teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1303) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1935 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2040 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +798 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1683 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +1011 -0
  31. teradataml/automl/data_transformation.py +789 -0
  32. teradataml/automl/feature_engineering.py +1580 -0
  33. teradataml/automl/feature_exploration.py +554 -0
  34. teradataml/automl/model_evaluation.py +151 -0
  35. teradataml/automl/model_training.py +1026 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/auth_client.py +133 -0
  41. teradataml/clients/pkce_client.py +481 -481
  42. teradataml/common/aed_utils.py +7 -2
  43. teradataml/common/bulk_exposed_utils.py +111 -111
  44. teradataml/common/constants.py +1438 -1441
  45. teradataml/common/deprecations.py +160 -0
  46. teradataml/common/exceptions.py +73 -73
  47. teradataml/common/formula.py +742 -742
  48. teradataml/common/garbagecollector.py +597 -635
  49. teradataml/common/messagecodes.py +424 -431
  50. teradataml/common/messages.py +228 -231
  51. teradataml/common/sqlbundle.py +693 -693
  52. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  53. teradataml/common/utils.py +2424 -2500
  54. teradataml/common/warnings.py +25 -25
  55. teradataml/common/wrapper_utils.py +1 -110
  56. teradataml/config/dummy_file1.cfg +4 -4
  57. teradataml/config/dummy_file2.cfg +2 -2
  58. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  59. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  60. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  61. teradataml/context/aed_context.py +217 -217
  62. teradataml/context/context.py +1091 -999
  63. teradataml/data/A_loan.csv +19 -19
  64. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  65. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  66. teradataml/data/B_loan.csv +49 -49
  67. teradataml/data/BuoyData2.csv +17 -17
  68. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  69. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  70. teradataml/data/Convolve2RealsLeft.csv +5 -5
  71. teradataml/data/Convolve2RealsRight.csv +5 -5
  72. teradataml/data/Convolve2ValidLeft.csv +11 -11
  73. teradataml/data/Convolve2ValidRight.csv +11 -11
  74. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  75. teradataml/data/Orders1_12mf.csv +24 -24
  76. teradataml/data/Pi_loan.csv +7 -7
  77. teradataml/data/SMOOTHED_DATA.csv +7 -7
  78. teradataml/data/TestDFFT8.csv +9 -9
  79. teradataml/data/TestRiver.csv +109 -109
  80. teradataml/data/Traindata.csv +28 -28
  81. teradataml/data/acf.csv +17 -17
  82. teradataml/data/adaboost_example.json +34 -34
  83. teradataml/data/adaboostpredict_example.json +24 -24
  84. teradataml/data/additional_table.csv +10 -10
  85. teradataml/data/admissions_test.csv +21 -21
  86. teradataml/data/admissions_train.csv +41 -41
  87. teradataml/data/admissions_train_nulls.csv +41 -41
  88. teradataml/data/advertising.csv +201 -0
  89. teradataml/data/ageandheight.csv +13 -13
  90. teradataml/data/ageandpressure.csv +31 -31
  91. teradataml/data/antiselect_example.json +36 -36
  92. teradataml/data/antiselect_input.csv +8 -8
  93. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  94. teradataml/data/applicant_external.csv +6 -6
  95. teradataml/data/applicant_reference.csv +6 -6
  96. teradataml/data/arima_example.json +9 -9
  97. teradataml/data/assortedtext_input.csv +8 -8
  98. teradataml/data/attribution_example.json +33 -33
  99. teradataml/data/attribution_sample_table.csv +27 -27
  100. teradataml/data/attribution_sample_table1.csv +6 -6
  101. teradataml/data/attribution_sample_table2.csv +11 -11
  102. teradataml/data/bank_churn.csv +10001 -0
  103. teradataml/data/bank_marketing.csv +11163 -0
  104. teradataml/data/bank_web_clicks1.csv +42 -42
  105. teradataml/data/bank_web_clicks2.csv +91 -91
  106. teradataml/data/bank_web_url.csv +85 -85
  107. teradataml/data/barrier.csv +2 -2
  108. teradataml/data/barrier_new.csv +3 -3
  109. teradataml/data/betweenness_example.json +13 -13
  110. teradataml/data/bike_sharing.csv +732 -0
  111. teradataml/data/bin_breaks.csv +8 -8
  112. teradataml/data/bin_fit_ip.csv +3 -3
  113. teradataml/data/binary_complex_left.csv +11 -11
  114. teradataml/data/binary_complex_right.csv +11 -11
  115. teradataml/data/binary_matrix_complex_left.csv +21 -21
  116. teradataml/data/binary_matrix_complex_right.csv +21 -21
  117. teradataml/data/binary_matrix_real_left.csv +21 -21
  118. teradataml/data/binary_matrix_real_right.csv +21 -21
  119. teradataml/data/blood2ageandweight.csv +26 -26
  120. teradataml/data/bmi.csv +501 -0
  121. teradataml/data/boston.csv +507 -507
  122. teradataml/data/boston2cols.csv +721 -0
  123. teradataml/data/breast_cancer.csv +570 -0
  124. teradataml/data/buoydata_mix.csv +11 -11
  125. teradataml/data/burst_data.csv +5 -5
  126. teradataml/data/burst_example.json +20 -20
  127. teradataml/data/byom_example.json +17 -17
  128. teradataml/data/bytes_table.csv +3 -3
  129. teradataml/data/cal_housing_ex_raw.csv +70 -70
  130. teradataml/data/callers.csv +7 -7
  131. teradataml/data/calls.csv +10 -10
  132. teradataml/data/cars_hist.csv +33 -33
  133. teradataml/data/cat_table.csv +24 -24
  134. teradataml/data/ccm_example.json +31 -31
  135. teradataml/data/ccm_input.csv +91 -91
  136. teradataml/data/ccm_input2.csv +13 -13
  137. teradataml/data/ccmexample.csv +101 -101
  138. teradataml/data/ccmprepare_example.json +8 -8
  139. teradataml/data/ccmprepare_input.csv +91 -91
  140. teradataml/data/cfilter_example.json +12 -12
  141. teradataml/data/changepointdetection_example.json +18 -18
  142. teradataml/data/changepointdetectionrt_example.json +8 -8
  143. teradataml/data/chi_sq.csv +2 -2
  144. teradataml/data/churn_data.csv +14 -14
  145. teradataml/data/churn_emission.csv +35 -35
  146. teradataml/data/churn_initial.csv +3 -3
  147. teradataml/data/churn_state_transition.csv +5 -5
  148. teradataml/data/citedges_2.csv +745 -745
  149. teradataml/data/citvertices_2.csv +1210 -1210
  150. teradataml/data/clicks2.csv +16 -16
  151. teradataml/data/clickstream.csv +12 -12
  152. teradataml/data/clickstream1.csv +11 -11
  153. teradataml/data/closeness_example.json +15 -15
  154. teradataml/data/complaints.csv +21 -21
  155. teradataml/data/complaints_mini.csv +3 -3
  156. teradataml/data/complaints_testtoken.csv +224 -224
  157. teradataml/data/complaints_tokens_test.csv +353 -353
  158. teradataml/data/complaints_traintoken.csv +472 -472
  159. teradataml/data/computers_category.csv +1001 -1001
  160. teradataml/data/computers_test1.csv +1252 -1252
  161. teradataml/data/computers_train1.csv +5009 -5009
  162. teradataml/data/computers_train1_clustered.csv +5009 -5009
  163. teradataml/data/confusionmatrix_example.json +9 -9
  164. teradataml/data/conversion_event_table.csv +3 -3
  165. teradataml/data/corr_input.csv +17 -17
  166. teradataml/data/correlation_example.json +11 -11
  167. teradataml/data/coxhazardratio_example.json +39 -39
  168. teradataml/data/coxph_example.json +15 -15
  169. teradataml/data/coxsurvival_example.json +28 -28
  170. teradataml/data/cpt.csv +41 -41
  171. teradataml/data/credit_ex_merged.csv +45 -45
  172. teradataml/data/customer_loyalty.csv +301 -301
  173. teradataml/data/customer_loyalty_newseq.csv +31 -31
  174. teradataml/data/customer_segmentation_test.csv +2628 -0
  175. teradataml/data/customer_segmentation_train.csv +8069 -0
  176. teradataml/data/dataframe_example.json +146 -146
  177. teradataml/data/decisionforest_example.json +37 -37
  178. teradataml/data/decisionforestpredict_example.json +38 -38
  179. teradataml/data/decisiontree_example.json +21 -21
  180. teradataml/data/decisiontreepredict_example.json +45 -45
  181. teradataml/data/dfft2_size4_real.csv +17 -17
  182. teradataml/data/dfft2_test_matrix16.csv +17 -17
  183. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  184. teradataml/data/diabetes.csv +443 -443
  185. teradataml/data/diabetes_test.csv +89 -89
  186. teradataml/data/dict_table.csv +5 -5
  187. teradataml/data/docperterm_table.csv +4 -4
  188. teradataml/data/docs/__init__.py +1 -1
  189. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  190. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  191. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  192. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  193. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  194. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  195. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  196. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  197. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  198. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  199. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  200. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  201. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  202. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  203. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  204. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  205. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  206. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  207. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  208. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  209. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  210. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  211. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  212. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  213. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  214. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  215. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  216. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  217. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
  218. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
  219. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  220. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
  221. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  222. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  223. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  224. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  225. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  226. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  227. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  228. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  229. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  230. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  231. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  232. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  233. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  234. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  235. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  236. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  237. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  238. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  239. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  240. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  241. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  242. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
  243. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  244. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  245. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  246. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  247. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  248. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  249. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  250. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  251. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
  252. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  253. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  254. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  255. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  256. teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
  257. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  258. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  259. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
  260. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  261. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  262. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  263. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
  264. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  265. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  266. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  267. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
  268. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  269. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  270. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  271. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  272. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  273. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  274. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  275. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  276. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
  277. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  278. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  279. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  280. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  281. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
  282. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
  283. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  284. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  285. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  286. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  287. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  288. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  289. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  290. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  291. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
  292. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  293. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  294. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  295. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  296. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  297. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  298. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  299. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  300. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
  301. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  302. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
  303. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
  304. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  305. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  306. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  307. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  308. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  309. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  310. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  311. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  312. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
  313. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  314. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  315. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  316. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  317. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  318. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  319. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  320. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  321. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  322. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  323. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  324. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
  325. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
  326. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
  327. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  328. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  329. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  330. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  331. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  332. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  333. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  334. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  335. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  336. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  337. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  338. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  339. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  340. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  341. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  342. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  343. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  344. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  345. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  346. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  347. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  348. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  349. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  350. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  351. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  352. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  353. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  354. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  355. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  356. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  357. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  358. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  359. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  360. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  361. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  362. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  363. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  364. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  365. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  366. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  367. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  368. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  369. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  370. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  371. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  372. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  373. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  374. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  375. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  376. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  377. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  378. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  379. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  380. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  381. teradataml/data/dtw_example.json +17 -17
  382. teradataml/data/dtw_t1.csv +11 -11
  383. teradataml/data/dtw_t2.csv +4 -4
  384. teradataml/data/dwt2d_example.json +15 -15
  385. teradataml/data/dwt_example.json +14 -14
  386. teradataml/data/dwt_filter_dim.csv +5 -5
  387. teradataml/data/emission.csv +9 -9
  388. teradataml/data/emp_table_by_dept.csv +19 -19
  389. teradataml/data/employee_info.csv +4 -4
  390. teradataml/data/employee_table.csv +6 -6
  391. teradataml/data/excluding_event_table.csv +2 -2
  392. teradataml/data/finance_data.csv +6 -6
  393. teradataml/data/finance_data2.csv +61 -61
  394. teradataml/data/finance_data3.csv +93 -93
  395. teradataml/data/fish.csv +160 -0
  396. teradataml/data/fm_blood2ageandweight.csv +26 -26
  397. teradataml/data/fmeasure_example.json +11 -11
  398. teradataml/data/followers_leaders.csv +10 -10
  399. teradataml/data/fpgrowth_example.json +12 -12
  400. teradataml/data/frequentpaths_example.json +29 -29
  401. teradataml/data/friends.csv +9 -9
  402. teradataml/data/fs_input.csv +33 -33
  403. teradataml/data/fs_input1.csv +33 -33
  404. teradataml/data/genData.csv +513 -513
  405. teradataml/data/geodataframe_example.json +39 -39
  406. teradataml/data/glass_types.csv +215 -0
  407. teradataml/data/glm_admissions_model.csv +12 -12
  408. teradataml/data/glm_example.json +56 -29
  409. teradataml/data/glml1l2_example.json +28 -28
  410. teradataml/data/glml1l2predict_example.json +54 -54
  411. teradataml/data/glmpredict_example.json +54 -54
  412. teradataml/data/gq_t1.csv +21 -21
  413. teradataml/data/hconvolve_complex_right.csv +5 -5
  414. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  415. teradataml/data/histogram_example.json +11 -11
  416. teradataml/data/hmmdecoder_example.json +78 -78
  417. teradataml/data/hmmevaluator_example.json +24 -24
  418. teradataml/data/hmmsupervised_example.json +10 -10
  419. teradataml/data/hmmunsupervised_example.json +7 -7
  420. teradataml/data/house_values.csv +12 -12
  421. teradataml/data/house_values2.csv +13 -13
  422. teradataml/data/housing_cat.csv +7 -7
  423. teradataml/data/housing_data.csv +9 -9
  424. teradataml/data/housing_test.csv +47 -47
  425. teradataml/data/housing_test_binary.csv +47 -47
  426. teradataml/data/housing_train.csv +493 -493
  427. teradataml/data/housing_train_attribute.csv +4 -4
  428. teradataml/data/housing_train_binary.csv +437 -437
  429. teradataml/data/housing_train_parameter.csv +2 -2
  430. teradataml/data/housing_train_response.csv +493 -493
  431. teradataml/data/housing_train_segment.csv +201 -0
  432. teradataml/data/ibm_stock.csv +370 -370
  433. teradataml/data/ibm_stock1.csv +370 -370
  434. teradataml/data/identitymatch_example.json +21 -21
  435. teradataml/data/idf_table.csv +4 -4
  436. teradataml/data/impressions.csv +101 -101
  437. teradataml/data/inflation.csv +21 -21
  438. teradataml/data/initial.csv +3 -3
  439. teradataml/data/insect2Cols.csv +61 -0
  440. teradataml/data/insect_sprays.csv +12 -12
  441. teradataml/data/insurance.csv +1339 -1339
  442. teradataml/data/interpolator_example.json +12 -12
  443. teradataml/data/iris_altinput.csv +481 -481
