teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1303) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1935 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2040 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +798 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1683 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +1011 -0
  31. teradataml/automl/data_transformation.py +789 -0
  32. teradataml/automl/feature_engineering.py +1580 -0
  33. teradataml/automl/feature_exploration.py +554 -0
  34. teradataml/automl/model_evaluation.py +151 -0
  35. teradataml/automl/model_training.py +1026 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/auth_client.py +133 -0
  41. teradataml/clients/pkce_client.py +481 -481
  42. teradataml/common/aed_utils.py +7 -2
  43. teradataml/common/bulk_exposed_utils.py +111 -111
  44. teradataml/common/constants.py +1438 -1441
  45. teradataml/common/deprecations.py +160 -0
  46. teradataml/common/exceptions.py +73 -73
  47. teradataml/common/formula.py +742 -742
  48. teradataml/common/garbagecollector.py +597 -635
  49. teradataml/common/messagecodes.py +424 -431
  50. teradataml/common/messages.py +228 -231
  51. teradataml/common/sqlbundle.py +693 -693
  52. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  53. teradataml/common/utils.py +2424 -2500
  54. teradataml/common/warnings.py +25 -25
  55. teradataml/common/wrapper_utils.py +1 -110
  56. teradataml/config/dummy_file1.cfg +4 -4
  57. teradataml/config/dummy_file2.cfg +2 -2
  58. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  59. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  60. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  61. teradataml/context/aed_context.py +217 -217
  62. teradataml/context/context.py +1091 -999
  63. teradataml/data/A_loan.csv +19 -19
  64. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  65. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  66. teradataml/data/B_loan.csv +49 -49
  67. teradataml/data/BuoyData2.csv +17 -17
  68. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  69. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  70. teradataml/data/Convolve2RealsLeft.csv +5 -5
  71. teradataml/data/Convolve2RealsRight.csv +5 -5
  72. teradataml/data/Convolve2ValidLeft.csv +11 -11
  73. teradataml/data/Convolve2ValidRight.csv +11 -11
  74. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  75. teradataml/data/Orders1_12mf.csv +24 -24
  76. teradataml/data/Pi_loan.csv +7 -7
  77. teradataml/data/SMOOTHED_DATA.csv +7 -7
  78. teradataml/data/TestDFFT8.csv +9 -9
  79. teradataml/data/TestRiver.csv +109 -109
  80. teradataml/data/Traindata.csv +28 -28
  81. teradataml/data/acf.csv +17 -17
  82. teradataml/data/adaboost_example.json +34 -34
  83. teradataml/data/adaboostpredict_example.json +24 -24
  84. teradataml/data/additional_table.csv +10 -10
  85. teradataml/data/admissions_test.csv +21 -21
  86. teradataml/data/admissions_train.csv +41 -41
  87. teradataml/data/admissions_train_nulls.csv +41 -41
  88. teradataml/data/advertising.csv +201 -0
  89. teradataml/data/ageandheight.csv +13 -13
  90. teradataml/data/ageandpressure.csv +31 -31
  91. teradataml/data/antiselect_example.json +36 -36
  92. teradataml/data/antiselect_input.csv +8 -8
  93. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  94. teradataml/data/applicant_external.csv +6 -6
  95. teradataml/data/applicant_reference.csv +6 -6
  96. teradataml/data/arima_example.json +9 -9
  97. teradataml/data/assortedtext_input.csv +8 -8
  98. teradataml/data/attribution_example.json +33 -33
  99. teradataml/data/attribution_sample_table.csv +27 -27
  100. teradataml/data/attribution_sample_table1.csv +6 -6
  101. teradataml/data/attribution_sample_table2.csv +11 -11
  102. teradataml/data/bank_churn.csv +10001 -0
  103. teradataml/data/bank_marketing.csv +11163 -0
  104. teradataml/data/bank_web_clicks1.csv +42 -42
  105. teradataml/data/bank_web_clicks2.csv +91 -91
  106. teradataml/data/bank_web_url.csv +85 -85
  107. teradataml/data/barrier.csv +2 -2
  108. teradataml/data/barrier_new.csv +3 -3
  109. teradataml/data/betweenness_example.json +13 -13
  110. teradataml/data/bike_sharing.csv +732 -0
  111. teradataml/data/bin_breaks.csv +8 -8
  112. teradataml/data/bin_fit_ip.csv +3 -3
  113. teradataml/data/binary_complex_left.csv +11 -11
  114. teradataml/data/binary_complex_right.csv +11 -11
  115. teradataml/data/binary_matrix_complex_left.csv +21 -21
  116. teradataml/data/binary_matrix_complex_right.csv +21 -21
  117. teradataml/data/binary_matrix_real_left.csv +21 -21
  118. teradataml/data/binary_matrix_real_right.csv +21 -21
  119. teradataml/data/blood2ageandweight.csv +26 -26
  120. teradataml/data/bmi.csv +501 -0
  121. teradataml/data/boston.csv +507 -507
  122. teradataml/data/boston2cols.csv +721 -0
  123. teradataml/data/breast_cancer.csv +570 -0
  124. teradataml/data/buoydata_mix.csv +11 -11
  125. teradataml/data/burst_data.csv +5 -5
  126. teradataml/data/burst_example.json +20 -20
  127. teradataml/data/byom_example.json +17 -17
  128. teradataml/data/bytes_table.csv +3 -3
  129. teradataml/data/cal_housing_ex_raw.csv +70 -70
  130. teradataml/data/callers.csv +7 -7
  131. teradataml/data/calls.csv +10 -10
  132. teradataml/data/cars_hist.csv +33 -33
  133. teradataml/data/cat_table.csv +24 -24
  134. teradataml/data/ccm_example.json +31 -31
  135. teradataml/data/ccm_input.csv +91 -91
  136. teradataml/data/ccm_input2.csv +13 -13
  137. teradataml/data/ccmexample.csv +101 -101
  138. teradataml/data/ccmprepare_example.json +8 -8
  139. teradataml/data/ccmprepare_input.csv +91 -91
  140. teradataml/data/cfilter_example.json +12 -12
  141. teradataml/data/changepointdetection_example.json +18 -18
  142. teradataml/data/changepointdetectionrt_example.json +8 -8
  143. teradataml/data/chi_sq.csv +2 -2
  144. teradataml/data/churn_data.csv +14 -14
  145. teradataml/data/churn_emission.csv +35 -35
  146. teradataml/data/churn_initial.csv +3 -3
  147. teradataml/data/churn_state_transition.csv +5 -5
  148. teradataml/data/citedges_2.csv +745 -745
  149. teradataml/data/citvertices_2.csv +1210 -1210
  150. teradataml/data/clicks2.csv +16 -16
  151. teradataml/data/clickstream.csv +12 -12
  152. teradataml/data/clickstream1.csv +11 -11
  153. teradataml/data/closeness_example.json +15 -15
  154. teradataml/data/complaints.csv +21 -21
  155. teradataml/data/complaints_mini.csv +3 -3
  156. teradataml/data/complaints_testtoken.csv +224 -224
  157. teradataml/data/complaints_tokens_test.csv +353 -353
  158. teradataml/data/complaints_traintoken.csv +472 -472
  159. teradataml/data/computers_category.csv +1001 -1001
  160. teradataml/data/computers_test1.csv +1252 -1252
  161. teradataml/data/computers_train1.csv +5009 -5009
  162. teradataml/data/computers_train1_clustered.csv +5009 -5009
  163. teradataml/data/confusionmatrix_example.json +9 -9
  164. teradataml/data/conversion_event_table.csv +3 -3
  165. teradataml/data/corr_input.csv +17 -17
  166. teradataml/data/correlation_example.json +11 -11
  167. teradataml/data/coxhazardratio_example.json +39 -39
  168. teradataml/data/coxph_example.json +15 -15
  169. teradataml/data/coxsurvival_example.json +28 -28
  170. teradataml/data/cpt.csv +41 -41
  171. teradataml/data/credit_ex_merged.csv +45 -45
  172. teradataml/data/customer_loyalty.csv +301 -301
  173. teradataml/data/customer_loyalty_newseq.csv +31 -31
  174. teradataml/data/customer_segmentation_test.csv +2628 -0
  175. teradataml/data/customer_segmentation_train.csv +8069 -0
  176. teradataml/data/dataframe_example.json +146 -146
  177. teradataml/data/decisionforest_example.json +37 -37
  178. teradataml/data/decisionforestpredict_example.json +38 -38
  179. teradataml/data/decisiontree_example.json +21 -21
  180. teradataml/data/decisiontreepredict_example.json +45 -45
  181. teradataml/data/dfft2_size4_real.csv +17 -17
  182. teradataml/data/dfft2_test_matrix16.csv +17 -17
  183. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  184. teradataml/data/diabetes.csv +443 -443
  185. teradataml/data/diabetes_test.csv +89 -89
  186. teradataml/data/dict_table.csv +5 -5
  187. teradataml/data/docperterm_table.csv +4 -4
  188. teradataml/data/docs/__init__.py +1 -1
  189. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  190. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  191. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  192. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  193. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  194. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  195. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  196. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  197. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  198. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  199. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  200. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  201. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  202. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  203. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  204. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  205. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  206. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  207. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  208. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  209. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  210. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  211. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  212. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  213. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  214. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  215. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  216. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  217. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
  218. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
  219. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  220. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
  221. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  222. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  223. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  224. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  225. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  226. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  227. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  228. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  229. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  230. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  231. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  232. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  233. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  234. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  235. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  236. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  237. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  238. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  239. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  240. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  241. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  242. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
  243. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  244. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  245. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  246. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  247. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  248. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  249. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  250. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  251. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
  252. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  253. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  254. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  255. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  256. teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
  257. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  258. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  259. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
  260. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  261. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  262. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  263. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
  264. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  265. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  266. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  267. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
  268. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  269. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  270. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  271. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  272. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  273. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  274. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  275. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  276. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
  277. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  278. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  279. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  280. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  281. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
  282. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
  283. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  284. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  285. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  286. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  287. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  288. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  289. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  290. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  291. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
  292. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  293. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  294. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  295. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  296. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  297. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  298. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  299. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  300. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
  301. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  302. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
  303. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
  304. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  305. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  306. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  307. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  308. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  309. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  310. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  311. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  312. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
  313. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  314. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  315. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  316. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  317. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  318. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  319. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  320. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  321. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  322. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  323. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  324. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
  325. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
  326. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
  327. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  328. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  329. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  330. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  331. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  332. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  333. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  334. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  335. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  336. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  337. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  338. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  339. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  340. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  341. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  342. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  343. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  344. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  345. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  346. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  347. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  348. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  349. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  350. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  351. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  352. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  353. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  354. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  355. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  356. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  357. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  358. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  359. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  360. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  361. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  362. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  363. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  364. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  365. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  366. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  367. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  368. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  369. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  370. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  371. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  372. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  373. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  374. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  375. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  376. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  377. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  378. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  379. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  380. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  381. teradataml/data/dtw_example.json +17 -17
  382. teradataml/data/dtw_t1.csv +11 -11
  383. teradataml/data/dtw_t2.csv +4 -4
  384. teradataml/data/dwt2d_example.json +15 -15
  385. teradataml/data/dwt_example.json +14 -14
  386. teradataml/data/dwt_filter_dim.csv +5 -5
  387. teradataml/data/emission.csv +9 -9
  388. teradataml/data/emp_table_by_dept.csv +19 -19
  389. teradataml/data/employee_info.csv +4 -4
  390. teradataml/data/employee_table.csv +6 -6
  391. teradataml/data/excluding_event_table.csv +2 -2
  392. teradataml/data/finance_data.csv +6 -6
  393. teradataml/data/finance_data2.csv +61 -61
  394. teradataml/data/finance_data3.csv +93 -93
  395. teradataml/data/fish.csv +160 -0
  396. teradataml/data/fm_blood2ageandweight.csv +26 -26
  397. teradataml/data/fmeasure_example.json +11 -11
  398. teradataml/data/followers_leaders.csv +10 -10
  399. teradataml/data/fpgrowth_example.json +12 -12
  400. teradataml/data/frequentpaths_example.json +29 -29
  401. teradataml/data/friends.csv +9 -9
  402. teradataml/data/fs_input.csv +33 -33
  403. teradataml/data/fs_input1.csv +33 -33
  404. teradataml/data/genData.csv +513 -513
  405. teradataml/data/geodataframe_example.json +39 -39
  406. teradataml/data/glass_types.csv +215 -0
  407. teradataml/data/glm_admissions_model.csv +12 -12
  408. teradataml/data/glm_example.json +56 -29
  409. teradataml/data/glml1l2_example.json +28 -28
  410. teradataml/data/glml1l2predict_example.json +54 -54
  411. teradataml/data/glmpredict_example.json +54 -54
  412. teradataml/data/gq_t1.csv +21 -21
  413. teradataml/data/hconvolve_complex_right.csv +5 -5
  414. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  415. teradataml/data/histogram_example.json +11 -11
  416. teradataml/data/hmmdecoder_example.json +78 -78
  417. teradataml/data/hmmevaluator_example.json +24 -24
  418. teradataml/data/hmmsupervised_example.json +10 -10
  419. teradataml/data/hmmunsupervised_example.json +7 -7
  420. teradataml/data/house_values.csv +12 -12
  421. teradataml/data/house_values2.csv +13 -13
  422. teradataml/data/housing_cat.csv +7 -7
  423. teradataml/data/housing_data.csv +9 -9
  424. teradataml/data/housing_test.csv +47 -47
  425. teradataml/data/housing_test_binary.csv +47 -47
  426. teradataml/data/housing_train.csv +493 -493
  427. teradataml/data/housing_train_attribute.csv +4 -4
  428. teradataml/data/housing_train_binary.csv +437 -437
  429. teradataml/data/housing_train_parameter.csv +2 -2
  430. teradataml/data/housing_train_response.csv +493 -493
  431. teradataml/data/housing_train_segment.csv +201 -0
  432. teradataml/data/ibm_stock.csv +370 -370
  433. teradataml/data/ibm_stock1.csv +370 -370
  434. teradataml/data/identitymatch_example.json +21 -21
  435. teradataml/data/idf_table.csv +4 -4
  436. teradataml/data/impressions.csv +101 -101
  437. teradataml/data/inflation.csv +21 -21
  438. teradataml/data/initial.csv +3 -3
  439. teradataml/data/insect2Cols.csv +61 -0
  440. teradataml/data/insect_sprays.csv +12 -12
  441. teradataml/data/insurance.csv +1339 -1339
  442. teradataml/data/interpolator_example.json +12 -12
  443. teradataml/data/iris_altinput.csv +481 -481
  444. teradataml/data/iris_attribute_output.csv +8 -8
  445. teradataml/data/iris_attribute_test.csv +121 -121
  446. teradataml/data/iris_attribute_train.csv +481 -481
  447. teradataml/data/iris_category_expect_predict.csv +31 -31
  448. teradataml/data/iris_data.csv +151 -0
  449. teradataml/data/iris_input.csv +151 -151
  450. teradataml/data/iris_response_train.csv +121 -121
  451. teradataml/data/iris_test.csv +31 -31
  452. teradataml/data/iris_train.csv +121 -121
  453. teradataml/data/join_table1.csv +4 -4
  454. teradataml/data/join_table2.csv +4 -4
  455. teradataml/data/jsons/anly_function_name.json +6 -6
  456. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  457. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  458. teradataml/data/jsons/byom/h2opredict.json +194 -194
  459. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  460. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  461. teradataml/data/jsons/paired_functions.json +435 -435
  462. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  463. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  464. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  465. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  466. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  467. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  468. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  469. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  470. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  471. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  472. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  473. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  474. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  475. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  476. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  477. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  478. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  479. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  480. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  481. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  482. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  483. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  484. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  485. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  486. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  487. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  488. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  489. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  490. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  491. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  492. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  493. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  494. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  495. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  496. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  497. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  498. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  499. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  500. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  501. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  502. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  503. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  504. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  505. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  506. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  507. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  508. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  509. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  510. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  511. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  512. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  513. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  514. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  515. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  516. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  517. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  518. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  519. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  520. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  521. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  522. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  523. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  524. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  525. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  526. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  527. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  528. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  529. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  531. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  532. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  533. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  534. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  535. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  536. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  537. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  539. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  540. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  541. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  542. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  543. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  544. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  545. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  546. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  547. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  548. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  549. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  550. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  551. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  552. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  553. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  554. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  555. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  556. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  557. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  558. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  559. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  560. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  561. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  562. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  563. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  564. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  565. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  566. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  567. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  568. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
