teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1303) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1935 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2040 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +798 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1683 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +1011 -0
  31. teradataml/automl/data_transformation.py +789 -0
  32. teradataml/automl/feature_engineering.py +1580 -0
  33. teradataml/automl/feature_exploration.py +554 -0
  34. teradataml/automl/model_evaluation.py +151 -0
  35. teradataml/automl/model_training.py +1026 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/auth_client.py +133 -0
  41. teradataml/clients/pkce_client.py +481 -481
  42. teradataml/common/aed_utils.py +7 -2
  43. teradataml/common/bulk_exposed_utils.py +111 -111
  44. teradataml/common/constants.py +1438 -1441
  45. teradataml/common/deprecations.py +160 -0
  46. teradataml/common/exceptions.py +73 -73
  47. teradataml/common/formula.py +742 -742
  48. teradataml/common/garbagecollector.py +597 -635
  49. teradataml/common/messagecodes.py +424 -431
  50. teradataml/common/messages.py +228 -231
  51. teradataml/common/sqlbundle.py +693 -693
  52. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  53. teradataml/common/utils.py +2424 -2500
  54. teradataml/common/warnings.py +25 -25
  55. teradataml/common/wrapper_utils.py +1 -110
  56. teradataml/config/dummy_file1.cfg +4 -4
  57. teradataml/config/dummy_file2.cfg +2 -2
  58. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  59. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  60. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  61. teradataml/context/aed_context.py +217 -217
  62. teradataml/context/context.py +1091 -999
  63. teradataml/data/A_loan.csv +19 -19
  64. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  65. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  66. teradataml/data/B_loan.csv +49 -49
  67. teradataml/data/BuoyData2.csv +17 -17
  68. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  69. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  70. teradataml/data/Convolve2RealsLeft.csv +5 -5
  71. teradataml/data/Convolve2RealsRight.csv +5 -5
  72. teradataml/data/Convolve2ValidLeft.csv +11 -11
  73. teradataml/data/Convolve2ValidRight.csv +11 -11
  74. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  75. teradataml/data/Orders1_12mf.csv +24 -24
  76. teradataml/data/Pi_loan.csv +7 -7
  77. teradataml/data/SMOOTHED_DATA.csv +7 -7
  78. teradataml/data/TestDFFT8.csv +9 -9
  79. teradataml/data/TestRiver.csv +109 -109
  80. teradataml/data/Traindata.csv +28 -28
  81. teradataml/data/acf.csv +17 -17
  82. teradataml/data/adaboost_example.json +34 -34
  83. teradataml/data/adaboostpredict_example.json +24 -24
  84. teradataml/data/additional_table.csv +10 -10
  85. teradataml/data/admissions_test.csv +21 -21
  86. teradataml/data/admissions_train.csv +41 -41
  87. teradataml/data/admissions_train_nulls.csv +41 -41
  88. teradataml/data/advertising.csv +201 -0
  89. teradataml/data/ageandheight.csv +13 -13
  90. teradataml/data/ageandpressure.csv +31 -31
  91. teradataml/data/antiselect_example.json +36 -36
  92. teradataml/data/antiselect_input.csv +8 -8
  93. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  94. teradataml/data/applicant_external.csv +6 -6
  95. teradataml/data/applicant_reference.csv +6 -6
  96. teradataml/data/arima_example.json +9 -9
  97. teradataml/data/assortedtext_input.csv +8 -8
  98. teradataml/data/attribution_example.json +33 -33
  99. teradataml/data/attribution_sample_table.csv +27 -27
  100. teradataml/data/attribution_sample_table1.csv +6 -6
  101. teradataml/data/attribution_sample_table2.csv +11 -11
  102. teradataml/data/bank_churn.csv +10001 -0
  103. teradataml/data/bank_marketing.csv +11163 -0
  104. teradataml/data/bank_web_clicks1.csv +42 -42
  105. teradataml/data/bank_web_clicks2.csv +91 -91
  106. teradataml/data/bank_web_url.csv +85 -85
  107. teradataml/data/barrier.csv +2 -2
  108. teradataml/data/barrier_new.csv +3 -3
  109. teradataml/data/betweenness_example.json +13 -13
  110. teradataml/data/bike_sharing.csv +732 -0
  111. teradataml/data/bin_breaks.csv +8 -8
  112. teradataml/data/bin_fit_ip.csv +3 -3
  113. teradataml/data/binary_complex_left.csv +11 -11
  114. teradataml/data/binary_complex_right.csv +11 -11
  115. teradataml/data/binary_matrix_complex_left.csv +21 -21
  116. teradataml/data/binary_matrix_complex_right.csv +21 -21
  117. teradataml/data/binary_matrix_real_left.csv +21 -21
  118. teradataml/data/binary_matrix_real_right.csv +21 -21
  119. teradataml/data/blood2ageandweight.csv +26 -26
  120. teradataml/data/bmi.csv +501 -0
  121. teradataml/data/boston.csv +507 -507
  122. teradataml/data/boston2cols.csv +721 -0
  123. teradataml/data/breast_cancer.csv +570 -0
  124. teradataml/data/buoydata_mix.csv +11 -11
  125. teradataml/data/burst_data.csv +5 -5
  126. teradataml/data/burst_example.json +20 -20
  127. teradataml/data/byom_example.json +17 -17
  128. teradataml/data/bytes_table.csv +3 -3
  129. teradataml/data/cal_housing_ex_raw.csv +70 -70
  130. teradataml/data/callers.csv +7 -7
  131. teradataml/data/calls.csv +10 -10
  132. teradataml/data/cars_hist.csv +33 -33
  133. teradataml/data/cat_table.csv +24 -24
  134. teradataml/data/ccm_example.json +31 -31
  135. teradataml/data/ccm_input.csv +91 -91
  136. teradataml/data/ccm_input2.csv +13 -13
  137. teradataml/data/ccmexample.csv +101 -101
  138. teradataml/data/ccmprepare_example.json +8 -8
  139. teradataml/data/ccmprepare_input.csv +91 -91
  140. teradataml/data/cfilter_example.json +12 -12
  141. teradataml/data/changepointdetection_example.json +18 -18
  142. teradataml/data/changepointdetectionrt_example.json +8 -8
  143. teradataml/data/chi_sq.csv +2 -2
  144. teradataml/data/churn_data.csv +14 -14
  145. teradataml/data/churn_emission.csv +35 -35
  146. teradataml/data/churn_initial.csv +3 -3
  147. teradataml/data/churn_state_transition.csv +5 -5
  148. teradataml/data/citedges_2.csv +745 -745
  149. teradataml/data/citvertices_2.csv +1210 -1210
  150. teradataml/data/clicks2.csv +16 -16
  151. teradataml/data/clickstream.csv +12 -12
  152. teradataml/data/clickstream1.csv +11 -11
  153. teradataml/data/closeness_example.json +15 -15
  154. teradataml/data/complaints.csv +21 -21
  155. teradataml/data/complaints_mini.csv +3 -3
  156. teradataml/data/complaints_testtoken.csv +224 -224
  157. teradataml/data/complaints_tokens_test.csv +353 -353
  158. teradataml/data/complaints_traintoken.csv +472 -472
  159. teradataml/data/computers_category.csv +1001 -1001
  160. teradataml/data/computers_test1.csv +1252 -1252
  161. teradataml/data/computers_train1.csv +5009 -5009
  162. teradataml/data/computers_train1_clustered.csv +5009 -5009
  163. teradataml/data/confusionmatrix_example.json +9 -9
  164. teradataml/data/conversion_event_table.csv +3 -3
  165. teradataml/data/corr_input.csv +17 -17
  166. teradataml/data/correlation_example.json +11 -11
  167. teradataml/data/coxhazardratio_example.json +39 -39
  168. teradataml/data/coxph_example.json +15 -15
  169. teradataml/data/coxsurvival_example.json +28 -28
  170. teradataml/data/cpt.csv +41 -41
  171. teradataml/data/credit_ex_merged.csv +45 -45
  172. teradataml/data/customer_loyalty.csv +301 -301
  173. teradataml/data/customer_loyalty_newseq.csv +31 -31
  174. teradataml/data/customer_segmentation_test.csv +2628 -0
  175. teradataml/data/customer_segmentation_train.csv +8069 -0
  176. teradataml/data/dataframe_example.json +146 -146
  177. teradataml/data/decisionforest_example.json +37 -37
  178. teradataml/data/decisionforestpredict_example.json +38 -38
  179. teradataml/data/decisiontree_example.json +21 -21
  180. teradataml/data/decisiontreepredict_example.json +45 -45
  181. teradataml/data/dfft2_size4_real.csv +17 -17
  182. teradataml/data/dfft2_test_matrix16.csv +17 -17
  183. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  184. teradataml/data/diabetes.csv +443 -443
  185. teradataml/data/diabetes_test.csv +89 -89
  186. teradataml/data/dict_table.csv +5 -5
  187. teradataml/data/docperterm_table.csv +4 -4
  188. teradataml/data/docs/__init__.py +1 -1
  189. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  190. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  191. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  192. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  193. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  194. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  195. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  196. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  197. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  198. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  199. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  200. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  201. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  202. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  203. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  204. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  205. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  206. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  207. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  208. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  209. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  210. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  211. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  212. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  213. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  214. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  215. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  216. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  217. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
  218. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
  219. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  220. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
  221. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  222. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  223. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  224. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  225. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  226. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  227. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  228. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  229. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  230. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  231. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  232. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  233. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  234. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  235. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  236. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  237. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  238. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  239. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  240. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  241. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  242. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
  243. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  244. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  245. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  246. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  247. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  248. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  249. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  250. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  251. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
  252. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  253. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  254. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  255. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  256. teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
  257. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  258. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  259. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
  260. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  261. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  262. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  263. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
  264. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  265. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  266. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  267. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
  268. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  269. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  270. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  271. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  272. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  273. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  274. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  275. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  276. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
  277. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  278. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  279. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  280. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  281. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
  282. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
  283. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  284. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  285. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  286. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  287. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  288. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  289. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  290. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  291. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
  292. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  293. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  294. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  295. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  296. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  297. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  298. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  299. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  300. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
  301. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  302. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
  303. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
  304. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  305. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  306. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  307. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  308. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  309. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  310. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  311. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  312. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
  313. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  314. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  315. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  316. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  317. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  318. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  319. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  320. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  321. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  322. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  323. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  324. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
  325. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
  326. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
  327. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  328. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  329. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  330. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  331. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  332. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  333. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  334. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  335. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  336. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  337. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  338. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  339. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  340. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  341. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  342. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  343. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  344. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  345. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  346. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  347. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  348. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  349. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  350. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  351. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  352. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  353. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  354. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  355. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  356. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  357. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  358. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  359. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  360. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  361. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  362. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  363. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  364. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  365. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  366. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  367. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  368. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  369. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  370. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  371. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  372. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  373. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  374. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  375. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  376. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  377. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  378. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  379. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  380. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  381. teradataml/data/dtw_example.json +17 -17
  382. teradataml/data/dtw_t1.csv +11 -11
  383. teradataml/data/dtw_t2.csv +4 -4
  384. teradataml/data/dwt2d_example.json +15 -15
  385. teradataml/data/dwt_example.json +14 -14
  386. teradataml/data/dwt_filter_dim.csv +5 -5
  387. teradataml/data/emission.csv +9 -9
  388. teradataml/data/emp_table_by_dept.csv +19 -19
  389. teradataml/data/employee_info.csv +4 -4
  390. teradataml/data/employee_table.csv +6 -6
  391. teradataml/data/excluding_event_table.csv +2 -2
  392. teradataml/data/finance_data.csv +6 -6
  393. teradataml/data/finance_data2.csv +61 -61
  394. teradataml/data/finance_data3.csv +93 -93
  395. teradataml/data/fish.csv +160 -0
  396. teradataml/data/fm_blood2ageandweight.csv +26 -26
  397. teradataml/data/fmeasure_example.json +11 -11
  398. teradataml/data/followers_leaders.csv +10 -10
  399. teradataml/data/fpgrowth_example.json +12 -12
  400. teradataml/data/frequentpaths_example.json +29 -29
  401. teradataml/data/friends.csv +9 -9
  402. teradataml/data/fs_input.csv +33 -33
  403. teradataml/data/fs_input1.csv +33 -33
  404. teradataml/data/genData.csv +513 -513
  405. teradataml/data/geodataframe_example.json +39 -39
  406. teradataml/data/glass_types.csv +215 -0
  407. teradataml/data/glm_admissions_model.csv +12 -12
  408. teradataml/data/glm_example.json +56 -29
  409. teradataml/data/glml1l2_example.json +28 -28
  410. teradataml/data/glml1l2predict_example.json +54 -54
  411. teradataml/data/glmpredict_example.json +54 -54
  412. teradataml/data/gq_t1.csv +21 -21
  413. teradataml/data/hconvolve_complex_right.csv +5 -5
  414. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  415. teradataml/data/histogram_example.json +11 -11
  416. teradataml/data/hmmdecoder_example.json +78 -78
  417. teradataml/data/hmmevaluator_example.json +24 -24
  418. teradataml/data/hmmsupervised_example.json +10 -10
  419. teradataml/data/hmmunsupervised_example.json +7 -7
  420. teradataml/data/house_values.csv +12 -12
  421. teradataml/data/house_values2.csv +13 -13
  422. teradataml/data/housing_cat.csv +7 -7
  423. teradataml/data/housing_data.csv +9 -9
  424. teradataml/data/housing_test.csv +47 -47
  425. teradataml/data/housing_test_binary.csv +47 -47
  426. teradataml/data/housing_train.csv +493 -493
  427. teradataml/data/housing_train_attribute.csv +4 -4
  428. teradataml/data/housing_train_binary.csv +437 -437
  429. teradataml/data/housing_train_parameter.csv +2 -2
  430. teradataml/data/housing_train_response.csv +493 -493
  431. teradataml/data/housing_train_segment.csv +201 -0
  432. teradataml/data/ibm_stock.csv +370 -370
  433. teradataml/data/ibm_stock1.csv +370 -370
  434. teradataml/data/identitymatch_example.json +21 -21
  435. teradataml/data/idf_table.csv +4 -4
  436. teradataml/data/impressions.csv +101 -101
  437. teradataml/data/inflation.csv +21 -21
  438. teradataml/data/initial.csv +3 -3
  439. teradataml/data/insect2Cols.csv +61 -0
  440. teradataml/data/insect_sprays.csv +12 -12
  441. teradataml/data/insurance.csv +1339 -1339
  442. teradataml/data/interpolator_example.json +12 -12
  443. teradataml/data/iris_altinput.csv +481 -481
  444. teradataml/data/iris_attribute_output.csv +8 -8
  445. teradataml/data/iris_attribute_test.csv +121 -121
  446. teradataml/data/iris_attribute_train.csv +481 -481
  447. teradataml/data/iris_category_expect_predict.csv +31 -31
  448. teradataml/data/iris_data.csv +151 -0
  449. teradataml/data/iris_input.csv +151 -151
  450. teradataml/data/iris_response_train.csv +121 -121
  451. teradataml/data/iris_test.csv +31 -31
  452. teradataml/data/iris_train.csv +121 -121
  453. teradataml/data/join_table1.csv +4 -4
  454. teradataml/data/join_table2.csv +4 -4
  455. teradataml/data/jsons/anly_function_name.json +6 -6
  456. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  457. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  458. teradataml/data/jsons/byom/h2opredict.json +194 -194
  459. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  460. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  461. teradataml/data/jsons/paired_functions.json +435 -435
