "SHIFTRIGHT",
1289
+ "subbitstr": "SUBBITSTR",
1290
+
1291
+ # Regular Expression Functions
1292
+ "regexp_instr": "REGEXP_INSTR",
1293
+ "regexp_replace": "REGEXP_REPLACE",
1294
+ "regexp_similar": "REGEXP_SIMILAR",
1295
+ "regexp_substr": "REGEXP_SUBSTR",
1296
+
1297
+ # DateTime Functions
1298
+ 'week_begin': 'td_week_begin',
1299
+ 'week_start': 'td_week_begin',
1300
+ 'week_end': 'td_week_end',
1301
+ 'quarter_begin': 'td_quarter_begin',
1302
+ 'quarter_start': 'td_quarter_begin',
1303
+ 'quarter_end': 'td_quarter_end',
1304
+ 'month_begin': 'td_month_begin',
1305
+ 'month_start': 'td_month_begin',
1306
+ 'month_end': 'td_month_end',
1307
+ 'year_begin': 'td_year_begin',
1308
+ 'year_start': 'td_year_begin',
1309
+ 'year_end': 'td_year_end',
1310
+ 'last_sunday': 'td_sunday',
1311
+ 'last_monday': 'td_monday',
1312
+ 'last_tuesday': 'td_tuesday',
1313
+ 'last_wednesday': 'td_wednesday',
1314
+ 'last_thursday': 'td_thursday',
1315
+ 'last_friday': 'td_friday',
1316
+ 'last_saturday': 'td_saturday',
1317
+ 'day_of_week': 'DayNumber_Of_Week',
1318
+ 'day_of_month': 'DayNumber_Of_Month',
1319
+ 'day_of_year': 'DayNumber_Of_Year',
1320
+ 'day_of_calendar': 'DayNumber_Of_Calendar',
1321
+ 'week_of_month': 'WeekNumber_Of_Month',
1322
+ 'week_of_quarter': 'WeekNumber_Of_Quarter',
1323
+ 'week_of_year': 'WeekNumber_Of_Year',
1324
+ 'week_of_calendar': 'WeekNumber_Of_Calendar',
1325
+ 'month_of_year': 'MonthNumber_Of_Year',
1326
+ 'month_of_calendar': 'MonthNumber_Of_Calendar',
1327
+ 'month_of_quarter': 'MonthNumber_Of_Quarter',
1328
+ 'quarter_of_year': 'QuarterNumber_Of_Year',
1329
+ 'quarter_of_calendar': 'QuarterNumber_Of_Calendar',
1330
+ 'year_of_calendar': 'YearNumber_Of_Calendar',
1331
+ 'day_occurrence_of_month': 'DayOccurrence_Of_Month',
1332
+ 'year': 'year',
1333
+ 'month': 'month',
1334
+ 'hour': 'hour',
1335
+ 'minute': 'minute',
1336
+ 'second': 'second',
1337
+ 'week': 'week',
1338
+ 'next_day': 'next_day',
1339
+ 'months_between': 'months_between',
1340
+ 'add_months': 'add_months',
1341
+ 'oadd_months': 'oadd_months'
1342
+ }
1343
+
1344
+
1345
+ class TDMLFrameworkKeywords(Enum):
1346
+ # Variable which stores the default keyword arguments passed
1347
+ # to Aggregate function.
1348
+ AGGREGATE_FUNCTION_DEFAULT_ARGUMENTS = ["window_properties",
1349
+ "percentile",
1350
+ "as_time_series_aggregate",
1351
+ "describe_op",
1352
+ "drop_columns"
1353
+ ]
1354
+
1355
+
1356
+ class TeradataReservedKeywords(Enum):
1357
+ # A List which stores Teradata Reserved Keywords.