  444. teradataml/data/iris_attribute_output.csv +8 -8
  445. teradataml/data/iris_attribute_test.csv +121 -121
  446. teradataml/data/iris_attribute_train.csv +481 -481
  447. teradataml/data/iris_category_expect_predict.csv +31 -31
  448. teradataml/data/iris_data.csv +151 -0
  449. teradataml/data/iris_input.csv +151 -151
  450. teradataml/data/iris_response_train.csv +121 -121
  451. teradataml/data/iris_test.csv +31 -31
  452. teradataml/data/iris_train.csv +121 -121
  453. teradataml/data/join_table1.csv +4 -4
  454. teradataml/data/join_table2.csv +4 -4
  455. teradataml/data/jsons/anly_function_name.json +6 -6
  456. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  457. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  458. teradataml/data/jsons/byom/h2opredict.json +194 -194
  459. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  460. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  461. teradataml/data/jsons/paired_functions.json +435 -435
  462. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  463. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  464. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  465. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  466. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  467. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  468. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  469. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  470. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  471. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  472. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  473. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  474. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  475. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  476. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  477. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  478. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  479. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  480. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  481. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  482. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  483. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  484. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  485. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  486. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  487. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  488. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  489. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  490. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  491. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  492. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  493. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  494. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  495. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  496. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  497. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  498. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  499. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  500. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  501. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  502. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  503. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  504. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  505. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  506. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  507. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  508. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  509. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  510. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  511. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  512. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  513. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  514. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  515. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  516. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  517. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  518. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  519. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  520. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  521. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  522. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  523. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  524. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  525. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  526. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  527. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  528. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  529. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  531. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  532. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  533. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  534. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  535. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  536. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  537. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  539. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  540. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  541. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  542. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  543. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  544. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  545. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  546. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  547. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  548. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  549. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  550. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  551. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  552. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  553. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  554. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  555. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  556. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  557. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  558. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  559. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  560. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  561. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  562. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  563. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  564. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  565. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  566. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  567. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  568. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
  569. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  570. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  571. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  572. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  573. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  574. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  575. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  576. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  577. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  578. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  579. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
  580. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  581. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  582. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  583. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
  584. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
  585. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  586. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  587. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
  588. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  589. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  590. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  591. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
  592. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  593. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  594. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  595. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
  596. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  597. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  598. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  599. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  600. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  601. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  602. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  603. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  604. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  605. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  606. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  607. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  608. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  609. teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
  610. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  611. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  612. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  613. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  614. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  615. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  616. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  617. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  618. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
  619. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
  620. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
  621. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  622. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  623. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  624. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  625. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  626. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  627. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  628. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  629. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  630. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  631. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  632. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  633. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  634. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  635. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
  636. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
  637. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
  638. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  639. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  640. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  641. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  642. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  643. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  644. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  645. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  646. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  647. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  648. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  649. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  650. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  651. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  653. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  654. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  655. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  656. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  657. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  658. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  659. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  660. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  661. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  662. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  663. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  664. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  665. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  666. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  667. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  668. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  669. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  670. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  671. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  672. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  673. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  674. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  675. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  676. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  677. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  678. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  679. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  680. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  681. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  682. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  683. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  684. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  685. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  686. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  687. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  688. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  689. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  690. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  691. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  692. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  693. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  694. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  695. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  696. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  697. teradataml/data/kmeans_example.json +22 -17
  698. teradataml/data/kmeans_table.csv +10 -0
  699. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  700. teradataml/data/knn_example.json +18 -18
  701. teradataml/data/knnrecommender_example.json +6 -6
  702. teradataml/data/knnrecommenderpredict_example.json +12 -12
  703. teradataml/data/lar_example.json +17 -17
  704. teradataml/data/larpredict_example.json +30 -30
  705. teradataml/data/lc_new_predictors.csv +5 -5
  706. teradataml/data/lc_new_reference.csv +9 -9
  707. teradataml/data/lda_example.json +8 -8
  708. teradataml/data/ldainference_example.json +14 -14
  709. teradataml/data/ldatopicsummary_example.json +8 -8
  710. teradataml/data/levendist_input.csv +13 -13
  711. teradataml/data/levenshteindistance_example.json +10 -10
  712. teradataml/data/linreg_example.json +9 -9
  713. teradataml/data/load_example_data.py +326 -323
  714. teradataml/data/loan_prediction.csv +295 -295
  715. teradataml/data/lungcancer.csv +138 -138
  716. teradataml/data/mappingdata.csv +12 -12
  717. teradataml/data/milk_timeseries.csv +157 -157
  718. teradataml/data/min_max_titanic.csv +4 -4
  719. teradataml/data/minhash_example.json +6 -6
  720. teradataml/data/ml_ratings.csv +7547 -7547
  721. teradataml/data/ml_ratings_10.csv +2445 -2445
  722. teradataml/data/model1_table.csv +5 -5
  723. teradataml/data/model2_table.csv +5 -5
  724. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  725. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  726. teradataml/data/modularity_example.json +12 -12
  727. teradataml/data/movavg_example.json +7 -7
  728. teradataml/data/mtx1.csv +7 -7
  729. teradataml/data/mtx2.csv +13 -13
  730. teradataml/data/multi_model_classification.csv +401 -0
  731. teradataml/data/multi_model_regression.csv +401 -0
  732. teradataml/data/mvdfft8.csv +9 -9
  733. teradataml/data/naivebayes_example.json +9 -9
  734. teradataml/data/naivebayespredict_example.json +19 -19
  735. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  736. teradataml/data/naivebayestextclassifier_example.json +8 -8
  737. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  738. teradataml/data/name_Find_configure.csv +10 -10
  739. teradataml/data/namedentityfinder_example.json +14 -14
  740. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  741. teradataml/data/namedentityfindertrainer_example.json +6 -6
  742. teradataml/data/nb_iris_input_test.csv +31 -31
  743. teradataml/data/nb_iris_input_train.csv +121 -121
  744. teradataml/data/nbp_iris_model.csv +13 -13
  745. teradataml/data/ner_extractor_text.csv +2 -2
  746. teradataml/data/ner_sports_test2.csv +29 -29
  747. teradataml/data/ner_sports_train.csv +501 -501
  748. teradataml/data/nerevaluator_example.json +5 -5
  749. teradataml/data/nerextractor_example.json +18 -18
  750. teradataml/data/nermem_sports_test.csv +17 -17
  751. teradataml/data/nermem_sports_train.csv +50 -50
  752. teradataml/data/nertrainer_example.json +6 -6
  753. teradataml/data/ngrams_example.json +6 -6
  754. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  755. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  756. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  757. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  758. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  759. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  760. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  761. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  762. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  763. teradataml/data/npath_example.json +23 -23
  764. teradataml/data/ntree_example.json +14 -14
  765. teradataml/data/numeric_strings.csv +4 -4
  766. teradataml/data/numerics.csv +4 -4
  767. teradataml/data/ocean_buoy.csv +17 -17
  768. teradataml/data/ocean_buoy2.csv +17 -17
  769. teradataml/data/ocean_buoys.csv +27 -27
  770. teradataml/data/ocean_buoys2.csv +10 -10
  771. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  772. teradataml/data/ocean_buoys_seq.csv +29 -29
  773. teradataml/data/onehot_encoder_train.csv +4 -0
  774. teradataml/data/openml_example.json +92 -0
  775. teradataml/data/optional_event_table.csv +4 -4
  776. teradataml/data/orders1.csv +11 -11
  777. teradataml/data/orders1_12.csv +12 -12
  778. teradataml/data/orders_ex.csv +4 -4
  779. teradataml/data/pack_example.json +8 -8
  780. teradataml/data/package_tracking.csv +19 -19
  781. teradataml/data/package_tracking_pti.csv +18 -18
  782. teradataml/data/pagerank_example.json +13 -13
  783. teradataml/data/paragraphs_input.csv +6 -6
  784. teradataml/data/pathanalyzer_example.json +7 -7
  785. teradataml/data/pathgenerator_example.json +7 -7
  786. teradataml/data/phrases.csv +7 -7
  787. teradataml/data/pivot_example.json +8 -8
  788. teradataml/data/pivot_input.csv +22 -22
  789. teradataml/data/playerRating.csv +31 -31
  790. teradataml/data/postagger_example.json +6 -6
  791. teradataml/data/posttagger_output.csv +44 -44
  792. teradataml/data/production_data.csv +16 -16
  793. teradataml/data/production_data2.csv +7 -7
  794. teradataml/data/randomsample_example.json +31 -31
  795. teradataml/data/randomwalksample_example.json +8 -8
  796. teradataml/data/rank_table.csv +6 -6
  797. teradataml/data/ref_mobile_data.csv +4 -4
  798. teradataml/data/ref_mobile_data_dense.csv +2 -2
  799. teradataml/data/ref_url.csv +17 -17
  800. teradataml/data/restaurant_reviews.csv +7 -7
  801. teradataml/data/river_data.csv +145 -145
  802. teradataml/data/roc_example.json +7 -7
  803. teradataml/data/roc_input.csv +101 -101
  804. teradataml/data/rule_inputs.csv +6 -6
  805. teradataml/data/rule_table.csv +2 -2
  806. teradataml/data/sales.csv +7 -7
  807. teradataml/data/sales_transaction.csv +501 -501
  808. teradataml/data/salesdata.csv +342 -342
  809. teradataml/data/sample_cities.csv +2 -2
  810. teradataml/data/sample_shapes.csv +10 -10
  811. teradataml/data/sample_streets.csv +2 -2
  812. teradataml/data/sampling_example.json +15 -15
  813. teradataml/data/sax_example.json +8 -8
  814. teradataml/data/scale_attributes.csv +3 -0
  815. teradataml/data/scale_example.json +74 -23
  816. teradataml/data/scale_housing.csv +11 -11
  817. teradataml/data/scale_housing_test.csv +6 -6
  818. teradataml/data/scale_input_part_sparse.csv +31 -0
  819. teradataml/data/scale_input_partitioned.csv +16 -0
  820. teradataml/data/scale_input_sparse.csv +11 -0
  821. teradataml/data/scale_parameters.csv +3 -0
  822. teradataml/data/scale_stat.csv +11 -11
  823. teradataml/data/scalebypartition_example.json +13 -13
  824. teradataml/data/scalemap_example.json +13 -13
  825. teradataml/data/scalesummary_example.json +12 -12
  826. teradataml/data/score_category.csv +101 -101
  827. teradataml/data/score_summary.csv +4 -4
  828. teradataml/data/script_example.json +9 -9
  829. teradataml/data/scripts/deploy_script.py +84 -0
  830. teradataml/data/scripts/mapper.R +20 -0
  831. teradataml/data/scripts/mapper.py +15 -15
  832. teradataml/data/scripts/mapper_replace.py +15 -15
  833. teradataml/data/scripts/sklearn/__init__.py +0 -0
  834. teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
  835. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
  836. teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
  837. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
  838. teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
  839. teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
  840. teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
  841. teradataml/data/seeds.csv +10 -10
  842. teradataml/data/sentenceextractor_example.json +6 -6
  843. teradataml/data/sentiment_extract_input.csv +11 -11
  844. teradataml/data/sentiment_train.csv +16 -16
  845. teradataml/data/sentiment_word.csv +20 -20
  846. teradataml/data/sentiment_word_input.csv +19 -19
  847. teradataml/data/sentimentextractor_example.json +24 -24
  848. teradataml/data/sentimenttrainer_example.json +8 -8
  849. teradataml/data/sequence_table.csv +10 -10
  850. teradataml/data/seriessplitter_example.json +7 -7
  851. teradataml/data/sessionize_example.json +17 -17
