teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +1935 -1640
- teradataml/__init__.py +70 -60
- teradataml/_version.py +11 -11
- teradataml/analytics/Transformations.py +2995 -2995
- teradataml/analytics/__init__.py +81 -83
- teradataml/analytics/analytic_function_executor.py +2040 -2010
- teradataml/analytics/analytic_query_generator.py +958 -958
- teradataml/analytics/byom/H2OPredict.py +514 -514
- teradataml/analytics/byom/PMMLPredict.py +437 -437
- teradataml/analytics/byom/__init__.py +14 -14
- teradataml/analytics/json_parser/__init__.py +130 -130
- teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
- teradataml/analytics/json_parser/json_store.py +191 -191
- teradataml/analytics/json_parser/metadata.py +1637 -1637
- teradataml/analytics/json_parser/utils.py +798 -803
- teradataml/analytics/meta_class.py +196 -196
- teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
- teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
- teradataml/analytics/sqle/__init__.py +97 -110
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
- teradataml/analytics/table_operator/__init__.py +10 -10
- teradataml/analytics/uaf/__init__.py +63 -63
- teradataml/analytics/utils.py +693 -692
- teradataml/analytics/valib.py +1603 -1600
- teradataml/automl/__init__.py +1683 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +1011 -0
- teradataml/automl/data_transformation.py +789 -0
- teradataml/automl/feature_engineering.py +1580 -0
- teradataml/automl/feature_exploration.py +554 -0
- teradataml/automl/model_evaluation.py +151 -0
- teradataml/automl/model_training.py +1026 -0
- teradataml/catalog/__init__.py +1 -3
- teradataml/catalog/byom.py +1759 -1716
- teradataml/catalog/function_argument_mapper.py +859 -861
- teradataml/catalog/model_cataloging_utils.py +491 -1510
- teradataml/clients/auth_client.py +133 -0
- teradataml/clients/pkce_client.py +481 -481
- teradataml/common/aed_utils.py +7 -2
- teradataml/common/bulk_exposed_utils.py +111 -111
- teradataml/common/constants.py +1438 -1441
- teradataml/common/deprecations.py +160 -0
- teradataml/common/exceptions.py +73 -73
- teradataml/common/formula.py +742 -742
- teradataml/common/garbagecollector.py +597 -635
- teradataml/common/messagecodes.py +424 -431
- teradataml/common/messages.py +228 -231
- teradataml/common/sqlbundle.py +693 -693
- teradataml/common/td_coltype_code_to_tdtype.py +48 -48
- teradataml/common/utils.py +2424 -2500
- teradataml/common/warnings.py +25 -25
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/config/dummy_file1.cfg +4 -4
- teradataml/config/dummy_file2.cfg +2 -2
- teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
- teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
- teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
- teradataml/context/aed_context.py +217 -217
- teradataml/context/context.py +1091 -999
- teradataml/data/A_loan.csv +19 -19
- teradataml/data/BINARY_REALS_LEFT.csv +11 -11
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
- teradataml/data/B_loan.csv +49 -49
- teradataml/data/BuoyData2.csv +17 -17
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
- teradataml/data/Convolve2RealsLeft.csv +5 -5
- teradataml/data/Convolve2RealsRight.csv +5 -5
- teradataml/data/Convolve2ValidLeft.csv +11 -11
- teradataml/data/Convolve2ValidRight.csv +11 -11
- teradataml/data/DFFTConv_Real_8_8.csv +65 -65
- teradataml/data/Orders1_12mf.csv +24 -24
- teradataml/data/Pi_loan.csv +7 -7
- teradataml/data/SMOOTHED_DATA.csv +7 -7
- teradataml/data/TestDFFT8.csv +9 -9
- teradataml/data/TestRiver.csv +109 -109
- teradataml/data/Traindata.csv +28 -28
- teradataml/data/acf.csv +17 -17
- teradataml/data/adaboost_example.json +34 -34
- teradataml/data/adaboostpredict_example.json +24 -24
- teradataml/data/additional_table.csv +10 -10
- teradataml/data/admissions_test.csv +21 -21
- teradataml/data/admissions_train.csv +41 -41
- teradataml/data/admissions_train_nulls.csv +41 -41
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -13
- teradataml/data/ageandpressure.csv +31 -31
- teradataml/data/antiselect_example.json +36 -36
- teradataml/data/antiselect_input.csv +8 -8
- teradataml/data/antiselect_input_mixed_case.csv +8 -8
- teradataml/data/applicant_external.csv +6 -6
- teradataml/data/applicant_reference.csv +6 -6
- teradataml/data/arima_example.json +9 -9
- teradataml/data/assortedtext_input.csv +8 -8
- teradataml/data/attribution_example.json +33 -33
- teradataml/data/attribution_sample_table.csv +27 -27
- teradataml/data/attribution_sample_table1.csv +6 -6
- teradataml/data/attribution_sample_table2.csv +11 -11
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +42 -42
- teradataml/data/bank_web_clicks2.csv +91 -91
- teradataml/data/bank_web_url.csv +85 -85
- teradataml/data/barrier.csv +2 -2
- teradataml/data/barrier_new.csv +3 -3
- teradataml/data/betweenness_example.json +13 -13
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -8
- teradataml/data/bin_fit_ip.csv +3 -3
- teradataml/data/binary_complex_left.csv +11 -11
- teradataml/data/binary_complex_right.csv +11 -11
- teradataml/data/binary_matrix_complex_left.csv +21 -21
- teradataml/data/binary_matrix_complex_right.csv +21 -21
- teradataml/data/binary_matrix_real_left.csv +21 -21
- teradataml/data/binary_matrix_real_right.csv +21 -21
- teradataml/data/blood2ageandweight.csv +26 -26
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -507
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -11
- teradataml/data/burst_data.csv +5 -5
- teradataml/data/burst_example.json +20 -20
- teradataml/data/byom_example.json +17 -17
- teradataml/data/bytes_table.csv +3 -3
- teradataml/data/cal_housing_ex_raw.csv +70 -70
- teradataml/data/callers.csv +7 -7
- teradataml/data/calls.csv +10 -10
- teradataml/data/cars_hist.csv +33 -33
- teradataml/data/cat_table.csv +24 -24
- teradataml/data/ccm_example.json +31 -31
- teradataml/data/ccm_input.csv +91 -91
- teradataml/data/ccm_input2.csv +13 -13
- teradataml/data/ccmexample.csv +101 -101
- teradataml/data/ccmprepare_example.json +8 -8
- teradataml/data/ccmprepare_input.csv +91 -91
- teradataml/data/cfilter_example.json +12 -12
- teradataml/data/changepointdetection_example.json +18 -18
- teradataml/data/changepointdetectionrt_example.json +8 -8
- teradataml/data/chi_sq.csv +2 -2
- teradataml/data/churn_data.csv +14 -14
- teradataml/data/churn_emission.csv +35 -35
- teradataml/data/churn_initial.csv +3 -3
- teradataml/data/churn_state_transition.csv +5 -5
- teradataml/data/citedges_2.csv +745 -745
- teradataml/data/citvertices_2.csv +1210 -1210
- teradataml/data/clicks2.csv +16 -16
- teradataml/data/clickstream.csv +12 -12
- teradataml/data/clickstream1.csv +11 -11
- teradataml/data/closeness_example.json +15 -15
- teradataml/data/complaints.csv +21 -21
- teradataml/data/complaints_mini.csv +3 -3
- teradataml/data/complaints_testtoken.csv +224 -224
- teradataml/data/complaints_tokens_test.csv +353 -353
- teradataml/data/complaints_traintoken.csv +472 -472
- teradataml/data/computers_category.csv +1001 -1001
- teradataml/data/computers_test1.csv +1252 -1252
- teradataml/data/computers_train1.csv +5009 -5009
- teradataml/data/computers_train1_clustered.csv +5009 -5009
- teradataml/data/confusionmatrix_example.json +9 -9
- teradataml/data/conversion_event_table.csv +3 -3
- teradataml/data/corr_input.csv +17 -17
- teradataml/data/correlation_example.json +11 -11
- teradataml/data/coxhazardratio_example.json +39 -39
- teradataml/data/coxph_example.json +15 -15
- teradataml/data/coxsurvival_example.json +28 -28
- teradataml/data/cpt.csv +41 -41
- teradataml/data/credit_ex_merged.csv +45 -45
- teradataml/data/customer_loyalty.csv +301 -301
- teradataml/data/customer_loyalty_newseq.csv +31 -31
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +146 -146
- teradataml/data/decisionforest_example.json +37 -37
- teradataml/data/decisionforestpredict_example.json +38 -38