  569. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  570. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  571. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  572. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  573. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  574. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  575. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  576. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  577. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  578. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  579. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
  580. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  581. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  582. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  583. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
  584. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
  585. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  586. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  587. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
  588. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  589. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  590. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  591. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
  592. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  593. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  594. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  595. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
  596. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  597. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  598. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  599. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  600. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  601. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  602. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  603. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  604. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  605. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  606. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  607. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  608. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  609. teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
  610. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  611. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  612. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  613. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  614. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  615. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  616. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  617. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  618. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
  619. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
  620. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
  621. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  622. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  623. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  624. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  625. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  626. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  627. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  628. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  629. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  630. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  631. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  632. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  633. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  634. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  635. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
  636. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
  637. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
  638. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  639. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  640. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  641. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  642. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  643. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  644. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  645. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  646. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  647. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  648. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  649. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  650. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  651. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  653. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  654. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  655. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  656. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  657. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  658. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  659. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  660. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  661. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  662. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  663. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  664. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  665. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  666. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  667. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  668. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  669. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  670. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  671. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  672. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  673. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  674. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  675. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  676. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  677. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  678. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  679. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  680. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  681. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  682. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  683. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  684. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  685. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  686. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  687. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  688. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  689. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  690. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  691. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  692. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  693. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  694. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  695. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  696. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  697. teradataml/data/kmeans_example.json +22 -17
  698. teradataml/data/kmeans_table.csv +10 -0
  699. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  700. teradataml/data/knn_example.json +18 -18
  701. teradataml/data/knnrecommender_example.json +6 -6
  702. teradataml/data/knnrecommenderpredict_example.json +12 -12
  703. teradataml/data/lar_example.json +17 -17
  704. teradataml/data/larpredict_example.json +30 -30
  705. teradataml/data/lc_new_predictors.csv +5 -5
  706. teradataml/data/lc_new_reference.csv +9 -9
  707. teradataml/data/lda_example.json +8 -8
  708. teradataml/data/ldainference_example.json +14 -14
  709. teradataml/data/ldatopicsummary_example.json +8 -8
  710. teradataml/data/levendist_input.csv +13 -13
  711. teradataml/data/levenshteindistance_example.json +10 -10
  712. teradataml/data/linreg_example.json +9 -9
  713. teradataml/data/load_example_data.py +326 -323
  714. teradataml/data/loan_prediction.csv +295 -295
  715. teradataml/data/lungcancer.csv +138 -138
  716. teradataml/data/mappingdata.csv +12 -12
  717. teradataml/data/milk_timeseries.csv +157 -157
  718. teradataml/data/min_max_titanic.csv +4 -4
  719. teradataml/data/minhash_example.json +6 -6
  720. teradataml/data/ml_ratings.csv +7547 -7547
  721. teradataml/data/ml_ratings_10.csv +2445 -2445
  722. teradataml/data/model1_table.csv +5 -5
  723. teradataml/data/model2_table.csv +5 -5
  724. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  725. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  726. teradataml/data/modularity_example.json +12 -12
  727. teradataml/data/movavg_example.json +7 -7
  728. teradataml/data/mtx1.csv +7 -7
  729. teradataml/data/mtx2.csv +13 -13
  730. teradataml/data/multi_model_classification.csv +401 -0
  731. teradataml/data/multi_model_regression.csv +401 -0
  732. teradataml/data/mvdfft8.csv +9 -9
  733. teradataml/data/naivebayes_example.json +9 -9
  734. teradataml/data/naivebayespredict_example.json +19 -19
  735. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  736. teradataml/data/naivebayestextclassifier_example.json +8 -8
  737. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  738. teradataml/data/name_Find_configure.csv +10 -10
  739. teradataml/data/namedentityfinder_example.json +14 -14
  740. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  741. teradataml/data/namedentityfindertrainer_example.json +6 -6
  742. teradataml/data/nb_iris_input_test.csv +31 -31
  743. teradataml/data/nb_iris_input_train.csv +121 -121
  744. teradataml/data/nbp_iris_model.csv +13 -13
  745. teradataml/data/ner_extractor_text.csv +2 -2
  746. teradataml/data/ner_sports_test2.csv +29 -29
  747. teradataml/data/ner_sports_train.csv +501 -501
  748. teradataml/data/nerevaluator_example.json +5 -5
  749. teradataml/data/nerextractor_example.json +18 -18
  750. teradataml/data/nermem_sports_test.csv +17 -17
  751. teradataml/data/nermem_sports_train.csv +50 -50
  752. teradataml/data/nertrainer_example.json +6 -6
  753. teradataml/data/ngrams_example.json +6 -6
  754. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  755. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  756. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  757. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  758. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  759. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  760. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  761. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  762. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  763. teradataml/data/npath_example.json +23 -23
  764. teradataml/data/ntree_example.json +14 -14
  765. teradataml/data/numeric_strings.csv +4 -4
  766. teradataml/data/numerics.csv +4 -4
  767. teradataml/data/ocean_buoy.csv +17 -17
  768. teradataml/data/ocean_buoy2.csv +17 -17
  769. teradataml/data/ocean_buoys.csv +27 -27
  770. teradataml/data/ocean_buoys2.csv +10 -10
  771. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  772. teradataml/data/ocean_buoys_seq.csv +29 -29
  773. teradataml/data/onehot_encoder_train.csv +4 -0
  774. teradataml/data/openml_example.json +92 -0
  775. teradataml/data/optional_event_table.csv +4 -4
  776. teradataml/data/orders1.csv +11 -11
  777. teradataml/data/orders1_12.csv +12 -12
  778. teradataml/data/orders_ex.csv +4 -4
  779. teradataml/data/pack_example.json +8 -8
  780. teradataml/data/package_tracking.csv +19 -19
  781. teradataml/data/package_tracking_pti.csv +18 -18
  782. teradataml/data/pagerank_example.json +13 -13
  783. teradataml/data/paragraphs_input.csv +6 -6
  784. teradataml/data/pathanalyzer_example.json +7 -7
  785. teradataml/data/pathgenerator_example.json +7 -7
  786. teradataml/data/phrases.csv +7 -7
  787. teradataml/data/pivot_example.json +8 -8
  788. teradataml/data/pivot_input.csv +22 -22
  789. teradataml/data/playerRating.csv +31 -31
  790. teradataml/data/postagger_example.json +6 -6
  791. teradataml/data/posttagger_output.csv +44 -44
  792. teradataml/data/production_data.csv +16 -16
  793. teradataml/data/production_data2.csv +7 -7
  794. teradataml/data/randomsample_example.json +31 -31
  795. teradataml/data/randomwalksample_example.json +8 -8
  796. teradataml/data/rank_table.csv +6 -6
  797. teradataml/data/ref_mobile_data.csv +4 -4
  798. teradataml/data/ref_mobile_data_dense.csv +2 -2
  799. teradataml/data/ref_url.csv +17 -17
  800. teradataml/data/restaurant_reviews.csv +7 -7
  801. teradataml/data/river_data.csv +145 -145
  802. teradataml/data/roc_example.json +7 -7
  803. teradataml/data/roc_input.csv +101 -101
  804. teradataml/data/rule_inputs.csv +6 -6
  805. teradataml/data/rule_table.csv +2 -2
  806. teradataml/data/sales.csv +7 -7
  807. teradataml/data/sales_transaction.csv +501 -501
  808. teradataml/data/salesdata.csv +342 -342
  809. teradataml/data/sample_cities.csv +2 -2
  810. teradataml/data/sample_shapes.csv +10 -10
  811. teradataml/data/sample_streets.csv +2 -2
  812. teradataml/data/sampling_example.json +15 -15
  813. teradataml/data/sax_example.json +8 -8
  814. teradataml/data/scale_attributes.csv +3 -0
  815. teradataml/data/scale_example.json +74 -23
  816. teradataml/data/scale_housing.csv +11 -11
  817. teradataml/data/scale_housing_test.csv +6 -6
  818. teradataml/data/scale_input_part_sparse.csv +31 -0
  819. teradataml/data/scale_input_partitioned.csv +16 -0
  820. teradataml/data/scale_input_sparse.csv +11 -0
  821. teradataml/data/scale_parameters.csv +3 -0
  822. teradataml/data/scale_stat.csv +11 -11
  823. teradataml/data/scalebypartition_example.json +13 -13
  824. teradataml/data/scalemap_example.json +13 -13
  825. teradataml/data/scalesummary_example.json +12 -12
  826. teradataml/data/score_category.csv +101 -101
  827. teradataml/data/score_summary.csv +4 -4
  828. teradataml/data/script_example.json +9 -9
  829. teradataml/data/scripts/deploy_script.py +84 -0
  830. teradataml/data/scripts/mapper.R +20 -0
  831. teradataml/data/scripts/mapper.py +15 -15
  832. teradataml/data/scripts/mapper_replace.py +15 -15
  833. teradataml/data/scripts/sklearn/__init__.py +0 -0
  834. teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
  835. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
  836. teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
  837. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
  838. teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
  839. teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
  840. teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
  841. teradataml/data/seeds.csv +10 -10
  842. teradataml/data/sentenceextractor_example.json +6 -6
  843. teradataml/data/sentiment_extract_input.csv +11 -11
  844. teradataml/data/sentiment_train.csv +16 -16
  845. teradataml/data/sentiment_word.csv +20 -20
  846. teradataml/data/sentiment_word_input.csv +19 -19
  847. teradataml/data/sentimentextractor_example.json +24 -24
  848. teradataml/data/sentimenttrainer_example.json +8 -8
  849. teradataml/data/sequence_table.csv +10 -10
  850. teradataml/data/seriessplitter_example.json +7 -7
  851. teradataml/data/sessionize_example.json +17 -17
  852. teradataml/data/sessionize_table.csv +116 -116
  853. teradataml/data/setop_test1.csv +24 -24
  854. teradataml/data/setop_test2.csv +22 -22
  855. teradataml/data/soc_nw_edges.csv +10 -10
  856. teradataml/data/soc_nw_vertices.csv +7 -7
  857. teradataml/data/souvenir_timeseries.csv +167 -167
  858. teradataml/data/sparse_iris_attribute.csv +5 -5
  859. teradataml/data/sparse_iris_test.csv +121 -121
  860. teradataml/data/sparse_iris_train.csv +601 -601
  861. teradataml/data/star1.csv +6 -6
  862. teradataml/data/state_transition.csv +5 -5
  863. teradataml/data/stock_data.csv +53 -53
  864. teradataml/data/stock_movement.csv +11 -11
  865. teradataml/data/stock_vol.csv +76 -76
  866. teradataml/data/stop_words.csv +8 -8
  867. teradataml/data/store_sales.csv +37 -37
  868. teradataml/data/stringsimilarity_example.json +7 -7
  869. teradataml/data/strsimilarity_input.csv +13 -13
  870. teradataml/data/students.csv +101 -101
  871. teradataml/data/svm_iris_input_test.csv +121 -121
  872. teradataml/data/svm_iris_input_train.csv +481 -481
  873. teradataml/data/svm_iris_model.csv +7 -7
  874. teradataml/data/svmdense_example.json +9 -9
  875. teradataml/data/svmdensepredict_example.json +18 -18
  876. teradataml/data/svmsparse_example.json +7 -7
  877. teradataml/data/svmsparsepredict_example.json +13 -13
  878. teradataml/data/svmsparsesummary_example.json +7 -7
  879. teradataml/data/target_mobile_data.csv +13 -13
  880. teradataml/data/target_mobile_data_dense.csv +5 -5
  881. teradataml/data/templatedata.csv +1201 -1201
  882. teradataml/data/templates/open_source_ml.json +9 -0
  883. teradataml/data/teradataml_example.json +150 -1
  884. teradataml/data/test_classification.csv +101 -0
  885. teradataml/data/test_loan_prediction.csv +53 -53
  886. teradataml/data/test_pacf_12.csv +37 -37
  887. teradataml/data/test_prediction.csv +101 -0
  888. teradataml/data/test_regression.csv +101 -0
  889. teradataml/data/test_river2.csv +109 -109
  890. teradataml/data/text_inputs.csv +6 -6
  891. teradataml/data/textchunker_example.json +7 -7
  892. teradataml/data/textclassifier_example.json +6 -6
  893. teradataml/data/textclassifier_input.csv +7 -7
  894. teradataml/data/textclassifiertrainer_example.json +6 -6
  895. teradataml/data/textmorph_example.json +5 -5
  896. teradataml/data/textparser_example.json +15 -15
  897. teradataml/data/texttagger_example.json +11 -11
  898. teradataml/data/texttokenizer_example.json +6 -6
  899. teradataml/data/texttrainer_input.csv +11 -11
  900. teradataml/data/tf_example.json +6 -6
  901. teradataml/data/tfidf_example.json +13 -13
  902. teradataml/data/tfidf_input1.csv +201 -201
  903. teradataml/data/tfidf_train.csv +6 -6
  904. teradataml/data/time_table1.csv +535 -535
  905. teradataml/data/time_table2.csv +14 -14
  906. teradataml/data/timeseriesdata.csv +1601 -1601
  907. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  908. teradataml/data/titanic.csv +892 -892
  909. teradataml/data/token_table.csv +696 -696
  910. teradataml/data/train_multiclass.csv +101 -0
  911. teradataml/data/train_regression.csv +101 -0
  912. teradataml/data/train_regression_multiple_labels.csv +101 -0
  913. teradataml/data/train_tracking.csv +27 -27
  914. teradataml/data/transformation_table.csv +5 -5
  915. teradataml/data/transformation_table_new.csv +1 -1
  916. teradataml/data/tv_spots.csv +16 -16
  917. teradataml/data/twod_climate_data.csv +117 -117
  918. teradataml/data/uaf_example.json +475 -475
  919. teradataml/data/univariatestatistics_example.json +8 -8
  920. teradataml/data/unpack_example.json +9 -9
  921. teradataml/data/unpivot_example.json +9 -9
  922. teradataml/data/unpivot_input.csv +8 -8
  923. teradataml/data/us_air_pass.csv +36 -36
  924. teradataml/data/us_population.csv +624 -624
  925. teradataml/data/us_states_shapes.csv +52 -52
  926. teradataml/data/varmax_example.json +17 -17
  927. teradataml/data/vectordistance_example.json +25 -25
  928. teradataml/data/ville_climatedata.csv +121 -121
  929. teradataml/data/ville_tempdata.csv +12 -12
  930. teradataml/data/ville_tempdata1.csv +12 -12
  931. teradataml/data/ville_temperature.csv +11 -11
  932. teradataml/data/waveletTable.csv +1605 -1605
  933. teradataml/data/waveletTable2.csv +1605 -1605
  934. teradataml/data/weightedmovavg_example.json +8 -8
  935. teradataml/data/wft_testing.csv +5 -5
  936. teradataml/data/wine_data.csv +1600 -0
  937. teradataml/data/word_embed_input_table1.csv +5 -5
  938. teradataml/data/word_embed_input_table2.csv +4 -4
  939. teradataml/data/word_embed_model.csv +22 -22
  940. teradataml/data/words_input.csv +13 -13
  941. teradataml/data/xconvolve_complex_left.csv +6 -6
  942. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  943. teradataml/data/xgboost_example.json +35 -35
  944. teradataml/data/xgboostpredict_example.json +31 -31
  945. teradataml/data/ztest_example.json +16 -0
  946. teradataml/dataframe/copy_to.py +1769 -1698
  947. teradataml/dataframe/data_transfer.py +2812 -2745
  948. teradataml/dataframe/dataframe.py +17630 -16946
  949. teradataml/dataframe/dataframe_utils.py +1875 -1740
  950. teradataml/dataframe/fastload.py +794 -603
  951. teradataml/dataframe/indexer.py +424 -424
  952. teradataml/dataframe/setop.py +1179 -1166
  953. teradataml/dataframe/sql.py +10174 -6432
  954. teradataml/dataframe/sql_function_parameters.py +439 -388
  955. teradataml/dataframe/sql_functions.py +652 -652
  956. teradataml/dataframe/sql_interfaces.py +220 -220
  957. teradataml/dataframe/vantage_function_types.py +674 -630
  958. teradataml/dataframe/window.py +693 -692
  959. teradataml/dbutils/__init__.py +3 -3
  960. teradataml/dbutils/dbutils.py +1167 -1150
  961. teradataml/dbutils/filemgr.py +267 -267
  962. teradataml/gen_ai/__init__.py +2 -2
  963. teradataml/gen_ai/convAI.py +472 -472
  964. teradataml/geospatial/__init__.py +3 -3
  965. teradataml/geospatial/geodataframe.py +1105 -1094
  966. teradataml/geospatial/geodataframecolumn.py +392 -387
  967. teradataml/geospatial/geometry_types.py +925 -925
  968. teradataml/hyperparameter_tuner/__init__.py +1 -1
  969. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  970. teradataml/hyperparameter_tuner/utils.py +281 -187
  971. teradataml/lib/aed_0_1.dll +0 -0
  972. teradataml/lib/libaed_0_1.dylib +0 -0
  973. teradataml/lib/libaed_0_1.so +0 -0
  974. teradataml/libaed_0_1.dylib +0 -0
  975. teradataml/libaed_0_1.so +0 -0
  976. teradataml/opensource/__init__.py +1 -0
  977. teradataml/opensource/sklearn/__init__.py +1 -0
  978. teradataml/opensource/sklearn/_class.py +255 -0
  979. teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
  980. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  981. teradataml/opensource/sklearn/constants.py +54 -0
  982. teradataml/options/__init__.py +130 -124
  983. teradataml/options/configure.py +358 -336
  984. teradataml/options/display.py +176 -176
  985. teradataml/plot/__init__.py +2 -2
  986. teradataml/plot/axis.py +1388 -1388
  987. teradataml/plot/constants.py +15 -15
  988. teradataml/plot/figure.py +398 -398
  989. teradataml/plot/plot.py +760 -760
  990. teradataml/plot/query_generator.py +83 -83
  991. teradataml/plot/subplot.py +216 -216
  992. teradataml/scriptmgmt/UserEnv.py +3791 -3761
  993. teradataml/scriptmgmt/__init__.py +3 -3
  994. teradataml/scriptmgmt/lls_utils.py +1719 -1604
  995. teradataml/series/series.py +532 -532
  996. teradataml/series/series_utils.py +71 -71
  997. teradataml/table_operators/Apply.py +949 -917
  998. teradataml/table_operators/Script.py +1718 -1982
  999. teradataml/table_operators/TableOperator.py +1255 -1616
  1000. teradataml/table_operators/__init__.py +2 -3
  1001. teradataml/table_operators/apply_query_generator.py +262 -262
  1002. teradataml/table_operators/query_generator.py +507 -507
  1003. teradataml/table_operators/table_operator_query_generator.py +460 -460
  1004. teradataml/table_operators/table_operator_util.py +631 -639
  1005. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  1006. teradataml/table_operators/templates/dataframe_map.template +176 -176
  1007. teradataml/table_operators/templates/script_executor.template +170 -170
  1008. teradataml/utils/dtypes.py +684 -684
  1009. teradataml/utils/internal_buffer.py +84 -84
  1010. teradataml/utils/print_versions.py +205 -205
  1011. teradataml/utils/utils.py +410 -410
  1012. teradataml/utils/validators.py +2277 -2115
  1013. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
  1014. teradataml-20.0.0.1.dist-info/RECORD +1056 -0
  1015. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
  1016. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
  1017. teradataml/analytics/mle/AdaBoost.py +0 -651
  1018. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1019. teradataml/analytics/mle/Antiselect.py +0 -342
  1020. teradataml/analytics/mle/Arima.py +0 -641
  1021. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1022. teradataml/analytics/mle/Attribution.py +0 -1070
  1023. teradataml/analytics/mle/Betweenness.py +0 -658
  1024. teradataml/analytics/mle/Burst.py +0 -711
  1025. teradataml/analytics/mle/CCM.py +0 -600
  1026. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1027. teradataml/analytics/mle/CFilter.py +0 -460
  1028. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1029. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1030. teradataml/analytics/mle/Closeness.py +0 -737
  1031. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1032. teradataml/analytics/mle/Correlation.py +0 -477
  1033. teradataml/analytics/mle/Correlation2.py +0 -573
  1034. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1035. teradataml/analytics/mle/CoxPH.py +0 -556
  1036. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1037. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1038. teradataml/analytics/mle/DTW.py +0 -623
  1039. teradataml/analytics/mle/DWT.py +0 -564
  1040. teradataml/analytics/mle/DWT2D.py +0 -599
  1041. teradataml/analytics/mle/DecisionForest.py +0 -716
  1042. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1043. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1044. teradataml/analytics/mle/DecisionTree.py +0 -830
  1045. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1046. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1047. teradataml/analytics/mle/FMeasure.py +0 -402
  1048. teradataml/analytics/mle/FPGrowth.py +0 -734
  1049. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1050. teradataml/analytics/mle/GLM.py +0 -558
  1051. teradataml/analytics/mle/GLML1L2.py +0 -547
  1052. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1053. teradataml/analytics/mle/GLMPredict.py +0 -529
  1054. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1055. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1056. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1057. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1058. teradataml/analytics/mle/Histogram.py +0 -561
  1059. teradataml/analytics/mle/IDWT.py +0 -476
  1060. teradataml/analytics/mle/IDWT2D.py +0 -493
  1061. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1062. teradataml/analytics/mle/Interpolator.py +0 -918
  1063. teradataml/analytics/mle/KMeans.py +0 -485
  1064. teradataml/analytics/mle/KNN.py +0 -627
  1065. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1066. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1067. teradataml/analytics/mle/LAR.py +0 -439
  1068. teradataml/analytics/mle/LARPredict.py +0 -478
  1069. teradataml/analytics/mle/LDA.py +0 -548
  1070. teradataml/analytics/mle/LDAInference.py +0 -492
  1071. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1072. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1073. teradataml/analytics/mle/LinReg.py +0 -433
  1074. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1075. teradataml/analytics/mle/MinHash.py +0 -544
  1076. teradataml/analytics/mle/Modularity.py +0 -587
  1077. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1078. teradataml/analytics/mle/NERExtractor.py +0 -595
  1079. teradataml/analytics/mle/NERTrainer.py +0 -458
  1080. teradataml/analytics/mle/NGrams.py +0 -570
  1081. teradataml/analytics/mle/NPath.py +0 -634
  1082. teradataml/analytics/mle/NTree.py +0 -549
