teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +1935 -1640
- teradataml/__init__.py +70 -60
- teradataml/_version.py +11 -11
- teradataml/analytics/Transformations.py +2995 -2995
- teradataml/analytics/__init__.py +81 -83
- teradataml/analytics/analytic_function_executor.py +2040 -2010
- teradataml/analytics/analytic_query_generator.py +958 -958
- teradataml/analytics/byom/H2OPredict.py +514 -514
- teradataml/analytics/byom/PMMLPredict.py +437 -437
- teradataml/analytics/byom/__init__.py +14 -14
- teradataml/analytics/json_parser/__init__.py +130 -130
- teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
- teradataml/analytics/json_parser/json_store.py +191 -191
- teradataml/analytics/json_parser/metadata.py +1637 -1637
- teradataml/analytics/json_parser/utils.py +798 -803
- teradataml/analytics/meta_class.py +196 -196
- teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
- teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
- teradataml/analytics/sqle/__init__.py +97 -110
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
- teradataml/analytics/table_operator/__init__.py +10 -10
- teradataml/analytics/uaf/__init__.py +63 -63
- teradataml/analytics/utils.py +693 -692
- teradataml/analytics/valib.py +1603 -1600
- teradataml/automl/__init__.py +1683 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +1011 -0
- teradataml/automl/data_transformation.py +789 -0
- teradataml/automl/feature_engineering.py +1580 -0
- teradataml/automl/feature_exploration.py +554 -0
- teradataml/automl/model_evaluation.py +151 -0
- teradataml/automl/model_training.py +1026 -0
- teradataml/catalog/__init__.py +1 -3
- teradataml/catalog/byom.py +1759 -1716
- teradataml/catalog/function_argument_mapper.py +859 -861
- teradataml/catalog/model_cataloging_utils.py +491 -1510
- teradataml/clients/auth_client.py +133 -0
- teradataml/clients/pkce_client.py +481 -481
- teradataml/common/aed_utils.py +7 -2
- teradataml/common/bulk_exposed_utils.py +111 -111
- teradataml/common/constants.py +1438 -1441
- teradataml/common/deprecations.py +160 -0
- teradataml/common/exceptions.py +73 -73
- teradataml/common/formula.py +742 -742
- teradataml/common/garbagecollector.py +597 -635
- teradataml/common/messagecodes.py +424 -431
- teradataml/common/messages.py +228 -231
- teradataml/common/sqlbundle.py +693 -693
- teradataml/common/td_coltype_code_to_tdtype.py +48 -48
- teradataml/common/utils.py +2424 -2500
- teradataml/common/warnings.py +25 -25
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/config/dummy_file1.cfg +4 -4
- teradataml/config/dummy_file2.cfg +2 -2
- teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
- teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
- teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
- teradataml/context/aed_context.py +217 -217
- teradataml/context/context.py +1091 -999
- teradataml/data/A_loan.csv +19 -19
- teradataml/data/BINARY_REALS_LEFT.csv +11 -11
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
- teradataml/data/B_loan.csv +49 -49
- teradataml/data/BuoyData2.csv +17 -17
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
- teradataml/data/Convolve2RealsLeft.csv +5 -5
- teradataml/data/Convolve2RealsRight.csv +5 -5
- teradataml/data/Convolve2ValidLeft.csv +11 -11
- teradataml/data/Convolve2ValidRight.csv +11 -11
- teradataml/data/DFFTConv_Real_8_8.csv +65 -65
- teradataml/data/Orders1_12mf.csv +24 -24
- teradataml/data/Pi_loan.csv +7 -7
- teradataml/data/SMOOTHED_DATA.csv +7 -7
- teradataml/data/TestDFFT8.csv +9 -9
- teradataml/data/TestRiver.csv +109 -109
- teradataml/data/Traindata.csv +28 -28
- teradataml/data/acf.csv +17 -17
- teradataml/data/adaboost_example.json +34 -34
- teradataml/data/adaboostpredict_example.json +24 -24
- teradataml/data/additional_table.csv +10 -10
- teradataml/data/admissions_test.csv +21 -21
- teradataml/data/admissions_train.csv +41 -41
- teradataml/data/admissions_train_nulls.csv +41 -41
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -13
- teradataml/data/ageandpressure.csv +31 -31
- teradataml/data/antiselect_example.json +36 -36
- teradataml/data/antiselect_input.csv +8 -8
- teradataml/data/antiselect_input_mixed_case.csv +8 -8
- teradataml/data/applicant_external.csv +6 -6
- teradataml/data/applicant_reference.csv +6 -6
- teradataml/data/arima_example.json +9 -9
- teradataml/data/assortedtext_input.csv +8 -8
- teradataml/data/attribution_example.json +33 -33
- teradataml/data/attribution_sample_table.csv +27 -27
- teradataml/data/attribution_sample_table1.csv +6 -6
- teradataml/data/attribution_sample_table2.csv +11 -11
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +42 -42
- teradataml/data/bank_web_clicks2.csv +91 -91
- teradataml/data/bank_web_url.csv +85 -85
- teradataml/data/barrier.csv +2 -2
- teradataml/data/barrier_new.csv +3 -3
- teradataml/data/betweenness_example.json +13 -13
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -8
- teradataml/data/bin_fit_ip.csv +3 -3
- teradataml/data/binary_complex_left.csv +11 -11
- teradataml/data/binary_complex_right.csv +11 -11
- teradataml/data/binary_matrix_complex_left.csv +21 -21
- teradataml/data/binary_matrix_complex_right.csv +21 -21
- teradataml/data/binary_matrix_real_left.csv +21 -21
- teradataml/data/binary_matrix_real_right.csv +21 -21
- teradataml/data/blood2ageandweight.csv +26 -26
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -507
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -11
- teradataml/data/burst_data.csv +5 -5
- teradataml/data/burst_example.json +20 -20
- teradataml/data/byom_example.json +17 -17
- teradataml/data/bytes_table.csv +3 -3
- teradataml/data/cal_housing_ex_raw.csv +70 -70
- teradataml/data/callers.csv +7 -7
- teradataml/data/calls.csv +10 -10
- teradataml/data/cars_hist.csv +33 -33
- teradataml/data/cat_table.csv +24 -24
- teradataml/data/ccm_example.json +31 -31
- teradataml/data/ccm_input.csv +91 -91
- teradataml/data/ccm_input2.csv +13 -13
- teradataml/data/ccmexample.csv +101 -101
- teradataml/data/ccmprepare_example.json +8 -8
- teradataml/data/ccmprepare_input.csv +91 -91
- teradataml/data/cfilter_example.json +12 -12
- teradataml/data/changepointdetection_example.json +18 -18
- teradataml/data/changepointdetectionrt_example.json +8 -8
- teradataml/data/chi_sq.csv +2 -2
- teradataml/data/churn_data.csv +14 -14
- teradataml/data/churn_emission.csv +35 -35
- teradataml/data/churn_initial.csv +3 -3
- teradataml/data/churn_state_transition.csv +5 -5
- teradataml/data/citedges_2.csv +745 -745
- teradataml/data/citvertices_2.csv +1210 -1210