- teradataml/data/decisiontree_example.json +21 -21
- teradataml/data/decisiontreepredict_example.json +45 -45
- teradataml/data/dfft2_size4_real.csv +17 -17
- teradataml/data/dfft2_test_matrix16.csv +17 -17
- teradataml/data/dfft2conv_real_4_4.csv +65 -65
- teradataml/data/diabetes.csv +443 -443
- teradataml/data/diabetes_test.csv +89 -89
- teradataml/data/dict_table.csv +5 -5
- teradataml/data/docperterm_table.csv +4 -4
- teradataml/data/docs/__init__.py +1 -1
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
- teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
- teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
- teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
- teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
- teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
- teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
- teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
- teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
- teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
- teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
- teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
- teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
- teradataml/data/dtw_example.json +17 -17
- teradataml/data/dtw_t1.csv +11 -11
- teradataml/data/dtw_t2.csv +4 -4
- teradataml/data/dwt2d_example.json +15 -15
- teradataml/data/dwt_example.json +14 -14
- teradataml/data/dwt_filter_dim.csv +5 -5
- teradataml/data/emission.csv +9 -9
- teradataml/data/emp_table_by_dept.csv +19 -19
- teradataml/data/employee_info.csv +4 -4
- teradataml/data/employee_table.csv +6 -6
- teradataml/data/excluding_event_table.csv +2 -2
- teradataml/data/finance_data.csv +6 -6
- teradataml/data/finance_data2.csv +61 -61
- teradataml/data/finance_data3.csv +93 -93
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -26
- teradataml/data/fmeasure_example.json +11 -11
- teradataml/data/followers_leaders.csv +10 -10
- teradataml/data/fpgrowth_example.json +12 -12
- teradataml/data/frequentpaths_example.json +29 -29
- teradataml/data/friends.csv +9 -9
- teradataml/data/fs_input.csv +33 -33
- teradataml/data/fs_input1.csv +33 -33
- teradataml/data/genData.csv +513 -513
- teradataml/data/geodataframe_example.json +39 -39
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -12
- teradataml/data/glm_example.json +56 -29
- teradataml/data/glml1l2_example.json +28 -28
- teradataml/data/glml1l2predict_example.json +54 -54
- teradataml/data/glmpredict_example.json +54 -54
- teradataml/data/gq_t1.csv +21 -21
- teradataml/data/hconvolve_complex_right.csv +5 -5
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
- teradataml/data/histogram_example.json +11 -11
- teradataml/data/hmmdecoder_example.json +78 -78
- teradataml/data/hmmevaluator_example.json +24 -24
- teradataml/data/hmmsupervised_example.json +10 -10
- teradataml/data/hmmunsupervised_example.json +7 -7
- teradataml/data/house_values.csv +12 -12
- teradataml/data/house_values2.csv +13 -13
- teradataml/data/housing_cat.csv +7 -7
- teradataml/data/housing_data.csv +9 -9
- teradataml/data/housing_test.csv +47 -47
- teradataml/data/housing_test_binary.csv +47 -47
- teradataml/data/housing_train.csv +493 -493
- teradataml/data/housing_train_attribute.csv +4 -4
- teradataml/data/housing_train_binary.csv +437 -437
- teradataml/data/housing_train_parameter.csv +2 -2
- teradataml/data/housing_train_response.csv +493 -493
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -370
- teradataml/data/ibm_stock1.csv +370 -370
- teradataml/data/identitymatch_example.json +21 -21
- teradataml/data/idf_table.csv +4 -4
- teradataml/data/impressions.csv +101 -101
- teradataml/data/inflation.csv +21 -21
- teradataml/data/initial.csv +3 -3
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +12 -12
- teradataml/data/insurance.csv +1339 -1339
- teradataml/data/interpolator_example.json +12 -12
- teradataml/data/iris_altinput.csv +481 -481
- teradataml/data/iris_attribute_output.csv +8 -8
- teradataml/data/iris_attribute_test.csv +121 -121
- teradataml/data/iris_attribute_train.csv +481 -481
- teradataml/data/iris_category_expect_predict.csv +31 -31
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -151
- teradataml/data/iris_response_train.csv +121 -121
- teradataml/data/iris_test.csv +31 -31
- teradataml/data/iris_train.csv +121 -121
- teradataml/data/join_table1.csv +4 -4
- teradataml/data/join_table2.csv +4 -4
- teradataml/data/jsons/anly_function_name.json +6 -6
- teradataml/data/jsons/byom/dataikupredict.json +147 -147
- teradataml/data/jsons/byom/datarobotpredict.json +146 -146
- teradataml/data/jsons/byom/h2opredict.json +194 -194
- teradataml/data/jsons/byom/onnxpredict.json +186 -186
- teradataml/data/jsons/byom/pmmlpredict.json +146 -146
- teradataml/data/jsons/paired_functions.json +435 -435
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
- teradataml/data/kmeans_example.json +22 -17
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +0 -0
- teradataml/data/knn_example.json +18 -18
- teradataml/data/knnrecommender_example.json +6 -6
- teradataml/data/knnrecommenderpredict_example.json +12 -12
- teradataml/data/lar_example.json +17 -17
- teradataml/data/larpredict_example.json +30 -30
- teradataml/data/lc_new_predictors.csv +5 -5
- teradataml/data/lc_new_reference.csv +9 -9
- teradataml/data/lda_example.json +8 -8
- teradataml/data/ldainference_example.json +14 -14
- teradataml/data/ldatopicsummary_example.json +8 -8
- teradataml/data/levendist_input.csv +13 -13
- teradataml/data/levenshteindistance_example.json +10 -10
- teradataml/data/linreg_example.json +9 -9
- teradataml/data/load_example_data.py +326 -323
- teradataml/data/loan_prediction.csv +295 -295
- teradataml/data/lungcancer.csv +138 -138
- teradataml/data/mappingdata.csv +12 -12
- teradataml/data/milk_timeseries.csv +157 -157
- teradataml/data/min_max_titanic.csv +4 -4
- teradataml/data/minhash_example.json +6 -6
- teradataml/data/ml_ratings.csv +7547 -7547
- teradataml/data/ml_ratings_10.csv +2445 -2445
- teradataml/data/model1_table.csv +5 -5
- teradataml/data/model2_table.csv +5 -5
- teradataml/data/models/iris_db_glm_model.pmml +56 -56
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
- teradataml/data/modularity_example.json +12 -12
- teradataml/data/movavg_example.json +7 -7
- teradataml/data/mtx1.csv +7 -7
- teradataml/data/mtx2.csv +13 -13
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -9
- teradataml/data/naivebayes_example.json +9 -9
- teradataml/data/naivebayespredict_example.json +19 -19
- teradataml/data/naivebayestextclassifier2_example.json +6 -6
- teradataml/data/naivebayestextclassifier_example.json +8 -8
- teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
- teradataml/data/name_Find_configure.csv +10 -10
- teradataml/data/namedentityfinder_example.json +14 -14
- teradataml/data/namedentityfinderevaluator_example.json +10 -10
- teradataml/data/namedentityfindertrainer_example.json +6 -6
- teradataml/data/nb_iris_input_test.csv +31 -31
- teradataml/data/nb_iris_input_train.csv +121 -121
- teradataml/data/nbp_iris_model.csv +13 -13
- teradataml/data/ner_extractor_text.csv +2 -2
- teradataml/data/ner_sports_test2.csv +29 -29
- teradataml/data/ner_sports_train.csv +501 -501
- teradataml/data/nerevaluator_example.json +5 -5
- teradataml/data/nerextractor_example.json +18 -18
- teradataml/data/nermem_sports_test.csv +17 -17
- teradataml/data/nermem_sports_train.csv +50 -50
- teradataml/data/nertrainer_example.json +6 -6
- teradataml/data/ngrams_example.json +6 -6
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
- teradataml/data/npath_example.json +23 -23
- teradataml/data/ntree_example.json +14 -14
- teradataml/data/numeric_strings.csv +4 -4
- teradataml/data/numerics.csv +4 -4
- teradataml/data/ocean_buoy.csv +17 -17