  852. teradataml/data/sessionize_table.csv +116 -116
  853. teradataml/data/setop_test1.csv +24 -24
  854. teradataml/data/setop_test2.csv +22 -22
  855. teradataml/data/soc_nw_edges.csv +10 -10
  856. teradataml/data/soc_nw_vertices.csv +7 -7
  857. teradataml/data/souvenir_timeseries.csv +167 -167
  858. teradataml/data/sparse_iris_attribute.csv +5 -5
  859. teradataml/data/sparse_iris_test.csv +121 -121
  860. teradataml/data/sparse_iris_train.csv +601 -601
  861. teradataml/data/star1.csv +6 -6
  862. teradataml/data/state_transition.csv +5 -5
  863. teradataml/data/stock_data.csv +53 -53
  864. teradataml/data/stock_movement.csv +11 -11
  865. teradataml/data/stock_vol.csv +76 -76
  866. teradataml/data/stop_words.csv +8 -8
  867. teradataml/data/store_sales.csv +37 -37
  868. teradataml/data/stringsimilarity_example.json +7 -7
  869. teradataml/data/strsimilarity_input.csv +13 -13
  870. teradataml/data/students.csv +101 -101
  871. teradataml/data/svm_iris_input_test.csv +121 -121
  872. teradataml/data/svm_iris_input_train.csv +481 -481
  873. teradataml/data/svm_iris_model.csv +7 -7
  874. teradataml/data/svmdense_example.json +9 -9
  875. teradataml/data/svmdensepredict_example.json +18 -18
  876. teradataml/data/svmsparse_example.json +7 -7
  877. teradataml/data/svmsparsepredict_example.json +13 -13
  878. teradataml/data/svmsparsesummary_example.json +7 -7
  879. teradataml/data/target_mobile_data.csv +13 -13
  880. teradataml/data/target_mobile_data_dense.csv +5 -5
  881. teradataml/data/templatedata.csv +1201 -1201
  882. teradataml/data/templates/open_source_ml.json +9 -0
  883. teradataml/data/teradataml_example.json +150 -1
  884. teradataml/data/test_classification.csv +101 -0
  885. teradataml/data/test_loan_prediction.csv +53 -53
  886. teradataml/data/test_pacf_12.csv +37 -37
  887. teradataml/data/test_prediction.csv +101 -0
  888. teradataml/data/test_regression.csv +101 -0
  889. teradataml/data/test_river2.csv +109 -109
  890. teradataml/data/text_inputs.csv +6 -6
  891. teradataml/data/textchunker_example.json +7 -7
  892. teradataml/data/textclassifier_example.json +6 -6
  893. teradataml/data/textclassifier_input.csv +7 -7
  894. teradataml/data/textclassifiertrainer_example.json +6 -6
  895. teradataml/data/textmorph_example.json +5 -5
  896. teradataml/data/textparser_example.json +15 -15
  897. teradataml/data/texttagger_example.json +11 -11
  898. teradataml/data/texttokenizer_example.json +6 -6
  899. teradataml/data/texttrainer_input.csv +11 -11
  900. teradataml/data/tf_example.json +6 -6
  901. teradataml/data/tfidf_example.json +13 -13
  902. teradataml/data/tfidf_input1.csv +201 -201
  903. teradataml/data/tfidf_train.csv +6 -6
  904. teradataml/data/time_table1.csv +535 -535
  905. teradataml/data/time_table2.csv +14 -14
  906. teradataml/data/timeseriesdata.csv +1601 -1601
  907. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  908. teradataml/data/titanic.csv +892 -892
  909. teradataml/data/token_table.csv +696 -696
  910. teradataml/data/train_multiclass.csv +101 -0
  911. teradataml/data/train_regression.csv +101 -0
  912. teradataml/data/train_regression_multiple_labels.csv +101 -0
  913. teradataml/data/train_tracking.csv +27 -27
  914. teradataml/data/transformation_table.csv +5 -5
  915. teradataml/data/transformation_table_new.csv +1 -1
  916. teradataml/data/tv_spots.csv +16 -16
  917. teradataml/data/twod_climate_data.csv +117 -117
  918. teradataml/data/uaf_example.json +475 -475
  919. teradataml/data/univariatestatistics_example.json +8 -8
  920. teradataml/data/unpack_example.json +9 -9
  921. teradataml/data/unpivot_example.json +9 -9
  922. teradataml/data/unpivot_input.csv +8 -8
  923. teradataml/data/us_air_pass.csv +36 -36
  924. teradataml/data/us_population.csv +624 -624
  925. teradataml/data/us_states_shapes.csv +52 -52
  926. teradataml/data/varmax_example.json +17 -17
  927. teradataml/data/vectordistance_example.json +25 -25
  928. teradataml/data/ville_climatedata.csv +121 -121
  929. teradataml/data/ville_tempdata.csv +12 -12
  930. teradataml/data/ville_tempdata1.csv +12 -12
  931. teradataml/data/ville_temperature.csv +11 -11
  932. teradataml/data/waveletTable.csv +1605 -1605
  933. teradataml/data/waveletTable2.csv +1605 -1605
  934. teradataml/data/weightedmovavg_example.json +8 -8
  935. teradataml/data/wft_testing.csv +5 -5
  936. teradataml/data/wine_data.csv +1600 -0
  937. teradataml/data/word_embed_input_table1.csv +5 -5
  938. teradataml/data/word_embed_input_table2.csv +4 -4
  939. teradataml/data/word_embed_model.csv +22 -22
  940. teradataml/data/words_input.csv +13 -13
  941. teradataml/data/xconvolve_complex_left.csv +6 -6
  942. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  943. teradataml/data/xgboost_example.json +35 -35
  944. teradataml/data/xgboostpredict_example.json +31 -31
  945. teradataml/data/ztest_example.json +16 -0
  946. teradataml/dataframe/copy_to.py +1769 -1698
  947. teradataml/dataframe/data_transfer.py +2812 -2745
  948. teradataml/dataframe/dataframe.py +17630 -16946
  949. teradataml/dataframe/dataframe_utils.py +1875 -1740
  950. teradataml/dataframe/fastload.py +794 -603
  951. teradataml/dataframe/indexer.py +424 -424
  952. teradataml/dataframe/setop.py +1179 -1166
  953. teradataml/dataframe/sql.py +10174 -6432
  954. teradataml/dataframe/sql_function_parameters.py +439 -388
  955. teradataml/dataframe/sql_functions.py +652 -652
  956. teradataml/dataframe/sql_interfaces.py +220 -220
  957. teradataml/dataframe/vantage_function_types.py +674 -630
  958. teradataml/dataframe/window.py +693 -692
  959. teradataml/dbutils/__init__.py +3 -3
  960. teradataml/dbutils/dbutils.py +1167 -1150
  961. teradataml/dbutils/filemgr.py +267 -267
  962. teradataml/gen_ai/__init__.py +2 -2
  963. teradataml/gen_ai/convAI.py +472 -472
  964. teradataml/geospatial/__init__.py +3 -3
  965. teradataml/geospatial/geodataframe.py +1105 -1094
  966. teradataml/geospatial/geodataframecolumn.py +392 -387
  967. teradataml/geospatial/geometry_types.py +925 -925
  968. teradataml/hyperparameter_tuner/__init__.py +1 -1
  969. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  970. teradataml/hyperparameter_tuner/utils.py +281 -187
  971. teradataml/lib/aed_0_1.dll +0 -0
  972. teradataml/lib/libaed_0_1.dylib +0 -0
  973. teradataml/lib/libaed_0_1.so +0 -0
  974. teradataml/libaed_0_1.dylib +0 -0
  975. teradataml/libaed_0_1.so +0 -0
  976. teradataml/opensource/__init__.py +1 -0
  977. teradataml/opensource/sklearn/__init__.py +1 -0
  978. teradataml/opensource/sklearn/_class.py +255 -0
  979. teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
  980. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  981. teradataml/opensource/sklearn/constants.py +54 -0
  982. teradataml/options/__init__.py +130 -124
  983. teradataml/options/configure.py +358 -336
  984. teradataml/options/display.py +176 -176
  985. teradataml/plot/__init__.py +2 -2
  986. teradataml/plot/axis.py +1388 -1388
  987. teradataml/plot/constants.py +15 -15
  988. teradataml/plot/figure.py +398 -398
  989. teradataml/plot/plot.py +760 -760
  990. teradataml/plot/query_generator.py +83 -83
  991. teradataml/plot/subplot.py +216 -216
  992. teradataml/scriptmgmt/UserEnv.py +3791 -3761
  993. teradataml/scriptmgmt/__init__.py +3 -3
  994. teradataml/scriptmgmt/lls_utils.py +1719 -1604
  995. teradataml/series/series.py +532 -532
  996. teradataml/series/series_utils.py +71 -71
  997. teradataml/table_operators/Apply.py +949 -917
  998. teradataml/table_operators/Script.py +1718 -1982
  999. teradataml/table_operators/TableOperator.py +1255 -1616
  1000. teradataml/table_operators/__init__.py +2 -3
  1001. teradataml/table_operators/apply_query_generator.py +262 -262
  1002. teradataml/table_operators/query_generator.py +507 -507
  1003. teradataml/table_operators/table_operator_query_generator.py +460 -460
  1004. teradataml/table_operators/table_operator_util.py +631 -639
  1005. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  1006. teradataml/table_operators/templates/dataframe_map.template +176 -176
  1007. teradataml/table_operators/templates/script_executor.template +170 -170
  1008. teradataml/utils/dtypes.py +684 -684
  1009. teradataml/utils/internal_buffer.py +84 -84
  1010. teradataml/utils/print_versions.py +205 -205
  1011. teradataml/utils/utils.py +410 -410
  1012. teradataml/utils/validators.py +2277 -2115
  1013. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
  1014. teradataml-20.0.0.1.dist-info/RECORD +1056 -0
  1015. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
  1016. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
  1017. teradataml/analytics/mle/AdaBoost.py +0 -651
  1018. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1019. teradataml/analytics/mle/Antiselect.py +0 -342
  1020. teradataml/analytics/mle/Arima.py +0 -641
  1021. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1022. teradataml/analytics/mle/Attribution.py +0 -1070
  1023. teradataml/analytics/mle/Betweenness.py +0 -658
  1024. teradataml/analytics/mle/Burst.py +0 -711
  1025. teradataml/analytics/mle/CCM.py +0 -600
  1026. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1027. teradataml/analytics/mle/CFilter.py +0 -460
  1028. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1029. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1030. teradataml/analytics/mle/Closeness.py +0 -737
  1031. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1032. teradataml/analytics/mle/Correlation.py +0 -477
  1033. teradataml/analytics/mle/Correlation2.py +0 -573
  1034. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1035. teradataml/analytics/mle/CoxPH.py +0 -556
  1036. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1037. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1038. teradataml/analytics/mle/DTW.py +0 -623
  1039. teradataml/analytics/mle/DWT.py +0 -564
  1040. teradataml/analytics/mle/DWT2D.py +0 -599
  1041. teradataml/analytics/mle/DecisionForest.py +0 -716
  1042. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1043. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1044. teradataml/analytics/mle/DecisionTree.py +0 -830
  1045. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1046. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1047. teradataml/analytics/mle/FMeasure.py +0 -402
  1048. teradataml/analytics/mle/FPGrowth.py +0 -734
  1049. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1050. teradataml/analytics/mle/GLM.py +0 -558
  1051. teradataml/analytics/mle/GLML1L2.py +0 -547
  1052. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1053. teradataml/analytics/mle/GLMPredict.py +0 -529
  1054. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1055. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1056. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1057. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1058. teradataml/analytics/mle/Histogram.py +0 -561
  1059. teradataml/analytics/mle/IDWT.py +0 -476
  1060. teradataml/analytics/mle/IDWT2D.py +0 -493
  1061. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1062. teradataml/analytics/mle/Interpolator.py +0 -918
  1063. teradataml/analytics/mle/KMeans.py +0 -485
  1064. teradataml/analytics/mle/KNN.py +0 -627
  1065. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1066. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1067. teradataml/analytics/mle/LAR.py +0 -439
  1068. teradataml/analytics/mle/LARPredict.py +0 -478
  1069. teradataml/analytics/mle/LDA.py +0 -548
  1070. teradataml/analytics/mle/LDAInference.py +0 -492
  1071. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1072. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1073. teradataml/analytics/mle/LinReg.py +0 -433
  1074. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1075. teradataml/analytics/mle/MinHash.py +0 -544
  1076. teradataml/analytics/mle/Modularity.py +0 -587
  1077. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1078. teradataml/analytics/mle/NERExtractor.py +0 -595
  1079. teradataml/analytics/mle/NERTrainer.py +0 -458
  1080. teradataml/analytics/mle/NGrams.py +0 -570
  1081. teradataml/analytics/mle/NPath.py +0 -634
  1082. teradataml/analytics/mle/NTree.py +0 -549
  1083. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1084. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1085. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1086. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1087. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1088. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1089. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1090. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1091. teradataml/analytics/mle/POSTagger.py +0 -417
  1092. teradataml/analytics/mle/Pack.py +0 -411
  1093. teradataml/analytics/mle/PageRank.py +0 -535
  1094. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1095. teradataml/analytics/mle/PathGenerator.py +0 -367
  1096. teradataml/analytics/mle/PathStart.py +0 -464
  1097. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1098. teradataml/analytics/mle/Pivot.py +0 -471
  1099. teradataml/analytics/mle/ROC.py +0 -425
  1100. teradataml/analytics/mle/RandomSample.py +0 -637
  1101. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1102. teradataml/analytics/mle/SAX.py +0 -779
  1103. teradataml/analytics/mle/SVMDense.py +0 -677
  1104. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1105. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1106. teradataml/analytics/mle/SVMSparse.py +0 -557
  1107. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1108. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1109. teradataml/analytics/mle/Sampling.py +0 -549
  1110. teradataml/analytics/mle/Scale.py +0 -565
  1111. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1112. teradataml/analytics/mle/ScaleMap.py +0 -378
  1113. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1114. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1115. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1116. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1117. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1118. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1119. teradataml/analytics/mle/Sessionize.py +0 -475
  1120. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1121. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1122. teradataml/analytics/mle/TF.py +0 -389
  1123. teradataml/analytics/mle/TFIDF.py +0 -504
  1124. teradataml/analytics/mle/TextChunker.py +0 -414
  1125. teradataml/analytics/mle/TextClassifier.py +0 -399
  1126. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1127. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1128. teradataml/analytics/mle/TextMorph.py +0 -494
  1129. teradataml/analytics/mle/TextParser.py +0 -623
  1130. teradataml/analytics/mle/TextTagger.py +0 -530
  1131. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1132. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1133. teradataml/analytics/mle/Unpack.py +0 -526
  1134. teradataml/analytics/mle/Unpivot.py +0 -438
  1135. teradataml/analytics/mle/VarMax.py +0 -776
  1136. teradataml/analytics/mle/VectorDistance.py +0 -762
  1137. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1138. teradataml/analytics/mle/XGBoost.py +0 -842
  1139. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1140. teradataml/analytics/mle/__init__.py +0 -123
  1141. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1142. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1143. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1144. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1145. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1146. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1147. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1148. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1149. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1150. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1151. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1152. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1153. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1154. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1155. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1156. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1157. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1158. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1159. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1160. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1161. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1162. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1163. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1164. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1165. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1166. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1167. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1168. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1169. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1170. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1171. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1172. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1173. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1174. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1175. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1176. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1177. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1178. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1179. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1180. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1181. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1182. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1183. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1184. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1185. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1186. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1187. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1188. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1189. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1190. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1191. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1192. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1193. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1194. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1195. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1196. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1197. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1198. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1199. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1200. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1201. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1202. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1203. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1204. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1205. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1206. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1207. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1208. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1209. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1210. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1211. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1212. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1213. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1214. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1215. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1216. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1217. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1218. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1219. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1220. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1221. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1222. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1223. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1224. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1225. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1226. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1227. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1228. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1229. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1230. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1231. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1232. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1233. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1234. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1235. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1236. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1237. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1238. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1239. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1240. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1241. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1242. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1243. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1244. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1245. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1246. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1247. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1248. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1249. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1250. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1251. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1252. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1253. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1254. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1255. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1256. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1257. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1258. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1259. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1260. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1261. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1262. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1263. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1264. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1265. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1266. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1267. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1268. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1269. teradataml/analytics/sqle/Antiselect.py +0 -321