  1083. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1084. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1085. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1086. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1087. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1088. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1089. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1090. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1091. teradataml/analytics/mle/POSTagger.py +0 -417
  1092. teradataml/analytics/mle/Pack.py +0 -411
  1093. teradataml/analytics/mle/PageRank.py +0 -535
  1094. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1095. teradataml/analytics/mle/PathGenerator.py +0 -367
  1096. teradataml/analytics/mle/PathStart.py +0 -464
  1097. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1098. teradataml/analytics/mle/Pivot.py +0 -471
  1099. teradataml/analytics/mle/ROC.py +0 -425
  1100. teradataml/analytics/mle/RandomSample.py +0 -637
  1101. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1102. teradataml/analytics/mle/SAX.py +0 -779
  1103. teradataml/analytics/mle/SVMDense.py +0 -677
  1104. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1105. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1106. teradataml/analytics/mle/SVMSparse.py +0 -557
  1107. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1108. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1109. teradataml/analytics/mle/Sampling.py +0 -549
  1110. teradataml/analytics/mle/Scale.py +0 -565
  1111. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1112. teradataml/analytics/mle/ScaleMap.py +0 -378
  1113. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1114. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1115. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1116. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1117. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1118. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1119. teradataml/analytics/mle/Sessionize.py +0 -475
  1120. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1121. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1122. teradataml/analytics/mle/TF.py +0 -389
  1123. teradataml/analytics/mle/TFIDF.py +0 -504
  1124. teradataml/analytics/mle/TextChunker.py +0 -414
  1125. teradataml/analytics/mle/TextClassifier.py +0 -399
  1126. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1127. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1128. teradataml/analytics/mle/TextMorph.py +0 -494
  1129. teradataml/analytics/mle/TextParser.py +0 -623
  1130. teradataml/analytics/mle/TextTagger.py +0 -530
  1131. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1132. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1133. teradataml/analytics/mle/Unpack.py +0 -526
  1134. teradataml/analytics/mle/Unpivot.py +0 -438
  1135. teradataml/analytics/mle/VarMax.py +0 -776
  1136. teradataml/analytics/mle/VectorDistance.py +0 -762
  1137. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1138. teradataml/analytics/mle/XGBoost.py +0 -842
  1139. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1140. teradataml/analytics/mle/__init__.py +0 -123
  1141. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1142. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1143. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1144. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1145. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1146. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1147. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1148. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1149. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1150. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1151. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1152. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1153. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1154. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1155. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1156. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1157. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1158. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1159. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1160. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1161. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1162. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1163. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1164. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1165. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1166. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1167. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1168. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1169. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1170. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1171. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1172. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1173. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1174. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1175. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1176. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1177. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1178. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1179. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1180. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1181. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1182. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1183. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1184. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1185. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1186. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1187. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1188. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1189. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1190. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1191. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1192. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1193. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1194. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1195. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1196. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1197. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1198. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1199. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1200. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1201. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1202. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1203. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1204. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1205. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1206. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1207. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1208. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1209. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1210. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1211. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1212. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1213. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1214. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1215. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1216. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1217. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1218. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1219. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1220. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1221. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1222. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1223. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1224. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1225. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1226. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1227. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1228. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1229. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1230. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1231. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1232. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1233. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1234. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1235. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1236. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1237. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1238. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1239. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1240. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1241. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1242. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1243. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1244. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1245. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1246. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1247. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1248. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1249. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1250. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1251. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1252. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1253. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1254. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1255. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1256. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1257. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1258. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1259. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1260. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1261. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1262. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1263. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1264. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1265. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1266. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1267. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1268. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1269. teradataml/analytics/sqle/Antiselect.py +0 -321
  1270. teradataml/analytics/sqle/Attribution.py +0 -603
  1271. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1272. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1273. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1274. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1275. teradataml/analytics/sqle/NPath.py +0 -632
  1276. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1277. teradataml/analytics/sqle/Pack.py +0 -388
  1278. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1279. teradataml/analytics/sqle/Sessionize.py +0 -390
  1280. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1281. teradataml/analytics/sqle/Unpack.py +0 -503
  1282. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1283. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1284. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1285. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1286. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1287. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1288. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1289. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1290. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1291. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1292. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1293. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1294. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1295. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1296. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1297. teradataml/catalog/model_cataloging.py +0 -980
  1298. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1299. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1300. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1301. teradataml/table_operators/sandbox_container_util.py +0 -643
  1302. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1303. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
@@ -1,1616 +1,1255 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2020 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Trupti Purohit (trupti.purohit@teradata.com)
8
- # Secondary Owner: Gouri Patwardhan (gouri.patwardhan@teradata.com)
9
- #
10
- # Function Version: 1.0
11
- #
12
- # Description: Base class for Teradata's Table Operators
13
- # ##################################################################
14
-
15
- import os
16
- import tarfile
17
- import subprocess
18
- from pathlib import Path
19
- import teradataml.dataframe as tdmldf
20
- from teradataml.common.constants import OutputStyle, TeradataConstants
21
- from teradataml.common.constants import TableOperatorConstants
22
- from teradataml.common.garbagecollector import GarbageCollector
23
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
24
- from teradataml.common.utils import UtilFuncs
25
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
26
-
27
- from teradataml.common.exceptions import TeradataMlException
28
- from teradataml.common.messages import Messages
29
- from teradataml.common.messagecodes import MessageCodes
30
- from teradataml.options.configure import configure
31
- from teradataml.utils.utils import execute_sql
32
- from teradataml.utils.validators import _Validators
33
- from teradatasqlalchemy import (BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL, FLOAT, NUMBER)
34
- from teradatasqlalchemy import (TIMESTAMP, DATE, TIME)
35
- from teradatasqlalchemy import (CHAR, VARCHAR, CLOB)
36
- from teradatasqlalchemy import (BYTE, VARBYTE, BLOB)
37
- from teradatasqlalchemy import (PERIOD_DATE, PERIOD_TIME, PERIOD_TIMESTAMP)
38
- from teradatasqlalchemy import (INTERVAL_YEAR, INTERVAL_YEAR_TO_MONTH, INTERVAL_MONTH, INTERVAL_DAY,
39
- INTERVAL_DAY_TO_HOUR, INTERVAL_DAY_TO_MINUTE, INTERVAL_DAY_TO_SECOND,
40
- INTERVAL_HOUR, INTERVAL_HOUR_TO_MINUTE, INTERVAL_HOUR_TO_SECOND,
41
- INTERVAL_MINUTE, INTERVAL_MINUTE_TO_SECOND, INTERVAL_SECOND)
42
- from teradataml.context.context import _get_current_databasename, get_context, get_connection
43
- from io import StringIO
44
-
45
-
46
- class TableOperator:
47
-
48
- def __init__(self,
49
- data=None,
50
- script_name=None,
51
- files_local_path=None,
52
- delimiter="\t",
53
- returns=None,
54
- quotechar=None,
55
- data_partition_column=None,
56
- data_hash_column=None,
57
- data_order_column=None,
58
- is_local_order=False,
59
- sort_ascending=True,
60
- nulls_first=True):
61
- """
62
- DESCRIPTION:
63
- Table Operators are a type of User-Defined Function, only available when connected to a
64
- Vantage.
65
-
66
- PARAMETERS:
67
- data:
68
- Optional Argument.
69
- Specifies a teradataml DataFrame containing the input data for the script.
70
-
71
- script_name:
72
- Required Argument.
73
- Specifies the name of the user script.
74
- Types: str
75
-
76
- files_local_path:
77
- Required Argument.
78
- Specifies the absolute local path where the user script and all supporting files
79
- like model files, input data file reside.
80
- Types: str
81
-
82
- delimiter:
83
- Optional Argument.
84
- Specifies a delimiter to use when reading columns from a row and
85
- writing result columns.
86
- The delimiter is a single character chosen from the set of punctuation characters.
87
- Types: str
88
-
89
- returns:
90
- Required Argument.
91
- Specifies the output column definition.
92
- Types: Dictionary specifying column name to teradatasqlalchemy type mapping.
93
- Default: None
94
-
95
- data_hash_column:
96
- Optional Argument.
97
- Specifies the column to be used for hashing.
98
- The rows in the data are redistributed to AMPs based on the hash value of the
99
- column specified. The user-installed script file then runs once on each AMP.
100
- If there is no data_hash_column, then the entire result set,
101
- delivered by the function, constitutes a single group or partition.
102
- Types: str
103
- Note:
104
- "data_hash_column" can not be specified along with "data_partition_column",
105
- "is_local_order" and "data_order_column".
106
-
107
- data_partition_column:
108
- Optional Argument.
109
- Specifies Partition By columns for data.
110
- Values to this argument can be provided as a list, if multiple
111
- columns are used for partition.
112
- Default Value: ANY
113
- Types: str OR list of Strings (str)
114
- Notes:
115
- 1) "data_partition_column" can not be specified along with "data_hash_column".
116
- 2) "data_partition_column" can not be specified along with "is_local_order = True".
117
-
118
- is_local_order:
119
- Optional Argument.
120
- Specifies a boolean value to determine whether the input data is to be ordered locally
121
- or not. 'sort_ascending' specifies the order in which the values in a group, or partition,
122
- are sorted. This argument is ignored, if data_order_column is None.
123
- When set to 'True', qualified rows are ordered locally in preparation to be input
124
- to the function.
125
- Default Value: False
126
- Types: bool
127
- Note:
128
- "is_local_order" can not be specified along with "data_hash_column".
129
- When "is_local_order" is set to 'True', "data_order_column" should be specified,
130
- and the columns specified in "data_order_column" are used for local ordering.
131
-
132
- data_order_column:
133
- Optional Argument.
134
- Specifies Order By columns for data.
135
- Values to this argument can be provided as a list, if multiple
136
- columns are used for ordering.
137
- This argument is used with in both cases: "is_local_order = True"
138
- and "is_local_order = False".
139
- Types: str OR list of Strings (str)
140
- Note:
141
- "data_order_column" can not be specified along with "data_hash_column".
142
-
143
- sort_ascending:
144
- Optional Argument.
145
- Specifies a boolean value to determine if the input data is to be sorted on
146
- the data_order_column column in ascending or descending order.
147
- When this is set to 'True' data is sorted in ascending order,
148
- otherwise data is sorted in descending order.
149
- This argument is ignored, if data_order_column is None.
150
- Default Value: True
151
- Types: bool
152
-
153
- nulls_first:
154
- Optional Argument.
155
- Specifies a boolean value to determine whether NULLS from input data are listed
156
- first or last during ordering.
157
- When this is set to 'True' NULLS are listed first, otherwise NULLS are listed last.
158
- This argument is ignored, if data_order_column is None.
159
- Default Value: True
160
- Types: bool
161
-
162
- RETURNS:
163
- An instance of TableOperator class.
164
-
165
- RAISES:
166
- TeradataMlException
167
-
168
- EXAMPLES:
169
- # Apply class extends this base class.
170
- apply_obj = Apply(data=barrierdf,
171
- script_name='mapper.py',
172
- files_local_path= '/root/data/scripts/',
173
- apply_command='python3 mapper.py',
174
- data_order_column="Id",
175
- is_local_order=False,
176
- nulls_first=False,
177
- sort_ascending=False,
178
- env_name = "test_env",
179
- returns={"word": VARCHAR(15), "count_input": VARCHAR(2)},
180
- style='csv',
181
- delimiter=',')
182
- """
183
- self.result = None
184
- self._tblop_query = None
185
- self.data = data
186
- self.script_name = script_name
187
- self.files_local_path = files_local_path
188
- self.delimiter = delimiter
189
- self.quotechar = quotechar
190
- self.returns = returns
191
- self.data_partition_column = data_partition_column
192
- self.data_hash_column = data_hash_column
193
- self.data_order_column = data_order_column
194
- self.is_local_order = is_local_order
195
- self.sort_ascending = sort_ascending
196
- self.nulls_first = nulls_first
197
-
198
- # Datatypes supported in returns clause of a table operator.
199
- self._supported_returns_datatypes = (BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL, FLOAT, NUMBER,
200
- TIMESTAMP, DATE, TIME, CHAR, VARCHAR, CLOB, BYTE, VARBYTE,
201
- BLOB, PERIOD_DATE, PERIOD_TIME, PERIOD_TIMESTAMP, INTERVAL_YEAR,
202
- INTERVAL_YEAR_TO_MONTH, INTERVAL_MONTH, INTERVAL_DAY, INTERVAL_DAY_TO_HOUR,
203
- INTERVAL_DAY_TO_MINUTE, INTERVAL_DAY_TO_SECOND, INTERVAL_HOUR,
204
- INTERVAL_HOUR_TO_MINUTE, INTERVAL_HOUR_TO_SECOND, INTERVAL_MINUTE,
205
- INTERVAL_MINUTE_TO_SECOND, INTERVAL_SECOND
206
- )
207
-
208
- # Create AnalyticsWrapperUtils instance which contains validation functions.
209
- # This is required for is_default_or_not check.
210
- # Rest all validation is done using _Validators.
211
- self.__awu = AnalyticsWrapperUtils()
212
-
213
- self.awu_matrix = []
214
- self.awu_matrix.append(["data", self.data, True, (tdmldf.dataframe.DataFrame)])
215
- self.awu_matrix.append(["data_partition_column", self.data_partition_column, True, (str, list), True])
216
- self.awu_matrix.append(["data_hash_column", self.data_hash_column, True, (str, list), True])
217
- self.awu_matrix.append(["data_order_column", self.data_order_column, True, (str, list), True])
218
- self.awu_matrix.append(["is_local_order", self.is_local_order, True, (bool)])
219
- self.awu_matrix.append(["sort_ascending", self.sort_ascending, True, (bool)])
220
- self.awu_matrix.append(["nulls_first", self.nulls_first, True, (bool)])
221
- self.awu_matrix.append(["script_name", self.script_name, True, (str), True])
222
- self.awu_matrix.append(["files_local_path", self.files_local_path, True, (str), True])
223
- self.awu_matrix.append(["delimiter", self.delimiter, True, (str), False])
224
- self.awu_matrix.append(["quotechar", self.quotechar, True, (str), False])
225
-
226
- # Perform the function validations.
227
- self._validate()
228
-
229
- def _validate(self, for_data_args=False):
230
- """
231
- Function to validate Table Operator Function arguments, which verifies missing
232
- arguments, input argument and table types. Also processes the
233
- argument values.
234
- @param: for_data_args: Specifies whether the validation is for only arguments related to data or not.
235
- When set to True, validation is only for data arguments. Otherwise, validation
236
- is for all arguments. By default, system validates all the arguments.
237
- """
238
-
239
- if not for_data_args:
240
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
241
- _Validators._validate_missing_required_arguments(self.awu_matrix)
242
-
243
- # Validate argument types
244
- _Validators._validate_function_arguments(self.awu_matrix,
245
- skip_empty_check={"quotechar": ["\n", "\t"],
246
- "delimiter": ["\n"]})
247
-
248
- if self.data is not None:
249
- # Hash and order by can be used together as long as is_local_order = True.
250
- if all([self.data_hash_column,
251
- self.data_order_column]) and not self.is_local_order:
252
- raise TeradataMlException(
253
- Messages.get_message(MessageCodes.CANNOT_USE_TOGETHER_WITH,
254
- "data_hash_column' and 'data_order_column",
255
- "is_local_order=False"),
256
- MessageCodes.CANNOT_USE_TOGETHER_WITH)
257
-
258
- # Either hash or partition can be used.
259
- if all([self.data_hash_column, self.data_partition_column]):
260
- raise TeradataMlException(Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT,
261
- "data_hash_column", "data_partition_column"),
262
- MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
263
-
264
- # Either local order by or partition by can be used.
265
- if all([self.is_local_order, self.data_partition_column]):
266
- raise TeradataMlException(Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT,
267
- "is_local_order=True",
268
- "data_partition_column"),
269
- MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
270
-
271
- # local order by requires column name.
272
- if self.is_local_order and self.data_order_column is None:
273
- raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
274
- "data_order_column",
275
- "is_local_order=True"),
276
- MessageCodes.DEPENDENT_ARG_MISSING)
277
-
278
- if self.__awu._is_default_or_not(self.data_partition_column, "ANY"):
279
- _Validators._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column",
280
- self.data, "data", True)
281
-
282
- _Validators._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column",
283
- self.data, "data", False)
284
-
285
- _Validators._validate_dataframe_has_argument_columns(self.data_hash_column, "data_hash_column",
286
- self.data, "data", False)
287
-
288
- if not for_data_args:
289
- # Check for length of the arguments "delimiter" and "quotechar".
290
- if self.delimiter is not None:
291
- _Validators._validate_str_arg_length('delimiter', self.delimiter, 'EQ', 1)
292
-
293
- if self.quotechar is not None:
294
- _Validators._validate_str_arg_length('quotechar', self.quotechar, 'EQ', 1)
295
-
296
- # The arguments 'quotechar' and 'delimiter' cannot take newline character.
297
- if self.delimiter == '\n':
298
- raise TeradataMlException(Messages.get_message(MessageCodes.NOT_ALLOWED_VALUES,
299
- "\n", "delimiter"),
300
- MessageCodes.NOT_ALLOWED_VALUES)
301
- if self.quotechar == '\n':
302
- raise TeradataMlException(Messages.get_message(MessageCodes.NOT_ALLOWED_VALUES,
303
- "\n", "quotechar"),
304
- MessageCodes.NOT_ALLOWED_VALUES)
305
-
306
- # The arguments 'quotechar' and 'delimiter' cannot have the same value.
307
- if self.delimiter == self.quotechar:
308
- raise TeradataMlException(Messages.get_message(MessageCodes.ARGUMENT_VALUE_SAME,
309
- "delimiter", "quotechar"),
310
- MessageCodes.ARGUMENT_VALUE_SAME)
311
-
312
- def set_data(self,
313
- data,
314
- data_partition_column=None,
315
- data_hash_column=None,
316
- data_order_column=None,
317
- is_local_order=False,
318
- sort_ascending=True,
319
- nulls_first=True):
320
- """
321
- DESCRIPTION:
322
- Function enables user to set data and data related arguments without having to
323
- re-create Script object.
324
-
325
- PARAMETERS:
326
- data:
327
- Required Argument.
328
- Specifies a teradataml DataFrame containing the input data for the script.
329
-
330
- data_hash_column:
331
- Optional Argument.
332
- Specifies the column to be used for hashing.
333
- The rows in the data are redistributed to AMPs based on the
334
- hash value of the column specified.
335
- The user installed script then runs once on each AMP.
336
- If there is no data_partition_column, then the entire result set delivered
337
- by the function, constitutes a single group or partition.
338
- Types: str
339
- Note:
340
- "data_hash_column" can not be specified along with
341
- "data_partition_column", "is_local_order" and "data_order_column".
342
-
343
- data_partition_column:
344
- Optional Argument.
345
- Specifies Partition By columns for data.
346
- Values to this argument can be provided as a list, if multiple
347
- columns are used for partition.
348
- Default Value: ANY
349
- Types: str OR list of Strings (str)
350
- Note:
351
- 1) "data_partition_column" can not be specified along with
352
- "data_hash_column".
353
- 2) "data_partition_column" can not be specified along with
354
- "is_local_order = True".
355
-
356
- is_local_order:
357
- Optional Argument.
358
- Specifies a boolean value to determine whether the input data is to be
359
- ordered locally or not. Order by specifies the order in which the
360
- values in a group or partition are sorted. Local Order By specifies
361
- orders qualified rows on each AMP in preparation to be input to a table
362
- function. This argument is ignored, if "data_order_column" is None. When
363
- set to True, data is ordered locally.
364
- Default Value: False
365
- Types: bool
366
- Note:
367
- 1) "is_local_order" can not be specified along with
368
- "data_hash_column".
369
- 2) When "is_local_order" is set to True, "data_order_column" should be
370
- specified, and the columns specified in "data_order_column" are
371
- used for local ordering.
372
-
373
- data_order_column:
374
- Optional Argument.
375
- Specifies Order By columns for data.
376
- Values to this argument can be provided as a list, if multiple
377
- columns are used for ordering.
378
- This argument is used in both cases:
379
- "is_local_order = True" and "is_local_order = False".
380
- Types: str OR list of Strings (str)
381
- Note:
382
- "data_order_column" can not be specified along with
383
- "data_hash_column".
384
-
385
- sort_ascending:
386
- Optional Argument.
387
- Specifies a boolean value to determine if the result set is to be sorted
388
- on the column specified in "data_order_column", in ascending or descending
389
- order.
390
- The sorting is ascending when this argument is set to True, and descending
391
- when set to False.
392
- This argument is ignored, if "data_order_column" is None.