- teradataml/data/ocean_buoy2.csv +17 -17
- teradataml/data/ocean_buoys.csv +27 -27
- teradataml/data/ocean_buoys2.csv +10 -10
- teradataml/data/ocean_buoys_nonpti.csv +28 -28
- teradataml/data/ocean_buoys_seq.csv +29 -29
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -4
- teradataml/data/orders1.csv +11 -11
- teradataml/data/orders1_12.csv +12 -12
- teradataml/data/orders_ex.csv +4 -4
- teradataml/data/pack_example.json +8 -8
- teradataml/data/package_tracking.csv +19 -19
- teradataml/data/package_tracking_pti.csv +18 -18
- teradataml/data/pagerank_example.json +13 -13
- teradataml/data/paragraphs_input.csv +6 -6
- teradataml/data/pathanalyzer_example.json +7 -7
- teradataml/data/pathgenerator_example.json +7 -7
- teradataml/data/phrases.csv +7 -7
- teradataml/data/pivot_example.json +8 -8
- teradataml/data/pivot_input.csv +22 -22
- teradataml/data/playerRating.csv +31 -31
- teradataml/data/postagger_example.json +6 -6
- teradataml/data/posttagger_output.csv +44 -44
- teradataml/data/production_data.csv +16 -16
- teradataml/data/production_data2.csv +7 -7
- teradataml/data/randomsample_example.json +31 -31
- teradataml/data/randomwalksample_example.json +8 -8
- teradataml/data/rank_table.csv +6 -6
- teradataml/data/ref_mobile_data.csv +4 -4
- teradataml/data/ref_mobile_data_dense.csv +2 -2
- teradataml/data/ref_url.csv +17 -17
- teradataml/data/restaurant_reviews.csv +7 -7
- teradataml/data/river_data.csv +145 -145
- teradataml/data/roc_example.json +7 -7
- teradataml/data/roc_input.csv +101 -101
- teradataml/data/rule_inputs.csv +6 -6
- teradataml/data/rule_table.csv +2 -2
- teradataml/data/sales.csv +7 -7
- teradataml/data/sales_transaction.csv +501 -501
- teradataml/data/salesdata.csv +342 -342
- teradataml/data/sample_cities.csv +2 -2
- teradataml/data/sample_shapes.csv +10 -10
- teradataml/data/sample_streets.csv +2 -2
- teradataml/data/sampling_example.json +15 -15
- teradataml/data/sax_example.json +8 -8
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -23
- teradataml/data/scale_housing.csv +11 -11
- teradataml/data/scale_housing_test.csv +6 -6
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -11
- teradataml/data/scalebypartition_example.json +13 -13
- teradataml/data/scalemap_example.json +13 -13
- teradataml/data/scalesummary_example.json +12 -12
- teradataml/data/score_category.csv +101 -101
- teradataml/data/score_summary.csv +4 -4
- teradataml/data/script_example.json +9 -9
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +15 -15
- teradataml/data/scripts/mapper_replace.py +15 -15
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
- teradataml/data/seeds.csv +10 -10
- teradataml/data/sentenceextractor_example.json +6 -6
- teradataml/data/sentiment_extract_input.csv +11 -11
- teradataml/data/sentiment_train.csv +16 -16
- teradataml/data/sentiment_word.csv +20 -20
- teradataml/data/sentiment_word_input.csv +19 -19
- teradataml/data/sentimentextractor_example.json +24 -24
- teradataml/data/sentimenttrainer_example.json +8 -8
- teradataml/data/sequence_table.csv +10 -10
- teradataml/data/seriessplitter_example.json +7 -7
- teradataml/data/sessionize_example.json +17 -17
- teradataml/data/sessionize_table.csv +116 -116
- teradataml/data/setop_test1.csv +24 -24
- teradataml/data/setop_test2.csv +22 -22
- teradataml/data/soc_nw_edges.csv +10 -10
- teradataml/data/soc_nw_vertices.csv +7 -7
- teradataml/data/souvenir_timeseries.csv +167 -167
- teradataml/data/sparse_iris_attribute.csv +5 -5
- teradataml/data/sparse_iris_test.csv +121 -121
- teradataml/data/sparse_iris_train.csv +601 -601
- teradataml/data/star1.csv +6 -6
- teradataml/data/state_transition.csv +5 -5
- teradataml/data/stock_data.csv +53 -53
- teradataml/data/stock_movement.csv +11 -11
- teradataml/data/stock_vol.csv +76 -76
- teradataml/data/stop_words.csv +8 -8
- teradataml/data/store_sales.csv +37 -37
- teradataml/data/stringsimilarity_example.json +7 -7
- teradataml/data/strsimilarity_input.csv +13 -13
- teradataml/data/students.csv +101 -101
- teradataml/data/svm_iris_input_test.csv +121 -121
- teradataml/data/svm_iris_input_train.csv +481 -481
- teradataml/data/svm_iris_model.csv +7 -7
- teradataml/data/svmdense_example.json +9 -9
- teradataml/data/svmdensepredict_example.json +18 -18
- teradataml/data/svmsparse_example.json +7 -7
- teradataml/data/svmsparsepredict_example.json +13 -13
- teradataml/data/svmsparsesummary_example.json +7 -7
- teradataml/data/target_mobile_data.csv +13 -13
- teradataml/data/target_mobile_data_dense.csv +5 -5
- teradataml/data/templatedata.csv +1201 -1201
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +150 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -53
- teradataml/data/test_pacf_12.csv +37 -37
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -109
- teradataml/data/text_inputs.csv +6 -6
- teradataml/data/textchunker_example.json +7 -7
- teradataml/data/textclassifier_example.json +6 -6
- teradataml/data/textclassifier_input.csv +7 -7
- teradataml/data/textclassifiertrainer_example.json +6 -6
- teradataml/data/textmorph_example.json +5 -5
- teradataml/data/textparser_example.json +15 -15
- teradataml/data/texttagger_example.json +11 -11
- teradataml/data/texttokenizer_example.json +6 -6
- teradataml/data/texttrainer_input.csv +11 -11
- teradataml/data/tf_example.json +6 -6
- teradataml/data/tfidf_example.json +13 -13
- teradataml/data/tfidf_input1.csv +201 -201
- teradataml/data/tfidf_train.csv +6 -6
- teradataml/data/time_table1.csv +535 -535
- teradataml/data/time_table2.csv +14 -14
- teradataml/data/timeseriesdata.csv +1601 -1601
- teradataml/data/timeseriesdatasetsd4.csv +105 -105
- teradataml/data/titanic.csv +892 -892
- teradataml/data/token_table.csv +696 -696
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +27 -27
- teradataml/data/transformation_table.csv +5 -5
- teradataml/data/transformation_table_new.csv +1 -1
- teradataml/data/tv_spots.csv +16 -16
- teradataml/data/twod_climate_data.csv +117 -117
- teradataml/data/uaf_example.json +475 -475
- teradataml/data/univariatestatistics_example.json +8 -8
- teradataml/data/unpack_example.json +9 -9
- teradataml/data/unpivot_example.json +9 -9
- teradataml/data/unpivot_input.csv +8 -8
- teradataml/data/us_air_pass.csv +36 -36
- teradataml/data/us_population.csv +624 -624
- teradataml/data/us_states_shapes.csv +52 -52
- teradataml/data/varmax_example.json +17 -17
- teradataml/data/vectordistance_example.json +25 -25
- teradataml/data/ville_climatedata.csv +121 -121
- teradataml/data/ville_tempdata.csv +12 -12
- teradataml/data/ville_tempdata1.csv +12 -12
- teradataml/data/ville_temperature.csv +11 -11
- teradataml/data/waveletTable.csv +1605 -1605
- teradataml/data/waveletTable2.csv +1605 -1605
- teradataml/data/weightedmovavg_example.json +8 -8
- teradataml/data/wft_testing.csv +5 -5
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +5 -5
- teradataml/data/word_embed_input_table2.csv +4 -4
- teradataml/data/word_embed_model.csv +22 -22
- teradataml/data/words_input.csv +13 -13
- teradataml/data/xconvolve_complex_left.csv +6 -6
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
- teradataml/data/xgboost_example.json +35 -35
- teradataml/data/xgboostpredict_example.json +31 -31
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +1769 -1698
- teradataml/dataframe/data_transfer.py +2812 -2745
- teradataml/dataframe/dataframe.py +17630 -16946
- teradataml/dataframe/dataframe_utils.py +1875 -1740
- teradataml/dataframe/fastload.py +794 -603
- teradataml/dataframe/indexer.py +424 -424
- teradataml/dataframe/setop.py +1179 -1166
- teradataml/dataframe/sql.py +10174 -6432
- teradataml/dataframe/sql_function_parameters.py +439 -388
- teradataml/dataframe/sql_functions.py +652 -652
- teradataml/dataframe/sql_interfaces.py +220 -220
- teradataml/dataframe/vantage_function_types.py +674 -630
- teradataml/dataframe/window.py +693 -692