  1270. teradataml/analytics/sqle/Attribution.py +0 -603
  1271. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1272. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1273. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1274. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1275. teradataml/analytics/sqle/NPath.py +0 -632
  1276. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1277. teradataml/analytics/sqle/Pack.py +0 -388
  1278. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1279. teradataml/analytics/sqle/Sessionize.py +0 -390
  1280. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1281. teradataml/analytics/sqle/Unpack.py +0 -503
  1282. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1283. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1284. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1285. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1286. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1287. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1288. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1289. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1290. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1291. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1292. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1293. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1294. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1295. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1296. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1297. teradataml/catalog/model_cataloging.py +0 -980
  1298. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1299. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1300. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1301. teradataml/table_operators/sandbox_container_util.py +0 -643
  1302. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1303. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1056 @@
1
+ teradataml/LICENSE-3RD-PARTY.pdf,sha256=ZrYd86rv7qc83E7xa9HC7VegF6OXJVwi6MBTEiB32kk,310854
2
+ teradataml/LICENSE.pdf,sha256=YAaz9284BsR7reNg2ez_CCccYhD3k8r7rTLaORDZ-HE,66827
3
+ teradataml/README.md,sha256=jYLOg9VI4yMSf9yjVCTfywXLry6oURodHft_TBje7ao,106467
4
+ teradataml/__init__.py,sha256=9Ycya12HoIYTgwQASpdzK7NSNPcayqLb-xM7HMD1MmE,2497
5
+ teradataml/_version.py,sha256=mUUB6KxwOXJAtbPZoBNVSLnqHPhuKLi3LOA-2_LqdvA,364
6
+ teradataml/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
7
+ teradataml/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
8
+ teradataml/analytics/Transformations.py,sha256=5Ts7lqCSiO3LCi4xc3bA3D3FksODPJXAhxoyryf66js,149487
9
+ teradataml/analytics/__init__.py,sha256=q75q1s02_qlGWsvVKgFZvltKwkMCUkjY60nzfD3IiGk,2931
10
+ teradataml/analytics/analytic_function_executor.py,sha256=XMeJCSudqfOP0htOhZQUH6qcF4Ztp_V7uzeUeu4n6dY,92393
11
+ teradataml/analytics/analytic_query_generator.py,sha256=4Ny_qOlZpoXxN2goUGod9Cv6Kl5T3So3jvYnLQ7347A,42459
12
+ teradataml/analytics/meta_class.py,sha256=7qz3Ik7woaWOz8yd8Zhzf3T2MLZyJTn6q4GoEBR5gIg,7024
13
+ teradataml/analytics/utils.py,sha256=6m-1MEMYLrYBYVl_Q2DiUmfB5crJR9a2F4bCf8euJcY,27731
14
+ teradataml/analytics/valib.py,sha256=7iyoxf-zK4-kM7RkCMXuOviZSSoVo1GDIaR8b1J4WWo,73589
15
+ teradataml/analytics/byom/H2OPredict.py,sha256=S69BUkxG8Dr2pgzDAqYVIl2Wupf0eXdmW46i3hHNJp4,25128
16
+ teradataml/analytics/byom/PMMLPredict.py,sha256=TCxQinbQ50ZHrL-8teN-gRpXf93JnQSekHi33Y618Eo,20269
17
+ teradataml/analytics/byom/__init__.py,sha256=ViV7E_6d0RkbPcKQQ62Ar11-dMUwxf2Eg68TdYmCM6c,810
18
+ teradataml/analytics/json_parser/__init__.py,sha256=0He6U5ogdUfyOb21DjOosv6QRBc9tu6P-5LJFN1pz5A,4392
19
+ teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=vpvUB_Vh5lSohIMTFf8TiQFIEq7YTgJTQbpk-L8tLvw,65703
20
+ teradataml/analytics/json_parser/json_store.py,sha256=snwrJzvXzYBw3Xot6IRMsC7RtxBgxTq4eeXBeD9-Pps,7175
21
+ teradataml/analytics/json_parser/metadata.py,sha256=QE_Mcxor_TMxvDG5FaU1KzSlAFdIoKrD30aXzsZ789U,74277
22
+ teradataml/analytics/json_parser/utils.py,sha256=hYi2ZLuJbRaGGyIpLUvUWS4ohL2ohS2uPPUcLcH5jCQ,33425
23
+ teradataml/analytics/sqle/DecisionTreePredict.py,sha256=e-Bislx7JevujMqi5J6EJmAbTzZWb76YVeqgasSmEJU,22270
24
+ teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=uPw3srh5U_I4lhOZQY1KQnaTcBy0LqH-6nika9M_Y8o,19508
25
+ teradataml/analytics/sqle/__init__.py,sha256=jyAHj8at7qJVrvHfW1W4DucFZenx_aTv7G0zJVxqb0g,3853
26
+ teradataml/analytics/sqle/json/decisiontreepredict_sqle.json,sha256=rQ9nB-IE7FgWEZH6KY1MxxbhWT9n1kRPuZCqEL5-R5Y,2196
27
+ teradataml/analytics/sqle/json/naivebayespredict_sqle.json,sha256=ehvbAugEnH73nUxdJqfOfzWL70zIc_oIWfdgEOnpO7Y,1683
28
+ teradataml/analytics/table_operator/__init__.py,sha256=ph7pzbwJO2w73nRZiixnJlalgfPu1m2jNhI1zikx5nE,463
29
+ teradataml/analytics/uaf/__init__.py,sha256=fxDRJBcmkKQvpmQPKEK36U-fB-rP6WbrWmwR-taBzHM,2295
30
+ teradataml/automl/__init__.py,sha256=cx55kRJ_Sv5XQZZ-Mce1BEDLTn5FXo-rKAkHt0xJ2lU,79825
31
+ teradataml/automl/custom_json_utils.py,sha256=ROPsq-iv2WFIcz_zYDhHgHKv1I5kHO8ZFvdEhs5pdK4,63166
32
+ teradataml/automl/data_preparation.py,sha256=P4sVPNQIylByo6eby4ktwdgL7bvwhPoDNsKxdLVfxyA,44517
33
+ teradataml/automl/data_transformation.py,sha256=KoFbZwp_lOTYcZRrc9q3t6m-jSmFWiDFZMVYI6bpMv0,41684
34
+ teradataml/automl/feature_engineering.py,sha256=oQOLpj0vUL0BL_q2SZTjcD3SmbFIsbLU1QhQtUJf4kE,83273
35
+ teradataml/automl/feature_exploration.py,sha256=mlxXUnx0EyePxYChAutKg1KZTNVJgGBM7hwXp64BINc,21986
36
+ teradataml/automl/model_evaluation.py,sha256=4F-ehLBYBKO5u7V3T4m_D81dWh47yfRk_RCghIlaPio,5689
37
+ teradataml/automl/model_training.py,sha256=Qk4oRjxnb6-EbXHsN5OPScdgIR6lHylwdf9qvbKooq8,44145
38
+ teradataml/catalog/__init__.py,sha256=JmX5fC634ewbSyYy24rsTIk9mg9gSIMFTc15coJKTWQ,134
39
+ teradataml/catalog/byom.py,sha256=cw8j2XBaiKC9jip7z1NkpNm_oXqu0fqMiSPG_i9wXdo,99689
40
+ teradataml/catalog/function_argument_mapper.py,sha256=fTu0YrTb4ZgbcFmw15H-G7I8iln_QRImy38BhXsph34,40018
41
+ teradataml/catalog/model_cataloging_utils.py,sha256=g6S6kwkE87c1rd02YAWIQ-u2z9OhduX1RXsLqsmSPsI,20624
42
+ teradataml/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
43
+ teradataml/clients/auth_client.py,sha256=G_abYn8Y4Y6JAW4tEzWQ14OBI3Vi7JdauD9CRrAp4Bo,3981
44
+ teradataml/clients/pkce_client.py,sha256=2-lQQTFs-2iGnY4Hf1TGKliVJPjDZ-XBuKFUZxQeNOg,16585
45
+ teradataml/common/__init__.py,sha256=KeFSq3wtcYMpZEFepWsgC7e9ocmmsv6WSrDosIviAVY,52
46
+ teradataml/common/aed_utils.py,sha256=oMxLrtf5M2LVd5Xrm9hLkistQ9QFs5Uxki1omAmW3RA,106195
47
+ teradataml/common/bulk_exposed_utils.py,sha256=tV5xvysJAXibUIm8AyzV4cE4USQFe7Eubhyl9m4ZiJY,4622
48
+ teradataml/common/constants.py,sha256=DQkD3BsYcZ_Q1Fkckgiumye4_yfavQrQuJyf4hGWL34,57892
49
+ teradataml/common/deprecations.py,sha256=DAz_DeTMK1ksZFn6bAVm7fRSFfoi3YCTDgmNCZIOWbM,5729
50
+ teradataml/common/exceptions.py,sha256=U3rze_QiIVMPP-2xr4a3Bnz1UQ_mbODC_uwbdBQ46aA,2775
51
+ teradataml/common/formula.py,sha256=IBBDwllFru21EerpV4v9zjbYCBqILZJy4M-vQnT1yd8,31089
52
+ teradataml/common/garbagecollector.py,sha256=uPM2SPwti8xwnq4XntHK2ulgwLpLrUFsEl5_MfsNWug,26088
53
+ teradataml/common/messagecodes.py,sha256=VAQdn3H71PkxobFSrcDoLWp7iiSKcjd-QIqbvQ1pWiE,28322
54
+ teradataml/common/messages.py,sha256=dbzg_XVhjICy4KQdLpaPUgK9QEGj-xTO6d8Zqzhsy08,17615
55
+ teradataml/common/pylogger.py,sha256=8G36wPGbnCVAaabYeimuSuRazwbnX-NhKyZc-a_deJ0,1752
56
+ teradataml/common/sqlbundle.py,sha256=t-TvbRgz4029DbA8HGfnNscu0ipoNLOR-MD3Q3peiaE,23641
57
+ teradataml/common/td_coltype_code_to_tdtype.py,sha256=8RzvJAnC9iHXsCHVVDbPXG3e1ESyZFLVtvw00M1Tj3I,1193
58
+ teradataml/common/utils.py,sha256=7f0BZSVTCWRtJ6SX48SJ-Nd7QtsWOUvSltw9wWfXNaw,89118
59
+ teradataml/common/warnings.py,sha256=Dg36oFozNTFFV1yUlWSoJnkRdABGERJVhkmVzlJJdWo,721
60
+ teradataml/common/wrapper_utils.py,sha256=ynw1n441RX0loAV8lQsKCcbrWtRFPf9x2kvpWzkEBOQ,27845
61
+ teradataml/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
62
+ teradataml/config/dummy_file1.cfg,sha256=mvNQlfiTBP_2-e84fV1BsINKC0wcpeE_oYTuQe3RLaI,35
63
+ teradataml/config/dummy_file2.cfg,sha256=3m0tBK8GnKV4jVwmwmaU9plZDGL-fI-bWTLBGvU6kpM,44
64
+ teradataml/config/sqlengine_alias_definitions_v1.0,sha256=jFH-HwBXPZDe2O8mG1Z5vaRyMvoMfJ-AOM6feGgeKUE,405
65
+ teradataml/config/sqlengine_alias_definitions_v1.1,sha256=iHEB832KDSO0DdugW8MivhBxcYGia1ZzLzPST42pI90,547
66
+ teradataml/config/sqlengine_alias_definitions_v1.3,sha256=pCt661hEVA_YM_i4WL69DwwD1wKm_A4uzqHqwzRf0bo,534
67
+ teradataml/context/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
+ teradataml/context/aed_context.py,sha256=qNCX27R8KxJ3LScU9wXQzos1Gm78Cv0ahVdwSg5iq6Y,7578
69
+ teradataml/context/context.py,sha256=8eWoeDmrshWpOmHF0ZbS6XBavKM5AYTQZONQUqme7UY,43359
70
+ teradataml/data/A_loan.csv,sha256=HFfTfH1cC-xh4yiYGddaoiB0hHG17pWKbmySolOLdoc,584
71
+ teradataml/data/BINARY_REALS_LEFT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
72
+ teradataml/data/BINARY_REALS_RIGHT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
73
+ teradataml/data/B_loan.csv,sha256=o_92vFfRyaKZ7ymDtAwElLOQZvWxL3JNjJ8XJmj5C-M,1643
74
+ teradataml/data/BuoyData2.csv,sha256=wQvjqVSJ8SHk6zB6ZNattBZAfQB_SgdLzpEa6jCmNMM,175
75
+ teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv,sha256=62KJUKC3A0Dq-aG3iw_fiiAqf2NFhK_tf4OV2qojPAM,447
76
+ teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv,sha256=62KJUKC3A0Dq-aG3iw_fiiAqf2NFhK_tf4OV2qojPAM,447
77
+ teradataml/data/Convolve2RealsLeft.csv,sha256=33UBzQ5gYn6-F8t0Fb1NZZYdQjXrV19nD_7I3eh1tMo,437
78
+ teradataml/data/Convolve2RealsRight.csv,sha256=33UBzQ5gYn6-F8t0Fb1NZZYdQjXrV19nD_7I3eh1tMo,437
79
+ teradataml/data/Convolve2ValidLeft.csv,sha256=YrkcTPRDppFzsAk4LWqY_S0I-6k3mSKYrsOS-KMflWU,467
80
+ teradataml/data/Convolve2ValidRight.csv,sha256=YrkcTPRDppFzsAk4LWqY_S0I-6k3mSKYrsOS-KMflWU,467
81
+ teradataml/data/DFFTConv_Real_8_8.csv,sha256=IKpOjDob6Hp7j8I5klHvN-GLTirahB4mOEmpUfGJuKU,940
82
+ teradataml/data/Orders1_12mf.csv,sha256=YpBMpVutv0H7uEaagw7zsb-8KRMMbKi2e-TbztNlpfk,312
83
+ teradataml/data/Pi_loan.csv,sha256=7-kKbP69zD3W0GwpkSE39ZPFCQTbCrxsmDCt5QPdZSY,191
84
+ teradataml/data/SMOOTHED_DATA.csv,sha256=jYD3ps_XSKCFAWEjVjB6Yv-r_IpTIlpZB_bcaC8OUYE,117
85
+ teradataml/data/TestDFFT8.csv,sha256=pdob7s4-lD0WMsO9vk3UGyEpngufGRsqeN_wa5cMUVU,122
86
+ teradataml/data/TestRiver.csv,sha256=Mv2Np9eAIRd_-ux5kKSprAa0tqFOQS6c3P7sIhDzl6I,1633
87
+ teradataml/data/Traindata.csv,sha256=Hyv67nz4DvUK6JraIL_XFDl7XyHlOcIpZLdOtRwh79U,3329
88
+ teradataml/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
89
+ teradataml/data/acf.csv,sha256=V4E2D9KDIUiLOX7lA6o6liZ7lEKt3GYNZhpre4h2INA,1514
90
+ teradataml/data/adaboost_example.json,sha256=Rkt5J-unS0G2w9TcjIt2e1cQVHyUkcGkjvFRyRU2sdw,911
91
+ teradataml/data/adaboostpredict_example.json,sha256=sCN48WqpEV8i34x_G1JEx7UcvDGxR8eXBKZmebbSVAA,639
92
+ teradataml/data/additional_table.csv,sha256=hlzG3wvabxcAlgBil8Zot5n2b5BUQGGlSV8MJdTwop4,189
93
+ teradataml/data/admissions_test.csv,sha256=p8c4_C88AMJsiHSQzapcHkuMc8yJcIwcuNmmwLsSB5A,675
94
+ teradataml/data/admissions_train.csv,sha256=DZ1vw3a6nf3QJGSYO6Q_Q_-Wi-v7bj7b5iUTDzcPxlA,1285
95
+ teradataml/data/admissions_train_nulls.csv,sha256=ATKujpSwylRzqwQhuYk5oJQZnocct67N5IL6k6WbXjw,1198
96
+ teradataml/data/advertising.csv,sha256=E391Wtb9O8ZHEIX3YxovumwEy4rNcer1zJr2g51D_dU,4062
97
+ teradataml/data/ageandheight.csv,sha256=wZqCAsV7SApRpoa24-p8ws6v7DNsY2_CAIKwZapmLnY,244
98
+ teradataml/data/ageandpressure.csv,sha256=Ur91-8fz1VjPsFxfgvwWy9yNB3m2aV9qiPRCHkXHXgU,392
99
+ teradataml/data/antiselect_example.json,sha256=w1V67r47thUYYgE8n0buuPcIQbFnDVPZzcIDGxm46U4,1280
100
+ teradataml/data/antiselect_input.csv,sha256=bgJVm4qOd2xIpMt2vcfw3Vp4EhFh31MeR0UIMgU29zM,1000
101
+ teradataml/data/antiselect_input_mixed_case.csv,sha256=6kBAJUTdD_m36JQ4XW_BdUZ_GYb6tVguMZ1Y-eYuZyM,1000
102
+ teradataml/data/applicant_external.csv,sha256=jaVV1nwxzQjoVZHzdMuaqivRp9erlQFRF8y9CxNSpik,453
103
+ teradataml/data/applicant_reference.csv,sha256=u5oawSEvTCPsxnZNRCSZo-KiVHhehmVORB3Nudm91Yw,604
104
+ teradataml/data/arima_example.json,sha256=NQuqX9F1wzHNZTwE9s4UNBXaEDlHLR_zWzvRBYzlux8,226
105
+ teradataml/data/assortedtext_input.csv,sha256=iWaIWvSB3JBTLDfkBa--uJV7TDFeB_V3fM9Oqvtxskw,947
106
+ teradataml/data/attribution_example.json,sha256=7cfF6OikimBid3vENprLwEwMezF211iC_-my6dpcR7M,923
107
+ teradataml/data/attribution_sample_table.csv,sha256=BXE9yIn-MlSqlq9qJ5qi4YpKuwIG_9nKrOYJRhjcPR4,1070
108
+ teradataml/data/attribution_sample_table1.csv,sha256=xGBzinj_Z1JiaOEImhtCP4l_-UbIvDysjZTMDw0izP0,207
109
+ teradataml/data/attribution_sample_table2.csv,sha256=iTu9SrEEKwSPNqdgffdhWgukWF_jrS2uN33nKpeiy_w,389
110
+ teradataml/data/bank_churn.csv,sha256=kPZiXDG9_LDN47lMTzAE5DeV44KSHQpb5nxL1JCziBg,561600
111
+ teradataml/data/bank_marketing.csv,sha256=udShSyWloOBb6FcYdxVFJnYGuG95h-ncJhIf9BsAo_4,930146
112
+ teradataml/data/bank_web_clicks1.csv,sha256=mVtjtto25BiTTDOwEfSbQdjsIfaYSwAIhGn1RMakIEg,2164
113
+ teradataml/data/bank_web_clicks2.csv,sha256=fUBohxq4IMv25VxRiwb3Y1EimYJyv7CofQdsOcrBuQY,3810
114
+ teradataml/data/bank_web_url.csv,sha256=kSEx40OV3cdnRHiOZGkqPvrstyU4Fssh6KcIa122qW8,4715
115
+ teradataml/data/barrier.csv,sha256=KDTOFTcPlR5OiyIJ4abT7NvQI0fU9JM5de-B9u78uWk,43
116
+ teradataml/data/barrier_new.csv,sha256=AlNzJ9iUBHuBCZKjhS2g1VZS2tiqk7B4t3oZHCHY6Rk,73
117
+ teradataml/data/betweenness_example.json,sha256=fXlQLIfU5fwMTH1TWP6UGP6QicwwrHX5WI7pL6XkNFI,214
118
+ teradataml/data/bike_sharing.csv,sha256=nh_5NnwePRIdjShn3IBkiZcwpyeNHJ92qRdPj25_AV0,57569
119
+ teradataml/data/bin_breaks.csv,sha256=7IOmKpk4ov_dPO9nZqblAPxJa9Tk0MidC031SBLw9nc,43
120
+ teradataml/data/bin_fit_ip.csv,sha256=X7AL7cR7ryQVwbwllwb11Dm3mSd5FlQWbtWCJh-HXxc,100
121
+ teradataml/data/binary_complex_left.csv,sha256=W-9jjtc-t6k8ctNvSBoS9aQb2trgn7af4A838nE7kFQ,251
122
+ teradataml/data/binary_complex_right.csv,sha256=00e7twSK-X5YwVZ_wZ4imxtm7alB__Hl8WkzFtfU0j4,251
123
+ teradataml/data/binary_matrix_complex_left.csv,sha256=jv3vhVtCS7qWHOu-mbDj-ukJkrRCzpFiiJY_hm-JWO8,516
124
+ teradataml/data/binary_matrix_complex_right.csv,sha256=BwBWqHSimDQQ6_BOVdtJMdpr0SphoBptfADg-WwCAq0,516
125
+ teradataml/data/binary_matrix_real_left.csv,sha256=NpLCLpv0CUEZ5N36L8gHYJnKAqCDs6FBKVCeYM0UbY0,861
126
+ teradataml/data/binary_matrix_real_right.csv,sha256=p6BpwbkLzfFP6mlSqdE3P8yqQ-eSWEVOPKt3Bae5mnA,861
127
+ teradataml/data/blood2ageandweight.csv,sha256=TnIFSWXQzaOR-PjoX5qN58-G3z2x66LpbCAFnHN7yiY,506
128
+ teradataml/data/bmi.csv,sha256=9TvDxRlpE6PDIjvT7VNVwnB24UOJSMPxZqAqIi6bCck,8318
129
+ teradataml/data/boston.csv,sha256=nLO7wxYIG1xUXFBOzMEQzFyT2AGEzJm5DW8NDfVqinU,37155
130
+ teradataml/data/boston2cols.csv,sha256=qmb9XFJT9lhP9r2v6qnRQFZMUSBZCxRykyFABy5lNSk,17401
131
+ teradataml/data/breast_cancer.csv,sha256=YJjbRrFwf5PWU7Al4NB46Y2yXNyfJMrZ06YDMY-ySTo,125141
132
+ teradataml/data/buoydata_mix.csv,sha256=FhIW7ZyLFFSt2Ju6cYfJJV5_bUWoGMU-fl4RqX85HiA,1630
133
+ teradataml/data/burst_data.csv,sha256=4ZEOicUtb4iejEC7Qh5VewTACJMG5qdpKEVq3RVO4yo,172
134
+ teradataml/data/burst_example.json,sha256=ijC2YaBUGL-ZKR2lM3CHgBTPHYXr4LpTrXzhHzXhcB4,434
135
+ teradataml/data/byom_example.json,sha256=138RFM1GJZPgw_G3lM7aC3tcXJZQh-R2p4qSMeD5Kq8,394
136
+ teradataml/data/bytes_table.csv,sha256=nztKCmykXMySGFj1PtbkzmUWA9BFD4zxku0VZduH2MU,109
137
+ teradataml/data/cal_housing_ex_raw.csv,sha256=W_r-AMQBLmTatsni_FXdhmmVHNMxQ1ndGdmhS-_2t0s,9459
138
+ teradataml/data/callers.csv,sha256=uarzTiXzCuveKX-HtULkFM7BWlAhpp-nI8kmcWT73iM,93
139
+ teradataml/data/calls.csv,sha256=9hqGkUoe0NmOmLuPn2teYrqN8l4z9WxPg5Y9aKQ4V2k,99
140
+ teradataml/data/cars_hist.csv,sha256=lxejZ0EGPLtuyLKO--fT520iESCiTSXtRxujMLibh2E,803
141
+ teradataml/data/cat_table.csv,sha256=oiNxXd7E3Nd-Pr7kUKUBeVg7ocpMUVf9vFC1HlphLGw,563
142
+ teradataml/data/ccm_example.json,sha256=vyDJDs5fPsViGO0ADcso6IdVQOxknUroq70bo8Jzduc,706
143
+ teradataml/data/ccm_input.csv,sha256=2coomfHMRzIcF3nJkl85kiSwdzfuY5mRWRR6_Suh_88,1880
144
+ teradataml/data/ccm_input2.csv,sha256=YZ-x7lAmhvh4Gg4TVWLquhcqz1_TJvj-DzWnzAoL3x4,487
145
+ teradataml/data/ccmexample.csv,sha256=GGQBzi3Frw_eEri-gErLSySA11fxBgJjv8Z_Ge4jmos,3722
146
+ teradataml/data/ccmprepare_example.json,sha256=TjpEyYZ5jkXu4VXETZGgEL5qxfffF81pfujdWxv_L4M,168
147
+ teradataml/data/ccmprepare_input.csv,sha256=xDvwT7yizJbOR3-sdvYBM99zcf58aVX4EUoiN0zuM38,1685
148
+ teradataml/data/cfilter_example.json,sha256=WFnb6ppZ2KCy9ZuPcx3Q0hrqo3vQUl8ZhdvE6AWJfNk,291
149
+ teradataml/data/changepointdetection_example.json,sha256=yGzmh6UYSudKIDdtodMISTL9fAgDtlsBIjqIWKDJKdM,441
150
+ teradataml/data/changepointdetectionrt_example.json,sha256=ikTKU6l8CpeWscETcKqlGreMUTy7aXfU0Su5gSm854s,145
151
+ teradataml/data/chi_sq.csv,sha256=H2bpkkgSBA1W9BadT0bqgq9qFNJtBnUkD_lfsp7w_KE,36
152
+ teradataml/data/churn_data.csv,sha256=GDxDiW6JzqfErGOsOIBZN2w_ZPEbNCjZf3wp5_ZMKQs,529
153
+ teradataml/data/churn_emission.csv,sha256=8MZWRtF4bruvgiuTQnYKSceoy-vlvA-DSTQFRk_DmWs,1021
154
+ teradataml/data/churn_initial.csv,sha256=lhgX7KXkyWNSqtm7aKwcMdswgmubKwUgBS8BqXSIkQQ,55
155
+ teradataml/data/churn_state_transition.csv,sha256=zKvzfMuBucR1TD_rUfQRqHtGg7erlqmyvcKjkOgjA6I,95
156
+ teradataml/data/citedges_2.csv,sha256=siO2VidIk8g6BFmxNKiP8R6Rt5D6WImBzQ7E_0NVCBE,8203
157
+ teradataml/data/citvertices_2.csv,sha256=nQlqTK4ydkgmJUaQg6dIUO-OCnzBJ5z8oYuWZk9uZm4,7260
158
+ teradataml/data/clicks2.csv,sha256=my48t_kMJYDrWzD2nXre6v5rhm1NL4P3sHfnFNEn4Gw,395
159
+ teradataml/data/clickstream.csv,sha256=A7gtdF9LKCjbjiidWllOwssjqeworw0xg4UX5qYumNA,426
160
+ teradataml/data/clickstream1.csv,sha256=jBIkQJS6S8DIy2Bff4GOxC-nfSBSFzTNZBPZZvFbvCs,284
161
+ teradataml/data/closeness_example.json,sha256=oo5yYraaL95dYafGwLsxqauxbv6UzV77WqZTBrmBk3w,280
162
+ teradataml/data/complaints.csv,sha256=8AIvzzvu-MTQOybNXhPq1dXhL9Pnelln8P_EktuEgA4,4299
163
+ teradataml/data/complaints_mini.csv,sha256=CZlBGkpU3_WogxMkS-y19289VPtSA1_Z1Z-HRuGqYek,662
164
+ teradataml/data/complaints_testtoken.csv,sha256=yKyhSZcS9zRrPbo-s05QJlrhf0aq_SYta4XB85Z5WXo,5045
165
+ teradataml/data/complaints_tokens_test.csv,sha256=qQp4t9-0CIvH5hYj3RFDjp81bII2M3Sw0gm_De8wmRE,4405
166
+ teradataml/data/complaints_traintoken.csv,sha256=uK-EvfhRSPNXFvAOY1wPqRwvz28MJe-4G9y5DboJIuc,15718
167
+ teradataml/data/computers_category.csv,sha256=9pV7pwdE65obb1tSptbjs_2HBAtHVNwE_6-pAB_Wykc,59745
168
+ teradataml/data/computers_test1.csv,sha256=ISDjw0n2HepyrHPMHaqdqKddpw5FfKZwTqOULqyzwIg,28995
169
+ teradataml/data/computers_train1.csv,sha256=eLn864-Xwtf6vYt95nZ6Y49ZqSdAXgsC4NTxmd7b82M,116213
170
+ teradataml/data/computers_train1_clustered.csv,sha256=TijT5HExy0CL98EYAvm87li9bUY65imilipfVejjsso,159253
171
+ teradataml/data/confusionmatrix_example.json,sha256=EUakqolq0Q3Iy2itpAXHDjdAOQ5FLGOj4umfMtkaf0Y,223
172
+ teradataml/data/conversion_event_table.csv,sha256=wAQh4lezO0FaslrxGdRC10M_TJWBIHW19UunBByu7Vg,52
173
+ teradataml/data/corr_input.csv,sha256=yN8yIb7wktzmHQcEg9b9dBGQXREhhYddQ4vNxkbrlVI,982
174
+ teradataml/data/correlation_example.json,sha256=YuVUAlILtBX_ecBLyv_VeexRd2pj0_7IzrNBTPa4vVs,217
175
+ teradataml/data/coxhazardratio_example.json,sha256=vnu-HlxWL2mNillLBILkTZzfdrHqzoIZ_uvpXFQj_5s,1207
176
+ teradataml/data/coxph_example.json,sha256=7D5kTyggIC5NqQS2ovMSMCCmGpcGQoMoQmsMSPakGLs,443
177
+ teradataml/data/coxsurvival_example.json,sha256=av6ciraJe5zDHfgLFkO5aV_L7i9bLFICwhdWmKA771U,860
178
+ teradataml/data/cpt.csv,sha256=IMQwhawu2su6zaOkGyHQk7IYGjH-A8jqJqIwUCgkMfI,908
179
+ teradataml/data/credit_ex_merged.csv,sha256=9yoTcOJLvM4iGlu87F2i1NzT0yjjHEugafgRAl16hpw,10493
180
+ teradataml/data/customer_loyalty.csv,sha256=Z5YW-Apil6Xz6MgTS12kxJYptQXo5dLH84vfWuswjSk,8663
181
+ teradataml/data/customer_loyalty_newseq.csv,sha256=ufn_bjCqWoLaZ5l0ZSVAdWfboinduvc4L5jwiGxZAFc,805
182
+ teradataml/data/customer_segmentation_test.csv,sha256=8iaPDIFgn249mytmwxOi8cU_FnzRo0EtaRV_SXrxmP4,125982
183
+ teradataml/data/customer_segmentation_train.csv,sha256=U4aGWbqHv2vOfPVMT1ga4FjMj--Mdlp2CZAyLMUERsE,403494
184
+ teradataml/data/dataframe_example.json,sha256=PMBl3s3eNuQ_kvPDTP5Zyzt8eAgdtLEa_8QHAc3N6p8,4005
185
+ teradataml/data/decisionforest_example.json,sha256=USwkJRLKXN-OFixZto9gkmh8RVlnD7Pug_XkwxiSgPQ,1188
186
+ teradataml/data/decisionforestpredict_example.json,sha256=uuvBRtE4Ftc2UbMCfJtTbXXyjd16PqbX2J4SfqC7INA,1364
187
+ teradataml/data/decisiontree_example.json,sha256=6DLmN9BeqnR1-4GlZJz1DlBGW4wwsBNASLno9j22fzs,560
188
+ teradataml/data/decisiontreepredict_example.json,sha256=_P4j2ntEoovC1ZbQSWt8-4sV-2JEFU8HjmRv7Rs-N7Q,1804
189
+ teradataml/data/dfft2_size4_real.csv,sha256=ao4MRxP8KO_aB3GfoR30yYakLXmE1rc14ltevCPBEh0,254
190
+ teradataml/data/dfft2_test_matrix16.csv,sha256=TvGW7NZ4OC5o_uFUUYT1Ieocztwv5XNLjzGBBhQhbXc,270
191
+ teradataml/data/dfft2conv_real_4_4.csv,sha256=ubAIFDBbU46R9gFzIPmvANk21Y3dyVOpIbN-SE1tZHk,1023
192
+ teradataml/data/diabetes.csv,sha256=c17f23PTs1BslnK9FAd5hEwryRTfrI2403_1Bw7-Vg8,90120
193
+ teradataml/data/diabetes_test.csv,sha256=75kzFto7uVs1lX3VRb6zjSnTcfzHCqR7SrXq7PSdTWQ,18039
194
+ teradataml/data/dict_table.csv,sha256=Dc1-UXpJhzq0DI9B8rdgP2PwOK3E4vy4nG-BSpnPMPY,116
195
+ teradataml/data/docperterm_table.csv,sha256=Qyr_b5wPThIiDS74oAgRbZKfdmKsLlOPkBQ4PnUBgeE,51
196
+ teradataml/data/dtw_example.json,sha256=0jxKZFpJZx94jfvjhUTQwJQSGm9PA0QWlEnm2UTFmv8,462
197
+ teradataml/data/dtw_t1.csv,sha256=7OpuvHUwmbv-Ylu88uMk9uNo81Z2PKgjKPqEzyRS5Hg,218
198
+ teradataml/data/dtw_t2.csv,sha256=W2s0a0x2_1MxO7FRQz-gaF5oJC_TS6SJ3CNpHpQ_zAM,70
199
+ teradataml/data/dwt2d_example.json,sha256=67bBR9l__CYN-RFdoCqxUSwqSv9rKr5sBs6S-1CE5No,474
200
+ teradataml/data/dwt_example.json,sha256=GtsNvqmrLUJU2WfvVLHfb-jLyB-mLCAbPC2i7L20RxA,416
201
+ teradataml/data/dwt_filter_dim.csv,sha256=C7XddFAS_XHPJNVwHThgtSG8HY0CABCcGGEX2V8FOn8,266
202
+ teradataml/data/emission.csv,sha256=MiYR3p8wA2JWqkszuIB55yukdE5ByLSI7SHADRa5mcU,184
203
+ teradataml/data/emp_table_by_dept.csv,sha256=r1dAEq4_kazrr17k9V_A2Y6yBV8471SKRoV8NiklVy8,597
204
+ teradataml/data/employee_info.csv,sha256=pwmP2ZuhLpApnjjINbDYOPAXyfGv0mQuze4Ai679YQ0,100
205
+ teradataml/data/employee_table.csv,sha256=3A2_pM6vYNZgSZgWJUvrpbic2thUJc3UjQ3xKLxhV-8,143
206
+ teradataml/data/excluding_event_table.csv,sha256=127t4i5xtm2Hz5FF3WT9Bx_A12jCXqPhHy86wOqMwLA,29
207
+ teradataml/data/finance_data.csv,sha256=qPcVOUI6EI4kaD0ZWqktmxOTEAjS2Y6d8mSlEP8wwzU,265
208
+ teradataml/data/finance_data2.csv,sha256=FywSdftZ3ZXM5At4ZwYnL0XpmoItmMSt7l8B92MCs5I,3712
209
+ teradataml/data/finance_data3.csv,sha256=lp_irRnY5SosrYzEVxW4VB07vP5dP1FgIEJesjkQU6A,2358
210
+ teradataml/data/fish.csv,sha256=ja2iyemvEDRmdnASD2eC-pUAMgzIVGEJVVSsfjqrvg4,6022
211
+ teradataml/data/fm_blood2ageandweight.csv,sha256=IBigbrDMap4hDdB9TiGlalN8EYRE7EKeUazHyvldxpY,495
212
+ teradataml/data/fmeasure_example.json,sha256=tSXRX3n-02WPiBr_iZdscslV6Bh_FHsDdoiWHRS3Dwo,298
213