393
- Default Value: True
394
- Types: bool
395
-
396
- nulls_first:
397
- Optional Argument.
398
- Specifies a boolean value to determine whether NULLS are listed first or
399
- last during ordering.
400
- This argument is ignored, if "data_order_column" is None.
401
- NULLS are listed first when this argument is set to True, and
402
- last when set to False.
403
- Default Value: True
404
- Types: bool
405
-
406
- RETURNS:
407
- None.
408
-
409
- RAISES:
410
- TeradataMlException
411
-
412
- EXAMPLES:
413
- >>> self.set_data(df)
414
- """
415
-
416
- awu_matrix_setter = []
417
- awu_matrix_setter.append(["data", data, True, (tdmldf.dataframe.DataFrame)])
418
- awu_matrix_setter.append(["data_partition_column", data_partition_column,
419
- True, (str, list), True])
420
- awu_matrix_setter.append(["data_hash_column", data_hash_column, True,
421
- (str, list), True])
422
- awu_matrix_setter.append(["data_order_column", data_order_column, True,
423
- (str, list), True])
424
- awu_matrix_setter.append(["is_local_order", is_local_order, True, (bool)])
425
- awu_matrix_setter.append(["sort_ascending", sort_ascending, True, (bool)])
426
- awu_matrix_setter.append(["nulls_first", nulls_first, True, (bool)])
427
-
428
- # Perform the function validations
429
- _Validators._validate_missing_required_arguments([["data", data, False,
430
- (tdmldf.dataframe.DataFrame)]])
431
- _Validators._validate_function_arguments(awu_matrix_setter)
432
-
433
- self.data = data
434
- self.data_partition_column = data_partition_column
435
- self.data_hash_column = data_hash_column
436
- self.data_order_column = data_order_column
437
- self.is_local_order = is_local_order
438
- self.sort_ascending = sort_ascending
439
- self.nulls_first = nulls_first
440
-
441
- def _execute(self, output_style='VIEW'):
442
- """
443
- Function to execute Table Operator queries.
444
- Create DataFrames for the required Table Operator output.
445
- """
446
- table_type = TeradataConstants.TERADATA_VIEW
447
- if output_style == OutputStyle.OUTPUT_TABLE.value:
448
- table_type = TeradataConstants.TERADATA_TABLE
449
-
450
- # Generate STDOUT table name and add it to the output table list.
451
- tblop_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_tblop_out_",
452
- use_default_database=True, gc_on_quit=True,
453
- quote=False,
454
- table_type=table_type
455
- )
456
-
457
- try:
458
- if output_style == OutputStyle.OUTPUT_TABLE.value:
459
- UtilFuncs._create_table(tblop_stdout_temp_tablename, self._tblop_query)
460
- else:
461
- UtilFuncs._create_view(tblop_stdout_temp_tablename, self._tblop_query)
462
- except Exception as emsg:
463
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)),
464
- MessageCodes.TDMLDF_EXEC_SQL_FAILED)
465
-
466
-
467
- self.result = self.__awu._create_data_set_object(
468
- df_input=UtilFuncs._extract_table_name(tblop_stdout_temp_tablename), source_type="table",
469
- database_name=UtilFuncs._extract_db_name(tblop_stdout_temp_tablename))
470
-
471
- return self.result
472
-
473
- def _returns_clause_validation(self):
474
- """
475
- DESCRIPTION:
476
- Function validates 'returns' clause for a table operator query.
477
-
478
- PARAMETERS:
479
- None.
480
-
481
- RETURNS:
482
- None
483
-
484
- RAISES:
485
- Error if argument is not of valid datatype.
486
-
487
- EXAMPLES:
488
- self._returns_clause_validation()
489
- """
490
- # Validate keys and datatypes in returns.
491
- if self.returns is not None:
492
- awu_matrix_returns = []
493
- for key in self.returns.keys():
494
- awu_matrix_returns.append(["keys in returns", key, False, (str), True])
495
- awu_matrix_returns.append(["values in returns", self.returns[key], False, self._supported_returns_datatypes])
496
- _Validators._validate_function_arguments(awu_matrix_returns)
497
-
498
- def setup_test_env(self, docker_image_location):
499
- """
500
- DESCRIPTION:
501
- Function enables user to load already downloaded sandbox image.
502
- This will enable users to run the Python scripts on client machine outside of
503
- Open Analytics Framework.
504
-
505
- PARAMETERS:
506
- docker_image_location:
507
- Required Argument.
508
- Specifies the location of image on user's system.
509
- Types: str
510
- Note:
511
- For location to download docker image refer teradataml User Guide.
512
-
513
- RETURNS:
514
- None.
515
-
516
- RAISES:
517
- TeradataMlException
518
-
519
- EXAMPLES:
520
- # Load example data.
521
- load_example_data("Script", ["barrier"])
522
-
523
- # Example - The script mapper.py reads in a line of text input ("Old Macdonald Had A Farm") from csv and
524
- # splits the line into individual words, emitting a new row for each word.
525
-
526
- # Create teradataml DataFrame objects.
527
- >>> barrierdf = DataFrame.from_table("barrier")
528
-
529
- # Create remote user environment.
530
- >>> test_env = create_env('test_env', 'python_3.7.9', 'Demo environment');
531
- User environment test_env created.
532
-
533
- # Create an Apply object that allows user to execute script using Open Analytics Framework.
534
- >>> apply_obj = Apply(data=barrierdf,
535
- script_name='mapper.py',
536
- files_local_path='data/scripts',
537
- apply_command='python mapper.py',
538
- delimiter=',',
539
- env_name = "test_env",
540
- data_partition_column="Id",
541
- returns={"word": VARCHAR(15), "count_input": VARCHAR(2)}
542
- )
543
-
544
- # Run user script locally within docker container and using data from csv.
545
- # This helps the user to fix script level issues outside of Open Analytics Framework.
546
- # Setup the environment by providing local path to docker image file.
547
- >>> apply_obj.setup_test_env(docker_image_location='/tmp/sto_sandbox_docker_image.tar'))
548
- Loading image from /tmp/sto_sandbox_docker_image.tar. It may take few minutes.
549
- Image loaded successfully.
550
- """
551
- self.awu_matrix_setup=[]
552
- self.awu_matrix_setup.append((["docker_image_location", docker_image_location, False, (str), True]))
553
-
554
- # Validate missing arguments
555
- _Validators._validate_missing_required_arguments(self.awu_matrix_setup)
556
-
557
- # Validate argument types
558
- _Validators._validate_function_arguments(self.awu_matrix_setup)
559
-
560
- # get the frame object of the function.
561
- import inspect
562
- frame = inspect.currentframe()
563
-
564
- # Validate argument types.
565
- _Validators._validate_module_presence('docker', frame.f_code.co_name)
566
-
567
- import docker
568
- # Load image from user provided location
569
- client = docker.from_env()
570
- if not Path(docker_image_location).exists():
571
- raise TeradataMlException(
572
- Messages.get_message(MessageCodes.INPUT_FILE_NOT_FOUND).format(docker_image_location),
573
- MessageCodes.INPUT_FILE_NOT_FOUND)
574
- else:
575
- try:
576
- print("Loading image from {0}. It may take few minutes.".format(docker_image_location))
577
- with open(docker_image_location, 'rb') as f:
578
- client.images.load(f)
579
- print("Image loaded successfully.")
580
- except:
581
- raise
582
-
583
- # Set _latest_sandbox_exists to True - which indicates sandbox image for STO exists on the system
584
- configure._latest_sandbox_exists = True
585
-
586
-
587
- def setup_sto_env(self, docker_image_location):
588
- """
589
- DESCRIPTION:
590
- Function enables user to load already downloaded sandbox image.
591
-
592
- PARAMETERS:
593
- docker_image_location:
594
- Required Argument.
595
- Specifies the location of image on user's system.
596
- Types: str
597
-
598
- Note:
599
- For location to download docker image refer teradataml User Guide.
600
-
601
- RETURNS:
602
- None.
603
-
604
- RAISES:
605
- TeradataMlException
606
-
607
- EXAMPLES:
608
- # Note - Refer to User Guide for setting search path and required permissions.
609
- # Load example data.
610
- load_example_data("Script", ["barrier"])
611
-
612
- # Example - The script mapper.py reads in a line of text input
613
- # ("Old Macdonald Had A Farm") from csv and
614
- # splits the line into individual words, emitting a new row for each word.
615
-
616
- # Create teradataml DataFrame objects.
617
- >>> barrierdf = DataFrame.from_table("barrier")
618
-
619
- # Set SEARCHUIFDBPATH.
620
- >>> execute_sql("SET SESSION SEARCHUIFDBPATH = alice;")
621
-
622
- # Create a Script object that allows us to execute script on Vantage.
623
- >>> import os
624
- >>> td_path = os.path.dirname(teradataml.__file__)
625
- >>> from teradatasqlalchemy import VARCHAR
626
- >>> sto = Script(data=barrierdf,
627
- ... script_name='mapper.py',
628
- ... files_local_path= os.path.join(td_path, 'data', 'scripts'),
629
- ... script_command='python ./alice/mapper.py',
630
- ... data_order_column="Id",
631
- ... is_local_order=False,
632
- ... nulls_first=False,
633
- ... sort_ascending=False,
634
- ... charset='latin',
635
- ... returns=OrderedDict([("word", VARCHAR(15)),("count_input", VARCHAR(2))]))
636
-
637
- # Run user script locally within docker container and using data from csv.
638
- # This helps the user to fix script level issues outside Vantage.
639
- # Setup the environment by providing local path to docker image file.
640
- >>> sto.setup_sto_env(docker_image_location='/tmp/sto_sandbox_docker_image.tar')
641
- Loading image from /tmp/sto_sandbox_docker_image.tar. It may take few minutes.
642
- Image loaded successfully.
643
- Starting a container for stosandbox:1.0 image.
644
- Container d7c73cb498c79a082180576bb5b10bb07b52efdd3026856146fc15e91147b19f
645
- started successfully.
646
-
647
- """
648
- self.awu_matrix_setup = []
649
- self.awu_matrix_setup.append((["docker_image_location", docker_image_location,
650
- False, (str), True]))
651
-
652
- # Validate missing arguments.
653
- _Validators._validate_missing_required_arguments(self.awu_matrix_setup)
654
-
655
- # Validate argument types.
656
- _Validators._validate_function_arguments(self.awu_matrix_setup)
657
-
658
- from teradataml.table_operators.sandbox_container_util import setup_sandbox_env
659
- setup_sandbox_env(sandbox_image_location=docker_image_location,
660
- sandbox_image_name='stosandbox:1.0')
661
-
662
- # Set _latest_sandbox_exists to True - which indicates sandbox image for STO
663
- # exists on the system.
664
- from teradataml.options.configure import configure
665
- configure._latest_sandbox_exists = True
666
-
667
- def test_script(self, supporting_files=None, input_data_file=None, script_args="",
668
- exec_mode='sandbox', **kwargs):
669
- """
670
- DESCRIPTION:
671
- Function enables user to run script in docker container environment outside
672
- Vantage.
673
- Input data for user script is read from file.
674
-
675
- PARAMETERS:
676
- supporting_files:
677
- Optional Argument
678
- Specifies a file or list of supporting files like model files to be
679
- copied to the container.
680
- Types: string or list of str
681
-
682
- input_data_file:
683
- Required Argument.
684
- Specifies the name of the input data file.
685
- It should have a path relative to the location specified in
686
- "files_local_path" argument.
687
- If set to None, read data from AMP, else from file passed in the argument
688
- 'input_data_file'.
689
- File should have at least permissions of mode 644.
690
- Types: str
691
-
692
- script_args:
693
- Optional Argument.
694
- Specifies command line arguments required by the user script.
695
- Types: str
696
-
697
- exec_mode:
698
- Optional Argument.
699
- Specifies the mode in which user wants to test the script.
700
- If set to 'sandbox', the user script will run within the sandbox
701
- environment, else it will run locally on user's system.
702
- Permitted Values: 'sandbox', 'local'
703
- Default Value: 'sandbox'
704
- Types: str
705
-
706
- kwargs:
707
- Optional Argument.
708
- Specifies the keyword arguments required for testing.
709
- Keys can be:
710
- data_row_limit:
711
- Optional Argument. Ignored when data is read from file.
712
- Specifies the number of rows to be taken from all amps when
713
- reading from a table or view on Vantage.
714
- Default Value: 1000
715
- Types: int
716
-
717
- password:
718
- Optional Argument. Required when reading from database.
719
- Specifies the password to connect to vantage where the data
720
- resides.
721
- Types: str
722
-
723
- data_file_delimiter:
724
- Optional Argument.
725
- Specifies the delimiter used in the input data file. This
726
- argument can be specified when data is read from file.
727
- Default Value: '\t'
728
- Types: str
729
-
730
- data_file_header:
731
- Optional Argument.
732
- Specifies whether the input data file contains header. This
733
- argument can be specified when data is read from file.
734
- Default Value: True
735
- Types: bool
736
-
737
- timeout:
738
- Optional Argument.
739
- Specifies the timeout for docker API calls when running in
740
- sandbox mode.
741
- Default Value: 5000
742
- Types: int
743
-
744
- data_file_quote_char:
745
- Optional Argument.
746
- Specifies the quotechar used in the input data file.
747
- This argument can be specified when data is read from file.
748
- Default Value: '"'
749
-
750
- logmech:
751
- Optional Argument.
752
- Specifies the type of logon mechanism to establish a connection to
753
- Teradata Vantage.
754
- Permitted Values: 'TD2', 'TDNEGO', 'LDAP', 'KRB5' & 'JWT'.
755
- TD2:
756
- The Teradata 2 (TD2) mechanism provides authentication
757
- using a Vantage username and password. This is the default
758
- logon mechanism using which the connection is established
759
- to Vantage.
760
-
761
- TDNEGO:
762
- A security mechanism that automatically determines the
763
- actual mechanism required, based on policy, without user's
764
- involvement. The actual mechanism is determined by the
765
- TDGSS server configuration and by the security policy's
766
- mechanism restrictions.
767
-
768
- LDAP:
769
- A directory-based user logon to Vantage with a directory
770
- username and password and is authenticated by the directory.
771
-
772
- KRB5 (Kerberos):
773
- A directory-based user logon to Vantage with a domain
774
- username and password and is authenticated by
775
- Kerberos (KRB5 mechanism).
776
- Note:
777
- User must have a valid ticket-granting ticket in
778
- order to use this logon mechanism.
779
-
780
- JWT:
781
- The JSON Web Token (JWT) authentication mechanism enables
782
- single sign-on (SSO) to the Vantage after the user
783
- successfully authenticates to Teradata UDA User Service.
784
- Note:
785
- User must use logdata parameter when using 'JWT' as
786
- the logon mechanism.
787
- Default Value: TD2
788
- Types: str
789
-
790
- Note:
791
- teradataml expects the client environments are already setup with appropriate
792
- security mechanisms and are in working conditions.
793
- For more information please refer Teradata Vantage™ - Advanced SQL Engine
794
- Security Administration at https://www.info.teradata.com/
795
-
796
- logdata:
797
- Optional Argument.
798
- Specifies parameters to the LOGMECH command beyond those needed by
799
- the logon mechanism, such as user ID, password and tokens
800
- (in case of JWT) to successfully authenticate the user.
801
- Types: str
802
-
803
- Types: dict
804
-
805
- RETURNS:
806
- Output from user script.
807
-
808
- RAISES:
809
- TeradataMlException
810
-
811
- EXAMPLES:
812
- # Assumption - sto is Script() object. Please refer to help(Script)
813
- # for creating Script object.
814
- # Run user script in sandbox mode with input from data file.
815
-
816
- >>> sto.test_script(input_data_file='../barrier.csv',
817
- ... data_file_delimiter=',',
818
- ... data_file_quote_char='"',
819
- ... data_file_header=True,
820
- ... exec_mode='sandbox')
821
-
822
- ############ STDOUT Output ############
823
- word count_input
824
- 0 1 1
825
- 1 Old 1
826
- 2 Macdonald 1
827
- 3 Had 1
828
- 4 A 1
829
- 5 Farm 1
830
- >>>
831
-
832
- # Run user script in local mode with input from table.
833
- >>> sto.test_script(data_row_limit=300, password='alice', exec_mode='local')
834
-
835
- ############ STDOUT Output ############
836
- word count_input
837
- 0 1 1
838
- 1 Old 1
839
- 2 Macdonald 1
840
- 3 Had 1
841
- 4 A 1
842
- 5 Farm 1
843
-
844
- # Run user script in sandbox mode with logmech as 'TD2'.
845
- >>> sto.test_script(script_args="4 5 10 6 480", password="alice", logmech="TD2")
846
-
847
- # Run user script in sandbox mode with logmech as 'TDNEGO'.
848
- >>> sto.test_script(script_args="4 5 10 6 480", password="alice", logmech="TDNEGO")
849
-
850
- # Run user script in sandbox mode with logmech as 'LDAP'.
851
- >>> sto.test_script(script_args="4 5 10 6 480", password="alice", logmech="LDAP")
852
-
853
- # Run user script in sandbox mode with logmech as 'KRB5'.
854
- >>> sto.test_script(script_args="4 5 10 6 480", password="alice", logmech="KRB5")
855
-
856
- # Run user script in sandbox mode with logmech as 'JWT'.
857
- >>> sto.test_script(script_args="4 5 10 6 480", password="alice",
858
- logmech='JWT', logdata='token=eyJpc...h8dA')
859
-
860
- """
861
- logmech_valid_values = ['TD2', 'TDNEGO', 'LDAP', 'KRB5', 'JWT']
862
-
863
- awu_matrix_test = []
864
- awu_matrix_test.append((["supporting_files", supporting_files, True,
865
- (str, list), True]))
866
- awu_matrix_test.append((["input_data_file", input_data_file, True, (str), True]))
867
- awu_matrix_test.append((["script_args", script_args, True, (str), False]))
868
- awu_matrix_test.append((["exec_mode", exec_mode, True, (str), True,
869
- [TableOperatorConstants.SANDBOX_EXEC.value,
870
- TableOperatorConstants.LOCAL_EXEC.value]]))
871
-
872
- data_row_limit = kwargs.pop("data_row_limit", 1000)
873
- awu_matrix_test.append((["data_row_limit", data_row_limit, True, (int), True]))
874
-
875
- data_file_delimiter = kwargs.pop("data_file_delimiter", '\t')
876
- awu_matrix_test.append((["data_file_delimiter", data_file_delimiter, True,
877
- (str), False]))
878
-
879
- data_file_quote_char = kwargs.pop("data_file_quote_char", '"')
880
- awu_matrix_test.append((["data_file_quote_char", data_file_quote_char, True,
881
- (str), False]))
882
-
883
- data_file_header = kwargs.pop("data_file_header", True)
884
- awu_matrix_test.append((["data_file_header", data_file_header, True, (bool)]))
885
-
886
- timeout = kwargs.pop("timeout", 5000)
887
- awu_matrix_test.append((["timeout", timeout, True, (int), True]))
888
-
889
- logmech = kwargs.pop("logmech", "TD2")
890
- awu_matrix_test.append(
891
- ["logmech", logmech, True, (str), True, logmech_valid_values])
892
-
893
- logdata = kwargs.pop("logdata", None)
894
- awu_matrix_test.append(["logdata", logdata, True, (str), True])
895
-
896
- # Validate argument types.
897
- _Validators._validate_function_arguments(awu_matrix_test)
898
-
899
- # Validate timeout value.
900
- _Validators._validate_positive_int(timeout, "timeout")
901
-
902
- self._validate()
903
-
904
- if logmech == "JWT" and not logdata:
905
- raise TeradataMlException(
906
- Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING, 'logdata',
907
- 'logmech=JWT'),
908
- MessageCodes.DEPENDENT_ARG_MISSING)
909
-
910
- if data_row_limit <= 0:
911
- raise ValueError(Messages.get_message(MessageCodes.TDMLDF_POSITIVE_INT).