  462. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  463. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  464. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  465. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  466. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  467. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  468. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  469. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  470. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  471. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  472. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  473. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  474. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  475. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  476. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  477. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  478. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  479. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  480. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  481. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  482. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  483. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  484. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  485. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  486. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  487. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  488. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  489. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  490. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  491. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  492. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  493. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  494. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  495. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  496. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  497. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  498. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  499. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  500. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  501. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  502. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  503. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  504. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  505. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  506. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  507. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  508. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  509. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  510. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  511. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  512. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  513. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  514. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  515. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  516. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  517. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  518. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  519. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  520. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  521. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  522. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  523. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  524. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  525. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  526. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  527. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  528. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  529. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  531. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  532. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  533. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  534. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  535. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  536. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  537. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  539. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  540. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  541. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  542. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  543. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  544. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  545. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  546. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  547. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  548. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  549. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  550. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  551. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  552. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  553. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  554. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  555. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  556. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  557. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  558. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  559. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  560. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  561. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  562. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  563. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  564. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  565. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  566. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  567. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  568. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
  569. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  570. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  571. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  572. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  573. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  574. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  575. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  576. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  577. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  578. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  579. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
  580. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  581. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  582. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  583. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
  584. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
  585. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  586. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  587. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
  588. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  589. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  590. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  591. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
  592. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  593. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  594. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  595. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
  596. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  597. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  598. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  599. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  600. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  601. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  602. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  603. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  604. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  605. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  606. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  607. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  608. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  609. teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
  610. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  611. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  612. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  613. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  614. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  615. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  616. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  617. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  618. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
  619. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
  620. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
  621. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  622. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  623. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  624. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  625. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  626. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  627. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  628. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  629. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  630. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  631. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  632. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  633. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  634. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  635. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
  636. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
  637. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
  638. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  639. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  640. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  641. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  642. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  643. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  644. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  645. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  646. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  647. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  648. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  649. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  650. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  651. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  653. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  654. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  655. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  656. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  657. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  658. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  659. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  660. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  661. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  662. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  663. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  664. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  665. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  666. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  667. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  668. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  669. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  670. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  671. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  672. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  673. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  674. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  675. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  676. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  677. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  678. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  679. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  680. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  681. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  682. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  683. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  684. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  685. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  686. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  687. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  688. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  689. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  690. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  691. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  692. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  693. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  694. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  695. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  696. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  697. teradataml/data/kmeans_example.json +22 -17
  698. teradataml/data/kmeans_table.csv +10 -0
  699. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  700. teradataml/data/knn_example.json +18 -18
  701. teradataml/data/knnrecommender_example.json +6 -6
  702. teradataml/data/knnrecommenderpredict_example.json +12 -12
  703. teradataml/data/lar_example.json +17 -17
  704. teradataml/data/larpredict_example.json +30 -30
  705. teradataml/data/lc_new_predictors.csv +5 -5
  706. teradataml/data/lc_new_reference.csv +9 -9
  707. teradataml/data/lda_example.json +8 -8
  708. teradataml/data/ldainference_example.json +14 -14
  709. teradataml/data/ldatopicsummary_example.json +8 -8
  710. teradataml/data/levendist_input.csv +13 -13
  711. teradataml/data/levenshteindistance_example.json +10 -10
  712. teradataml/data/linreg_example.json +9 -9
  713. teradataml/data/load_example_data.py +326 -323
  714. teradataml/data/loan_prediction.csv +295 -295
  715. teradataml/data/lungcancer.csv +138 -138
  716. teradataml/data/mappingdata.csv +12 -12
  717. teradataml/data/milk_timeseries.csv +157 -157
  718. teradataml/data/min_max_titanic.csv +4 -4
  719. teradataml/data/minhash_example.json +6 -6
  720. teradataml/data/ml_ratings.csv +7547 -7547
  721. teradataml/data/ml_ratings_10.csv +2445 -2445
  722. teradataml/data/model1_table.csv +5 -5
  723. teradataml/data/model2_table.csv +5 -5
  724. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  725. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  726. teradataml/data/modularity_example.json +12 -12
  727. teradataml/data/movavg_example.json +7 -7
  728. teradataml/data/mtx1.csv +7 -7
  729. teradataml/data/mtx2.csv +13 -13
  730. teradataml/data/multi_model_classification.csv +401 -0
  731. teradataml/data/multi_model_regression.csv +401 -0
  732. teradataml/data/mvdfft8.csv +9 -9
  733. teradataml/data/naivebayes_example.json +9 -9
  734. teradataml/data/naivebayespredict_example.json +19 -19
  735. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  736. teradataml/data/naivebayestextclassifier_example.json +8 -8
  737. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  738. teradataml/data/name_Find_configure.csv +10 -10
  739. teradataml/data/namedentityfinder_example.json +14 -14
  740. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  741. teradataml/data/namedentityfindertrainer_example.json +6 -6
  742. teradataml/data/nb_iris_input_test.csv +31 -31
  743. teradataml/data/nb_iris_input_train.csv +121 -121
  744. teradataml/data/nbp_iris_model.csv +13 -13
  745. teradataml/data/ner_extractor_text.csv +2 -2
  746. teradataml/data/ner_sports_test2.csv +29 -29
  747. teradataml/data/ner_sports_train.csv +501 -501
  748. teradataml/data/nerevaluator_example.json +5 -5
  749. teradataml/data/nerextractor_example.json +18 -18
  750. teradataml/data/nermem_sports_test.csv +17 -17
  751. teradataml/data/nermem_sports_train.csv +50 -50
  752. teradataml/data/nertrainer_example.json +6 -6
  753. teradataml/data/ngrams_example.json +6 -6
  754. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  755. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  756. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  757. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  758. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  759. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  760. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  761. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  762. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  763. teradataml/data/npath_example.json +23 -23
  764. teradataml/data/ntree_example.json +14 -14
  765. teradataml/data/numeric_strings.csv +4 -4
  766. teradataml/data/numerics.csv +4 -4
  767. teradataml/data/ocean_buoy.csv +17 -17
  768. teradataml/data/ocean_buoy2.csv +17 -17
  769. teradataml/data/ocean_buoys.csv +27 -27
  770. teradataml/data/ocean_buoys2.csv +10 -10
  771. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  772. teradataml/data/ocean_buoys_seq.csv +29 -29
  773. teradataml/data/onehot_encoder_train.csv +4 -0
  774. teradataml/data/openml_example.json +92 -0
  775. teradataml/data/optional_event_table.csv +4 -4
  776. teradataml/data/orders1.csv +11 -11
  777. teradataml/data/orders1_12.csv +12 -12
  778. teradataml/data/orders_ex.csv +4 -4
  779. teradataml/data/pack_example.json +8 -8
  780. teradataml/data/package_tracking.csv +19 -19
  781. teradataml/data/package_tracking_pti.csv +18 -18
  782. teradataml/data/pagerank_example.json +13 -13
  783. teradataml/data/paragraphs_input.csv +6 -6
  784. teradataml/data/pathanalyzer_example.json +7 -7
  785. teradataml/data/pathgenerator_example.json +7 -7
  786. teradataml/data/phrases.csv +7 -7
  787. teradataml/data/pivot_example.json +8 -8
  788. teradataml/data/pivot_input.csv +22 -22
  789. teradataml/data/playerRating.csv +31 -31
  790. teradataml/data/postagger_example.json +6 -6
  791. teradataml/data/posttagger_output.csv +44 -44
  792. teradataml/data/production_data.csv +16 -16
  793. teradataml/data/production_data2.csv +7 -7
  794. teradataml/data/randomsample_example.json +31 -31
  795. teradataml/data/randomwalksample_example.json +8 -8
  796. teradataml/data/rank_table.csv +6 -6
  797. teradataml/data/ref_mobile_data.csv +4 -4
  798. teradataml/data/ref_mobile_data_dense.csv +2 -2
  799. teradataml/data/ref_url.csv +17 -17
  800. teradataml/data/restaurant_reviews.csv +7 -7
  801. teradataml/data/river_data.csv +145 -145
  802. teradataml/data/roc_example.json +7 -7
  803. teradataml/data/roc_input.csv +101 -101
  804. teradataml/data/rule_inputs.csv +6 -6
  805. teradataml/data/rule_table.csv +2 -2
  806. teradataml/data/sales.csv +7 -7
  807. teradataml/data/sales_transaction.csv +501 -501
  808. teradataml/data/salesdata.csv +342 -342
  809. teradataml/data/sample_cities.csv +2 -2
  810. teradataml/data/sample_shapes.csv +10 -10
  811. teradataml/data/sample_streets.csv +2 -2
  812. teradataml/data/sampling_example.json +15 -15
  813. teradataml/data/sax_example.json +8 -8
  814. teradataml/data/scale_attributes.csv +3 -0
  815. teradataml/data/scale_example.json +74 -23
  816. teradataml/data/scale_housing.csv +11 -11
  817. teradataml/data/scale_housing_test.csv +6 -6
  818. teradataml/data/scale_input_part_sparse.csv +31 -0
  819. teradataml/data/scale_input_partitioned.csv +16 -0
  820. teradataml/data/scale_input_sparse.csv +11 -0
  821. teradataml/data/scale_parameters.csv +3 -0
  822. teradataml/data/scale_stat.csv +11 -11
  823. teradataml/data/scalebypartition_example.json +13 -13
  824. teradataml/data/scalemap_example.json +13 -13
  825. teradataml/data/scalesummary_example.json +12 -12
  826. teradataml/data/score_category.csv +101 -101
  827. teradataml/data/score_summary.csv +4 -4
  828. teradataml/data/script_example.json +9 -9
  829. teradataml/data/scripts/deploy_script.py +84 -0
  830. teradataml/data/scripts/mapper.R +20 -0
  831. teradataml/data/scripts/mapper.py +15 -15
  832. teradataml/data/scripts/mapper_replace.py +15 -15
  833. teradataml/data/scripts/sklearn/__init__.py +0 -0
  834. teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
  835. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
  836. teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
  837. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
  838. teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
  839. teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
  840. teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
  841. teradataml/data/seeds.csv +10 -10
  842. teradataml/data/sentenceextractor_example.json +6 -6
  843. teradataml/data/sentiment_extract_input.csv +11 -11
  844. teradataml/data/sentiment_train.csv +16 -16
  845. teradataml/data/sentiment_word.csv +20 -20
  846. teradataml/data/sentiment_word_input.csv +19 -19
  847. teradataml/data/sentimentextractor_example.json +24 -24
  848. teradataml/data/sentimenttrainer_example.json +8 -8
  849. teradataml/data/sequence_table.csv +10 -10
  850. teradataml/data/seriessplitter_example.json +7 -7
  851. teradataml/data/sessionize_example.json +17 -17
  852. teradataml/data/sessionize_table.csv +116 -116
  853. teradataml/data/setop_test1.csv +24 -24
  854. teradataml/data/setop_test2.csv +22 -22
  855. teradataml/data/soc_nw_edges.csv +10 -10
  856. teradataml/data/soc_nw_vertices.csv +7 -7
  857. teradataml/data/souvenir_timeseries.csv +167 -167
  858. teradataml/data/sparse_iris_attribute.csv +5 -5
  859. teradataml/data/sparse_iris_test.csv +121 -121
  860. teradataml/data/sparse_iris_train.csv +601 -601
  861. teradataml/data/star1.csv +6 -6
  862. teradataml/data/state_transition.csv +5 -5
  863. teradataml/data/stock_data.csv +53 -53
  864. teradataml/data/stock_movement.csv +11 -11
  865. teradataml/data/stock_vol.csv +76 -76
  866. teradataml/data/stop_words.csv +8 -8
  867. teradataml/data/store_sales.csv +37 -37
  868. teradataml/data/stringsimilarity_example.json +7 -7
  869. teradataml/data/strsimilarity_input.csv +13 -13
  870. teradataml/data/students.csv +101 -101
  871. teradataml/data/svm_iris_input_test.csv +121 -121
  872. teradataml/data/svm_iris_input_train.csv +481 -481
  873. teradataml/data/svm_iris_model.csv +7 -7
  874. teradataml/data/svmdense_example.json +9 -9
  875. teradataml/data/svmdensepredict_example.json +18 -18
  876. teradataml/data/svmsparse_example.json +7 -7
  877. teradataml/data/svmsparsepredict_example.json +13 -13
  878. teradataml/data/svmsparsesummary_example.json +7 -7
  879. teradataml/data/target_mobile_data.csv +13 -13
  880. teradataml/data/target_mobile_data_dense.csv +5 -5
  881. teradataml/data/templatedata.csv +1201 -1201
  882. teradataml/data/templates/open_source_ml.json +9 -0
  883. teradataml/data/teradataml_example.json +150 -1
  884. teradataml/data/test_classification.csv +101 -0
  885. teradataml/data/test_loan_prediction.csv +53 -53
  886. teradataml/data/test_pacf_12.csv +37 -37
  887. teradataml/data/test_prediction.csv +101 -0
  888. teradataml/data/test_regression.csv +101 -0
  889. teradataml/data/test_river2.csv +109 -109
  890. teradataml/data/text_inputs.csv +6 -6
  891. teradataml/data/textchunker_example.json +7 -7
  892. teradataml/data/textclassifier_example.json +6 -6
  893. teradataml/data/textclassifier_input.csv +7 -7
  894. teradataml/data/textclassifiertrainer_example.json +6 -6
  895. teradataml/data/textmorph_example.json +5 -5
  896. teradataml/data/textparser_example.json +15 -15
  897. teradataml/data/texttagger_example.json +11 -11
  898. teradataml/data/texttokenizer_example.json +6 -6
  899. teradataml/data/texttrainer_input.csv +11 -11
  900. teradataml/data/tf_example.json +6 -6
  901. teradataml/data/tfidf_example.json +13 -13
  902. teradataml/data/tfidf_input1.csv +201 -201
  903. teradataml/data/tfidf_train.csv +6 -6
  904. teradataml/data/time_table1.csv +535 -535
  905. teradataml/data/time_table2.csv +14 -14
  906. teradataml/data/timeseriesdata.csv +1601 -1601
  907. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  908. teradataml/data/titanic.csv +892 -892
  909. teradataml/data/token_table.csv +696 -696
  910. teradataml/data/train_multiclass.csv +101 -0
  911. teradataml/data/train_regression.csv +101 -0
  912. teradataml/data/train_regression_multiple_labels.csv +101 -0
  913. teradataml/data/train_tracking.csv +27 -27
  914. teradataml/data/transformation_table.csv +5 -5
  915. teradataml/data/transformation_table_new.csv +1 -1
  916. teradataml/data/tv_spots.csv +16 -16
  917. teradataml/data/twod_climate_data.csv +117 -117
  918. teradataml/data/uaf_example.json +475 -475
  919. teradataml/data/univariatestatistics_example.json +8 -8
  920. teradataml/data/unpack_example.json +9 -9
  921. teradataml/data/unpivot_example.json +9 -9
  922. teradataml/data/unpivot_input.csv +8 -8
  923. teradataml/data/us_air_pass.csv +36 -36
  924. teradataml/data/us_population.csv +624 -624
  925. teradataml/data/us_states_shapes.csv +52 -52
  926. teradataml/data/varmax_example.json +17 -17
  927. teradataml/data/vectordistance_example.json +25 -25
  928. teradataml/data/ville_climatedata.csv +121 -121
  929. teradataml/data/ville_tempdata.csv +12 -12
  930. teradataml/data/ville_tempdata1.csv +12 -12
  931. teradataml/data/ville_temperature.csv +11 -11
  932. teradataml/data/waveletTable.csv +1605 -1605
  933. teradataml/data/waveletTable2.csv +1605 -1605
  934. teradataml/data/weightedmovavg_example.json +8 -8