- teradataml/dbutils/__init__.py +3 -3
- teradataml/dbutils/dbutils.py +1167 -1150
- teradataml/dbutils/filemgr.py +267 -267
- teradataml/gen_ai/__init__.py +2 -2
- teradataml/gen_ai/convAI.py +472 -472
- teradataml/geospatial/__init__.py +3 -3
- teradataml/geospatial/geodataframe.py +1105 -1094
- teradataml/geospatial/geodataframecolumn.py +392 -387
- teradataml/geospatial/geometry_types.py +925 -925
- teradataml/hyperparameter_tuner/__init__.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
- teradataml/hyperparameter_tuner/utils.py +281 -187
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +130 -124
- teradataml/options/configure.py +358 -336
- teradataml/options/display.py +176 -176
- teradataml/plot/__init__.py +2 -2
- teradataml/plot/axis.py +1388 -1388
- teradataml/plot/constants.py +15 -15
- teradataml/plot/figure.py +398 -398
- teradataml/plot/plot.py +760 -760
- teradataml/plot/query_generator.py +83 -83
- teradataml/plot/subplot.py +216 -216
- teradataml/scriptmgmt/UserEnv.py +3791 -3761
- teradataml/scriptmgmt/__init__.py +3 -3
- teradataml/scriptmgmt/lls_utils.py +1719 -1604
- teradataml/series/series.py +532 -532
- teradataml/series/series_utils.py +71 -71
- teradataml/table_operators/Apply.py +949 -917
- teradataml/table_operators/Script.py +1718 -1982
- teradataml/table_operators/TableOperator.py +1255 -1616
- teradataml/table_operators/__init__.py +2 -3
- teradataml/table_operators/apply_query_generator.py +262 -262
- teradataml/table_operators/query_generator.py +507 -507
- teradataml/table_operators/table_operator_query_generator.py +460 -460
- teradataml/table_operators/table_operator_util.py +631 -639
- teradataml/table_operators/templates/dataframe_apply.template +184 -184
- teradataml/table_operators/templates/dataframe_map.template +176 -176
- teradataml/table_operators/templates/script_executor.template +170 -170
- teradataml/utils/dtypes.py +684 -684
- teradataml/utils/internal_buffer.py +84 -84
- teradataml/utils/print_versions.py +205 -205
- teradataml/utils/utils.py +410 -410
- teradataml/utils/validators.py +2277 -2115
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
- teradataml-20.0.0.1.dist-info/RECORD +1056 -0
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- teradataml-17.20.0.7.dist-info/RECORD +0 -1280
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
|
@@ -1,799 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Sanath Vobilisetty (sanath.vobilisetty@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.14
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.options.configure import configure
|
|
30
|
-
from teradataml.analytics.mle.NaiveBayesTextClassifier import NaiveBayesTextClassifier
|
|
31
|
-
from teradataml.analytics.mle.NaiveBayesTextClassifier2 import NaiveBayesTextClassifier2
|
|
32
|
-
|
|
33
|
-
class NaiveBayesTextClassifierPredict:
|
|
34
|
-
|
|
35
|
-
def __init__(self,
|
|
36
|
-
object = None,
|
|
37
|
-
newdata = None,
|
|
38
|
-
input_token_column = None,
|
|
39
|
-
doc_id_columns = None,
|
|
40
|
-
model_type = "MULTINOMIAL",
|
|
41
|
-
top_k = None,
|
|
42
|
-
model_token_column = None,
|
|
43
|
-
model_category_column = None,
|
|
44
|
-
model_prob_column = None,
|
|
45
|
-
terms = None,
|
|
46
|
-
output_responses = None,
|
|
47
|
-
output_prob = False,
|
|
48
|
-
newdata_sequence_column = None,
|
|
49
|
-
object_sequence_column = None,
|
|
50
|
-
newdata_partition_column = None,
|
|
51
|
-
newdata_order_column = None,
|
|
52
|
-
object_order_column = None,
|
|
53
|
-
stopwords = None,
|
|
54
|
-
is_tokenized = True,
|
|
55
|
-
convert_to_lower_case = False,
|
|
56
|
-
stem_tokens = True,
|
|
57
|
-
stopwords_sequence_column = None,
|
|
58
|
-
stopwords_order_column = None):
|
|
59
|
-
"""
|
|
60
|
-
DESCRIPTION:
|
|
61
|
-
The NaiveBayesTextClassifierPredict function uses the model
|
|
62
|
-
teradataml DataFrame generated by the NaiveBayesTextClassifier or
|
|
63
|
-
NaiveBayesTextClassifier2 function to predict outcomes for test data.
|
|
64
|
-
Test data can be in the form of either documents or tokens.
|
|
65
|
-
|
|
66
|
-
Note:
|
|
67
|
-
1. This function is available only when teradataml is connected to
|
|
68
|
-
Vantage 1.1 or later versions.
|
|
69
|
-
2. Teradata recommends to use NaiveBayesTextClassifier function when
|
|
70
|
-
teradataml is connected to Vantage 1.1.1 or earlier versions.
|
|
71
|
-
3. Teradata recommends to use NaiveBayesTextClassifier2 function when
|
|
72
|
-
teradataml is connected to Vantage 1.3 or later versions.
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
PARAMETERS:
|
|
76
|
-
object:
|
|
77
|
-
Required Argument.
|
|
78
|
-
Specifies the teradataml DataFrame containing the model data
|
|
79
|
-
or instance of NaiveBayesTextClassifier or NaiveBayesTextClassifier2,
|
|
80
|
-
which contains the model.
|
|
81
|
-
|
|
82
|
-
object_order_column:
|
|
83
|
-
Optional Argument.
|
|
84
|
-
Specifies Order By columns for "object".
|
|
85
|
-
Values to this argument can be provided as a list, if multiple
|
|
86
|
-
columns are used for ordering.
|
|
87
|
-
Types: str OR list of Strings (str)
|
|
88
|
-
|
|
89
|
-
newdata:
|
|
90
|
-
Required Argument.
|
|
91
|
-
Specifies the teradataml DataFrame containing the input test
|
|
92
|
-
data.
|
|
93
|
-
|
|
94
|
-
newdata_partition_column:
|
|
95
|
-
Required Argument.
|
|
96
|
-
Specifies Partition By columns for "newdata".
|
|
97
|
-
Values to this argument can be provided as a list, if multiple
|
|
98
|
-
columns are used for partitioning.
|
|
99
|
-
Types: str OR list of Strings (str)
|
|
100
|
-
|
|
101
|
-
newdata_order_column:
|
|
102
|
-
Optional Argument.
|
|
103
|
-
Specifies Order By columns for "newdata".
|
|
104
|
-
Values to this argument can be provided as a list, if multiple
|
|
105
|
-
columns are used for ordering.
|
|
106
|
-
Types: str OR list of Strings (str)
|
|
107
|
-
|
|
108
|
-
input_token_column:
|
|
109
|
-
Required Argument.
|
|
110
|
-
Specifies the name of the column in the input argument "newdata"
|
|
111
|
-
that contains the texts or tokens.
|
|
112
|
-
Types: str
|
|
113
|
-
|
|
114
|
-
doc_id_columns:
|
|
115
|
-
Optional Argument. Required if teradataml is connected to
|
|
116
|
-
Vantage 1.1.1 or earlier version.
|
|
117
|
-
Specifies the names of the columns in the input argument
|
|
118
|
-
"newdata" that contain the document identifier.
|
|
119
|
-
Types: str OR list of Strings (str)
|
|
120
|
-
|
|
121
|
-
model_type:
|
|
122
|
-
Optional Argument.
|
|
123
|
-
Specifies the model type of the text classifier.
|
|
124
|
-
Default Value: "MULTINOMIAL"
|
|
125
|
-
Permitted Values: MULTINOMIAL, BERNOULLI
|
|
126
|
-
Types: str
|
|
127
|
-
|
|
128
|
-
top_k:
|
|
129
|
-
Optional Argument.
|
|
130
|
-
Specifies the number of most likely prediction categories to output
|
|
131
|
-
with their log-likelihood values (for example, the top 10 most
|
|
132
|
-
likely prediction categories). The default is all prediction
|
|
133
|
-
categories.
|
|
134
|
-
Note:
|
|
135
|
-
"top_k" cannot be specified along with "output_responses".
|
|
136
|
-
Types: int
|
|
137
|
-
|
|
138
|
-
model_token_column:
|
|
139
|
-
Optional Argument.
|
|
140
|
-
Specifies the name of the column in the argument "object" that
|
|
141
|
-
contains the tokens. The default value is the first column of
|
|
142
|
-
the model.
|
|
143
|
-
Note:
|
|
144
|
-
This argument must be specified along with "model_category_column"
|
|
145
|
-
and "model_prob_column".
|
|
146
|
-
Types: str
|
|
147
|
-
|
|
148
|
-
model_category_column:
|
|
149
|
-
Optional Argument.
|
|
150
|
-
Specifies the name of the column in the argument "object"
|
|
151
|
-
that contains the prediction categories. The default value is
|
|
152
|
-
the second column of the model.
|
|
153
|
-
Note:
|
|
154
|
-
This argument must be specified along with "model_token_column"
|
|
155
|
-
and "model_prob_column".