912
- format("data_row_limit", "greater than"))
913
-
914
- # Either of 'input_data_file' or 'password' argument is required.
915
- password = kwargs.pop("password", None)
916
-
917
- # The check of EITHER_THIS_OR_THAT_ARGUMENT is applicable only when the exec_mode is sandbox.
918
- # Hence adding the check exec_mode != "local".
919
- # When exec_mode is local, the connection object is used to get the values in the table.
920
- if exec_mode != "local" and not (input_data_file or (self.data and password)):
921
- message = Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT,
922
- "input_data_file", "Script data and password")
923
- raise TeradataMlException(message, MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
924
- elif exec_mode == "local" and not (input_data_file or self.data):
925
- message = Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT,
926
- "input_data_file", "Script data")
927
- raise TeradataMlException(message, MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
928
-
929
- if not self.script_name and self.files_local_path:
930
- message = Messages.get_message(MessageCodes.MISSING_ARGS,
931
- "script_name and files_local_path")
932
- raise TeradataMlException(message, MessageCodes.MISSING_ARGS)
933
-
934
- if input_data_file:
935
- if self.files_local_path is None:
936
- message = Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
937
- "files_local_path", "input_data_file")
938
- raise TeradataMlException(message, MessageCodes.DEPENDENT_ARG_MISSING)
939
- else:
940
- # Check if file exists.
941
- fpath = os.path.join(self.files_local_path,
942
- input_data_file)
943
- _Validators._validate_file_exists(fpath)
944
-
945
- if self.script_name and self.files_local_path:
946
- # Check if file exists.
947
- fpath = os.path.join(self.files_local_path,
948
- os.path.basename(self.script_name))
949
- _Validators._validate_file_exists(fpath)
950
-
951
- if exec_mode.upper() == TableOperatorConstants.LOCAL_EXEC.value:
952
- user_script_path = os.path.join(self.files_local_path, self.script_name)
953
- import sys
954
- cmd = [str(sys.executable), user_script_path]
955
- cmd.extend(script_args)
956
-
957
- if input_data_file is not None:
958
- input_file_path = os.path.join(self.files_local_path, input_data_file)
959
-
960
- # Run user script locally with input from a file.
961
- exec_cmd_output = self.__local_run_user_script_input_file(
962
- cmd, input_file_path, data_file_delimiter, data_file_quote_char, data_file_header)
963
- try:
964
- return self.__process_test_script_output(exec_cmd_output)
965
- except Exception as exp:
966
- raise
967
-
968
- else:
969
- if self.data.shape[0] > data_row_limit:
970
- raise ValueError(
971
- Messages.get_message(MessageCodes.DATAFRAME_LIMIT_ERROR,
972
- 'data_row_limit', 'data_row_limit',
973
- data_row_limit))
974
-
975
- if not self.data._table_name:
976
- self.data._table_name = df_utils._execute_node_return_db_object_name(
977
- self.data._nodeid, self.data._metaexpr)
978
-
979
- table_name = UtilFuncs._extract_table_name(self.data._table_name)
980
-
981
- # Run user script locally with input from db.
982
- exec_cmd_output = self.__local_run_user_script_input_db(cmd, table_name)
983
- try:
984
- return self.__process_test_script_output(exec_cmd_output)
985
- except Exception as exp:
986
- raise
987
- else:
988
- # Execution Mode - sandbox.
989
-
990
- # get the frame object of the function.
991
- import inspect
992
- frame = inspect.currentframe()
993
-
994
- # Validate argument types.
995
- _Validators._validate_module_presence('docker', frame.f_code.co_name)
996
-
997
- # Read container_id from configure.sandbox_container_id, if it is None then
998
- # raise an exception
999
- container_id = configure.sandbox_container_id
1000
- if container_id is None:
1001
- message = Messages.get_message(MessageCodes.SANDBOX_CONTAINER_NOT_FOUND)
1002
- raise TeradataMlException(message,
1003
- MessageCodes.SANDBOX_CONTAINER_NOT_FOUND)
1004
-
1005
- # Set path inside docker container. This is where files will be copied to.
1006
- # os.path.join() will not work here because the path is not dependent on
1007
- # client platform. Sandbox environment is linux based here.
1008
- _path_in_docker_container = "/home/tdatuser"
1009
- user_script_path = "{}/{}".format(_path_in_docker_container, self.script_name)
1010
-
1011
- if input_data_file is not None:
1012
- input_file_name = os.path.basename(input_data_file)
1013
- input_file_path = "{}/{}".format(_path_in_docker_container,
1014
- input_file_name)
1015
- # Create script_executor.
1016
- self._create_executor_script(user_script_path=user_script_path,
1017
- user_script_args=script_args,
1018
- data_file_path=input_file_path,
1019
- data_file_delimiter=data_file_delimiter,
1020
- data_file_quote_char=data_file_quote_char,
1021
- data_file_header=data_file_header)
1022
- else:
1023
- # Read input from db.
1024
- if self.data.shape[0] > data_row_limit:
1025
- raise ValueError(
1026
- Messages.get_message(MessageCodes.DATAFRAME_LIMIT_ERROR,
1027
- 'data_row_limit', 'data_row_limit',
1028
- data_row_limit))
1029
- db_host = get_context().url.host
1030
-
1031
- user_name = get_context().url.username
1032
-
1033
- if not self.data._table_name:
1034
- self.data._table_name = df_utils._execute_node_return_db_object_name(
1035
- self.data._nodeid, self.data._metaexpr)
1036
- table_name = UtilFuncs._extract_table_name(self.data._table_name)
1037
-
1038
- db_name = _get_current_databasename()
1039
-
1040
- # Create script_executor.
1041
- self._create_executor_script(user_script_path=user_script_path,
1042
- user_script_args=script_args,
1043
- db_host=db_host,
1044
- user_name=user_name,
1045
- passwd=password,
1046
- table_name=table_name,
1047
- db_name=db_name,
1048
- logmech=logmech,
1049
- logdata=logdata)
1050
-
1051
- import docker
1052
- client = docker.APIClient(timeout=timeout)
1053
-
1054
- # Copy files to container indicated in configure.sandbox_container_id.
1055
- files_to_copy = [self.script_name]
1056
-
1057
- if supporting_files is not None:
1058
- if isinstance(supporting_files, str):
1059
- supporting_files = [supporting_files]
1060
-
1061
- if len(supporting_files) == 0 \
1062
- or any(file in [None, "None", ""] for file in supporting_files):
1063
- raise ValueError(
1064
- Messages.get_message(MessageCodes.LIST_SELECT_NONE_OR_EMPTY,
1065
- 'supporting_files'))
1066
- else:
1067
- files_to_copy.extend(supporting_files)
1068
-
1069
- if input_data_file is not None:
1070
- files_to_copy.append(input_data_file)
1071
-
1072
- for filename in files_to_copy:
1073
- file_path = os.path.join(self.files_local_path, filename)
1074
- # Check if file exists.
1075
- _Validators._validate_file_exists(file_path)
1076
-
1077
- # Copy file to docker container.
1078
-
1079
- self._copy_to_docker_container(client, file_path,
1080
- _path_in_docker_container,
1081
- container_id)
1082
-
1083
- # Copy script_executor to docker container.
1084
- self._copy_to_docker_container(client, self.script_path,
1085
- _path_in_docker_container,
1086
- container_id)
1087
-
1088
- script_executor_file_name = os.path.basename(self.script_path)
1089
- exec_cmd = ("python3 {0}/{1}".format(_path_in_docker_container,
1090
- script_executor_file_name))
1091
-
1092
- try:
1093
- # Setup an exec instance in the container.
1094
- exec_cmd_create = client.exec_create(container_id, exec_cmd)
1095
-
1096
- # Start exec instance and run user script.
1097
- exec_cmd_output = client.exec_start(exec_cmd_create, demux=True)
1098
-
1099
- # Inspect the output for success or failure.
1100
- inspect_out = client.exec_inspect(exec_cmd_create)
1101
-
1102
- # Extract the exit code.
1103
- exit_code = inspect_out['ExitCode']
1104
-
1105
- if exec_cmd_output[0] is not None:
1106
- executor_output = exec_cmd_output[0].decode()
1107
-
1108
- executor_error = ""
1109
- if exec_cmd_output[1] is not None:
1110
- executor_error = exec_cmd_output[1].decode()
1111
-
1112
- # Exit code 1 indicates any error thrown by subprocess.
1113
- # Exit code 126 indicates permission problem or command is not executable.
1114
- # Exit code 127 indicates possible typos in shell script with
1115
- # unrecognizable characters.
1116
- if exit_code == 1 or exit_code == 126 or exit_code == 127:
1117
- message = Messages.get_message(
1118
- MessageCodes.SANDBOX_SCRIPT_ERROR).format(executor_error)
1119
- raise TeradataMlException(message,
1120
- MessageCodes.SANDBOX_SCRIPT_ERROR)
1121
- # Exit code 2 indicates either username or password is invalid.
1122
- elif exit_code == 2:
1123
- message = Messages.get_message(
1124
- MessageCodes.SANDBOX_CONNECTION_ERROR).format(executor_error)
1125
- raise TeradataMlException(message,
1126
- MessageCodes.SANDBOX_CONNECTION_ERROR)
1127
- # Exit code 3 indicates problem with query.
1128
- elif exit_code == 3:
1129
- message = Messages.get_message(
1130
- MessageCodes.SANDBOX_QUERY_ERROR).format(executor_error)
1131
- raise TeradataMlException(message,
1132
- MessageCodes.SANDBOX_QUERY_ERROR)
1133
- # Exit code 4 indicates all other exceptions / errors.
1134
- elif exit_code == 4:
1135
- message = Messages.get_message(
1136
- MessageCodes.SANDBOX_CONTAINER_ERROR).format(executor_error)
1137
- raise TeradataMlException(message,
1138
- MessageCodes.SANDBOX_CONTAINER_ERROR)
1139
- elif exit_code != 0:
1140
- # Any error other than exit code 1, 2, 3, 4
1141
- message = Messages.get_message(
1142
- MessageCodes.SANDBOX_CONTAINER_ERROR).format(executor_error)
1143
- raise TeradataMlException(message,
1144
- MessageCodes.SANDBOX_CONTAINER_ERROR)
1145
- else:
1146
- return self.__process_test_script_output(executor_output)
1147
- except Exception as exp:
1148
- message = Messages.get_message(
1149
- MessageCodes.SANDBOX_CONTAINER_ERROR).format(str(exp))
1150
- raise TeradataMlException(message,
1151
- MessageCodes.SANDBOX_CONTAINER_ERROR)
1152
-
1153
- def __local_run_user_script_input_file(self, cmd, input_file_path,
1154
- data_file_delimiter='\t',
1155
- data_file_quote_char='"',
1156
- data_file_header=True):
1157
- """
1158
- DESCRIPTION:
1159
- Function to run the user script in local mode with input from file.
1160
-
1161
- PARAMETERS:
1162
- cmd:
1163
- Required Argument.
1164
- Specifies the command for running the user script.
1165
- Types: str
1166
-
1167
- input_file_path:
1168
- Required Argument.
1169
- Specifies the absolute local path of input data file.
1170
- Types: str
1171
-
1172
- data_file_delimiter:
1173
- Optional Argument.
1174
- Specifies the delimiter used in input data file.
1175
- Default Value: '\t'
1176
- Types: str
1177
-
1178
- data_file_quote_char:
1179
- Optional Argument.
1180
- Specifies the quote character used in input data file.
1181
- Default Value: '"'
1182
- Types: str
1183
-
1184
- data_file_header:
1185
- Optional Argument.
1186
- Specifies whether the input data file has header.
1187
- Default Value: True
1188
- Types: bool
1189
-
1190
- RETURNS:
1191
- The string output of the command that is run on input data file.
1192
-
1193
- RAISES:
1194
- Exception.
1195
-
1196
- EXAMPLES:
1197
- self.__local_run_user_script_input_file(cmd ="cmd",
1198
- input_file_path = "input_file_path",
1199
- data_file_delimiter = "data_file_delimiter",
1200
- data_file_quote_char = "data_file_quote_char",
1201
- data_file_header = True)
1202
-
1203
- """
1204
- with open(input_file_path) as data_file:
1205
- import csv
1206
- from pandas import isna as pd_isna
1207
-
1208
- data_handle = StringIO()
1209
-
1210
- # Read data from input file.
1211
- ip_data = csv.reader(data_file,
1212
- delimiter=data_file_delimiter,
1213
- quotechar=data_file_quote_char)
1214
- # Skip the first row of input file if data_file_header is True.
1215
- if data_file_header:
1216
- next(ip_data)
1217
- for row in ip_data:
1218
- if self.quotechar is not None:
1219
- # A NULL value should not be enclosed in quotes.
1220
- # The CSV module has no support for such output with writer,
1221
- # and hence the custom formatting.
1222
- line = ['' if pd_isna(s) else "{}{}{}".format(self.quotechar,
1223
- str(s),
1224
- self.quotechar)
1225
- for s in row]
1226
- else:
1227
- line = ['' if pd_isna(s) else str(s) for s in row]
1228
-
1229
- complete_line = (self.delimiter.join(line))
1230
-
1231
- data_handle.write(complete_line)
1232
- data_handle.write("\n")
1233
-
1234
- return self.__run_user_script_subprocess(cmd, data_handle)
1235
-
1236
- def __run_user_script_subprocess(self, cmd, data_handle):
1237
- """
1238
- DESCRIPTION:
1239
- Function to run the user script in a new process and return the output.
1240
-
1241
- PARAMETERS:
1242
- cmd:
1243
- Required Argument.
1244
- Specifies the command for running the script.
1245
- Types: str
1246
-
1247
- data_handle:
1248
- Required Argument.
1249
- Specifies the data handle for the input data required by the user script.
1250
-
1251
- RETURNS:
1252
- Output of user script on input data supplied in data_handle.
1253
-
1254
- RAISES:
1255
- None.
1256
-
1257
- EXAMPLES:
1258
- self.__run_user_script_subprocess(cmd = "exec_cmd_output",
1259
- data_handle = data_handle)
1260
-
1261
- """
1262
- # Launching new process to run the user script.
1263
- try:
1264
- proc = subprocess.Popen(cmd, stdin=subprocess.PIPE,
1265
- stdout=subprocess.PIPE,
1266
- stderr=subprocess.PIPE)
1267
- process_output, process_error = proc.communicate(data_handle.getvalue().encode())
1268
- data_handle.close()
1269
-
1270
- if proc.returncode == 0:
1271
- return process_output.decode("utf-8").rstrip("\r|\n")
1272
- else:
1273
- message = Messages.get_message(MessageCodes.SCRIPT_LOCAL_RUN_ERROR).\
1274
- format(process_error)
1275
- raise TeradataMlException(message, MessageCodes.SCRIPT_LOCAL_RUN_ERROR)
1276
- except Exception as e:
1277
- raise e
1278
-
1279
- def __process_test_script_output(self, exec_cmd_output):
1280
- """
1281
- DESCRIPTION:
1282
- Function to format the output of the user script.
1283
-
1284
- PARAMETERS:
1285
- exec_cmd_output:
1286
- Required Argument.
1287
- Specifies the output returned by the user script.
1288
- Types: str
1289
-
1290
- RETURNS:
1291
- The test script output as Pandas DataFrame.
1292
-
1293
- RAISES:
1294
- Exception.
1295
-
1296
- EXAMPLES:
1297
- self.__process_test_script_output(exec_cmd_output = "exec_cmd_output")
1298
- """
1299
- try:
1300
- kwargs = dict()
1301
- if self.quotechar is not None:
1302
- kwargs['quotechar'] = self.quotechar
1303
- kwargs['quoting'] = 1 # QUOTE_ALL
1304
-
1305
- output = StringIO(exec_cmd_output)
1306
-
1307
- from pandas import read_csv as pd_read_csv
1308
-
1309
- # Form a pandas dataframe.
1310
- df = pd_read_csv(output, sep=self.delimiter, index_col=False, header=None,
1311
- names=list(self.returns.keys()), **kwargs)
1312
- return df
1313
-
1314
- except Exception as exp:
1315
- raise exp
1316
-
1317
- def __local_run_user_script_input_db(self, cmd, table_name):
1318
- """
1319
- DESCRIPTION:
1320
- Function to run the user script in local mode with input from db.
1321
-
1322
- PARAMETERS:
1323
- cmd:
1324
- Required Argument.
1325
- Specifies the command for running the user script.
1326
- Types: str
1327
-
1328
- table_name:
1329
- Required Argument.
1330
- Specifies the table name for input to user script.
1331
- Types: str
1332
-
1333
- RETURNS:
1334
- The string output of the command that is run on the Vantage table.
1335
-
1336
- RAISES:
1337
- Exception.
1338
-
1339
- EXAMPLES:
1340
- self.__local_run_user_script_input_db(cmd = "cmd", table_name = "table_name")
1341
-
1342
- """
1343
- db_data_handle = StringIO()
1344
- try:
1345
- con = get_connection()
1346
- # Query for reading data from DB.
1347
- query = ("SELECT * FROM {} ORDER BY 1;".format(table_name))
1348
- cur = execute_sql(query)
1349
- row = cur.fetchone()
1350
- from pandas import isna as pd_isna
1351
- while row:
1352
- if self.quotechar is not None:
1353
- # A NULL value should not be enclosed in quotes.
1354
- # The CSV module has no support for such output with writer,
1355
- # and hence the custom formatting.
1356
- line = ['' if pd_isna(s) else "{}{}{}".format(self.quotechar,
1357
- str(s),
1358
- self.quotechar)
1359
- for s in row]
1360
- else:
1361
- line = ['' if pd_isna(s) else str(s) for s in row]
1362
-
1363
- complete_line = (self.delimiter.join(line))
1364
- db_data_handle.write(complete_line)
1365
- db_data_handle.write("\n")
1366
- row = cur.fetchone()
1367
- except Exception as exp:
1368
- raise exp
1369
-
1370
- return self.__run_user_script_subprocess(cmd, db_data_handle)
1371
-
1372
- def _create_executor_script(self, user_script_path,
1373
- user_script_args=None,
1374
- data_file_path=None,
1375
- data_file_delimiter='\t',
1376
- data_file_quote_char='"',
1377
- data_file_header=True,
1378
- db_name=None,
1379
- db_host=None,
1380
- user_name=None,
1381
- passwd=None,
1382
- logmech=None,
1383
- logdata=None,
1384
- table_name=None):
1385
- """
1386
- DESCRIPTION:
1387
- Internal function that will generate 'script_executor.py' to be copied to
1388
- sandbox environment.
1389
-
1390
- PARAMETERS:
1391
- user_script_path:
1392
- Required Argument.
1393
- Specifies the path to user script inside docker container.
1394
- Types: str
1395
-
1396
- user_script_args:
1397
- Optional Argument.
1398
- Specifies command line arguments required by the user script.
1399
- Types: str
1400
-
1401
- data_file_path:
1402
- Required Argument.
1403
- Specifies the path to input data file inside docker container.
1404
- Types: str
1405
-
1406
- data_file_delimiter:
1407
- Optional Argument.
1408
- Specifies the delimiter used in input data file.
1409
- Default Value: "\t" (tab)
1410
- Types: character of length 1
1411
-
1412
- data_file_quote_char:
1413
- Optional Argument.
1414
- Specifies the quote character used in input data file.
1415
- Default Value: '"'
1416
- Types: character of length 1
1417
-
1418
- data_file_header:
1419
- Optional Argument.
1420
- Specifies whether the input data file has header.
1421
- Default Value: True
1422
- Types: bool
1423
-
1424
- db_name:
1425
- Optional Argument.
1426
- Specifies the current database name.
1427
- Default Value: None
1428
- Types: str
1429
-
1430
- db_host:
1431
- Optional Argument.