  935. teradataml/data/wft_testing.csv +5 -5
  936. teradataml/data/wine_data.csv +1600 -0
  937. teradataml/data/word_embed_input_table1.csv +5 -5
  938. teradataml/data/word_embed_input_table2.csv +4 -4
  939. teradataml/data/word_embed_model.csv +22 -22
  940. teradataml/data/words_input.csv +13 -13
  941. teradataml/data/xconvolve_complex_left.csv +6 -6
  942. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  943. teradataml/data/xgboost_example.json +35 -35
  944. teradataml/data/xgboostpredict_example.json +31 -31
  945. teradataml/data/ztest_example.json +16 -0
  946. teradataml/dataframe/copy_to.py +1769 -1698
  947. teradataml/dataframe/data_transfer.py +2812 -2745
  948. teradataml/dataframe/dataframe.py +17630 -16946
  949. teradataml/dataframe/dataframe_utils.py +1875 -1740
  950. teradataml/dataframe/fastload.py +794 -603
  951. teradataml/dataframe/indexer.py +424 -424
  952. teradataml/dataframe/setop.py +1179 -1166
  953. teradataml/dataframe/sql.py +10174 -6432
  954. teradataml/dataframe/sql_function_parameters.py +439 -388
  955. teradataml/dataframe/sql_functions.py +652 -652
  956. teradataml/dataframe/sql_interfaces.py +220 -220
  957. teradataml/dataframe/vantage_function_types.py +674 -630
  958. teradataml/dataframe/window.py +693 -692
  959. teradataml/dbutils/__init__.py +3 -3
  960. teradataml/dbutils/dbutils.py +1167 -1150
  961. teradataml/dbutils/filemgr.py +267 -267
  962. teradataml/gen_ai/__init__.py +2 -2
  963. teradataml/gen_ai/convAI.py +472 -472
  964. teradataml/geospatial/__init__.py +3 -3
  965. teradataml/geospatial/geodataframe.py +1105 -1094
  966. teradataml/geospatial/geodataframecolumn.py +392 -387
  967. teradataml/geospatial/geometry_types.py +925 -925
  968. teradataml/hyperparameter_tuner/__init__.py +1 -1
  969. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  970. teradataml/hyperparameter_tuner/utils.py +281 -187
  971. teradataml/lib/aed_0_1.dll +0 -0
  972. teradataml/lib/libaed_0_1.dylib +0 -0
  973. teradataml/lib/libaed_0_1.so +0 -0
  974. teradataml/libaed_0_1.dylib +0 -0
  975. teradataml/libaed_0_1.so +0 -0
  976. teradataml/opensource/__init__.py +1 -0
  977. teradataml/opensource/sklearn/__init__.py +1 -0
  978. teradataml/opensource/sklearn/_class.py +255 -0
  979. teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
  980. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  981. teradataml/opensource/sklearn/constants.py +54 -0
  982. teradataml/options/__init__.py +130 -124
  983. teradataml/options/configure.py +358 -336
  984. teradataml/options/display.py +176 -176
  985. teradataml/plot/__init__.py +2 -2
  986. teradataml/plot/axis.py +1388 -1388
  987. teradataml/plot/constants.py +15 -15
  988. teradataml/plot/figure.py +398 -398
  989. teradataml/plot/plot.py +760 -760
  990. teradataml/plot/query_generator.py +83 -83
  991. teradataml/plot/subplot.py +216 -216
  992. teradataml/scriptmgmt/UserEnv.py +3791 -3761
  993. teradataml/scriptmgmt/__init__.py +3 -3
  994. teradataml/scriptmgmt/lls_utils.py +1719 -1604
  995. teradataml/series/series.py +532 -532
  996. teradataml/series/series_utils.py +71 -71
  997. teradataml/table_operators/Apply.py +949 -917
  998. teradataml/table_operators/Script.py +1718 -1982
  999. teradataml/table_operators/TableOperator.py +1255 -1616
  1000. teradataml/table_operators/__init__.py +2 -3
  1001. teradataml/table_operators/apply_query_generator.py +262 -262
  1002. teradataml/table_operators/query_generator.py +507 -507
  1003. teradataml/table_operators/table_operator_query_generator.py +460 -460
  1004. teradataml/table_operators/table_operator_util.py +631 -639
  1005. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  1006. teradataml/table_operators/templates/dataframe_map.template +176 -176
  1007. teradataml/table_operators/templates/script_executor.template +170 -170
  1008. teradataml/utils/dtypes.py +684 -684
  1009. teradataml/utils/internal_buffer.py +84 -84
  1010. teradataml/utils/print_versions.py +205 -205
  1011. teradataml/utils/utils.py +410 -410
  1012. teradataml/utils/validators.py +2277 -2115
  1013. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
  1014. teradataml-20.0.0.1.dist-info/RECORD +1056 -0
  1015. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
  1016. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
  1017. teradataml/analytics/mle/AdaBoost.py +0 -651
  1018. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1019. teradataml/analytics/mle/Antiselect.py +0 -342
  1020. teradataml/analytics/mle/Arima.py +0 -641
  1021. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1022. teradataml/analytics/mle/Attribution.py +0 -1070
  1023. teradataml/analytics/mle/Betweenness.py +0 -658
  1024. teradataml/analytics/mle/Burst.py +0 -711
  1025. teradataml/analytics/mle/CCM.py +0 -600
  1026. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1027. teradataml/analytics/mle/CFilter.py +0 -460
  1028. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1029. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1030. teradataml/analytics/mle/Closeness.py +0 -737
  1031. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1032. teradataml/analytics/mle/Correlation.py +0 -477
  1033. teradataml/analytics/mle/Correlation2.py +0 -573
  1034. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1035. teradataml/analytics/mle/CoxPH.py +0 -556
  1036. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1037. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1038. teradataml/analytics/mle/DTW.py +0 -623
  1039. teradataml/analytics/mle/DWT.py +0 -564
  1040. teradataml/analytics/mle/DWT2D.py +0 -599
  1041. teradataml/analytics/mle/DecisionForest.py +0 -716
  1042. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1043. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1044. teradataml/analytics/mle/DecisionTree.py +0 -830
  1045. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1046. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1047. teradataml/analytics/mle/FMeasure.py +0 -402
  1048. teradataml/analytics/mle/FPGrowth.py +0 -734
  1049. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1050. teradataml/analytics/mle/GLM.py +0 -558
  1051. teradataml/analytics/mle/GLML1L2.py +0 -547
  1052. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1053. teradataml/analytics/mle/GLMPredict.py +0 -529
  1054. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1055. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1056. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1057. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1058. teradataml/analytics/mle/Histogram.py +0 -561
  1059. teradataml/analytics/mle/IDWT.py +0 -476
  1060. teradataml/analytics/mle/IDWT2D.py +0 -493
  1061. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1062. teradataml/analytics/mle/Interpolator.py +0 -918
  1063. teradataml/analytics/mle/KMeans.py +0 -485
  1064. teradataml/analytics/mle/KNN.py +0 -627
  1065. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1066. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1067. teradataml/analytics/mle/LAR.py +0 -439
  1068. teradataml/analytics/mle/LARPredict.py +0 -478
  1069. teradataml/analytics/mle/LDA.py +0 -548
  1070. teradataml/analytics/mle/LDAInference.py +0 -492
  1071. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1072. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1073. teradataml/analytics/mle/LinReg.py +0 -433
  1074. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1075. teradataml/analytics/mle/MinHash.py +0 -544
  1076. teradataml/analytics/mle/Modularity.py +0 -587
  1077. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1078. teradataml/analytics/mle/NERExtractor.py +0 -595
  1079. teradataml/analytics/mle/NERTrainer.py +0 -458
  1080. teradataml/analytics/mle/NGrams.py +0 -570
  1081. teradataml/analytics/mle/NPath.py +0 -634
  1082. teradataml/analytics/mle/NTree.py +0 -549
  1083. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1084. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1085. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1086. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1087. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1088. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1089. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1090. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1091. teradataml/analytics/mle/POSTagger.py +0 -417
  1092. teradataml/analytics/mle/Pack.py +0 -411
  1093. teradataml/analytics/mle/PageRank.py +0 -535
  1094. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1095. teradataml/analytics/mle/PathGenerator.py +0 -367
  1096. teradataml/analytics/mle/PathStart.py +0 -464
  1097. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1098. teradataml/analytics/mle/Pivot.py +0 -471
  1099. teradataml/analytics/mle/ROC.py +0 -425
  1100. teradataml/analytics/mle/RandomSample.py +0 -637
  1101. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1102. teradataml/analytics/mle/SAX.py +0 -779
  1103. teradataml/analytics/mle/SVMDense.py +0 -677
  1104. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1105. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1106. teradataml/analytics/mle/SVMSparse.py +0 -557
  1107. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1108. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1109. teradataml/analytics/mle/Sampling.py +0 -549
  1110. teradataml/analytics/mle/Scale.py +0 -565
  1111. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1112. teradataml/analytics/mle/ScaleMap.py +0 -378
  1113. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1114. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1115. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1116. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1117. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1118. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1119. teradataml/analytics/mle/Sessionize.py +0 -475
  1120. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1121. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1122. teradataml/analytics/mle/TF.py +0 -389
  1123. teradataml/analytics/mle/TFIDF.py +0 -504
  1124. teradataml/analytics/mle/TextChunker.py +0 -414
  1125. teradataml/analytics/mle/TextClassifier.py +0 -399
  1126. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1127. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1128. teradataml/analytics/mle/TextMorph.py +0 -494
  1129. teradataml/analytics/mle/TextParser.py +0 -623
  1130. teradataml/analytics/mle/TextTagger.py +0 -530
  1131. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1132. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1133. teradataml/analytics/mle/Unpack.py +0 -526
  1134. teradataml/analytics/mle/Unpivot.py +0 -438
  1135. teradataml/analytics/mle/VarMax.py +0 -776
  1136. teradataml/analytics/mle/VectorDistance.py +0 -762
  1137. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1138. teradataml/analytics/mle/XGBoost.py +0 -842
  1139. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1140. teradataml/analytics/mle/__init__.py +0 -123
  1141. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1142. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1143. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1144. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1145. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1146. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1147. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1148. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1149. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1150. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1151. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1152. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1153. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1154. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1155. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1156. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1157. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1158. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1159. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1160. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1161. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1162. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1163. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1164. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1165. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1166. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1167. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1168. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1169. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1170. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1171. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1172. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1173. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1174. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1175. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1176. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1177. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1178. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1179. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1180. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1181. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1182. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1183. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1184. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1185. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1186. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1187. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1188. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1189. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1190. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1191. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1192. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1193. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1194. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1195. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1196. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1197. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1198. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1199. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1200. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1201. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1202. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1203. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1204. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1205. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1206. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1207. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1208. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1209. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1210. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1211. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1212. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1213. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1214. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1215. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1216. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1217. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1218. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1219. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1220. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1221. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1222. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1223. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1224. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1225. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1226. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1227. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1228. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1229. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1230. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1231. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1232. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1233. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1234. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1235. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1236. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1237. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1238. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1239. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1240. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1241. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1242. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1243. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1244. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1245. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1246. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1247. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1248. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1249. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1250. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1251. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1252. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1253. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1254. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1255. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1256. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1257. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1258. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1259. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1260. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1261. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1262. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1263. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1264. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1265. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1266. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1267. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1268. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1269. teradataml/analytics/sqle/Antiselect.py +0 -321
  1270. teradataml/analytics/sqle/Attribution.py +0 -603
  1271. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1272. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1273. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1274. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1275. teradataml/analytics/sqle/NPath.py +0 -632
  1276. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1277. teradataml/analytics/sqle/Pack.py +0 -388
  1278. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1279. teradataml/analytics/sqle/Sessionize.py +0 -390
  1280. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1281. teradataml/analytics/sqle/Unpack.py +0 -503
  1282. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1283. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1284. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1285. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1286. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1287. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1288. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1289. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1290. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1291. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1292. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1293. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1294. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1295. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1296. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1297. teradataml/catalog/model_cataloging.py +0 -980
  1298. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1299. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1300. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1301. teradataml/table_operators/sandbox_container_util.py +0 -643
  1302. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1303. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
@@ -1,1001 +1,1001 @@
1
- "compid","price","speed","hd","ram","screen","expected_compcategory","predicted_compcategory"
2
- "469","2599.0","50.0","405.0","8.0","14.0","mega","mega"
3
- "265","1899.0","50.0","120.0","4.0","14.0","super","super"
4
- "40","2425.0","50.0","210.0","8.0","14.0","mega","mega"
5
- "387","1790.0","50.0","85.0","2.0","14.0","super","super"
6
- "469","2599.0","50.0","405.0","8.0","14.0","mega","mega"
7
- "265","1899.0","50.0","120.0","4.0","14.0","super","super"
8
- "40","2425.0","50.0","210.0","8.0","14.0","mega","mega"
9
- "387","1790.0","50.0","85.0","2.0","14.0","super","super"
10
- "61","3990.0","66.0","330.0","8.0","15.0","uber","uber"
11
- "530","2575.0","50.0","250.0","8.0","15.0","mega","mega"
12
- "223","2199.0","50.0","213.0","8.0","14.0","super","super"
13
- "448","1590.0","33.0","107.0","2.0","15.0","special","special"
14
- "61","3990.0","66.0","330.0","8.0","15.0","uber","uber"
15
- "530","2575.0","50.0","250.0","8.0","15.0","mega","mega"
16
- "223","2199.0","50.0","213.0","8.0","14.0","super","super"
17
- "448","1590.0","33.0","107.0","2.0","15.0","special","special"
18
- "183","1899.0","25.0","120.0","4.0","14.0","super","super"
19
- "244","2495.0","50.0","245.0","8.0","14.0","mega","mega"
20
- "488","2599.0","50.0","405.0","4.0","15.0","mega","mega"
21
- "19","2095.0","33.0","250.0","4.0","15.0","super","super"
22
- "183","1899.0","25.0","120.0","4.0","14.0","super","super"
23
- "244","2495.0","50.0","245.0","8.0","14.0","mega","mega"
24
- "488","2599.0","50.0","405.0","4.0","15.0","mega","mega"
25
- "19","2095.0","33.0","250.0","4.0","15.0","super","super"
26
- "509","2690.0","50.0","340.0","8.0","14.0","mega","mega"
27
- "305","2590.0","50.0","245.0","8.0","14.0","mega","mega"
28
- "80","1629.0","25.0","80.0","8.0","14.0","special","special"
29
- "263","2535.0","33.0","170.0","8.0","15.0","mega","mega"
30
- "509","2690.0","50.0","340.0","8.0","14.0","mega","mega"
31
- "305","2590.0","50.0","245.0","8.0","14.0","mega","mega"
32
- "80","1629.0","25.0","80.0","8.0","14.0","special","special"
33
- "263","2535.0","33.0","170.0","8.0","15.0","mega","mega"
34
- "366","1599.0","25.0","170.0","4.0","14.0","special","special"
35
- "101","1995.0","33.0","250.0","4.0","14.0","super","super"
36
- "345","2345.0","33.0","250.0","8.0","15.0","mega","mega"
37
- "303","1895.0","33.0","170.0","4.0","14.0","super","super"
38
- "366","1599.0","25.0","170.0","4.0","14.0","special","special"
39
- "101","1995.0","33.0","250.0","4.0","14.0","super","super"
40
- "345","2345.0","33.0","250.0","8.0","15.0","mega","mega"
41
- "303","1895.0","33.0","170.0","4.0","14.0","super","super"
42
- "202","2785.0","33.0","250.0","8.0","17.0","hyper","uber"
43
- "570","2290.0","25.0","340.0","8.0","14.0","mega","mega"
44
- "406","2190.0","33.0","214.0","4.0","15.0","super","super"
45
- "99","2595.0","25.0","340.0","16.0","14.0","mega","mega"
46
- "202","2785.0","33.0","250.0","8.0","17.0","hyper","uber"
47
- "570","2290.0","25.0","340.0","8.0","14.0","mega","mega"
48
- "406","2190.0","33.0","214.0","4.0","15.0","super","super"
49
- "99","2595.0","25.0","340.0","16.0","14.0","mega","mega"
50
- "467","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
51
- "427","2890.0","33.0","452.0","16.0","15.0","hyper","hyper"
52
- "120","2799.0","33.0","230.0","4.0","14.0","hyper","hyper"
53
- "568","1390.0","25.0","107.0","2.0","15.0","special","special"
54
- "467","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
55
- "427","2890.0","33.0","452.0","16.0","15.0","hyper","hyper"
56
- "120","2799.0","33.0","230.0","4.0","14.0","hyper","hyper"
57
- "568","1390.0","25.0","107.0","2.0","15.0","special","special"
58
- "181","2195.0","50.0","170.0","4.0","14.0","super","super"
59
- "284","1795.0","33.0","170.0","4.0","15.0","super","super"
60
- "446","2599.0","33.0","245.0","16.0","15.0","mega","mega"
61
- "160","3399.0","66.0","230.0","4.0","15.0","hyper","hyper"
62
- "181","2195.0","50.0","170.0","4.0","14.0","super","super"
63
- "284","1795.0","33.0","170.0","4.0","15.0","super","super"
64
- "446","2599.0","33.0","245.0","16.0","15.0","mega","mega"
65
- "160","3399.0","66.0","230.0","4.0","15.0","hyper","hyper"
66
- "242","1895.0","25.0","130.0","4.0","14.0","super","super"
67
- "549","1825.0","50.0","170.0","4.0","14.0","super","super"
68
- "343","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