- teradataml/data/clicks2.csv +16 -16
- teradataml/data/clickstream.csv +12 -12
- teradataml/data/clickstream1.csv +11 -11
- teradataml/data/closeness_example.json +15 -15
- teradataml/data/complaints.csv +21 -21
- teradataml/data/complaints_mini.csv +3 -3
- teradataml/data/complaints_testtoken.csv +224 -224
- teradataml/data/complaints_tokens_test.csv +353 -353
- teradataml/data/complaints_traintoken.csv +472 -472
- teradataml/data/computers_category.csv +1001 -1001
- teradataml/data/computers_test1.csv +1252 -1252
- teradataml/data/computers_train1.csv +5009 -5009
- teradataml/data/computers_train1_clustered.csv +5009 -5009
- teradataml/data/confusionmatrix_example.json +9 -9
- teradataml/data/conversion_event_table.csv +3 -3
- teradataml/data/corr_input.csv +17 -17
- teradataml/data/correlation_example.json +11 -11
- teradataml/data/coxhazardratio_example.json +39 -39
- teradataml/data/coxph_example.json +15 -15
- teradataml/data/coxsurvival_example.json +28 -28
- teradataml/data/cpt.csv +41 -41
- teradataml/data/credit_ex_merged.csv +45 -45
- teradataml/data/customer_loyalty.csv +301 -301
- teradataml/data/customer_loyalty_newseq.csv +31 -31
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +146 -146
- teradataml/data/decisionforest_example.json +37 -37
- teradataml/data/decisionforestpredict_example.json +38 -38
- teradataml/data/decisiontree_example.json +21 -21
- teradataml/data/decisiontreepredict_example.json +45 -45
- teradataml/data/dfft2_size4_real.csv +17 -17
- teradataml/data/dfft2_test_matrix16.csv +17 -17
- teradataml/data/dfft2conv_real_4_4.csv +65 -65
- teradataml/data/diabetes.csv +443 -443
- teradataml/data/diabetes_test.csv +89 -89
- teradataml/data/dict_table.csv +5 -5
- teradataml/data/docperterm_table.csv +4 -4
- teradataml/data/docs/__init__.py +1 -1
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
- teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
- teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
- teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
- teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
- teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
- teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
- teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
- teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
- teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
- teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
- teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
- teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
- teradataml/data/dtw_example.json +17 -17
- teradataml/data/dtw_t1.csv +11 -11
- teradataml/data/dtw_t2.csv +4 -4
- teradataml/data/dwt2d_example.json +15 -15
- teradataml/data/dwt_example.json +14 -14
- teradataml/data/dwt_filter_dim.csv +5 -5
- teradataml/data/emission.csv +9 -9
- teradataml/data/emp_table_by_dept.csv +19 -19
- teradataml/data/employee_info.csv +4 -4
- teradataml/data/employee_table.csv +6 -6
- teradataml/data/excluding_event_table.csv +2 -2
- teradataml/data/finance_data.csv +6 -6
- teradataml/data/finance_data2.csv +61 -61
- teradataml/data/finance_data3.csv +93 -93
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -26
- teradataml/data/fmeasure_example.json +11 -11
- teradataml/data/followers_leaders.csv +10 -10
- teradataml/data/fpgrowth_example.json +12 -12
- teradataml/data/frequentpaths_example.json +29 -29
- teradataml/data/friends.csv +9 -9
- teradataml/data/fs_input.csv +33 -33
- teradataml/data/fs_input1.csv +33 -33
- teradataml/data/genData.csv +513 -513
- teradataml/data/geodataframe_example.json +39 -39
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -12
- teradataml/data/glm_example.json +56 -29
- teradataml/data/glml1l2_example.json +28 -28
- teradataml/data/glml1l2predict_example.json +54 -54
- teradataml/data/glmpredict_example.json +54 -54
- teradataml/data/gq_t1.csv +21 -21
- teradataml/data/hconvolve_complex_right.csv +5 -5
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
- teradataml/data/histogram_example.json +11 -11
- teradataml/data/hmmdecoder_example.json +78 -78
- teradataml/data/hmmevaluator_example.json +24 -24
- teradataml/data/hmmsupervised_example.json +10 -10
- teradataml/data/hmmunsupervised_example.json +7 -7
- teradataml/data/house_values.csv +12 -12
- teradataml/data/house_values2.csv +13 -13
- teradataml/data/housing_cat.csv +7 -7
- teradataml/data/housing_data.csv +9 -9
- teradataml/data/housing_test.csv +47 -47
- teradataml/data/housing_test_binary.csv +47 -47
- teradataml/data/housing_train.csv +493 -493
- teradataml/data/housing_train_attribute.csv +4 -4
- teradataml/data/housing_train_binary.csv +437 -437
- teradataml/data/housing_train_parameter.csv +2 -2
- teradataml/data/housing_train_response.csv +493 -493
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -370
- teradataml/data/ibm_stock1.csv +370 -370
- teradataml/data/identitymatch_example.json +21 -21
- teradataml/data/idf_table.csv +4 -4
- teradataml/data/impressions.csv +101 -101
- teradataml/data/inflation.csv +21 -21
- teradataml/data/initial.csv +3 -3
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +12 -12
- teradataml/data/insurance.csv +1339 -1339
- teradataml/data/interpolator_example.json +12 -12
- teradataml/data/iris_altinput.csv +481 -481
- teradataml/data/iris_attribute_output.csv +8 -8
- teradataml/data/iris_attribute_test.csv +121 -121
- teradataml/data/iris_attribute_train.csv +481 -481
- teradataml/data/iris_category_expect_predict.csv +31 -31
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -151
- teradataml/data/iris_response_train.csv +121 -121
- teradataml/data/iris_test.csv +31 -31
- teradataml/data/iris_train.csv +121 -121
- teradataml/data/join_table1.csv +4 -4
- teradataml/data/join_table2.csv +4 -4
- teradataml/data/jsons/anly_function_name.json +6 -6
- teradataml/data/jsons/byom/dataikupredict.json +147 -147
- teradataml/data/jsons/byom/datarobotpredict.json +146 -146
- teradataml/data/jsons/byom/h2opredict.json +194 -194
- teradataml/data/jsons/byom/onnxpredict.json +186 -186
- teradataml/data/jsons/byom/pmmlpredict.json +146 -146
- teradataml/data/jsons/paired_functions.json +435 -435
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
- teradataml/data/kmeans_example.json +22 -17
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +0 -0
- teradataml/data/knn_example.json +18 -18
- teradataml/data/knnrecommender_example.json +6 -6
- teradataml/data/knnrecommenderpredict_example.json +12 -12
- teradataml/data/lar_example.json +17 -17