|
|
156
|
-
Types: str
|
|
157
|
-
|
|
158
|
-
model_prob_column:
|
|
159
|
-
Optional Argument.
|
|
160
|
-
Specifies the name of the column in the argument "object" that
|
|
161
|
-
contains the token counts. The default value is the third
|
|
162
|
-
column of the model.
|
|
163
|
-
Note:
|
|
164
|
-
This argument must be specified along with "model_token_column"
|
|
165
|
-
and "model_category_column".
|
|
166
|
-
Types: str
|
|
167
|
-
|
|
168
|
-
output_prob:
|
|
169
|
-
Optional Argument.
|
|
170
|
-
Specifies whether to output probabilities.
|
|
171
|
-
Default Value: False
|
|
172
|
-
Types: bool
|
|
173
|
-
|
|
174
|
-
terms:
|
|
175
|
-
Optional Argument.
|
|
176
|
-
Specifies the names of the input teradataml DataFrame columns to copy
|
|
177
|
-
to the output teradataml DataFrame.
|
|
178
|
-
Types: str OR list of Strings (str)
|
|
179
|
-
|
|
180
|
-
output_responses:
|
|
181
|
-
Optional Argument.
|
|
182
|
-
Specifies a list of output_responses to output.
|
|
183
|
-
Note:
|
|
184
|
-
1. "output_responses" argument support is only available when teradataml
|
|
185
|
-
is connected to Vantage 1.1.1 or later versions.
|
|
186
|
-
2. "output_responses" cannot be specified along with "top_k".
|
|
187
|
-
Types: str OR list of Strings (str)
|
|
188
|
-
|
|
189
|
-
newdata_sequence_column:
|
|
190
|
-
Optional Argument.
|
|
191
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
192
|
-
the input argument "newdata". The argument is used to ensure
|
|
193
|
-
deterministic results for functions which produce results that vary
|
|
194
|
-
from run to run.
|
|
195
|
-
Types: str OR list of Strings (str)
|
|
196
|
-
|
|
197
|
-
object_sequence_column:
|
|
198
|
-
Optional Argument.
|
|
199
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
200
|
-
the input argument "object". The argument is used to ensure
|
|
201
|
-
deterministic results for functions which produce results that vary
|
|
202
|
-
from run to run.
|
|
203
|
-
Types: str OR list of Strings (str)
|
|
204
|
-
|
|
205
|
-
stopwords:
|
|
206
|
-
Optional Argument when "is_tokenized" is 'False', disallowed otherwise.
|
|
207
|
-
Specifies the teradataml DataFrame defining the stop words.
|
|
208
|
-
Note:
|
|
209
|
-
"stopwords" argument support is only available when teradataml
|
|
210
|
-
is connected to Vantage 1.3 or later versions.
|
|
211
|
-
|
|
212
|
-
stopwords_order_column:
|
|
213
|
-
Optional Argument.
|
|
214
|
-
Specifies Order By columns for "stopwords".
|
|
215
|
-
Values to this argument can be provided as a list, if multiple
|
|
216
|
-
columns are used for ordering.
|
|
217
|
-
Note:
|
|
218
|
-
"stopwords_order_column" argument support is only available when
|
|
219
|
-
teradataml is connected to Vantage 1.3 or later versions.
|
|
220
|
-
Types: str OR list of Strings (str)
|
|
221
|
-
|
|
222
|
-
is_tokenized:
|
|
223
|
-
Optional Argument.
|
|
224
|
-
Specifies whether the input data is tokenized or not.
|
|
225
|
-
When it is set to 'True', input data is tokenized, otherwise input data
|
|
226
|
-
is not tokenized and will be tokenized internally.
|
|
227
|
-
Note:
|
|
228
|
-
"is_tokenized" argument support is only available when teradataml
|
|
229
|
-
is connected to Vantage 1.3 or later versions.
|
|
230
|
-
Default Value: True
|
|
231
|
-
Types: bool
|
|
232
|
-
|
|
233
|
-
convert_to_lower_case:
|
|
234
|
-
Optional Argument when "is_tokenized" is 'False', disallowed otherwise.
|
|
235
|
-
Specifies whether to convert all letters in the input text to lowercase.
|
|
236
|
-
value "true".
|
|
237
|
-
Note:
|
|
238
|
-
"convert_to_lower_case" argument support is only available when
|
|
239
|
-
teradataml is connected to Vantage 1.3 or later versions.
|
|
240
|
-
Default Value: False
|
|
241
|
-
Types: bool
|
|
242
|
-
|
|
243
|
-
stem_tokens:
|
|
244
|
-
Optional Argument when "is_tokenized" is 'False', disallowed otherwise.
|
|
245
|
-
Specifies whether to stem the tokens as part of text tokenization.
|
|
246
|
-
Note:
|
|
247
|
-
"stem_tokens" argument support is only available when teradataml
|
|
248
|
-
is connected to Vantage 1.3 or later versions.
|
|
249
|
-
Default Value: True
|
|
250
|
-
Types: bool
|
|
251
|
-
|
|
252
|
-
stopwords_sequence_column:
|
|
253
|
-
Optional Argument.
|
|
254
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
255
|
-
the input argument "stopwords". The argument is used to ensure
|
|
256
|
-
deterministic results for functions which produce results that vary
|
|
257
|
-
from run to run.
|
|
258
|
-
Note:
|
|
259
|
-
"stopwords_sequence_column" argument support is only available when
|
|
260
|
-
teradataml is connected to Vantage 1.3 or later versions.
|
|
261
|
-
Types: str OR list of Strings (str)
|
|
262
|
-
|
|
263
|
-
RETURNS:
|
|
264
|
-
Instance of NaiveBayesTextClassifierPredict.
|
|
265
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
266
|
-
references, such as
|
|
267
|
-
NaiveBayesTextClassifierPredictObj.<attribute_name>.
|
|
268
|
-
Output teradataml DataFrame attribute name is:
|
|
269
|
-
result
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
RAISES:
|
|
273
|
-
TeradataMlException, TypeError, ValueError
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
EXAMPLES:
|
|
277
|
-
# Load the data to run the example.
|
|
278
|
-
load_example_data("NaiveBayesTextClassifierPredict",["complaints_tokens_test","token_table",
|
|
279
|
-
"complaints","complaints_mini"])
|
|
280
|
-
|
|
281
|
-
# Create teradataml DataFrame.
|
|
282
|
-
token_table = DataFrame("token_table")
|
|
283
|
-
complaints_tokens_test = DataFrame("complaints_tokens_test")
|
|
284
|
-
complaints = DataFrame("complaints")
|
|
285
|
-
complaints_mini = DataFrame("complaints_mini")
|
|
286
|
-
|
|
287
|
-
# Example 1 -
|
|
288
|
-
# We will try to predict the 'tokens' for the complaints_tokens_test
|
|
289
|
-
# represented by the data points in the train data (token_table).
|
|
290
|
-
# Run NaiveBayesTextClassifier on the train data.
|
|
291
|
-
nbt_out = NaiveBayesTextClassifier(data = token_table,
|
|
292
|
-
token_column = 'token',
|
|
293
|
-
doc_id_columns = 'doc_id',
|
|
294
|
-
doc_category_column = 'category',
|
|
295
|
-
model_type = "Bernoulli",
|
|
296
|
-
data_partition_column = 'category')
|
|
297
|
-
|
|
298
|
-
# Use the generated model to predict the 'tokens' on the test data
|
|
299
|
-
# complaints_tokens_test by using nbt_out model which is
|
|
300
|
-
# generated by NaiveBayesTextClassifier.
|
|
301
|
-
|
|
302
|
-
nbt_predict_out1 = NaiveBayesTextClassifierPredict(object = nbt_out,
|
|
303
|
-
newdata = complaints_tokens_test,
|
|
304
|
-
input_token_column = 'token',
|
|
305
|
-
doc_id_columns = 'doc_id',
|
|
306
|
-
model_type = "Bernoulli",
|
|
307
|
-
model_token_column = 'token',
|
|
308
|
-
model_category_column = 'category',
|
|
309
|
-
model_prob_column = 'prob',
|
|
310
|
-
newdata_partition_column = 'doc_id')
|
|
311
|
-
|
|
312
|
-
# Print the result DataFrame.
|
|
313
|
-
print(nbt_predict_out1.result)