1432
- Specifies the host name.
1433
- Default Value: None
1434
- Types: str
1435
-
1436
- user_name:
1437
- Optional Argument.
1438
- Specifies the user name.
1439
- Default Value: None
1440
- Types: str
1441
-
1442
- passwd:
1443
- Optional Argument.
1444
- Specifies the password for user name in "user_name".
1445
- Default Value: None
1446
- Types: str
1447
-
1448
- table_name:
1449
- Optional Argument.
1450
- Specifies the table name where input data is present.
1451
- Default Value: None
1452
- Types: str
1453
-
1454
- RETURNS:
1455
- None.
1456
-
1457
- RAISES:
1458
- None.
1459
-
1460
- EXAMPLES:
1461
- # Example 1: Create executor script when input data is to be read from a file.
1462
-
1463
- self._create_executor_script(user_script_path=user_script_path,
1464
- user_script_args=script_args,
1465
- data_file_path=input_file_path,
1466
- data_file_delimiter=data_file_delimiter,
1467
- data_file_quote_char=data_file_quote_char,
1468
- data_file_header=data_file_header)
1469
-
1470
- # Example 2: Create executor script when input data is to be read from db.
1471
-
1472
- self._create_executor_script(user_script_path=user_script_path,
1473
- user_script_args=script_args,
1474
- db_host=db_host,
1475
- user_name=user_name,
1476
- passwd=password,
1477
- table_name=table_name,
1478
- db_name=db_name)
1479
-
1480
- """
1481
- __data_source = "db"
1482
- if data_file_path:
1483
- __data_source = "file"
1484
-
1485
- temp_script_name = UtilFuncs._generate_temp_script_name(prefix="script_executor",
1486
- use_default_database=True,
1487
- gc_on_quit=True,
1488
- quote=True,
1489
- script_type=TeradataConstants.TERADATA_LOCAL_SCRIPT)
1490
-
1491
- # Remove quotes from the file name after removing the database name.
1492
- script_alias = UtilFuncs._teradata_unquote_arg(
1493
- UtilFuncs._extract_table_name(temp_script_name), quote='"')
1494
-
1495
- # script_name is the actual file name (basename).
1496
- script_name = "{script_name}.py".format(script_name=script_alias)
1497
-
1498
- # Create script in .teradataml directory.
1499
- ###
1500
-
1501
- script_dir = GarbageCollector._get_temp_dir_name()
1502
-
1503
- # script_path is the actual path where we want to generate the user script at.
1504
- self.script_path = os.path.join(script_dir, script_name)
1505
-
1506
- template_dir = os.path.join(os.path.dirname(
1507
- os.path.dirname(os.path.abspath(__file__))),
1508
- "table_operators", "templates")
1509
- try:
1510
- # Write to the script based on the template.
1511
- #
1512
- from teradataml.common.constants import TableOperatorConstants
1513
- executor_file = os.path.join(template_dir,
1514
- TableOperatorConstants.SCRIPT_TEMPLATE.value)
1515
- with open(executor_file, 'r') as input_file:
1516
- with open(self.script_path, 'w') as output_file:
1517
- os.chmod(self.script_path, 0o644)
1518
- output_file.write(
1519
- input_file.read().format(
1520
- DATA_SOURCE=UtilFuncs._serialize_and_encode(__data_source),
1521
- DELIMITER=UtilFuncs._serialize_and_encode(self.delimiter),
1522
- QUOTECHAR=UtilFuncs._serialize_and_encode(self.quotechar),
1523
- USER_SCRIPT_PATH=UtilFuncs._serialize_and_encode(
1524
- user_script_path),
1525
- SCRIPT_ARGS=UtilFuncs._serialize_and_encode(user_script_args),
1526
- DATA_FILE_PATH=UtilFuncs._serialize_and_encode(
1527
- data_file_path),
1528
- INPUT_DATA_FILE_DELIMITER=UtilFuncs._serialize_and_encode(
1529
- data_file_delimiter),
1530
- INPUT_DATA_FILE_QUOTE_CHAR=UtilFuncs._serialize_and_encode(
1531
- data_file_quote_char),
1532
- INPUT_DATA_FILE_HEADER=UtilFuncs._serialize_and_encode(
1533
- data_file_header),
1534
- DB_HOST=UtilFuncs._serialize_and_encode(db_host),
1535
- DB_USER=UtilFuncs._serialize_and_encode(user_name),
1536
- DB_PASS=UtilFuncs._serialize_and_encode(passwd),
1537
- DB_NAME=UtilFuncs._serialize_and_encode(db_name),
1538
- TABLE_NAME=UtilFuncs._serialize_and_encode(table_name),
1539
- LOGMECH=UtilFuncs._serialize_and_encode(logmech),
1540
- LOGDATA=UtilFuncs._serialize_and_encode(logdata)
1541
- ))
1542
- except Exception:
1543
- # Cleanup if we end up here in case of an error.
1544
- GarbageCollector._delete_local_file(self.script_path)
1545
- raise
1546
-
1547
- def _copy_to_docker_container(self, client,
1548
- local_file_path,
1549
- path_in_docker_container,
1550
- container):
1551
- """
1552
- DESCRIPTION:
1553
- Function to copy files to docker container.
1554
-
1555
- PARAMETERS:
1556
- client:
1557
- Required Argument.
1558
- Specifies the connection object for docker.
1559
- Types: str
1560
-
1561
- local_file_path:
1562
- Required Argument.
1563
- Specifies the path to the file to be copied.
1564
- Types: str
1565
-
1566
- path_in_docker_container:
1567
- Required Argument.
1568
- Specifies destination path in the docker container where file will be
1569
- copied to.
1570
- Types: str
1571
-
1572
- container:
1573
- Required Argument.
1574
- Specifies container id.
1575
- Types: str
1576
-
1577
- RETURNS:
1578
- None.
1579
-
1580
- RAISES:
1581
- TeradataMLException.
1582
-
1583
- """
1584
- # Create tar file.
1585
- tar_file_path = "{}.tar".format(local_file_path)
1586
- file_name = os.path.basename(local_file_path)
1587
- tar = tarfile.open(tar_file_path, mode='w')
1588
- try:
1589
- tar.add(local_file_path, arcname=file_name)
1590
- finally:
1591
- tar.close()
1592
- data = open(tar_file_path, 'rb').read()
1593
-
1594
- try:
1595
- # Copy file to docker container.
1596
- copy_status = client.put_archive(container, path_in_docker_container, data)
1597
- os.remove(tar_file_path)
1598
-
1599
- if copy_status:
1600
- return
1601
- except Exception as exp:
1602
- message = Messages.get_message(
1603
- MessageCodes.SANDBOX_CONTAINER_ERROR).format(str(exp))
1604
- raise TeradataMlException(message, MessageCodes.SANDBOX_CONTAINER_ERROR)
1605
-
1606
- def __repr__(self):
1607
- """
1608
- Returns the string representation for the class instance.
1609
- """
1610
- if self.result is None:
1611
- repr_string = "Result is empty. Please run execute_script first."
1612
- else:
1613
- repr_string = "############ STDOUT Output ############"
1614
- repr_string = "{}\n\n{}".format(repr_string, self.result)
1615
- return repr_string
1616
-
1
+ #!/usr/bin/python
2
+ # ##################################################################
3
+ #
4
+ # Copyright 2020 Teradata. All rights reserved.
5
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
6
+ #
7
+ # Primary Owner: Trupti Purohit (trupti.purohit@teradata.com)
8
+ # Secondary Owner: Gouri Patwardhan (gouri.patwardhan@teradata.com)
9
+ #
10
+ # Function Version: 1.0
11
+ #
12
+ # Description: Base class for Teradata's Table Operators
13
+ # ##################################################################
14
+
15
+ import os
16
+ import time
17
+ import uuid
18
+ from math import floor
19
+ import tarfile
20
+ import subprocess
21
+ from pathlib import Path
22
+ import teradataml.dataframe as tdmldf
23
+ from teradataml.common.constants import OutputStyle, TeradataConstants
24
+ from teradataml.common.constants import TableOperatorConstants
25
+ from teradataml.common.garbagecollector import GarbageCollector
26
+ from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
27
+ from teradataml.common.utils import UtilFuncs
28
+ from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
29
+
30
+ from teradataml.common.exceptions import TeradataMlException
31
+ from teradataml.common.messages import Messages
32
+ from teradataml.common.messagecodes import MessageCodes
33
+ from teradataml.options.configure import configure
34
+ from teradataml.utils.utils import execute_sql
35
+ from teradataml.utils.validators import _Validators
36
+ from teradatasqlalchemy import (BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL, FLOAT, NUMBER)
37
+ from teradatasqlalchemy import (TIMESTAMP, DATE, TIME)
38
+ from teradatasqlalchemy import (CHAR, VARCHAR, CLOB)
39
+ from teradatasqlalchemy import (BYTE, VARBYTE, BLOB)
40
+ from teradatasqlalchemy import (PERIOD_DATE, PERIOD_TIME, PERIOD_TIMESTAMP)
41
+ from teradatasqlalchemy import (INTERVAL_YEAR, INTERVAL_YEAR_TO_MONTH, INTERVAL_MONTH, INTERVAL_DAY,
42
+ INTERVAL_DAY_TO_HOUR, INTERVAL_DAY_TO_MINUTE, INTERVAL_DAY_TO_SECOND,
43
+ INTERVAL_HOUR, INTERVAL_HOUR_TO_MINUTE, INTERVAL_HOUR_TO_SECOND,
44
+ INTERVAL_MINUTE, INTERVAL_MINUTE_TO_SECOND, INTERVAL_SECOND)
45
+ from teradataml.context.context import _get_current_databasename, get_context, get_connection
46
+ from io import StringIO
47
+
48
+
49
+ class TableOperator:
50
+
51
+ def __init__(self,
52
+ data=None,
53
+ script_name=None,
54
+ files_local_path=None,
55
+ delimiter="\t",
56
+ returns=None,
57
+ quotechar=None,
58
+ data_partition_column=None,
59
+ data_hash_column=None,
60
+ data_order_column=None,
61
+ is_local_order=False,
62
+ sort_ascending=True,
63
+ nulls_first=True):
64
+ """
65
+ DESCRIPTION:
66
+ Table Operators are a type of User-Defined Function, only available when connected to a
67
+ Vantage.
68
+
69
+ PARAMETERS:
70
+ data:
71
+ Optional Argument.
72
+ Specifies a teradataml DataFrame containing the input data for the script.
73
+
74
+ script_name:
75
+ Required Argument.
76
+ Specifies the name of the user script.
77
+ Types: str
78
+
79
+ files_local_path:
80
+ Required Argument.
81
+ Specifies the absolute local path where the user script and all supporting files
82
+ like model files, input data file reside.
83
+ Types: str
84
+
85
+ delimiter:
86
+ Optional Argument.
87
+ Specifies a delimiter to use when reading columns from a row and
88
+ writing result columns.
89
+ The delimiter is a single character chosen from the set of punctuation characters.
90
+ Types: str
91
+
92
+ returns:
93
+ Required Argument.
94
+ Specifies the output column definition.
95
+ Types: Dictionary specifying column name to teradatasqlalchemy type mapping.
96
+ Default: None
97
+
98
+ data_hash_column:
99
+ Optional Argument.
100
+ Specifies the column to be used for hashing.
101
+ The rows in the data are redistributed to AMPs based on the hash value of the
102
+ column specified. The user-installed script file then runs once on each AMP.
103
+ If there is no data_hash_column, then the entire result set,
104
+ delivered by the function, constitutes a single group or partition.
105
+ Types: str
106
+ Note:
107
+ "data_hash_column" can not be specified along with "data_partition_column",
108
+ "is_local_order" and "data_order_column".
109
+
110
+ data_partition_column:
111
+ Optional Argument.
112
+ Specifies Partition By columns for data.
113
+ Values to this argument can be provided as a list, if multiple
114
+ columns are used for partition.
115
+ Default Value: ANY
116
+ Types: str OR list of Strings (str)
117
+ Notes:
118
+ 1) "data_partition_column" can not be specified along with "data_hash_column".
119
+ 2) "data_partition_column" can not be specified along with "is_local_order = True".
120
+
121
+ is_local_order:
122
+ Optional Argument.
123
+ Specifies a boolean value to determine whether the input data is to be ordered locally
124
+ or not. 'sort_ascending' specifies the order in which the values in a group, or partition,
125
+ are sorted. This argument is ignored, if data_order_column is None.
126
+ When set to 'True', qualified rows are ordered locally in preparation to be input
127
+ to the function.
128
+ Default Value: False
129
+ Types: bool
130
+ Note:
131
+ "is_local_order" can not be specified along with "data_hash_column".
132
+ When "is_local_order" is set to 'True', "data_order_column" should be specified,
133
+ and the columns specified in "data_order_column" are used for local ordering.
134
+
135
+ data_order_column:
136
+ Optional Argument.
137
+ Specifies Order By columns for data.
138
+ Values to this argument can be provided as a list, if multiple
139
+ columns are used for ordering.
140
+ This argument is used with in both cases: "is_local_order = True"
141
+ and "is_local_order = False".
142
+ Types: str OR list of Strings (str)
143
+ Note:
144
+ "data_order_column" can not be specified along with "data_hash_column".
145
+
146
+ sort_ascending:
147
+ Optional Argument.
148
+ Specifies a boolean value to determine if the input data is to be sorted on
149
+ the data_order_column column in ascending or descending order.
150
+ When this is set to 'True' data is sorted in ascending order,
151
+ otherwise data is sorted in descending order.
152
+ This argument is ignored, if data_order_column is None.
153
+ Default Value: True
154
+ Types: bool
155
+
156
+ nulls_first:
157
+ Optional Argument.
158
+ Specifies a boolean value to determine whether NULLS from input data are listed
159
+ first or last during ordering.
160
+ When this is set to 'True' NULLS are listed first, otherwise NULLS are listed last.
161
+ This argument is ignored, if data_order_column is None.
162
+ Default Value: True
163
+ Types: bool
164
+
165
+ RETURNS:
166
+ An instance of TableOperator class.
167
+
168
+ RAISES:
169
+ TeradataMlException
170
+
171
+ EXAMPLES:
172
+ # Apply class extends this base class.
173
+ apply_obj = Apply(data=barrierdf,
174
+ script_name='mapper.py',
175
+ files_local_path= '/root/data/scripts/',
176
+ apply_command='python3 mapper.py',
177
+ data_order_column="Id",
178
+ is_local_order=False,
179
+ nulls_first=False,
180
+ sort_ascending=False,
181
+ env_name = "test_env",
182
+ returns={"word": VARCHAR(15), "count_input": VARCHAR(2)},
183
+ style='csv',
184
+ delimiter=',')
185
+ """
186
+ self.result = None
187
+ self._tblop_query = None
188
+ self.data = data
189
+ self.script_name = script_name
190
+ self.files_local_path = files_local_path
191
+ self.delimiter = delimiter
192
+ self.quotechar = quotechar
193
+ self.returns = returns
194
+ self.data_partition_column = data_partition_column
195
+ self.data_hash_column = data_hash_column
196
+ self.data_order_column = data_order_column
197
+ self.is_local_order = is_local_order
198
+ self.sort_ascending = sort_ascending
199
+ self.nulls_first = nulls_first
200
+
201
+ # Datatypes supported in returns clause of a table operator.
202
+ self._supported_returns_datatypes = (BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL, FLOAT, NUMBER,
203
+ TIMESTAMP, DATE, TIME, CHAR, VARCHAR, CLOB, BYTE, VARBYTE,
204
+ BLOB, PERIOD_DATE, PERIOD_TIME, PERIOD_TIMESTAMP, INTERVAL_YEAR,
205
+ INTERVAL_YEAR_TO_MONTH, INTERVAL_MONTH, INTERVAL_DAY, INTERVAL_DAY_TO_HOUR,
206
+ INTERVAL_DAY_TO_MINUTE, INTERVAL_DAY_TO_SECOND, INTERVAL_HOUR,
207
+ INTERVAL_HOUR_TO_MINUTE, INTERVAL_HOUR_TO_SECOND, INTERVAL_MINUTE,
208
+ INTERVAL_MINUTE_TO_SECOND, INTERVAL_SECOND
209
+ )
210
+
211
+ # Create AnalyticsWrapperUtils instance which contains validation functions.
212
+ # This is required for is_default_or_not check.
213
+ # Rest all validation is done using _Validators.
214
+ self.__awu = AnalyticsWrapperUtils()
215
+
216
+ self.awu_matrix = []
217
+ self.awu_matrix.append(["data", self.data, True, (tdmldf.dataframe.DataFrame)])
218
+ self.awu_matrix.append(["data_partition_column", self.data_partition_column, True, (str, list), True])
219
+ self.awu_matrix.append(["data_hash_column", self.data_hash_column, True, (str, list), True])
220
+ self.awu_matrix.append(["data_order_column", self.data_order_column, True, (str, list), True])
221
+ self.awu_matrix.append(["is_local_order", self.is_local_order, True, (bool)])
222
+ self.awu_matrix.append(["sort_ascending", self.sort_ascending, True, (bool)])
223
+ self.awu_matrix.append(["nulls_first", self.nulls_first, True, (bool)])
224
+ self.awu_matrix.append(["script_name", self.script_name, True, (str), True])
225
+ self.awu_matrix.append(["files_local_path", self.files_local_path, True, (str), True])
226
+ self.awu_matrix.append(["delimiter", self.delimiter, True, (str), False])
227
+ self.awu_matrix.append(["quotechar", self.quotechar, True, (str), False])
228
+
229
+ # Perform the function validations.
230
+ self._validate()
231
+
232
+ def _validate(self, for_data_args=False):
233
+ """
234
+ Function to validate Table Operator Function arguments, which verifies missing
235
+ arguments, input argument and table types. Also processes the
236
+ argument values.
237
+ @param: for_data_args: Specifies whether the validation is for only arguments related to data or not.
238
+ When set to True, validation is only for data arguments. Otherwise, validation
239
+ is for all arguments. By default, system validates all the arguments.
240
+ """
241
+
242
+ if not for_data_args:
243
+ # Make sure that a non-NULL value has been supplied for all mandatory arguments
244
+ _Validators._validate_missing_required_arguments(self.awu_matrix)
245
+
246
+ # Validate argument types
247
+ _Validators._validate_function_arguments(self.awu_matrix,
248
+ skip_empty_check={"quotechar": ["\n", "\t"],
249
+ "delimiter": ["\n"]})
250
+
251
+ if self.data is not None:
252
+ # Hash and order by can be used together as long as is_local_order = True.
253
+ if all([self.data_hash_column,
254
+ self.data_order_column]) and not self.is_local_order:
255
+ raise TeradataMlException(
256
+ Messages.get_message(MessageCodes.CANNOT_USE_TOGETHER_WITH,
257
+ "data_hash_column' and 'data_order_column",
258
+ "is_local_order=False"),
259
+ MessageCodes.CANNOT_USE_TOGETHER_WITH)
260
+
261
+ # Either hash or partition can be used.
262
+ if all([self.data_hash_column, self.data_partition_column]):
263
+ raise TeradataMlException(Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT,
264
+ "data_hash_column", "data_partition_column"),
265
+ MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
266
+
267
+ # Either local order by or partition by can be used.
268
+ if all([self.is_local_order, self.data_partition_column]):
269
+ raise TeradataMlException(Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT,
270
+ "is_local_order=True",
271
+ "data_partition_column"),
272
+ MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
273
+
274
+ # local order by requires column name.
275
+ if self.is_local_order and self.data_order_column is None:
276
+ raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
277
+ "data_order_column",
278
+ "is_local_order=True"),
279
+ MessageCodes.DEPENDENT_ARG_MISSING)
280
+
281
+ if self.__awu._is_default_or_not(self.data_partition_column, "ANY"):
282
+ _Validators._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column",
283
+ self.data, "data", True)
284
+
285
+ _Validators._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column",
286
+ self.data, "data", False)
287
+
288
+ _Validators._validate_dataframe_has_argument_columns(self.data_hash_column, "data_hash_column",
289
+ self.data, "data", False)
290
+
291
+ if not for_data_args:
292
+ # Check for length of the arguments "delimiter" and "quotechar".
