teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1303) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1935 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2040 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +798 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1683 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +1011 -0
  31. teradataml/automl/data_transformation.py +789 -0
  32. teradataml/automl/feature_engineering.py +1580 -0
  33. teradataml/automl/feature_exploration.py +554 -0
  34. teradataml/automl/model_evaluation.py +151 -0
  35. teradataml/automl/model_training.py +1026 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/auth_client.py +133 -0
  41. teradataml/clients/pkce_client.py +481 -481
  42. teradataml/common/aed_utils.py +7 -2
  43. teradataml/common/bulk_exposed_utils.py +111 -111
  44. teradataml/common/constants.py +1438 -1441
  45. teradataml/common/deprecations.py +160 -0
  46. teradataml/common/exceptions.py +73 -73
  47. teradataml/common/formula.py +742 -742
  48. teradataml/common/garbagecollector.py +597 -635
  49. teradataml/common/messagecodes.py +424 -431
  50. teradataml/common/messages.py +228 -231
  51. teradataml/common/sqlbundle.py +693 -693
  52. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  53. teradataml/common/utils.py +2424 -2500
  54. teradataml/common/warnings.py +25 -25
  55. teradataml/common/wrapper_utils.py +1 -110
  56. teradataml/config/dummy_file1.cfg +4 -4
  57. teradataml/config/dummy_file2.cfg +2 -2
  58. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  59. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  60. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  61. teradataml/context/aed_context.py +217 -217
  62. teradataml/context/context.py +1091 -999
  63. teradataml/data/A_loan.csv +19 -19
  64. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  65. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  66. teradataml/data/B_loan.csv +49 -49
  67. teradataml/data/BuoyData2.csv +17 -17
  68. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  69. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  70. teradataml/data/Convolve2RealsLeft.csv +5 -5
  71. teradataml/data/Convolve2RealsRight.csv +5 -5
  72. teradataml/data/Convolve2ValidLeft.csv +11 -11
  73. teradataml/data/Convolve2ValidRight.csv +11 -11
  74. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  75. teradataml/data/Orders1_12mf.csv +24 -24
  76. teradataml/data/Pi_loan.csv +7 -7
  77. teradataml/data/SMOOTHED_DATA.csv +7 -7
  78. teradataml/data/TestDFFT8.csv +9 -9
  79. teradataml/data/TestRiver.csv +109 -109
  80. teradataml/data/Traindata.csv +28 -28
  81. teradataml/data/acf.csv +17 -17
  82. teradataml/data/adaboost_example.json +34 -34
  83. teradataml/data/adaboostpredict_example.json +24 -24
  84. teradataml/data/additional_table.csv +10 -10
  85. teradataml/data/admissions_test.csv +21 -21
  86. teradataml/data/admissions_train.csv +41 -41
  87. teradataml/data/admissions_train_nulls.csv +41 -41
  88. teradataml/data/advertising.csv +201 -0
  89. teradataml/data/ageandheight.csv +13 -13
  90. teradataml/data/ageandpressure.csv +31 -31
  91. teradataml/data/antiselect_example.json +36 -36
  92. teradataml/data/antiselect_input.csv +8 -8
  93. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  94. teradataml/data/applicant_external.csv +6 -6
  95. teradataml/data/applicant_reference.csv +6 -6
  96. teradataml/data/arima_example.json +9 -9
  97. teradataml/data/assortedtext_input.csv +8 -8
  98. teradataml/data/attribution_example.json +33 -33
  99. teradataml/data/attribution_sample_table.csv +27 -27
  100. teradataml/data/attribution_sample_table1.csv +6 -6
  101. teradataml/data/attribution_sample_table2.csv +11 -11
  102. teradataml/data/bank_churn.csv +10001 -0
  103. teradataml/data/bank_marketing.csv +11163 -0
  104. teradataml/data/bank_web_clicks1.csv +42 -42
  105. teradataml/data/bank_web_clicks2.csv +91 -91
  106. teradataml/data/bank_web_url.csv +85 -85
  107. teradataml/data/barrier.csv +2 -2
  108. teradataml/data/barrier_new.csv +3 -3
  109. teradataml/data/betweenness_example.json +13 -13
  110. teradataml/data/bike_sharing.csv +732 -0
  111. teradataml/data/bin_breaks.csv +8 -8
  112. teradataml/data/bin_fit_ip.csv +3 -3
  113. teradataml/data/binary_complex_left.csv +11 -11
  114. teradataml/data/binary_complex_right.csv +11 -11
  115. teradataml/data/binary_matrix_complex_left.csv +21 -21
  116. teradataml/data/binary_matrix_complex_right.csv +21 -21
  117. teradataml/data/binary_matrix_real_left.csv +21 -21
  118. teradataml/data/binary_matrix_real_right.csv +21 -21
  119. teradataml/data/blood2ageandweight.csv +26 -26
  120. teradataml/data/bmi.csv +501 -0
  121. teradataml/data/boston.csv +507 -507
  122. teradataml/data/boston2cols.csv +721 -0
  123. teradataml/data/breast_cancer.csv +570 -0
  124. teradataml/data/buoydata_mix.csv +11 -11
  125. teradataml/data/burst_data.csv +5 -5
  126. teradataml/data/burst_example.json +20 -20
  127. teradataml/data/byom_example.json +17 -17
  128. teradataml/data/bytes_table.csv +3 -3
  129. teradataml/data/cal_housing_ex_raw.csv +70 -70
  130. teradataml/data/callers.csv +7 -7
  131. teradataml/data/calls.csv +10 -10
  132. teradataml/data/cars_hist.csv +33 -33
  133. teradataml/data/cat_table.csv +24 -24
  134. teradataml/data/ccm_example.json +31 -31
  135. teradataml/data/ccm_input.csv +91 -91
  136. teradataml/data/ccm_input2.csv +13 -13
  137. teradataml/data/ccmexample.csv +101 -101
  138. teradataml/data/ccmprepare_example.json +8 -8
  139. teradataml/data/ccmprepare_input.csv +91 -91
  140. teradataml/data/cfilter_example.json +12 -12
  141. teradataml/data/changepointdetection_example.json +18 -18
  142. teradataml/data/changepointdetectionrt_example.json +8 -8
  143. teradataml/data/chi_sq.csv +2 -2
  144. teradataml/data/churn_data.csv +14 -14
  145. teradataml/data/churn_emission.csv +35 -35
  146. teradataml/data/churn_initial.csv +3 -3
  147. teradataml/data/churn_state_transition.csv +5 -5
  148. teradataml/data/citedges_2.csv +745 -745
  149. teradataml/data/citvertices_2.csv +1210 -1210
  150. teradataml/data/clicks2.csv +16 -16
  151. teradataml/data/clickstream.csv +12 -12