69
- "465","1790.0","50.0","107.0","2.0","15.0","super","super"
70
- "242","1895.0","25.0","130.0","4.0","14.0","super","super"
71
- "549","1825.0","50.0","170.0","4.0","14.0","super","super"
72
- "343","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
73
- "465","1790.0","50.0","107.0","2.0","15.0","super","super"
74
- "507","2490.0","33.0","340.0","8.0","15.0","mega","mega"
75
- "141","2225.0","33.0","250.0","8.0","14.0","super","super"
76
- "200","3220.0","66.0","340.0","8.0","15.0","hyper","super"
77
- "36","2675.0","66.0","210.0","4.0","15.0","mega","special"
78
- "507","2490.0","33.0","340.0","8.0","15.0","mega","mega"
79
- "141","2225.0","33.0","250.0","8.0","14.0","super","super"
80
- "200","3220.0","66.0","340.0","8.0","15.0","hyper","super"
81
- "36","2675.0","66.0","210.0","4.0","15.0","mega","special"
82
- "364","3075.0","50.0","250.0","8.0","17.0","hyper","hyper"
83
- "610","1890.0","66.0","107.0","2.0","14.0","super","super"
84
- "57","2045.0","66.0","130.0","4.0","14.0","super","super"
85
- "97","1999.0","33.0","170.0","4.0","14.0","super","super"
86
- "364","3075.0","50.0","250.0","8.0","17.0","hyper","hyper"
87
- "610","1890.0","66.0","107.0","2.0","14.0","super","super"
88
- "57","2045.0","66.0","130.0","4.0","14.0","super","super"
89
- "97","1999.0","33.0","170.0","4.0","14.0","super","super"
90
- "221","2635.0","33.0","250.0","8.0","17.0","mega","mega"
91
- "589","1825.0","33.0","170.0","4.0","15.0","super","special"
92
- "118","2325.0","66.0","250.0","8.0","14.0","mega","mega"
93
- "566","2190.0","33.0","214.0","4.0","14.0","super","super"
94
- "221","2635.0","33.0","250.0","8.0","17.0","mega","mega"
95
- "589","1825.0","33.0","170.0","4.0","15.0","super","special"
96
- "118","2325.0","66.0","250.0","8.0","14.0","mega","mega"
97
- "566","2190.0","33.0","214.0","4.0","14.0","super","super"
98
- "486","2595.0","50.0","340.0","8.0","14.0","mega","mega"
99
- "17","1595.0","33.0","85.0","2.0","14.0","special","super"
100
- "383","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
101
- "362","2095.0","33.0","130.0","4.0","14.0","super","super"
102
- "486","2595.0","50.0","340.0","8.0","14.0","mega","mega"
103
- "17","1595.0","33.0","85.0","2.0","14.0","special","super"
104
- "383","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
105
- "362","2095.0","33.0","130.0","4.0","14.0","super","super"
106
- "78","3220.0","66.0","340.0","8.0","15.0","hyper","hyper"
107
- "282","1995.0","33.0","250.0","4.0","14.0","super","super"
108
- "505","3149.0","66.0","230.0","8.0","14.0","hyper","hyper"
109
- "280","1795.0","66.0","85.0","2.0","14.0","super","mega"
110
- "78","3220.0","66.0","340.0","8.0","15.0","hyper","hyper"
111
- "282","1995.0","33.0","250.0","4.0","14.0","super","super"
112
- "505","3149.0","66.0","230.0","8.0","14.0","hyper","hyper"
113
- "280","1795.0","66.0","85.0","2.0","14.0","super","mega"
114
- "547","2095.0","33.0","214.0","4.0","14.0","super","super"
115
- "139","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
116
- "158","2195.0","33.0","170.0","8.0","15.0","super","super"
117
- "137","2255.0","50.0","250.0","8.0","14.0","mega","mega"
118
- "547","2095.0","33.0","214.0","4.0","14.0","super","super"
119
- "139","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
120
- "158","2195.0","33.0","170.0","8.0","15.0","super","super"
121
- "137","2255.0","50.0","250.0","8.0","14.0","mega","mega"
122
- "219","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
123
- "404","2995.0","66.0","452.0","16.0","14.0","hyper","hyper"
124
- "423","1895.0","25.0","214.0","4.0","14.0","super","super"
125
- "606","1490.0","33.0","107.0","2.0","15.0","special","special"
126
- "219","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
127
- "404","2995.0","66.0","452.0","16.0","14.0","hyper","hyper"
128
- "423","1895.0","25.0","214.0","4.0","14.0","super","super"
129
- "606","1490.0","33.0","107.0","2.0","15.0","special","special"
130
- "76","2844.0","33.0","245.0","8.0","14.0","hyper","hyper"
131
- "261","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
132
- "55","2199.0","33.0","212.0","8.0","14.0","super","super"
133
- "402","1595.0","33.0","170.0","4.0","14.0","special","special"
134
- "76","2844.0","33.0","245.0","8.0","14.0","hyper","hyper"
135
- "261","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
136
- "55","2199.0","33.0","212.0","8.0","14.0","super","super"
137
- "402","1595.0","33.0","170.0","4.0","14.0","special","special"
138
- "341","2390.0","66.0","130.0","4.0","14.0","mega","mega"
139
- "587","2890.0","33.0","452.0","16.0","14.0","hyper","hyper"
140
- "503","1990.0","25.0","214.0","4.0","15.0","super","super"
141
- "177","2399.0","50.0","212.0","4.0","14.0","mega","mega"
142
- "341","2390.0","66.0","130.0","4.0","14.0","mega","mega"
143
- "587","2890.0","33.0","452.0","16.0","14.0","hyper","hyper"
144
- "503","1990.0","25.0","214.0","4.0","15.0","super","super"
145
- "177","2399.0","50.0","212.0","4.0","14.0","mega","mega"
146
- "198","1995.0","33.0","130.0","4.0","14.0","super","super"
147
- "444","1699.0","33.0","170.0","4.0","14.0","special","special"
148
- "95","2995.0","66.0","340.0","16.0","14.0","hyper","hyper"
149
- "442","2125.0","33.0","250.0","8.0","15.0","super","super"
150
- "198","1995.0","33.0","130.0","4.0","14.0","super","super"
151
- "444","1699.0","33.0","170.0","4.0","14.0","special","special"
152
- "95","2995.0","66.0","340.0","16.0","14.0","hyper","hyper"
153
- "442","2125.0","33.0","250.0","8.0","15.0","super","super"
154
- "259","1775.0","33.0","170.0","4.0","14.0","super","super"
155
- "320","2195.0","66.0","170.0","4.0","14.0","super","super"
156
- "543","2799.0","33.0","240.0","4.0","14.0","hyper","hyper"
157
- "74","3044.0","50.0","245.0","8.0","14.0","hyper","hyper"
158
- "259","1775.0","33.0","170.0","4.0","14.0","super","super"
159
- "320","2195.0","66.0","170.0","4.0","14.0","super","super"
160
- "543","2799.0","33.0","240.0","4.0","14.0","hyper","hyper"
161
- "74","3044.0","50.0","245.0","8.0","14.0","hyper","hyper"
162
- "524","2325.0","33.0","250.0","8.0","15.0","mega","mega"
163
- "585","3265.0","33.0","540.0","8.0","17.0","hyper","hyper"
164
- "400","2395.0","33.0","340.0","8.0","14.0","mega","mega"
165
- "53","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
166
- "524","2325.0","33.0","250.0","8.0","15.0","mega","mega"
167
- "585","3265.0","33.0","540.0","8.0","17.0","hyper","hyper"
168
- "400","2395.0","33.0","340.0","8.0","14.0","mega","mega"
169
- "53","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
170
- "381","2125.0","33.0","250.0","8.0","15.0","super","super"
171
- "34","2475.0","50.0","210.0","4.0","15.0","mega","mega"
172
- "583","3365.0","50.0","540.0","8.0","17.0","hyper","hyper"
173
- "318","2605.0","33.0","250.0","8.0","17.0","mega","mega"
174
- "381","2125.0","33.0","250.0","8.0","15.0","super","super"
175
- "34","2475.0","50.0","210.0","4.0","15.0","mega","mega"
176
- "583","3365.0","50.0","540.0","8.0","17.0","hyper","hyper"
177
- "318","2605.0","33.0","250.0","8.0","17.0","mega","mega"
178
- "238","1695.0","33.0","170.0","4.0","14.0","special","special"
179
- "299","1899.0","33.0","170.0","4.0","14.0","super","super"
180
- "175","3795.0","33.0","452.0","8.0","14.0","uber","uber"
181
- "114","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
182
- "238","1695.0","33.0","170.0","4.0","14.0","special","special"
183
- "299","1899.0","33.0","170.0","4.0","14.0","super","super"
184
- "175","3795.0","33.0","452.0","8.0","14.0","uber","uber"
185
- "114","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
186
- "421","3090.0","66.0","452.0","16.0","14.0","hyper","hyper"
187
- "13","2045.0","50.0","130.0","4.0","14.0","super","super"
188
- "501","2145.0","50.0","170.0","4.0","14.0","super","super"
189
- "379","1595.0","33.0","85.0","2.0","14.0","special","special"
190
- "421","3090.0","66.0","452.0","16.0","14.0","hyper","hyper"
191
- "13","2045.0","50.0","130.0","4.0","14.0","super","super"
192
- "501","2145.0","50.0","170.0","4.0","14.0","super","super"
193
- "379","1595.0","33.0","85.0","2.0","14.0","special","special"
194
- "257","3035.0","50.0","250.0","8.0","17.0","hyper","hyper"
195
- "339","2905.0","66.0","250.0","8.0","17.0","hyper","super"
196
- "72","2725.0","33.0","210.0","4.0","17.0","hyper","hyper"
197
- "358","2645.0","66.0","250.0","8.0","15.0","mega","mega"
198
- "257","3035.0","50.0","250.0","8.0","17.0","hyper","hyper"
199
- "339","2905.0","66.0","250.0","8.0","17.0","hyper","super"
200
- "72","2725.0","33.0","210.0","4.0","17.0","hyper","hyper"
201
- "358","2645.0","66.0","250.0","8.0","15.0","mega","mega"
202
- "522","2590.0","33.0","340.0","8.0","14.0","mega","mega"
203
- "604","2590.0","25.0","452.0","16.0","15.0","mega","mega"
204
- "398","1795.0","33.0","170.0","4.0","14.0","super","super"
205
- "154","2075.0","33.0","250.0","8.0","14.0","super","super"
206
- "522","2590.0","33.0","340.0","8.0","14.0","mega","mega"
207
- "604","2590.0","25.0","452.0","16.0","15.0","mega","mega"
208
- "398","1795.0","33.0","170.0","4.0","14.0","super","super"
209
- "154","2075.0","33.0","250.0","8.0","14.0","super","super"
210
- "276","2995.0","66.0","340.0","16.0","14.0","hyper","hyper"
211
- "196","2055.0","33.0","250.0","8.0","14.0","super","super"
212
- "173","1795.0","33.0","170.0","4.0","15.0","super","super"
213
- "215","2985.0","66.0","250.0","8.0","17.0","hyper","mega"
214
- "276","2995.0","66.0","340.0","16.0","14.0","hyper","hyper"
215
- "196","2055.0","33.0","250.0","8.0","14.0","super","super"
216
- "173","1795.0","33.0","170.0","4.0","15.0","super","super"
217
- "215","2985.0","66.0","250.0","8.0","17.0","hyper","mega"
218
- "541","2690.0","33.0","452.0","16.0","15.0","mega","mega"
219
- "32","1995.0","25.0","130.0","4.0","14.0","super","super"
220
- "438","2019.0","33.0","120.0","4.0","14.0","super","super"
221
- "480","2290.0","50.0","214.0","4.0","15.0","mega","mega"
222
- "541","2690.0","33.0","452.0","16.0","15.0","mega","mega"
223
- "32","1995.0","25.0","130.0","4.0","14.0","super","super"
224
- "438","2019.0","33.0","120.0","4.0","14.0","super","super"
225
- "480","2290.0","50.0","214.0","4.0","15.0","mega","mega"
226
- "133","2220.0","33.0","250.0","4.0","14.0","super","super"
227
- "297","2155.0","33.0","250.0","8.0","14.0","super","super"
228
- "295","2299.0","50.0","212.0","4.0","14.0","mega","mega"
229
- "520","2025.0","50.0","170.0","4.0","14.0","super","super"
230
- "133","2220.0","33.0","250.0","4.0","14.0","super","super"
231
- "297","2155.0","33.0","250.0","8.0","14.0","super","super"
232
- "295","2299.0","50.0","212.0","4.0","14.0","mega","mega"
233
- "520","2025.0","50.0","170.0","4.0","14.0","super","super"
234
- "581","1998.0","66.0","130.0","4.0","14.0","super","super"
235
- "337","1795.0","33.0","170.0","4.0","14.0","super","super"
236
- "560","2245.0","66.0","250.0","4.0","15.0","super","super"
237
- "377","2695.0","33.0","340.0","16.0","14.0","mega","mega"
238
- "581","1998.0","66.0","130.0","4.0","14.0","super","super"
239
- "337","1795.0","33.0","170.0","4.0","14.0","super","super"
240
- "560","2245.0","66.0","250.0","4.0","15.0","super","super"
241
- "377","2695.0","33.0","340.0","16.0","14.0","mega","mega"
242
- "234","2195.0","33.0","170.0","8.0","15.0","super","super"
243
- "602","2590.0","25.0","452.0","16.0","14.0","mega","hyper"
244
- "213","2420.0","33.0","170.0","8.0","15.0","mega","mega"
245
- "621","2555.0","50.0","250.0","8.0","17.0","mega","mega"
246
- "234","2195.0","33.0","170.0","8.0","15.0","super","super"
247
- "602","2590.0","25.0","452.0","16.0","14.0","mega","hyper"
248
- "213","2420.0","33.0","170.0","8.0","15.0","mega","mega"
249
- "621","2555.0","50.0","250.0","8.0","17.0","mega","mega"
250
- "274","2695.0","33.0","340.0","16.0","14.0","mega","mega"
251
- "194","2055.0","50.0","170.0","4.0","14.0","super","super"
252
- "478","1720.0","33.0","170.0","4.0","14.0","special","special"
253
- "417","1995.0","33.0","250.0","8.0","14.0","super","super"
254
- "274","2695.0","33.0","340.0","16.0","14.0","mega","mega"
255
- "194","2055.0","50.0","170.0","4.0","14.0","super","super"
256
- "478","1720.0","33.0","170.0","4.0","14.0","special","special"
257
- "417","1995.0","33.0","250.0","8.0","14.0","super","super"
258
- "131","2295.0","66.0","130.0","4.0","14.0","mega","mega"
259
- "459","2905.0","66.0","250.0","8.0","17.0","hyper","hyper"
260
- "518","2290.0","50.0","214.0","4.0","14.0","mega","mega"
261
- "335","1699.0","33.0","120.0","4.0","14.0","special","special"
262
- "131","2295.0","66.0","130.0","4.0","14.0","mega","mega"
263
- "459","2905.0","66.0","250.0","8.0","17.0","hyper","hyper"
264
- "518","2290.0","50.0","214.0","4.0","14.0","mega","mega"
265
- "335","1699.0","33.0","120.0","4.0","14.0","special","special"
266
- "600","1675.0","25.0","120.0","4.0","14.0","special","special"
267
- "316","1995.0","50.0","170.0","4.0","14.0","super","super"
268
- "110","2145.0","66.0","170.0","4.0","14.0","super","super"
269
- "192","2499.0","50.0","210.0","4.0","14.0","mega","mega"
270
- "600","1675.0","25.0","120.0","4.0","14.0","special","special"
271
- "316","1995.0","50.0","170.0","4.0","14.0","super","super"
272
- "110","2145.0","66.0","170.0","4.0","14.0","super","super"
273
- "192","2499.0","50.0","210.0","4.0","14.0","mega","mega"
274
- "396","2999.0","66.0","245.0","16.0","15.0","hyper","hyper"
275
- "499","2190.0","33.0","214.0","4.0","14.0","super","super"
276
- "558","3699.0","33.0","345.0","16.0","17.0","uber","mega"
277
- "457","3105.0","66.0","250.0","8.0","17.0","hyper","hyper"
278
- "396","2999.0","66.0","245.0","16.0","15.0","hyper","hyper"
279
- "499","2190.0","33.0","214.0","4.0","14.0","super","super"
280
- "558","3699.0","33.0","345.0","16.0","17.0","uber","mega"
281
- "457","3105.0","66.0","250.0","8.0","17.0","hyper","hyper"
282
- "253","2395.0","33.0","170.0","8.0","14.0","mega","mega"
283
- "9","2225.0","50.0","210.0","8.0","14.0","super","super"
284
- "150","3895.0","66.0","500.0","8.0","15.0","uber","uber"
285
- "232","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
286
- "253","2395.0","33.0","170.0","8.0","14.0","mega","mega"
287
- "9","2225.0","50.0","210.0","8.0","14.0","super","super"
288
- "150","3895.0","66.0","500.0","8.0","15.0","uber","uber"
289
- "232","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
290
- "436","1399.0","25.0","170.0","4.0","14.0","special","special"
291
- "49","2399.0","50.0","212.0","4.0","14.0","mega","mega"
292
- "415","3999.0","66.0","340.0","16.0","17.0","uber","uber"
293
- "333","2190.0","33.0","130.0","4.0","14.0","super","super"
294
- "436","1399.0","25.0","170.0","4.0","14.0","special","special"
295
- "49","2399.0","50.0","212.0","4.0","14.0","mega","mega"
296
- "415","3999.0","66.0","340.0","16.0","17.0","uber","uber"
297
- "333","2190.0","33.0","130.0","4.0","14.0","super","super"
298
- "293","2495.0","50.0","245.0","8.0","14.0","mega","mega"
299
- "375","1890.0","66.0","85.0","2.0","14.0","super","super"
300
- "7","1720.0","25.0","170.0","4.0","14.0","special","special"
301
- "47","2195.0","33.0","130.0","4.0","14.0","super","super"
302
- "293","2495.0","50.0","245.0","8.0","14.0","mega","mega"
303
- "375","1890.0","66.0","85.0","2.0","14.0","super","super"
304
- "7","1720.0","25.0","170.0","4.0","14.0","special","special"
305
- "47","2195.0","33.0","130.0","4.0","14.0","super","super"
306
- "619","2290.0","50.0","214.0","4.0","15.0","mega","mega"
307
- "28","3995.0","33.0","452.0","8.0","14.0","uber","uber"
308
- "272","4020.0","66.0","500.0","8.0","14.0","uber","uber"
309
- "169","1595.0","33.0","85.0","2.0","14.0","special","mega"
310
- "619","2290.0","50.0","214.0","4.0","15.0","mega","mega"
311
- "28","3995.0","33.0","452.0","8.0","14.0","uber","uber"
312
- "272","4020.0","66.0","500.0","8.0","14.0","uber","uber"
313
- "169","1595.0","33.0","85.0","2.0","14.0","special","mega"
314
- "108","1720.0","25.0","170.0","4.0","14.0","special","special"
315
- "89","1395.0","25.0","85.0","2.0","14.0","special","special"
316
- "598","2899.0","66.0","340.0","8.0","15.0","hyper","hyper"
317
- "495","2690.0","50.0","340.0","8.0","15.0","mega","mega"
318
- "108","1720.0","25.0","170.0","4.0","14.0","special","special"
319
- "89","1395.0","25.0","85.0","2.0","14.0","special","special"
320
- "598","2899.0","66.0","340.0","8.0","15.0","hyper","hyper"
321
- "495","2690.0","50.0","340.0","8.0","15.0","mega","mega"
322
- "577","2145.0","66.0","250.0","4.0","14.0","super","super"
323
- "354","2090.0","33.0","130.0","4.0","14.0","super","super"
324
- "190","2999.0","66.0","245.0","16.0","15.0","hyper","special"
325
- "535","2090.0","33.0","214.0","4.0","14.0","super","super"
326
- "577","2145.0","66.0","250.0","4.0","14.0","super","super"
327
- "354","2090.0","33.0","130.0","4.0","14.0","super","super"
328
- "190","2999.0","66.0","245.0","16.0","15.0","hyper","special"
329
- "535","2090.0","33.0","214.0","4.0","14.0","super","super"
330
- "26","1290.0","33.0","80.0","2.0","14.0","special","special"
331
- "211","2395.0","33.0","245.0","8.0","14.0","mega","mega"
332
- "455","2515.0","33.0","250.0","8.0","15.0","mega","mega"
333
- "85","2595.0","25.0","245.0","8.0","14.0","mega","mega"
334
- "26","1290.0","33.0","80.0","2.0","14.0","special","special"
335
- "211","2395.0","33.0","245.0","8.0","14.0","mega","mega"
336
- "455","2515.0","33.0","250.0","8.0","15.0","mega","mega"
337
- "85","2595.0","25.0","245.0","8.0","14.0","mega","mega"
338
- "291","3995.0","66.0","452.0","8.0","14.0","uber","uber"
339
- "476","1490.0","25.0","107.0","2.0","15.0","special","special"
340
- "516","2935.0","50.0","250.0","8.0","17.0","hyper","hyper"
341
- "350","2145.0","50.0","170.0","4.0","14.0","super","super"
342
- "291","3995.0","66.0","452.0","8.0","14.0","uber","uber"
343
- "476","1490.0","25.0","107.0","2.0","15.0","special","special"
344
- "516","2935.0","50.0","250.0","8.0","17.0","hyper","hyper"
345
- "350","2145.0","50.0","170.0","4.0","14.0","super","super"
346
- "148","2199.0","33.0","212.0","4.0","14.0","super","super"
347
- "68","1499.0","25.0","120.0","4.0","14.0","special","special"
348
- "556","1490.0","33.0","107.0","2.0","14.0","special","super"
349
- "146","2595.0","66.0","245.0","8.0","14.0","mega","mega"
350
- "148","2199.0","33.0","212.0","4.0","14.0","super","super"
351
- "68","1499.0","25.0","120.0","4.0","14.0","special","special"
352
- "556","1490.0","33.0","107.0","2.0","14.0","special","super"
353
- "146","2595.0","66.0","245.0","8.0","14.0","mega","mega"
354
- "617","2999.0","66.0","240.0","4.0","15.0","hyper","hyper"
355
- "537","2195.0","50.0","250.0","4.0","14.0","super","super"
356
- "270","2999.0","66.0","340.0","4.0","15.0","hyper","hyper"
357
- "207","2885.0","66.0","170.0","8.0","15.0","hyper","hyper"
358
- "617","2999.0","66.0","240.0","4.0","15.0","hyper","hyper"
359
- "537","2195.0","50.0","250.0","4.0","14.0","super","super"
360
- "270","2999.0","66.0","340.0","4.0","15.0","hyper","hyper"
361
- "207","2885.0","66.0","170.0","8.0","15.0","hyper","hyper"
362
- "413","2090.0","33.0","214.0","4.0","15.0","super","super"
363
- "394","1399.0","25.0","170.0","4.0","14.0","special","special"
364
- "453","2420.0","33.0","250.0","8.0","15.0","mega","mega"
365
- "390","1895.0","50.0","170.0","4.0","14.0","super","super"
366
- "413","2090.0","33.0","214.0","4.0","15.0","super","super"
367
- "394","1399.0","25.0","170.0","4.0","14.0","special","special"
368
- "453","2420.0","33.0","250.0","8.0","15.0","mega","mega"
369
- "390","1895.0","50.0","170.0","4.0","14.0","super","super"
370
- "5","3295.0","33.0","340.0","16.0","14.0","hyper","super"
371
- "251","2399.0","66.0","213.0","8.0","14.0","mega","mega"
372
- "310","3795.0","33.0","452.0","8.0","14.0","uber","uber"
373
- "247","3299.0","66.0","245.0","16.0","15.0","hyper","hyper"
374
- "5","3295.0","33.0","340.0","16.0","14.0","hyper","super"
375
- "251","2399.0","66.0","213.0","8.0","14.0","mega","mega"
376
- "310","3795.0","33.0","452.0","8.0","14.0","uber","uber"
377
- "247","3299.0","66.0","245.0","16.0","15.0","hyper","hyper"
378
- "474","2299.0","33.0","405.0","8.0","14.0","mega","mega"
379
- "87","2075.0","33.0","210.0","8.0","14.0","super","super"
380
- "575","2299.0","66.0","120.0","4.0","14.0","mega","mega"
381
- "512","2645.0","50.0","250.0","8.0","15.0","mega","mega"
382
- "474","2299.0","33.0","405.0","8.0","14.0","mega","mega"
383
- "87","2075.0","33.0","210.0","8.0","14.0","super","super"
384
- "575","2299.0","66.0","120.0","4.0","14.0","mega","mega"
385
- "512","2645.0","50.0","250.0","8.0","15.0","mega","mega"
386
- "331","1999.0","33.0","170.0","4.0","14.0","super","super"
387
- "352","2525.0","50.0","250.0","8.0","14.0","mega","mega"
388
- "167","2495.0","50.0","245.0","8.0","14.0","mega","mega"
389
- "287","1399.0","25.0","170.0","4.0","14.0","special","special"
390
- "331","1999.0","33.0","170.0","4.0","14.0","super","super"
391
- "352","2525.0","50.0","250.0","8.0","14.0","mega","mega"
392
- "167","2495.0","50.0","245.0","8.0","14.0","mega","mega"
393
- "287","1399.0","25.0","170.0","4.0","14.0","special","special"
394
- "596","1520.0","25.0","80.0","4.0","14.0","special","special"
395
- "392","2595.0","66.0","245.0","8.0","14.0","mega","mega"
396
- "228","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
397
- "552","1295.0","25.0","107.0","2.0","14.0","special","mega"
398
- "596","1520.0","25.0","80.0","4.0","14.0","special","special"
399
- "392","2595.0","66.0","245.0","8.0","14.0","mega","mega"
400
- "228","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
401
- "552","1295.0","25.0","107.0","2.0","14.0","special","mega"
402
- "188","2575.0","66.0","250.0","8.0","14.0","mega","mega"
403
- "249","1695.0","50.0","85.0","2.0","14.0","special","special"
404
- "493","2195.0","50.0","214.0","4.0","14.0","super","super"
405
- "144","1975.0","50.0","170.0","4.0","14.0","super","super"
406
- "188","2575.0","66.0","250.0","8.0","14.0","mega","mega"
407
- "249","1695.0","50.0","85.0","2.0","14.0","special","special"
408
- "493","2195.0","50.0","214.0","4.0","14.0","super","super"
409
- "144","1975.0","50.0","170.0","4.0","14.0","super","super"
410
- "24","2875.0","50.0","210.0","4.0","17.0","hyper","hyper"
411
- "514","1890.0","66.0","107.0","2.0","15.0","super","super"
412
- "615","1799.0","33.0","120.0","4.0","14.0","super","super"
413
- "388","2099.0","66.0","120.0","4.0","14.0","super","super"
414
- "24","2875.0","50.0","210.0","4.0","17.0","hyper","hyper"
415
- "514","1890.0","66.0","107.0","2.0","15.0","super","super"
416
- "615","1799.0","33.0","120.0","4.0","14.0","super","super"
417
- "388","2099.0","66.0","120.0","4.0","14.0","super","super"
418
- "289","2595.0","25.0","340.0","16.0","14.0","mega","mega"
419
- "106","2995.0","66.0","250.0","8.0","17.0","hyper","hyper"
420
- "268","2785.0","50.0","170.0","8.0","15.0","hyper","super"
421
- "449","1499.0","33.0","120.0","4.0","14.0","special","special"
422
- "289","2595.0","25.0","340.0","16.0","14.0","mega","mega"
423
- "106","2995.0","66.0","250.0","8.0","17.0","hyper","hyper"
424
- "268","2785.0","50.0","170.0","8.0","15.0","hyper","super"
425
- "449","1499.0","33.0","120.0","4.0","14.0","special","special"
426
- "3","1595.0","25.0","170.0","4.0","15.0","special","special"
427
- "371","2490.0","33.0","245.0","8.0","14.0","mega","mega"
428
- "533","2895.0","50.0","452.0","16.0","14.0","hyper","hyper"
429
- "102","2195.0","25.0","245.0","8.0","14.0","super","super"
430
- "3","1595.0","25.0","170.0","4.0","15.0","special","special"
431
- "371","2490.0","33.0","245.0","8.0","14.0","mega","mega"
432
- "533","2895.0","50.0","452.0","16.0","14.0","hyper","hyper"
433
- "102","2195.0","25.0","245.0","8.0","14.0","super","super"
434
- "329","3090.0","66.0","340.0","16.0","14.0","hyper","hyper"
435
- "411","1495.0","33.0","170.0","4.0","14.0","special","special"
436
- "165","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
437
- "428","2390.0","25.0","340.0","8.0","14.0","mega","mega"
438
- "329","3090.0","66.0","340.0","16.0","14.0","hyper","hyper"
439
- "411","1495.0","33.0","170.0","4.0","14.0","special","special"
440
- "165","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
441
- "428","2390.0","25.0","340.0","8.0","14.0","mega","mega"
442
- "186","2395.0","33.0","245.0","8.0","14.0","mega","mega"
443
- "64","2220.0","33.0","250.0","4.0","14.0","super","super"
444
- "22","2795.0","66.0","130.0","4.0","14.0","hyper","hyper"
445
- "224","3895.0","50.0","452.0","8.0","14.0","uber","uber"
446
- "186","2395.0","33.0","245.0","8.0","14.0","mega","mega"
447
- "64","2220.0","33.0","250.0","4.0","14.0","super","super"
448
- "22","2795.0","66.0","130.0","4.0","14.0","hyper","hyper"
449
- "224","3895.0","50.0","452.0","8.0","14.0","uber","uber"
450
- "43","2499.0","33.0","212.0","8.0","14.0","mega","mega"
451
- "430","2295.0","25.0","340.0","8.0","14.0","mega","mega"
452
- "613","2790.0","66.0","340.0","8.0","15.0","hyper","hyper"
453
- "489","2855.0","50.0","250.0","8.0","17.0","hyper","hyper"
454
- "43","2499.0","33.0","212.0","8.0","14.0","mega","mega"