|
|
314
|
-
|
|
315
|
-
# Example 2 - "top_k" specified and "is_tokenized" set to 'False'
|
|
316
|
-
# We will try to predict the 'documents' for the complaints_test
|
|
317
|
-
# represented by the data points in the train data (complaints).
|
|
318
|
-
# Run NaiveBayesTextClassifier2 on the train data.
|
|
319
|
-
# Note:
|
|
320
|
-
# This Example will work only when teradataml is connected
|
|
321
|
-
# to Vantage 1.3 or later.
|
|
322
|
-
nbtct2_out = NaiveBayesTextClassifier2(data=complaints,
|
|
323
|
-
doc_category_column='category',
|
|
324
|
-
text_column='text_data',
|
|
325
|
-
doc_id_column='doc_id',
|
|
326
|
-
model_type='BERNOULLI',
|
|
327
|
-
is_tokenized=False
|
|
328
|
-
)
|
|
329
|
-
|
|
330
|
-
# Use the generated model to predict the 'documents' on the test data
|
|
331
|
-
# complaints_test by using Bernoulli model nbtct2_out which is
|
|
332
|
-
# generated by NaiveBayesTextClassifier2.
|
|
333
|
-
|
|
334
|
-
nbt_predict_out2 = NaiveBayesTextClassifierPredict(object = nbtct2_out,
|
|
335
|
-
newdata = complaints_mini,
|
|
336
|
-
input_token_column = 'text_data',
|
|
337
|
-
doc_id_columns = 'doc_id',
|
|
338
|
-
model_type = "Bernoulli",
|
|
339
|
-
newdata_partition_column = 'doc_id',
|
|
340
|
-
top_k=2,
|
|
341
|
-
output_prob=True,
|
|
342
|
-
is_tokenized=False)
|
|
343
|
-
|
|
344
|
-
# Print the result DataFrame.
|
|
345
|
-
print(nbt_predict_out2.result)
|
|
346
|
-
|
|
347
|
-
# Example 3 - "top_k" omitted and "is_tokenized" set to 'True'
|
|
348
|
-
# The input teradataml DataFrame 'complaints_test' is tokenized using
|
|
349
|
-
# TextTokenizer function.
|
|
350
|
-
# Note:
|
|
351
|
-
# This Example will work only when teradataml is connected
|
|
352
|
-
# to Vantage 1.3 or later.
|
|
353
|
-
complaints_test_tokenized = TextTokenizer(data=complaints_mini,
|
|
354
|
-
text_column='text_data',
|
|
355
|
-
language='en',
|
|
356
|
-
output_delimiter=' ',
|
|
357
|
-
output_byword =True,
|
|
358
|
-
accumulate=['doc_id', 'category'])
|
|
359
|
-
|
|
360
|
-
# Use input teradataml DataFrame complaints_test_tokenized which is the output of
|
|
361
|
-
# TextTokenizer function and Bernoulli model nbtct2_out which is
|
|
362
|
-
# generated by NaiveBayesTextClassifier2.
|
|
363
|
-
nbt_predict_out3 = NaiveBayesTextClassifierPredict(object = nbtct2_out,
|
|
364
|
-
newdata = complaints_test_tokenized.result,
|
|
365
|
-
input_token_column = 'token',
|
|
366
|
-
doc_id_columns = 'doc_id',
|
|
367
|
-
output_responses=['crash','no_crash'],
|
|
368
|
-
model_type = "Bernoulli",
|
|
369
|
-
newdata_partition_column = 'doc_id',
|
|
370
|
-
output_prob=True,
|
|
371
|
-
is_tokenized=True)
|
|
372
|
-
|
|
373
|
-
# Print the result DataFrame.
|
|
374
|
-
print(nbt_predict_out3.result)
|
|
375
|
-
|
|
376
|
-
"""
|
|
377
|
-
|
|
378
|
-
# Start the timer to get the build time
|
|
379
|
-
_start_time = time.time()
|
|
380
|
-
|
|
381
|
-
self.object = object
|
|
382
|
-
self.newdata = newdata
|
|
383
|
-
self.input_token_column = input_token_column
|
|
384
|
-
self.doc_id_columns = doc_id_columns
|
|
385
|
-
self.model_type = model_type
|
|
386
|
-
self.top_k = top_k
|
|
387
|
-
self.model_token_column = model_token_column
|
|
388
|
-
self.model_category_column = model_category_column
|
|
389
|
-
self.model_prob_column = model_prob_column
|
|
390
|
-
self.terms = terms
|
|
391
|
-
self.output_responses = output_responses
|
|
392
|
-
self.output_prob = output_prob
|
|
393
|
-
self.stopwords = stopwords
|
|
394
|
-
self.is_tokenized = is_tokenized
|
|
395
|
-
self.convert_to_lower_case = convert_to_lower_case
|
|
396
|
-
self.stem_tokens = stem_tokens
|
|
397
|
-
self.newdata_sequence_column = newdata_sequence_column
|
|
398
|
-
self.object_sequence_column = object_sequence_column
|
|
399
|
-
self.stopwords_sequence_column = stopwords_sequence_column
|
|
400
|
-
self.newdata_partition_column = newdata_partition_column
|
|
401
|
-
self.newdata_order_column = newdata_order_column
|
|
402
|
-
self.object_order_column = object_order_column
|
|
403
|
-
self.stopwords_order_column = stopwords_order_column
|
|
404
|
-
|
|
405
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
406
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
407
|
-
self.__aed_utils = AedUtils()
|
|
408
|
-
|
|
409
|
-
# Create argument information matrix to do parameter checking
|
|
410
|
-
self.__arg_info_matrix = []
|
|
411
|
-
self.__arg_info_matrix.append(["object", self.object, False, (DataFrame)])
|
|
412
|
-
self.__arg_info_matrix.append(["object_order_column", self.object_order_column, True, (str,list)])
|
|
413
|
-
self.__arg_info_matrix.append(["newdata", self.newdata, False, (DataFrame)])
|
|
414
|
-
self.__arg_info_matrix.append(["newdata_partition_column", self.newdata_partition_column, False, (str,list)])
|
|
415
|
-
self.__arg_info_matrix.append(["newdata_order_column", self.newdata_order_column, True, (str,list)])
|
|
416
|
-
self.__arg_info_matrix.append(["input_token_column", self.input_token_column, False, (str)])
|
|
417
|
-
self.__arg_info_matrix.append(["doc_id_columns", self.doc_id_columns, configure._vantage_version == "vantage1.3", (str,list)])
|
|
418
|
-
self.__arg_info_matrix.append(["model_type", self.model_type, True, (str)])
|
|
419
|
-
self.__arg_info_matrix.append(["top_k", self.top_k, True, (int)])
|
|
420
|
-
self.__arg_info_matrix.append(["model_token_column", self.model_token_column, True, (str)])
|
|
421
|
-
self.__arg_info_matrix.append(["model_category_column", self.model_category_column, True, (str)])
|
|
422
|
-
self.__arg_info_matrix.append(["model_prob_column", self.model_prob_column, True, (str)])
|
|
423
|
-
self.__arg_info_matrix.append(["terms", self.terms, True, (str,list)])
|
|
424
|
-
self.__arg_info_matrix.append(["output_responses", self.output_responses, True, (str,list)])
|
|
425
|
-
self.__arg_info_matrix.append(["output_prob", self.output_prob, True, (bool)])
|
|
426
|
-
self.__arg_info_matrix.append(["stopwords", self.stopwords, True, (DataFrame)])
|
|
427
|
-
self.__arg_info_matrix.append(["stopwords_order_column", self.stopwords_order_column, True, (str,list)])
|
|
428
|
-
self.__arg_info_matrix.append(["is_tokenized", self.is_tokenized, True, (bool)])
|
|
429
|
-
self.__arg_info_matrix.append(["convert_to_lower_case", self.convert_to_lower_case, True, (bool)])
|
|
430
|
-
self.__arg_info_matrix.append(["stem_tokens", self.stem_tokens, True, (bool)])
|
|
431
|
-
self.__arg_info_matrix.append(["newdata_sequence_column", self.newdata_sequence_column, True, (str,list)])
|
|
432
|
-
self.__arg_info_matrix.append(["object_sequence_column", self.object_sequence_column, True, (str,list)])
|
|
433
|
-
self.__arg_info_matrix.append(["stopwords_sequence_column", self.stopwords_sequence_column, True, (str,list)])
|
|
434
|
-
|
|
435
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
436
|
-
# Perform the function validations
|
|
437
|
-
self.__validate()
|
|
438
|
-
# Generate the ML query
|
|
439
|
-
self.__form_tdml_query()
|
|
440
|
-
# Execute ML query
|
|
441
|
-
self.__execute()
|
|
442
|
-
# Get the prediction type
|
|
443
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
444
|
-
|
|
445
|
-
# End the timer to get the build time
|
|
446
|
-
_end_time = time.time()
|
|
447
|
-
|
|
448
|
-
# Calculate the build time
|
|
449
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
450
|
-
|
|
451
|
-
def __validate(self):
|
|
452
|
-
"""
|
|
453
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
454
|
-
arguments, input argument and table types. Also processes the
|
|
455
|
-
argument values.