- teradataml/data/larpredict_example.json +30 -30
- teradataml/data/lc_new_predictors.csv +5 -5
- teradataml/data/lc_new_reference.csv +9 -9
- teradataml/data/lda_example.json +8 -8
- teradataml/data/ldainference_example.json +14 -14
- teradataml/data/ldatopicsummary_example.json +8 -8
- teradataml/data/levendist_input.csv +13 -13
- teradataml/data/levenshteindistance_example.json +10 -10
- teradataml/data/linreg_example.json +9 -9
- teradataml/data/load_example_data.py +326 -323
- teradataml/data/loan_prediction.csv +295 -295
- teradataml/data/lungcancer.csv +138 -138
- teradataml/data/mappingdata.csv +12 -12
- teradataml/data/milk_timeseries.csv +157 -157
- teradataml/data/min_max_titanic.csv +4 -4
- teradataml/data/minhash_example.json +6 -6
- teradataml/data/ml_ratings.csv +7547 -7547
- teradataml/data/ml_ratings_10.csv +2445 -2445
- teradataml/data/model1_table.csv +5 -5
- teradataml/data/model2_table.csv +5 -5
- teradataml/data/models/iris_db_glm_model.pmml +56 -56
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
- teradataml/data/modularity_example.json +12 -12
- teradataml/data/movavg_example.json +7 -7
- teradataml/data/mtx1.csv +7 -7
- teradataml/data/mtx2.csv +13 -13
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -9
- teradataml/data/naivebayes_example.json +9 -9
- teradataml/data/naivebayespredict_example.json +19 -19
- teradataml/data/naivebayestextclassifier2_example.json +6 -6
- teradataml/data/naivebayestextclassifier_example.json +8 -8
- teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
- teradataml/data/name_Find_configure.csv +10 -10
- teradataml/data/namedentityfinder_example.json +14 -14
- teradataml/data/namedentityfinderevaluator_example.json +10 -10
- teradataml/data/namedentityfindertrainer_example.json +6 -6
- teradataml/data/nb_iris_input_test.csv +31 -31
- teradataml/data/nb_iris_input_train.csv +121 -121
- teradataml/data/nbp_iris_model.csv +13 -13
- teradataml/data/ner_extractor_text.csv +2 -2
- teradataml/data/ner_sports_test2.csv +29 -29
- teradataml/data/ner_sports_train.csv +501 -501
- teradataml/data/nerevaluator_example.json +5 -5
- teradataml/data/nerextractor_example.json +18 -18
- teradataml/data/nermem_sports_test.csv +17 -17
- teradataml/data/nermem_sports_train.csv +50 -50
- teradataml/data/nertrainer_example.json +6 -6
- teradataml/data/ngrams_example.json +6 -6
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
- teradataml/data/npath_example.json +23 -23
- teradataml/data/ntree_example.json +14 -14
- teradataml/data/numeric_strings.csv +4 -4
- teradataml/data/numerics.csv +4 -4
- teradataml/data/ocean_buoy.csv +17 -17
- teradataml/data/ocean_buoy2.csv +17 -17
- teradataml/data/ocean_buoys.csv +27 -27
- teradataml/data/ocean_buoys2.csv +10 -10
- teradataml/data/ocean_buoys_nonpti.csv +28 -28
- teradataml/data/ocean_buoys_seq.csv +29 -29
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -4
- teradataml/data/orders1.csv +11 -11
- teradataml/data/orders1_12.csv +12 -12
- teradataml/data/orders_ex.csv +4 -4
- teradataml/data/pack_example.json +8 -8
- teradataml/data/package_tracking.csv +19 -19
- teradataml/data/package_tracking_pti.csv +18 -18
- teradataml/data/pagerank_example.json +13 -13
- teradataml/data/paragraphs_input.csv +6 -6
- teradataml/data/pathanalyzer_example.json +7 -7
- teradataml/data/pathgenerator_example.json +7 -7
- teradataml/data/phrases.csv +7 -7
- teradataml/data/pivot_example.json +8 -8
- teradataml/data/pivot_input.csv +22 -22
- teradataml/data/playerRating.csv +31 -31
- teradataml/data/postagger_example.json +6 -6
- teradataml/data/posttagger_output.csv +44 -44
- teradataml/data/production_data.csv +16 -16
- teradataml/data/production_data2.csv +7 -7
- teradataml/data/randomsample_example.json +31 -31
- teradataml/data/randomwalksample_example.json +8 -8
- teradataml/data/rank_table.csv +6 -6
- teradataml/data/ref_mobile_data.csv +4 -4
- teradataml/data/ref_mobile_data_dense.csv +2 -2
- teradataml/data/ref_url.csv +17 -17
- teradataml/data/restaurant_reviews.csv +7 -7
- teradataml/data/river_data.csv +145 -145
- teradataml/data/roc_example.json +7 -7
- teradataml/data/roc_input.csv +101 -101
- teradataml/data/rule_inputs.csv +6 -6
- teradataml/data/rule_table.csv +2 -2
- teradataml/data/sales.csv +7 -7
- teradataml/data/sales_transaction.csv +501 -501
- teradataml/data/salesdata.csv +342 -342
- teradataml/data/sample_cities.csv +2 -2
- teradataml/data/sample_shapes.csv +10 -10
- teradataml/data/sample_streets.csv +2 -2
- teradataml/data/sampling_example.json +15 -15
- teradataml/data/sax_example.json +8 -8
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -23
- teradataml/data/scale_housing.csv +11 -11
- teradataml/data/scale_housing_test.csv +6 -6
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -11
- teradataml/data/scalebypartition_example.json +13 -13
- teradataml/data/scalemap_example.json +13 -13
- teradataml/data/scalesummary_example.json +12 -12
- teradataml/data/score_category.csv +101 -101
- teradataml/data/score_summary.csv +4 -4
- teradataml/data/script_example.json +9 -9
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +15 -15
- teradataml/data/scripts/mapper_replace.py +15 -15
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
- teradataml/data/seeds.csv +10 -10
- teradataml/data/sentenceextractor_example.json +6 -6
- teradataml/data/sentiment_extract_input.csv +11 -11
- teradataml/data/sentiment_train.csv +16 -16
- teradataml/data/sentiment_word.csv +20 -20
- teradataml/data/sentiment_word_input.csv +19 -19
- teradataml/data/sentimentextractor_example.json +24 -24
- teradataml/data/sentimenttrainer_example.json +8 -8
- teradataml/data/sequence_table.csv +10 -10
- teradataml/data/seriessplitter_example.json +7 -7
- teradataml/data/sessionize_example.json +17 -17
- teradataml/data/sessionize_table.csv +116 -116
- teradataml/data/setop_test1.csv +24 -24
- teradataml/data/setop_test2.csv +22 -22
- teradataml/data/soc_nw_edges.csv +10 -10
- teradataml/data/soc_nw_vertices.csv +7 -7
- teradataml/data/souvenir_timeseries.csv +167 -167
- teradataml/data/sparse_iris_attribute.csv +5 -5
- teradataml/data/sparse_iris_test.csv +121 -121
- teradataml/data/sparse_iris_train.csv +601 -601
- teradataml/data/star1.csv +6 -6
- teradataml/data/state_transition.csv +5 -5
- teradataml/data/stock_data.csv +53 -53
- teradataml/data/stock_movement.csv +11 -11
- teradataml/data/stock_vol.csv +76 -76
- teradataml/data/stop_words.csv +8 -8
- teradataml/data/store_sales.csv +37 -37
- teradataml/data/stringsimilarity_example.json +7 -7