455
- "430","2295.0","25.0","340.0","8.0","14.0","mega","mega"
456
- "613","2790.0","66.0","340.0","8.0","15.0","hyper","hyper"
457
- "489","2855.0","50.0","250.0","8.0","17.0","hyper","hyper"
458
- "308","2285.0","50.0","250.0","8.0","14.0","mega","mega"
459
- "226","2745.0","66.0","170.0","8.0","14.0","hyper","mega"
460
- "205","1595.0","33.0","85.0","2.0","14.0","special","special"
461
- "264","2345.0","50.0","250.0","8.0","14.0","mega","mega"
462
- "308","2285.0","50.0","250.0","8.0","14.0","mega","mega"
463
- "226","2745.0","66.0","170.0","8.0","14.0","hyper","mega"
464
- "205","1595.0","33.0","85.0","2.0","14.0","special","special"
465
- "264","2345.0","50.0","250.0","8.0","14.0","mega","mega"
466
- "491","3990.0","66.0","1000.0","16.0","14.0","uber","uber"
467
- "83","2990.0","66.0","210.0","8.0","15.0","hyper","hyper"
468
- "470","3720.0","66.0","500.0","8.0","14.0","uber","uber"
469
- "590","2125.0","66.0","170.0","4.0","15.0","super","super"
470
- "491","3990.0","66.0","1000.0","16.0","14.0","uber","uber"
471
- "83","2990.0","66.0","210.0","8.0","15.0","hyper","hyper"
472
- "470","3720.0","66.0","500.0","8.0","14.0","uber","uber"
473
- "590","2125.0","66.0","170.0","4.0","15.0","super","super"
474
- "348","2595.0","50.0","250.0","8.0","15.0","mega","mega"
475
- "266","2195.0","50.0","130.0","4.0","14.0","super","super"
476
- "62","1795.0","33.0","170.0","4.0","15.0","super","super"
477
- "100","1695.0","33.0","170.0","4.0","14.0","special","special"
478
- "348","2595.0","50.0","250.0","8.0","15.0","mega","mega"
479
- "266","2195.0","50.0","130.0","4.0","14.0","super","super"
480
- "62","1795.0","33.0","170.0","4.0","15.0","super","super"
481
- "100","1695.0","33.0","170.0","4.0","14.0","special","special"
482
- "1","1499.0","25.0","80.0","4.0","14.0","special","special"
483
- "531","2390.0","25.0","340.0","8.0","15.0","mega","mega"
484
- "327","2395.0","33.0","250.0","8.0","14.0","mega","mega"
485
- "140","2195.0","50.0","130.0","4.0","14.0","super","super"
486
- "1","1499.0","25.0","80.0","4.0","14.0","special","special"
487
- "531","2390.0","25.0","340.0","8.0","15.0","mega","mega"
488
- "327","2395.0","33.0","250.0","8.0","14.0","mega","mega"
489
- "140","2195.0","50.0","130.0","4.0","14.0","super","super"
490
- "41","2895.0","50.0","245.0","8.0","14.0","hyper","hyper"
491
- "81","3399.0","66.0","230.0","4.0","15.0","hyper","hyper"
492
- "245","2575.0","66.0","250.0","8.0","14.0","mega","uber"
493
- "201","3995.0","66.0","452.0","8.0","14.0","uber","uber"
494
- "41","2895.0","50.0","245.0","8.0","14.0","hyper","hyper"
495
- "81","3399.0","66.0","230.0","4.0","15.0","hyper","hyper"
496
- "245","2575.0","66.0","250.0","8.0","14.0","mega","uber"
497
- "201","3995.0","66.0","452.0","8.0","14.0","uber","uber"
498
- "306","1499.0","25.0","170.0","4.0","14.0","special","special"
499
- "142","4020.0","66.0","500.0","8.0","14.0","uber","uber"
500
- "510","3195.0","66.0","540.0","8.0","15.0","hyper","hyper"
501
- "262","2345.0","33.0","250.0","8.0","15.0","mega","mega"
502
- "306","1499.0","25.0","170.0","4.0","14.0","special","special"
503
- "142","4020.0","66.0","500.0","8.0","14.0","uber","uber"
504
- "510","3195.0","66.0","540.0","8.0","15.0","hyper","hyper"
505
- "262","2345.0","33.0","250.0","8.0","15.0","mega","mega"
506
- "163","2645.0","50.0","250.0","4.0","15.0","mega","mega"
507
- "407","2399.0","66.0","213.0","8.0","14.0","mega","mega"
508
- "571","1720.0","33.0","170.0","4.0","14.0","special","special"
509
- "527","2790.0","66.0","340.0","8.0","15.0","hyper","hyper"
510
- "163","2645.0","50.0","250.0","4.0","15.0","mega","mega"
511
- "407","2399.0","66.0","213.0","8.0","14.0","mega","mega"
512
- "571","1720.0","33.0","170.0","4.0","14.0","special","special"
513
- "527","2790.0","66.0","340.0","8.0","15.0","hyper","hyper"
514
- "20","4395.0","66.0","452.0","8.0","14.0","uber","mega"
515
- "121","1795.0","33.0","170.0","4.0","14.0","super","super"
516
- "285","2545.0","66.0","250.0","8.0","15.0","mega","mega"
517
- "445","2495.0","33.0","340.0","8.0","14.0","mega","mega"
518
- "20","4395.0","66.0","452.0","8.0","14.0","uber","mega"
519
- "121","1795.0","33.0","170.0","4.0","14.0","super","super"
520
- "285","2545.0","66.0","250.0","8.0","15.0","mega","mega"
521
- "445","2495.0","33.0","340.0","8.0","14.0","mega","mega"
522
- "611","2995.0","66.0","452.0","16.0","14.0","hyper","hyper"
523
- "386","2399.0","33.0","212.0","8.0","14.0","mega","mega"
524
- "325","1690.0","33.0","85.0","2.0","14.0","special","special"
525
- "302","1895.0","25.0","130.0","4.0","14.0","super","super"
526
- "611","2995.0","66.0","452.0","16.0","14.0","hyper","hyper"
527
- "386","2399.0","33.0","212.0","8.0","14.0","mega","mega"
528
- "325","1690.0","33.0","85.0","2.0","14.0","special","special"
529
- "302","1895.0","25.0","130.0","4.0","14.0","super","super"
530
- "203","2475.0","50.0","250.0","8.0","15.0","mega","mega"
531
- "243","2335.0","50.0","250.0","8.0","14.0","mega","mega"
532
- "182","2815.0","33.0","250.0","4.0","17.0","hyper","hyper"
533
- "567","1690.0","33.0","107.0","2.0","14.0","special","special"
534
- "203","2475.0","50.0","250.0","8.0","15.0","mega","mega"
535
- "243","2335.0","50.0","250.0","8.0","14.0","mega","mega"
536
- "182","2815.0","33.0","250.0","4.0","17.0","hyper","hyper"
537
- "567","1690.0","33.0","107.0","2.0","14.0","special","special"
538
- "468","1995.0","50.0","170.0","4.0","14.0","super","super"
539
- "569","1890.0","25.0","214.0","4.0","14.0","super","super"
540
- "39","2405.0","50.0","210.0","8.0","14.0","mega","mega"
541
- "607","2299.0","66.0","245.0","8.0","14.0","mega","hyper"
542
- "468","1995.0","50.0","170.0","4.0","14.0","super","super"
543
- "569","1890.0","25.0","214.0","4.0","14.0","super","super"
544
- "39","2405.0","50.0","210.0","8.0","14.0","mega","mega"
545
- "607","2299.0","66.0","245.0","8.0","14.0","mega","hyper"
546
- "60","1945.0","50.0","130.0","4.0","14.0","super","super"
547
- "161","1995.0","33.0","130.0","4.0","14.0","super","super"
548
- "508","3599.0","33.0","340.0","16.0","17.0","uber","uber"
549
- "117","2525.0","50.0","250.0","4.0","15.0","mega","mega"
550
- "60","1945.0","50.0","130.0","4.0","14.0","super","super"
551
- "161","1995.0","33.0","130.0","4.0","14.0","super","super"
552
- "508","3599.0","33.0","340.0","16.0","17.0","uber","uber"
553
- "117","2525.0","50.0","250.0","4.0","15.0","mega","mega"
554
- "18","2325.0","33.0","210.0","4.0","15.0","mega","mega"
555
- "426","1595.0","33.0","107.0","2.0","14.0","special","special"
556
- "365","2815.0","66.0","250.0","8.0","15.0","hyper","hyper"
557
- "443","1490.0","25.0","107.0","2.0","14.0","special","special"
558
- "18","2325.0","33.0","210.0","4.0","15.0","mega","mega"
559
- "426","1595.0","33.0","107.0","2.0","14.0","special","special"
560
- "365","2815.0","66.0","250.0","8.0","15.0","hyper","hyper"
561
- "443","1490.0","25.0","107.0","2.0","14.0","special","special"
562
- "79","2595.0","50.0","130.0","4.0","14.0","mega","mega"
563
- "609","2495.0","33.0","250.0","8.0","15.0","mega","mega"
564
- "222","2695.0","66.0","250.0","8.0","15.0","mega","mega"
565
- "239","1495.0","25.0","170.0","4.0","14.0","special","special"
566
- "79","2595.0","50.0","130.0","4.0","14.0","mega","mega"
567
- "609","2495.0","33.0","250.0","8.0","15.0","mega","mega"
568
- "222","2695.0","66.0","250.0","8.0","15.0","mega","mega"
569
- "239","1495.0","25.0","170.0","4.0","14.0","special","special"
570
- "344","1590.0","33.0","85.0","2.0","14.0","special","special"
571
- "466","1795.0","66.0","107.0","2.0","14.0","super","super"
572
- "548","2599.0","50.0","450.0","8.0","15.0","mega","mega"
573
- "157","2999.0","50.0","170.0","4.0","14.0","hyper","hyper"
574
- "344","1590.0","33.0","85.0","2.0","14.0","special","special"
575
- "466","1795.0","66.0","107.0","2.0","14.0","super","super"
576
- "548","2599.0","50.0","450.0","8.0","15.0","mega","mega"
577
- "157","2999.0","50.0","170.0","4.0","14.0","hyper","hyper"
578
- "58","3075.0","66.0","210.0","4.0","17.0","hyper","hyper"
579
- "119","2499.0","33.0","170.0","4.0","14.0","mega","mega"
580
- "588","1599.0","25.0","170.0","4.0","14.0","special","special"
581
- "14","2295.0","25.0","245.0","8.0","14.0","mega","mega"
582
- "58","3075.0","66.0","210.0","4.0","17.0","hyper","hyper"
583
- "119","2499.0","33.0","170.0","4.0","14.0","mega","mega"
584
- "588","1599.0","25.0","170.0","4.0","14.0","special","special"
585
- "14","2295.0","25.0","245.0","8.0","14.0","mega","mega"
586
- "323","2599.0","33.0","245.0","16.0","15.0","mega","mega"
587
- "159","3065.0","50.0","250.0","4.0","17.0","hyper","mega"
588
- "37","2325.0","66.0","210.0","8.0","14.0","mega","mega"
589
- "483","2249.0","50.0","230.0","4.0","14.0","super","super"
590
- "323","2599.0","33.0","245.0","16.0","15.0","mega","mega"
591
- "159","3065.0","50.0","250.0","4.0","17.0","hyper","mega"
592
- "37","2325.0","66.0","210.0","8.0","14.0","mega","mega"
593
- "483","2249.0","50.0","230.0","4.0","14.0","super","super"
594
- "384","2290.0","25.0","245.0","8.0","14.0","mega","mega"
595
- "424","2495.0","50.0","250.0","8.0","15.0","mega","mega"
596
- "220","1945.0","33.0","170.0","4.0","14.0","super","super"
597
- "279","2405.0","66.0","250.0","8.0","14.0","mega","mega"
598
- "384","2290.0","25.0","245.0","8.0","14.0","mega","mega"
599
- "424","2495.0","50.0","250.0","8.0","15.0","mega","mega"
600
- "220","1945.0","33.0","170.0","4.0","14.0","super","super"
601
- "279","2405.0","66.0","250.0","8.0","14.0","mega","mega"
602
- "180","1695.0","50.0","85.0","2.0","14.0","special","mega"
603
- "16","2225.0","50.0","130.0","4.0","14.0","super","super"
604
- "485","2455.0","66.0","250.0","8.0","14.0","mega","mega"
605
- "544","2698.0","66.0","245.0","8.0","14.0","mega","mega"
606
- "180","1695.0","50.0","85.0","2.0","14.0","special","mega"
607
- "16","2225.0","50.0","130.0","4.0","14.0","super","super"
608
- "485","2455.0","66.0","250.0","8.0","14.0","mega","mega"
609
- "544","2698.0","66.0","245.0","8.0","14.0","mega","mega"
610
- "241","1699.0","33.0","120.0","4.0","14.0","special","special"
611
- "281","2225.0","33.0","250.0","8.0","14.0","super","super"
612
- "77","1975.0","33.0","210.0","8.0","14.0","super","super"
613
- "605","1449.0","25.0","120.0","4.0","14.0","special","hyper"
614
- "241","1699.0","33.0","120.0","4.0","14.0","special","special"
615
- "281","2225.0","33.0","250.0","8.0","14.0","super","super"
616
- "77","1975.0","33.0","210.0","8.0","14.0","super","super"
617
- "605","1449.0","25.0","120.0","4.0","14.0","special","hyper"
618
- "506","1775.0","33.0","170.0","4.0","14.0","super","super"
619
- "138","2395.0","33.0","250.0","4.0","15.0","mega","mega"
620
- "342","2699.0","66.0","213.0","8.0","14.0","mega","mega"
621
- "319","2335.0","66.0","250.0","8.0","14.0","mega","mega"
622
- "506","1775.0","33.0","170.0","4.0","14.0","super","super"
623
- "138","2395.0","33.0","250.0","4.0","15.0","mega","mega"
624
- "342","2699.0","66.0","213.0","8.0","14.0","mega","mega"
625
- "319","2335.0","66.0","250.0","8.0","14.0","mega","mega"
626
- "98","1920.0","33.0","170.0","4.0","14.0","super","super"
627
- "464","2790.0","33.0","452.0","16.0","15.0","hyper","hyper"
628
- "260","2599.0","33.0","245.0","16.0","15.0","mega","mega"
629
- "155","2499.0","33.0","212.0","8.0","14.0","mega","super"
630
- "98","1920.0","33.0","170.0","4.0","14.0","super","super"
631
- "464","2790.0","33.0","452.0","16.0","15.0","hyper","hyper"
632
- "260","2599.0","33.0","245.0","16.0","15.0","mega","mega"
633
- "155","2499.0","33.0","212.0","8.0","14.0","mega","super"
634
- "363","2155.0","50.0","250.0","8.0","14.0","super","super"
635
- "321","2425.0","66.0","250.0","8.0","15.0","mega","mega"
636
- "525","2099.0","66.0","120.0","4.0","14.0","super","super"
637
- "216","1395.0","25.0","85.0","2.0","14.0","special","special"
638
- "363","2155.0","50.0","250.0","8.0","14.0","super","super"
639
- "321","2425.0","66.0","250.0","8.0","15.0","mega","mega"
640
- "525","2099.0","66.0","120.0","4.0","14.0","super","super"
641
- "216","1395.0","25.0","85.0","2.0","14.0","special","special"
642
- "546","2695.0","66.0","340.0","8.0","14.0","mega","mega"
643
- "178","2645.0","33.0","250.0","8.0","17.0","mega","mega"
644
- "382","2399.0","66.0","213.0","8.0","14.0","mega","mega"
645
- "542","2795.0","66.0","250.0","8.0","15.0","hyper","hyper"
646
- "546","2695.0","66.0","340.0","8.0","14.0","mega","mega"
647
- "178","2645.0","33.0","250.0","8.0","17.0","mega","mega"
648
- "382","2399.0","66.0","213.0","8.0","14.0","mega","mega"
649
- "542","2795.0","66.0","250.0","8.0","15.0","hyper","hyper"
650
- "403","2490.0","33.0","340.0","8.0","14.0","mega","mega"
651
- "422","2690.0","25.0","452.0","16.0","14.0","mega","mega"
652
- "35","1999.0","33.0","170.0","4.0","14.0","super","super"
653
- "195","2065.0","50.0","170.0","4.0","14.0","super","super"
654
- "403","2490.0","33.0","340.0","8.0","14.0","mega","mega"
655
- "422","2690.0","25.0","452.0","16.0","14.0","mega","mega"
656
- "35","1999.0","33.0","170.0","4.0","14.0","super","super"
657
- "195","2065.0","50.0","170.0","4.0","14.0","super","super"
658
- "56","2125.0","50.0","130.0","4.0","14.0","super","super"
659
- "136","2195.0","25.0","245.0","8.0","14.0","super","super"
660
- "300","1595.0","25.0","170.0","4.0","14.0","special","special"
661
- "460","2690.0","25.0","452.0","16.0","15.0","mega","mega"
662
- "56","2125.0","50.0","130.0","4.0","14.0","super","super"
663
- "136","2195.0","25.0","245.0","8.0","14.0","super","super"
664
- "300","1595.0","25.0","170.0","4.0","14.0","special","special"
665
- "460","2690.0","25.0","452.0","16.0","15.0","mega","mega"
666
- "96","1495.0","25.0","170.0","4.0","14.0","special","special"
667
- "197","2099.0","33.0","212.0","4.0","14.0","super","super"
668
- "340","2825.0","33.0","250.0","8.0","17.0","hyper","hyper"
669
- "256","2399.0","66.0","120.0","4.0","14.0","mega","mega"
670
- "96","1495.0","25.0","170.0","4.0","14.0","special","special"
671
- "197","2099.0","33.0","212.0","4.0","14.0","super","super"
672
- "340","2825.0","33.0","250.0","8.0","17.0","hyper","hyper"
673
- "256","2399.0","66.0","120.0","4.0","14.0","mega","mega"
674
- "361","1775.0","33.0","170.0","4.0","14.0","super","super"
675
- "462","1790.0","50.0","107.0","2.0","14.0","super","super"
676
- "54","2190.0","33.0","210.0","4.0","14.0","super","super"
677
- "317","2399.0","66.0","120.0","4.0","14.0","mega","mega"
678
- "361","1775.0","33.0","170.0","4.0","14.0","super","super"
679
- "462","1790.0","50.0","107.0","2.0","14.0","super","super"
680
- "54","2190.0","33.0","210.0","4.0","14.0","super","super"
681
- "317","2399.0","66.0","120.0","4.0","14.0","mega","mega"
682
- "218","2095.0","33.0","130.0","4.0","14.0","super","super"
683
- "441","2605.0","33.0","250.0","8.0","17.0","mega","mega"
684
- "380","1490.0","25.0","85.0","2.0","14.0","special","special"
685
- "582","2590.0","33.0","340.0","8.0","14.0","mega","mega"
686
- "218","2095.0","33.0","130.0","4.0","14.0","super","super"
687
- "441","2605.0","33.0","250.0","8.0","17.0","mega","mega"
688
- "380","1490.0","25.0","85.0","2.0","14.0","special","special"
689
- "582","2590.0","33.0","340.0","8.0","14.0","mega","mega"
690
- "75","2999.0","50.0","170.0","4.0","14.0","hyper","hyper"
691
- "33","2595.0","33.0","210.0","8.0","17.0","mega","mega"
692
- "563","2999.0","50.0","240.0","4.0","14.0","hyper","hyper"
693
- "31","1920.0","33.0","170.0","4.0","14.0","super","super"
694
- "75","2999.0","50.0","170.0","4.0","14.0","hyper","hyper"
695
- "33","2595.0","33.0","210.0","8.0","17.0","mega","mega"
696
- "563","2999.0","50.0","240.0","4.0","14.0","hyper","hyper"
697
- "31","1920.0","33.0","170.0","4.0","14.0","super","super"
698
- "401","2399.0","50.0","320.0","8.0","14.0","mega","mega"
699
- "502","2295.0","66.0","214.0","4.0","14.0","mega","mega"
700
- "12","2605.0","66.0","210.0","8.0","14.0","mega","uber"
701
- "500","2720.0","50.0","250.0","8.0","15.0","hyper","hyper"
702
- "401","2399.0","50.0","320.0","8.0","14.0","mega","mega"
703
- "502","2295.0","66.0","214.0","4.0","14.0","mega","mega"
704
- "12","2605.0","66.0","210.0","8.0","14.0","mega","uber"
705
- "500","2720.0","50.0","250.0","8.0","15.0","hyper","hyper"
706
- "258","2449.0","33.0","230.0","4.0","14.0","mega","super"
707
- "298","2890.0","33.0","340.0","16.0","14.0","hyper","hyper"
708
- "277","2195.0","50.0","170.0","4.0","14.0","super","super"
709
- "622","2025.0","66.0","170.0","4.0","14.0","super","hyper"
710
- "258","2449.0","33.0","230.0","4.0","14.0","mega","super"
711
- "298","2890.0","33.0","340.0","16.0","14.0","hyper","hyper"
712
- "277","2195.0","50.0","170.0","4.0","14.0","super","super"
713
- "622","2025.0","66.0","170.0","4.0","14.0","super","hyper"
714
- "523","1499.0","25.0","170.0","4.0","14.0","special","special"
715
- "481","2455.0","50.0","250.0","8.0","15.0","mega","mega"
716
- "338","2990.0","50.0","340.0","16.0","14.0","hyper","hyper"
717
- "172","2495.0","33.0","250.0","8.0","15.0","mega","mega"
718
- "523","1499.0","25.0","170.0","4.0","14.0","special","special"
719
- "481","2455.0","50.0","250.0","8.0","15.0","mega","mega"
720
- "338","2990.0","50.0","340.0","16.0","14.0","hyper","hyper"
721
- "172","2495.0","33.0","250.0","8.0","15.0","mega","mega"
722
- "115","1499.0","25.0","170.0","4.0","14.0","special","special"
723
- "174","2744.0","66.0","245.0","8.0","14.0","hyper","special"
724
- "603","1999.0","50.0","212.0","4.0","14.0","super","super"
725
- "498","1890.0","66.0","107.0","2.0","14.0","super","super"
726
- "115","1499.0","25.0","170.0","4.0","14.0","special","special"
727
- "174","2744.0","66.0","245.0","8.0","14.0","hyper","special"
728
- "603","1999.0","50.0","212.0","4.0","14.0","super","super"
729
- "498","1890.0","66.0","107.0","2.0","14.0","super","super"
730
- "359","3125.0","66.0","250.0","8.0","17.0","hyper","hyper"
731
- "479","2595.0","50.0","250.0","8.0","15.0","mega","mega"
732
- "275","2195.0","33.0","250.0","8.0","15.0","super","super"
733
- "294","2455.0","66.0","250.0","8.0","14.0","mega","mega"
734
- "359","3125.0","66.0","250.0","8.0","17.0","hyper","hyper"
735
- "479","2595.0","50.0","250.0","8.0","15.0","mega","mega"
736
- "275","2195.0","33.0","250.0","8.0","15.0","super","super"
737
- "294","2455.0","66.0","250.0","8.0","14.0","mega","mega"
738
- "73","1695.0","33.0","170.0","4.0","14.0","special","hyper"
739
- "71","4020.0","66.0","500.0","8.0","14.0","uber","uber"
740
- "540","2095.0","33.0","250.0","4.0","14.0","super","super"
741
- "559","2690.0","33.0","452.0","16.0","14.0","mega","mega"
742
- "73","1695.0","33.0","170.0","4.0","14.0","special","hyper"
743
- "71","4020.0","66.0","500.0","8.0","14.0","uber","uber"
744
- "540","2095.0","33.0","250.0","4.0","14.0","super","super"
745
- "559","2690.0","33.0","452.0","16.0","14.0","mega","mega"
746
- "134","2075.0","50.0","170.0","4.0","14.0","super","super"
747
- "336","2790.0","33.0","340.0","16.0","14.0","hyper","hyper"
748
- "132","1799.0","25.0","170.0","4.0","14.0","super","mega"
749
- "212","3135.0","66.0","250.0","8.0","17.0","hyper","hyper"
750
- "134","2075.0","50.0","170.0","4.0","14.0","super","super"
751
- "336","2790.0","33.0","340.0","16.0","14.0","hyper","hyper"
752
- "132","1799.0","25.0","170.0","4.0","14.0","super","mega"
753
- "212","3135.0","66.0","250.0","8.0","17.0","hyper","hyper"
754
- "399","1899.0","33.0","212.0","4.0","14.0","super","super"
755
- "193","1999.0","33.0","213.0","8.0","14.0","super","super"
756
- "397","2449.0","33.0","230.0","4.0","14.0","mega","mega"
757
- "69","2199.0","33.0","212.0","4.0","14.0","super","super"
758
- "399","1899.0","33.0","212.0","4.0","14.0","super","super"
759
- "193","1999.0","33.0","213.0","8.0","14.0","super","super"
760
- "397","2449.0","33.0","230.0","4.0","14.0","mega","mega"
761
- "69","2199.0","33.0","212.0","4.0","14.0","super","super"
762
- "113","3895.0","50.0","452.0","8.0","14.0","uber","uber"
763
- "458","2390.0","66.0","214.0","4.0","15.0","mega","mega"
764
- "50","1995.0","33.0","250.0","4.0","14.0","super","super"
765
- "538","1899.0","33.0","170.0","4.0","14.0","super","super"
766
- "113","3895.0","50.0","452.0","8.0","14.0","uber","uber"
767
- "458","2390.0","66.0","214.0","4.0","15.0","mega","mega"
768
- "50","1995.0","33.0","250.0","4.0","14.0","super","super"
769
- "538","1899.0","33.0","170.0","4.0","14.0","super","super"
770
- "378","2595.0","25.0","340.0","16.0","14.0","mega","mega"
771
- "519","2390.0","66.0","214.0","4.0","14.0","mega","mega"
772
- "315","2695.0","66.0","250.0","8.0","14.0","mega","mega"
773
- "334","2025.0","50.0","170.0","4.0","14.0","super","super"
774
- "378","2595.0","25.0","340.0","16.0","14.0","mega","mega"
775
- "519","2390.0","66.0","214.0","4.0","14.0","mega","mega"
776
- "315","2695.0","66.0","250.0","8.0","14.0","mega","mega"
777
- "334","2025.0","50.0","170.0","4.0","14.0","super","super"
778
- "439","3055.0","50.0","250.0","8.0","17.0","hyper","hyper"
779
- "376","1995.0","33.0","130.0","4.0","14.0","super","super"
780
- "580","2099.0","33.0","120.0","4.0","14.0","super","super"
781
- "599","2390.0","66.0","214.0","4.0","14.0","mega","mega"
782
- "439","3055.0","50.0","250.0","8.0","17.0","hyper","hyper"
783
- "376","1995.0","33.0","130.0","4.0","14.0","super","super"
784
- "580","2099.0","33.0","120.0","4.0","14.0","super","super"
785
- "599","2390.0","66.0","214.0","4.0","14.0","mega","mega"
786
- "235","2195.0","25.0","245.0","8.0","14.0","super","super"
787
- "477","2035.0","33.0","250.0","8.0","14.0","super","super"
788
- "437","2805.0","33.0","250.0","8.0","17.0","hyper","hyper"
789
- "210","3895.0","66.0","500.0","8.0","15.0","uber","uber"
790
- "235","2195.0","25.0","245.0","8.0","14.0","super","super"
791
- "477","2035.0","33.0","250.0","8.0","14.0","super","super"
792
- "437","2805.0","33.0","250.0","8.0","17.0","hyper","hyper"
793
- "210","3895.0","66.0","500.0","8.0","15.0","uber","uber"
794
- "296","2690.0","25.0","340.0","16.0","14.0","mega","mega"
795
- "191","1899.0","33.0","170.0","4.0","14.0","super","super"
796
- "355","2075.0","66.0","170.0","4.0","14.0","super","super"
797
- "6","3695.0","66.0","340.0","16.0","14.0","uber","special"
798
- "296","2690.0","25.0","340.0","16.0","14.0","mega","mega"
799
- "191","1899.0","33.0","170.0","4.0","14.0","super","super"
800
- "355","2075.0","66.0","170.0","4.0","14.0","super","super"
801
- "6","3695.0","66.0","340.0","16.0","14.0","uber","special"
802
- "561","3999.0","66.0","345.0","16.0","17.0","uber","uber"
803
- "517","1990.0","25.0","214.0","4.0","14.0","super","super"
804
- "620","1499.0","33.0","130.0","4.0","14.0","special","special"
805
- "597","2745.0","33.0","540.0","8.0","14.0","hyper","hyper"
806
- "561","3999.0","66.0","345.0","16.0","17.0","uber","uber"
807
- "517","1990.0","25.0","214.0","4.0","14.0","super","super"
808
- "620","1499.0","33.0","130.0","4.0","14.0","special","special"
809
- "597","2745.0","33.0","540.0","8.0","14.0","hyper","hyper"
810
- "418","1690.0","33.0","107.0","2.0","14.0","special","special"
811
- "231","1999.0","33.0","120.0","8.0","14.0","super","super"
812
- "252","1499.0","25.0","170.0","4.0","14.0","special","special"
813
- "250","2999.0","66.0","170.0","4.0","14.0","hyper","hyper"
814
- "418","1690.0","33.0","107.0","2.0","14.0","special","special"
815
- "231","1999.0","33.0","120.0","8.0","14.0","super","super"
816
- "252","1499.0","25.0","170.0","4.0","14.0","special","special"
817
- "250","2999.0","66.0","170.0","4.0","14.0","hyper","hyper"
818
- "601","3149.0","66.0","230.0","8.0","14.0","hyper","hyper"
819
- "88","1795.0","33.0","130.0","4.0","14.0","super","super"
820
- "109","2045.0","66.0","170.0","4.0","14.0","super","special"
821
- "515","1999.0","33.0","170.0","4.0","14.0","super","super"
822
- "601","3149.0","66.0","230.0","8.0","14.0","hyper","hyper"
823
- "88","1795.0","33.0","130.0","4.0","14.0","super","super"
824
- "109","2045.0","66.0","170.0","4.0","14.0","super","special"
825
- "515","1999.0","33.0","170.0","4.0","14.0","super","super"
826
- "111","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
827
- "353","2595.0","50.0","250.0","8.0","15.0","mega","mega"
828
- "435","2049.0","33.0","405.0","4.0","14.0","super","super"
829
- "311","1999.0","33.0","213.0","8.0","14.0","super","super"
830
- "111","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
831
- "353","2595.0","50.0","250.0","8.0","15.0","mega","mega"
832
- "435","2049.0","33.0","405.0","4.0","14.0","super","super"
833
- "311","1999.0","33.0","213.0","8.0","14.0","super","super"
834
- "90","3490.0","50.0","330.0","8.0","14.0","uber","uber"
835
- "536","2815.0","66.0","250.0","8.0","15.0","hyper","hyper"
836
- "27","1975.0","33.0","130.0","4.0","14.0","super","super"
837
- "372","3225.0","66.0","212.0","4.0","15.0","hyper","hyper"
838
- "90","3490.0","50.0","330.0","8.0","14.0","uber","uber"
839
- "536","2815.0","66.0","250.0","8.0","15.0","hyper","hyper"
840
- "27","1975.0","33.0","130.0","4.0","14.0","super","super"
841
- "372","3225.0","66.0","212.0","4.0","15.0","hyper","hyper"