|
|
456
|
-
"""
|
|
457
|
-
if isinstance(self.object, (NaiveBayesTextClassifier, NaiveBayesTextClassifier2)):
|
|
458
|
-
self.object = self.object._mlresults[0]
|
|
459
|
-
|
|
460
|
-
# Cannot use top_k along with output_responses
|
|
461
|
-
if all([self.top_k, self.output_responses]):
|
|
462
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT,
|
|
463
|
-
"top_k", "output_responses"),
|
|
464
|
-
MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
|
|
465
|
-
|
|
466
|
-
# Arguments model_token_column, model_category_column and model_prob_column must be used together or not
|
|
467
|
-
mutually_inclusive_args = [self.model_token_column, self.model_category_column, self.model_prob_column]
|
|
468
|
-
if not (all(mutually_inclusive_args) or not (any(mutually_inclusive_args))):
|
|
469
|
-
raise TeradataMlException(
|
|
470
|
-
Messages.get_message(MessageCodes.MUST_PASS_ARGUMENT, "model_token_column, model_category_column",
|
|
471
|
-
"model_prob_column"), MessageCodes.MUST_PASS_ARGUMENT)
|
|
472
|
-
|
|
473
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
474
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
475
|
-
|
|
476
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
477
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
478
|
-
|
|
479
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
480
|
-
self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
|
|
481
|
-
self.__awu._validate_input_table_datatype(self.object, "object", (NaiveBayesTextClassifier, NaiveBayesTextClassifier2))
|
|
482
|
-
self.__awu._validate_input_table_datatype(self.stopwords, "stopwords", None)
|
|
483
|
-
|
|
484
|
-
# Check for permitted values
|
|
485
|
-
model_type_permitted_values = ["MULTINOMIAL", "BERNOULLI"]
|
|
486
|
-
self.__awu._validate_permitted_values(self.model_type, model_type_permitted_values, "model_type")
|
|
487
|
-
|
|
488
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
489
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
490
|
-
self.__awu._validate_input_columns_not_empty(self.input_token_column, "input_token_column")
|
|
491
|
-
self.__awu._validate_dataframe_has_argument_columns(self.input_token_column, "input_token_column", self.newdata, "newdata", False)
|
|
492
|
-
|
|
493
|
-
self.__awu._validate_input_columns_not_empty(self.doc_id_columns, "doc_id_columns")
|
|
494
|
-
self.__awu._validate_dataframe_has_argument_columns(self.doc_id_columns, "doc_id_columns", self.newdata, "newdata", False)
|
|
495
|
-
|
|
496
|
-
self.__awu._validate_input_columns_not_empty(self.model_token_column, "model_token_column")
|
|
497
|
-
self.__awu._validate_dataframe_has_argument_columns(self.model_token_column, "model_token_column", self.object, "object", False)
|
|
498
|
-
|
|
499
|
-
self.__awu._validate_input_columns_not_empty(self.model_category_column, "model_category_column")
|
|
500
|
-
self.__awu._validate_dataframe_has_argument_columns(self.model_category_column, "model_category_column", self.object, "object", False)
|
|
501
|
-
|
|
502
|
-
self.__awu._validate_input_columns_not_empty(self.model_prob_column, "model_prob_column")
|
|
503
|
-
self.__awu._validate_dataframe_has_argument_columns(self.model_prob_column, "model_prob_column", self.object, "object", False)
|
|
504
|
-
|
|
505
|
-
self.__awu._validate_input_columns_not_empty(self.terms, "terms")
|
|
506
|
-
self.__awu._validate_dataframe_has_argument_columns(self.terms, "terms", self.newdata, "newdata", False)
|
|
507
|
-
|
|
508
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_sequence_column, "newdata_sequence_column")
|
|
509
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_sequence_column, "newdata_sequence_column", self.newdata, "newdata", False)
|
|
510
|
-
|
|
511
|
-
self.__awu._validate_input_columns_not_empty(self.object_sequence_column, "object_sequence_column")
|
|
512
|
-
self.__awu._validate_dataframe_has_argument_columns(self.object_sequence_column, "object_sequence_column", self.object, "object", False)
|
|
513
|
-
|
|
514
|
-
self.__awu._validate_input_columns_not_empty(self.stopwords_sequence_column, "stopwords_sequence_column")
|
|
515
|
-
self.__awu._validate_dataframe_has_argument_columns(self.stopwords_sequence_column, "stopwords_sequence_column", self.stopwords, "stopwords", False)
|
|
516
|
-
|
|
517
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_partition_column, "newdata_partition_column")
|
|
518
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_partition_column, "newdata_partition_column", self.newdata, "newdata", True)
|
|
519
|
-
|
|
520
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_order_column, "newdata_order_column")
|
|
521
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_order_column, "newdata_order_column", self.newdata, "newdata", False)
|
|
522
|
-
|
|
523
|
-
self.__awu._validate_input_columns_not_empty(self.object_order_column, "object_order_column")
|
|
524
|
-
self.__awu._validate_dataframe_has_argument_columns(self.object_order_column, "object_order_column", self.object, "object", False)
|
|
525
|
-
|
|
526
|
-
self.__awu._validate_input_columns_not_empty(self.stopwords_order_column, "stopwords_order_column")
|
|
527
|
-
self.__awu._validate_dataframe_has_argument_columns(self.stopwords_order_column, "stopwords_order_column", self.stopwords, "stopwords", False)
|
|
528
|
-
|
|
529
|
-
|
|
530
|
-
def __form_tdml_query(self):
|
|
531
|
-
"""
|
|
532
|
-
Function to generate the analytical function queries. The function defines
|
|
533
|
-
variables and list of arguments required to form the query.
|
|
534
|
-
"""
|
|
535
|
-
|
|
536
|
-
# Output table arguments list
|
|
537
|
-
self.__func_output_args_sql_names = []
|
|
538
|
-
self.__func_output_args = []
|
|
539
|
-
|
|
540
|
-
# Model Cataloging related attributes.
|
|
541
|
-
self._sql_specific_attributes = {}
|
|
542
|
-
self._sql_formula_attribute_mapper = {}
|
|
543
|
-
self._target_column = None
|
|
544
|
-
self._algorithm_name = None
|
|
545
|
-
|
|
546
|
-
# Generate lists for rest of the function arguments
|
|
547
|
-
self.__func_other_arg_sql_names = []
|
|
548
|
-
self.__func_other_args = []
|
|
549
|
-
self.__func_other_arg_json_datatypes = []
|
|
550
|
-
|
|
551
|
-
self.__func_other_arg_sql_names.append("InputTokenColumn")
|
|
552
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.input_token_column, "\""), "'"))
|
|
553
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
554
|
-
|
|
555
|
-
if self.doc_id_columns is not None:
|
|
556
|
-
self.__func_other_arg_sql_names.append("DocIdColumns")
|
|
557
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.doc_id_columns, "\""), "'"))
|
|
558
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
559
|
-
|
|
560
|
-
if self.model_token_column is not None:
|
|
561
|
-
self.__func_other_arg_sql_names.append("ModelTokenColumn")
|
|
562
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.model_token_column, "\""), "'"))
|
|
563
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
564
|
-
|
|
565
|
-
if self.model_category_column is not None:
|
|
566
|
-
self.__func_other_arg_sql_names.append("ModelCategoryColumn")
|
|
567
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.model_category_column, "\""), "'"))
|
|
568
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
569
|
-
|
|
570
|
-
if self.model_prob_column is not None:
|
|
571
|
-
self.__func_other_arg_sql_names.append("ModelProbColumn")
|
|
572
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.model_prob_column, "\""), "'"))
|
|
573
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
574
|
-
|
|
575
|
-
if self.terms is not None:
|
|
576
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
577
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.terms, "\""), "'"))
|
|
578
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
579
|
-
|
|
580
|
-
if self.model_type is not None and self.model_type != "MULTINOMIAL":
|
|
581
|
-
self.__func_other_arg_sql_names.append("ModelType")
|
|
582
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.model_type, "'"))
|
|
583
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
584
|
-
|
|
585
|
-
if self.top_k is not None:
|
|
586
|
-
self.__func_other_arg_sql_names.append("TopK")
|
|
587
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.top_k, "'"))
|
|
588
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
589
|
-
|
|
590
|
-
if self.output_prob is not None and self.output_prob != False:
|
|
591
|
-
self.__func_other_arg_sql_names.append("OutputProb")
|
|
592
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_prob, "'"))
|
|
593
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
594
|
-
|
|
595
|
-
if self.output_responses is not None:
|
|
596
|
-
self.__func_other_arg_sql_names.append("Responses")
|
|
597
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_responses, "'"))
|
|
598
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
599
|
-
|
|
600
|
-
if self.is_tokenized is not None and self.is_tokenized != True:
|
|
601
|
-
self.__func_other_arg_sql_names.append("IsTokenized")
|
|
602
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.is_tokenized, "'"))
|
|
603
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
604
|
-
|
|
605
|
-
if self.convert_to_lower_case is not None and self.convert_to_lower_case != False:
|
|
606
|
-
self.__func_other_arg_sql_names.append("ConvertToLowerCase")
|
|
607
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.convert_to_lower_case, "'"))
|
|
608
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
609
|
-
|
|
610
|
-
if self.stem_tokens is not None and self.stem_tokens != True:
|
|
611
|
-
self.__func_other_arg_sql_names.append("StemTokens")
|
|
612
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.stem_tokens, "'"))
|
|
613
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
614
|
-
|
|
615
|
-
# Generate lists for rest of the function arguments
|
|
616
|
-
sequence_input_by_list = []
|
|
617
|
-
if self.newdata_sequence_column is not None:
|
|
618
|
-
sequence_input_by_list.append("predicts:" + UtilFuncs._teradata_collapse_arglist(self.newdata_sequence_column, ""))
|
|
619
|
-
|
|
620
|
-
if self.object_sequence_column is not None:
|
|
621
|
-
sequence_input_by_list.append("model:" + UtilFuncs._teradata_collapse_arglist(self.object_sequence_column, ""))
|
|
622
|
-
|
|
623
|
-
if self.stopwords_sequence_column is not None:
|
|
624
|
-
sequence_input_by_list.append("StopWordsTable:" + UtilFuncs._teradata_collapse_arglist(self.stopwords_sequence_column, ""))
|
|
625
|
-
|
|
626
|
-
if len(sequence_input_by_list) > 0:
|
|
627
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
628
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
629
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
630
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
631
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
632
|
-
|
|
633
|
-
|
|
634
|
-
# Declare empty lists to hold input table information.
|
|
635
|
-
self.__func_input_arg_sql_names = []
|
|
636
|
-
self.__func_input_table_view_query = []
|
|
637
|
-
self.__func_input_dataframe_type = []
|
|
638
|
-
self.__func_input_distribution = []
|
|
639
|
-
self.__func_input_partition_by_cols = []
|
|
640
|
-
self.__func_input_order_by_cols = []
|
|
641
|
-
|
|
642
|
-
# Process newdata
|
|
643
|
-
self.newdata_partition_column = UtilFuncs._teradata_collapse_arglist(self.newdata_partition_column, "\"")
|
|
644
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.newdata, False)
|
|
645
|
-
self.__func_input_distribution.append("FACT")
|
|
646
|
-
self.__func_input_arg_sql_names.append("predicts")
|
|
647
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
648
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
649
|
-
self.__func_input_partition_by_cols.append(self.newdata_partition_column)
|
|
650
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.newdata_order_column, "\""))
|
|
651
|
-
|
|
652
|
-
# Process object
|
|
653
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.object, False)
|
|
654
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
655
|
-
self.__func_input_arg_sql_names.append("model")
|
|
656
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
657
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
658
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
659
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.object_order_column, "\""))
|
|
660
|
-
|
|
661
|
-
# Process stopwords
|
|
662
|
-
if self.stopwords is not None:
|
|
663
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.stopwords, False)
|
|
664
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
665
|
-
self.__func_input_arg_sql_names.append("StopWordsTable")
|
|
666
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
667
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
668
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
669
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.stopwords_order_column, "\""))
|
|
670
|
-
|
|
671
|
-
function_name = "NaiveBayesTextClassifierPredict"
|
|
672
|
-
# Create instance to generate SQLMR.
|
|
673
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
674
|
-
self.__func_input_arg_sql_names,
|
|
675
|
-
self.__func_input_table_view_query,
|
|
676
|
-
self.__func_input_dataframe_type,
|
|
677
|
-
self.__func_input_distribution,
|
|
678
|
-
self.__func_input_partition_by_cols,
|
|
679
|
-
self.__func_input_order_by_cols,
|
|
680
|
-
self.__func_other_arg_sql_names,
|
|
681
|
-
self.__func_other_args,
|
|
682
|
-
self.__func_other_arg_json_datatypes,
|
|
683
|
-
self.__func_output_args_sql_names,
|
|
684
|
-
self.__func_output_args,
|
|
685
|
-
engine="ENGINE_ML")
|
|
686
|
-
# Invoke call to SQL-MR generation.
|
|
687
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
688
|
-
|
|
689
|
-
# Print SQL-MR query if requested to do so.
|
|
690
|
-
if display.print_sqlmr_query:
|
|
691
|
-
print(self.sqlmr_query)
|
|
692
|
-
|
|
693
|
-
# Set the algorithm name for Model Cataloging.
|
|
694
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
695
|
-
|
|
696
|
-
def __execute(self):
|
|
697
|
-
"""
|
|
698
|
-
Function to execute SQL-MR queries.
|
|
699
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
700
|
-
"""
|
|
701
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
702
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
703
|
-
try:
|
|
704
|
-
# Generate the output.
|
|
705
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
706
|
-
except Exception as emsg:
|
|
707
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
708
|
-
|
|
709
|
-
# Update output table data frames.
|
|
710
|
-
self._mlresults = []
|
|
711
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
712
|
-
self._mlresults.append(self.result)
|
|
713
|
-
|
|
714
|
-
def show_query(self):
|
|
715
|
-
"""
|
|
716
|
-
Function to return the underlying SQL query.
|
|
717
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
718
|
-
"""
|
|
719
|
-
return self.sqlmr_query
|
|
720
|
-
|
|
721
|
-
def get_prediction_type(self):
|
|
722
|
-
"""
|
|
723
|
-
Function to return the Prediction type of the algorithm.
|
|
724
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
725
|
-
as saved in the Model Catalog.
|
|
726
|
-
"""
|
|
727
|
-
return self._prediction_type
|
|
728
|
-
|
|
729
|
-
def get_target_column(self):
|
|
730
|
-
"""
|
|
731
|
-
Function to return the Target Column of the algorithm.
|
|
732
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
733
|
-
as saved in the Model Catalog.
|
|
734
|
-
"""
|
|
735
|
-
return self._target_column
|
|
736
|
-
|
|
737
|
-
def get_build_time(self):
|
|
738
|
-
"""
|
|
739
|
-
Function to return the build time of the algorithm in seconds.
|
|
740
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
741
|
-
as saved in the Model Catalog.
|
|
742
|
-
"""
|
|
743
|
-
return self._build_time
|
|
744
|
-
|
|
745
|
-
def _get_algorithm_name(self):
|
|
746
|
-
"""
|
|
747
|
-
Function to return the name of the algorithm.
|
|
748
|
-
"""
|
|
749
|
-
return self._algorithm_name
|
|
750
|
-
|
|
751
|
-
def _get_sql_specific_attributes(self):
|
|
752
|
-
"""
|
|
753
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
754
|
-
"""
|
|
755
|
-
return self._sql_specific_attributes
|
|
756
|
-
|
|
757
|
-
@classmethod
|
|
758
|
-
def _from_model_catalog(cls,
|
|
759
|
-
result = None,
|
|
760
|
-
**kwargs):
|
|
761
|
-
"""
|
|
762
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
763
|
-
"""
|
|
764
|
-
kwargs.pop("result", None)
|
|
765
|
-
|
|
766
|
-
# Model Cataloging related attributes.
|
|
767
|
-
target_column = kwargs.pop("__target_column", None)
|
|
768
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
769
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
770
|
-
build_time = kwargs.pop("__build_time", None)
|
|
771
|
-
|
|
772
|
-
# Let's create an object of this class.
|
|
773
|
-
obj = cls(**kwargs)
|
|
774
|
-
obj.result = result
|
|
775
|
-
|
|
776
|
-
# Initialize the sqlmr_query class attribute.
|
|
777
|
-
obj.sqlmr_query = None
|
|
778
|
-
|
|
779
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
780
|
-
obj._sql_specific_attributes = None
|
|
781
|
-
obj._target_column = target_column
|
|
782
|
-
obj._prediction_type = prediction_type
|
|
783
|
-
obj._algorithm_name = algorithm_name
|
|
784
|
-
obj._build_time = build_time
|
|
785
|
-
|
|
786
|
-
# Update output table data frames.
|
|
787
|
-
obj._mlresults = []
|
|
788
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
789
|
-
obj._mlresults.append(obj.result)
|
|
790
|
-
return obj
|
|
791
|
-
|
|
792
|
-
def __repr__(self):
|
|
793
|
-
"""
|
|
794
|
-
Returns the string representation for a NaiveBayesTextClassifierPredict class instance.
|
|
795
|
-
"""
|
|
796
|
-
repr_string="############ STDOUT Output ############"
|
|
797
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
798
|
-
return repr_string
|
|
799
|
-
|