- teradataml/data/strsimilarity_input.csv +13 -13
- teradataml/data/students.csv +101 -101
- teradataml/data/svm_iris_input_test.csv +121 -121
- teradataml/data/svm_iris_input_train.csv +481 -481
- teradataml/data/svm_iris_model.csv +7 -7
- teradataml/data/svmdense_example.json +9 -9
- teradataml/data/svmdensepredict_example.json +18 -18
- teradataml/data/svmsparse_example.json +7 -7
- teradataml/data/svmsparsepredict_example.json +13 -13
- teradataml/data/svmsparsesummary_example.json +7 -7
- teradataml/data/target_mobile_data.csv +13 -13
- teradataml/data/target_mobile_data_dense.csv +5 -5
- teradataml/data/templatedata.csv +1201 -1201
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +150 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -53
- teradataml/data/test_pacf_12.csv +37 -37
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -109
- teradataml/data/text_inputs.csv +6 -6
- teradataml/data/textchunker_example.json +7 -7
- teradataml/data/textclassifier_example.json +6 -6
- teradataml/data/textclassifier_input.csv +7 -7
- teradataml/data/textclassifiertrainer_example.json +6 -6
- teradataml/data/textmorph_example.json +5 -5
- teradataml/data/textparser_example.json +15 -15
- teradataml/data/texttagger_example.json +11 -11
- teradataml/data/texttokenizer_example.json +6 -6
- teradataml/data/texttrainer_input.csv +11 -11
- teradataml/data/tf_example.json +6 -6
- teradataml/data/tfidf_example.json +13 -13
- teradataml/data/tfidf_input1.csv +201 -201
- teradataml/data/tfidf_train.csv +6 -6
- teradataml/data/time_table1.csv +535 -535
- teradataml/data/time_table2.csv +14 -14
- teradataml/data/timeseriesdata.csv +1601 -1601
- teradataml/data/timeseriesdatasetsd4.csv +105 -105
- teradataml/data/titanic.csv +892 -892
- teradataml/data/token_table.csv +696 -696
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +27 -27
- teradataml/data/transformation_table.csv +5 -5
- teradataml/data/transformation_table_new.csv +1 -1
- teradataml/data/tv_spots.csv +16 -16
- teradataml/data/twod_climate_data.csv +117 -117
- teradataml/data/uaf_example.json +475 -475
- teradataml/data/univariatestatistics_example.json +8 -8
- teradataml/data/unpack_example.json +9 -9
- teradataml/data/unpivot_example.json +9 -9
- teradataml/data/unpivot_input.csv +8 -8
- teradataml/data/us_air_pass.csv +36 -36
- teradataml/data/us_population.csv +624 -624
- teradataml/data/us_states_shapes.csv +52 -52
- teradataml/data/varmax_example.json +17 -17
- teradataml/data/vectordistance_example.json +25 -25
- teradataml/data/ville_climatedata.csv +121 -121
- teradataml/data/ville_tempdata.csv +12 -12
- teradataml/data/ville_tempdata1.csv +12 -12
- teradataml/data/ville_temperature.csv +11 -11
- teradataml/data/waveletTable.csv +1605 -1605
- teradataml/data/waveletTable2.csv +1605 -1605
- teradataml/data/weightedmovavg_example.json +8 -8
- teradataml/data/wft_testing.csv +5 -5
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +5 -5
- teradataml/data/word_embed_input_table2.csv +4 -4
- teradataml/data/word_embed_model.csv +22 -22
- teradataml/data/words_input.csv +13 -13
- teradataml/data/xconvolve_complex_left.csv +6 -6
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
- teradataml/data/xgboost_example.json +35 -35
- teradataml/data/xgboostpredict_example.json +31 -31
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +1769 -1698
- teradataml/dataframe/data_transfer.py +2812 -2745
- teradataml/dataframe/dataframe.py +17630 -16946
- teradataml/dataframe/dataframe_utils.py +1875 -1740
- teradataml/dataframe/fastload.py +794 -603
- teradataml/dataframe/indexer.py +424 -424
- teradataml/dataframe/setop.py +1179 -1166
- teradataml/dataframe/sql.py +10174 -6432
- teradataml/dataframe/sql_function_parameters.py +439 -388
- teradataml/dataframe/sql_functions.py +652 -652
- teradataml/dataframe/sql_interfaces.py +220 -220
- teradataml/dataframe/vantage_function_types.py +674 -630
- teradataml/dataframe/window.py +693 -692
- teradataml/dbutils/__init__.py +3 -3
- teradataml/dbutils/dbutils.py +1167 -1150
- teradataml/dbutils/filemgr.py +267 -267
- teradataml/gen_ai/__init__.py +2 -2
- teradataml/gen_ai/convAI.py +472 -472
- teradataml/geospatial/__init__.py +3 -3
- teradataml/geospatial/geodataframe.py +1105 -1094
- teradataml/geospatial/geodataframecolumn.py +392 -387
- teradataml/geospatial/geometry_types.py +925 -925
- teradataml/hyperparameter_tuner/__init__.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
- teradataml/hyperparameter_tuner/utils.py +281 -187
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +130 -124
- teradataml/options/configure.py +358 -336
- teradataml/options/display.py +176 -176
- teradataml/plot/__init__.py +2 -2
- teradataml/plot/axis.py +1388 -1388
- teradataml/plot/constants.py +15 -15
- teradataml/plot/figure.py +398 -398
- teradataml/plot/plot.py +760 -760
- teradataml/plot/query_generator.py +83 -83
- teradataml/plot/subplot.py +216 -216
- teradataml/scriptmgmt/UserEnv.py +3791 -3761
- teradataml/scriptmgmt/__init__.py +3 -3
- teradataml/scriptmgmt/lls_utils.py +1719 -1604
- teradataml/series/series.py +532 -532
- teradataml/series/series_utils.py +71 -71
- teradataml/table_operators/Apply.py +949 -917
- teradataml/table_operators/Script.py +1718 -1982
- teradataml/table_operators/TableOperator.py +1255 -1616
- teradataml/table_operators/__init__.py +2 -3
- teradataml/table_operators/apply_query_generator.py +262 -262
- teradataml/table_operators/query_generator.py +507 -507
- teradataml/table_operators/table_operator_query_generator.py +460 -460
- teradataml/table_operators/table_operator_util.py +631 -639
- teradataml/table_operators/templates/dataframe_apply.template +184 -184
- teradataml/table_operators/templates/dataframe_map.template +176 -176
- teradataml/table_operators/templates/script_executor.template +170 -170
- teradataml/utils/dtypes.py +684 -684
- teradataml/utils/internal_buffer.py +84 -84
- teradataml/utils/print_versions.py +205 -205
- teradataml/utils/utils.py +410 -410
- teradataml/utils/validators.py +2277 -2115
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
- teradataml-20.0.0.1.dist-info/RECORD +1056 -0
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- teradataml-17.20.0.7.dist-info/RECORD +0 -1280
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
|
@@ -1,61 +1,61 @@
|
|
|
1
|
-
"sid","id","start_time_column","end_time_column","expenditure","income","investment"
|
|
2
|
-
"2","40","1967-06-30","2007-03-31","1842.0","2132.0","700.0"
|
|
3
|
-
"1","19","1967-06-30","2007-03-31","586.0","660.0","282.0"
|
|