842
- "151","2095.0","33.0","250.0","4.0","15.0","super","super"
843
- "189","2695.0","33.0","340.0","16.0","14.0","mega","mega"
844
- "292","2999.0","66.0","240.0","4.0","15.0","hyper","hyper"
845
- "555","2595.0","33.0","452.0","16.0","14.0","mega","mega"
846
- "151","2095.0","33.0","250.0","4.0","15.0","super","super"
847
- "189","2695.0","33.0","340.0","16.0","14.0","mega","mega"
848
- "292","2999.0","66.0","240.0","4.0","15.0","hyper","hyper"
849
- "555","2595.0","33.0","452.0","16.0","14.0","mega","mega"
850
- "8","1995.0","50.0","85.0","2.0","14.0","super","super"
851
- "229","2199.0","33.0","210.0","4.0","14.0","super","super"
852
- "557","2075.0","50.0","250.0","8.0","14.0","super","super"
853
- "412","2075.0","66.0","170.0","4.0","14.0","super","super"
854
- "8","1995.0","50.0","85.0","2.0","14.0","super","super"
855
- "229","2199.0","33.0","210.0","4.0","14.0","super","super"
856
- "557","2075.0","50.0","250.0","8.0","14.0","super","super"
857
- "412","2075.0","66.0","170.0","4.0","14.0","super","super"
858
- "273","2595.0","50.0","250.0","8.0","15.0","mega","mega"
859
- "494","3599.0","66.0","405.0","8.0","14.0","uber","uber"
860
- "67","2325.0","66.0","130.0","4.0","14.0","mega","mega"
861
- "309","2475.0","50.0","250.0","8.0","15.0","mega","special"
862
- "273","2595.0","50.0","250.0","8.0","15.0","mega","mega"
863
- "494","3599.0","66.0","405.0","8.0","14.0","uber","uber"
864
- "67","2325.0","66.0","130.0","4.0","14.0","mega","mega"
865
- "309","2475.0","50.0","250.0","8.0","15.0","mega","special"
866
- "130","2065.0","50.0","170.0","4.0","14.0","super","super"
867
- "351","2405.0","50.0","250.0","8.0","14.0","mega","mega"
868
- "332","2195.0","50.0","130.0","4.0","14.0","super","super"
869
- "227","1920.0","33.0","170.0","4.0","14.0","super","super"
870
- "130","2065.0","50.0","170.0","4.0","14.0","super","super"
871
- "351","2405.0","50.0","250.0","8.0","14.0","mega","mega"
872
- "332","2195.0","50.0","130.0","4.0","14.0","super","super"
873
- "227","1920.0","33.0","170.0","4.0","14.0","super","super"
874
- "395","2999.0","66.0","170.0","4.0","14.0","hyper","hyper"
875
- "208","3795.0","33.0","452.0","8.0","14.0","uber","uber"
876
- "393","1899.0","50.0","120.0","4.0","14.0","super","super"
877
- "23","2895.0","25.0","340.0","16.0","14.0","hyper","hyper"
878
- "395","2999.0","66.0","170.0","4.0","14.0","hyper","hyper"
879
- "208","3795.0","33.0","452.0","8.0","14.0","uber","uber"
880
- "393","1899.0","50.0","120.0","4.0","14.0","super","super"
881
- "23","2895.0","25.0","340.0","16.0","14.0","hyper","hyper"
882
- "456","2375.0","50.0","250.0","8.0","15.0","mega","mega"
883
- "269","2799.0","50.0","245.0","16.0","15.0","hyper","hyper"
884
- "4","1849.0","25.0","170.0","8.0","14.0","super","hyper"
885
- "84","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
886
- "456","2375.0","50.0","250.0","8.0","15.0","mega","mega"
887
- "269","2799.0","50.0","245.0","16.0","15.0","hyper","hyper"
888
- "4","1849.0","25.0","170.0","8.0","14.0","super","hyper"
889
- "84","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
890
- "313","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
891
- "534","2335.0","66.0","250.0","8.0","14.0","mega","mega"
892
- "595","2295.0","66.0","214.0","4.0","14.0","mega","mega"
893
- "553","2990.0","50.0","452.0","16.0","14.0","hyper","hyper"
894
- "313","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
895
- "534","2335.0","66.0","250.0","8.0","14.0","mega","mega"
896
- "595","2295.0","66.0","214.0","4.0","14.0","mega","mega"
897
- "553","2990.0","50.0","452.0","16.0","14.0","hyper","hyper"
898
- "578","3090.0","66.0","452.0","16.0","14.0","hyper","hyper"
899
- "248","2699.0","66.0","213.0","8.0","14.0","mega","mega"
900
- "187","1695.0","33.0","170.0","4.0","14.0","special","special"
901
- "349","2515.0","33.0","250.0","8.0","15.0","mega","mega"
902
- "578","3090.0","66.0","452.0","16.0","14.0","hyper","hyper"
903
- "248","2699.0","66.0","213.0","8.0","14.0","mega","mega"
904
- "187","1695.0","33.0","170.0","4.0","14.0","special","special"
905
- "349","2515.0","33.0","250.0","8.0","15.0","mega","mega"
906
- "170","1999.0","33.0","120.0","8.0","14.0","super","super"
907
- "513","3090.0","66.0","452.0","16.0","15.0","hyper","hyper"
908
- "452","2395.0","33.0","250.0","8.0","14.0","mega","mega"
909
- "124","3220.0","66.0","340.0","8.0","15.0","hyper","special"
910
- "170","1999.0","33.0","120.0","8.0","14.0","super","super"
911
- "513","3090.0","66.0","452.0","16.0","15.0","hyper","hyper"
912
- "452","2395.0","33.0","250.0","8.0","14.0","mega","mega"
913
- "124","3220.0","66.0","340.0","8.0","15.0","hyper","special"
914
- "414","2195.0","33.0","250.0","8.0","15.0","super","super"
915
- "574","2045.0","50.0","250.0","4.0","15.0","super","super"
916
- "44","2255.0","33.0","210.0","8.0","14.0","super","super"
917
- "389","1395.0","25.0","85.0","2.0","14.0","special","special"
918
- "414","2195.0","33.0","250.0","8.0","15.0","super","super"
919
- "574","2045.0","50.0","250.0","4.0","15.0","super","super"
920
- "44","2255.0","33.0","210.0","8.0","14.0","super","super"
921
- "389","1395.0","25.0","85.0","2.0","14.0","special","special"
922
- "454","2425.0","66.0","250.0","8.0","15.0","mega","mega"
923
- "63","2495.0","33.0","250.0","8.0","15.0","mega","mega"
924
- "105","1395.0","25.0","85.0","2.0","14.0","special","special"
925
- "429","1690.0","33.0","107.0","2.0","15.0","special","special"
926
- "454","2425.0","66.0","250.0","8.0","15.0","mega","mega"
927
- "63","2495.0","33.0","250.0","8.0","15.0","mega","mega"
928
- "105","1395.0","25.0","85.0","2.0","14.0","special","special"
929
- "429","1690.0","33.0","107.0","2.0","15.0","special","special"
930
- "168","2599.0","50.0","210.0","4.0","14.0","mega","mega"
931
- "246","2495.0","33.0","250.0","8.0","15.0","mega","mega"
932
- "370","2035.0","33.0","250.0","8.0","14.0","super","super"
933
- "21","1695.0","33.0","130.0","4.0","14.0","special","special"
934
- "168","2599.0","50.0","210.0","4.0","14.0","mega","mega"
935
- "246","2495.0","33.0","250.0","8.0","15.0","mega","mega"
936
- "370","2035.0","33.0","250.0","8.0","14.0","super","super"
937
- "21","1695.0","33.0","130.0","4.0","14.0","special","special"
938
- "433","2595.0","25.0","452.0","16.0","14.0","mega","mega"
939
- "103","1795.0","66.0","85.0","2.0","14.0","super","super"
940
- "492","3595.0","50.0","452.0","8.0","14.0","uber","uber"
941
- "433","2595.0","25.0","452.0","16.0","14.0","mega","mega"
942
- "103","1795.0","66.0","85.0","2.0","14.0","super","super"
943
- "492","3595.0","50.0","452.0","8.0","14.0","uber","uber"
944
- "25","4195.0","50.0","452.0","8.0","14.0","uber","mega"
945
- "572","2325.0","66.0","250.0","8.0","15.0","mega","mega"
946
- "410","2795.0","33.0","452.0","16.0","14.0","hyper","hyper"
947
- "25","4195.0","50.0","452.0","8.0","14.0","uber","mega"
948
- "572","2325.0","66.0","250.0","8.0","15.0","mega","mega"
949
- "410","2795.0","33.0","452.0","16.0","14.0","hyper","hyper"
950
- "290","1695.0","50.0","85.0","2.0","14.0","special","special"
951
- "225","2599.0","50.0","212.0","8.0","14.0","mega","mega"
952
- "42","3895.0","66.0","500.0","8.0","15.0","uber","super"
953
- "290","1695.0","50.0","85.0","2.0","14.0","special","special"
954
- "225","2599.0","50.0","212.0","8.0","14.0","mega","mega"
955
- "42","3895.0","66.0","500.0","8.0","15.0","uber","super"
956
- "616","3990.0","66.0","1000.0","16.0","14.0","uber","uber"
957
- "551","2720.0","66.0","340.0","8.0","14.0","hyper","hyper"
958
- "307","2955.0","50.0","250.0","8.0","17.0","hyper","hyper"
959
- "616","3990.0","66.0","1000.0","16.0","14.0","uber","uber"
960
- "551","2720.0","66.0","340.0","8.0","14.0","hyper","hyper"
961
- "307","2955.0","50.0","250.0","8.0","17.0","hyper","hyper"
962
- "126","2544.0","33.0","245.0","8.0","14.0","mega","mega"
963
- "143","2475.0","50.0","250.0","8.0","14.0","mega","mega"
964
- "164","2345.0","50.0","250.0","8.0","14.0","mega","mega"
965
- "126","2544.0","33.0","245.0","8.0","14.0","mega","mega"
966
- "143","2475.0","50.0","250.0","8.0","14.0","mega","mega"
967
- "164","2345.0","50.0","250.0","8.0","14.0","mega","mega"
968
- "166","1895.0","25.0","130.0","4.0","14.0","super","super"
969
- "408","2285.0","50.0","250.0","8.0","14.0","mega","mega"
970
- "490","2790.0","66.0","340.0","8.0","14.0","hyper","hyper"
971
- "166","1895.0","25.0","130.0","4.0","14.0","super","super"
972
- "408","2285.0","50.0","250.0","8.0","14.0","mega","mega"
973
- "490","2790.0","66.0","340.0","8.0","14.0","hyper","hyper"
974
- "431","2790.0","33.0","452.0","16.0","14.0","hyper","hyper"
975
- "82","2495.0","33.0","245.0","8.0","14.0","mega","special"
976
- "431","2790.0","33.0","452.0","16.0","14.0","hyper","hyper"
977
- "82","2495.0","33.0","245.0","8.0","14.0","mega","special"
978
- "288","2475.0","50.0","250.0","8.0","14.0","mega","special"
979
- "347","2290.0","50.0","130.0","4.0","14.0","mega","mega"
980
- "288","2475.0","50.0","250.0","8.0","14.0","mega","special"
981
- "347","2290.0","50.0","130.0","4.0","14.0","mega","mega"
982
- "145","3995.0","66.0","452.0","8.0","14.0","uber","uber"
983
- "612","3609.0","66.0","527.0","4.0","15.0","uber","uber"
984
- "145","3995.0","66.0","452.0","8.0","14.0","uber","uber"
985
- "612","3609.0","66.0","527.0","4.0","15.0","uber","uber"
986
- "206","2099.0","66.0","120.0","4.0","14.0","super","super"
987
- "206","2099.0","66.0","120.0","4.0","14.0","super","super"
988
- "2","1795.0","33.0","85.0","2.0","14.0","super","super"
989
- "2","1795.0","33.0","85.0","2.0","14.0","super","super"
990
- "471","2155.0","33.0","250.0","8.0","14.0","super","super"
991
- "471","2155.0","33.0","250.0","8.0","14.0","super","super"
992
- "328","2099.0","33.0","212.0","4.0","14.0","super","mega"
993
- "328","2099.0","33.0","212.0","4.0","14.0","super","mega"
994
- "593","2890.0","33.0","452.0","16.0","15.0","hyper","hyper"
995
- "593","2890.0","33.0","452.0","16.0","15.0","hyper","hyper"
996
- "185","3795.0","66.0","500.0","8.0","14.0","uber","super"
997
- "185","3795.0","66.0","500.0","8.0","14.0","uber","super"
998
- "450","2625.0","66.0","250.0","8.0","15.0","mega","mega"
999
- "450","2625.0","66.0","250.0","8.0","15.0","mega","mega"
1000
- "511","3695.0","66.0","452.0","8.0","14.0","uber","uber"
1001
- "511","3695.0","66.0","452.0","8.0","14.0","uber","uber"
1
+ "compid","price","speed","hd","ram","screen","expected_compcategory","predicted_compcategory"
2
+ "469","2599.0","50.0","405.0","8.0","14.0","mega","mega"
3
+ "265","1899.0","50.0","120.0","4.0","14.0","super","super"
4
+ "40","2425.0","50.0","210.0","8.0","14.0","mega","mega"
5
+ "387","1790.0","50.0","85.0","2.0","14.0","super","super"
6
+ "469","2599.0","50.0","405.0","8.0","14.0","mega","mega"
7
+ "265","1899.0","50.0","120.0","4.0","14.0","super","super"
8
+ "40","2425.0","50.0","210.0","8.0","14.0","mega","mega"
9
+ "387","1790.0","50.0","85.0","2.0","14.0","super","super"
10
+ "61","3990.0","66.0","330.0","8.0","15.0","uber","uber"
11
+ "530","2575.0","50.0","250.0","8.0","15.0","mega","mega"
12
+ "223","2199.0","50.0","213.0","8.0","14.0","super","super"
13
+ "448","1590.0","33.0","107.0","2.0","15.0","special","special"
14
+ "61","3990.0","66.0","330.0","8.0","15.0","uber","uber"
15
+ "530","2575.0","50.0","250.0","8.0","15.0","mega","mega"
16
+ "223","2199.0","50.0","213.0","8.0","14.0","super","super"
17
+ "448","1590.0","33.0","107.0","2.0","15.0","special","special"
18
+ "183","1899.0","25.0","120.0","4.0","14.0","super","super"
19
+ "244","2495.0","50.0","245.0","8.0","14.0","mega","mega"
20
+ "488","2599.0","50.0","405.0","4.0","15.0","mega","mega"
21
+ "19","2095.0","33.0","250.0","4.0","15.0","super","super"
22
+ "183","1899.0","25.0","120.0","4.0","14.0","super","super"
23
+ "244","2495.0","50.0","245.0","8.0","14.0","mega","mega"
24
+ "488","2599.0","50.0","405.0","4.0","15.0","mega","mega"
25
+ "19","2095.0","33.0","250.0","4.0","15.0","super","super"
26
+ "509","2690.0","50.0","340.0","8.0","14.0","mega","mega"
27
+ "305","2590.0","50.0","245.0","8.0","14.0","mega","mega"
28
+ "80","1629.0","25.0","80.0","8.0","14.0","special","special"
29
+ "263","2535.0","33.0","170.0","8.0","15.0","mega","mega"
30
+ "509","2690.0","50.0","340.0","8.0","14.0","mega","mega"
31
+ "305","2590.0","50.0","245.0","8.0","14.0","mega","mega"
32
+ "80","1629.0","25.0","80.0","8.0","14.0","special","special"
33
+ "263","2535.0","33.0","170.0","8.0","15.0","mega","mega"
34
+ "366","1599.0","25.0","170.0","4.0","14.0","special","special"
35
+ "101","1995.0","33.0","250.0","4.0","14.0","super","super"
36
+ "345","2345.0","33.0","250.0","8.0","15.0","mega","mega"
37
+ "303","1895.0","33.0","170.0","4.0","14.0","super","super"
38
+ "366","1599.0","25.0","170.0","4.0","14.0","special","special"
39
+ "101","1995.0","33.0","250.0","4.0","14.0","super","super"
40
+ "345","2345.0","33.0","250.0","8.0","15.0","mega","mega"
41
+ "303","1895.0","33.0","170.0","4.0","14.0","super","super"
42
+ "202","2785.0","33.0","250.0","8.0","17.0","hyper","uber"
43
+ "570","2290.0","25.0","340.0","8.0","14.0","mega","mega"
44
+ "406","2190.0","33.0","214.0","4.0","15.0","super","super"
45
+ "99","2595.0","25.0","340.0","16.0","14.0","mega","mega"
46
+ "202","2785.0","33.0","250.0","8.0","17.0","hyper","uber"
47
+ "570","2290.0","25.0","340.0","8.0","14.0","mega","mega"
48
+ "406","2190.0","33.0","214.0","4.0","15.0","super","super"
49
+ "99","2595.0","25.0","340.0","16.0","14.0","mega","mega"
50
+ "467","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
51
+ "427","2890.0","33.0","452.0","16.0","15.0","hyper","hyper"
52
+ "120","2799.0","33.0","230.0","4.0","14.0","hyper","hyper"
53
+ "568","1390.0","25.0","107.0","2.0","15.0","special","special"
54
+ "467","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
55
+ "427","2890.0","33.0","452.0","16.0","15.0","hyper","hyper"
56
+ "120","2799.0","33.0","230.0","4.0","14.0","hyper","hyper"
57
+ "568","1390.0","25.0","107.0","2.0","15.0","special","special"
58
+ "181","2195.0","50.0","170.0","4.0","14.0","super","super"
59
+ "284","1795.0","33.0","170.0","4.0","15.0","super","super"
60
+ "446","2599.0","33.0","245.0","16.0","15.0","mega","mega"
61
+ "160","3399.0","66.0","230.0","4.0","15.0","hyper","hyper"
62
+ "181","2195.0","50.0","170.0","4.0","14.0","super","super"
63
+ "284","1795.0","33.0","170.0","4.0","15.0","super","super"
64
+ "446","2599.0","33.0","245.0","16.0","15.0","mega","mega"
65
+ "160","3399.0","66.0","230.0","4.0","15.0","hyper","hyper"
66
+ "242","1895.0","25.0","130.0","4.0","14.0","super","super"
67
+ "549","1825.0","50.0","170.0","4.0","14.0","super","super"
68
+ "343","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
69
+ "465","1790.0","50.0","107.0","2.0","15.0","super","super"
70
+ "242","1895.0","25.0","130.0","4.0","14.0","super","super"
71
+ "549","1825.0","50.0","170.0","4.0","14.0","super","super"
72
+ "343","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
73
+ "465","1790.0","50.0","107.0","2.0","15.0","super","super"
74
+ "507","2490.0","33.0","340.0","8.0","15.0","mega","mega"
75
+ "141","2225.0","33.0","250.0","8.0","14.0","super","super"
76
+ "200","3220.0","66.0","340.0","8.0","15.0","hyper","super"
77
+ "36","2675.0","66.0","210.0","4.0","15.0","mega","special"
78
+ "507","2490.0","33.0","340.0","8.0","15.0","mega","mega"
79
+ "141","2225.0","33.0","250.0","8.0","14.0","super","super"
80
+ "200","3220.0","66.0","340.0","8.0","15.0","hyper","super"
81
+ "36","2675.0","66.0","210.0","4.0","15.0","mega","special"
82
+ "364","3075.0","50.0","250.0","8.0","17.0","hyper","hyper"
83
+ "610","1890.0","66.0","107.0","2.0","14.0","super","super"
84
+ "57","2045.0","66.0","130.0","4.0","14.0","super","super"
85
+ "97","1999.0","33.0","170.0","4.0","14.0","super","super"
86
+ "364","3075.0","50.0","250.0","8.0","17.0","hyper","hyper"
87
+ "610","1890.0","66.0","107.0","2.0","14.0","super","super"
88
+ "57","2045.0","66.0","130.0","4.0","14.0","super","super"
89
+ "97","1999.0","33.0","170.0","4.0","14.0","super","super"
90
+ "221","2635.0","33.0","250.0","8.0","17.0","mega","mega"
91
+ "589","1825.0","33.0","170.0","4.0","15.0","super","special"
92
+ "118","2325.0","66.0","250.0","8.0","14.0","mega","mega"
93
+ "566","2190.0","33.0","214.0","4.0","14.0","super","super"
94
+ "221","2635.0","33.0","250.0","8.0","17.0","mega","mega"
95
+ "589","1825.0","33.0","170.0","4.0","15.0","super","special"
96
+ "118","2325.0","66.0","250.0","8.0","14.0","mega","mega"
97
+ "566","2190.0","33.0","214.0","4.0","14.0","super","super"
98
+ "486","2595.0","50.0","340.0","8.0","14.0","mega","mega"
99
+ "17","1595.0","33.0","85.0","2.0","14.0","special","super"
100
+ "383","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
101
+ "362","2095.0","33.0","130.0","4.0","14.0","super","super"
102
+ "486","2595.0","50.0","340.0","8.0","14.0","mega","mega"
103
+ "17","1595.0","33.0","85.0","2.0","14.0","special","super"
104
+ "383","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
105
+ "362","2095.0","33.0","130.0","4.0","14.0","super","super"
106
+ "78","3220.0","66.0","340.0","8.0","15.0","hyper","hyper"
107
+ "282","1995.0","33.0","250.0","4.0","14.0","super","super"
108
+ "505","3149.0","66.0","230.0","8.0","14.0","hyper","hyper"
109
+ "280","1795.0","66.0","85.0","2.0","14.0","super","mega"
110
+ "78","3220.0","66.0","340.0","8.0","15.0","hyper","hyper"
111
+ "282","1995.0","33.0","250.0","4.0","14.0","super","super"
112
+ "505","3149.0","66.0","230.0","8.0","14.0","hyper","hyper"
113
+ "280","1795.0","66.0","85.0","2.0","14.0","super","mega"
114
+ "547","2095.0","33.0","214.0","4.0","14.0","super","super"
115
+ "139","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
116
+ "158","2195.0","33.0","170.0","8.0","15.0","super","super"
117
+ "137","2255.0","50.0","250.0","8.0","14.0","mega","mega"
118
+ "547","2095.0","33.0","214.0","4.0","14.0","super","super"
119
+ "139","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
120
+ "158","2195.0","33.0","170.0","8.0","15.0","super","super"
121
+ "137","2255.0","50.0","250.0","8.0","14.0","mega","mega"
122
+ "219","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
123
+ "404","2995.0","66.0","452.0","16.0","14.0","hyper","hyper"
124
+ "423","1895.0","25.0","214.0","4.0","14.0","super","super"
125
+ "606","1490.0","33.0","107.0","2.0","15.0","special","special"
126
+ "219","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
127
+ "404","2995.0","66.0","452.0","16.0","14.0","hyper","hyper"
128
+ "423","1895.0","25.0","214.0","4.0","14.0","super","super"
129
+ "606","1490.0","33.0","107.0","2.0","15.0","special","special"
130
+ "76","2844.0","33.0","245.0","8.0","14.0","hyper","hyper"
131
+ "261","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
132
+ "55","2199.0","33.0","212.0","8.0","14.0","super","super"
133
+ "402","1595.0","33.0","170.0","4.0","14.0","special","special"
134
+ "76","2844.0","33.0","245.0","8.0","14.0","hyper","hyper"
135
+ "261","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
136
+ "55","2199.0","33.0","212.0","8.0","14.0","super","super"
137
+ "402","1595.0","33.0","170.0","4.0","14.0","special","special"
138
+ "341","2390.0","66.0","130.0","4.0","14.0","mega","mega"
139
+ "587","2890.0","33.0","452.0","16.0","14.0","hyper","hyper"
140
+ "503","1990.0","25.0","214.0","4.0","15.0","super","super"
141
+ "177","2399.0","50.0","212.0","4.0","14.0","mega","mega"
142
+ "341","2390.0","66.0","130.0","4.0","14.0","mega","mega"
143
+ "587","2890.0","33.0","452.0","16.0","14.0","hyper","hyper"
144
+ "503","1990.0","25.0","214.0","4.0","15.0","super","super"
145
+ "177","2399.0","50.0","212.0","4.0","14.0","mega","mega"
146
+ "198","1995.0","33.0","130.0","4.0","14.0","super","super"
147
+ "444","1699.0","33.0","170.0","4.0","14.0","special","special"
148
+ "95","2995.0","66.0","340.0","16.0","14.0","hyper","hyper"
149
+ "442","2125.0","33.0","250.0","8.0","15.0","super","super"
150
+ "198","1995.0","33.0","130.0","4.0","14.0","super","super"
151
+ "444","1699.0","33.0","170.0","4.0","14.0","special","special"
152
+ "95","2995.0","66.0","340.0","16.0","14.0","hyper","hyper"
153
+ "442","2125.0","33.0","250.0","8.0","15.0","super","super"
154
+ "259","1775.0","33.0","170.0","4.0","14.0","super","super"
155
+ "320","2195.0","66.0","170.0","4.0","14.0","super","super"
156
+ "543","2799.0","33.0","240.0","4.0","14.0","hyper","hyper"
157
+ "74","3044.0","50.0","245.0","8.0","14.0","hyper","hyper"
158
+ "259","1775.0","33.0","170.0","4.0","14.0","super","super"
159
+ "320","2195.0","66.0","170.0","4.0","14.0","super","super"
160
+ "543","2799.0","33.0","240.0","4.0","14.0","hyper","hyper"
161
+ "74","3044.0","50.0","245.0","8.0","14.0","hyper","hyper"
162
+ "524","2325.0","33.0","250.0","8.0","15.0","mega","mega"
163
+ "585","3265.0","33.0","540.0","8.0","17.0","hyper","hyper"
164
+ "400","2395.0","33.0","340.0","8.0","14.0","mega","mega"
165
+ "53","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
166
+ "524","2325.0","33.0","250.0","8.0","15.0","mega","mega"
167
+ "585","3265.0","33.0","540.0","8.0","17.0","hyper","hyper"
168
+ "400","2395.0","33.0","340.0","8.0","14.0","mega","mega"
169
+ "53","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
170
+ "381","2125.0","33.0","250.0","8.0","15.0","super","super"
171
+ "34","2475.0","50.0","210.0","4.0","15.0","mega","mega"
172
+ "583","3365.0","50.0","540.0","8.0","17.0","hyper","hyper"
173
+ "318","2605.0","33.0","250.0","8.0","17.0","mega","mega"
174
+ "381","2125.0","33.0","250.0","8.0","15.0","super","super"
175
+ "34","2475.0","50.0","210.0","4.0","15.0","mega","mega"
176
+ "583","3365.0","50.0","540.0","8.0","17.0","hyper","hyper"
177
+ "318","2605.0","33.0","250.0","8.0","17.0","mega","mega"
178
+ "238","1695.0","33.0","170.0","4.0","14.0","special","special"
179
+ "299","1899.0","33.0","170.0","4.0","14.0","super","super"
180
+ "175","3795.0","33.0","452.0","8.0","14.0","uber","uber"
181
+ "114","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
182
+ "238","1695.0","33.0","170.0","4.0","14.0","special","special"
183
+ "299","1899.0","33.0","170.0","4.0","14.0","super","super"
184
+ "175","3795.0","33.0","452.0","8.0","14.0","uber","uber"
185
+ "114","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
186
+ "421","3090.0","66.0","452.0","16.0","14.0","hyper","hyper"
187
+ "13","2045.0","50.0","130.0","4.0","14.0","super","super"
188
+ "501","2145.0","50.0","170.0","4.0","14.0","super","super"
189
+ "379","1595.0","33.0","85.0","2.0","14.0","special","special"
190
+ "421","3090.0","66.0","452.0","16.0","14.0","hyper","hyper"
191
+ "13","2045.0","50.0","130.0","4.0","14.0","super","super"
192
+ "501","2145.0","50.0","170.0","4.0","14.0","super","super"
193
+ "379","1595.0","33.0","85.0","2.0","14.0","special","special"
194
+ "257","3035.0","50.0","250.0","8.0","17.0","hyper","hyper"
195
+ "339","2905.0","66.0","250.0","8.0","17.0","hyper","super"
196
+ "72","2725.0","33.0","210.0","4.0","17.0","hyper","hyper"
197
+ "358","2645.0","66.0","250.0","8.0","15.0","mega","mega"
198
+ "257","3035.0","50.0","250.0","8.0","17.0","hyper","hyper"
199
+ "339","2905.0","66.0","250.0","8.0","17.0","hyper","super"
200
+ "72","2725.0","33.0","210.0","4.0","17.0","hyper","hyper"
201
+ "358","2645.0","66.0","250.0","8.0","15.0","mega","mega"
202
+ "522","2590.0","33.0","340.0","8.0","14.0","mega","mega"
203
+ "604","2590.0","25.0","452.0","16.0","15.0","mega","mega"
204
+ "398","1795.0","33.0","170.0","4.0","14.0","super","super"
205
+ "154","2075.0","33.0","250.0","8.0","14.0","super","super"
206
+ "522","2590.0","33.0","340.0","8.0","14.0","mega","mega"
207
+ "604","2590.0","25.0","452.0","16.0","15.0","mega","mega"
208
+ "398","1795.0","33.0","170.0","4.0","14.0","super","super"
209
+ "154","2075.0","33.0","250.0","8.0","14.0","super","super"
210
+ "276","2995.0","66.0","340.0","16.0","14.0","hyper","hyper"
211
+ "196","2055.0","33.0","250.0","8.0","14.0","super","super"
212
+ "173","1795.0","33.0","170.0","4.0","15.0","super","super"
213
+ "215","2985.0","66.0","250.0","8.0","17.0","hyper","mega"
214
+ "276","2995.0","66.0","340.0","16.0","14.0","hyper","hyper"
215
+ "196","2055.0","33.0","250.0","8.0","14.0","super","super"
216
+ "173","1795.0","33.0","170.0","4.0","15.0","super","super"
217
+ "215","2985.0","66.0","250.0","8.0","17.0","hyper","mega"
218
+ "541","2690.0","33.0","452.0","16.0","15.0","mega","mega"
219
+ "32","1995.0","25.0","130.0","4.0","14.0","super","super"
220
+ "438","2019.0","33.0","120.0","4.0","14.0","super","super"
221
+ "480","2290.0","50.0","214.0","4.0","15.0","mega","mega"
222
+ "541","2690.0","33.0","452.0","16.0","15.0","mega","mega"
223
+ "32","1995.0","25.0","130.0","4.0","14.0","super","super"
224
+ "438","2019.0","33.0","120.0","4.0","14.0","super","super"
225
+ "480","2290.0","50.0","214.0","4.0","15.0","mega","mega"
226
+ "133","2220.0","33.0","250.0","4.0","14.0","super","super"
227
+ "297","2155.0","33.0","250.0","8.0","14.0","super","super"
228