293
+ if self.delimiter is not None:
294
+ _Validators._validate_str_arg_length('delimiter', self.delimiter, 'EQ', 1)
295
+
296
+ if self.quotechar is not None:
297
+ _Validators._validate_str_arg_length('quotechar', self.quotechar, 'EQ', 1)
298
+
299
+ # The arguments 'quotechar' and 'delimiter' cannot take newline character.
300
+ if self.delimiter == '\n':
301
+ raise TeradataMlException(Messages.get_message(MessageCodes.NOT_ALLOWED_VALUES,
302
+ "\n", "delimiter"),
303
+ MessageCodes.NOT_ALLOWED_VALUES)
304
+ if self.quotechar == '\n':
305
+ raise TeradataMlException(Messages.get_message(MessageCodes.NOT_ALLOWED_VALUES,
306
+ "\n", "quotechar"),
307
+ MessageCodes.NOT_ALLOWED_VALUES)
308
+
309
+ # The arguments 'quotechar' and 'delimiter' cannot have the same value.
310
+ if self.delimiter == self.quotechar:
311
+ raise TeradataMlException(Messages.get_message(MessageCodes.ARGUMENT_VALUE_SAME,
312
+ "delimiter", "quotechar"),
313
+ MessageCodes.ARGUMENT_VALUE_SAME)
314
+
315
+ def set_data(self,
316
+ data,
317
+ data_partition_column=None,
318
+ data_hash_column=None,
319
+ data_order_column=None,
320
+ is_local_order=False,
321
+ sort_ascending=True,
322
+ nulls_first=True):
323
+ """
324
+ DESCRIPTION:
325
+ Function enables user to set data and data related arguments without having to
326
+ re-create Script object.
327
+
328
+ PARAMETERS:
329
+ data:
330
+ Required Argument.
331
+ Specifies a teradataml DataFrame containing the input data for the script.
332
+
333
+ data_hash_column:
334
+ Optional Argument.
335
+ Specifies the column to be used for hashing.
336
+ The rows in the data are redistributed to AMPs based on the
337
+ hash value of the column specified.
338
+ The user installed script then runs once on each AMP.
339
+ If there is no data_partition_column, then the entire result set delivered
340
+ by the function, constitutes a single group or partition.
341
+ Types: str
342
+ Note:
343
+ "data_hash_column" can not be specified along with
344
+ "data_partition_column", "is_local_order" and "data_order_column".
345
+
346
+ data_partition_column:
347
+ Optional Argument.
348
+ Specifies Partition By columns for data.
349
+ Values to this argument can be provided as a list, if multiple
350
+ columns are used for partition.
351
+ Default Value: ANY
352
+ Types: str OR list of Strings (str)
353
+ Note:
354
+ 1) "data_partition_column" can not be specified along with
355
+ "data_hash_column".
356
+ 2) "data_partition_column" can not be specified along with
357
+ "is_local_order = True".
358
+
359
+ is_local_order:
360
+ Optional Argument.
361
+ Specifies a boolean value to determine whether the input data is to be
362
+ ordered locally or not. Order by specifies the order in which the
363
+ values in a group or partition are sorted. Local Order By specifies
364
+ orders qualified rows on each AMP in preparation to be input to a table
365
+ function. This argument is ignored, if "data_order_column" is None. When
366
+ set to True, data is ordered locally.
367
+ Default Value: False
368
+ Types: bool
369
+ Note:
370
+ 1) "is_local_order" can not be specified along with
371
+ "data_hash_column".
372
+ 2) When "is_local_order" is set to True, "data_order_column" should be
373
+ specified, and the columns specified in "data_order_column" are
374
+ used for local ordering.
375
+
376
+ data_order_column:
377
+ Optional Argument.
378
+ Specifies Order By columns for data.
379
+ Values to this argument can be provided as a list, if multiple
380
+ columns are used for ordering.
381
+ This argument is used in both cases:
382
+ "is_local_order = True" and "is_local_order = False".
383
+ Types: str OR list of Strings (str)
384
+ Note:
385
+ "data_order_column" can not be specified along with
386
+ "data_hash_column".
387
+
388
+ sort_ascending:
389
+ Optional Argument.
390
+ Specifies a boolean value to determine if the result set is to be sorted
391
+ on the column specified in "data_order_column", in ascending or descending
392
+ order.
393
+ The sorting is ascending when this argument is set to True, and descending
394
+ when set to False.
395
+ This argument is ignored, if "data_order_column" is None.
396
+ Default Value: True
397
+ Types: bool
398
+
399
+ nulls_first:
400
+ Optional Argument.
401
+ Specifies a boolean value to determine whether NULLS are listed first or
402
+ last during ordering.
403
+ This argument is ignored, if "data_order_column" is None.
404
+ NULLS are listed first when this argument is set to True, and
405
+ last when set to False.
406
+ Default Value: True
407
+ Types: bool
408
+
409
+ RETURNS:
410
+ None.
411
+
412
+ RAISES:
413
+ TeradataMlException
414
+
415
+ EXAMPLES:
416
+ >>> self.set_data(df)
417
+ """
418
+
419
+ awu_matrix_setter = []
420
+ awu_matrix_setter.append(["data", data, True, (tdmldf.dataframe.DataFrame)])
421
+ awu_matrix_setter.append(["data_partition_column", data_partition_column,
422
+ True, (str, list), True])
423
+ awu_matrix_setter.append(["data_hash_column", data_hash_column, True,
424
+ (str, list), True])
425
+ awu_matrix_setter.append(["data_order_column", data_order_column, True,
426
+ (str, list), True])
427
+ awu_matrix_setter.append(["is_local_order", is_local_order, True, (bool)])
428
+ awu_matrix_setter.append(["sort_ascending", sort_ascending, True, (bool)])
429
+ awu_matrix_setter.append(["nulls_first", nulls_first, True, (bool)])
430
+
431
+ # Perform the function validations
432
+ _Validators._validate_missing_required_arguments([["data", data, False,
433
+ (tdmldf.dataframe.DataFrame)]])
434
+ _Validators._validate_function_arguments(awu_matrix_setter)
435
+
436
+ self.data = data
437
+ self.data_partition_column = data_partition_column
438
+ self.data_hash_column = data_hash_column
439
+ self.data_order_column = data_order_column
440
+ self.is_local_order = is_local_order
441
+ self.sort_ascending = sort_ascending
442
+ self.nulls_first = nulls_first
443
+
444
+ def _execute(self, output_style='VIEW'):
445
+ """
446
+ Function to execute Table Operator queries.
447
+ Create DataFrames for the required Table Operator output.
448
+ """
449
+ table_type = TeradataConstants.TERADATA_VIEW
450
+ if output_style == OutputStyle.OUTPUT_TABLE.value:
451
+ table_type = TeradataConstants.TERADATA_TABLE
452
+
453
+ # Generate STDOUT table name and add it to the output table list.
454
+ tblop_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_tblop_out_",
455
+ use_default_database=True, gc_on_quit=True,
456
+ quote=False,
457
+ table_type=table_type
458
+ )
459
+
460
+ try:
461
+ if output_style == OutputStyle.OUTPUT_TABLE.value:
462
+ UtilFuncs._create_table(tblop_stdout_temp_tablename, self._tblop_query)
463
+ else:
464
+ UtilFuncs._create_view(tblop_stdout_temp_tablename, self._tblop_query)
465
+ except Exception as emsg:
466
+ raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)),
467
+ MessageCodes.TDMLDF_EXEC_SQL_FAILED)
468
+
469
+
470
+ self.result = self.__awu._create_data_set_object(
471
+ df_input=UtilFuncs._extract_table_name(tblop_stdout_temp_tablename), source_type="table",
472
+ database_name=UtilFuncs._extract_db_name(tblop_stdout_temp_tablename))
473
+
474
+ return self.result
475
+
476
+ def _returns_clause_validation(self):
477
+ """
478
+ DESCRIPTION:
479
+ Function validates 'returns' clause for a table operator query.
480
+
481
+ PARAMETERS:
482
+ None.
483
+
484
+ RETURNS:
485
+ None
486
+
487
+ RAISES:
488
+ Error if argument is not of valid datatype.
489
+
490
+ EXAMPLES:
491
+ self._returns_clause_validation()
492
+ """
493
+ # Validate keys and datatypes in returns.
494
+ if self.returns is not None:
495
+ awu_matrix_returns = []
496
+ for key in self.returns.keys():
497
+ awu_matrix_returns.append(["keys in returns", key, False, (str), True])
498
+ awu_matrix_returns.append(["values in returns", self.returns[key], False, self._supported_returns_datatypes])
499
+ _Validators._validate_function_arguments(awu_matrix_returns)
500
+
501
+
502
+ def test_script(self, supporting_files=None, input_data_file=None, script_args="",
503
+ exec_mode='local', **kwargs):
504
+ """
505
+ DESCRIPTION:
506
+ Function enables user to run script in docker container environment outside
507
+ Vantage.
508
+ Input data for user script is read from file.
509
+
510
+ PARAMETERS:
511
+ supporting_files:
512
+ Optional Argument
513
+ Specifies a file or list of supporting files like model files to be
514
+ copied to the container.
515
+ Types: string or list of str
516
+
517
+ input_data_file:
518
+ Required Argument.
519
+ Specifies the name of the input data file.
520
+ It should have a path relative to the location specified in
521
+ "files_local_path" argument.
522
+ If set to None, read data from AMP, else from file passed in the argument
523
+ 'input_data_file'.
524
+ File should have at least permissions of mode 644.
525
+ Types: str
526
+
527
+ script_args:
528
+ Optional Argument.
529
+ Specifies command line arguments required by the user script.
530
+ Types: str
531
+
532
+ exec_mode:
533
+ Optional Argument.
534
+ Specifies the mode in which user wants to test the script.
535
+ If set to 'local', the user script will run locally on user's system.
536
+ Permitted Values: 'local'
537
+ Default Value: 'local'
538
+ Types: str
539
+
540
+ kwargs:
541
+ Optional Argument.
542
+ Specifies the keyword arguments required for testing.
543
+ Keys can be:
544
+ data_row_limit:
545
+ Optional Argument. Ignored when data is read from file.
546
+ Specifies the number of rows to be taken from all amps when
547
+ reading from a table or view on Vantage.
548
+ Default Value: 1000
549
+ Types: int
550
+
551
+ password:
552
+ Optional Argument. Required when reading from database.
553
+ Specifies the password to connect to vantage where the data
554
+ resides.
555
+ Types: str
556
+
557
+ data_file_delimiter:
558
+ Optional Argument.
559
+ Specifies the delimiter used in the input data file. This
560
+ argument can be specified when data is read from file.
561
+ Default Value: '\t'
562
+ Types: str
563
+
564
+ data_file_header:
565
+ Optional Argument.
566
+ Specifies whether the input data file contains header. This
567
+ argument can be specified when data is read from file.
568
+ Default Value: True
569
+ Types: bool
570
+
571
+ data_file_quote_char:
572
+ Optional Argument.
573
+ Specifies the quotechar used in the input data file.
574
+ This argument can be specified when data is read from file.
575
+ Default Value: '"'
576
+
577
+ logmech:
578
+ Optional Argument.
579
+ Specifies the type of logon mechanism to establish a connection to
580
+ Teradata Vantage.
581
+ Permitted Values: 'TD2', 'TDNEGO', 'LDAP', 'KRB5' & 'JWT'.
582
+ TD2:
583
+ The Teradata 2 (TD2) mechanism provides authentication
584
+ using a Vantage username and password. This is the default
585
+ logon mechanism using which the connection is established
586
+ to Vantage.
587
+
588
+ TDNEGO:
589
+ A security mechanism that automatically determines the
590
+ actual mechanism required, based on policy, without user's
591
+ involvement. The actual mechanism is determined by the
592
+ TDGSS server configuration and by the security policy's
593
+ mechanism restrictions.
594
+
595
+ LDAP:
596
+ A directory-based user logon to Vantage with a directory
597
+ username and password and is authenticated by the directory.
598
+
599
+ KRB5 (Kerberos):
600
+ A directory-based user logon to Vantage with a domain
601
+ username and password and is authenticated by
602
+ Kerberos (KRB5 mechanism).
603
+ Note:
604
+ User must have a valid ticket-granting ticket in
605
+ order to use this logon mechanism.
606
+
607
+ JWT:
608
+ The JSON Web Token (JWT) authentication mechanism enables
609
+ single sign-on (SSO) to the Vantage after the user
610
+ successfully authenticates to Teradata UDA User Service.
611
+ Note:
612
+ User must use logdata parameter when using 'JWT' as
613
+ the logon mechanism.
614
+ Default Value: TD2
615
+ Types: str
616
+
617
+ Note:
618
+ teradataml expects the client environments are already setup with appropriate
619
+ security mechanisms and are in working conditions.
620
+ For more information please refer Teradata Vantage™ - Advanced SQL Engine
621
+ Security Administration at https://www.info.teradata.com/
622
+
623
+ logdata:
624
+ Optional Argument.
625
+ Specifies parameters to the LOGMECH command beyond those needed by
626
+ the logon mechanism, such as user ID, password and tokens
627
+ (in case of JWT) to successfully authenticate the user.
628
+ Types: str
629
+
630
+ Types: dict
631
+
632
+ RETURNS:
633
+ Output from user script.
634
+
635
+ RAISES:
636
+ TeradataMlException
637
+
638
+ EXAMPLES:
639
+ # Assumption - sto is Script() object. Please refer to help(Script)
640
+ # for creating Script object.
641
+
642
+ # Run user script in local mode with input from table.
643
+ >>> sto.test_script(data_row_limit=300, password='alice', exec_mode='local')
644
+
645
+ ############ STDOUT Output ############
646
+ word count_input
647
+ 0 1 1
648
+ 1 Old 1
649
+ 2 Macdonald 1
650
+ 3 Had 1
651
+ 4 A 1
652
+ 5 Farm 1
653
+
654
+ # Run user script in local mode with logmech as 'TD2'.
655
+ >>> sto.test_script(script_args="4 5 10 6 480", password="alice", logmech="TD2")
656
+
657
+ # Run user script in local mode with logmech as 'TDNEGO'.
658
+ >>> sto.test_script(script_args="4 5 10 6 480", password="alice", logmech="TDNEGO")
659
+
660
+ # Run user script in local mode with logmech as 'LDAP'.
661
+ >>> sto.test_script(script_args="4 5 10 6 480", password="alice", logmech="LDAP")
662
+
663
+ # Run user script in local mode with logmech as 'KRB5'.
664
+ >>> sto.test_script(script_args="4 5 10 6 480", password="alice", logmech="KRB5")
665
+
666
+ # Run user script in local mode with logmech as 'JWT'.
667
+ >>> sto.test_script(script_args="4 5 10 6 480", password="alice",
668
+ logmech='JWT', logdata='token=eyJpc...h8dA')
669
+
670
+ """
671
+ logmech_valid_values = ['TD2', 'TDNEGO', 'LDAP', 'KRB5', 'JWT']
672
+
673
+ awu_matrix_test = []
674
+ awu_matrix_test.append((["supporting_files", supporting_files, True,
675
+ (str, list), True]))
676
+ awu_matrix_test.append((["input_data_file", input_data_file, True, (str), True]))
677
+ awu_matrix_test.append((["script_args", script_args, True, (str), False]))
678
+ awu_matrix_test.append((["exec_mode", exec_mode, True, (str), True,
679
+ [TableOperatorConstants.LOCAL_EXEC.value]]))
680
+
681
+ data_row_limit = kwargs.pop("data_row_limit", 1000)
682
+ awu_matrix_test.append((["data_row_limit", data_row_limit, True, (int), True]))
683
+
684
+ data_file_delimiter = kwargs.pop("data_file_delimiter", '\t')
685
+ awu_matrix_test.append((["data_file_delimiter", data_file_delimiter, True,
686
+ (str), False]))
687
+
688
+ data_file_quote_char = kwargs.pop("data_file_quote_char", '"')
689
+ awu_matrix_test.append((["data_file_quote_char", data_file_quote_char, True,
690
+ (str), False]))
691
+
692
+ data_file_header = kwargs.pop("data_file_header", True)
693
+ awu_matrix_test.append((["data_file_header", data_file_header, True, (bool)]))
694
+
695
+ logmech = kwargs.pop("logmech", "TD2")
696
+ awu_matrix_test.append(
697
+ ["logmech", logmech, True, (str), True, logmech_valid_values])
698
+
699
+ logdata = kwargs.pop("logdata", None)
700
+ awu_matrix_test.append(["logdata", logdata, True, (str), True])
701
+
702
+ # Validate argument types.
703
+ _Validators._validate_function_arguments(awu_matrix_test)
704
+
705
+ self._validate()
706
+
707
+ if logmech == "JWT" and not logdata:
708
+ raise TeradataMlException(
709
+ Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING, 'logdata',
710
+ 'logmech=JWT'),
711
+ MessageCodes.DEPENDENT_ARG_MISSING)
712
+
713
+ if data_row_limit <= 0:
714
+ raise ValueError(Messages.get_message(MessageCodes.TDMLDF_POSITIVE_INT).
715
+ format("data_row_limit", "greater than"))
716
+
717
+ # Either of 'input_data_file' or 'password' argument is required.
718
+ password = kwargs.pop("password", None)
719
+
720
+ # When exec_mode is local, the connection object is used to get the values in the table.
721
+ if exec_mode == "local" and not (input_data_file or self.data):
722
+ message = Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT,
723
+ "input_data_file", "Script data")
724
+ raise TeradataMlException(message, MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
725
+
726
+ if not self.script_name and self.files_local_path:
727
+ message = Messages.get_message(MessageCodes.MISSING_ARGS,
728
+ "script_name and files_local_path")
729
+ raise TeradataMlException(message, MessageCodes.MISSING_ARGS)
730
+
731
+ if input_data_file:
732
+ if self.files_local_path is None:
733
+ message = Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
734
+ "files_local_path", "input_data_file")
735
+ raise TeradataMlException(message, MessageCodes.DEPENDENT_ARG_MISSING)
736
+ else:
737
+ # Check if file exists.
738
+ fpath = os.path.join(self.files_local_path,
739
+ input_data_file)
740
+ _Validators._validate_file_exists(fpath)
741
+
742
+ if self.script_name and self.files_local_path:
743
+ # Check if file exists.
744
+ fpath = os.path.join(self.files_local_path,
745
+ os.path.basename(self.script_name))
746
+ _Validators._validate_file_exists(fpath)
747
+
748
+ if exec_mode.upper() == TableOperatorConstants.LOCAL_EXEC.value:
749
+ user_script_path = os.path.join(self.files_local_path, self.script_name)
750
+ import sys
751
+ cmd = [str(sys.executable), user_script_path]
752
+ cmd.extend(script_args)
753
+
754
+ if input_data_file is not None:
755
+ input_file_path = os.path.join(self.files_local_path, input_data_file)
756
+
757
+ # Run user script locally with input from a file.
758
+ exec_cmd_output = self.__local_run_user_script_input_file(
759
+ cmd, input_file_path, data_file_delimiter, data_file_quote_char, data_file_header)
760
+ try:
761
+ return self.__process_test_script_output(exec_cmd_output)
762
+ except Exception as exp:
763
+ raise
764
+
765
+ else:
766
+ if self.data.shape[0] > data_row_limit:
767
+ raise ValueError(
768
+ Messages.get_message(MessageCodes.DATAFRAME_LIMIT_ERROR,
769
+ 'data_row_limit', 'data_row_limit',
770
+ data_row_limit))
771
+
772
+ if not self.data._table_name:
773
+ self.data._table_name = df_utils._execute_node_return_db_object_name(
774
+ self.data._nodeid, self.data._metaexpr)
775
+
776
+ table_name = UtilFuncs._extract_table_name(self.data._table_name)
777
+
778
+ # Run user script locally with input from db.