  152. teradataml/data/clickstream1.csv +11 -11
  153. teradataml/data/closeness_example.json +15 -15
  154. teradataml/data/complaints.csv +21 -21
  155. teradataml/data/complaints_mini.csv +3 -3
  156. teradataml/data/complaints_testtoken.csv +224 -224
  157. teradataml/data/complaints_tokens_test.csv +353 -353
  158. teradataml/data/complaints_traintoken.csv +472 -472
  159. teradataml/data/computers_category.csv +1001 -1001
  160. teradataml/data/computers_test1.csv +1252 -1252
  161. teradataml/data/computers_train1.csv +5009 -5009
  162. teradataml/data/computers_train1_clustered.csv +5009 -5009
  163. teradataml/data/confusionmatrix_example.json +9 -9
  164. teradataml/data/conversion_event_table.csv +3 -3
  165. teradataml/data/corr_input.csv +17 -17
  166. teradataml/data/correlation_example.json +11 -11
  167. teradataml/data/coxhazardratio_example.json +39 -39
  168. teradataml/data/coxph_example.json +15 -15
  169. teradataml/data/coxsurvival_example.json +28 -28
  170. teradataml/data/cpt.csv +41 -41
  171. teradataml/data/credit_ex_merged.csv +45 -45
  172. teradataml/data/customer_loyalty.csv +301 -301
  173. teradataml/data/customer_loyalty_newseq.csv +31 -31
  174. teradataml/data/customer_segmentation_test.csv +2628 -0
  175. teradataml/data/customer_segmentation_train.csv +8069 -0
  176. teradataml/data/dataframe_example.json +146 -146
  177. teradataml/data/decisionforest_example.json +37 -37
  178. teradataml/data/decisionforestpredict_example.json +38 -38
  179. teradataml/data/decisiontree_example.json +21 -21
  180. teradataml/data/decisiontreepredict_example.json +45 -45
  181. teradataml/data/dfft2_size4_real.csv +17 -17
  182. teradataml/data/dfft2_test_matrix16.csv +17 -17
  183. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  184. teradataml/data/diabetes.csv +443 -443
  185. teradataml/data/diabetes_test.csv +89 -89
  186. teradataml/data/dict_table.csv +5 -5
  187. teradataml/data/docperterm_table.csv +4 -4
  188. teradataml/data/docs/__init__.py +1 -1
  189. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  190. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  191. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  192. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  193. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  194. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  195. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  196. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  197. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  198. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  199. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  200. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  201. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  202. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  203. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  204. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  205. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  206. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  207. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  208. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  209. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  210. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  211. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  212. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  213. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  214. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  215. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  216. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  217. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
  218. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
  219. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  220. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
  221. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  222. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  223. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  224. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  225. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  226. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  227. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  228. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  229. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  230. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  231. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  232. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  233. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  234. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  235. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  236. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  237. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  238. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  239. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  240. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  241. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  242. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
  243. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  244. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  245. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  246. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  247. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  248. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  249. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  250. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  251. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
  252. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  253. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  254. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  255. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  256. teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
  257. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  258. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  259. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