+ "295","2299.0","50.0","212.0","4.0","14.0","mega","mega"
229
+ "520","2025.0","50.0","170.0","4.0","14.0","super","super"
230
+ "133","2220.0","33.0","250.0","4.0","14.0","super","super"
231
+ "297","2155.0","33.0","250.0","8.0","14.0","super","super"
232
+ "295","2299.0","50.0","212.0","4.0","14.0","mega","mega"
233
+ "520","2025.0","50.0","170.0","4.0","14.0","super","super"
234
+ "581","1998.0","66.0","130.0","4.0","14.0","super","super"
235
+ "337","1795.0","33.0","170.0","4.0","14.0","super","super"
236
+ "560","2245.0","66.0","250.0","4.0","15.0","super","super"
237
+ "377","2695.0","33.0","340.0","16.0","14.0","mega","mega"
238
+ "581","1998.0","66.0","130.0","4.0","14.0","super","super"
239
+ "337","1795.0","33.0","170.0","4.0","14.0","super","super"
240
+ "560","2245.0","66.0","250.0","4.0","15.0","super","super"
241
+ "377","2695.0","33.0","340.0","16.0","14.0","mega","mega"
242
+ "234","2195.0","33.0","170.0","8.0","15.0","super","super"
243
+ "602","2590.0","25.0","452.0","16.0","14.0","mega","hyper"
244
+ "213","2420.0","33.0","170.0","8.0","15.0","mega","mega"
245
+ "621","2555.0","50.0","250.0","8.0","17.0","mega","mega"
246
+ "234","2195.0","33.0","170.0","8.0","15.0","super","super"
247
+ "602","2590.0","25.0","452.0","16.0","14.0","mega","hyper"
248
+ "213","2420.0","33.0","170.0","8.0","15.0","mega","mega"
249
+ "621","2555.0","50.0","250.0","8.0","17.0","mega","mega"
250
+ "274","2695.0","33.0","340.0","16.0","14.0","mega","mega"
251
+ "194","2055.0","50.0","170.0","4.0","14.0","super","super"
252
+ "478","1720.0","33.0","170.0","4.0","14.0","special","special"
253
+ "417","1995.0","33.0","250.0","8.0","14.0","super","super"
254
+ "274","2695.0","33.0","340.0","16.0","14.0","mega","mega"
255
+ "194","2055.0","50.0","170.0","4.0","14.0","super","super"
256
+ "478","1720.0","33.0","170.0","4.0","14.0","special","special"
257
+ "417","1995.0","33.0","250.0","8.0","14.0","super","super"
258
+ "131","2295.0","66.0","130.0","4.0","14.0","mega","mega"
259
+ "459","2905.0","66.0","250.0","8.0","17.0","hyper","hyper"
260
+ "518","2290.0","50.0","214.0","4.0","14.0","mega","mega"
261
+ "335","1699.0","33.0","120.0","4.0","14.0","special","special"
262
+ "131","2295.0","66.0","130.0","4.0","14.0","mega","mega"
263
+ "459","2905.0","66.0","250.0","8.0","17.0","hyper","hyper"
264
+ "518","2290.0","50.0","214.0","4.0","14.0","mega","mega"
265
+ "335","1699.0","33.0","120.0","4.0","14.0","special","special"
266
+ "600","1675.0","25.0","120.0","4.0","14.0","special","special"
267
+ "316","1995.0","50.0","170.0","4.0","14.0","super","super"
268
+ "110","2145.0","66.0","170.0","4.0","14.0","super","super"
269
+ "192","2499.0","50.0","210.0","4.0","14.0","mega","mega"
270
+ "600","1675.0","25.0","120.0","4.0","14.0","special","special"
271
+ "316","1995.0","50.0","170.0","4.0","14.0","super","super"
272
+ "110","2145.0","66.0","170.0","4.0","14.0","super","super"
273
+ "192","2499.0","50.0","210.0","4.0","14.0","mega","mega"
274
+ "396","2999.0","66.0","245.0","16.0","15.0","hyper","hyper"
275
+ "499","2190.0","33.0","214.0","4.0","14.0","super","super"
276
+ "558","3699.0","33.0","345.0","16.0","17.0","uber","mega"
277
+ "457","3105.0","66.0","250.0","8.0","17.0","hyper","hyper"
278
+ "396","2999.0","66.0","245.0","16.0","15.0","hyper","hyper"
279
+ "499","2190.0","33.0","214.0","4.0","14.0","super","super"
280
+ "558","3699.0","33.0","345.0","16.0","17.0","uber","mega"
281
+ "457","3105.0","66.0","250.0","8.0","17.0","hyper","hyper"
282
+ "253","2395.0","33.0","170.0","8.0","14.0","mega","mega"
283
+ "9","2225.0","50.0","210.0","8.0","14.0","super","super"
284
+ "150","3895.0","66.0","500.0","8.0","15.0","uber","uber"
285
+ "232","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
286
+ "253","2395.0","33.0","170.0","8.0","14.0","mega","mega"
287
+ "9","2225.0","50.0","210.0","8.0","14.0","super","super"
288
+ "150","3895.0","66.0","500.0","8.0","15.0","uber","uber"
289
+ "232","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
290
+ "436","1399.0","25.0","170.0","4.0","14.0","special","special"
291
+ "49","2399.0","50.0","212.0","4.0","14.0","mega","mega"
292
+ "415","3999.0","66.0","340.0","16.0","17.0","uber","uber"
293
+ "333","2190.0","33.0","130.0","4.0","14.0","super","super"
294
+ "436","1399.0","25.0","170.0","4.0","14.0","special","special"
295
+ "49","2399.0","50.0","212.0","4.0","14.0","mega","mega"
296
+ "415","3999.0","66.0","340.0","16.0","17.0","uber","uber"
297
+ "333","2190.0","33.0","130.0","4.0","14.0","super","super"
298
+ "293","2495.0","50.0","245.0","8.0","14.0","mega","mega"
299
+ "375","1890.0","66.0","85.0","2.0","14.0","super","super"
300
+ "7","1720.0","25.0","170.0","4.0","14.0","special","special"
301
+ "47","2195.0","33.0","130.0","4.0","14.0","super","super"
302
+ "293","2495.0","50.0","245.0","8.0","14.0","mega","mega"
303
+ "375","1890.0","66.0","85.0","2.0","14.0","super","super"
304
+ "7","1720.0","25.0","170.0","4.0","14.0","special","special"
305
+ "47","2195.0","33.0","130.0","4.0","14.0","super","super"
306
+ "619","2290.0","50.0","214.0","4.0","15.0","mega","mega"
307
+ "28","3995.0","33.0","452.0","8.0","14.0","uber","uber"
308
+ "272","4020.0","66.0","500.0","8.0","14.0","uber","uber"
309
+ "169","1595.0","33.0","85.0","2.0","14.0","special","mega"
310
+ "619","2290.0","50.0","214.0","4.0","15.0","mega","mega"
311
+ "28","3995.0","33.0","452.0","8.0","14.0","uber","uber"
312
+ "272","4020.0","66.0","500.0","8.0","14.0","uber","uber"
313
+ "169","1595.0","33.0","85.0","2.0","14.0","special","mega"
314
+ "108","1720.0","25.0","170.0","4.0","14.0","special","special"
315
+ "89","1395.0","25.0","85.0","2.0","14.0","special","special"
316
+ "598","2899.0","66.0","340.0","8.0","15.0","hyper","hyper"
317
+ "495","2690.0","50.0","340.0","8.0","15.0","mega","mega"
318
+ "108","1720.0","25.0","170.0","4.0","14.0","special","special"
319
+ "89","1395.0","25.0","85.0","2.0","14.0","special","special"
320
+ "598","2899.0","66.0","340.0","8.0","15.0","hyper","hyper"
321
+ "495","2690.0","50.0","340.0","8.0","15.0","mega","mega"
322
+ "577","2145.0","66.0","250.0","4.0","14.0","super","super"
323
+ "354","2090.0","33.0","130.0","4.0","14.0","super","super"
324
+ "190","2999.0","66.0","245.0","16.0","15.0","hyper","special"
325
+ "535","2090.0","33.0","214.0","4.0","14.0","super","super"
326
+ "577","2145.0","66.0","250.0","4.0","14.0","super","super"
327
+ "354","2090.0","33.0","130.0","4.0","14.0","super","super"
328
+ "190","2999.0","66.0","245.0","16.0","15.0","hyper","special"
329
+ "535","2090.0","33.0","214.0","4.0","14.0","super","super"
330
+ "26","1290.0","33.0","80.0","2.0","14.0","special","special"
331
+ "211","2395.0","33.0","245.0","8.0","14.0","mega","mega"
332
+ "455","2515.0","33.0","250.0","8.0","15.0","mega","mega"
333
+ "85","2595.0","25.0","245.0","8.0","14.0","mega","mega"
334
+ "26","1290.0","33.0","80.0","2.0","14.0","special","special"
335
+ "211","2395.0","33.0","245.0","8.0","14.0","mega","mega"
336
+ "455","2515.0","33.0","250.0","8.0","15.0","mega","mega"
337
+ "85","2595.0","25.0","245.0","8.0","14.0","mega","mega"
338
+ "291","3995.0","66.0","452.0","8.0","14.0","uber","uber"
339
+ "476","1490.0","25.0","107.0","2.0","15.0","special","special"
340
+ "516","2935.0","50.0","250.0","8.0","17.0","hyper","hyper"
341
+ "350","2145.0","50.0","170.0","4.0","14.0","super","super"
342
+ "291","3995.0","66.0","452.0","8.0","14.0","uber","uber"
343
+ "476","1490.0","25.0","107.0","2.0","15.0","special","special"
344
+ "516","2935.0","50.0","250.0","8.0","17.0","hyper","hyper"
345
+ "350","2145.0","50.0","170.0","4.0","14.0","super","super"
346
+ "148","2199.0","33.0","212.0","4.0","14.0","super","super"
347
+ "68","1499.0","25.0","120.0","4.0","14.0","special","special"
348
+ "556","1490.0","33.0","107.0","2.0","14.0","special","super"
349
+ "146","2595.0","66.0","245.0","8.0","14.0","mega","mega"
350
+ "148","2199.0","33.0","212.0","4.0","14.0","super","super"
351
+ "68","1499.0","25.0","120.0","4.0","14.0","special","special"
352
+ "556","1490.0","33.0","107.0","2.0","14.0","special","super"
353
+ "146","2595.0","66.0","245.0","8.0","14.0","mega","mega"
354
+ "617","2999.0","66.0","240.0","4.0","15.0","hyper","hyper"
355
+ "537","2195.0","50.0","250.0","4.0","14.0","super","super"
356
+ "270","2999.0","66.0","340.0","4.0","15.0","hyper","hyper"
357
+ "207","2885.0","66.0","170.0","8.0","15.0","hyper","hyper"
358
+ "617","2999.0","66.0","240.0","4.0","15.0","hyper","hyper"
359
+ "537","2195.0","50.0","250.0","4.0","14.0","super","super"
360
+ "270","2999.0","66.0","340.0","4.0","15.0","hyper","hyper"
361
+ "207","2885.0","66.0","170.0","8.0","15.0","hyper","hyper"
362
+ "413","2090.0","33.0","214.0","4.0","15.0","super","super"
363
+ "394","1399.0","25.0","170.0","4.0","14.0","special","special"
364
+ "453","2420.0","33.0","250.0","8.0","15.0","mega","mega"
365
+ "390","1895.0","50.0","170.0","4.0","14.0","super","super"
366
+ "413","2090.0","33.0","214.0","4.0","15.0","super","super"
367
+ "394","1399.0","25.0","170.0","4.0","14.0","special","special"
368
+ "453","2420.0","33.0","250.0","8.0","15.0","mega","mega"
369
+ "390","1895.0","50.0","170.0","4.0","14.0","super","super"
370
+ "5","3295.0","33.0","340.0","16.0","14.0","hyper","super"
371
+ "251","2399.0","66.0","213.0","8.0","14.0","mega","mega"
372
+ "310","3795.0","33.0","452.0","8.0","14.0","uber","uber"
373
+ "247","3299.0","66.0","245.0","16.0","15.0","hyper","hyper"
374
+ "5","3295.0","33.0","340.0","16.0","14.0","hyper","super"
375
+ "251","2399.0","66.0","213.0","8.0","14.0","mega","mega"
376
+ "310","3795.0","33.0","452.0","8.0","14.0","uber","uber"
377
+ "247","3299.0","66.0","245.0","16.0","15.0","hyper","hyper"
378
+ "474","2299.0","33.0","405.0","8.0","14.0","mega","mega"
379
+ "87","2075.0","33.0","210.0","8.0","14.0","super","super"
380
+ "575","2299.0","66.0","120.0","4.0","14.0","mega","mega"
381
+ "512","2645.0","50.0","250.0","8.0","15.0","mega","mega"
382
+ "474","2299.0","33.0","405.0","8.0","14.0","mega","mega"
383
+ "87","2075.0","33.0","210.0","8.0","14.0","super","super"
384
+ "575","2299.0","66.0","120.0","4.0","14.0","mega","mega"
385
+ "512","2645.0","50.0","250.0","8.0","15.0","mega","mega"
386
+ "331","1999.0","33.0","170.0","4.0","14.0","super","super"
387
+ "352","2525.0","50.0","250.0","8.0","14.0","mega","mega"
388
+ "167","2495.0","50.0","245.0","8.0","14.0","mega","mega"
389
+ "287","1399.0","25.0","170.0","4.0","14.0","special","special"
390
+ "331","1999.0","33.0","170.0","4.0","14.0","super","super"
391
+ "352","2525.0","50.0","250.0","8.0","14.0","mega","mega"
392
+ "167","2495.0","50.0","245.0","8.0","14.0","mega","mega"
393
+ "287","1399.0","25.0","170.0","4.0","14.0","special","special"
394
+ "596","1520.0","25.0","80.0","4.0","14.0","special","special"
395
+ "392","2595.0","66.0","245.0","8.0","14.0","mega","mega"
396
+ "228","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
397
+ "552","1295.0","25.0","107.0","2.0","14.0","special","mega"
398
+ "596","1520.0","25.0","80.0","4.0","14.0","special","special"
399
+ "392","2595.0","66.0","245.0","8.0","14.0","mega","mega"
400
+ "228","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
401
+ "552","1295.0","25.0","107.0","2.0","14.0","special","mega"
402
+ "188","2575.0","66.0","250.0","8.0","14.0","mega","mega"
403
+ "249","1695.0","50.0","85.0","2.0","14.0","special","special"
404
+ "493","2195.0","50.0","214.0","4.0","14.0","super","super"
405
+ "144","1975.0","50.0","170.0","4.0","14.0","super","super"
406
+ "188","2575.0","66.0","250.0","8.0","14.0","mega","mega"
407
+ "249","1695.0","50.0","85.0","2.0","14.0","special","special"
408
+ "493","2195.0","50.0","214.0","4.0","14.0","super","super"
409
+ "144","1975.0","50.0","170.0","4.0","14.0","super","super"
410
+ "24","2875.0","50.0","210.0","4.0","17.0","hyper","hyper"
411
+ "514","1890.0","66.0","107.0","2.0","15.0","super","super"
412
+ "615","1799.0","33.0","120.0","4.0","14.0","super","super"
413
+ "388","2099.0","66.0","120.0","4.0","14.0","super","super"
414
+ "24","2875.0","50.0","210.0","4.0","17.0","hyper","hyper"
415
+ "514","1890.0","66.0","107.0","2.0","15.0","super","super"
416
+ "615","1799.0","33.0","120.0","4.0","14.0","super","super"
417
+ "388","2099.0","66.0","120.0","4.0","14.0","super","super"
418
+ "289","2595.0","25.0","340.0","16.0","14.0","mega","mega"
419
+ "106","2995.0","66.0","250.0","8.0","17.0","hyper","hyper"
420
+ "268","2785.0","50.0","170.0","8.0","15.0","hyper","super"
421
+ "449","1499.0","33.0","120.0","4.0","14.0","special","special"
422
+ "289","2595.0","25.0","340.0","16.0","14.0","mega","mega"
423
+ "106","2995.0","66.0","250.0","8.0","17.0","hyper","hyper"
424
+ "268","2785.0","50.0","170.0","8.0","15.0","hyper","super"
425
+ "449","1499.0","33.0","120.0","4.0","14.0","special","special"
426
+ "3","1595.0","25.0","170.0","4.0","15.0","special","special"
427
+ "371","2490.0","33.0","245.0","8.0","14.0","mega","mega"
428
+ "533","2895.0","50.0","452.0","16.0","14.0","hyper","hyper"
429
+ "102","2195.0","25.0","245.0","8.0","14.0","super","super"
430
+ "3","1595.0","25.0","170.0","4.0","15.0","special","special"
431
+ "371","2490.0","33.0","245.0","8.0","14.0","mega","mega"
432
+ "533","2895.0","50.0","452.0","16.0","14.0","hyper","hyper"
433
+ "102","2195.0","25.0","245.0","8.0","14.0","super","super"
434
+ "329","3090.0","66.0","340.0","16.0","14.0","hyper","hyper"
435
+ "411","1495.0","33.0","170.0","4.0","14.0","special","special"
436
+ "165","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
437
+ "428","2390.0","25.0","340.0","8.0","14.0","mega","mega"
438
+ "329","3090.0","66.0","340.0","16.0","14.0","hyper","hyper"
439
+ "411","1495.0","33.0","170.0","4.0","14.0","special","special"
440
+ "165","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
441
+ "428","2390.0","25.0","340.0","8.0","14.0","mega","mega"
442
+ "186","2395.0","33.0","245.0","8.0","14.0","mega","mega"
443
+ "64","2220.0","33.0","250.0","4.0","14.0","super","super"
444
+ "22","2795.0","66.0","130.0","4.0","14.0","hyper","hyper"
445
+ "224","3895.0","50.0","452.0","8.0","14.0","uber","uber"
446
+ "186","2395.0","33.0","245.0","8.0","14.0","mega","mega"
447
+ "64","2220.0","33.0","250.0","4.0","14.0","super","super"
448
+ "22","2795.0","66.0","130.0","4.0","14.0","hyper","hyper"
449
+ "224","3895.0","50.0","452.0","8.0","14.0","uber","uber"
450
+ "43","2499.0","33.0","212.0","8.0","14.0","mega","mega"
451
+ "430","2295.0","25.0","340.0","8.0","14.0","mega","mega"
452
+ "613","2790.0","66.0","340.0","8.0","15.0","hyper","hyper"
453
+ "489","2855.0","50.0","250.0","8.0","17.0","hyper","hyper"
454
+ "43","2499.0","33.0","212.0","8.0","14.0","mega","mega"
455
+ "430","2295.0","25.0","340.0","8.0","14.0","mega","mega"
456
+ "613","2790.0","66.0","340.0","8.0","15.0","hyper","hyper"
457
+ "489","2855.0","50.0","250.0","8.0","17.0","hyper","hyper"
458
+ "308","2285.0","50.0","250.0","8.0","14.0","mega","mega"
459
+ "226","2745.0","66.0","170.0","8.0","14.0","hyper","mega"
460
+ "205","1595.0","33.0","85.0","2.0","14.0","special","special"
461
+ "264","2345.0","50.0","250.0","8.0","14.0","mega","mega"
462
+ "308","2285.0","50.0","250.0","8.0","14.0","mega","mega"
463
+ "226","2745.0","66.0","170.0","8.0","14.0","hyper","mega"
464
+ "205","1595.0","33.0","85.0","2.0","14.0","special","special"
465
+ "264","2345.0","50.0","250.0","8.0","14.0","mega","mega"
466
+ "491","3990.0","66.0","1000.0","16.0","14.0","uber","uber"
467
+ "83","2990.0","66.0","210.0","8.0","15.0","hyper","hyper"
468
+ "470","3720.0","66.0","500.0","8.0","14.0","uber","uber"
469
+ "590","2125.0","66.0","170.0","4.0","15.0","super","super"
470
+ "491","3990.0","66.0","1000.0","16.0","14.0","uber","uber"
471
+ "83","2990.0","66.0","210.0","8.0","15.0","hyper","hyper"
472
+ "470","3720.0","66.0","500.0","8.0","14.0","uber","uber"
473
+ "590","2125.0","66.0","170.0","4.0","15.0","super","super"
474
+ "348","2595.0","50.0","250.0","8.0","15.0","mega","mega"
475
+ "266","2195.0","50.0","130.0","4.0","14.0","super","super"
476
+ "62","1795.0","33.0","170.0","4.0","15.0","super","super"
477
+ "100","1695.0","33.0","170.0","4.0","14.0","special","special"
478
+ "348","2595.0","50.0","250.0","8.0","15.0","mega","mega"
479
+ "266","2195.0","50.0","130.0","4.0","14.0","super","super"
480
+ "62","1795.0","33.0","170.0","4.0","15.0","super","super"
481
+ "100","1695.0","33.0","170.0","4.0","14.0","special","special"
482
+ "1","1499.0","25.0","80.0","4.0","14.0","special","special"
483
+ "531","2390.0","25.0","340.0","8.0","15.0","mega","mega"
484
+ "327","2395.0","33.0","250.0","8.0","14.0","mega","mega"
485
+ "140","2195.0","50.0","130.0","4.0","14.0","super","super"
486
+ "1","1499.0","25.0","80.0","4.0","14.0","special","special"
487
+ "531","2390.0","25.0","340.0","8.0","15.0","mega","mega"
488
+ "327","2395.0","33.0","250.0","8.0","14.0","mega","mega"
489
+ "140","2195.0","50.0","130.0","4.0","14.0","super","super"
490
+ "41","2895.0","50.0","245.0","8.0","14.0","hyper","hyper"
491
+ "81","3399.0","66.0","230.0","4.0","15.0","hyper","hyper"
492
+ "245","2575.0","66.0","250.0","8.0","14.0","mega","uber"
493
+ "201","3995.0","66.0","452.0","8.0","14.0","uber","uber"
494
+ "41","2895.0","50.0","245.0","8.0","14.0","hyper","hyper"
495
+ "81","3399.0","66.0","230.0","4.0","15.0","hyper","hyper"
496
+ "245","2575.0","66.0","250.0","8.0","14.0","mega","uber"
497
+ "201","3995.0","66.0","452.0","8.0","14.0","uber","uber"
498
+ "306","1499.0","25.0","170.0","4.0","14.0","special","special"
499
+ "142","4020.0","66.0","500.0","8.0","14.0","uber","uber"
500
+ "510","3195.0","66.0","540.0","8.0","15.0","hyper","hyper"
501
+ "262","2345.0","33.0","250.0","8.0","15.0","mega","mega"
502
+ "306","1499.0","25.0","170.0","4.0","14.0","special","special"
503
+ "142","4020.0","66.0","500.0","8.0","14.0","uber","uber"
504
+ "510","3195.0","66.0","540.0","8.0","15.0","hyper","hyper"
505
+ "262","2345.0","33.0","250.0","8.0","15.0","mega","mega"
506
+ "163","2645.0","50.0","250.0","4.0","15.0","mega","mega"
507
+ "407","2399.0","66.0","213.0","8.0","14.0","mega","mega"
508
+ "571","1720.0","33.0","170.0","4.0","14.0","special","special"
509
+ "527","2790.0","66.0","340.0","8.0","15.0","hyper","hyper"
510
+ "163","2645.0","50.0","250.0","4.0","15.0","mega","mega"
511
+ "407","2399.0","66.0","213.0","8.0","14.0","mega","mega"
512
+ "571","1720.0","33.0","170.0","4.0","14.0","special","special"
513
+ "527","2790.0","66.0","340.0","8.0","15.0","hyper","hyper"
514
+ "20","4395.0","66.0","452.0","8.0","14.0","uber","mega"
515
+ "121","1795.0","33.0","170.0","4.0","14.0","super","super"
516
+ "285","2545.0","66.0","250.0","8.0","15.0","mega","mega"
517
+ "445","2495.0","33.0","340.0","8.0","14.0","mega","mega"
518
+ "20","4395.0","66.0","452.0","8.0","14.0","uber","mega"
519
+ "121","1795.0","33.0","170.0","4.0","14.0","super","super"
520
+ "285","2545.0","66.0","250.0","8.0","15.0","mega","mega"
521
+ "445","2495.0","33.0","340.0","8.0","14.0","mega","mega"
522
+ "611","2995.0","66.0","452.0","16.0","14.0","hyper","hyper"
523
+ "386","2399.0","33.0","212.0","8.0","14.0","mega","mega"
524
+ "325","1690.0","33.0","85.0","2.0","14.0","special","special"
525
+ "302","1895.0","25.0","130.0","4.0","14.0","super","super"
526
+ "611","2995.0","66.0","452.0","16.0","14.0","hyper","hyper"
527
+ "386","2399.0","33.0","212.0","8.0","14.0","mega","mega"
528
+ "325","1690.0","33.0","85.0","2.0","14.0","special","special"
529
+ "302","1895.0","25.0","130.0","4.0","14.0","super","super"
530
+ "203","2475.0","50.0","250.0","8.0","15.0","mega","mega"
531
+ "243","2335.0","50.0","250.0","8.0","14.0","mega","mega"
532
+ "182","2815.0","33.0","250.0","4.0","17.0","hyper","hyper"
533
+ "567","1690.0","33.0","107.0","2.0","14.0","special","special"
534
+ "203","2475.0","50.0","250.0","8.0","15.0","mega","mega"
535
+ "243","2335.0","50.0","250.0","8.0","14.0","mega","mega"
536
+ "182","2815.0","33.0","250.0","4.0","17.0","hyper","hyper"
537
+ "567","1690.0","33.0","107.0","2.0","14.0","special","special"
538
+ "468","1995.0","50.0","170.0","4.0","14.0","super","super"
539
+ "569","1890.0","25.0","214.0","4.0","14.0","super","super"
540
+ "39","2405.0","50.0","210.0","8.0","14.0","mega","mega"
541
+ "607","2299.0","66.0","245.0","8.0","14.0","mega","hyper"
542
+ "468","1995.0","50.0","170.0","4.0","14.0","super","super"
543
+ "569","1890.0","25.0","214.0","4.0","14.0","super","super"
544
+ "39","2405.0","50.0","210.0","8.0","14.0","mega","mega"
545
+ "607","2299.0","66.0","245.0","8.0","14.0","mega","hyper"
546
+ "60","1945.0","50.0","130.0","4.0","14.0","super","super"
547
+ "161","1995.0","33.0","130.0","4.0","14.0","super","super"
548
+ "508","3599.0","33.0","340.0","16.0","17.0","uber","uber"
549
+ "117","2525.0","50.0","250.0","4.0","15.0","mega","mega"
550
+ "60","1945.0","50.0","130.0","4.0","14.0","super","super"
551
+ "161","1995.0","33.0","130.0","4.0","14.0","super","super"
552
+ "508","3599.0","33.0","340.0","16.0","17.0","uber","uber"
553
+ "117","2525.0","50.0","250.0","4.0","15.0","mega","mega"
554
+ "18","2325.0","33.0","210.0","4.0","15.0","mega","mega"
555
+ "426","1595.0","33.0","107.0","2.0","14.0","special","special"
556
+ "365","2815.0","66.0","250.0","8.0","15.0","hyper","hyper"
557
+ "443","1490.0","25.0","107.0","2.0","14.0","special","special"
558
+ "18","2325.0","33.0","210.0","4.0","15.0","mega","mega"
559
+ "426","1595.0","33.0","107.0","2.0","14.0","special","special"
560
+ "365","2815.0","66.0","250.0","8.0","15.0","hyper","hyper"
561
+ "443","1490.0","25.0","107.0","2.0","14.0","special","special"
562
+ "79","2595.0","50.0","130.0","4.0","14.0","mega","mega"
563
+ "609","2495.0","33.0","250.0","8.0","15.0","mega","mega"
564
+ "222","2695.0","66.0","250.0","8.0","15.0","mega","mega"
565
+ "239","1495.0","25.0","170.0","4.0","14.0","special","special"
566
+ "79","2595.0","50.0","130.0","4.0","14.0","mega","mega"
567
+ "609","2495.0","33.0","250.0","8.0","15.0","mega","mega"
568
+ "222","2695.0","66.0","250.0","8.0","15.0","mega","mega"
569
+ "239","1495.0","25.0","170.0","4.0","14.0","special","special"
570
+ "344","1590.0","33.0","85.0","2.0","14.0","special","special"
571
+ "466","1795.0","66.0","107.0","2.0","14.0","super","super"
572
+ "548","2599.0","50.0","450.0","8.0","15.0","mega","mega"
573
+ "157","2999.0","50.0","170.0","4.0","14.0","hyper","hyper"
574
+ "344","1590.0","33.0","85.0","2.0","14.0","special","special"
575
+ "466","1795.0","66.0","107.0","2.0","14.0","super","super"
576
+ "548","2599.0","50.0","450.0","8.0","15.0","mega","mega"
577
+ "157","2999.0","50.0","170.0","4.0","14.0","hyper","hyper"
578
+ "58","3075.0","66.0","210.0","4.0","17.0","hyper","hyper"
579
+ "119","2499.0","33.0","170.0","4.0","14.0","mega","mega"
580
+ "588","1599.0","25.0","170.0","4.0","14.0","special","special"
581
+ "14","2295.0","25.0","245.0","8.0","14.0","mega","mega"
582
+ "58","3075.0","66.0","210.0","4.0","17.0","hyper","hyper"
583
+ "119","2499.0","33.0","170.0","4.0","14.0","mega","mega"
584
+ "588","1599.0","25.0","170.0","4.0","14.0","special","special"
585
+ "14","2295.0","25.0","245.0","8.0","14.0","mega","mega"
586
+ "323","2599.0","33.0","245.0","16.0","15.0","mega","mega"
587
+ "159","3065.0","50.0","250.0","4.0","17.0","hyper","mega"
588
+ "37","2325.0","66.0","210.0","8.0","14.0","mega","mega"
589
+ "483","2249.0","50.0","230.0","4.0","14.0","super","super"
590
+ "323","2599.0","33.0","245.0","16.0","15.0","mega","mega"
591
+ "159","3065.0","50.0","250.0","4.0","17.0","hyper","mega"
592
+ "37","2325.0","66.0","210.0","8.0","14.0","mega","mega"
593
+ "483","2249.0","50.0","230.0","4.0","14.0","super","super"
594
+ "384","2290.0","25.0","245.0","8.0","14.0","mega","mega"
595
+ "424","2495.0","50.0","250.0","8.0","15.0","mega","mega"
596
+ "220","1945.0","33.0","170.0","4.0","14.0","super","super"
597
+ "279","2405.0","66.0","250.0","8.0","14.0","mega","mega"
598
+ "384","2290.0","25.0","245.0","8.0","14.0","mega","mega"
599
+ "424","2495.0","50.0","250.0","8.0","15.0","mega","mega"
600
+ "220","1945.0","33.0","170.0","4.0","14.0","super","super"
601
+ "279","2405.0","66.0","250.0","8.0","14.0","mega","mega"
602
+ "180","1695.0","50.0","85.0","2.0","14.0","special","mega"
603
+ "16","2225.0","50.0","130.0","4.0","14.0","super","super"
604
+ "485","2455.0","66.0","250.0","8.0","14.0","mega","mega"
605
+ "544","2698.0","66.0","245.0","8.0","14.0","mega","mega"
606
+ "180","1695.0","50.0","85.0","2.0","14.0","special","mega"
607
+ "16","2225.0","50.0","130.0","4.0","14.0","super","super"
608
+ "485","2455.0","66.0","250.0","8.0","14.0","mega","mega"
609
+ "544","2698.0","66.0","245.0","8.0","14.0","mega","mega"
610
+ "241","1699.0","33.0","120.0","4.0","14.0","special","special"
611
+ "281","2225.0","33.0","250.0","8.0","14.0","super","super"
612
+ "77","1975.0","33.0","210.0","8.0","14.0","super","super"
613
+ "605","1449.0","25.0","120.0","4.0","14.0","special","hyper"
614
+ "241","1699.0","33.0","120.0","4.0","14.0","special","special"