779
+ exec_cmd_output = self.__local_run_user_script_input_db(cmd, table_name)
780
+ try:
781
+ return self.__process_test_script_output(exec_cmd_output)
782
+ except Exception as exp:
783
+ raise
784
+
785
+ def __local_run_user_script_input_file(self, cmd, input_file_path,
786
+ data_file_delimiter='\t',
787
+ data_file_quote_char='"',
788
+ data_file_header=True):
789
+ """
790
+ DESCRIPTION:
791
+ Function to run the user script in local mode with input from file.
792
+
793
+ PARAMETERS:
794
+ cmd:
795
+ Required Argument.
796
+ Specifies the command for running the user script.
797
+ Types: str
798
+
799
+ input_file_path:
800
+ Required Argument.
801
+ Specifies the absolute local path of input data file.
802
+ Types: str
803
+
804
+ data_file_delimiter:
805
+ Optional Argument.
806
+ Specifies the delimiter used in input data file.
807
+ Default Value: '\t'
808
+ Types: str
809
+
810
+ data_file_quote_char:
811
+ Optional Argument.
812
+ Specifies the quote character used in input data file.
813
+ Default Value: '"'
814
+ Types: str
815
+
816
+ data_file_header:
817
+ Optional Argument.
818
+ Specifies whether the input data file has header.
819
+ Default Value: True
820
+ Types: bool
821
+
822
+ RETURNS:
823
+ The string output of the command that is run on input data file.
824
+
825
+ RAISES:
826
+ Exception.
827
+
828
+ EXAMPLES:
829
+ self.__local_run_user_script_input_file(cmd ="cmd",
830
+ input_file_path = "input_file_path",
831
+ data_file_delimiter = "data_file_delimiter",
832
+ data_file_quote_char = "data_file_quote_char",
833
+ data_file_header = True)
834
+
835
+ """
836
+ with open(input_file_path) as data_file:
837
+ import csv
838
+ from pandas import isna as pd_isna
839
+
840
+ data_handle = StringIO()
841
+
842
+ # Read data from input file.
843
+ ip_data = csv.reader(data_file,
844
+ delimiter=data_file_delimiter,
845
+ quotechar=data_file_quote_char)
846
+ # Skip the first row of input file if data_file_header is True.
847
+ if data_file_header:
848
+ next(ip_data)
849
+ for row in ip_data:
850
+ if self.quotechar is not None:
851
+ # A NULL value should not be enclosed in quotes.
852
+ # The CSV module has no support for such output with writer,
853
+ # and hence the custom formatting.
854
+ line = ['' if pd_isna(s) else "{}{}{}".format(self.quotechar,
855
+ str(s),
856
+ self.quotechar)
857
+ for s in row]
858
+ else:
859
+ line = ['' if pd_isna(s) else str(s) for s in row]
860
+
861
+ complete_line = (self.delimiter.join(line))
862
+
863
+ data_handle.write(complete_line)
864
+ data_handle.write("\n")
865
+
866
+ return self.__run_user_script_subprocess(cmd, data_handle)
867
+
868
+ def __run_user_script_subprocess(self, cmd, data_handle):
869
+ """
870
+ DESCRIPTION:
871
+ Function to run the user script in a new process and return the output.
872
+
873
+ PARAMETERS:
874
+ cmd:
875
+ Required Argument.
876
+ Specifies the command for running the script.
877
+ Types: str
878
+
879
+ data_handle:
880
+ Required Argument.
881
+ Specifies the data handle for the input data required by the user script.
882
+
883
+ RETURNS:
884
+ Output of user script on input data supplied in data_handle.
885
+
886
+ RAISES:
887
+ None.
888
+
889
+ EXAMPLES:
890
+ self.__run_user_script_subprocess(cmd = "exec_cmd_output",
891
+ data_handle = data_handle)
892
+
893
+ """
894
+ # Launching new process to run the user script.
895
+ try:
896
+ proc = subprocess.Popen(cmd, stdin=subprocess.PIPE,
897
+ stdout=subprocess.PIPE,
898
+ stderr=subprocess.PIPE)
899
+ process_output, process_error = proc.communicate(data_handle.getvalue().encode())
900
+ data_handle.close()
901
+
902
+ if proc.returncode == 0:
903
+ return process_output.decode("utf-8").rstrip("\r|\n")
904
+ else:
905
+ message = Messages.get_message(MessageCodes.SCRIPT_LOCAL_RUN_ERROR).\
906
+ format(process_error)
907
+ raise TeradataMlException(message, MessageCodes.SCRIPT_LOCAL_RUN_ERROR)
908
+ except Exception as e:
909
+ raise e
910
+
911
+ def __process_test_script_output(self, exec_cmd_output):
912
+ """
913
+ DESCRIPTION:
914
+ Function to format the output of the user script.
915
+
916
+ PARAMETERS:
917
+ exec_cmd_output:
918
+ Required Argument.
919
+ Specifies the output returned by the user script.
920
+ Types: str
921
+
922
+ RETURNS:
923
+ The test script output as Pandas DataFrame.
924
+
925
+ RAISES:
926
+ Exception.
927
+
928
+ EXAMPLES:
929
+ self.__process_test_script_output(exec_cmd_output = "exec_cmd_output")
930
+ """
931
+ try:
932
+ kwargs = dict()
933
+ if self.quotechar is not None:
934
+ kwargs['quotechar'] = self.quotechar
935
+ kwargs['quoting'] = 1 # QUOTE_ALL
936
+
937
+ output = StringIO(exec_cmd_output)
938
+
939
+ from pandas import read_csv as pd_read_csv
940
+
941
+ # Form a pandas dataframe.
942
+ df = pd_read_csv(output, sep=self.delimiter, index_col=False, header=None,
943
+ names=list(self.returns.keys()), **kwargs)
944
+ return df
945
+
946
+ except Exception as exp:
947
+ raise exp
948
+
949
+ def __local_run_user_script_input_db(self, cmd, table_name):
950
+ """
951
+ DESCRIPTION:
952
+ Function to run the user script in local mode with input from db.
953
+
954
+ PARAMETERS:
955
+ cmd:
956
+ Required Argument.
957
+ Specifies the command for running the user script.
958
+ Types: str
959
+
960
+ table_name:
961
+ Required Argument.
962
+ Specifies the table name for input to user script.
963
+ Types: str
964
+
965
+ RETURNS:
966
+ The string output of the command that is run on the Vantage table.
967
+
968
+ RAISES:
969
+ Exception.
970
+
971
+ EXAMPLES:
972
+ self.__local_run_user_script_input_db(cmd = "cmd", table_name = "table_name")
973
+
974
+ """
975
+ db_data_handle = StringIO()
976
+ try:
977
+ con = get_connection()
978
+ # Query for reading data from DB.
979
+ query = ("SELECT * FROM {} ORDER BY 1;".format(table_name))
980
+ cur = execute_sql(query)
981
+ row = cur.fetchone()
982
+ from pandas import isna as pd_isna
983
+ while row:
984
+ if self.quotechar is not None:
985
+ # A NULL value should not be enclosed in quotes.
986
+ # The CSV module has no support for such output with writer,
987
+ # and hence the custom formatting.
988
+ line = ['' if pd_isna(s) else "{}{}{}".format(self.quotechar,
989
+ str(s),
990
+ self.quotechar)
991
+ for s in row]
992
+ else:
993
+ line = ['' if pd_isna(s) else str(s) for s in row]
994
+
995
+ complete_line = (self.delimiter.join(line))
996
+ db_data_handle.write(complete_line)
997
+ db_data_handle.write("\n")
998
+ row = cur.fetchone()
999
+ except Exception as exp:
1000
+ raise exp
1001
+
1002
+ return self.__run_user_script_subprocess(cmd, db_data_handle)
1003
+
1004
+ def __repr__(self):
1005
+ """
1006
+ Returns the string representation for the class instance.
1007
+ """
1008
+ if self.result is None:
1009
+ repr_string = "Result is empty. Please run execute_script first."
1010
+ else:
1011
+ repr_string = "############ STDOUT Output ############"
1012
+ repr_string = "{}\n\n{}".format(repr_string, self.result)
1013
+ return repr_string
1014
+
1015
+ def deploy(self, model_column, partition_columns=None, model_file_prefix=None):
1016
+ """
1017
+ DESCRIPTION:
1018
+ Function deploys the model generated after running `execute_script()` in database in
1019
+ VantageCloud Enterprise or in user environment in VantageCloud Lake.
1020
+ If deployed files are not needed, these files can be removed using `remove_file()` in
1021
+ database or `<user_env>.remove_file()` in lake.
1022
+
1023
+ PARAMETERS:
1024
+ model_column:
1025
+ Required Argument.
1026
+ Specifies the column name in which model is present.
1027
+ Supported types of model in this column are CLOB and BLOB.
1028
+ Note:
1029
+ The column mentioned in this argument should be present in
1030
+ <apply_obj/script_obj>.result.
1031
+ Types: str
1032
+
1033
+ partition_columns:
1034
+ Optional Argument.
1035
+ Specifies the columns on which data is partitioned.
1036
+ Note:
1037
+ The columns mentioned in this argument should be present in
1038
+ <apply_obj/script_obj>.result.
1039
+ Types: str OR list of str
1040
+
1041
+ model_file_prefix:
1042
+ Optional Argument.
1043
+ Specifies the prefix to be used to the generated model file.
1044
+ If this argument is None, prefix is auto-generated.
1045
+ If the argument "model_column" contains multiple models and
1046
+ * "partition_columns" is None - model file prefix is appended with
1047
+ underscore(_) and numbers starting from one(1) to get model file
1048
+ names.
1049
+ * "partition_columns" is NOT None - model file prefix is appended
1050
+ with underscore(_) and unique values in partition_columns are joined
1051
+ with underscore(_) to generate model file names.
1052
+ Types: str
1053
+
1054
+ RETURNS:
1055
+ List of generated file identifiers in database or file names in lake.
1056
+
1057
+ RAISES:
1058
+ TeradatamlException
1059
+
1060
+ EXAMPLES:
1061
+ >>> import teradataml
1062
+ >>> from teradataml import load_example_data
1063
+ >>> load_example_data("openml", "multi_model_classification")
1064
+
1065
+ >>> df = DataFrame("multi_model_classification")
1066
+ >>> df
1067
+ col2 col3 col4 label group_column partition_column_1 partition_column_2
1068
+ col1
1069
+ -1.013454 0.855765 -0.256920 -0.085301 1 9 0 10
1070
+ -3.146552 -1.805530 -0.071515 -2.093998 0 10 0 10
1071
+ -1.175097 -0.950745 0.018280 -0.895335 1 10 0 11
1072
+ 0.218497 -0.968924 0.183037 -0.303142 0 11 0 11
1073
+ -1.471908 -0.029195 -0.166141 -0.645309 1 11 1 10
1074
+ 1.082336 0.846357 -0.012063 0.812633 1 11 1 11
1075
+ -1.132068 -1.209750 0.065422 -0.982986 0 10 1 10
1076
+ -0.440339 2.290676 -0.423878 0.749467 1 8 1 10
1077
+ -0.615226 -0.546472 0.017496 -0.488720 0 12 0 10
1078
+ 0.579671 -0.573365 0.160603 0.014404 0 9 1 10
1079
+
1080
+ ## Run in VantageCloud Enterprise using Script object.
1081
+ # Install Script file.
1082
+ >>> file_location = os.path.join(os.path.dirname(teradataml.__file__), "data", "scripts", "deploy_script.py")
1083
+ >>> install_file("deploy_script", file_location, replace=True)
1084
+
1085
+ >>> execute_sql("SET SESSION SEARCHUIFDBPATH = <db_name>;")
1086
+
1087
+ # Variables needed for Script execution.
1088
+ >>> from teradataml import configure
1089
+ >>> script_command = f'{configure.indb_install_location} ./<db_name>/deploy_script.py enterprise'
1090
+ >>> partition_columns = ["partition_column_1", "partition_column_2"]
1091
+ >>> columns = ["col1", "col2", "col3", "col4", "label",
1092
+ "partition_column_1", "partition_column_2"]
1093
+ >>> returns = OrderedDict([("partition_column_1", INTEGER()),
1094
+ ("partition_column_2", INTEGER()),
1095
+ ("model", CLOB())])
1096
+
1097
+ # Script execution.
1098
+ >>> obj = Script(data=df.select(columns),
1099
+ script_command=script_command,
1100
+ data_partition_column=partition_columns,
1101
+ returns=returns
1102
+ )
1103
+ >>> opt = obj.execute_script()
1104
+ >>> opt
1105
+ partition_column_1 partition_column_2 model model
1106
+ 0 10 b'gAejc1.....drIr'
1107
+ 0 11 b'gANjcw.....qWIu'
1108
+ 1 10 b'abdwcd.....dWIz'
1109
+ 1 11 b'gA4jc4.....agfu'
1110
+
1111
+ # Example 1: Provide only "partition_columns" argument. Here, "model_file_prefix"
1112
+ # is auto generated.
1113
+ >>> obj.deploy(model_column="model",
1114
+ partition_columns=["partition_column_1", "partition_column_2"])
1115
+ ['model_file_1710436227163427__0_10',
1116
+ 'model_file_1710436227163427__1_10',
1117
+ 'model_file_1710436227163427__0_11',
1118
+ 'model_file_1710436227163427__1_11']
1119
+
1120
+ # Example 2: Provide only "model_file_prefix" argument. Here, filenames are suffixed
1121
+ # with 1, 2, 3, ... for multiple models.
1122
+ >>> obj.deploy(model_column="model", model_file_prefix="my_prefix_new_")
1123
+ ['my_prefix_new__1',
1124
+ 'my_prefix_new__2',
1125
+ 'my_prefix_new__3',
1126
+ 'my_prefix_new__4']
1127
+
1128
+ # Example 3: Without both "partition_columns" and "model_file_prefix" arguments.
1129
+ >>> obj.deploy(model_column="model")
1130
+ ['model_file_1710438346528596__1',
1131
+ 'model_file_1710438346528596__2',
1132
+ 'model_file_1710438346528596__3',
1133
+ 'model_file_1710438346528596__4']
1134
+
1135
+ # Example 4: Provide both "partition_columns" and "model_file_prefix" arguments.
1136
+ >>> obj.deploy(model_column="model", model_file_prefix="my_prefix_new_",
1137
+ partition_columns=["partition_column_1", "partition_column_2"])
1138
+ ['my_prefix_new__0_10',
1139
+ 'my_prefix_new__0_11',
1140
+ 'my_prefix_new__1_10',
1141
+ 'my_prefix_new__1_11']
1142
+
1143
+ ## Run in VantageCloud Lake using Apply object.
1144
+ # Let's assume an user environment named "user_env" already exists in VantageCloud Lake,
1145
+ # which will be used for the examples below.
1146
+
1147
+ # ApplyTableOperator returns BLOB type for model column as per deploy_script.py.
1148
+ >>> returns = OrderedDict([("partition_column_1", INTEGER()),
1149
+ ("partition_column_2", INTEGER()),
1150
+ ("model", BLOB())])
1151
+
1152
+ # Install the script file which returns model and partition columns.
1153
+ >>> user_env.install_file(file_location)
1154
+
1155
+ >>> script_command = 'python3 deploy_script.py lake'
1156
+ >>> obj = Apply(data=df.select(columns),
1157
+ script_command=script_command,
1158
+ data_partition_column=partition_columns,
1159
+ returns=returns,
1160
+ env_name="user_env"
1161
+ )
1162
+
1163
+ >>> opt = obj.execute_script()
1164
+ >>> opt
1165
+ partition_column_1 partition_column_2 model model
1166
+ 0 10 b'gAejc1.....drIr'
1167
+ 0 11 b'gANjcw.....qWIu'
1168
+ 1 10 b'abdwcd.....dWIz'
1169
+ 1 11 b'gA4jc4.....agfu'
1170
+
1171
+ # Example 5: Provide both "partition_columns" and "model_file_prefix" arguments.
1172
+ >>> obj.deploy(model_column="model", model_file_prefix="my_prefix_",
1173
+ partition_columns=["partition_column_1", "partition_column_2"])
1174
+ ['my_prefix__0_10',
1175
+ 'my_prefix__0_11',
1176
+ 'my_prefix__1_10',
1177
+ 'my_prefix__1_11']
1178
+
1179
+ # Other examples are similar to the examples provided for VantageCloud Enterprise.
1180
+ """
1181
+
1182
+ arg_info_matrix = []
1183
+ arg_info_matrix.append(["model_column", model_column, False, (str)])
1184
+ arg_info_matrix.append(["partition_columns", partition_columns, True, (str, list)])
1185
+ arg_info_matrix.append(["model_file_prefix", model_file_prefix, True, (str)])
1186
+ _Validators._validate_function_arguments(arg_info_matrix)
1187
+
1188
+ if self.result is None:
1189
+ return "Result is empty. Please run execute_script first."
1190
+
1191
+ if partition_columns is None:
1192
+ partition_columns = []
1193
+ partition_columns = UtilFuncs._as_list(partition_columns)
1194
+
1195
+ req_columns = [model_column] + partition_columns
1196
+
1197
+ _Validators._validate_column_exists_in_dataframe(columns=req_columns, metaexpr=self.result._metaexpr)
1198
+
1199
+ data = self.result.select(req_columns)
1200
+ data._index_column = None # Without this, first column i.e., model column will be index column.
1201
+
1202
+
1203
+ if model_file_prefix is None:
1204
+ timestamp = time.time()
1205
+ tmp = "{}{}".format(floor(timestamp / 1000000),
1206
+ floor(timestamp % 1000000 * 1000000 +
1207
+ int(str(uuid.uuid4().fields[-1])[:10])))
1208
+ model_file_prefix = f"model_file_{tmp}_"
1209
+
1210
+ vals = data.get_values()
1211
+
1212
+ model_column_type = data._td_column_names_and_sqlalchemy_types[model_column.lower()].__class__.__name__
1213
+
1214
+ n_models = len(vals)
1215
+ all_files = []
1216
+
1217
+ # Default location for .teradataml is user's home directory if configure.local_storage is not set.
1218
+ tempdir = GarbageCollector._get_temp_dir_name()
1219
+
1220
+ for i, row in enumerate(vals):
1221
+ model = row[0]
1222
+ partition_values = ""
1223
+ if partition_columns:
1224
+ partition_values = "_".join([str(x) for x in row[1:]])
1225
+ elif n_models > 1:
1226
+ partition_values = str(i+1)
1227
+
1228
+ model_file = f"{model_file_prefix}_{partition_values}"
1229
+ model_file_path = os.path.join(tempdir, model_file)
1230
+
1231
+ if model_column_type == "CLOB":
1232
+ import base64
1233
+ model = base64.b64decode(model.partition("'")[2])
1234
+ elif model_column_type == "BLOB":
1235
+ # No operation needed.
1236
+ # Apply model training returns BLOB type.
1237
+ pass
1238
+ else:
1239
+ raise ValueError(f"Model column type {model_column_type} is not supported.")
1240
+
1241
+ with open(model_file_path, "wb") as f:
1242
+ f.write(model)
1243
+
1244
+ if self.__class__.__name__ == "Script":
1245
+ from teradataml import install_file
1246
+ install_file(file_identifier=model_file, file_path=model_file_path,
1247
+ is_binary=True, suppress_output=True)
1248
+ elif self.__class__.__name__ == "Apply":
1249
+ self.env.install_file(file_path=model_file_path)
1250
+
1251
+ all_files.append(model_file)
1252
+
1253
+ os.remove(model_file_path)
1254
+
1255
+ return all_files