4
|
-
"2","57","1967-06-30","2007-03-31","983.0","1137.0","475.0"
|
|
5
|
-
"2","59","1967-06-30","2007-03-31","1034.0","1211.0","494.0"
|
|
6
|
-
"2","55","1967-06-30","2007-03-31","934.0","1104.0","453.0"
|
|
7
|
-
"2","36","1967-06-30","2007-03-31","779.0","897.0","322.0"
|
|
8
|
-
"1","7","1967-06-30","2007-03-31","479.0","521.0","207.0"
|
|
9
|
-
"1","15","1967-06-30","2007-03-31","546.0","610.0","259.0"
|
|
10
|
-
"1","22","1967-06-30","2007-03-31","639.0","734.0","302.0"
|
|
11
|
-
"2","53","1967-06-30","2007-03-31","881.0","1025.0","375.0"
|
|
12
|
-
"2","39","1967-06-30","2007-03-31","1831.0","2121.0","675.0"
|
|
13
|
-
"1","30","1967-06-30","2007-03-31","699.0","799.0","275.0"
|
|
14
|
-
"2","37","1967-06-30","2007-03-31","1774.0","2040.0","635.0"
|
|
15
|
-
"2","47","1967-06-30","2007-03-31","2102.0","2457.0","853.0"
|
|
16
|
-
"2","35","1967-06-30","2007-03-31","758.0","876.0","303.0"
|
|
17
|
-
"2","45","1967-06-30","2007-03-31","2061.0","2369.0","844.0"
|
|
18
|
-
"2","54","1967-06-30","2007-03-31","905.0","1063.0","432.0"
|
|
19
|
-
"1","14","1967-06-30","2007-03-31","538.0","599.0","250.0"
|
|
20
|
-
"1","12","1967-06-30","2007-03-31","525.0","583.0","237.0"
|
|
21
|
-
"2","31","1967-06-30","2007-03-31","709.0","799.0","273.0"
|
|
22
|
-
"2","52","1967-06-30","2007-03-31","858.0","988.0","371.0"
|
|
23
|
-
"1","29","1967-06-30","2007-03-31","704.0","794.0","292.0"
|
|
24
|
-
"2","50","1967-06-30","2007-03-31","816.0","949.0","339.0"
|
|
25
|
-
"1","6","1967-06-30","2007-03-31","458.0","520.0","202.0"
|
|
26
|
-
"1","27","1967-06-30","2007-03-31","697.0","808.0","306.0"
|
|
27
|
-
"2","46","1967-06-30","2007-03-31","2056.0","2423.0","830.0"
|
|
28
|
-
"1","4","1967-06-30","2007-03-31","448.0","493.0","192.0"
|
|
29
|
-
"1","23","1967-06-30","2007-03-31","653.0","751.0","304.0"
|
|
30
|
-
"2","44","1967-06-30","2007-03-31","1994.0","2318.0","816.0"
|
|
31
|
-
"1","21","1967-06-30","2007-03-31","617.0","709.0","286.0"
|
|
32
|
-
"2","42","1967-06-30","2007-03-31","1958.0","2253.0","759.0"
|
|
33
|
-
"1","17","1967-06-30","2007-03-31","574.0","642.0","264.0"
|
|
34
|
-
"2","38","1967-06-30","2007-03-31","1807.0","2070.0","658.0"
|
|
35
|
-
"2","34","1967-06-30","2007-03-31","746.0","853.0","289.0"
|
|
36
|
-
"1","26","1967-06-30","2007-03-31","686.0","779.0","314.0"
|
|
37
|
-
"1","13","1967-06-30","2007-03-31","529.0","591.0","206.0"
|
|
38
|
-
"1","5","1967-06-30","2007-03-31","459.0","509.0","211.0"
|
|
39
|
-
"2","32","1967-06-30","2007-03-31","715.0","812.0","301.0"
|
|
40
|
-
"1","24","1967-06-30","2007-03-31","668.0","763.0","307.0"
|
|
41
|
-
"1","11","1967-06-30","2007-03-31","516.0","574.0","234.0"
|
|
42
|
-
"1","3","1967-06-30","2007-03-31","434.0","485.0","185.0"
|
|
43
|
-
"2","51","1967-06-30","2007-03-31","837.0","979.0","364.0"
|
|
44
|
-
"2","43","1967-06-30","2007-03-31","1948.0","2276.0","782.0"
|
|
45
|
-
"1","9","1967-06-30","2007-03-31","497.0","548.0","231.0"
|
|
46
|
-
"1","1","1967-06-30","2007-03-31","415.0","451.0","180.0"
|
|
47
|
-
"2","49","1967-06-30","2007-03-31","798.0","922.0","315.0"
|
|
48
|
-
"2","41","1967-06-30","2007-03-31","1890.0","2199.0","692.0"
|
|
49
|
-
"1","28","1967-06-30","2007-03-31","688.0","785.0","304.0"
|
|
50
|
-
"1","20","1967-06-30","2007-03-31","602.0","694.0","292.0"
|
|
51
|
-
"1","16","1967-06-30","2007-03-31","555.0","627.0","263.0"
|
|
52
|
-
"2","60","1967-06-30","2007-03-31","1064.0","1256.0","498.0"
|
|
53
|
-
"2","33","1967-06-30","2007-03-31","724.0","837.0","280.0"
|
|
54
|
-
"1","18","1967-06-30","2007-03-31","574.0","653.0","280.0"
|
|
55
|
-
"1","10","1967-06-30","2007-03-31","510.0","558.0","229.0"
|
|
56
|
-
"2","58","1967-06-30","2007-03-31","1013.0","1178.0","496.0"
|
|
57
|
-
"2","48","1967-06-30","2007-03-31","2121.0","2470.0","852.0"
|
|
58
|
-
"2","56","1967-06-30","2007-03-31","968.0","1131.0","460.0"
|
|
59
|
-
"1","8","1967-06-30","2007-03-31","487.0","540.0","214.0"
|
|
60
|
-
"1","25","1967-06-30","2007-03-31","679.0","766.0","317.0"
|
|
61
|
-
"1","2","1967-06-30","2007-03-31","421.0","465.0","179.0"
|
|
1
|
+
"sid","id","start_time_column","end_time_column","expenditure","income","investment"
|
|
2
|
+
"2","40","1967-06-30","2007-03-31","1842.0","2132.0","700.0"
|
|
3
|
+
"1","19","1967-06-30","2007-03-31","586.0","660.0","282.0"
|
|
4
|
+
"2","57","1967-06-30","2007-03-31","983.0","1137.0","475.0"
|
|
5
|
+
"2","59","1967-06-30","2007-03-31","1034.0","1211.0","494.0"
|
|
6
|
+
"2","55","1967-06-30","2007-03-31","934.0","1104.0","453.0"
|
|
7
|
+
"2","36","1967-06-30","2007-03-31","779.0","897.0","322.0"
|
|
8
|
+
"1","7","1967-06-30","2007-03-31","479.0","521.0","207.0"
|
|
9
|
+
"1","15","1967-06-30","2007-03-31","546.0","610.0","259.0"
|
|
10
|
+
"1","22","1967-06-30","2007-03-31","639.0","734.0","302.0"
|
|
11
|
+
"2","53","1967-06-30","2007-03-31","881.0","1025.0","375.0"
|
|
12
|
+
"2","39","1967-06-30","2007-03-31","1831.0","2121.0","675.0"
|
|
13
|
+
"1","30","1967-06-30","2007-03-31","699.0","799.0","275.0"
|
|
14
|
+
"2","37","1967-06-30","2007-03-31","1774.0","2040.0","635.0"
|
|
15
|
+
"2","47","1967-06-30","2007-03-31","2102.0","2457.0","853.0"
|
|
16
|
+
"2","35","1967-06-30","2007-03-31","758.0","876.0","303.0"
|
|
17
|
+
"2","45","1967-06-30","2007-03-31","2061.0","2369.0","844.0"
|
|
18
|
+
"2","54","1967-06-30","2007-03-31","905.0","1063.0","432.0"
|
|
19
|
+
"1","14","1967-06-30","2007-03-31","538.0","599.0","250.0"
|
|
20
|
+
"1","12","1967-06-30","2007-03-31","525.0","583.0","237.0"
|
|
21
|
+
"2","31","1967-06-30","2007-03-31","709.0","799.0","273.0"
|
|
22
|
+
"2","52","1967-06-30","2007-03-31","858.0","988.0","371.0"
|
|
23
|
+
"1","29","1967-06-30","2007-03-31","704.0","794.0","292.0"
|
|
24
|
+
"2","50","1967-06-30","2007-03-31","816.0","949.0","339.0"
|
|
25
|
+
"1","6","1967-06-30","2007-03-31","458.0","520.0","202.0"
|
|
26
|
+
"1","27","1967-06-30","2007-03-31","697.0","808.0","306.0"
|
|
27
|
+
"2","46","1967-06-30","2007-03-31","2056.0","2423.0","830.0"
|
|
28
|
+
"1","4","1967-06-30","2007-03-31","448.0","493.0","192.0"
|
|
29
|
+
"1","23","1967-06-30","2007-03-31","653.0","751.0","304.0"
|
|
30
|
+
"2","44","1967-06-30","2007-03-31","1994.0","2318.0","816.0"
|
|
31
|
+
"1","21","1967-06-30","2007-03-31","617.0","709.0","286.0"
|
|
32
|
+
"2","42","1967-06-30","2007-03-31","1958.0","2253.0","759.0"
|
|
33
|
+
"1","17","1967-06-30","2007-03-31","574.0","642.0","264.0"
|
|
34
|
+
"2","38","1967-06-30","2007-03-31","1807.0","2070.0","658.0"
|
|
35
|
+
"2","34","1967-06-30","2007-03-31","746.0","853.0","289.0"