+ teradataml/data/followers_leaders.csv,sha256=WzajVHUli0I1mYw3rJIWAUgOxWLDlleUh0pzzfRlcEQ,191
214
+ teradataml/data/fpgrowth_example.json,sha256=WFnb6ppZ2KCy9ZuPcx3Q0hrqo3vQUl8ZhdvE6AWJfNk,291
215
+ teradataml/data/frequentpaths_example.json,sha256=hNZH2YCyCD382eSmxkdO_6Dkl1sWwaJEDtBDUVDuG5g,993
216
+ teradataml/data/friends.csv,sha256=6jLMxZYriIYtv-S6DQ7wwrdbRgDMCQ6UJH0NncP9LKA,303
217
+ teradataml/data/fs_input.csv,sha256=RugLh7aBVyT1SUIAx1pwKzGOUEWBZ7uO_UFI5phTwlQ,2258
218
+ teradataml/data/fs_input1.csv,sha256=Pr-T60lcEzpb-sZpJqs_D6deTRcNFo3bgyt6AZT_urA,2297
219
+ teradataml/data/genData.csv,sha256=y1Lvbme5Gp9JCCRkootSCR5xS_eBQNVkzgzgQQYEb90,7917
220
+ teradataml/data/geodataframe_example.json,sha256=r6ENcly45GWH-Ma-5_vASZCkUlIwaX6RLe6PB_yJRCY,961
221
+ teradataml/data/glass_types.csv,sha256=4roe2TEESLUV5_aj9D0oQvdezYMqcSHFirjdbFV4FTo,10054
222
+ teradataml/data/glm_admissions_model.csv,sha256=4NjcVBiKKzb0z-v4aSrC5odT9sPf0FkrvBOTKQqmT-I,753
223
+ teradataml/data/glm_example.json,sha256=D8q6DQZ4IksWfyR8v0pVmORqu0HnBwdAo_G6YTM6v40,1859
224
+ teradataml/data/glml1l2_example.json,sha256=XSCQriuLf_gaqEXgUKo_a6xc3_4hBRLEKJPr7DXYyXo,907
225
+ teradataml/data/glml1l2predict_example.json,sha256=GZJpQ7dWM188f1spjmItIN5u1f_VCFI8cAShl4tbhdo,1782
226
+ teradataml/data/glmpredict_example.json,sha256=LbPzvK5doOjsamOR5cUSHpg6XU0X-I-yliV3hDFsoBw,1911
227
+ teradataml/data/gq_t1.csv,sha256=_iGiz61HKIk2BEvGFp_1REisSHFKkjhF0m15Qte2RYc,601
228
+ teradataml/data/hconvolve_complex_right.csv,sha256=VCdYl0iYVXuZV74GKtaBGlC_3JsbZPyRI-7AV6PQ_8g,103
229
+ teradataml/data/hconvolve_complex_rightmulti.csv,sha256=9gHNIVxZmGADCcvNT7FVC6MhV2AqmRrJu0Khr22g9QI,245
230
+ teradataml/data/histogram_example.json,sha256=T-5SgDcbo4lC-AajDQ0nb7LbOzoqOzzmRC8OkXI3iX0,241
231
+ teradataml/data/hmmdecoder_example.json,sha256=uDvpoFSbgmqelBlYDnrcj7N0lDaWCHCsQvRIHXI5zJo,1852
232
+ teradataml/data/hmmevaluator_example.json,sha256=SwhSClm_D2vFD1RUqf9hB2Sm5Pdz0fRGF6xhKS1XAF4,569
233
+ teradataml/data/hmmsupervised_example.json,sha256=ll5LLX65qnoeYrYLz44F7jBxFVeycgw8k_0E1SOdgk4,217
234
+ teradataml/data/hmmunsupervised_example.json,sha256=wS8dJ-eMVwVDG1jdRQ_xEfV4_EIm8Jhb_8Vj8c30cLM,157
235
+ teradataml/data/house_values.csv,sha256=RuoWnMnhInKUNPOcAoRjaHl0nSVpxAHRFk4l7ScQ-OA,571
236
+ teradataml/data/house_values2.csv,sha256=A0DUg1nfULxjJ042H1uCzGNBdaEo0cs5ooWF8zeMP6g,199
237
+ teradataml/data/housing_cat.csv,sha256=zWcbUJRMt0Rrh5mXjD3LQV7Og3yCzZHonXuibRtrP-o,78
238
+ teradataml/data/housing_data.csv,sha256=1_m37J1CYSV_GV-82bfmuZSKi-xZgxgtdlKQ66yCxwQ,268
239
+ teradataml/data/housing_test.csv,sha256=sbT8kG2g6vT2k-2LJUtXvnk6vZ7BT-UZRVsV5EmbI1Q,2547
240
+ teradataml/data/housing_test_binary.csv,sha256=2gE2hTPIvQ5NLZQFq__OGOtnFTAR7wL0Me0W_ppWkU0,3191
241
+ teradataml/data/housing_train.csv,sha256=7uiwW9Gsr-xWM4Si8u3mXkIxfsUlEEtLr9efhfyPYdE,26036
242
+ teradataml/data/housing_train_attribute.csv,sha256=zLd9bMMthooD08bxtkCxCyTBFWND0p2267aN3U7Jl5k,78
243
+ teradataml/data/housing_train_binary.csv,sha256=Xuj9uCs4iePRSQRbtL8-lACAfvE5qw3ANKNxJI-SR_s,29062
244
+ teradataml/data/housing_train_parameter.csv,sha256=1N3jDyS4mLvbmFSf3lEBkptGJzByuSRPnaXUWpcI-F8,59
245
+ teradataml/data/housing_train_response.csv,sha256=GXe8a4qFn_cbWmga8KhxRvQTnceyY7JMe-0OJhfEnzE,7646
246
+ teradataml/data/housing_train_segment.csv,sha256=bdgjb2IdgyouRiblq-0jg2L5bL27mbPYqZ0RO-EDNn8,11332
247
+ teradataml/data/ibm_stock.csv,sha256=nY85WYi9rtYlM5eStAKVRVPIjYAMN4fZ-CVSzbS6pL4,9521
248
+ teradataml/data/ibm_stock1.csv,sha256=GZ7woXK6ss4UYhKxWyjWiFitS46GHT2D6Cp1YjSu4Zk,17747
249
+ teradataml/data/identitymatch_example.json,sha256=EQnoTmGowYaDveMsmufATtecWdF3jG-vsW5H6z6eT1s,553
250
+ teradataml/data/idf_table.csv,sha256=dPVvU7hx1ELtkAxnGDJFGMvF6-lgXO0OQiPnD_zEbkQ,97
251
+ teradataml/data/impressions.csv,sha256=gK1lAA4CnJmjB65KRhCmgAy7h5nKwDyQbAl4WTem0Yc,2483
252
+ teradataml/data/inflation.csv,sha256=0grPat_poXsU6ZlSRtpFizcGPwLF0_DdEVS8IcmjKBM,553
253
+ teradataml/data/initial.csv,sha256=0OP1Xopmge1wyQsMpqBDN1XIUH2vlTnky1erV-W2Hq0,53
254
+ teradataml/data/insect2Cols.csv,sha256=A8h4ng_It3rOBwJoxr4LtrDDD-GdjX1vl5Xi7hwsCo0,671
255
+ teradataml/data/insect_sprays.csv,sha256=akKmsfoEkiOqRTi_7i-UihnJkPl-urUaSVlEhmSz2ZU,307
256
+ teradataml/data/insurance.csv,sha256=OI7_Z5VX0IrBn0Y9Al3l4LStxIJTfIRW0Zk014Yh_Uc,55628
257
+ teradataml/data/interpolator_example.json,sha256=G7s8es8pSLne_4cD1q6GCSyU0OBxLp1toUHp16Nrync,345
258
+ teradataml/data/iris_altinput.csv,sha256=1XTmOumWhN5Q9ZmboJoNsMdsXTaZwRXvR8w6gjz4DYI,18290
259
+ teradataml/data/iris_attribute_output.csv,sha256=R5UejlCRJTceL6Ht9F3g8HJoJlLcf4CMjzXQRtGqcTo,2012
260
+ teradataml/data/iris_attribute_test.csv,sha256=Yl9ncbAGXHI7sbOalOM2JzRIWPCLtMsNjf_YzGhbwr4,2929
261
+ teradataml/data/iris_attribute_train.csv,sha256=_Jw_OccWjgllMWz9chE9KhNCQlanlMKTxntsKOpSeZk,11559
262
+ teradataml/data/iris_category_expect_predict.csv,sha256=5jcx1jly9YCKV1wYlRwf1WWsh12_We90PhR2HSZ500E,853
263
+ teradataml/data/iris_data.csv,sha256=kZTitx9xROfRkqHDj5pU8msOj3BcCSm4IlsM0QJ179E,4617
264
+ teradataml/data/iris_input.csv,sha256=3fJgMbq-vEBKLjh68CitThaLLe_NAXhfCHOqc42qcUM,3274
265
+ teradataml/data/iris_response_train.csv,sha256=7rsH5XKO4zTa6Jg2CAtUpiEdNjT4uIyFZPcScKWzxYM,2210
266
+ teradataml/data/iris_test.csv,sha256=zSYepP8ZX0NxbE2psLuNvw3TDCyYRAj4ETcQ-3bPruw,722
267
+ teradataml/data/iris_train.csv,sha256=jNtDylLX7nSGrSKQjQrTJIHqLcLp1e20Fl4j5ds_MTU,2626
268
+ teradataml/data/join_table1.csv,sha256=wmq7t19KVRO6ErYcoWLDMUtSQVwL7J-FRK9_0gHIbFo,76
269
+ teradataml/data/join_table2.csv,sha256=OVyS9lIa5ZoGEbxpN1DRpasAGW78BgNzhv4Q2bJgvVQ,95
270
+ teradataml/data/kmeans_example.json,sha256=UDWmnpF3Rjey9pjnvpYk-fPsp2tj2oqSwXgD98LTrTc,434
271
+ teradataml/data/kmeans_table.csv,sha256=fAlU42s5pNxDEzyTQeBYIchopaeERy0FRot9mLlfeg0,91
272
+ teradataml/data/kmeans_us_arrests_data.csv,sha256=VPIkcXCbueSuGesRK4e4m9QKNSjfj5RVtjZIwgtPoyM,1479
273
+ teradataml/data/knn_example.json,sha256=7k8aZ6iTbszx6OgImLWWJYLtJxr6NTAiNopVS16_DzY,390
274
+ teradataml/data/knnrecommender_example.json,sha256=R8XIteOmQkkIXHtAYiO5qm03_3tUk4_ah2HXK1kYDwo,117
275
+ teradataml/data/knnrecommenderpredict_example.json,sha256=n9_rUaLT8T8b6pzow9EPJgumzWmySraYdNsmPjiIVaE,236
276
+ teradataml/data/lar_example.json,sha256=b16Nx9WnO0Hfa0xK1Ab2H_FL1mtGUgJkfJ_GvutJmS8,282
277
+ teradataml/data/larpredict_example.json,sha256=cchMWo1Sye9-BSWNwGkGLb_g99NJv3Y-WeBm7U1S-Ao,558
278
+ teradataml/data/lc_new_predictors.csv,sha256=UFNG2szgjoFCEom4gVQKS-U1i-J8b2ELTyNK8RUyKXU,238
279
+ teradataml/data/lc_new_reference.csv,sha256=4NSk5JMLWOtZYMYhVfr3JqK_Z97W21ScX2sVXCET590,341
280
+ teradataml/data/lda_example.json,sha256=ibooCwaH6DkARnnfNZzSuotxGJJz5OUQGZ-bicLaVpk,186
281
+ teradataml/data/ldainference_example.json,sha256=57vdGyVfdmZ3UCbB8cCojGfHSP59RwK0iHoG0eQ0jhk,336
282
+ teradataml/data/ldatopicsummary_example.json,sha256=ibooCwaH6DkARnnfNZzSuotxGJJz5OUQGZ-bicLaVpk,186
283
+ teradataml/data/levendist_input.csv,sha256=E4mV_0mw3GGlk3Vqwzu8jtSaQq9YEwMKVT2X_7XYIPg,405
284
+ teradataml/data/levenshteindistance_example.json,sha256=V2PX8TXU9usGRo4l0BqCJZrdlUjvsOpPzixd78TMPnk,260
285
+ teradataml/data/linreg_example.json,sha256=M1RFDST8ZKyXBBSyLSR8je8cZ7zMlhUFuJWhuMi6Trw,204
286
+ teradataml/data/load_example_data.py,sha256=A-NtbmsBPwBQNa6XwHRUSCs32_s1FkurgT9q-Tl2AN4,14272
287
+ teradataml/data/loan_prediction.csv,sha256=lEXZzLSKXaZbdpaQgYVBwcMa3-r5S8OemwMsQoD89rc,4591
288
+ teradataml/data/lungcancer.csv,sha256=ek_VkMKU2EbttSTjXzcwzGs47jcW-o_QHhjJbKhqFfY,5873
289
+ teradataml/data/mappingdata.csv,sha256=hYsq_JLXcCjyEHx577POhxdvScQ_ynKUlcnTJiAjPeg,84
290
+ teradataml/data/milk_timeseries.csv,sha256=U0woD3Bs4myyFbYdUtlKNcomLAo45iSIJ0D44JyR74w,3498
291
+ teradataml/data/min_max_titanic.csv,sha256=wu7CXqLRfp3SBKT4foFjFHqZLm6nO-C13Le6gWmQlXU,88
292
+ teradataml/data/minhash_example.json,sha256=KKjXit6ed08c38FQ4oisD9_gW5xPzt_QHD_b6NPbuVE,87
293
+ teradataml/data/ml_ratings.csv,sha256=mK-d8LA0grEgbUQ4OgAOlcrK8FBs5S99neXTcoWqzwQ,83134
294
+ teradataml/data/ml_ratings_10.csv,sha256=i5d4M9zTaufbJr3_kaBEbxiZSwP07wtZmgI-crJXCJM,25230
295
+ teradataml/data/mobile_data.csv,sha256=NqDzy7QWpKPxOsuxwzJ9qC6Xq02zhstFivrN42Glwi0,274
296
+ teradataml/data/model1_table.csv,sha256=X9-C0jhp1-cS655knzbuYpzBILqHalfsRl0FsqwUyM4,128
297
+ teradataml/data/model2_table.csv,sha256=L2WReBxk5ZLNTE8UswlQ-HU0wivmrffkYvswgXyutvg,108
298
+ teradataml/data/modularity_example.json,sha256=07rfwqYYWYcIt1Ky4UqCbBMELsNWjRR0fQvrZOdxmpo,252
299
+ teradataml/data/movavg_example.json,sha256=gb2AcryljUpFp3_IDeMZFR_VdGd0ObMMxGv8cicuTFY,130
300
+ teradataml/data/mtx1.csv,sha256=9sfklyud9J4BPTxOnmvZ1x0y6bf1-LZu5Mj3LnY0b1c,115
301
+ teradataml/data/mtx2.csv,sha256=YyXh-UAUtAQbbQAHtgdsUC2O5D2cFuSwuvxbeTYlAZ8,201
302
+ teradataml/data/multi_model_classification.csv,sha256=VEIyKhWSmSXLkXZcUejTe9MjFVrBcRuAMS6LavI0jbA,40856
303
+ teradataml/data/multi_model_regression.csv,sha256=pJ_RMyx-_y_zeUcGOrObak_R6Lz4O0DeA0rZId5ulBs,41624
304
+ teradataml/data/mvdfft8.csv,sha256=Bi9J1hxbuzvNBbtzNqZETvJlx6RhZb5-_tQNoC3WMlo,238
305
+ teradataml/data/naivebayes_example.json,sha256=afvM4Vfv6ZINTiMKdoB1LWK9rOMvyDoGh_45VwYxhHQ,203
306
+ teradataml/data/naivebayespredict_example.json,sha256=yYjv-bSl7iutKbZB9FIobbIYdv0PasKlU4IUlipkNQM,521
307
+ teradataml/data/naivebayestextclassifier2_example.json,sha256=_NP4_5G0wt1eruB9N7vfl4wNKhW_CXIsGmj4DGMuIA4,151
308
+ teradataml/data/naivebayestextclassifier_example.json,sha256=a1oGhGAwCR1xGjka_aqgU3pI4XBxXO6mIcMHUWP8c7I,155
309
+ teradataml/data/naivebayestextclassifierpredict_example.json,sha256=AlriKIoyTO8v7WnZte3J35lnpRiY_q32vK6aBb5pWI8,492
310
+ teradataml/data/name_Find_configure.csv,sha256=lYVIn0ZrjDVqQCTITzW3Y5u77yofpWWOhvdKstHSyvg,380
311
+ teradataml/data/namedentityfinder_example.json,sha256=JTHyoARLe05_zemppuXI_KPu_DzQEzOKLk-2wl5XWw8,354
312
+ teradataml/data/namedentityfinderevaluator_example.json,sha256=7q3Vfzr8yCe-B0taXNlljn3pkap5NP04ayM2V91MFoc,260
313
+ teradataml/data/namedentityfindertrainer_example.json,sha256=k8V-bdBlV0SpAmz3bf4LGZvnGG5j0S32LHA9Omj6fGE,133
314
+ teradataml/data/nb_iris_input_test.csv,sha256=Pa7US_YC42gUIsurIJvekgwiaLBv1B_EWpa5ZRlQX6o,1002
315
+ teradataml/data/nb_iris_input_train.csv,sha256=HU8MSrt9H9b-sF4XFkoQ_AXC0YvgcTrVV42zkuPXKSw,3746
316
+ teradataml/data/nbp_iris_model.csv,sha256=PIhJGQx842zibQVeQWL2kHcHJDnODDjtcE0xa3NZspM,759
317
+ teradataml/data/ner_extractor_text.csv,sha256=2jAgKS5rHifnrlVRuEuBCvXmpppHRvNYrGR-4tCskZ8,168
318
+ teradataml/data/ner_sports_test2.csv,sha256=WrjjEq11SBVu6SoRgfs8e2IddMBzQk4atjLo7l8Fyig,2452
319
+ teradataml/data/ner_sports_train.csv,sha256=uQFnG_Vk7o0c1RH0wMz1L5I15qReEAMKfRDPPFsEeuE,35416
320
+ teradataml/data/nerevaluator_example.json,sha256=OvjhjbtA9atK8K6thtV2Jwt_q7WT91T_QfQZtYxpezA,117
321
+ teradataml/data/nerextractor_example.json,sha256=ewdU0lxtmgZ07uPAkSOdAkH84-ViIVL3C9PfPmM93GE,450
322
+ teradataml/data/nermem_sports_test.csv,sha256=VrdkLBKgTIRUcnFAdixs-nyGYQBRTQS-J01KK0SF9JA,1584
323
+ teradataml/data/nermem_sports_train.csv,sha256=p-VVhMmOedfB5rCVHl0Y9dqJuCG8Qv7y-PD5fV--P0k,4029
324
+ teradataml/data/nertrainer_example.json,sha256=4SZi-V5eiiL_mHajhPd3oP_wY6s-Q-wH-izu8g_d8f0,93
325
+ teradataml/data/ngrams_example.json,sha256=n3WsdqH_oU9lhLHnJqs1plrrwZ_oHRRL2ZRTRA4TiFs,126
326
+ teradataml/data/npath_example.json,sha256=d6u-KHIiSEECZ_dz2CcCqacmvWq83feRE4tCLCdlWp8,421
327
+ teradataml/data/ntree_example.json,sha256=4J5hO_f7nlJjaqrdFNRyPpszo0UWXqgUYBj8A6Fm7jE,431
328
+ teradataml/data/numeric_strings.csv,sha256=EtWED9LdIlbVYL9FrB551VG4buayUWS7yFSXvAFXONE,147
329
+ teradataml/data/numerics.csv,sha256=YQFmPiryxhVYBVutvriaaNkLZKR2pl1wDvmey-IJ0Ek,275
330
+ teradataml/data/ocean_buoy.csv,sha256=I6wV_uUznsvW0hw63nlCasYGHFfQXXLxvoOl5FN-7cM,254
331
+ teradataml/data/ocean_buoy2.csv,sha256=FWTfogqcTDfYn0wINPK6D84mvkhg4pbmsN0I67w7xBU,390
332
+ teradataml/data/ocean_buoys.csv,sha256=IF8hMlqQSBl7xP4ELiC3CBWE33zh0vy47wWZ5DZHVTs,1031
333
+ teradataml/data/ocean_buoys2.csv,sha256=5OsUz_8Q5xD9MedPi5MR81TuJg53eC2nu_1_nttq_f8,1556
334
+ teradataml/data/ocean_buoys_nonpti.csv,sha256=qE8fQs6VJAQJgRFk6jc4xR6Rp2U1AmlI39cGjcva3cg,1030
335
+ teradataml/data/ocean_buoys_seq.csv,sha256=jIU12R7mB7empv5tQhfvgOtgydeVHcVfzfmSEd78mSM,1471
336
+ teradataml/data/onehot_encoder_train.csv,sha256=8pG8ucUvum6SQhOKPnwUgPlEOAFDsmdBgA-Qo8XAPrE,41
337
+ teradataml/data/openml_example.json,sha256=JUEzOD6uOgg7ns6Pca3AdlLP0PS4Sl1eZjb3qkhDLmc,2582
338
+ teradataml/data/optional_event_table.csv,sha256=FJuG4_g7lIqi3ZKLNsUb-Y4uT54oceGjlCT6dUApiOU,58
339
+ teradataml/data/orders1.csv,sha256=NdYv2BQ0ZGY6DMwauduuecFsiBonOne1nT9vhEyT1NU,180
340
+ teradataml/data/orders1_12.csv,sha256=weWu40ZXGoGrqrU0MAslXuQUXH5dUs3872gsqle6Rg4,129
341
+ teradataml/data/orders_ex.csv,sha256=x4Va50ICh-PHCWmXTK9ns6UZ4L2QZHj6OOSBFSUori4,88
342
+ teradataml/data/pack_example.json,sha256=AjVIuBnbZ6TlPPGdDTcqu-vtrT4FNJDoDi5Fpf9r_qs,172
343
+ teradataml/data/package_tracking.csv,sha256=Da7lKQb2Cgl17FUD8_B8XJFXrQNsTU3lEfNajR5A1ws,954
344
+ teradataml/data/package_tracking_pti.csv,sha256=LU23xbqeXMzzqEjDMHMaSZVCbZIVk7gKD3Sh1dSmQIQ,933
345
+ teradataml/data/pagerank_example.json,sha256=1DhseHJJhzxjyE6hukmBVyXkEN6EVNO3K1wB2Tl3mcI,264
346
+ teradataml/data/paragraphs_input.csv,sha256=_9owa9OoNgqLR1QhGnAIcCu6txVUwdzZSMj-EujTvNk,3000
347
+ teradataml/data/pathanalyzer_example.json,sha256=AiiJxKnvF4Q536y1-6kdr6ZcfxtQqMERTHiEn1nxebM,138
348
+ teradataml/data/pathgenerator_example.json,sha256=AiiJxKnvF4Q536y1-6kdr6ZcfxtQqMERTHiEn1nxebM,138
349
+ teradataml/data/phrases.csv,sha256=CX_QEgAX37IUVKf8ctD6uNkG4bixeH0Tn1LM0nCEco0,110
350
+ teradataml/data/pivot_example.json,sha256=ZHd3QFtx0yXPZm7fIfss8SsyZU5-mTG40Wv1Qliln5M,165
351
+ teradataml/data/pivot_input.csv,sha256=1VUxgb3CUuSDzy1aTXgsLurRIZa13Rdoxh_UGqovhnE,763
352
+ teradataml/data/playerRating.csv,sha256=m9YmSbd4WYiEPxBFqRqnEbCpLcfnYc1yaWCj12IMZcw,504
353
+ teradataml/data/postagger_example.json,sha256=n3WsdqH_oU9lhLHnJqs1plrrwZ_oHRRL2ZRTRA4TiFs,126
354
+ teradataml/data/posttagger_output.csv,sha256=PESlDu3rVt-_0Yl7fwjEgj-1VnYNhR16LL4XPsd3P_c,945
355
+ teradataml/data/production_data.csv,sha256=U35ycGMK--e0E7E6eUq6xvzrLoqcvBnfpohaadjPx8o,821
356
+ teradataml/data/production_data2.csv,sha256=Zo3VRoi9_sR4y10nfxNznw3CqMzWQQi28ROBBBA3ABo,246
357
+ teradataml/data/randomsample_example.json,sha256=TNbECMoF7cZq1kIIbVrVyzNlTBxrEPwCo30O2yQS878,800
358
+ teradataml/data/randomwalksample_example.json,sha256=v9liCFqTVqNiXnpqmvC0RNWyUdZ-Tx5Et2FwhuVAOls,128
359
+ teradataml/data/rank_table.csv,sha256=oazTlhOAA4C9rNBcHuJa7gOmftO2vmf3bevxZC7jeJw,100
360
+ teradataml/data/ref_mobile_data.csv,sha256=mJcSoKQfS6t177wq60ygMXa1LI8O9B62vVj9PjhNmeI,106
361
+ teradataml/data/ref_mobile_data_dense.csv,sha256=Bm6C74aeHApPaQr7KeagYVi8tPJ3mQqW0EdAp01IroU,63
362
+ teradataml/data/ref_url.csv,sha256=nXDagdEJ7Hn94hdss2xa-JbHBMbZ8EmekrQJuX8079Q,850
363
+ teradataml/data/restaurant_reviews.csv,sha256=YGfeHqPcKIl9ORXoT5aQ2Wp3YXRDA3_lzl8xvlg-EGs,612
364
+ teradataml/data/retail_churn_table.csv,sha256=rqOS2uaoniztpNgzF8w-KvAyFurECdYeAgs6C-8weEg,1381490
365
+ teradataml/data/river_data.csv,sha256=F6j9TrDjzVmT4ilWwzZ0rj6Xkwk9Ctyk81TsUON80Ow,4581
366
+ teradataml/data/roc_example.json,sha256=VuM4TAtIz314Tc08l1NCJqYMNM1YOmxfDYtqQR5ZNV4,140
367
+ teradataml/data/roc_input.csv,sha256=kmX2hvTWeRtMr2Nce98EDPxacqE7qcRKBM7K4daBaiw,2158
368
+ teradataml/data/rule_inputs.csv,sha256=tm6PFmMDhym_f3oKq5CQb-fzaJQGCiuellSdgKKU7YE,454
369
+ teradataml/data/rule_table.csv,sha256=KCJxBVoBEDd4RlrXr0zDvsI7FMnjuzSC5YsX19hYhTs,75
370
+ teradataml/data/sales.csv,sha256=eFm-KhW0ZwV-kynP2vF1rPLiGfdpQKZiHuRpzfIZPlA,239
371
+ teradataml/data/sales_transaction.csv,sha256=Q1mClhEU2JahhqlyR29UV5NIfOhCp7XXOSbaFJsyx6U,45616
372
+ teradataml/data/salesdata.csv,sha256=j5msQ9UlRRoV7lCHzaM-vRcaRUNGGOmnk2UdPAcCrN4,4265
373
+ teradataml/data/sample_cities.csv,sha256=4Gq6zh3bkMqxIvb_Y_Zt5bAZqzSvUBMbyzD8WezNxxw,144
374
+ teradataml/data/sample_shapes.csv,sha256=TsewEbNMysCM2dVbdn81fSBRQCmZ2Vo99izJ01Pk5sk,2672
375
+ teradataml/data/sample_streets.csv,sha256=_LJeoG7nH6wHGsQFldOn-O3a2Morm-Hg69o0qbvpG18,123
376
+ teradataml/data/sampling_example.json,sha256=pnB1Lzwt5baZIBDU0sMLKqnGDzcOoVQ-5X26PZSboDs,269
377
+ teradataml/data/sax_example.json,sha256=b9FN__52MuTp_I_y54LMpwtpt5x-rgdD6Rdp04SKKZU,169
378
+ teradataml/data/scale_attributes.csv,sha256=3OC7BRqhQohXO9OYfjyzYY_K1G-gs1Y6KdMV1MmONRk,37
379
+ teradataml/data/scale_example.json,sha256=2KJEsG7CXoXkQD5qT_x9BtmdD1vkRwa2aij53r0VvSs,2152
380
+ teradataml/data/scale_housing.csv,sha256=yD016RxlF2ldgv6-C8z-liooe_icioZNxiFEjQjRQqc,363
381
+ teradataml/data/scale_housing_test.csv,sha256=xW9Z3GBnn4j2LQTjNQkF8xurwxarYxEy3dM99zCviI0,219
382
+ teradataml/data/scale_input_part_sparse.csv,sha256=GSjSmKDBjAwHIL9rzWZDTAlwRwxd3gwx-rHxhq_u7dM,519
383
+ teradataml/data/scale_input_partitioned.csv,sha256=-uE42DZeIhOe608qY1yu2wsKTFm5TPNx5LfZSSa1BbE,1229
384
+ teradataml/data/scale_input_sparse.csv,sha256=u3SzzEX3uPQqUpIxFjiFdvdKbf4uyGXCLN5FDWzwXLI,189
385
+ teradataml/data/scale_parameters.csv,sha256=u9tbnBSz5_w-GmfZlVWs-W8MWu6mpht0bWhnS2efPhE,78
386
+ teradataml/data/scale_stat.csv,sha256=6XiED8g7B7iCdJy9S0uNfKaCqE_HCU3l_u4jgAz0Ca8,308
387
+ teradataml/data/scalebypartition_example.json,sha256=Ps1ETcaILx0JkxoKjViYmQarwC6Lls6yzVf2VWq5hxo,356
388
+ teradataml/data/scalemap_example.json,sha256=0HRJoy3-qesjKxLsTtAKqiDPaIGXlieauiBiE4uPBnQ,353
389
+ teradataml/data/scalesummary_example.json,sha256=bZi3Y3RUdxz_kXAlfeq8oyXiiMNpWPwQnnX4TgTIGsk,316
390
+ teradataml/data/score_category.csv,sha256=85qUtdjnS6nAUDV8et1x46tQFAWEbO9TVIage0JOgRw,1523
391
+ teradataml/data/score_summary.csv,sha256=WRssrfbQEviPQUGj_R2Y5zk3ipcprwr2b578zwzdNsw,75
392
+ teradataml/data/script_example.json,sha256=LG-Jh1xjf8RCYUFg3IMIY_tlgkdqKXXBG20_DbYg5Rw,179
393
+ teradataml/data/seeds.csv,sha256=Fk4938D2nIXrq-Dwc9ceAE05PR6PLEkEbBqPn9Dq2tQ,163
394
+ teradataml/data/sentenceextractor_example.json,sha256=n3WsdqH_oU9lhLHnJqs1plrrwZ_oHRRL2ZRTRA4TiFs,126
395
+ teradataml/data/sentiment_extract_input.csv,sha256=hq-JU6OLygAxdHZnvrKw5VwNL9tH8EEvT7gVDfM5xZk,2823
396
+ teradataml/data/sentiment_train.csv,sha256=v_wTeBYj44aRq5gl_RtBasIB-HiqPcaH-UO1iipmV3o,4020
397
+ teradataml/data/sentiment_word.csv,sha256=6IMDHK9UeI2vSizCbx-On5_4Afv9Q0V6numEd4xRdmk,276
398
+ teradataml/data/sentiment_word_input.csv,sha256=FNgg7vchnwGlWQTKv4kKazM434tQ41v2lJXnOkNen0c,286
399
+ teradataml/data/sentimentextractor_example.json,sha256=MhNxwzmfeYro3uI6gGV3K0KUENTpwsowmw8bXyQVXW4,554
400
+ teradataml/data/sentimenttrainer_example.json,sha256=nV2qrfxQKPzfUdHjvI3eTKdhkf_cemJfs4ghZS3bWns,157
401
+ teradataml/data/sequence_table.csv,sha256=G1XMh4OqR1vxguBweIFcp0FGc4RlTsv-dwf2f1gjwNg,286
402
+ teradataml/data/seriessplitter_example.json,sha256=1Wsf4diVFo5EL55xFrrBUfaASz5O_-6T0Z60ez3b22E,130
403
+ teradataml/data/sessionize_example.json,sha256=mgcD9T9IaOq5IgxIn8Q9ihTUWennYHzjki9J_UBwPng,406
404
+ teradataml/data/sessionize_table.csv,sha256=KPcJDw8764piV7OJbIRo4MujP3B3zU1NsynNMohcXGY,4614
405
+ teradataml/data/setop_test1.csv,sha256=hDwWQHYSNthgkMoZYB5XIS1VXyLGn7CyHIJMjSEYe4Y,760
406
+ teradataml/data/setop_test2.csv,sha256=jMLNEbEXLml74EIGIHUvhCmIe8rfcu_CAPl65y6_hFo,688
407
+ teradataml/data/soc_nw_edges.csv,sha256=9GwYBaU9OedILvy3WD-mUwYN4_V0KhJckV6r6a7mXlk,177
408
+ teradataml/data/soc_nw_vertices.csv,sha256=DIgThIe3AjmGJ34MZEM7u9f58rXs0wyiHu_MrTsSO3g,67
409
+ teradataml/data/souvenir_timeseries.csv,sha256=BjgvWDiC5qXaBUVZsdFu4bCHt-vYR6HCM6Y1VT5n6HY,2558
410
+ teradataml/data/sparse_iris_attribute.csv,sha256=HK5JnSw0Z0h_RWSiyhZQmd-v0tftDDFmCPYcDDyUocc,107
411
+ teradataml/data/sparse_iris_test.csv,sha256=oaekgs-9pgabMXG4LFOK-hFvsUKKGaSsQfwiEKDygQ4,3260
412
+ teradataml/data/sparse_iris_train.csv,sha256=ojGhZQAscHKcv3rciUqA2Bptr5t2qFs0ENYmghYE9Zg,21708
413
+ teradataml/data/star1.csv,sha256=QS8CfUfCRbLV0mwpTp3d_Z9yxl_7kivC2gu-Bz74v7Y,147
414
+ teradataml/data/state_transition.csv,sha256=UFLpdy4Z2fTTdXOw1t4iBOZKzWdm_kYneMQdYrQEYPE,99
415
+ teradataml/data/stock_data.csv,sha256=ViyRqN2dSi22TVi1IqSP8Wl33k4FHZNBcnZFGuy-m6Q,1569
416
+ teradataml/data/stock_movement.csv,sha256=LAINEFLRqaAVTl5iB1zPK6cENtSgzgwmsoTXUkG7oSs,129698
417
+ teradataml/data/stock_vol.csv,sha256=sCMS7Oh_HRB7O4Vzl5bMLvIkIC1TSg5eRInsOnN7R6A,2538
418
+ teradataml/data/stop_words.csv,sha256=oI4K6qCgG3gYMmVJHUUa2YyWP7ui-kMaP7D-TwP5aKE,36
419
+ teradataml/data/store_sales.csv,sha256=75UQWYGYiXS_8Gt2Mk4UqCS-2DMIhlKmXhiAWn7ml1s,752
420
+ teradataml/data/stringsimilarity_example.json,sha256=_88pN_-3YycMlOg3ymKA5-orgvzwR0QT15bOV1fTBvQ,156
421
+ teradataml/data/strsimilarity_input.csv,sha256=YrAWUkcheTeCA0DxYm1ZkMezpphMxQhy3An0ZEqDfgs,405
422
+ teradataml/data/students.csv,sha256=ngFKUiwu524iD5UQ1PLFwYMkLK6ZVRTv1DZGAggarFQ,698
423
+ teradataml/data/svm_iris_input_test.csv,sha256=Yjj2q0SywBL3tUZTl9vjbITRt7IjlcELuGbt2OCJpk4,4115
424
+ teradataml/data/svm_iris_input_train.csv,sha256=ehyi2x1_fomuvXZajexSgLO6NG8_5Coa-CrthWyJZTg,16285
425
+ teradataml/data/svm_iris_model.csv,sha256=NqKxooTmQGDZN9_smf2Ed78kpD-NNFYLdWu-9yXSTiA,898
426
+ teradataml/data/svmdense_example.json,sha256=afvM4Vfv6ZINTiMKdoB1LWK9rOMvyDoGh_45VwYxhHQ,203
427
+ teradataml/data/svmdensepredict_example.json,sha256=XJFrHivkNG2vyv7rWUFOfnEAMpjCRWuztu1NREQq0Q0,519
428
+ teradataml/data/svmsparse_example.json,sha256=bOqLVJnyyCJTSY2hdxG6DRAsGRzBCOjMBHmv6_TLGCw,156
429
+ teradataml/data/svmsparsepredict_example.json,sha256=4ZI9vcMSC4gdL8pyeB29wm3WOZUb33G2jVMs4mZJ8A4,308
430
+ teradataml/data/svmsparsesummary_example.json,sha256=bOqLVJnyyCJTSY2hdxG6DRAsGRzBCOjMBHmv6_TLGCw,156
431
+ teradataml/data/target_mobile_data.csv,sha256=FBT4cAV5zHloVOCR9cKZx3JFyv4OC5vlqrJoClQQ-4c,316
432
+ teradataml/data/target_mobile_data_dense.csv,sha256=HIeUmij5i2pSUA6TaxLl2oNjwWnlshWB0vu0AouTQmw,122
433
+ teradataml/data/templatedata.csv,sha256=_NYyMgobQ0-oIjZhIUcv16iOM4EtajZ4mKOrx39cfDY,22391
434
+ teradataml/data/teradata_icon.ico,sha256=M4qHNiblJAmGmYqsy9bD5xSP83ePf6089KdFuoQhaFM,1150
435
+ teradataml/data/teradataml_example.json,sha256=H1cfD6eJH8uv8R9DWs-00TbIEQeEN5owExEHhWyko6M,41250
436
+ teradataml/data/test_classification.csv,sha256=BDKuA82t60YWQu23BDxMn3j7X2Ws_HJXfUoFcwa76Og,9523
437
+ teradataml/data/test_loan_prediction.csv,sha256=RW7R4PPMRGdpHmHxvH-1TssLQFg5bVfd8tteuJ3Ukg0,863
438
+ teradataml/data/test_pacf_12.csv,sha256=ltIEUeJksRLCcvfXyrFhGcc7GkI89NXhRbQ5gOidvNM,1003
439
+ teradataml/data/test_prediction.csv,sha256=rqZ3FPaeggHrDgKcCe6_kVmoU0EHh7b9OPx_6Dzap0U,9317
440
+ teradataml/data/test_regression.csv,sha256=RroIAmAjeaZYlP5qK6H_oIRbbcJNO5ZlRSqP1WBfqKk,9263
441
+ teradataml/data/test_river2.csv,sha256=6svoeqAeiI_vEspWOu1eRprCgvQoW_NOUu7jAQj5j_Q,1226
442
+ teradataml/data/text_inputs.csv,sha256=2uMV6hWU1ru_daIKWgKhQNYIOF_dcL3LUNCrBK6ekdw,1721
443
+ teradataml/data/textchunker_example.json,sha256=gbivWisZUlfIM0HtNxT7rPaQUKMicwzL6Uq56zd0mBs,146
444
+ teradataml/data/textclassifier_example.json,sha256=e6BeVdgRMqNQEvWEXHEOde9Yf8YcdEpPuiwX2LgeoEQ,125