1358
+ TERADATA_RESERVED_WORDS = ["INPUT",
1359
+ "THRESHOLD",
1360
+ "CHECK",
1361
+ "SUMMARY",
1362
+ "HASH",
1363
+ "METHOD",
1364
+ "TYPE"
1365
+ ]
1366
+
1367
+ class TeradataAnalyticFunctionTypes(Enum):
1368
+ SQLE = "FASTPATH"
1369
+ UAF = "UAF"
1370
+ TABLEOPERATOR = "TABLE_OPERATOR"
1371
+ BYOM = "BYOM"
1372
+
1373
+
1374
+ class TeradataAnalyticFunctionInfo(Enum):
1375
+
1376
+ FASTPATH = {"func_type": "sqle", "lowest_version": "16.20", "display_function_type_name" :"SQLE"}
1377
+ UAF = {"func_type": "uaf", "lowest_version": "17.20", "display_function_type_name": "UAF",
1378
+ "metadata_class" : "_AnlyFuncMetadataUAF"}
1379
+ TABLE_OPERATOR = {"func_type": "tableoperator", "lowest_version": "17.00 ",
1380
+ "display_function_type_name" :"TABLE OPERATOR"}
1381
+ BYOM = {"func_type": "byom", "lowest_version": None, "display_function_type_name": "BYOM"}
1382
+
1383
+ class TeradataUAFSpecificArgs(Enum):
1384
+ INPUT_MODE = "input_mode"
1385
+ OUTPUT_FMT_CONTENT = "output_fmt_content"
1386
+ OUTPUT_FMT_INDEX = "output_fmt_index"
1387
+ OUTPUT_FMT_INDEX_STYLE = "output_fmt_index_style"
1388
+
1389
+ class Query(Enum):
1390
+ VANTAGE_VERSION = "SELECT InfoData FROM DBC.DBCInfoV where InfoKey = 'VERSION'"
1391
+
1392
+ class DriverEscapeFunctions(Enum):
1393
+ # Holds variables for the teradatasql driver escape functions to be used
1394
+ NATIVE_SQL = "{fn teradata_nativesql}"
1395
+ AUTOCOMMIT_ON = "{fn teradata_autocommit_on}"
1396
+ AUTOCOMMIT_OFF = "{fn teradata_autocommit_off}"
1397
+ LOGON_SEQ_NUM = "{fn teradata_logon_sequence_number}"
1398
+ GET_ERRORS = "{fn teradata_get_errors}"
1399
+ GET_WARNINGS = "{fn teradata_get_warnings}"
1400
+ REQUIRE_FASTLOAD = "{fn teradata_require_fastload}"
1401
+ READ_CSV = "{{fn teradata_read_csv({0})}}"
1402
+ TRY_FASTEXPORT = "{fn teradata_try_fastexport}"
1403
+ REQUIRE_FASTEXPORT = "{fn teradata_require_fastexport}"
1404
+ OPEN_SESSIONS = "{{fn teradata_sessions({0})}}"
1405
+ WRITE_TO_CSV = "{{fn teradata_write_csv({0})}}"
1406
+ FIELD_QUOTE = "{{fn teradata_field_quote({0})}}"
1407
+ FIELD_SEP = "{{fn teradata_field_sep({0})}}"
1408
+ ERR_TBL_1 = "{{fn teradata_error_table_1_suffix({0})}}"
1409
+ ERR_TBL_2 = "{{fn teradata_error_table_2_suffix({0})}}"
1410
+ ERR_STAGING_DB = "{{fn teradata_error_table_database({0})}}"
1411
+ ERR_TBL_MNG_FLAG = "{{fn teradata_manage_error_tables_{0}}}"
1412
+
1413
+
1414
+ class HTTPRequest(Enum):
1415
+ # Holds variable names for HTTP calls.
1416
+ GET = "get"
1417
+ POST = "post"
1418
+ PUT = "put"
1419
+ DELETE = "delete"
1420
+
1421
+
1422
+ class AsyncStatusColumns(Enum):
1423
+ # Holds variable names for Async status DF columns.
1424
+ RUN_ID = "Run Id"
1425
+ RUN_DESCRIPTION = "Run Description"
1426
+ STATUS = "Status"
1427
+ TIMESTAMP = "Timestamp"
1428
+ ADDITIONAL_DETAILS = "Additional Details"
1429
+
1430
+
1431
+ class CloudProvider(Enum):
1432
+ # Holds variable names for Cloud Providers.
1433
+ AWS = "AWS"
1434
+ AZURE = "Azure"
1435
+ # 'x-ms-version' has 2 allowed constant values '2019-12-12'
1436
+ # and '2018-03-28', using the latest one.
1437
+ X_MS_VERSION = "2019-12-12"
1438
+ X_MS_BLOB_TYPE = "BlockBlob"