|
|
36
|
+
"1","26","1967-06-30","2007-03-31","686.0","779.0","314.0"
|
|
37
|
+
"1","13","1967-06-30","2007-03-31","529.0","591.0","206.0"
|
|
38
|
+
"1","5","1967-06-30","2007-03-31","459.0","509.0","211.0"
|
|
39
|
+
"2","32","1967-06-30","2007-03-31","715.0","812.0","301.0"
|
|
40
|
+
"1","24","1967-06-30","2007-03-31","668.0","763.0","307.0"
|
|
41
|
+
"1","11","1967-06-30","2007-03-31","516.0","574.0","234.0"
|
|
42
|
+
"1","3","1967-06-30","2007-03-31","434.0","485.0","185.0"
|
|
43
|
+
"2","51","1967-06-30","2007-03-31","837.0","979.0","364.0"
|
|
44
|
+
"2","43","1967-06-30","2007-03-31","1948.0","2276.0","782.0"
|
|
45
|
+
"1","9","1967-06-30","2007-03-31","497.0","548.0","231.0"
|
|
46
|
+
"1","1","1967-06-30","2007-03-31","415.0","451.0","180.0"
|
|
47
|
+
"2","49","1967-06-30","2007-03-31","798.0","922.0","315.0"
|
|
48
|
+
"2","41","1967-06-30","2007-03-31","1890.0","2199.0","692.0"
|
|
49
|
+
"1","28","1967-06-30","2007-03-31","688.0","785.0","304.0"
|
|
50
|
+
"1","20","1967-06-30","2007-03-31","602.0","694.0","292.0"
|
|
51
|
+
"1","16","1967-06-30","2007-03-31","555.0","627.0","263.0"
|
|
52
|
+
"2","60","1967-06-30","2007-03-31","1064.0","1256.0","498.0"
|
|
53
|
+
"2","33","1967-06-30","2007-03-31","724.0","837.0","280.0"
|
|
54
|
+
"1","18","1967-06-30","2007-03-31","574.0","653.0","280.0"
|
|
55
|
+
"1","10","1967-06-30","2007-03-31","510.0","558.0","229.0"
|
|
56
|
+
"2","58","1967-06-30","2007-03-31","1013.0","1178.0","496.0"
|
|
57
|
+
"2","48","1967-06-30","2007-03-31","2121.0","2470.0","852.0"
|
|
58
|
+
"2","56","1967-06-30","2007-03-31","968.0","1131.0","460.0"
|
|
59
|
+
"1","8","1967-06-30","2007-03-31","487.0","540.0","214.0"
|
|
60
|
+
"1","25","1967-06-30","2007-03-31","679.0","766.0","317.0"
|
|
61
|
+
"1","2","1967-06-30","2007-03-31","421.0","465.0","179.0"
|
|
@@ -1,93 +1,93 @@
|
|
|
1
|
-
"id","period","expenditure","income","investment"
|
|
2
|
-
3,"1980q1",1650,1910,611
|
|
3
|
-
3,"1980q2",1685,1943,597
|
|
4
|
-
3,"1980q3",1722,1976,603
|
|
5
|
-
3,"1980q4",1752,2018,619
|
|
6
|
-
3,"1981q1",2145,2521,833
|
|
7
|
-
3,"1981q2",2164,2545,860
|
|
8
|
-
3,"1981q3",2206,2580,870
|
|
9
|
-
3,"1981q4",2225,2620,830
|
|
10
|
-
3,"1982q1",2235,2639,801
|
|
11
|
-
3,"1982q2",2237,2618,824
|
|
12
|
-
3,"1982q3",2250,2628,831
|
|
13
|
-
3,"1982q4",2271,2651,830
|
|
14
|
-
1,"1960q1",415,451,180
|
|
15
|
-
1,"1960q2",421,465,179
|
|
16
|
-
1,"1960q3",434,485,185
|
|
17
|
-
1,"1960q4",448,493,192
|
|
18
|
-
1,"1961q1",459,509,211
|
|
19
|
-
1,"1961q2",458,520,202
|
|
20
|
-
1,"1961q3",479,521,207
|
|
21
|
-
1,"1961q4",487,540,214
|
|
22
|
-
1,"1962q1",497,548,231
|
|
23
|
-
1,"1962q2",510,558,229
|
|
24
|
-
1,"1962q3",516,574,234
|
|
25
|
-
1,"1962q4",525,583,237
|
|
26
|
-
1,"1963q1",529,591,206
|
|
27
|
-
1,"1963q2",538,599,250
|
|
28
|
-
1,"1963q3",546,610,259
|
|
29
|
-
1,"1963q4",555,627,263
|
|
30
|
-
1,"1964q1",574,642,264
|
|
31
|
-
1,"1964q2",574,653,280
|
|
32
|
-
1,"1964q3",586,660,282
|
|
33
|
-
1,"1964q4",602,694,292
|
|
34
|
-
1,"1965q1",617,709,286
|
|
35
|
-
1,"1965q2",639,734,302
|
|
36
|
-
1,"1965q3",653,751,304
|
|
37
|
-
1,"1965q4",668,763,307
|
|
38
|
-
1,"1966q1",679,766,317
|
|
39
|
-
1,"1966q2",686,779,314
|
|
40
|
-
1,"1966q3",697,808,306
|
|
41
|
-
1,"1966q4",688,785,304
|
|
42
|
-
1,"1967q1",704,794,292
|
|
43
|
-
1,"1967q2",699,799,275
|
|
44
|
-
1,"1967q3",709,799,273
|
|
45
|
-
1,"1967q4",715,812,301
|
|
46
|
-
1,"1968q1",724,837,280
|
|
47
|
-
1,"1968q2",746,853,289
|
|
48
|
-
1,"1968q3",758,876,303
|
|
49
|
-
1,"1968q4",779,897,322
|
|
50
|
-
1,"1969q1",1774,2040,635
|
|
51
|
-
1,"1969q2",1807,2070,658
|
|
52
|
-
1,"1969q3",1831,2121,675
|
|
53
|
-
1,"1969q4",1842,2132,700
|
|
54
|
-
2,"1970q1",1890,2199,692
|
|
55
|
-
2,"1970q2",1958,2253,759
|
|
56
|
-
2,"1970q3",1948,2276,782
|
|
57
|
-
2,"1970q4",1994,2318,816
|
|
58
|
-
2,"1971q1",2061,2369,844
|
|
59
|
-
2,"1971q2",2056,2423,830
|
|
60
|
-
2,"1971q3",2102,2457,853
|
|
61
|
-
2,"1971q4",2121,2470,852
|
|
62
|
-
2,"1972q1",798,922,315
|
|
63
|
-
2,"1972q2",816,949,339
|
|
64
|
-
2,"1972q3",837,979,364
|
|
65
|
-
2,"1972q4",858,988,371
|
|
66
|
-
2,"1973q1",881,1025,375
|
|
67
|
-
2,"1973q2",905,1063,432
|
|
68
|
-
2,"1973q3",934,1104,453
|
|
69
|
-
2,"1973q4",968,1131,460
|
|
70
|
-
2,"1974q1",983,1137,475
|
|
71
|
-
2,"1974q2",1013,1178,496
|
|
72
|
-
2,"1974q3",1034,1211,494
|
|
73
|
-
2,"1974q4",1064,1256,498
|
|
74
|
-
2,"1975q1",1101,1290,526
|
|
75
|
-
2,"1975q2",1102,1314,519
|
|
76
|
-
2,"1975q3",1145,1346,516
|
|
77
|
-
2,"1975q4",1173,1385,531
|
|
78
|
-
2,"1976q1",1216,1416,573
|
|
79
|
-
2,"1976q2",1229,1436,551
|
|
80
|
-
2,"1976q3",1242,1462,538
|
|
81
|
-
2,"1976q4",1267,1493,532
|
|
82
|
-
2,"1977q1",1295,1516,558
|
|
83
|
-
2,"1977q2",1317,1557,524
|
|
84
|
-
2,"1977q3",1355,1613,525
|
|
85
|
-
2,"1977q4",1371,1642,519
|
|
86
|
-
2,"1978q1",1402,1690,526
|
|
87
|
-
2,"1978q2",1452,1759,510
|
|
88
|
-
2,"1978q3",1485,1756,519
|
|
89
|
-
2,"1978q4",1516,1780,538
|
|
90
|
-
2,"1979q1",1549,1807,549
|
|
91
|
-
2,"1979q2",1567,1831,570
|
|
92
|
-
2,"1979q3",1588,1873,559
|
|
93
|
-
2,"1979q4",1631,1897,584
|
|
1
|
+
"id","period","expenditure","income","investment"
|
|
2
|
+
3,"1980q1",1650,1910,611
|
|
3
|
+
3,"1980q2",1685,1943,597
|
|
4
|
+
3,"1980q3",1722,1976,603
|
|
5
|
+
3,"1980q4",1752,2018,619
|
|
6
|
+
3,"1981q1",2145,2521,833
|
|
7
|
+
3,"1981q2",2164,2545,860
|
|
8
|
+
3,"1981q3",2206,2580,870
|
|
9
|
+
3,"1981q4",2225,2620,830
|
|
10
|
+
3,"1982q1",2235,2639,801
|
|
11
|
+
3,"1982q2",2237,2618,824
|
|
12
|
+
3,"1982q3",2250,2628,831
|
|
13
|
+
3,"1982q4",2271,2651,830
|
|
14
|
+
1,"1960q1",415,451,180
|
|
15
|
+
1,"1960q2",421,465,179
|
|
16
|
+
1,"1960q3",434,485,185
|
|
17
|
+
1,"1960q4",448,493,192
|
|
18
|
+
1,"1961q1",459,509,211
|
|
19
|
+
1,"1961q2",458,520,202
|
|
20
|
+
1,"1961q3",479,521,207
|
|
21
|
+
1,"1961q4",487,540,214
|
|
22
|
+
1,"1962q1",497,548,231
|
|
23
|
+
1,"1962q2",510,558,229
|
|
24
|
+
1,"1962q3",516,574,234
|
|
25
|
+
1,"1962q4",525,583,237
|
|
26
|
+
1,"1963q1",529,591,206
|
|
27
|
+
1,"1963q2",538,599,250
|
|
28
|
+
1,"1963q3",546,610,259
|
|
29
|
+
1,"1963q4",555,627,263
|
|
30
|
+
1,"1964q1",574,642,264
|
|
31
|
+
1,"1964q2",574,653,280
|
|
32
|
+
1,"1964q3",586,660,282
|
|
33
|
+
1,"1964q4",602,694,292
|
|
34
|
+
1,"1965q1",617,709,286
|
|
35
|
+
1,"1965q2",639,734,302
|
|
36
|
+
1,"1965q3",653,751,304
|
|
37
|
+
1,"1965q4",668,763,307
|
|
38
|
+
1,"1966q1",679,766,317
|
|
39
|
+
1,"1966q2",686,779,314
|
|
40
|
+
1,"1966q3",697,808,306
|
|
41
|
+