445
+ teradataml/data/textclassifier_input.csv,sha256=AzinMnRrexjkM1vLojt7ODyS1TNrssm9DzDlE2YIQR8,1144
446
+ teradataml/data/textclassifiertrainer_example.json,sha256=3WWCFqxDuSWexNDm3d3PL6J5AQHetNe12PEFp7WT1XA,122
447
+ teradataml/data/textmorph_example.json,sha256=s0Vm5QBCj87iSC3fHTIW-iCgPHef_W7cBXmqb6YE7ic,78
448
+ teradataml/data/textparser_example.json,sha256=VVe_-lV623BqJI91v2nh60YgjjrHvVidqKtAjHNKrSc,294
449
+ teradataml/data/texttagger_example.json,sha256=Cdie6HATy7RMAU3QdrR3fHfC45lsSN-xDA7uZr2xpo0,236
450
+ teradataml/data/texttokenizer_example.json,sha256=15AIwWNtVtA7yqdpqQREKC1stnWiHjTZqhZ3tIFGJGw,120
451
+ teradataml/data/texttrainer_input.csv,sha256=mfWpTDKtVoQ86VbJjvJztB25iATT_f_oaIZOvDNTz_Q,1403
452
+ teradataml/data/tf_example.json,sha256=zH6ecBZZE2pExsRh7DR0oPvMYUGT959rQOofZkwmoNE,111
453
+ teradataml/data/tfidf_example.json,sha256=YsTo9_EnP4yxw98fBl280mKxBvXaM86EY934nlfJxKY,256
454
+ teradataml/data/tfidf_input1.csv,sha256=kosogzH-y5Uyyv-Lyq6At-HeDlGlHCHmT5__zS8vcVk,2652
455
+ teradataml/data/tfidf_train.csv,sha256=UDjsWPPXsQy1ilO7Yr76SmwsfMjGZn9ROK8c64n3Unk,1570
456
+ teradataml/data/time_table1.csv,sha256=8BqrLSZ02WKQuYk3iyFOjV-n42iKjssNRsdZUdZkdck,19131
457
+ teradataml/data/time_table2.csv,sha256=kknBm8lyO1bS7dIig4xoMvDKmHCuj1QU1cY45snWv18,357
458
+ teradataml/data/timeseriesdata.csv,sha256=EF_JDM1aYDhrX2Qz1kxvJwKobB-7xv9e-CjPv2EiUfA,29650
459
+ teradataml/data/timeseriesdatasetsd4.csv,sha256=bCoFR0ohIN7eVk18FhA1GShiQ9ARVPK6P6ey_uXuCMg,2824
460
+ teradataml/data/titanic.csv,sha256=IZvCBiupJPNBQBats7EL8iiZCSBPkpCfCSUQ_BrnHeQ,61192
461
+ teradataml/data/token_table.csv,sha256=mZTppDLBmQC4j3jqZ9T5czAPUl2xO1sxHqM-DIR-DKs,14812
462
+ teradataml/data/train_multiclass.csv,sha256=VLz6t2cuAqsOCmD6MZwoy4iWkrcuc4w4mvG7NuR5CD4,9435
463
+ teradataml/data/train_regression.csv,sha256=uLtcSqAws8rdcXKyyKBNXvmm-4OBosQUqzyAUT6niLk,9662
464
+ teradataml/data/train_regression_multiple_labels.csv,sha256=ReJ4gRwrn9CQ3w0mH1zgEZMGZIkG5SZ30PffOJgoii0,10044
465
+ teradataml/data/train_tracking.csv,sha256=IobrRHY9augTggczpN-zLOlIsQS38lY3n3c_qkodvhI,3317
466
+ teradataml/data/transformation_table.csv,sha256=UsqIzYYEw1y-GUY5z6oztSqC0NJAsMOjSIx0k9e8fa4,173
467
+ teradataml/data/transformation_table_new.csv,sha256=DDCJ5_o_tHndTiAbQT92QmYKWEaKLTR1XJjLuiberBQ,76
468
+ teradataml/data/tv_spots.csv,sha256=rIJK9AjKGBFiK9qYTGLdgF0whw7Y6nUJAcin00txutE,321
469
+ teradataml/data/twod_climate_data.csv,sha256=hjKs1evHoAWWEiYVcncyZvwkDw03M_2yxE5QF4-Qipw,4310
470
+ teradataml/data/uaf_example.json,sha256=OWD_dYyNWOSeiAIqEa46lyIKWdebitwrg5mwGQ3mDSU,11355
471
+ teradataml/data/univariatestatistics_example.json,sha256=b9FN__52MuTp_I_y54LMpwtpt5x-rgdD6Rdp04SKKZU,169
472
+ teradataml/data/unpack_example.json,sha256=5-v3zdRXoSgVuQbL0sQTQ-n2d-KhdFpRdjm83DhWM8g,186
473
+ teradataml/data/unpivot_example.json,sha256=luDCJgs0k5uf5HXi0d4ZSMR3URsZbuSSR0ywI3cyH7M,185
474
+ teradataml/data/unpivot_input.csv,sha256=80W9AQhe_5-JULJA_SJXJbi-lV-6pkfOJ6bygb_oZL8,294
475
+ teradataml/data/us_air_pass.csv,sha256=LdhRm7SOl573NEP8jJYaB4d44lBhfsDO1vXw8SLStnY,1056
476
+ teradataml/data/us_population.csv,sha256=KcNP7DOv-X3qvQ2tg2yz154FYPg5xeVFyQ-nG15aT4M,18420
477
+ teradataml/data/us_states_shapes.csv,sha256=Uk75jUs3LV9B3Hy_fgQ3N_ql0e1GcrCqjdTEVqSNCIA,86308
478
+ teradataml/data/varmax_example.json,sha256=g1x_2iIncL6OAE1DVvI65J822swD4HXPAbzZfCZ9WPs,429
479
+ teradataml/data/vectordistance_example.json,sha256=tG87HwgTSyUXOLdNOfWJExrSMIhtpm6c4T39X_Od_mw,585
480
+ teradataml/data/ville_climatedata.csv,sha256=Fkltl7-Ia9GeI3gPgFgKhQ-hyubf8miJPW2dZex9MX8,7231
481
+ teradataml/data/ville_tempdata.csv,sha256=7kmSNztvrPx_j4_nX0-r3_d7YF0c7AWFmkmAhpQyWNs,355
482
+ teradataml/data/ville_tempdata1.csv,sha256=YK3_E1cQh4s3CKq-8lyXSJ58HEsBuCt4WwOzcV-V2lo,335
483
+ teradataml/data/ville_temperature.csv,sha256=gC5kL9KXbtl6LoKOP7H19zvJL_IoM7fHJGvoCGsHvW8,560
484
+ teradataml/data/waveletTable.csv,sha256=B1Azno3pUZNL35H-hDQuZ-KErd_n8PqJsNkWSt_H2Tk,81501
485
+ teradataml/data/waveletTable2.csv,sha256=B1Azno3pUZNL35H-hDQuZ-KErd_n8PqJsNkWSt_H2Tk,81501
486
+ teradataml/data/weightedmovavg_example.json,sha256=Gc592H0CHcq9f-2we_9RvrBJ9E9A8_HD5f3mHnm4n3o,153
487
+ teradataml/data/wft_testing.csv,sha256=2g56ogivANGHMrle1MMfY5OGQeHwxnox1inRl88dPlI,422
488
+ teradataml/data/wine_data.csv,sha256=ttv5ymiLcNmi678dPxMSvKd73ZuQ-vwkzXEkktzjfQ0,89796
489
+ teradataml/data/word_embed_input_table1.csv,sha256=47fOsMTC4GC0-t5QQDeYqnx2kwNkxL73HEuXf7ZB08U,220
490
+ teradataml/data/word_embed_input_table2.csv,sha256=y3OxXnCf75fVchZ5FpSyzymmvk8HJeodcwupOqc4JIk,95
491
+ teradataml/data/word_embed_model.csv,sha256=ZBg8elkSawGAv-nVnKJa-OOFfVNXCXB09c9ZZM3HsL4,913
492
+ teradataml/data/words_input.csv,sha256=6vTyrjT08aYvjC-Io6QHyGtZH6nrm55n2wD_YYVhiJk,163
493
+ teradataml/data/xconvolve_complex_left.csv,sha256=1QR-q2BMst4TOB_8MaCadTpuijCCtpXWF7Kd71IhPnU,119
494
+ teradataml/data/xconvolve_complex_leftmulti.csv,sha256=iDgLo-vhPBlZHs1JNqjFzTiLm3MHsDnZ8ulEKRTf5xY,281
495
+ teradataml/data/xgboost_example.json,sha256=nPMG94PCras6P0JC5bkk5Boa0Fs3pNnz3CV26piaCkc,891
496
+ teradataml/data/xgboostpredict_example.json,sha256=-XQ7o9eHQjBoAl3zobM6yvuKE6eMq95TOqD9n1By8tc,787
497
+ teradataml/data/ztest_example.json,sha256=HvBkbCcSKcSPV1RuEsxe8utaHT8xiXfrt90bgjMzexY,345
498
+ teradataml/data/docs/__init__.py,sha256=5XVCpXHM3si13drwS1VzLUi3Jq9aAgvCCn8O0qs61as,36
499
+ teradataml/data/docs/byom/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
500
+ teradataml/data/docs/byom/docs/DataRobotPredict.py,sha256=WtpNV7dOf0lJ0J28k88Qs_TmrIFtOiB3QMU-sHIeEL8,8921
501
+ teradataml/data/docs/byom/docs/DataikuPredict.py,sha256=prSgPBGIpz82qq1ycgHMAUlKvrpLmH2BAJZESq75pBs,8555
502
+ teradataml/data/docs/byom/docs/H2OPredict.py,sha256=roe77-CBruRyjKKkvfhhG9lwIX0CDe1IdjY00h54xrs,16404
503
+ teradataml/data/docs/byom/docs/ONNXPredict.py,sha256=ueOOYIULYUw_Xob4kPnjeoBI0r7IC2uA6JLcz4LHx2A,14306
504
+ teradataml/data/docs/byom/docs/PMMLPredict.py,sha256=zS3igK0-tf7uPJqRdDqKbxk-m6Maz0uJgWHAHUfffrw,13117
505
+ teradataml/data/docs/byom/docs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
506
+ teradataml/data/docs/sqle/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
507
+ teradataml/data/docs/sqle/docs_17_10/Antiselect.py,sha256=XqXfSUwAfQvMohTtJri1ZuXID6HcqGc8f6yJOlvGUqk,3495
508
+ teradataml/data/docs/sqle/docs_17_10/Attribution.py,sha256=JXxWA7OZDfoW4UBR_XMLlG1EWJYhFqImF6iZd7qTziI,9264
509
+ teradataml/data/docs/sqle/docs_17_10/BincodeFit.py,sha256=xdWdXR93nScfnliztnY2PbI7SbH6YA7Xykk2dwRdkvg,7373
510
+ teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py,sha256=_WaKiivgjiEnEWl63bmhdlOS_weTg55-3iekpePH9qs,6001
511
+ teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py,sha256=RWFcrFV0FV239esV-4Od-9jXqTOu6ei2R1EZ3EArcJc,3666
512
+ teradataml/data/docs/sqle/docs_17_10/ChiSq.py,sha256=5RQrZn-myg3bk7yqu73HAVilH2Z2d1SOAD__DK82kEY,3804
513
+ teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py,sha256=a6FTwGVUbu7xNjT46oqqQntOn0Nv5dvBH4HKIBHSwEM,3684
514
+ teradataml/data/docs/sqle/docs_17_10/ConvertTo.py,sha256=vlAu0Lbi1GT8gBbKgjmNd0DEif7QvVUK_cZbkPcSFzY,3989
515
+ teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py,sha256=knge57LxBNm0dDR24eo3HxR2-e6I0p5hPrCJU4oxhTI,6437
516
+ teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py,sha256=xW4JDM32ec0rfOOYAcw-O50cS89L32gxVB5l9g6J9fQ,7606
517
+ teradataml/data/docs/sqle/docs_17_10/FTest.py,sha256=QXlDLZP4HQSGC-GoyfgPbV8yZGxEMvSWyKav0y8BjNU,6963
518
+ teradataml/data/docs/sqle/docs_17_10/FillRowId.py,sha256=m1tj7kN3b9vOJcUKNlCDU0gWFWGwHNaUuLmi0h33udY,3526
519
+ teradataml/data/docs/sqle/docs_17_10/Fit.py,sha256=xDB-nDgSorsApjZNp8Cm6EG0LVDscy5WvupmwYEVhqI,3815
520
+ teradataml/data/docs/sqle/docs_17_10/GLMPredict.py,sha256=KYdlaYjdnTXP8mXbvbS7brdIi_OAwmp0FIpUq53ZXh0,6398
521
+ teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py,sha256=eCDp5XGqkdLidfac_RhER5IhyONENfCpdlqps6za2Gg,3732
522
+ teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py,sha256=yAn5Hmb5389Mj-Tpz0O5B8_kLdC8TncwJN225U9GNyg,3603
523
+ teradataml/data/docs/sqle/docs_17_10/Histogram.py,sha256=4MO_HgXcFKZOujUrM3FLBtIaiDfIE0v4ZRgy2ctWFSk,7249
524
+ teradataml/data/docs/sqle/docs_17_10/MovingAverage.py,sha256=fZJSr51I2_cTbZFJX0CHXYCm3Xdb__-yf9luJMYtlJI,5731
525
+ teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py,sha256=NUXVLBRLRwbhOfkoq-PVz3hboQm9ZuZhupS-NTMS3FA,9351
526
+ teradataml/data/docs/sqle/docs_17_10/NPath.py,sha256=cseXGtYLU8j2G2f9phS40zlzY0uIGgJdKSNvSXWzpyo,13924
527
+ teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py,sha256=yGvYOiQekom0ph2hOGrHqWmHEjk8u5_pI8yHQYQKwA0,5372
528
+ teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py,sha256=mV90klHkHEdTybUFYTF8b4Gv2UZ_o9Q7XV9UhRLSv1o,8102
529
+ teradataml/data/docs/sqle/docs_17_10/NumApply.py,sha256=SvKyxAyXSxRLHgS5E8KHCHACikPJqq2kLq1qoz5Iy3o,6327
530
+ teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py,sha256=CMdTjsd4Z9ulm2P1-k5yILgddwmNMeCFqH1PPdQ9Brk,6177
531
+ teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py,sha256=Zt5XWW-_QnEDS9VOLlAYOewAnxtU36JvgtcfVoKGyVo,4874
532
+ teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py,sha256=ttKL0YXjGXMpnxjwHPG0b3THC3qD1oscjKxh7n3wR-4,7419
533
+ teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py,sha256=_LfHzh3pGNzNrST-ancdrVEml4EVZjFUlWN8_Emsk-4,4920
534
+ teradataml/data/docs/sqle/docs_17_10/Pack.py,sha256=VqHpY8CnKUMXP1glJWaKOtFUYLQfc4c5Kv38v-dPYto,5368
535
+ teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py,sha256=kvYnoL910OM1HKLW6eUjiMe9jgx0JgUexhzj4aziQs0,4927
536
+ teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py,sha256=OCez0bsR99XeLyAx7vMSa79BWmpb4nmYdZFXVbCL0ps,4507
537
+ teradataml/data/docs/sqle/docs_17_10/QQNorm.py,sha256=iXuDih1qdLFnI862wmV3IIe8NLQS4jkJfVbxBJAnyx4,4685
538
+ teradataml/data/docs/sqle/docs_17_10/RoundColumns.py,sha256=TCwxB8o9raq0stWWpicdZXV1LTpLP7Qly8h2reb5mVA,4951
539
+ teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py,sha256=HvvcknxaOmyW13ZPsxMCT-ioM6_Zukc3lQ5SXo_8szY,5330
540
+ teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py,sha256=bzvgZvInUMu8I9NQP0VwesIQhYid-5Vd8e7puXriwk0,4426
541
+ teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py,sha256=nhuVXk_MSTKL8lKjmoxtYxMOVpFSIcQl663kK9TbjBo,7095
542
+ teradataml/data/docs/sqle/docs_17_10/ScaleFit.py,sha256=H8iVb0P-edPVHi8ngj1H87QwINO3TQeS4U7r5UAiH70,11137
543
+ teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py,sha256=Q-ejBeC58PUggIgYGRkLGSxRMwIzHn9AcVVu6fOVCqc,4241
544
+ teradataml/data/docs/sqle/docs_17_10/Sessionize.py,sha256=ZydqfkCVmgz6aTobDk4U1Ce6hc3R27kCrJ7O8zRLWOk,4888
545
+ teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py,sha256=CQLIsvFwb8reneh0Qda1VN9HfuQk547dbpWUJ2JF7ak,4874
546
+ teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py,sha256=D0nlEGC8zyaDQNDXQyEE1-60PwtXpGi66dRp74q61zo,4148
547
+ teradataml/data/docs/sqle/docs_17_10/StrApply.py,sha256=9N8sCtBxNMzC5_imEZpeZNvlu0k2RBxMsR90-A82jTE,7243
548
+ teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py,sha256=AfWA0H1j-DxyVOVKqK0orV3jPEWqWXZBDut3Mydl5XI,7569
549
+ teradataml/data/docs/sqle/docs_17_10/Transform.py,sha256=7UQCTF27g23QprlAqsu8IqhGwucFD_V8fiBEaiD1K70,4669
550
+ teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py,sha256=PUPH8k-CRdL5kM6mJ5i7wIadRyJvsP8B4eww39FLGbU,6001
551
+ teradataml/data/docs/sqle/docs_17_10/Unpack.py,sha256=KXT8YfOL-4sWhp1AZ-BeLYE7_EGSHmGcyAirQYDvCWM,11233
552
+ teradataml/data/docs/sqle/docs_17_10/WhichMax.py,sha256=mvdTMss1ydf09kzO-FoHB2yTYsA-7lRTeXVA8fX7EWA,3448
553
+ teradataml/data/docs/sqle/docs_17_10/WhichMin.py,sha256=td0Q5LiiP-BzlxA4uhsy4wF9qLJ4ZLUWRvq70LxG1VQ,3429
554
+ teradataml/data/docs/sqle/docs_17_10/ZTest.py,sha256=rWwAe8bEWYiPySlCJkzmMkCSce6D3nDECRJfqNaI1uI,6476
555
+ teradataml/data/docs/sqle/docs_17_10/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
556
+ teradataml/data/docs/sqle/docs_17_20/ANOVA.py,sha256=l96tqbGqoaCfLkjiK1vy6zIOagOpuWWiqnrUQdmIgU0,8035
557
+ teradataml/data/docs/sqle/docs_17_20/Antiselect.py,sha256=ACzwv_Hm17d5UCbQWPJOGZeWMiRnOPw07_ZUPpd7GJ8,3502
558
+ teradataml/data/docs/sqle/docs_17_20/Attribution.py,sha256=CWh4QdRfrphC6nZkxdqVVZjW7JMzcyRFy7WqSJRYNIU,9131
559
+ teradataml/data/docs/sqle/docs_17_20/BincodeFit.py,sha256=NDLIl3SfNIHDpTK9cQgrGsjcyyMokDJLItzUby4ZepE,7381
560
+ teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py,sha256=6cbjBT0J9yMhQGoZw6eOnCw7pLnOna7UguJAnZx6aFs,6552
561
+ teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py,sha256=safyFvuNm1BNTGdc4uwJsFoZiDkCXfqvkgWIGwhGoOs,3673
562
+ teradataml/data/docs/sqle/docs_17_20/ChiSq.py,sha256=ibyMwPKJnBkVmedHXa3oNsUEqsUCw9NSkyU2KS7WPAM,3811
563
+ teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py,sha256=9QqTNMl1ymjhe4C9UF0IGPbHRyaBzvS1i43kyh1hCQY,8178
564
+ teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py,sha256=XsOQR4KIfmjBGbESy2p-KfKs8kiFmwnrxPBR5fDf-u8,3691
565
+ teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py,sha256=9J0Wmmwx7qr6Z7XoxEN4uafpxorffaX15zuiGU41xlI,12525
566
+ teradataml/data/docs/sqle/docs_17_20/ConvertTo.py,sha256=aG3ZrRMxs75S_jR05jrHZxzl0RPBk7Mw_a2qXFE3UVo,4698
567
+ teradataml/data/docs/sqle/docs_17_20/DecisionForest.py,sha256=1QWNxf0Dj5-FTEW9q2L9UgqAvWqSmKPHwaKAI6xZQwM,14553
568
+ teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py,sha256=oK7pP1wVKogUnpkh2v1d2hir-4aluniy_ZEkhcuOo3k,6786
569
+ teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py,sha256=y0grw0Kkg85y38COidwsu9do4HxLxhrTzDNjvd_pCao,6454
570
+ teradataml/data/docs/sqle/docs_17_20/FTest.py,sha256=5RIr24vBtFWezcmaI7mZQ2Oz8N7y6KRLppvCfCz92rM,10356
571
+ teradataml/data/docs/sqle/docs_17_20/FillRowId.py,sha256=pNMOlZe5dow7NxglD_Vq6UOJXJihUHqOxtOhVT6R_zM,3533
572
+ teradataml/data/docs/sqle/docs_17_20/Fit.py,sha256=icqA35RoP_pY-qJwv0MUpQDDtdMh6rYsvPQaIXXPMvE,3822
573
+ teradataml/data/docs/sqle/docs_17_20/GLM.py,sha256=5Y5uLJCaVXQTmBJoDVSiQNxV_TsEguO75s3gCbZNtEc,25398
574
+ teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py,sha256=ezplov5qzdp1BiC4GP_SWeFD20a5bi29sPW6WJowhHc,21000
575
+ teradataml/data/docs/sqle/docs_17_20/GLMPredict.py,sha256=piOwuf40UFDnpUOaFp09z4ebWQXcoc3ei4V1svCd8yM,6405
576
+ teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py,sha256=g7SX2d3BMOdW1j43Qiw6OZvrZ9ojpzWRI10CP8mMpOo,12103
577
+ teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py,sha256=WPLDjcGefBlXwOrvsmLxoUpixZrpHnVKwkqS0XnZLtg,5659
578
+ teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py,sha256=b2lJtNqaf3nF47YOEDCnkWJ2bedtQ0zttwcEKy-RFZc,4968
579
+ teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py,sha256=fpSBZOSNCrpDK7VLlhFdr77is9fH5dQzfd7WaJo8tOY,4799
580
+ teradataml/data/docs/sqle/docs_17_20/Histogram.py,sha256=VdWTGkD3k4FSOHbrS4x5Vv7xLhjxZfPBUcx9O0zmbjk,10563
581
+ teradataml/data/docs/sqle/docs_17_20/KMeans.py,sha256=EDv-GI6i1V58ScOvU8PWAQS1hp-N9pJzchWLBIZpu2A,11155
582
+ teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py,sha256=tgVCNf8iqFZ86URQ7zCulwJhMqaT1qHvjQc73fcdfuo,6115
583
+ teradataml/data/docs/sqle/docs_17_20/KNN.py,sha256=qsTD6BbQ7UFTS5WtnV_-ZBBvLVqMdDQZmJlb4ujzapk,9540
584
+ teradataml/data/docs/sqle/docs_17_20/MovingAverage.py,sha256=DSbxNLB1OpnYgS_6v_MVAJDxtS49UtGIcOrOzUVhbus,5738
585
+ teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py,sha256=bgJbAsi36ymoqWmAlxaZAz0aLM7KnGubriSxgIhrW2U,9358
586
+ teradataml/data/docs/sqle/docs_17_20/NPath.py,sha256=CBof2pQwE0tXJRLYxPruimIyOd6nEnwj6f8r1SpTys8,13931
587
+ teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py,sha256=9P9iLhGmB3bPvrNZzh2gtWRjZRP8s66NHhzvqLKJuRs,5379
588
+ teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py,sha256=POgE-rQseF6eUxBisxDJfsrVvWWXWNxZ9Zb10aSCrsA,8157
589
+ teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py,sha256=cNW60bF1i_rk-KHgR0p8RmqZqoFujtuCjFv2huZmJGU,5724
590
+ teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py,sha256=3l0hOE1VCZfQ2XyAR-oOjRQKWjBaLfwgXo5XfBnqZkE,5236
591
+ teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py,sha256=7VveajQ0jMoRH-TxP-E8N_9rLLJJgwVk0gUNIwtB2a4,4889
592
+ teradataml/data/docs/sqle/docs_17_20/NumApply.py,sha256=78KeTUal1gXpfHtaHjiyTAV6VPW_ZIetS6whCpF3bkM,6334
593
+ teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py,sha256=CnYQ_YYHHL8mnTeZRxe0f88Tuq0XAs6MDQzMqX403MM,13946
594
+ teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py,sha256=hQsae48P4I7Yg7ockkv73CcOwISPRjmEdGd02-_ejJM,8464
595
+ teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py,sha256=V-dnV9Oo_yCyXUe9B4YjrO5Xi5cqIBc50NZtedBf9Nk,11265
596
+ teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py,sha256=RqX_iobIa9vm9f5hb-OLDO4hDTIRyvZXlEQHyyYT7YY,5425
597
+ teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py,sha256=Yg95-8bdfdegy_9eKUAadd4kNMEAULwkL5HodWksW1Y,10375
598
+ teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py,sha256=kkIlM-wYjgfsNVplzX0YUwDbkc5lcjsusIa_Xi5380E,5874
599
+ teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py,sha256=iHi1ixIMe5Tzl_bxeLS8gi2Ab_o2hidRCtFbhSwOiQU,8197
600
+ teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py,sha256=IWNif30agfXyuPdeLvNtwmlQm_iEfYKkWz-KM391ivQ,5465
601
+ teradataml/data/docs/sqle/docs_17_20/Pack.py,sha256=-yCTy4g-M5AICn25U6ajFJgHsxb1FpgN9Au10zKeIh8,5376
602
+ teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py,sha256=jili0hiQiuss4hiZHx_bbbOc12EFfUC1NmycL7cz-ds,4934
603
+ teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py,sha256=kqhmU0GgvJvNOJV7nrJNNDuqZImJZJb1XxHJFwBa9TQ,4979
604
+ teradataml/data/docs/sqle/docs_17_20/QQNorm.py,sha256=ew7OnZlRDKGYpZXI4CeShkT_t7NYEqIshpv54QR7nAM,4692
605
+ teradataml/data/docs/sqle/docs_17_20/ROC.py,sha256=QIUmtHk41Ph6-eWbHlLXr3EL6SOWLjSqHNTZr6XVYgo,6841
606
+ teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py,sha256=42pqcLxvr_pBARjVDD2iXprKiepluawmiNj4dQnpSnM,6692
607
+ teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py,sha256=3my_ki5WQA9U9qQiGAw10tgkHsiNcgWa8b75DdhDpqY,4813
608
+ teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py,sha256=em1fAbW-Bry9KVwG7zFq1nTGSDTMxg1WHc2e4wsXSxA,5193
609
+ teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py,sha256=HuQHFN3qGalcEnzS1JSnXqiFh_3zNoPHwlaZSiE7bro,10163
610
+ teradataml/data/docs/sqle/docs_17_20/RoundColumns.py,sha256=57NVyAecTwnbY9pZnCQfjvaOklrH4g2Q_8OKyzDNC4o,4956
611
+ teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py,sha256=wdbFuCdeJslfSq-fD3OU20JHEjdOC2WXF0ljukymuNU,5348
612
+ teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py,sha256=9Ja5ev4neABpv_jJagr34AAXyXve0b1gI-r8VyNOBw8,4994
613
+ teradataml/data/docs/sqle/docs_17_20/SVM.py,sha256=txuwmP54us3xk5UzTYKrPj40bZYMGWzNhE3glmvo6_U,18482
614
+ teradataml/data/docs/sqle/docs_17_20/SVMPredict.py,sha256=XR9sK9CxSNdK62c4TqFa9Jq15aAfonZ2S2tRUe4orYY,9245
615
+ teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py,sha256=aKczZjm_QTN1jVFv3Ty1eMYzG6lrx8Nz1BinyItNhjQ,7102
616
+ teradataml/data/docs/sqle/docs_17_20/ScaleFit.py,sha256=y67VVIICmcpHfDzftwLnrBCb7Z4NtY0_1ZlRPvPClVc,16643
617
+ teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py,sha256=YAUkjAcvU_Dd8l8vKPabFM72yS0Oz8_D8NhK6Qds6qs,9189
618
+ teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py,sha256=2Q3kKkkKtHUA7BTl_pUtQnWW-Ij6lNpsEQ2FgUekPwQ,10065
619
+ teradataml/data/docs/sqle/docs_17_20/Sessionize.py,sha256=g9W05OfIYtvHsn5-IPzurT26-MhC8WzxJtRmN6AABes,4895
620
+ teradataml/data/docs/sqle/docs_17_20/Silhouette.py,sha256=odUI2pvYF7dk9gBIhHdquAI_Wy6XzVynveDF33RDTkM,7243
621
+ teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py,sha256=1eHyE7RLjdLY_vSHaaDrt0Ou9b8LYWHDlXHdVRBv-kI,4881
622
+ teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py,sha256=ZlUVxA_teZnsheh2blnGnq97tKCo-9vie0HLZb3dz7s,4631
623
+ teradataml/data/docs/sqle/docs_17_20/StrApply.py,sha256=ZbYLGiyLJIIqqPCwZ79jHjPScarkWE-IEutR2y-yrDU,7250
624
+ teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py,sha256=J-m4qiPM7BhFP4b3ZaEf-uvwaHzQor-mhp6PSU1C4yk,7576
625
+ teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py,sha256=Chb-269nY2d94wY8tw-7uJ3CnV1uoXwzQidBZhncebk,10207
626
+ teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py,sha256=OH-hnCDBD0vSCJoPiktwNqfenPt_9RHZxH4BOVOEuv0,15433
627
+ teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py,sha256=K_BOaUNA9Zi2XaHC32vMpLbTfA51AieaUR0LMimWflQ,12698
628
+ teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py,sha256=ga8DeTlJUmszVPBJj_kfASst6aK7Oc1yb46lPSwuoog,6510
629
+ teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=FwCdeIrYKkeOUYV3m0e8Z-2z_Zd2b5OsIoALE65DSs8,7559
630
+ teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py,sha256=WtGPOcE8GdX2BYcaaUQHO_Q15HdUdzzUMeu5ZnEr1Tg,7603
631
+ teradataml/data/docs/sqle/docs_17_20/Transform.py,sha256=Mm2SYFZpEnJ3nOATDA8ZOxfNz73r7O-N8JsRkeM9c3A,5732
632
+ teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py,sha256=PUPH8k-CRdL5kM6mJ5i7wIadRyJvsP8B4eww39FLGbU,6001
633
+ teradataml/data/docs/sqle/docs_17_20/Unpack.py,sha256=KXT8YfOL-4sWhp1AZ-BeLYE7_EGSHmGcyAirQYDvCWM,11233
634
+ teradataml/data/docs/sqle/docs_17_20/VectorDistance.py,sha256=llIAzHu7R6sg1oV5_dEZzKK5rbNFcW243DK1g79f-hE,8259
635
+ teradataml/data/docs/sqle/docs_17_20/WhichMax.py,sha256=Df-nQMDQ6C2-ncgWO6g9rjUbFdorbHn4_s55XorIq7I,3455
636
+ teradataml/data/docs/sqle/docs_17_20/WhichMin.py,sha256=ChvXLNJP7hLdKtOVI6yNkxrspE385H_VcGX0x0Tsjwg,3436
637
+ teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py,sha256=3xZ8kSch-_UvYLzM31tqgj4y1GxZgOtMlcRwTkiRADk,11212
638
+ teradataml/data/docs/sqle/docs_17_20/XGBoost.py,sha256=Lnr6ZRgAeTDD_0QVXmacEU4Uea3d9-ZzMl2S0OxF0hM,17691
639
+ teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py,sha256=1W2FEBRrufRAouJy1mp2Yw4yzGZCsMN6EQNZecSDHeY,14557
640
+ teradataml/data/docs/sqle/docs_17_20/ZTest.py,sha256=934Ia4OJEAN2f9vK8X--qzROxtrtcfwl1rjabAR1_RQ,9322
641
+ teradataml/data/docs/sqle/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
642
+ teradataml/data/docs/tableoperator/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
643
+ teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py,sha256=dD5r4flkzgltPKgp6UjmbpFi2qVjCN6Qvh6G9Q9LUIA,22901
644
+ teradataml/data/docs/tableoperator/docs_17_00/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
645
+ teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py,sha256=kvBdPaHEWbdW4yxDNp8D39f19XKebeR8udX7-dsuE8g,22915
646
+ teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py,sha256=uwP3j9tRO38Bc83D4ZFtD-B49gX3xP9yxi4XZNjtgFM,18554
647
+ teradataml/data/docs/tableoperator/docs_17_05/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
648
+ teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py,sha256=K4BZEoQKBrA0sXlN1gBok_l9DllROzXV6bal71zOZkE,23570
649
+ teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py,sha256=uwP3j9tRO38Bc83D4ZFtD-B49gX3xP9yxi4XZNjtgFM,18554
650
+ teradataml/data/docs/tableoperator/docs_17_10/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
651
+ teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py,sha256=Kgd6-tAYGKNfD6VLbDDkvsN3ocOOgmnQmAMdUuhYpv8,25369
652
+ teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py,sha256=fDnIpFl9RidXamu_qCvgViD0fDplbG4BfBuy-ClXGy8,20423
653
+ teradataml/data/docs/tableoperator/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
654
+ teradataml/data/docs/uaf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
655
+ teradataml/data/docs/uaf/docs_17_20/ACF.py,sha256=N-BB1qSRhO2xS3RqyVYs9R1nx4NJeN27SF0hUBGXbOY,8045
656
+ teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py,sha256=UESO1WnfM25AL_rQ1-2GTvwgJJAQADfsNAD43qCk7jQ,16782
657
+ teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py,sha256=x0LYzPOIHAE_7Q9DNz-fFoLjF3vHujdQvPdM6XVMci4,6185
658
+ teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py,sha256=Lq_17JlqHrjrR4sN9EWrGQTVAMC_dbrC2WHSWAZSOZQ,6906
659
+ teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py,sha256=E5tUEdZsYCRl_NbkzNu8nqaG5mr-Ej68evf68IX4GMM,12061
660
+ teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py,sha256=3eVNlmV4lnUpmy3BxMfCuPR25bhls1X3GWl0Vr-IPBA,12111
661
+ teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py,sha256=Noku5_OeqCOY7s-pvNbcsnC1nx_fQSLEwp0uhwOaLU4,7950
662
+ teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py,sha256=Jk2p5D76cL33_lV0oLYcWKsgMEH8FP1xiZDTbav1rRQ,7594
663
+ teradataml/data/docs/uaf/docs_17_20/Convolve.py,sha256=8vEgf4Mc6TQuFwudUMoOYbWAuLvou2gvoyEvxDqNfQk,11016
664
+ teradataml/data/docs/uaf/docs_17_20/Convolve2.py,sha256=PYA5QVi9BOjTOyK23BImYTMOZUJEnGY4JIoScL0sJfc,10307
665
+ teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py,sha256=n2PSxPFKoZ64HwITi3WGnzQx2CHKrMQ-ztrAmkQwl-o,8393
666
+ teradataml/data/docs/uaf/docs_17_20/DFFT.py,sha256=eym9uqsRSR9ne_Tjt9UQUn-X79dZBbddmk1YqFcvm5A,9026
667
+ teradataml/data/docs/uaf/docs_17_20/DFFT2.py,sha256=x6CvaDd482J0EfM4vCyCEUHbLfd1q3rLubGmY8ZUG6U,9662
668
+ teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py,sha256=yBlLiQqoYhiBDW5ze4Ghjwt0iuPFSuudxTMDe3qxJJI,9444
669
+ teradataml/data/docs/uaf/docs_17_20/DFFTConv.py,sha256=QaU8sNSNew04dVTq_HBHP19EhiCuZALITmd9ZyvFmNg,8182
670
+ teradataml/data/docs/uaf/docs_17_20/DIFF.py,sha256=QQLYLVW5bbm2orirYrr7avv4UcQKOSK5sXwC82ykt88,7299
671
+ teradataml/data/docs/uaf/docs_17_20/DTW.py,sha256=Gvkr55dwBV_gxhk_k6O1JhO3Pcm0N0w8PZMf9lg41OM,7299
672
+ teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py,sha256=fHNNRwhDVUh7ZszoXK4NH0-ckRJzVO1fqnSEFuvYRGQ,5872
673
+ teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py,sha256=9fw7rY0xKwyIiwMcqJiAOunrZgMvWvj2uzuGGIHVFGA,7873
674
+ teradataml/data/docs/uaf/docs_17_20/ExtractResults.py,sha256=PuYPtJjQQzAra-HY7qIKznu9srtQwdxsiViW5osiJVY,9313
675
+ teradataml/data/docs/uaf/docs_17_20/FitMetrics.py,sha256=sL5VaeCBQFsLdauFjR3fl00duraZ-MhEaAzAkGZeo6I,7292
676
+ teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py,sha256=vRV44UIDIosCoTrzeuO4TAX7Te_mBQ7SeHD-3VrujRE,9340
677
+ teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py,sha256=9X3y7YZHgNoyEUc8v5m1UVx7ezi86K_HNSsnmDfiLwE,6037
678
+ teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py,sha256=rODhub2j2L3S7D3lWRADm8gBehTn-65Z86jnw5Rq9e4,10057
679
+ teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py,sha256=qfWNhqwCT8B7VabcmoamxUD4I5BBTyC60WBL_tv_aY0,11109
680
+ teradataml/data/docs/uaf/docs_17_20/IDFFT.py,sha256=CFhVY_6NdGF7kzk_RFZqGkaF_-lLC9XK3AyapHLfDoM,7226
681
+ teradataml/data/docs/uaf/docs_17_20/IDFFT2.py,sha256=ZtrhFHCO6ki6xhvDU_RSESiqTbEbe2wKdEZ8wWOeoFA,8711
682
+ teradataml/data/docs/uaf/docs_17_20/InputValidator.py,sha256=E0U4H7t9QFicekEBopjnlPva64uJ5wYkiGHe2sqXlf4,5068
683
+ teradataml/data/docs/uaf/docs_17_20/LineSpec.py,sha256=8ZbWkcJQyMuIOPc-63X9MDyS7QkxkBfcdn_wFKcWk4o,6343
684
+ teradataml/data/docs/uaf/docs_17_20/LinearRegr.py,sha256=DCsazuWDkRtEeUzCFzXs0dTe1AHWval2xCx1qVXWCrA,9424
685
+ teradataml/data/docs/uaf/docs_17_20/MAMean.py,sha256=AF6_5y0beT_s53fRHg3TiRmVCgDgffbVwtmC-x6g8HI,7121
686
+ teradataml/data/docs/uaf/docs_17_20/MInfo.py,sha256=5vbnWEp5nHZxBBwBfBhVRlsKEHz6G5F5cuNyiqsYWQQ,5528
687
+ teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py,sha256=nNGMQP0TjXMn_rboSUFnVPIuR2UC0o-BTdFCqnaGepI,5867
688
+ teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py,sha256=kmW4TdDf4HLIn9RzMk4F0pcHWUKQ7BxHrnoZZkRKsu8,8344
689
+ teradataml/data/docs/uaf/docs_17_20/PACF.py,sha256=xNltFshem8nXYHRgxmqUaRI3HeaxNYOhkY1aQ4JhulY,6628
690
+ teradataml/data/docs/uaf/docs_17_20/Portman.py,sha256=jt5ZatO2GjwvxtBubf5tJB30zxEmMpfEz7k81jvRE8g,9864
691
+ teradataml/data/docs/uaf/docs_17_20/PowerSpec.py,sha256=7Gdr6orIAbwyfPkhZDGqiw5SNCxvs69p2_c6kzcmrV0,8571
692
+ teradataml/data/docs/uaf/docs_17_20/PowerTransform.py,sha256=6y_6xud9cZXwa_443orsftN4VRf7b8vNqHBNN1rsvR0,6451
693
+ teradataml/data/docs/uaf/docs_17_20/Resample.py,sha256=PATwrXSyvJoq7l3jxJ9dvsUvYqWcfNeCx7L8WTs-OoQ,8999
694
+ teradataml/data/docs/uaf/docs_17_20/SInfo.py,sha256=eeG3Mm7xLTurI-NSvnj2y44thZx5hliacqZEGQPQiu0,4928
695
+ teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py,sha256=_Lc-2ROoZhLByZFDzFhRKvzZ_COtGgw1HWH0sflc8GA,6565
696
+ teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py,sha256=Q6NqVl-QfiSRXp3Z-3r-1TUsi7ZUkThGIFJu07E4k-M,7583
697
+ teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py,sha256=LDIg0hSbAz2LPyywY9MBzGTGU-Zq9ERhhqGodAF4sQY,7475
698
+ teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py,sha256=-_QvdNnKdmIfzc23FQRQkRGNz9uwWjuXrbbam1_KKmE,7475
699
+ teradataml/data/docs/uaf/docs_17_20/SimpleExp.py,sha256=sKzOAq5ZPq3XvNUFFmKEThT-3MyjAVu9pquz7L6kiqI,7370
700
+ teradataml/data/docs/uaf/docs_17_20/Smoothma.py,sha256=qG_D4FTESO0YOWIk1hmwAihCakoxIrT9UG-xF2cBtXE,8920
701
+ teradataml/data/docs/uaf/docs_17_20/TrackingOp.py,sha256=pmNKBRmxvNK_K2novZbRYpupqGlNTzVRHNEBTnphmI8,6518
702
+ teradataml/data/docs/uaf/docs_17_20/UNDIFF.py,sha256=KF8WvCzSXavCzvapJS7JdA0Z2gRXiYA6-7jy5OakOus,7114
703
+ teradataml/data/docs/uaf/docs_17_20/Unnormalize.py,sha256=dbkm81T_CaQZdQyuVW6PPYSmW_bs2zfROKEOTB3B9e4,8632
704
+ teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py,sha256=UB0fT3Otgbex7ttpOSg1dYWHBDxBdXVX7MgW5gf8ZDg,7474
705
+ teradataml/data/docs/uaf/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
706
+ teradataml/data/jsons/anly_function_name.json,sha256=EHJ68E45KgNfECT6AK9-DMQ-yP8SsvxpcRv0hXD1zi0,146
707
+ teradataml/data/jsons/paired_functions.json,sha256=B9T9Q8T9OicJspTcnid_HlXnXh0cRHCYTYMYJ_cUyaw,9496
708
+ teradataml/data/jsons/byom/dataikupredict.json,sha256=szvH79NGcniprg7eborSyKb_1JL8-Zg8lC0KT8efM3c,4752
709
+ teradataml/data/jsons/byom/datarobotpredict.json,sha256=42VOrJFvlc87ZKgq6mu0FwcUkIFEaY41rzW2PTibVTM,4735
710
+ teradataml/data/jsons/byom/h2opredict.json,sha256=wOxM25cnIF3I8gUgoZmxN4lItg7iZ-kW5tAIG7U3HGo,6131
711
+ teradataml/data/jsons/byom/onnxpredict.json,sha256=pkzmSpmzpx0V7UVKGc2_FkTCISa3U1vkqV5gpae5aBg,6114
712
+ teradataml/data/jsons/byom/pmmlpredict.json,sha256=Rm2Dt1PXu4wG8xj3a7MaTGYPb9_2cXgeUYy4enevUzw,4686
713
+ teradataml/data/jsons/sqle/16.20/Antiselect.json,sha256=Zyw4BroIZwI7UeYjeHsWO51MukZmAH38UKS4-8nPuLg,1621
714
+ teradataml/data/jsons/sqle/16.20/Attribution.json,sha256=ETC8UhDRRDTNsXSlQNY1AWGaZG7h35l_s5FUjEa4CqE,9798
715
+ teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json,sha256=w0C7tm7-JTXM32-kOY4XuEmkvkiELndcXqiKNMkQqbg,6193
716
+ teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json,sha256=KJvC1W3ibOR_d6twqZoxC2AvqTRitBbfMg-HKrg74qk,5712
717
+ teradataml/data/jsons/sqle/16.20/GLMPredict.json,sha256=Ey9P7XKJAqoUcZgVFSAJyNBDXsk4qNytHG8CbMj6ooU,4444
718
+ teradataml/data/jsons/sqle/16.20/MovingAverage.json,sha256=q8OpbyhlJeeQPOZNwlBF2SBGpe7k_NNyqXWpPdAghuc,12652
719
+ teradataml/data/jsons/sqle/16.20/NGramSplitter.json,sha256=O5paj2xoNL38YQK6j9bQIxgsEZV1XNgyyRLSIDoj09g,11756
720
+ teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json,sha256=-q9yZmRRIiQT_wUCxvl8QXs_HyQfkcWRVfZA4BkSf4g,4641
721
+ teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json,sha256=veG_tjNAgKBpaZJ-x0nkho5T55FU1ueu5w9Ar4BGrIE,7953
722
+ teradataml/data/jsons/sqle/16.20/Pack.json,sha256=5OlRsI_J2um4g7a2XNbzgZ8aEcmv4oyaMwSAwjFmhPs,4056
723
+ teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json,sha256=WKRZnNaO8RLSFkdqdvHQ-qkGqqIzI6Ta4eVqkLYd0aQ,5778
724
+ teradataml/data/jsons/sqle/16.20/Sessionize.json,sha256=pWXgB8x6M9v_o1iv-ZN3y-gGcn5Y0E95S3zkPv45H-0,4465
725
+ teradataml/data/jsons/sqle/16.20/StringSimilarity.json,sha256=P486-VfDkV06SPPKHR62Q2PpOEyJGbAuR9sGD_aU168,7142
726
+ teradataml/data/jsons/sqle/16.20/Unpack.json,sha256=HDQe2cUGz6h63Y0wGtcr8k11xgDyqAKkHX9MTyAY9mU,12626
727
+ teradataml/data/jsons/sqle/16.20/nPath.json,sha256=_x0_7ZVAZ23JNd3Xy-xfBFfXD-VWpgDKzhpnUmt5GAs,14122
728
+ teradataml/data/jsons/sqle/17.00/Antiselect.json,sha256=Zyw4BroIZwI7UeYjeHsWO51MukZmAH38UKS4-8nPuLg,1621
729
+ teradataml/data/jsons/sqle/17.00/Attribution.json,sha256=ETC8UhDRRDTNsXSlQNY1AWGaZG7h35l_s5FUjEa4CqE,9798
730
+ teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json,sha256=w0C7tm7-JTXM32-kOY4XuEmkvkiELndcXqiKNMkQqbg,6193
731
+ teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json,sha256=KJvC1W3ibOR_d6twqZoxC2AvqTRitBbfMg-HKrg74qk,5712
732
+ teradataml/data/jsons/sqle/17.00/GLMPredict.json,sha256=Ey9P7XKJAqoUcZgVFSAJyNBDXsk4qNytHG8CbMj6ooU,4444
733
+ teradataml/data/jsons/sqle/17.00/MovingAverage.json,sha256=q8OpbyhlJeeQPOZNwlBF2SBGpe7k_NNyqXWpPdAghuc,12652
734
+ teradataml/data/jsons/sqle/17.00/NGramSplitter.json,sha256=O5paj2xoNL38YQK6j9bQIxgsEZV1XNgyyRLSIDoj09g,11756
735
+ teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json,sha256=-q9yZmRRIiQT_wUCxvl8QXs_HyQfkcWRVfZA4BkSf4g,4641
736
+ teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json,sha256=veG_tjNAgKBpaZJ-x0nkho5T55FU1ueu5w9Ar4BGrIE,7953
737
+ teradataml/data/jsons/sqle/17.00/Pack.json,sha256=m9wsKLwQTKU-2e36Kv5gPtHL02qVVRIdytivKVnrfzk,4055
738
+ teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json,sha256=WKRZnNaO8RLSFkdqdvHQ-qkGqqIzI6Ta4eVqkLYd0aQ,5778
739
+ teradataml/data/jsons/sqle/17.00/Sessionize.json,sha256=pWXgB8x6M9v_o1iv-ZN3y-gGcn5Y0E95S3zkPv45H-0,4465
740
+ teradataml/data/jsons/sqle/17.00/StringSimilarity.json,sha256=P486-VfDkV06SPPKHR62Q2PpOEyJGbAuR9sGD_aU168,7142
741
+ teradataml/data/jsons/sqle/17.00/Unpack.json,sha256=HDQe2cUGz6h63Y0wGtcr8k11xgDyqAKkHX9MTyAY9mU,12626
742
+ teradataml/data/jsons/sqle/17.00/nPath.json,sha256=_x0_7ZVAZ23JNd3Xy-xfBFfXD-VWpgDKzhpnUmt5GAs,14122
743
+ teradataml/data/jsons/sqle/17.05/Antiselect.json,sha256=Zyw4BroIZwI7UeYjeHsWO51MukZmAH38UKS4-8nPuLg,1621
744
+ teradataml/data/jsons/sqle/17.05/Attribution.json,sha256=ETC8UhDRRDTNsXSlQNY1AWGaZG7h35l_s5FUjEa4CqE,9798
745
+ teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json,sha256=w0C7tm7-JTXM32-kOY4XuEmkvkiELndcXqiKNMkQqbg,6193
746
+ teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json,sha256=KJvC1W3ibOR_d6twqZoxC2AvqTRitBbfMg-HKrg74qk,5712
747
+ teradataml/data/jsons/sqle/17.05/GLMPredict.json,sha256=Ey9P7XKJAqoUcZgVFSAJyNBDXsk4qNytHG8CbMj6ooU,4444
748
+ teradataml/data/jsons/sqle/17.05/MovingAverage.json,sha256=q8OpbyhlJeeQPOZNwlBF2SBGpe7k_NNyqXWpPdAghuc,12652
749
+ teradataml/data/jsons/sqle/17.05/NGramSplitter.json,sha256=O5paj2xoNL38YQK6j9bQIxgsEZV1XNgyyRLSIDoj09g,11756
750
+ teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json,sha256=-q9yZmRRIiQT_wUCxvl8QXs_HyQfkcWRVfZA4BkSf4g,4641
751
+ teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json,sha256=veG_tjNAgKBpaZJ-x0nkho5T55FU1ueu5w9Ar4BGrIE,7953
752
+ teradataml/data/jsons/sqle/17.05/Pack.json,sha256=m9wsKLwQTKU-2e36Kv5gPtHL02qVVRIdytivKVnrfzk,4055
753
+ teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json,sha256=WKRZnNaO8RLSFkdqdvHQ-qkGqqIzI6Ta4eVqkLYd0aQ,5778
754
+ teradataml/data/jsons/sqle/17.05/Sessionize.json,sha256=pWXgB8x6M9v_o1iv-ZN3y-gGcn5Y0E95S3zkPv45H-0,4465
755
+ teradataml/data/jsons/sqle/17.05/StringSimilarity.json,sha256=P486-VfDkV06SPPKHR62Q2PpOEyJGbAuR9sGD_aU168,7142
756
+ teradataml/data/jsons/sqle/17.05/Unpack.json,sha256=HDQe2cUGz6h63Y0wGtcr8k11xgDyqAKkHX9MTyAY9mU,12626
757
+ teradataml/data/jsons/sqle/17.05/nPath.json,sha256=_x0_7ZVAZ23JNd3Xy-xfBFfXD-VWpgDKzhpnUmt5GAs,14122
758
+ teradataml/data/jsons/sqle/17.10/Antiselect.json,sha256=Zyw4BroIZwI7UeYjeHsWO51MukZmAH38UKS4-8nPuLg,1621
759
+ teradataml/data/jsons/sqle/17.10/Attribution.json,sha256=ETC8UhDRRDTNsXSlQNY1AWGaZG7h35l_s5FUjEa4CqE,9798
760
+ teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json,sha256=EQoUWFc0InfOZ2I6LOfXiZeRNhrr3cqEueOTNjkUxpw,7123
761
+ teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json,sha256=BdQLXaN6GsNI2h4uPLCHj3GA7vorX3bZfIQFEyq1Frw,5772
762
+ teradataml/data/jsons/sqle/17.10/GLMPredict.json,sha256=pgagDfqyWiEnFV-fzof1zz5StSoeZODbyn9AGmMq5Z0,5376
763
+ teradataml/data/jsons/sqle/17.10/MovingAverage.json,sha256=0Wr6v8XmoaveHtbjmXAk6iIACoTPnaml6L9yIgfqUBk,12679
764
+ teradataml/data/jsons/sqle/17.10/NGramSplitter.json,sha256=O5paj2xoNL38YQK6j9bQIxgsEZV1XNgyyRLSIDoj09g,11756
765
+ teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json,sha256=lsB-AmLdZ2rztT54Hj8KCbitTvwkCuJYE9dFHMuZXIQ,5044
766
+ teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json,sha256=AhuWLsR1E0ji2NvN2xw7np2iAE2aC-gXxPvJ79-b394,9578
767
+ teradataml/data/jsons/sqle/17.10/Pack.json,sha256=rGLF10fH5fpsiK9DfNu9YxMuyC9K5zWKcPtcvCNbd3g,5335
768
+ teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json,sha256=LgXl9Dk27IXFHi7YpmVEyrvFO5doWR-KH-WSq4pARkU,6866
769
+ teradataml/data/jsons/sqle/17.10/Sessionize.json,sha256=OrPjzt3idFCIY8fNeJIG98pp9dvIW9XSUBX_s1M8QQw,4465
770
+ teradataml/data/jsons/sqle/17.10/StringSimilarity.json,sha256=P486-VfDkV06SPPKHR62Q2PpOEyJGbAuR9sGD_aU168,7142
771
+ teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json,sha256=SXC2_jSQABC53QGQ3S9gox8j4DTq65WpNBkHwP6F7SE,9292
772
+ teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json,sha256=pn456Gsxy_5q3iFnEoajWnm95pX3A78F_jTD6UO5b44,2421
773
+ teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json,sha256=DgHGLjKWCoLuk38Mm_5CQq8tEonAt9d11-WWzTb3JTs,1786
774
+ teradataml/data/jsons/sqle/17.10/TD_Chisq.json,sha256=qL5cuRF06PBqkOQ82PNX-owsIFqggK34fnt0l6buHGo,2226
775
+ teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json,sha256=EJNOOF3oG8zXjwxKLzvF_B4-3Oj51lTPXiQSJ-enBJA,1813
776
+ teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json,sha256=USiDLoY-JVa_4OSyrk0infndVNpqy_zqLpeSqmyqd-A,2691
777
+ teradataml/data/jsons/sqle/17.10/TD_FTest.json,sha256=24PlNpdlve0ihK9zMXRm86lBUv5ERGbllEWm3UQ3m2c,5649
778
+ teradataml/data/jsons/sqle/17.10/TD_FillRowID.json,sha256=p0mkXfBmLzFviESLNA7Mw4Ug-STnzov-LuZMLrnp26w,1599
779
+ teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json,sha256=q8UMIsF1aElG0Zrb5bXjCXDeJS1xk2sC1AwbsvDPAOY,1678
780
+ teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json,sha256=j5xySuywYT87GSyLyuf1wiJmH-g8KpwTCPdvyK2vbM4,2425
781
+ teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json,sha256=FuKUCl8EXWu1MUr8Egr7O6-kR_1OsIfpH4W30MQdoCI,1827
782
+ teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json,sha256=aa5zU-gGHEA5rxX7SB53IHQxwV-sZKWY_mCxV4I4gXQ,1839
783
+ teradataml/data/jsons/sqle/17.10/TD_Histogram.json,sha256=yuIJsaHRNVFHgazvJsZa2vsif2lDMekTnjSZRadTBBU,4900
784
+ teradataml/data/jsons/sqle/17.10/TD_NumApply.json,sha256=9tiM8ju9kF2fMYtCDOMm3QzZ7GaMk4rIZbjXY6jmrdQ,5212
785
+ teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json,sha256=g9mDAmzkFI8vKT3cmKgNpv24sjY8sqmkN7CVqNSDZkk,7325
786
+ teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json,sha256=FGM-k_KTJW_U4M5cQ-GkRIumY6dJmS_VeQtokvQnoLw,2389
787
+ teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json,sha256=xpjAkmga9X-AC9aBDztd-RJOqTN3MxLZYXMflj6dyug,7143
788
+ teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json,sha256=oVZy0WkEZK9FJr_anH6sz8rEZbFYhv1uzc_aEFnw8mo,2202
789
+ teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json,sha256=bytxobsmHEtTpSdGWd2UpkbRQUSBaN0_s0009jQ0weM,4110
790
+ teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json,sha256=ROjgTSShfLqomsJxCtade3xXoWWUfKdOJ_X06RPuOvo,2524
791
+ teradataml/data/jsons/sqle/17.10/TD_QQNorm.json,sha256=FW_r35-7vFxDrvR9CADTETYn84EUIqavMJ59LopVxvI,4158
792
+ teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json,sha256=AgbGYCGOvhl_iUSCjzi1KcNtTQ6hS5MfMnh3joZRJYQ,3546
793
+ teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json,sha256=ghnwqbuiTPMsKyFivDswALVGLg18AFYYDHVDPv2aZ2s,4211
794
+ teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json,sha256=JZh2R6fYJcSqqV_QKXdBseajYxwgWt31joUfQpasGbU,2480
795
+ teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json,sha256=rEeZZImZPhUHEUZ2ZW5_LWnsz-S2zWdKm9t8PPAgab4,8444
796
+ teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json,sha256=iyeANSyGKlxeg6214Rkv873wGb2BFmujkNTmGdmb7As,2398
797
+ teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json,sha256=QHNmCIWvH70qmO074cGBAa63gLL01g-PLNR7VfdHvxU,5020
798
+ teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json,sha256=_6dzIMMYBWCgBEvNYbqFVfkdPt1lWCImayMVem9jAbk,1877
799
+ teradataml/data/jsons/sqle/17.10/TD_StrApply.json,sha256=5DsnIIeb1BJqa12lh74mzHeM3gIQnrnnf8BQBOY0Syw,8974
800
+ teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json,sha256=1DKlUuJZwznvUFbMU0JLNuwvm8uSQUFrPzfwuk-I4EY,4889
801
+ teradataml/data/jsons/sqle/17.10/TD_WhichMax.json,sha256=g9vzWEK6aD4VDUM8UMyTri08optvWi27D7oSL-RUapE,1695
802
+ teradataml/data/jsons/sqle/17.10/TD_WhichMin.json,sha256=4r9ZbsKLL7SBiNHHi334GZbMK8uwtDQ3B-gQY_Qqqq0,1695
803
+ teradataml/data/jsons/sqle/17.10/TD_ZTest.json,sha256=sKuGpi9WnMlnw7UQAA5_LTnwzRcIHPSU55fO4ErRNT0,5209
804
+ teradataml/data/jsons/sqle/17.10/Unpack.json,sha256=XoTH6HH8cQ-WWMkhx4gIH-hkn0q4G8StVxNMcUIM3SY,13420
805
+ teradataml/data/jsons/sqle/17.10/nPath.json,sha256=_x0_7ZVAZ23JNd3Xy-xfBFfXD-VWpgDKzhpnUmt5GAs,14122
806
+ teradataml/data/jsons/sqle/17.20/Antiselect.json,sha256=Zyw4BroIZwI7UeYjeHsWO51MukZmAH38UKS4-8nPuLg,1621
807
+ teradataml/data/jsons/sqle/17.20/Attribution.json,sha256=hGgXlns31d91Wvk1fhWqCv1igeTYx1ggv1RRXwV36-o,9808
808
+ teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json,sha256=-DFxNNjkWPZCtOWJT1CCvl2GxaQpC3OEuqHzRWCR6Jk,7128
809
+ teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json,sha256=2Ou6QmEwhptX9jdhl8xPnydiXqVZDTb8pVkgVJx1tzs,5774
810
+ teradataml/data/jsons/sqle/17.20/GLMPredict.json,sha256=pgagDfqyWiEnFV-fzof1zz5StSoeZODbyn9AGmMq5Z0,5376
811
+ teradataml/data/jsons/sqle/17.20/MovingAverage.json,sha256=q8OpbyhlJeeQPOZNwlBF2SBGpe7k_NNyqXWpPdAghuc,12652
812
+ teradataml/data/jsons/sqle/17.20/NGramSplitter.json,sha256=O5paj2xoNL38YQK6j9bQIxgsEZV1XNgyyRLSIDoj09g,11756
813
+ teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json,sha256=lsB-AmLdZ2rztT54Hj8KCbitTvwkCuJYE9dFHMuZXIQ,5044
814
+ teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json,sha256=Uwl8lHLVFZeqpH848jl-2QqfRKiMecvyu876_Axf5W0,9553
815
+ teradataml/data/jsons/sqle/17.20/Pack.json,sha256=rGLF10fH5fpsiK9DfNu9YxMuyC9K5zWKcPtcvCNbd3g,5335
816
+ teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json,sha256=sMUK3DVXTHI_bIxlHxyDesZQECQTKpSRacKgVZhsoGE,6839
817
+ teradataml/data/jsons/sqle/17.20/Sessionize.json,sha256=IIA23vN016aUNl5IFeRQj3hxtmqNvjnwL96fjPLUXlo,4469
818
+ teradataml/data/jsons/sqle/17.20/StringSimilarity.json,sha256=P486-VfDkV06SPPKHR62Q2PpOEyJGbAuR9sGD_aU168,7142
819
+ teradataml/data/jsons/sqle/17.20/TD_ANOVA.json,sha256=_tONpTLLmul5MP5t5PhLvebgtjoN5mLX61BMZPJD7rY,5268
820
+ teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json,sha256=SXC2_jSQABC53QGQ3S9gox8j4DTq65WpNBkHwP6F7SE,9292
821
+ teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json,sha256=SG1Dz-m9B37B5nK-aubz52QulWgzZq_O_nUllVWUaqo,2468
822
+ teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json,sha256=S5iSTpkJWGO07FkMlmv2KkRtkKcAt8GMdIkJF4Vt1Y4,1761
823
+ teradataml/data/jsons/sqle/17.20/TD_Chisq.json,sha256=qL5cuRF06PBqkOQ82PNX-owsIFqggK34fnt0l6buHGo,2226
824
+ teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json,sha256=bzCU-Xr87pF0knkcVxaXLRTV0bOVnDsft-PmyK59zRY,4859
825
+ teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json,sha256=60y1prLej_dldNjQZPQik-ONoSjzeV0s_5p2WVOfN5M,1788
826
+ teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json,sha256=YTrdmY6_mEEPePXRLzBbsnoAas_2H7A6XG5cW65JZZI,6911
827
+ teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json,sha256=7CdjCnCcafWf8LvQn8pPcdew3Qx-M-W9L2vlP1v3tWw,3499
828
+ teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json,sha256=pVZTBZRhGTiJPjz4ZL_Z5vtkwlcaeH-SMz4sLVEDzQA,14062
829
+ teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json,sha256=dTRx9AQjcrW3IsT9fjxAEchGEr7kk0uGw63_35dFqyI,4872
830
+ teradataml/data/jsons/sqle/17.20/TD_FTest.json,sha256=5uR2I1hDVt-P0GQvhZ8a1Uv-3HDnPUtvFIQYgziELak,8860
831
+ teradataml/data/jsons/sqle/17.20/TD_FillRowID.json,sha256=heHvZH6zgMjvyZNjkV1UmhKBFFE3raYlKc-bNB5n8eQ,1601
832
+ teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json,sha256=q8UMIsF1aElG0Zrb5bXjCXDeJS1xk2sC1AwbsvDPAOY,1678
833
+ teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json,sha256=j5xySuywYT87GSyLyuf1wiJmH-g8KpwTCPdvyK2vbM4,2425
834
+ teradataml/data/jsons/sqle/17.20/TD_GLM.json,sha256=INZ2WJaCE3ljoY6gGyPEQx-r452xAc875redOxR_La8,24199
835
+ teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json,sha256=2DM0JH-ktqFmqIQ3qeX0XdmqY8G7ZTiqNphdxcVf7sU,6762
836
+ teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json,sha256=rYAPZS0p0B1NRxyX4RK25Uv04MuiTXmq-e5xcleRybM,18973
837
+ teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json,sha256=_p9C1F8TZjJL4T5hZ_f3nkUBP87hqC0gyoSDCF59X4g,5810
838
+ teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json,sha256=-oBoiPUda7B69f87LxeiojbXxnwPGikEa--xoYe4MKE,3318
839
+ teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json,sha256=BFzGpf--iYOJTtjlyuQ8UAU4IayNJXzDhysr-S98zeY,2635
840
+ teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json,sha256=SuWfeL9Gj5Me0I-N6hoGeao-xq5Je5gWpK4agwX2gyc,2643
841
+ teradataml/data/jsons/sqle/17.20/TD_Histogram.json,sha256=maRiTySFqhKcfzcH0VWigcF15afMW4LLcNkSnRHDVBA,5841
842
+ teradataml/data/jsons/sqle/17.20/TD_KMeans.json,sha256=1l_vfCZtGRgzlKMuNDIy-H9gjC0sZNC5thzwEIIc930,8297
843
+ teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json,sha256=qvKPOK-wOMyd05JWA7RmvkogjObHqiVZr4b5M3XkcBI,2976
844
+ teradataml/data/jsons/sqle/17.20/TD_KNN.json,sha256=0pF8hgOXtR4i16dkHoK5DxDarkp_OT0vi62sv3VA27k,10439
845
+ teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json,sha256=2Ri0K7ZpVsQIJCa1f8Rjpy97oKigxrN-v1AAYMb3ofQ,4385
846
+ teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json,sha256=ybn6aYRmo9dkBprs27ol8c6D4gxpJCLv8PuRIVctp1g,3458
847
+ teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json,sha256=rWq7tvhrOKdvsD97rrFs4RglPOC-JdidCunKAoShZgk,2708
848
+ teradataml/data/jsons/sqle/17.20/TD_NumApply.json,sha256=9tiM8ju9kF2fMYtCDOMm3QzZ7GaMk4rIZbjXY6jmrdQ,5212