615
+ "281","2225.0","33.0","250.0","8.0","14.0","super","super"
616
+ "77","1975.0","33.0","210.0","8.0","14.0","super","super"
617
+ "605","1449.0","25.0","120.0","4.0","14.0","special","hyper"
618
+ "506","1775.0","33.0","170.0","4.0","14.0","super","super"
619
+ "138","2395.0","33.0","250.0","4.0","15.0","mega","mega"
620
+ "342","2699.0","66.0","213.0","8.0","14.0","mega","mega"
621
+ "319","2335.0","66.0","250.0","8.0","14.0","mega","mega"
622
+ "506","1775.0","33.0","170.0","4.0","14.0","super","super"
623
+ "138","2395.0","33.0","250.0","4.0","15.0","mega","mega"
624
+ "342","2699.0","66.0","213.0","8.0","14.0","mega","mega"
625
+ "319","2335.0","66.0","250.0","8.0","14.0","mega","mega"
626
+ "98","1920.0","33.0","170.0","4.0","14.0","super","super"
627
+ "464","2790.0","33.0","452.0","16.0","15.0","hyper","hyper"
628
+ "260","2599.0","33.0","245.0","16.0","15.0","mega","mega"
629
+ "155","2499.0","33.0","212.0","8.0","14.0","mega","super"
630
+ "98","1920.0","33.0","170.0","4.0","14.0","super","super"
631
+ "464","2790.0","33.0","452.0","16.0","15.0","hyper","hyper"
632
+ "260","2599.0","33.0","245.0","16.0","15.0","mega","mega"
633
+ "155","2499.0","33.0","212.0","8.0","14.0","mega","super"
634
+ "363","2155.0","50.0","250.0","8.0","14.0","super","super"
635
+ "321","2425.0","66.0","250.0","8.0","15.0","mega","mega"
636
+ "525","2099.0","66.0","120.0","4.0","14.0","super","super"
637
+ "216","1395.0","25.0","85.0","2.0","14.0","special","special"
638
+ "363","2155.0","50.0","250.0","8.0","14.0","super","super"
639
+ "321","2425.0","66.0","250.0","8.0","15.0","mega","mega"
640
+ "525","2099.0","66.0","120.0","4.0","14.0","super","super"
641
+ "216","1395.0","25.0","85.0","2.0","14.0","special","special"
642
+ "546","2695.0","66.0","340.0","8.0","14.0","mega","mega"
643
+ "178","2645.0","33.0","250.0","8.0","17.0","mega","mega"
644
+ "382","2399.0","66.0","213.0","8.0","14.0","mega","mega"
645
+ "542","2795.0","66.0","250.0","8.0","15.0","hyper","hyper"
646
+ "546","2695.0","66.0","340.0","8.0","14.0","mega","mega"
647
+ "178","2645.0","33.0","250.0","8.0","17.0","mega","mega"
648
+ "382","2399.0","66.0","213.0","8.0","14.0","mega","mega"
649
+ "542","2795.0","66.0","250.0","8.0","15.0","hyper","hyper"
650
+ "403","2490.0","33.0","340.0","8.0","14.0","mega","mega"
651
+ "422","2690.0","25.0","452.0","16.0","14.0","mega","mega"
652
+ "35","1999.0","33.0","170.0","4.0","14.0","super","super"
653
+ "195","2065.0","50.0","170.0","4.0","14.0","super","super"
654
+ "403","2490.0","33.0","340.0","8.0","14.0","mega","mega"
655
+ "422","2690.0","25.0","452.0","16.0","14.0","mega","mega"
656
+ "35","1999.0","33.0","170.0","4.0","14.0","super","super"
657
+ "195","2065.0","50.0","170.0","4.0","14.0","super","super"
658
+ "56","2125.0","50.0","130.0","4.0","14.0","super","super"
659
+ "136","2195.0","25.0","245.0","8.0","14.0","super","super"
660
+ "300","1595.0","25.0","170.0","4.0","14.0","special","special"
661
+ "460","2690.0","25.0","452.0","16.0","15.0","mega","mega"
662
+ "56","2125.0","50.0","130.0","4.0","14.0","super","super"
663
+ "136","2195.0","25.0","245.0","8.0","14.0","super","super"
664
+ "300","1595.0","25.0","170.0","4.0","14.0","special","special"
665
+ "460","2690.0","25.0","452.0","16.0","15.0","mega","mega"
666
+ "96","1495.0","25.0","170.0","4.0","14.0","special","special"
667
+ "197","2099.0","33.0","212.0","4.0","14.0","super","super"
668
+ "340","2825.0","33.0","250.0","8.0","17.0","hyper","hyper"
669
+ "256","2399.0","66.0","120.0","4.0","14.0","mega","mega"
670
+ "96","1495.0","25.0","170.0","4.0","14.0","special","special"
671
+ "197","2099.0","33.0","212.0","4.0","14.0","super","super"
672
+ "340","2825.0","33.0","250.0","8.0","17.0","hyper","hyper"
673
+ "256","2399.0","66.0","120.0","4.0","14.0","mega","mega"
674
+ "361","1775.0","33.0","170.0","4.0","14.0","super","super"
675
+ "462","1790.0","50.0","107.0","2.0","14.0","super","super"
676
+ "54","2190.0","33.0","210.0","4.0","14.0","super","super"
677
+ "317","2399.0","66.0","120.0","4.0","14.0","mega","mega"
678
+ "361","1775.0","33.0","170.0","4.0","14.0","super","super"
679
+ "462","1790.0","50.0","107.0","2.0","14.0","super","super"
680
+ "54","2190.0","33.0","210.0","4.0","14.0","super","super"
681
+ "317","2399.0","66.0","120.0","4.0","14.0","mega","mega"
682
+ "218","2095.0","33.0","130.0","4.0","14.0","super","super"
683
+ "441","2605.0","33.0","250.0","8.0","17.0","mega","mega"
684
+ "380","1490.0","25.0","85.0","2.0","14.0","special","special"
685
+ "582","2590.0","33.0","340.0","8.0","14.0","mega","mega"
686
+ "218","2095.0","33.0","130.0","4.0","14.0","super","super"
687
+ "441","2605.0","33.0","250.0","8.0","17.0","mega","mega"
688
+ "380","1490.0","25.0","85.0","2.0","14.0","special","special"
689
+ "582","2590.0","33.0","340.0","8.0","14.0","mega","mega"
690
+ "75","2999.0","50.0","170.0","4.0","14.0","hyper","hyper"
691
+ "33","2595.0","33.0","210.0","8.0","17.0","mega","mega"
692
+ "563","2999.0","50.0","240.0","4.0","14.0","hyper","hyper"
693
+ "31","1920.0","33.0","170.0","4.0","14.0","super","super"
694
+ "75","2999.0","50.0","170.0","4.0","14.0","hyper","hyper"
695
+ "33","2595.0","33.0","210.0","8.0","17.0","mega","mega"
696
+ "563","2999.0","50.0","240.0","4.0","14.0","hyper","hyper"
697
+ "31","1920.0","33.0","170.0","4.0","14.0","super","super"
698
+ "401","2399.0","50.0","320.0","8.0","14.0","mega","mega"
699
+ "502","2295.0","66.0","214.0","4.0","14.0","mega","mega"
700
+ "12","2605.0","66.0","210.0","8.0","14.0","mega","uber"
701
+ "500","2720.0","50.0","250.0","8.0","15.0","hyper","hyper"
702
+ "401","2399.0","50.0","320.0","8.0","14.0","mega","mega"
703
+ "502","2295.0","66.0","214.0","4.0","14.0","mega","mega"
704
+ "12","2605.0","66.0","210.0","8.0","14.0","mega","uber"
705
+ "500","2720.0","50.0","250.0","8.0","15.0","hyper","hyper"
706
+ "258","2449.0","33.0","230.0","4.0","14.0","mega","super"
707
+ "298","2890.0","33.0","340.0","16.0","14.0","hyper","hyper"
708
+ "277","2195.0","50.0","170.0","4.0","14.0","super","super"
709
+ "622","2025.0","66.0","170.0","4.0","14.0","super","hyper"
710
+ "258","2449.0","33.0","230.0","4.0","14.0","mega","super"
711
+ "298","2890.0","33.0","340.0","16.0","14.0","hyper","hyper"
712
+ "277","2195.0","50.0","170.0","4.0","14.0","super","super"
713
+ "622","2025.0","66.0","170.0","4.0","14.0","super","hyper"
714
+ "523","1499.0","25.0","170.0","4.0","14.0","special","special"
715
+ "481","2455.0","50.0","250.0","8.0","15.0","mega","mega"
716
+ "338","2990.0","50.0","340.0","16.0","14.0","hyper","hyper"
717
+ "172","2495.0","33.0","250.0","8.0","15.0","mega","mega"
718
+ "523","1499.0","25.0","170.0","4.0","14.0","special","special"
719
+ "481","2455.0","50.0","250.0","8.0","15.0","mega","mega"
720
+ "338","2990.0","50.0","340.0","16.0","14.0","hyper","hyper"
721
+ "172","2495.0","33.0","250.0","8.0","15.0","mega","mega"
722
+ "115","1499.0","25.0","170.0","4.0","14.0","special","special"
723
+ "174","2744.0","66.0","245.0","8.0","14.0","hyper","special"
724
+ "603","1999.0","50.0","212.0","4.0","14.0","super","super"
725
+ "498","1890.0","66.0","107.0","2.0","14.0","super","super"
726
+ "115","1499.0","25.0","170.0","4.0","14.0","special","special"
727
+ "174","2744.0","66.0","245.0","8.0","14.0","hyper","special"
728
+ "603","1999.0","50.0","212.0","4.0","14.0","super","super"
729
+ "498","1890.0","66.0","107.0","2.0","14.0","super","super"
730
+ "359","3125.0","66.0","250.0","8.0","17.0","hyper","hyper"
731
+ "479","2595.0","50.0","250.0","8.0","15.0","mega","mega"
732
+ "275","2195.0","33.0","250.0","8.0","15.0","super","super"
733
+ "294","2455.0","66.0","250.0","8.0","14.0","mega","mega"
734
+ "359","3125.0","66.0","250.0","8.0","17.0","hyper","hyper"
735
+ "479","2595.0","50.0","250.0","8.0","15.0","mega","mega"
736
+ "275","2195.0","33.0","250.0","8.0","15.0","super","super"
737
+ "294","2455.0","66.0","250.0","8.0","14.0","mega","mega"
738
+ "73","1695.0","33.0","170.0","4.0","14.0","special","hyper"
739
+ "71","4020.0","66.0","500.0","8.0","14.0","uber","uber"
740
+ "540","2095.0","33.0","250.0","4.0","14.0","super","super"
741
+ "559","2690.0","33.0","452.0","16.0","14.0","mega","mega"
742
+ "73","1695.0","33.0","170.0","4.0","14.0","special","hyper"
743
+ "71","4020.0","66.0","500.0","8.0","14.0","uber","uber"
744
+ "540","2095.0","33.0","250.0","4.0","14.0","super","super"
745
+ "559","2690.0","33.0","452.0","16.0","14.0","mega","mega"
746
+ "134","2075.0","50.0","170.0","4.0","14.0","super","super"
747
+ "336","2790.0","33.0","340.0","16.0","14.0","hyper","hyper"
748
+ "132","1799.0","25.0","170.0","4.0","14.0","super","mega"
749
+ "212","3135.0","66.0","250.0","8.0","17.0","hyper","hyper"
750
+ "134","2075.0","50.0","170.0","4.0","14.0","super","super"
751
+ "336","2790.0","33.0","340.0","16.0","14.0","hyper","hyper"
752
+ "132","1799.0","25.0","170.0","4.0","14.0","super","mega"
753
+ "212","3135.0","66.0","250.0","8.0","17.0","hyper","hyper"
754
+ "399","1899.0","33.0","212.0","4.0","14.0","super","super"
755
+ "193","1999.0","33.0","213.0","8.0","14.0","super","super"
756
+ "397","2449.0","33.0","230.0","4.0","14.0","mega","mega"
757
+ "69","2199.0","33.0","212.0","4.0","14.0","super","super"
758
+ "399","1899.0","33.0","212.0","4.0","14.0","super","super"
759
+ "193","1999.0","33.0","213.0","8.0","14.0","super","super"
760
+ "397","2449.0","33.0","230.0","4.0","14.0","mega","mega"
761
+ "69","2199.0","33.0","212.0","4.0","14.0","super","super"
762
+ "113","3895.0","50.0","452.0","8.0","14.0","uber","uber"
763
+ "458","2390.0","66.0","214.0","4.0","15.0","mega","mega"
764
+ "50","1995.0","33.0","250.0","4.0","14.0","super","super"
765
+ "538","1899.0","33.0","170.0","4.0","14.0","super","super"
766
+ "113","3895.0","50.0","452.0","8.0","14.0","uber","uber"
767
+ "458","2390.0","66.0","214.0","4.0","15.0","mega","mega"
768
+ "50","1995.0","33.0","250.0","4.0","14.0","super","super"
769
+ "538","1899.0","33.0","170.0","4.0","14.0","super","super"
770
+ "378","2595.0","25.0","340.0","16.0","14.0","mega","mega"
771
+ "519","2390.0","66.0","214.0","4.0","14.0","mega","mega"
772
+ "315","2695.0","66.0","250.0","8.0","14.0","mega","mega"
773
+ "334","2025.0","50.0","170.0","4.0","14.0","super","super"
774
+ "378","2595.0","25.0","340.0","16.0","14.0","mega","mega"
775
+ "519","2390.0","66.0","214.0","4.0","14.0","mega","mega"
776
+ "315","2695.0","66.0","250.0","8.0","14.0","mega","mega"
777
+ "334","2025.0","50.0","170.0","4.0","14.0","super","super"
778
+ "439","3055.0","50.0","250.0","8.0","17.0","hyper","hyper"
779
+ "376","1995.0","33.0","130.0","4.0","14.0","super","super"
780
+ "580","2099.0","33.0","120.0","4.0","14.0","super","super"
781
+ "599","2390.0","66.0","214.0","4.0","14.0","mega","mega"
782
+ "439","3055.0","50.0","250.0","8.0","17.0","hyper","hyper"
783
+ "376","1995.0","33.0","130.0","4.0","14.0","super","super"
784
+ "580","2099.0","33.0","120.0","4.0","14.0","super","super"
785
+ "599","2390.0","66.0","214.0","4.0","14.0","mega","mega"
786
+ "235","2195.0","25.0","245.0","8.0","14.0","super","super"
787
+ "477","2035.0","33.0","250.0","8.0","14.0","super","super"
788
+ "437","2805.0","33.0","250.0","8.0","17.0","hyper","hyper"
789
+ "210","3895.0","66.0","500.0","8.0","15.0","uber","uber"
790
+ "235","2195.0","25.0","245.0","8.0","14.0","super","super"
791
+ "477","2035.0","33.0","250.0","8.0","14.0","super","super"
792
+ "437","2805.0","33.0","250.0","8.0","17.0","hyper","hyper"
793
+ "210","3895.0","66.0","500.0","8.0","15.0","uber","uber"
794
+ "296","2690.0","25.0","340.0","16.0","14.0","mega","mega"
795
+ "191","1899.0","33.0","170.0","4.0","14.0","super","super"
796
+ "355","2075.0","66.0","170.0","4.0","14.0","super","super"
797
+ "6","3695.0","66.0","340.0","16.0","14.0","uber","special"
798
+ "296","2690.0","25.0","340.0","16.0","14.0","mega","mega"
799
+ "191","1899.0","33.0","170.0","4.0","14.0","super","super"
800
+ "355","2075.0","66.0","170.0","4.0","14.0","super","super"
801
+ "6","3695.0","66.0","340.0","16.0","14.0","uber","special"
802
+ "561","3999.0","66.0","345.0","16.0","17.0","uber","uber"
803
+ "517","1990.0","25.0","214.0","4.0","14.0","super","super"
804
+ "620","1499.0","33.0","130.0","4.0","14.0","special","special"
805
+ "597","2745.0","33.0","540.0","8.0","14.0","hyper","hyper"
806
+ "561","3999.0","66.0","345.0","16.0","17.0","uber","uber"
807
+ "517","1990.0","25.0","214.0","4.0","14.0","super","super"
808
+ "620","1499.0","33.0","130.0","4.0","14.0","special","special"
809
+ "597","2745.0","33.0","540.0","8.0","14.0","hyper","hyper"
810
+ "418","1690.0","33.0","107.0","2.0","14.0","special","special"
811
+ "231","1999.0","33.0","120.0","8.0","14.0","super","super"
812
+ "252","1499.0","25.0","170.0","4.0","14.0","special","special"
813
+ "250","2999.0","66.0","170.0","4.0","14.0","hyper","hyper"
814
+ "418","1690.0","33.0","107.0","2.0","14.0","special","special"
815
+ "231","1999.0","33.0","120.0","8.0","14.0","super","super"
816
+ "252","1499.0","25.0","170.0","4.0","14.0","special","special"
817
+ "250","2999.0","66.0","170.0","4.0","14.0","hyper","hyper"
818
+ "601","3149.0","66.0","230.0","8.0","14.0","hyper","hyper"
819
+ "88","1795.0","33.0","130.0","4.0","14.0","super","super"
820
+ "109","2045.0","66.0","170.0","4.0","14.0","super","special"
821
+ "515","1999.0","33.0","170.0","4.0","14.0","super","super"
822
+ "601","3149.0","66.0","230.0","8.0","14.0","hyper","hyper"
823
+ "88","1795.0","33.0","130.0","4.0","14.0","super","super"
824
+ "109","2045.0","66.0","170.0","4.0","14.0","super","special"
825
+ "515","1999.0","33.0","170.0","4.0","14.0","super","super"
826
+ "111","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
827
+ "353","2595.0","50.0","250.0","8.0","15.0","mega","mega"
828
+ "435","2049.0","33.0","405.0","4.0","14.0","super","super"
829
+ "311","1999.0","33.0","213.0","8.0","14.0","super","super"
830
+ "111","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
831
+ "353","2595.0","50.0","250.0","8.0","15.0","mega","mega"
832
+ "435","2049.0","33.0","405.0","4.0","14.0","super","super"
833
+ "311","1999.0","33.0","213.0","8.0","14.0","super","super"
834
+ "90","3490.0","50.0","330.0","8.0","14.0","uber","uber"
835
+ "536","2815.0","66.0","250.0","8.0","15.0","hyper","hyper"
836
+ "27","1975.0","33.0","130.0","4.0","14.0","super","super"
837
+ "372","3225.0","66.0","212.0","4.0","15.0","hyper","hyper"
838
+ "90","3490.0","50.0","330.0","8.0","14.0","uber","uber"
839
+ "536","2815.0","66.0","250.0","8.0","15.0","hyper","hyper"
840
+ "27","1975.0","33.0","130.0","4.0","14.0","super","super"
841
+ "372","3225.0","66.0","212.0","4.0","15.0","hyper","hyper"
842
+ "151","2095.0","33.0","250.0","4.0","15.0","super","super"
843
+ "189","2695.0","33.0","340.0","16.0","14.0","mega","mega"
844
+ "292","2999.0","66.0","240.0","4.0","15.0","hyper","hyper"
845
+ "555","2595.0","33.0","452.0","16.0","14.0","mega","mega"
846
+ "151","2095.0","33.0","250.0","4.0","15.0","super","super"
847
+ "189","2695.0","33.0","340.0","16.0","14.0","mega","mega"
848
+ "292","2999.0","66.0","240.0","4.0","15.0","hyper","hyper"
849
+ "555","2595.0","33.0","452.0","16.0","14.0","mega","mega"
850
+ "8","1995.0","50.0","85.0","2.0","14.0","super","super"
851
+ "229","2199.0","33.0","210.0","4.0","14.0","super","super"
852
+ "557","2075.0","50.0","250.0","8.0","14.0","super","super"
853
+ "412","2075.0","66.0","170.0","4.0","14.0","super","super"
854
+ "8","1995.0","50.0","85.0","2.0","14.0","super","super"
855
+ "229","2199.0","33.0","210.0","4.0","14.0","super","super"
856
+ "557","2075.0","50.0","250.0","8.0","14.0","super","super"
857
+ "412","2075.0","66.0","170.0","4.0","14.0","super","super"
858
+ "273","2595.0","50.0","250.0","8.0","15.0","mega","mega"
859
+ "494","3599.0","66.0","405.0","8.0","14.0","uber","uber"
860
+ "67","2325.0","66.0","130.0","4.0","14.0","mega","mega"
861
+ "309","2475.0","50.0","250.0","8.0","15.0","mega","special"
862
+ "273","2595.0","50.0","250.0","8.0","15.0","mega","mega"
863
+ "494","3599.0","66.0","405.0","8.0","14.0","uber","uber"
864
+ "67","2325.0","66.0","130.0","4.0","14.0","mega","mega"
865
+ "309","2475.0","50.0","250.0","8.0","15.0","mega","special"
866
+ "130","2065.0","50.0","170.0","4.0","14.0","super","super"
867
+ "351","2405.0","50.0","250.0","8.0","14.0","mega","mega"
868
+ "332","2195.0","50.0","130.0","4.0","14.0","super","super"
869
+ "227","1920.0","33.0","170.0","4.0","14.0","super","super"
870
+ "130","2065.0","50.0","170.0","4.0","14.0","super","super"
871
+ "351","2405.0","50.0","250.0","8.0","14.0","mega","mega"
872
+ "332","2195.0","50.0","130.0","4.0","14.0","super","super"
873
+ "227","1920.0","33.0","170.0","4.0","14.0","super","super"
874
+ "395","2999.0","66.0","170.0","4.0","14.0","hyper","hyper"
875
+ "208","3795.0","33.0","452.0","8.0","14.0","uber","uber"
876
+ "393","1899.0","50.0","120.0","4.0","14.0","super","super"
877
+ "23","2895.0","25.0","340.0","16.0","14.0","hyper","hyper"
878
+ "395","2999.0","66.0","170.0","4.0","14.0","hyper","hyper"
879
+ "208","3795.0","33.0","452.0","8.0","14.0","uber","uber"
880
+ "393","1899.0","50.0","120.0","4.0","14.0","super","super"
881
+ "23","2895.0","25.0","340.0","16.0","14.0","hyper","hyper"
882
+ "456","2375.0","50.0","250.0","8.0","15.0","mega","mega"
883
+ "269","2799.0","50.0","245.0","16.0","15.0","hyper","hyper"
884
+ "4","1849.0","25.0","170.0","8.0","14.0","super","hyper"
885
+ "84","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
886
+ "456","2375.0","50.0","250.0","8.0","15.0","mega","mega"
887
+ "269","2799.0","50.0","245.0","16.0","15.0","hyper","hyper"
888
+ "4","1849.0","25.0","170.0","8.0","14.0","super","hyper"
889
+ "84","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
890
+ "313","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
891
+ "534","2335.0","66.0","250.0","8.0","14.0","mega","mega"
892
+ "595","2295.0","66.0","214.0","4.0","14.0","mega","mega"
893
+ "553","2990.0","50.0","452.0","16.0","14.0","hyper","hyper"
894
+ "313","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
895
+ "534","2335.0","66.0","250.0","8.0","14.0","mega","mega"
896
+ "595","2295.0","66.0","214.0","4.0","14.0","mega","mega"
897
+ "553","2990.0","50.0","452.0","16.0","14.0","hyper","hyper"
898
+ "578","3090.0","66.0","452.0","16.0","14.0","hyper","hyper"
899
+ "248","2699.0","66.0","213.0","8.0","14.0","mega","mega"
900
+ "187","1695.0","33.0","170.0","4.0","14.0","special","special"
901
+ "349","2515.0","33.0","250.0","8.0","15.0","mega","mega"
902
+ "578","3090.0","66.0","452.0","16.0","14.0","hyper","hyper"
903
+ "248","2699.0","66.0","213.0","8.0","14.0","mega","mega"
904
+ "187","1695.0","33.0","170.0","4.0","14.0","special","special"
905
+ "349","2515.0","33.0","250.0","8.0","15.0","mega","mega"
906
+ "170","1999.0","33.0","120.0","8.0","14.0","super","super"
907
+ "513","3090.0","66.0","452.0","16.0","15.0","hyper","hyper"
908
+ "452","2395.0","33.0","250.0","8.0","14.0","mega","mega"
909
+ "124","3220.0","66.0","340.0","8.0","15.0","hyper","special"
910
+ "170","1999.0","33.0","120.0","8.0","14.0","super","super"
911
+ "513","3090.0","66.0","452.0","16.0","15.0","hyper","hyper"
912
+ "452","2395.0","33.0","250.0","8.0","14.0","mega","mega"
913
+ "124","3220.0","66.0","340.0","8.0","15.0","hyper","special"
914
+ "414","2195.0","33.0","250.0","8.0","15.0","super","super"
915
+ "574","2045.0","50.0","250.0","4.0","15.0","super","super"
916
+ "44","2255.0","33.0","210.0","8.0","14.0","super","super"
917
+ "389","1395.0","25.0","85.0","2.0","14.0","special","special"
918
+ "414","2195.0","33.0","250.0","8.0","15.0","super","super"
919
+ "574","2045.0","50.0","250.0","4.0","15.0","super","super"
920
+ "44","2255.0","33.0","210.0","8.0","14.0","super","super"
921
+ "389","1395.0","25.0","85.0","2.0","14.0","special","special"
922
+ "454","2425.0","66.0","250.0","8.0","15.0","mega","mega"
923
+ "63","2495.0","33.0","250.0","8.0","15.0","mega","mega"
924
+ "105","1395.0","25.0","85.0","2.0","14.0","special","special"
925
+ "429","1690.0","33.0","107.0","2.0","15.0","special","special"
926
+ "454","2425.0","66.0","250.0","8.0","15.0","mega","mega"
927
+ "63","2495.0","33.0","250.0","8.0","15.0","mega","mega"
928
+ "105","1395.0","25.0","85.0","2.0","14.0","special","special"
929
+ "429","1690.0","33.0","107.0","2.0","15.0","special","special"
930
+ "168","2599.0","50.0","210.0","4.0","14.0","mega","mega"
931
+ "246","2495.0","33.0","250.0","8.0","15.0","mega","mega"
932
+ "370","2035.0","33.0","250.0","8.0","14.0","super","super"
933
+ "21","1695.0","33.0","130.0","4.0","14.0","special","special"
934
+ "168","2599.0","50.0","210.0","4.0","14.0","mega","mega"
935
+ "246","2495.0","33.0","250.0","8.0","15.0","mega","mega"
936
+ "370","2035.0","33.0","250.0","8.0","14.0","super","super"
937
+ "21","1695.0","33.0","130.0","4.0","14.0","special","special"
938
+ "433","2595.0","25.0","452.0","16.0","14.0","mega","mega"
939
+ "103","1795.0","66.0","85.0","2.0","14.0","super","super"
940
+ "492","3595.0","50.0","452.0","8.0","14.0","uber","uber"
941
+ "433","2595.0","25.0","452.0","16.0","14.0","mega","mega"
942
+ "103","1795.0","66.0","85.0","2.0","14.0","super","super"
943
+ "492","3595.0","50.0","452.0","8.0","14.0","uber","uber"
944
+ "25","4195.0","50.0","452.0","8.0","14.0","uber","mega"
945
+ "572","2325.0","66.0","250.0","8.0","15.0","mega","mega"
946
+ "410","2795.0","33.0","452.0","16.0","14.0","hyper","hyper"
947
+ "25","4195.0","50.0","452.0","8.0","14.0","uber","mega"
948
+ "572","2325.0","66.0","250.0","8.0","15.0","mega","mega"
949
+ "410","2795.0","33.0","452.0","16.0","14.0","hyper","hyper"
950
+ "290","1695.0","50.0","85.0","2.0","14.0","special","special"
951
+ "225","2599.0","50.0","212.0","8.0","14.0","mega","mega"
952
+ "42","3895.0","66.0","500.0","8.0","15.0","uber","super"
953
+ "290","1695.0","50.0","85.0","2.0","14.0","special","special"
954
+ "225","2599.0","50.0","212.0","8.0","14.0","mega","mega"
955
+ "42","3895.0","66.0","500.0","8.0","15.0","uber","super"
956
+ "616","3990.0","66.0","1000.0","16.0","14.0","uber","uber"
957
+ "551","2720.0","66.0","340.0","8.0","14.0","hyper","hyper"
958
+ "307","2955.0","50.0","250.0","8.0","17.0","hyper","hyper"
959
+ "616","3990.0","66.0","1000.0","16.0","14.0","uber","uber"
960
+ "551","2720.0","66.0","340.0","8.0","14.0","hyper","hyper"
961
+ "307","2955.0","50.0","250.0","8.0","17.0","hyper","hyper"
962
+ "126","2544.0","33.0","245.0","8.0","14.0","mega","mega"
963
+ "143","2475.0","50.0","250.0","8.0","14.0","mega","mega"
964
+ "164","2345.0","50.0","250.0","8.0","14.0","mega","mega"
965
+ "126","2544.0","33.0","245.0","8.0","14.0","mega","mega"
966
+ "143","2475.0","50.0","250.0","8.0","14.0","mega","mega"
967
+ "164","2345.0","50.0","250.0","8.0","14.0","mega","mega"
968
+ "166","1895.0","25.0","130.0","4.0","14.0","super","super"
969
+ "408","2285.0","50.0","250.0","8.0","14.0","mega","mega"
970
+ "490","2790.0","66.0","340.0","8.0","14.0","hyper","hyper"
971
+ "166","1895.0","25.0","130.0","4.0","14.0","super","super"
972
+ "408","2285.0","50.0","250.0","8.0","14.0","mega","mega"
973
+ "490","2790.0","66.0","340.0","8.0","14.0","hyper","hyper"
974
+ "431","2790.0","33.0","452.0","16.0","14.0","hyper","hyper"
975
+ "82","2495.0","33.0","245.0","8.0","14.0","mega","special"
976
+ "431","2790.0","33.0","452.0","16.0","14.0","hyper","hyper"
977
+ "82","2495.0","33.0","245.0","8.0","14.0","mega","special"
978
+ "288","2475.0","50.0","250.0","8.0","14.0","mega","special"
979
+ "347","2290.0","50.0","130.0","4.0","14.0","mega","mega"
980
+ "288","2475.0","50.0","250.0","8.0","14.0","mega","special"
981
+ "347","2290.0","50.0","130.0","4.0","14.0","mega","mega"
982
+ "145","3995.0","66.0","452.0","8.0","14.0","uber","uber"
983
+ "612","3609.0","66.0","527.0","4.0","15.0","uber","uber"
984
+ "145","3995.0","66.0","452.0","8.0","14.0","uber","uber"
985
+ "612","3609.0","66.0","527.0","4.0","15.0","uber","uber"
986
+ "206","2099.0","66.0","120.0","4.0","14.0","super","super"
987
+ "206","2099.0","66.0","120.0","4.0","14.0","super","super"
988
+ "2","1795.0","33.0","85.0","2.0","14.0","super","super"
989
+ "2","1795.0","33.0","85.0","2.0","14.0","super","super"
990
+ "471","2155.0","33.0","250.0","8.0","14.0","super","super"
991
+ "471","2155.0","33.0","250.0","8.0","14.0","super","super"
992
+ "328","2099.0","33.0","212.0","4.0","14.0","super","mega"
993
+ "328","2099.0","33.0","212.0","4.0","14.0","super","mega"
994
+ "593","2890.0","33.0","452.0","16.0","15.0","hyper","hyper"
995
+ "593","2890.0","33.0","452.0","16.0","15.0","hyper","hyper"
996
+ "185","3795.0","66.0","500.0","8.0","14.0","uber","super"
997
+ "185","3795.0","66.0","500.0","8.0","14.0","uber","super"
998
+ "450","2625.0","66.0","250.0","8.0","15.0","mega","mega"
999
+ "450","2625.0","66.0","250.0","8.0","15.0","mega","mega"
1000
+ "511","3695.0","66.0","452.0","8.0","14.0","uber","uber"
1001
+ "511","3695.0","66.0","452.0","8.0","14.0","uber","uber"