1,"1966q4",688,785,304
|
|
42
|
+
1,"1967q1",704,794,292
|
|
43
|
+
1,"1967q2",699,799,275
|
|
44
|
+
1,"1967q3",709,799,273
|
|
45
|
+
1,"1967q4",715,812,301
|
|
46
|
+
1,"1968q1",724,837,280
|
|
47
|
+
1,"1968q2",746,853,289
|
|
48
|
+
1,"1968q3",758,876,303
|
|
49
|
+
1,"1968q4",779,897,322
|
|
50
|
+
1,"1969q1",1774,2040,635
|
|
51
|
+
1,"1969q2",1807,2070,658
|
|
52
|
+
1,"1969q3",1831,2121,675
|
|
53
|
+
1,"1969q4",1842,2132,700
|
|
54
|
+
2,"1970q1",1890,2199,692
|
|
55
|
+
2,"1970q2",1958,2253,759
|
|
56
|
+
2,"1970q3",1948,2276,782
|
|
57
|
+
2,"1970q4",1994,2318,816
|
|
58
|
+
2,"1971q1",2061,2369,844
|
|
59
|
+
2,"1971q2",2056,2423,830
|
|
60
|
+
2,"1971q3",2102,2457,853
|
|
61
|
+
2,"1971q4",2121,2470,852
|
|
62
|
+
2,"1972q1",798,922,315
|
|
63
|
+
2,"1972q2",816,949,339
|
|
64
|
+
2,"1972q3",837,979,364
|
|
65
|
+
2,"1972q4",858,988,371
|
|
66
|
+
2,"1973q1",881,1025,375
|
|
67
|
+
2,"1973q2",905,1063,432
|
|
68
|
+
2,"1973q3",934,1104,453
|
|
69
|
+
2,"1973q4",968,1131,460
|
|
70
|
+
2,"1974q1",983,1137,475
|
|
71
|
+
2,"1974q2",1013,1178,496
|
|
72
|
+
2,"1974q3",1034,1211,494
|
|
73
|
+
2,"1974q4",1064,1256,498
|
|
74
|
+
2,"1975q1",1101,1290,526
|
|
75
|
+
2,"1975q2",1102,1314,519
|
|
76
|
+
2,"1975q3",1145,1346,516
|
|
77
|
+
2,"1975q4",1173,1385,531
|
|
78
|
+
2,"1976q1",1216,1416,573
|
|
79
|
+
2,"1976q2",1229,1436,551
|
|
80
|
+
2,"1976q3",1242,1462,538
|
|
81
|
+
2,"1976q4",1267,1493,532
|
|
82
|
+
2,"1977q1",1295,1516,558
|
|
83
|
+
2,"1977q2",1317,1557,524
|
|
84
|
+
2,"1977q3",1355,1613,525
|
|
85
|
+
2,"1977q4",1371,1642,519
|
|
86
|
+
2,"1978q1",1402,1690,526
|
|
87
|
+
2,"1978q2",1452,1759,510
|
|
88
|
+
2,"1978q3",1485,1756,519
|
|
89
|
+
2,"1978q4",1516,1780,538
|
|
90
|
+
2,"1979q1",1549,1807,549
|
|
91
|
+
2,"1979q2",1567,1831,570
|
|
92
|
+
2,"1979q3",1588,1873,559
|
|
93
|
+
2,"1979q4",1631,1897,584
|
teradataml/data/fish.csv
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
1
|
+
Species,Weight,Length1,Length2,Length3,Height,Width
|
|
2
|
+
Bream,242,23.2,25.4,30,11.52,4.02
|
|
3
|
+
Bream,290,24,26.3,31.2,12.48,4.3056
|
|
4
|
+
Bream,340,23.9,26.5,31.1,12.3778,4.6961
|
|
5
|
+
Bream,363,26.3,29,33.5,12.73,4.4555
|
|
6
|
+
Bream,430,26.5,29,34,12.444,5.134
|
|
7
|
+
Bream,450,26.8,29.7,34.7,13.6024,4.9274
|
|
8
|
+
Bream,500,26.8,29.7,34.5,14.1795,5.2785
|
|
9
|
+
Bream,390,27.6,30,35,12.67,4.69
|
|
10
|
+
Bream,450,27.6,30,35.1,14.0049,4.8438
|
|
11
|
+
Bream,500,28.5,30.7,36.2,14.2266,4.9594
|
|
12
|
+
Bream,475,28.4,31,36.2,14.2628,5.1042
|
|
13
|
+
Bream,500,28.7,31,36.2,14.3714,4.8146
|
|
14
|
+
Bream,500,29.1,31.5,36.4,13.7592,4.368
|
|
15
|
+
Bream,340,29.5,32,37.3,13.9129,5.0728
|
|
16
|
+
Bream,600,29.4,32,37.2,14.9544,5.1708
|
|
17
|
+
Bream,600,29.4,32,37.2,15.438,5.58
|
|
18
|
+
Bream,700,30.4,33,38.3,14.8604,5.2854
|
|
19
|
+
Bream,700,30.4,33,38.5,14.938,5.1975
|
|
20
|
+
Bream,610,30.9,33.5,38.6,15.633,5.1338
|
|
21
|
+
Bream,650,31,33.5,38.7,14.4738,5.7276
|
|
22
|
+
Bream,575,31.3,34,39.5,15.1285,5.5695
|
|
23
|
+
Bream,685,31.4,34,39.2,15.9936,5.3704
|
|
24
|
+
Bream,620,31.5,34.5,39.7,15.5227,5.2801
|
|
25
|
+
Bream,680,31.8,35,40.6,15.4686,6.1306
|
|
26
|
+
Bream,700,31.9,35,40.5,16.2405,5.589
|
|
27
|
+
Bream,725,31.8,35,40.9,16.36,6.0532
|
|
28
|
+
Bream,720,32,35,40.6,16.3618,6.09
|
|
29
|
+
Bream,714,32.7,36,41.5,16.517,5.8515
|
|
30
|
+
Bream,850,32.8,36,41.6,16.8896,6.1984
|
|
31
|
+
Bream,1000,33.5,37,42.6,18.957,6.603
|
|
32
|
+
Bream,920,35,38.5,44.1,18.0369,6.3063
|
|
33
|
+
Bream,955,35,38.5,44,18.084,6.292
|
|
34
|
+
Bream,925,36.2,39.5,45.3,18.7542,6.7497
|
|
35
|
+
Bream,975,37.4,41,45.9,18.6354,6.7473
|
|
36
|
+
Bream,950,38,41,46.5,17.6235,6.3705
|
|
37
|
+
Roach,40,12.9,14.1,16.2,4.1472,2.268
|
|
38
|
+
Roach,69,16.5,18.2,20.3,5.2983,2.8217
|
|
39
|
+
Roach,78,17.5,18.8,21.2,5.5756,2.9044
|
|
40
|
+
Roach,87,18.2,19.8,22.2,5.6166,3.1746
|
|
41
|
+
Roach,120,18.6,20,22.2,6.216,3.5742
|
|
42
|
+
Roach,0,19,20.5,22.8,6.4752,3.3516
|
|
43
|
+
Roach,110,19.1,20.8,23.1,6.1677,3.3957
|
|
44
|
+
Roach,120,19.4,21,23.7,6.1146,3.2943
|
|
45
|
+
Roach,150,20.4,22,24.7,5.8045,3.7544
|
|
46
|
+
Roach,145,20.5,22,24.3,6.6339,3.5478
|
|
47
|
+
Roach,160,20.5,22.5,25.3,7.0334,3.8203
|
|
48
|
+
Roach,140,21,22.5,25,6.55,3.325
|
|
49
|
+
Roach,160,21.1,22.5,25,6.4,3.8
|
|
50
|
+
Roach,169,22,24,27.2,7.5344,3.8352
|
|
51
|
+
Roach,161,22,23.4,26.7,6.9153,3.6312
|
|
52
|
+
Roach,200,22.1,23.5,26.8,7.3968,4.1272
|
|
53
|
+
Roach,180,23.6,25.2,27.9,7.0866,3.906
|
|
54
|
+
Roach,290,24,26,29.2,8.8768,4.4968
|
|
55
|
+
Roach,272,25,27,30.6,8.568,4.7736
|
|
56
|
+
Roach,390,29.5,31.7,35,9.485,5.355
|
|
57
|
+
Whitefish,270,23.6,26,28.7,8.3804,4.2476
|
|
58
|
+
Whitefish,270,24.1,26.5,29.3,8.1454,4.2485
|
|
59
|
+
Whitefish,306,25.6,28,30.8,8.778,4.6816
|
|
60
|
+
Whitefish,540,28.5,31,34,10.744,6.562
|
|
61
|
+
Whitefish,800,33.7,36.4,39.6,11.7612,6.5736
|
|
62
|
+
Whitefish,1000,37.3,40,43.5,12.354,6.525
|
|
63
|
+
Parkki,55,13.5,14.7,16.5,6.8475,2.3265
|
|
64
|
+
Parkki,60,14.3,15.5,17.4,6.5772,2.3142
|
|
65
|
+
Parkki,90,16.3,17.7,19.8,7.4052,2.673
|
|
66
|
+
Parkki,120,17.5,19,21.3,8.3922,2.9181
|
|
67
|
+
Parkki,150,18.4,20,22.4,8.8928,3.2928
|
|
68
|
+
Parkki,140,19,20.7,23.2,8.5376,3.2944
|
|
69
|
+
Parkki,170,19,20.7,23.2,9.396,3.4104
|
|
70
|
+
Parkki,145,19.8,21.5,24.1,9.7364,3.1571
|
|
71
|
+
Parkki,200,21.2,23,25.8,10.3458,3.6636
|
|
72
|
+
Parkki,273,23,25,28,11.088,4.144
|
|
73
|
+
Parkki,300,24,26,29,11.368,4.234
|
|
74
|
+
Perch,5.9,7.5,8.4,8.8,2.112,1.408
|
|
75
|
+
Perch,32,12.5,13.7,14.7,3.528,1.9992
|
|
76
|
+
Perch,40,13.8,15,16,3.824,2.432
|
|
77
|
+
Perch,51.5,15,16.2,17.2,4.5924,2.6316
|
|
78
|
+
Perch,70,15.7,17.4,18.5,4.588,2.9415
|
|
79
|
+
Perch,100,16.2,18,19.2,5.2224,3.3216
|
|
80
|
+
Perch,78,16.8,18.7,19.4,5.1992,3.1234
|
|
81
|
+
Perch,80,17.2,19,20.2,5.6358,3.0502
|
|
82
|
+
Perch,85,17.8,19.6,20.8,5.1376,3.0368
|
|
83
|
+
Perch,85,18.2,20,21,5.082,2.772
|
|
84
|
+
Perch,110,19,21,22.5,5.6925,3.555
|
|
85
|
+
Perch,115,19,21,22.5,5.9175,3.3075
|
|
86
|
+
Perch,125,19,21,22.5,5.6925,3.6675
|
|
87
|
+
Perch,130,19.3,21.3,22.8,6.384,3.534
|
|
88
|
+
Perch,120,20,22,23.5,6.11,3.4075
|
|
89
|
+
Perch,120,20,22,23.5,5.64,3.525
|
|
90
|
+
Perch,130,20,22,23.5,6.11,3.525
|
|
91
|
+
Perch,135,20,22,23.5,5.875,3.525
|
|
92
|
+
Perch,110,20,22,23.5,5.5225,3.995
|
|
93
|
+
Perch,130,20.5,22.5,24,5.856,3.624
|
|
94
|
+
Perch,150,20.5,22.5,24,6.792,3.624
|
|
95
|
+
Perch,145,20.7,22.7,24.2,5.9532,3.63
|
|
96
|
+
Perch,150,21,23,24.5,5.2185,3.626
|
|
97
|
+