849
+ teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json,sha256=1huR_7WgqbvjJvuMhGXtrVjVdF7runEa2Iu-aYFUUKo,14584
850
+ teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json,sha256=le7Zk4oGzqZ1x3rK26HSNGqo4XWAHEq6EVk2zITkGsE,4564
851
+ teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json,sha256=v11JoQOEK0qVUdBvqaqyzxwMNrNqhcDEduoxGRDyX_s,10628
852
+ teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json,sha256=IkOOnnFzYkU8jjUWDconokmeGE1YE-hXBXHAMS_Nk_g,2364
853
+ teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json,sha256=1HHCS-jhwSStLU3JGnwh8ujTVPteKguIN8LNU8UhwjA,8211
854
+ teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json,sha256=Nq0xByI-gnrR5ykcgIj5Drjk1zO4vq4D5BUD2_df7zc,2701
855
+ teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json,sha256=4SRXsKo0SsKjTeRatKdWITPcI9Jh-lmbDN5sin3o3Vc,7881
856
+ teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json,sha256=oVZy0WkEZK9FJr_anH6sz8rEZbFYhv1uzc_aEFnw8mo,2202
857
+ teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json,sha256=bytxobsmHEtTpSdGWd2UpkbRQUSBaN0_s0009jQ0weM,4110
858
+ teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json,sha256=ROjgTSShfLqomsJxCtade3xXoWWUfKdOJ_X06RPuOvo,2524
859
+ teradataml/data/jsons/sqle/17.20/TD_QQNorm.json,sha256=C_ZGyq9pZb9HPpm-TEz2bnX_Z4vGzFo7RcVMgyu3_q8,4133
860
+ teradataml/data/jsons/sqle/17.20/TD_ROC.json,sha256=6NSxZrBxLUxj3ET-YWAdOokKUDl6VB6jToopWG9jksI,7081
861
+ teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json,sha256=do2Lcuno87VM6VbamTP85P9qPbYcPTe-OHWZLp3VuGA,6246
862
+ teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json,sha256=-8b4fcYshlxHNIz4c69XRhKNFFjRRzRU80xJc13jIpE,2400
863
+ teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json,sha256=yryZZ6T31fPxhBi5ocf6ui8Dq_21AxiPuO1sYkidVEY,2682
864
+ teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json,sha256=EppbRKRD9hzLXb0jawmjl_9RpkeSRLlEVTcn3Pm_fAU,5345
865
+ teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json,sha256=AgbGYCGOvhl_iUSCjzi1KcNtTQ6hS5MfMnh3joZRJYQ,3546
866
+ teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json,sha256=ghnwqbuiTPMsKyFivDswALVGLg18AFYYDHVDPv2aZ2s,4211
867
+ teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json,sha256=JZh2R6fYJcSqqV_QKXdBseajYxwgWt31joUfQpasGbU,2480
868
+ teradataml/data/jsons/sqle/17.20/TD_SVM.json,sha256=Ao620whcupTfdOaATFSQRiJtvWLosVJW0yg-pRZTQpg,17763
869
+ teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json,sha256=aZlJBekP4uxc2XJUwIeV5h1ToDWvswdSBI_qW0ndQpo,5142
870
+ teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json,sha256=V9N4WysObAauTR0X3wSBJDpRMvPRQxKr8m-ztGLcnXg,13586
871
+ teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json,sha256=aHX7ccFEfjJ9uP23qj9OiC3rREeuryP_T7kcWrpkbQg,3992
872
+ teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json,sha256=LVPbPPGi_z6l3f-OjD7XrhjOR_dG3XuZdUgaafVeED4,7045
873
+ teradataml/data/jsons/sqle/17.20/TD_Silhouette.json,sha256=Wt6QlckJUNUGrCWAY4tv2xvi2K6tw9cjpUUK7U0esU8,4840
874
+ teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json,sha256=zOhzZZDdlBnRv-vZQL3XCO5sHcBiz2e93dfqpkbuWF8,4995
875
+ teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json,sha256=_6dzIMMYBWCgBEvNYbqFVfkdPt1lWCImayMVem9jAbk,1877
876
+ teradataml/data/jsons/sqle/17.20/TD_StrApply.json,sha256=5DsnIIeb1BJqa12lh74mzHeM3gIQnrnnf8BQBOY0Syw,8974
877
+ teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json,sha256=SWIiQ5RNcNNkAL-VTUys-ymUf8ftHv4_S4AItnLvf_E,9314
878
+ teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json,sha256=v26bCdOLPKZR-oNwp6jXSge-Mi3sT9ktUnQF46tiIFg,2765
879
+ teradataml/data/jsons/sqle/17.20/TD_TextParser.json,sha256=uBK2ftzgYog6d3jGIP3JQXnbF-7EakupvjTl6xlvZEM,5925
880
+ teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json,sha256=-iTh6laaD6gf7WWEyz6lQFoDBGR2kwvaeTsavZsyW9Y,5744
881
+ teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json,sha256=nMK_V8EAw01qjsuZP5uhyprw_Mh5G9ZimQt8TfPSsYw,4807
882
+ teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json,sha256=ytRPvQhDifsUCRS9MzPifqizyhlOh_DscvEGJ_mZQsk,6415
883
+ teradataml/data/jsons/sqle/17.20/TD_WhichMax.json,sha256=g9vzWEK6aD4VDUM8UMyTri08optvWi27D7oSL-RUapE,1695
884
+ teradataml/data/jsons/sqle/17.20/TD_WhichMin.json,sha256=4r9ZbsKLL7SBiNHHi334GZbMK8uwtDQ3B-gQY_Qqqq0,1695
885
+ teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json,sha256=lElGcRwdXEBBReer6RWPAkMPWB7kMt5MnlNcSb8X7OI,7869
886
+ teradataml/data/jsons/sqle/17.20/TD_XGBoost.json,sha256=9-3ag2DKURb-NU_LbnwnBbB1_Jtggck--8cSsuYp-MA,14372
887
+ teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json,sha256=vePCDT17Ho9H1b1cxqyBvtmThgXEVcsotDVwN4hk16U,6503
888
+ teradataml/data/jsons/sqle/17.20/TD_ZTest.json,sha256=vDxIYCnmgPTnxJnfrivB8AkOKNrJXY_s84_moFFjsLE,8202
889
+ teradataml/data/jsons/sqle/17.20/Unpack.json,sha256=XoTH6HH8cQ-WWMkhx4gIH-hkn0q4G8StVxNMcUIM3SY,13420
890
+ teradataml/data/jsons/sqle/17.20/nPath.json,sha256=_x0_7ZVAZ23JNd3Xy-xfBFfXD-VWpgDKzhpnUmt5GAs,14122
891
+ teradataml/data/jsons/tableoperator/17.00/read_nos.json,sha256=AU0xz-LTu-evaZfWR1TATJN7XKQUSvCCRiagLZYU_Og,25804
892
+ teradataml/data/jsons/tableoperator/17.05/read_nos.json,sha256=AU0xz-LTu-evaZfWR1TATJN7XKQUSvCCRiagLZYU_Og,25804
893
+ teradataml/data/jsons/tableoperator/17.05/write_nos.json,sha256=RxlbMg0c2MAv_SweZL6rB7Ew34zSdcJxF4lgxf2N4L4,15256
894
+ teradataml/data/jsons/tableoperator/17.10/read_nos.json,sha256=DJu_Ux7VQV9EXIcuCSkc3B5m3690VdK7Pl6epHDgE30,27897
895
+ teradataml/data/jsons/tableoperator/17.10/write_nos.json,sha256=dofQigRkF9jKyYRO9dOQL5jKBwd9i4h02rs4UYBJkzM,18115
896
+ teradataml/data/jsons/tableoperator/17.20/read_nos.json,sha256=dXmnLi7pXayTjeZEIeBRCK8ysdmdLiXy8iHZx_LXdCM,23674
897
+ teradataml/data/jsons/tableoperator/17.20/write_nos.json,sha256=I-526Zymf3LdRZw1ojfD3MAZSqxkXD9JW0rs7BvOjRg,19158
898
+ teradataml/data/jsons/uaf/17.20/TD_ACF.json,sha256=POpdthnCbPHsKKTdj_CkcPPRqk5A_96cWN_yt9EWLdQ,6793
899
+ teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json,sha256=GdNukEl5Pw9Zd-7yKtNm1shTNztDNq7RqPhbJ_a0Lqk,25827
900
+ teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json,sha256=iBosTMDcyDUheKF4BBkZjoT4sg3b9WGo9k5XtZ35dXY,4636
901
+ teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json,sha256=LR7R1GJZF4Y2hrzV33nEa_elDuuqolBTu1i9FZdXi3g,8981
902
+ teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json,sha256=pnmN870DVtfmftHGWkAevTBjScdu2pQPALUVS3lz4Ic,10823
903
+ teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json,sha256=nttsu-3KAls_Bj3Qm4F0yD6lrvGXb4NhH8TSZv5l5b4,10730
904
+ teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json,sha256=Z0F-eOSJprRa_wuD5ojR7EfzP3bU2noP07vNGqF9JVo,4762
905
+ teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json,sha256=CsmtBwf3ZqZ7t-9nF4PHZzPud5TjHgqQ-n--ibRqHgo,8019
906
+ teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json,sha256=ujrK0Kpp9elbTKur_o6SOW7-wjuHaNAg0QSz48-Wmf4,4126
907
+ teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json,sha256=LEwJHCuC5-v-yvKHBiVxHZVvSMa1NMaPM-zRqEynsKE,3140
908
+ teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json,sha256=K9UVwsmUDNzosNKoXE-mqkOK16wuPpx92GgcRoWsE30,6224
909
+ teradataml/data/jsons/uaf/17.20/TD_DFFT.json,sha256=ZxJfO2APYywfwDcdlYDcYFged5fwQdC786y5NBaRSCE,11353
910
+ teradataml/data/jsons/uaf/17.20/TD_DFFT2.json,sha256=hBt9lyUvjK6X5nu4Bf2s7NYwweC0qbuLHscXhmqr44Y,9149
911
+ teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json,sha256=omPVu4fFETeWQowNqkNiWWN3xSvRnX-KAhtULyM3ptQ,7799
912
+ teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json,sha256=VGiG_dbdRbHAjt6DqtvU9YTSIofOJy5yla5TqvYSLw8,7693
913
+ teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json,sha256=WlrAJpViFPK0f4qeQSRfQ1_D1IaHARJN48S-SGh9FJ0,5225
914
+ teradataml/data/jsons/uaf/17.20/TD_DIFF.json,sha256=HRBGm5GdjG0OYiYEuFKZEfm1t6DKrHn3Pv6BqD_9GGY,5371
915
+ teradataml/data/jsons/uaf/17.20/TD_DTW.json,sha256=Y8tpHFuXRcv2lStk9eTVLVU90qYrcIMTqe1YpVDkJnk,7246
916
+ teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json,sha256=vkB6WUS_J0M2XQMoMGuQEmJ2kl6WeDeDpApWYhXodGg,5779
917
+ teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json,sha256=yTB4R0SWx8vc3aF9WuWiXulF34WPfkpFu8KcacYPXh8,2149
918
+ teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json,sha256=3VHVfv8y9uXktmjOBCG44uJpvT8qjI3LLAgKGrU74f4,5886
919
+ teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json,sha256=LOkwRmdeLe0FumnhK5ftO0KRs9bxaM8VYoX8YFZgr-o,5294
920
+ teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json,sha256=7Fo-52k5tu6RHnvT_9lTmubRVEuX_98ay073FSHN98Q,4749
921
+ teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json,sha256=Ou-TCd5RRDIoB9i9RjR9WMccSNj44SWZ9TQiPJiqBB8,8961
922
+ teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json,sha256=Ja23hGQxoAydp3XQ4fYcAwLoOubUXTaTuB_WeARrelw,19472
923
+ teradataml/data/jsons/uaf/17.20/TD_IDFFT.json,sha256=BkBgjpBBZpp6qSMuhw2YO5kOj1IKvJqC9RvHry5QBk8,4011
924
+ teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json,sha256=YKIQ3O996UyFR_aGMFsH5YIkisrD4grXW450HwqYLLo,6660
925
+ teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json,sha256=RATfm1-DJtKXXSClyYC6QcSfuEE90SbGbq26lZ_rxdI,4325
926
+ teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json,sha256=iiTWO-H0IKeQJVkKUlhi3eoV0MgDn8B-PEc39iwVMv8,12171
927
+ teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json,sha256=3BYsHsKiUH7pVc8r2HSNDJpodj-azEGg9tSjHScIJCA,6148
928
+ teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json,sha256=vWiIp3FtYnbuGjshHUOtRTyK_CAuJx6sjBJ44wkticw,10516
929
+ teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json,sha256=KsmRSYhBihA7uKRtjlZ2WAO9YHUs6eYO3gTi2cWBr20,4196
930
+ teradataml/data/jsons/uaf/17.20/TD_MINFO.json,sha256=X2XxLdYC-oTQ-syXmqPxknzVsFGlpyUANqCyW-qqE9Y,4267
931
+ teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json,sha256=hZpLpxritCt8ZrnJbhm0MuNKo9molN9aS4CouBBQJ_M,11978
932
+ teradataml/data/jsons/uaf/17.20/TD_PACF.json,sha256=Gug8WIeRIb8xuDCQCee34LLGuFr_U_a6dWbGQ267HlU,7587
933
+ teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json,sha256=Y2BejE5qpRqrjvqg6wM9-rHQtTlThMzLuMMTt5NZwSA,7070
934
+ teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json,sha256=oHUi8jl23EkxJBT_BbJ7FHpdWaVIcbUMVaxYM2g2fak,10486
935
+ teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json,sha256=aJ-3gSBvL5ZP-X2_PbosnSbQUHAJhkbr8nq35xsD8us,5080
936
+ teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json,sha256=c7uNyNzpqLYUbDk5taP4HEA8TIwk6RgSgKBDTZ6fl5o,10544
937
+ teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json,sha256=blmIxyPYHY6dHJ9ocaxYYCEU8LVtXbGsXsnih462jmw,7371
938
+ teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json,sha256=L0Cms4EvbgdMiUctSKl8iPTYL1UDt8AwImCTuPI3hEU,5600
939
+ teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json,sha256=HsrXUJttjDR6vsbzIjxcD_3QaOokL9Jo-Vlna4KIvSk,5259
940
+ teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json,sha256=idQxesvWN2q6HttfBEkejupWIumUutpTPqWsnIkmQAQ,4604
941
+ teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json,sha256=UYXbEzmrjvQnj4ub-uLMyUWZKgmBOM3phtT8Cob6t34,10532
942
+ teradataml/data/jsons/uaf/17.20/TD_SINFO.json,sha256=SI9jiSrApW-JGEUNv2hDpchxmGVxY_I8X6VO88Mc4ZY,3745
943
+ teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json,sha256=I9N0UExlLyOnNI8H_AKpkkaNJRm6JElqPUPtpPJ4EvE,9887
944
+ teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json,sha256=nAq4e8w7NwXPWdgkCt5zSGLoCghjO2ZIQLtq1zbouME,4876
945
+ teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json,sha256=znmiQhvXgtJDrDX6kWoUBVNEs2l3-7iM4AdhVX5zU6g,6837
946
+ teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json,sha256=jRqBfYA-WZdQy5lSO6YDynCmXFTL7IpUHKnzQ_Evp0w,4755
947
+ teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json,sha256=gaiixvAjMIms_hVJG9_WmBjK10f1wz8tCR6Y161SHZI,4800
948
+ teradataml/data/models/License_file.txt,sha256=SnWU9MK5E-B6ZUwR1TB19iSUyCcQaTxJ9Zar_WVQ7_g,14
949
+ teradataml/data/models/License_file_empty.txt,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
950
+ teradataml/data/models/dataiku_iris_data_ann_thin,sha256=9cfSt9MHz_ouXXMzfoByrX-yD-iVINFr8Txn3e7VukA,20894
951
+ teradataml/data/models/dr_iris_rf,sha256=thNFaIIvzZgSHZecssOS55zNn7XZjimF199bfZ2iAN4,856761
952
+ teradataml/data/models/iris_db_dt_model_sklearn.onnx,sha256=5aTtOPcQ4h0Xdksfc0UqRlcqO-PdGBDee08VZbpWwo0,1455
953
+ teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx,sha256=Kik8AhmoBdVKoCM-4QuWNwe3GQJuedpkCTJLkLbC8No,1000
954
+ teradataml/data/models/iris_db_glm_model.pmml,sha256=rt-2dbVpceKT1S5iO9WvMOp1kUqz8vuE83CiQXYmXKc,3121
955
+ teradataml/data/models/iris_db_xgb_model.pmml,sha256=SejLwc16P_ee9QnLMOaY4dqwjSFBg1fwlCsMjywXHmI,165247
956
+ teradataml/data/models/iris_kmeans_model,sha256=DtqDxJbLQi87vns9V3Zxznovzvmr8s0CYXx4gKzal9U,5659
957
+ teradataml/data/models/iris_mojo_glm_h2o_model,sha256=ITe3SHKElnAPiDGYiogkGrmEZeDeBO50_0O5oKJolNs,11097
958
+ teradataml/data/models/iris_mojo_xgb_h2o_model,sha256=OWFu3zozDuoxL2KMc6CG6wtiSV1U1VJvzDl5Lib4JxE,22535
959
+ teradataml/data/notebooks/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
960
+ teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb,sha256=6kXuc3u9UUO3v9BTsJBvPfUKI_1iB0CneBKWlqysovk,42428
961
+ teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb,sha256=LrSnhCc5NcvbGbTo-6GHjNicc-X2gHsToHHGAuc3Q4Y,82237
962
+ teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb,sha256=DvZTB7455vacJaKFn2tfURFIo48nIGtLJixKYZnvaI4,54216
963
+ teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb,sha256=7QY6g1aLlhgxLdK0v-kl46OqgRgMMHc6O6aqGX6Mkp4,19802
964
+ teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb,sha256=HxFbgLjrBfXY8xmc4IZBBryHjIpbXPmzjwqkBustpkU,20360
965
+ teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb,sha256=tBGl0udHBCKQbI1ck79HWUY5qD3f0SMqda6zA8LLOqs,85625
966
+ teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb,sha256=VNyavICRUit08pMMsbTKi1rsCzAVIy1S1FuK9bSfar8,109307
967
+ teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb,sha256=7e5OAeeW7whQhGy9WqPLg3R1smjaRA41_ZiiBq4CqDE,38012
968
+ teradataml/data/notebooks/sqlalchemy/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
969
+ teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb,sha256=U5iuJ8scVyM5UDVQb5PDyjjVeKHykoT8BvUp3neOrcU,24413
970
+ teradataml/data/scripts/deploy_script.py,sha256=zDTBhIXifod2LK_f6JVDjOCgnpAteUaIjFH3sanHYIg,2469
971
+ teradataml/data/scripts/mapper.R,sha256=wsa90rHfJDOCzpPAiHy6EzpiNskC7d2K4QnJCuXrLqI,613
972
+ teradataml/data/scripts/mapper.py,sha256=8l0tJl96icteNBFRG4cROuho1iWUJtU81l7R7Jz6SmY,547
973
+ teradataml/data/scripts/mapper_replace.py,sha256=qBcXNMb19LccZ3KhMtZBgrpib33KWZjrJ5MoW5l6G98,552
974
+ teradataml/data/scripts/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
975
+ teradataml/data/scripts/sklearn/sklearn_fit.py,sha256=xwso_Oso5SKtxR3-xMfA5e7Ax7n8H42yjwkFNIkIsjM,6426
976
+ teradataml/data/scripts/sklearn/sklearn_fit_predict.py,sha256=HCZLOEUkObc13CpqL4jhu1S36GQnTro-a56Atptg0gs,4976
977
+ teradataml/data/scripts/sklearn/sklearn_function.template,sha256=iwBfT_ohX2k-BUEkJqPS4xVP6aDqu41GJJOQhLA5EBo,4419
978
+ teradataml/data/scripts/sklearn/sklearn_model_selection_split.py,sha256=0oyIv7oKZ_Vde-y3CY_sw9Qv8f48DGQGlapOGrSLba0,5979
979
+ teradataml/data/scripts/sklearn/sklearn_neighbors.py,sha256=JYORv2_A9W_amRrgfcNv7HifOFRNukSaOc9BxIwePbI,5948
980
+ teradataml/data/scripts/sklearn/sklearn_score.py,sha256=KWqd1hvcJ2o41jE-oBLnfxNPhHjnM-ltHgM7GaLoAcI,4538
981
+ teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=uHPclMehdoJzfIgK8QA1rCh1gOJqk9VYajFIDkkaVI4,7844
982
+ teradataml/data/templates/open_source_ml.json,sha256=O1kWGBxHbOGeBjiEPg-K2ykb0uaneaGaLYQiPu_BFwM,156
983
+ teradataml/dataframe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
984
+ teradataml/dataframe/copy_to.py,sha256=vUmfruKAHLrURqDyBo-0DgCi2PZDHpRwGflnn9Fwros,76421
985
+ teradataml/dataframe/data_transfer.py,sha256=uhyLodyZ37--QqdLUKW8Q1k0e1S3EOMKsb9QHfv4rXw,123602
986
+ teradataml/dataframe/dataframe.py,sha256=kcKzwxOw7uXdXrQNy4tKX_-btEmY0pqRvIDfxk2qSTQ,934636
987
+ teradataml/dataframe/dataframe_utils.py,sha256=vbvKogavhqXSVe39zKepFcjGkyJuy6radN2ninHdc3Y,88417
988
+ teradataml/dataframe/fastload.py,sha256=IhlCrmQ3MI_Sg6UHYKm-mxe7q6pj0bz90L7s8KVVC8I,41988
989
+ teradataml/dataframe/indexer.py,sha256=xDLYMuUy77VpVo1rO0RHrM-fpexr1Mm3o1hF_I3PsdQ,19787
990
+ teradataml/dataframe/setop.py,sha256=vVN1H4F_4WvQQdCN1DRIwtmmHCsHu-MwQQcBxHwyb1Q,56933
991
+ teradataml/dataframe/sql.py,sha256=KrXTgEJvZjXt715OFTaFkC__W1kZ8Sc1PvHaTXuU9eU,602917
992
+ teradataml/dataframe/sql_function_parameters.py,sha256=BVuHGJ78TjxbrwMdytXfUVKrMZb4Ge20taVwcj0E8gU,22241
993
+ teradataml/dataframe/sql_functions.py,sha256=-v5Gx8x_Tr-Ru9YrmjrM-JfIDhguk8HcO2G1xMcg0Wo,29482
994
+ teradataml/dataframe/sql_interfaces.py,sha256=WzM-jq7JyRmEMs7yZTgX6W3nnD7YjxXwdTHauI4BQPA,3812
995
+ teradataml/dataframe/vantage_function_types.py,sha256=4p4EX3ZtbqYBqcdQ7l_Vx0UW8sEIeEVnpRghcGpyFNY,28381
996
+ teradataml/dataframe/window.py,sha256=RS1Ng77do6vyGanwzZdipni5LBNwgG83tcjoVhPy3qc,32757
997
+ teradataml/dbutils/__init__.py,sha256=qnquQDBxYoHuaLb3VzM0Mb08Ooc-sDVO6JQCcPhSYlE,221
998
+ teradataml/dbutils/dbutils.py,sha256=cYPoSf1r_DyNCLcyLlUZz67G-avlfeKbRNzhwhHyeaI,47531
999
+ teradataml/dbutils/filemgr.py,sha256=6VdGuiHtpNPXRcdxa2lH-jHAFOyb2AM4XXIJQ3bVPig,12337
1000
+ teradataml/gen_ai/__init__.py,sha256=kYGvNpZOR_E2VDcf3-LOfvFGox1YRpPeblwa5mqDvAM,91
1001
+ teradataml/gen_ai/convAI.py,sha256=HN_Rm38FY5Nr2Pq5nMmuT9gH9XsTwtE47NaQIaFyiFg,16473
1002
+ teradataml/geospatial/__init__.py,sha256=DZZNBHBYN1EDYSXz-7C_Ic_W2ZsVuak69hw_nWTcto8,292
1003
+ teradataml/geospatial/geodataframe.py,sha256=cKnqjVBj1kkiAPqMw5w-PxrxLBhYXwq1ZV1SAZE4P-I,51399
1004
+ teradataml/geospatial/geodataframecolumn.py,sha256=Yoe8GueOGoz6p1K1qMjwYzcg_K1hh9se4CMEq2JLrNU,16327
1005
+ teradataml/geospatial/geometry_types.py,sha256=hUKAUluD8ufvXaLY1-cwnsB3RsFkHR8Wr7eVE4YCtoU,38518
1006
+ teradataml/hyperparameter_tuner/__init__.py,sha256=RQvotxJqh80M8Du-5IWdjdJvKYHDiGlepkgm5oyKqpY,80
1007
+ teradataml/hyperparameter_tuner/optimizer.py,sha256=BP_0gyFcRIAe60csQ7GuZyC3QcbKHuVnH7ZiJaORzJc,198074
1008
+ teradataml/hyperparameter_tuner/utils.py,sha256=Bu0A_mP1WPyWtoBGz9NTkNhWOz_nZUkc5gsqcPrYfnk,11727
1009
+ teradataml/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1010
+ teradataml/lib/aed_0_1.dll,sha256=8k_R1DftckFyr8mCP5WUsvmUaQGWUqRLaMNEuLrK3xk,3928816
1011
+ teradataml/lib/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
1012
+ teradataml/lib/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
1013
+ teradataml/opensource/__init__.py,sha256=ysO_7mcfAHpQkE6qmcoxBOgtRWS97z_XDXkNk1I1VzY,54
1014
+ teradataml/opensource/sklearn/__init__.py,sha256=N9goinLnrCyYQvicxKOpJ24bVlos8SJrjaGtNS3jV9E,32
1015
+ teradataml/opensource/sklearn/_class.py,sha256=69hRN5Fu6rIGvJ0azmulcRKBBCjEF-c2yo1wz7-rBCo,9572
1016
+ teradataml/opensource/sklearn/_sklearn_wrapper.py,sha256=Pkn5JkkEQtCOJiFoLZsXcWmlb7dEhwY6nVFYh28nLoY,83351
1017
+ teradataml/opensource/sklearn/_wrapper_utils.py,sha256=T8ojlibH_EW0MU7CsgCEwmZiGQ9CrABJHZRzeqc9Kz4,12199
1018
+ teradataml/opensource/sklearn/constants.py,sha256=D-XbA8e3VIx2v817aKm9ARsiu49lKBUnofm-3axFU2M,2598
1019
+ teradataml/options/__init__.py,sha256=dERjj_LvmsZen7qUrrv7Lqnmm7qYJo0dN0QJyCSFhtc,5736
1020
+ teradataml/options/configure.py,sha256=hv1CqvIjScryDwPIuM0SHKBC9ZLe-N_fqlQZwqXfc0s,19779
1021
+ teradataml/options/display.py,sha256=_jtBUAx4-K22jVtv_e9-PgvT-z-Pgw1eeuXPCAMZI5o,7962
1022
+ teradataml/plot/__init__.py,sha256=pKzD81TdmCSnrHtWsR2Gt_nyDQzXqAdxydepUQvKl6g,126
1023
+ teradataml/plot/axis.py,sha256=ij9kD4vmY63h--gT0TqRNm07_taVtDY0zE4lg18DFR8,54240
1024
+ teradataml/plot/constants.py,sha256=9EJr_lUlTf77tq30tZSnwgAuk8elzjqAQLsgjXLiYdY,275
1025
+ teradataml/plot/figure.py,sha256=hyGRMfDgDUMeuZJWz8MpHbHMlzMoeIiYQHpMKA364eE,12358
1026
+ teradataml/plot/plot.py,sha256=nSfg0WeCUFn32zMTSW0HwErkodd-Zu6aaBVwO51F2-Y,30826
1027
+ teradataml/plot/query_generator.py,sha256=so8_w73Qday0b5hGUvJNrx9ELkYgXFpwjTUsbjNZvJg,3552
1028
+ teradataml/plot/subplot.py,sha256=c-Npnr5LWb4TUHwfdwzMsZBiti6FunzdFC5EtcuOWjY,10246
1029
+ teradataml/scriptmgmt/UserEnv.py,sha256=WwRdFduF5FrmHEYh8YRQrluJ3_7xXQ6yAsGZqIWw900,176869
1030
+ teradataml/scriptmgmt/__init__.py,sha256=dG0Yef5V3gLu1KasRhBLd6OgdC2NAFqjzJC8BDhark8,185
1031
+ teradataml/scriptmgmt/lls_utils.py,sha256=I7EgE2ljMXhnwPP2o5EKtikFf8_szbgftKt-KzavVw8,74553
1032
+ teradataml/series/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1033
+ teradataml/series/series.py,sha256=nJF6tJmF_rsPHH1kboGrWdTvEUZZFu_JunKSoKnN3tI,17724
1034
+ teradataml/series/series_utils.py,sha256=ufuY8Z5oVB6K3ro23AXaxg6aAjjjEYg4jbAf1_W8aDU,2681
1035
+ teradataml/table_operators/Apply.py,sha256=nTZBx0oP1B3i4_hNndlY1gjCif7fJOJiUKolrJfi0ec,43363
1036
+ teradataml/table_operators/Script.py,sha256=SLQhtfFeasQgBBD6H-SgOg8Nw8LhO9rLfGVeoIkhySM,77197
1037
+ teradataml/table_operators/TableOperator.py,sha256=U2wHTCz4TIGCKnhPcYoAROM9fcqW14U4wRV9rVEPBK0,72180
1038
+ teradataml/table_operators/__init__.py,sha256=MTuTiCyGt7Le4MQ5XEfTyp_9Za-vAIreZhfz9GEAzrU,106
1039
+ teradataml/table_operators/apply_query_generator.py,sha256=41ah294SyyG0tl88h8og7AXOWDzT1Lb1J1GjO0M1swA,12207
1040
+ teradataml/table_operators/query_generator.py,sha256=zuuD47ec7jsTS-O8iNLvsQZcngFdHz5KPoeg9ag3WTs,23002
1041
+ teradataml/table_operators/table_operator_query_generator.py,sha256=0cqOLZRPjW9Q-GpkwJawuIdTFdbw-ui-OKBGgaIIhdg,22340
1042
+ teradataml/table_operators/table_operator_util.py,sha256=b9ndKX6Zz0SQuWiRzvYVKILIFpXX1HwgFtMwAIlhOcE,28404
1043
+ teradataml/table_operators/templates/dataframe_apply.template,sha256=3FiK_nivSf343xlYHfCJA2pn0dycvX_pB0daKBXg64M,8054
1044
+ teradataml/table_operators/templates/dataframe_map.template,sha256=KrTTYj0HFco0Z_mV6FcLvkw-kzngCDw-zhmmTSX0J7k,7683
1045
+ teradataml/table_operators/templates/script_executor.template,sha256=dLqU8z2WXi1BfGppyD3sRdv-oukjrjhO5gr0ClUljI0,6976
1046
+ teradataml/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1047
+ teradataml/utils/dtypes.py,sha256=Wqzi0LcNjkxoFlNARSzv8KbRc0iaxbV7WIeL8N4qhKs,26279
1048
+ teradataml/utils/internal_buffer.py,sha256=ftVgEv_9LUf3CffBNYyJyLPcBtjAPQGbPv5RczFjPGY,2085
1049
+ teradataml/utils/print_versions.py,sha256=m-ByrRZEQkiCmDyaBNknwpE8UhYY1bPPlW3YYHDTrlc,6535
1050
+ teradataml/utils/utils.py,sha256=RDSUXNHNyG4bkgFSa6nGaGRc3W0mHjqX_mx_2vGvizw,17254
1051
+ teradataml/utils/validators.py,sha256=hmv9q9r6ctZI-rNs8QB3_zZ3owLA9tZM1iCKFthp9ac,92474
1052
+ teradataml-20.0.0.1.dist-info/METADATA,sha256=Wz3cuVNzN9S3g8796pmxCwJfLjh0vTdwqGHhEoWdpUY,105532
1053
+ teradataml-20.0.0.1.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1054
+ teradataml-20.0.0.1.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1055
+ teradataml-20.0.0.1.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1056
+ teradataml-20.0.0.1.dist-info/RECORD,,