Perch,170,21.5,23.5,25,6.275,3.725
|
|
98
|
+
Perch,225,22,24,25.5,7.293,3.723
|
|
99
|
+
Perch,145,22,24,25.5,6.375,3.825
|
|
100
|
+
Perch,188,22.6,24.6,26.2,6.7334,4.1658
|
|
101
|
+
Perch,180,23,25,26.5,6.4395,3.6835
|
|
102
|
+
Perch,197,23.5,25.6,27,6.561,4.239
|
|
103
|
+
Perch,218,25,26.5,28,7.168,4.144
|
|
104
|
+
Perch,300,25.2,27.3,28.7,8.323,5.1373
|
|
105
|
+
Perch,260,25.4,27.5,28.9,7.1672,4.335
|
|
106
|
+
Perch,265,25.4,27.5,28.9,7.0516,4.335
|
|
107
|
+
Perch,250,25.4,27.5,28.9,7.2828,4.5662
|
|
108
|
+
Perch,250,25.9,28,29.4,7.8204,4.2042
|
|
109
|
+
Perch,300,26.9,28.7,30.1,7.5852,4.6354
|
|
110
|
+
Perch,320,27.8,30,31.6,7.6156,4.7716
|
|
111
|
+
Perch,514,30.5,32.8,34,10.03,6.018
|
|
112
|
+
Perch,556,32,34.5,36.5,10.2565,6.3875
|
|
113
|
+
Perch,840,32.5,35,37.3,11.4884,7.7957
|
|
114
|
+
Perch,685,34,36.5,39,10.881,6.864
|
|
115
|
+
Perch,700,34,36,38.3,10.6091,6.7408
|
|
116
|
+
Perch,700,34.5,37,39.4,10.835,6.2646
|
|
117
|
+
Perch,690,34.6,37,39.3,10.5717,6.3666
|
|
118
|
+
Perch,900,36.5,39,41.4,11.1366,7.4934
|
|
119
|
+
Perch,650,36.5,39,41.4,11.1366,6.003
|
|
120
|
+
Perch,820,36.6,39,41.3,12.4313,7.3514
|
|
121
|
+
Perch,850,36.9,40,42.3,11.9286,7.1064
|
|
122
|
+
Perch,900,37,40,42.5,11.73,7.225
|
|
123
|
+
Perch,1015,37,40,42.4,12.3808,7.4624
|
|
124
|
+
Perch,820,37.1,40,42.5,11.135,6.63
|
|
125
|
+
Perch,1100,39,42,44.6,12.8002,6.8684
|
|
126
|
+
Perch,1000,39.8,43,45.2,11.9328,7.2772
|
|
127
|
+
Perch,1100,40.1,43,45.5,12.5125,7.4165
|
|
128
|
+
Perch,1000,40.2,43.5,46,12.604,8.142
|
|
129
|
+
Perch,1000,41.1,44,46.6,12.4888,7.5958
|
|
130
|
+
Pike,200,30,32.3,34.8,5.568,3.3756
|
|
131
|
+
Pike,300,31.7,34,37.8,5.7078,4.158
|
|
132
|
+
Pike,300,32.7,35,38.8,5.9364,4.3844
|
|
133
|
+
Pike,300,34.8,37.3,39.8,6.2884,4.0198
|
|
134
|
+
Pike,430,35.5,38,40.5,7.29,4.5765
|
|
135
|
+
Pike,345,36,38.5,41,6.396,3.977
|
|
136
|
+
Pike,456,40,42.5,45.5,7.28,4.3225
|
|
137
|
+
Pike,510,40,42.5,45.5,6.825,4.459
|
|
138
|
+
Pike,540,40.1,43,45.8,7.786,5.1296
|
|
139
|
+
Pike,500,42,45,48,6.96,4.896
|
|
140
|
+
Pike,567,43.2,46,48.7,7.792,4.87
|
|
141
|
+
Pike,770,44.8,48,51.2,7.68,5.376
|
|
142
|
+
Pike,950,48.3,51.7,55.1,8.9262,6.1712
|
|
143
|
+
Pike,1250,52,56,59.7,10.6863,6.9849
|
|
144
|
+
Pike,1600,56,60,64,9.6,6.144
|
|
145
|
+
Pike,1550,56,60,64,9.6,6.144
|
|
146
|
+
Pike,1650,59,63.4,68,10.812,7.48
|
|
147
|
+
Smelt,6.7,9.3,9.8,10.8,1.7388,1.0476
|
|
148
|
+
Smelt,7.5,10,10.5,11.6,1.972,1.16
|
|
149
|
+
Smelt,7,10.1,10.6,11.6,1.7284,1.1484
|
|
150
|
+
Smelt,9.7,10.4,11,12,2.196,1.38
|
|
151
|
+
Smelt,9.8,10.7,11.2,12.4,2.0832,1.2772
|
|
152
|
+
Smelt,8.7,10.8,11.3,12.6,1.9782,1.2852
|
|
153
|
+
Smelt,10,11.3,11.8,13.1,2.2139,1.2838
|
|
154
|
+
Smelt,9.9,11.3,11.8,13.1,2.2139,1.1659
|
|
155
|
+
Smelt,9.8,11.4,12,13.2,2.2044,1.1484
|
|
156
|
+
Smelt,12.2,11.5,12.2,13.4,2.0904,1.3936
|
|
157
|
+
Smelt,13.4,11.7,12.4,13.5,2.43,1.269
|
|
158
|
+
Smelt,12.2,12.1,13,13.8,2.277,1.2558
|
|
159
|
+
Smelt,19.7,13.2,14.3,15.2,2.8728,2.0672
|
|
160
|
+
Smelt,19.9,13.8,15,16.2,2.9322,1.8792
|
|
@@ -1,26 +1,26 @@
|
|
|
1
|
-
I,ID,Weight,Age,BloodFat,RegrWeights
|
|
2
|
-
5,1,76,57,451,5
|
|
3
|
-
24,1,55,40,303,24
|
|
4
|
-
3,1,65,52,405,3
|
|
5
|
-
1,1,84,46,354,1
|
|
6
|
-
20,1,82,34,220,20
|
|
7
|
-
18,1,79,51,374,18
|
|
8
|
-
8,1,72,36,385,8
|
|
9
|
-
25,1,63,30,244,25
|
|
10
|
-
2,1,73,20,190,2
|
|
11
|
-
17,1,60,34,220,17
|
|
12
|
-
13,1,65,52,346,13
|
|
13
|
-
11,1,27,24,209,11
|
|
14
|
-
9,1,79,57,402,9
|
|
15
|
-
16,1,69,48,434,16
|
|
16
|
-
10,1,75,44,365,10
|
|
17
|
-
7,1,63,28,288,7
|
|
18
|
-
22,1,67,23,181,22
|
|
19
|
-
12,1,89,31,290,12
|
|
20
|
-
4,1,70,30,263,4
|
|
21
|
-
19,1,75,50,308,19
|
|
22
|
-
15,1,59,60,395,15
|
|
23
|
-
14,1,57,23,254,14
|
|
24
|
-
6,1,69,25,302,6
|
|
25
|
-
23,1,85,37,274,23
|
|
26
|
-
21,1,59,46,311,21
|
|
1
|
+
I,ID,Weight,Age,BloodFat,RegrWeights
|
|
2
|
+
5,1,76,57,451,5
|
|
3
|
+
24,1,55,40,303,24
|
|
4
|
+
3,1,65,52,405,3
|
|
5
|
+
1,1,84,46,354,1
|
|
6
|
+
20,1,82,34,220,20
|
|
7
|
+
18,1,79,51,374,18
|
|
8
|
+
8,1,72,36,385,8
|
|
9
|
+
25,1,63,30,244,25
|
|
10
|
+
2,1,73,20,190,2
|
|
11
|
+
17,1,60,34,220,17
|
|
12
|
+
13,1,65,52,346,13
|
|
13
|
+
11,1,27,24,209,11
|
|
14
|
+
9,1,79,57,402,9
|
|
15
|
+
16,1,69,48,434,16
|
|
16
|
+
10,1,75,44,365,10
|
|
17
|
+
7,1,63,28,288,7
|
|
18
|
+
22,1,67,23,181,22
|
|
19
|
+
12,1,89,31,290,12
|
|
20
|
+
4,1,70,30,263,4
|
|
21
|
+
19,1,75,50,308,19
|
|
22
|
+
15,1,59,60,395,15
|
|
23
|
+
14,1,57,23,254,14
|
|
24
|
+
6,1,69,25,302,6
|
|
25
|
+
23,1,85,37,274,23
|
|
26
|
+
21,1,59,46,311,21
|
|
@@ -1,12 +1,12 @@
|
|
|
1
|
-
{
|
|
2
|
-
"computers_category" :{
|
|
3
|
-
"compid" : "integer",
|
|
4
|
-
"price" : "real",
|
|
5
|
-
"speed" : "real",
|
|
6
|
-
"hd" : "real",
|
|
7
|
-
"ram" : "real",
|
|
8
|
-
"screen" : "real",
|
|
9
|
-
"expected_compcategory" : "varchar(20)",
|
|
10
|
-
"predicted_compcategory" : "varchar(20)"
|
|
11
|
-
}
|
|
1
|
+
{
|
|
2
|
+
"computers_category" :{
|
|
3
|
+
"compid" : "integer",
|
|
4
|
+
"price" : "real",
|
|
5
|
+
"speed" : "real",
|
|
6
|
+
"hd" : "real",
|
|
7
|
+
"ram" : "real",
|
|
8
|
+
"screen" : "real",
|
|
9
|
+
"expected_compcategory" : "varchar(20)",
|
|
10
|
+
"predicted_compcategory" : "varchar(20)"
|
|
11
|
+
}
|
|
12
12
|
}
|
|
@@ -1,10 +1,10 @@
|
|
|
1
|
-
"follower","leader","intensity"
|
|
2
|
-
"gohar","casey",10
|
|
3
|
-
"fox","danny",7
|
|
4
|
-
"casey","bob",1
|
|
5
|
-
"eve","danny",9
|
|
6
|
-
"harry","gohar",4
|
|
7
|
-
"fox","eve",8
|
|
8
|
-
"alex","bob",5
|
|
9
|
-
"harry","danny",3
|
|
10
|
-
"alex","casey",6
|
|
1
|
+
"follower","leader","intensity"
|
|
2
|
+
"gohar","casey",10
|
|
3
|
+
"fox","danny",7
|
|
4
|
+
"casey","bob",1
|
|
5
|
+
"eve","danny",9
|
|
6
|
+
"harry","gohar",4
|
|
7
|
+
"fox","eve",8
|
|
8
|
+
"alex","bob",5
|
|
9
|
+
"harry","danny",3
|
|
10
|
+
"alex","casey",6
|
|
@@ -1,12 +1,12 @@
|
|
|
1
|
-
{
|
|
2
|
-
|
|
3
|
-
"sales_transaction" :{
|
|
4
|
-
"orderid" : "integer",
|
|
5
|
-
"orderdate" : "date",
|
|
6
|
-
"orderqty" : "integer",
|
|
7
|
-
"region" : "varchar(30)",
|
|
8
|
-
"customer_segment" : "varchar(30)",
|
|
9
|
-
"prd_category" : "varchar(30)",
|
|
10
|
-
"product" : "varchar(50)"
|
|
11
|
-
}
|
|
12
|
-
}
|
|
1
|
+
{
|
|
2
|
+
|
|
3
|
+
"sales_transaction" :{
|
|
4
|
+
"orderid" : "integer",
|
|
5
|
+
"orderdate" : "date",
|
|
6
|
+
"orderqty" : "integer",
|
|
7
|
+
"region" : "varchar(30)",
|
|
8
|
+
"customer_segment" : "varchar(30)",
|
|
9
|
+
"prd_category" : "varchar(30)",
|
|
10
|
+
"product" : "varchar(50)"
|
|
11
|
+
}
|
|
12
|
+
}
|