  260. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  261. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  262. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  263. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
  264. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  265. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  266. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  267. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
  268. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  269. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  270. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  271. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  272. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  273. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  274. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  275. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  276. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
  277. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  278. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  279. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  280. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  281. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
  282. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
  283. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  284. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  285. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  286. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  287. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  288. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  289. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  290. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  291. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
  292. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  293. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  294. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  295. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  296. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  297. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  298. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  299. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  300. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
  301. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  302. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
  303. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
  304. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  305. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  306. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  307. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  308. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  309. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  310. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  311. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  312. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
  313. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  314. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  315. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  316. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  317. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  318. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  319. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  320. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  321. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  322. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  323. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  324. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
  325. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
  326. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
  327. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  328. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  329. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  330. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  331. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  332. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  333. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  334. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  335. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  336. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  337. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  338. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  339. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  340. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  341. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  342. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  343. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  344. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  345. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  346. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  347. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  348. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  349. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  350. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  351. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  352. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  353. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  354. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  355. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  356. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  357. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  358. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  359. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  360. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  361. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  362. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  363. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  364. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  365. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  366. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  367. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  368. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  369. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  370. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  371. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  372. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  373. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  374. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  375. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  376. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  377. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  378. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  379. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  380. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  381. teradataml/data/dtw_example.json +17 -17
  382. teradataml/data/dtw_t1.csv +11 -11
  383. teradataml/data/dtw_t2.csv +4 -4
  384. teradataml/data/dwt2d_example.json +15 -15
  385. teradataml/data/dwt_example.json +14 -14
  386. teradataml/data/dwt_filter_dim.csv +5 -5
  387. teradataml/data/emission.csv +9 -9
  388. teradataml/data/emp_table_by_dept.csv +19 -19
  389. teradataml/data/employee_info.csv +4 -4
  390. teradataml/data/employee_table.csv +6 -6
  391. teradataml/data/excluding_event_table.csv +2 -2
  392. teradataml/data/finance_data.csv +6 -6
  393. teradataml/data/finance_data2.csv +61 -61
  394. teradataml/data/finance_data3.csv +93 -93
  395. teradataml/data/fish.csv +160 -0
  396. teradataml/data/fm_blood2ageandweight.csv +26 -26
  397. teradataml/data/fmeasure_example.json +11 -11
  398. teradataml/data/followers_leaders.csv +10 -10
  399. teradataml/data/fpgrowth_example.json +12 -12
  400. teradataml/data/frequentpaths_example.json +29 -29
  401. teradataml/data/friends.csv +9 -9
  402. teradataml/data/fs_input.csv +33 -33
  403. teradataml/data/fs_input1.csv +33 -33
  404. teradataml/data/genData.csv +513 -513
  405. teradataml/data/geodataframe_example.json +39 -39
  406. teradataml/data/glass_types.csv +215 -0
  407. teradataml/data/glm_admissions_model.csv +12 -12
  408. teradataml/data/glm_example.json +56 -29
  409. teradataml/data/glml1l2_example.json +28 -28
  410. teradataml/data/glml1l2predict_example.json +54 -54
  411. teradataml/data/glmpredict_example.json +54 -54
  412. teradataml/data/gq_t1.csv +21 -21
  413. teradataml/data/hconvolve_complex_right.csv +5 -5
  414. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  415. teradataml/data/histogram_example.json +11 -11
  416. teradataml/data/hmmdecoder_example.json +78 -78
  417. teradataml/data/hmmevaluator_example.json +24 -24
  418. teradataml/data/hmmsupervised_example.json +10 -10
  419. teradataml/data/hmmunsupervised_example.json +7 -7
  420. teradataml/data/house_values.csv +12 -12
  421. teradataml/data/house_values2.csv +13 -13
  422. teradataml/data/housing_cat.csv +7 -7
  423. teradataml/data/housing_data.csv +9 -9
  424. teradataml/data/housing_test.csv +47 -47
  425. teradataml/data/housing_test_binary.csv +47 -47
  426. teradataml/data/housing_train.csv +493 -493
  427. teradataml/data/housing_train_attribute.csv +4 -4
  428. teradataml/data/housing_train_binary.csv +437 -437
  429. teradataml/data/housing_train_parameter.csv +2 -2
  430. teradataml/data/housing_train_response.csv +493 -493
  431. teradataml/data/housing_train_segment.csv +201 -0
  432. teradataml/data/ibm_stock.csv +370 -370
  433. teradataml/data/ibm_stock1.csv +370 -370
  434. teradataml/data/identitymatch_example.json +21 -21
  435. teradataml/data/idf_table.csv +4 -4
  436. teradataml/data/impressions.csv +101 -101
  437. teradataml/data/inflation.csv +21 -21
  438. teradataml/data/initial.csv +3 -3
  439. teradataml/data/insect2Cols.csv +61 -0
  440. teradataml/data/insect_sprays.csv +12 -12
  441. teradataml/data/insurance.csv +1339 -1339
  442. teradataml/data/interpolator_example.json +12 -12
  443. teradataml/data/iris_altinput.csv +481 -481
  444. teradataml/data/iris_attribute_output.csv +8 -8
  445. teradataml/data/iris_attribute_test.csv +121 -121
  446. teradataml/data/iris_attribute_train.csv +481 -481
  447. teradataml/data/iris_category_expect_predict.csv +31 -31
  448. teradataml/data/iris_data.csv +151 -0
  449. teradataml/data/iris_input.csv +151 -151
  450. teradataml/data/iris_response_train.csv +121 -121
  451. teradataml/data/iris_test.csv +31 -31
  452. teradataml/data/iris_train.csv +121 -121
  453. teradataml/data/join_table1.csv +4 -4
  454. teradataml/data/join_table2.csv +4 -4
  455. teradataml/data/jsons/anly_function_name.json +6 -6
  456. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  457. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  458. teradataml/data/jsons/byom/h2opredict.json +194 -194
  459. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  460. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  461. teradataml/data/jsons/paired_functions.json +435 -435
  462. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  463. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  464. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  465. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  466. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  467. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  468. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  469. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  470. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  471. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  472. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  473. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  474. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  475. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  476. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  477. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  478. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  479. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  480. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  481. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  482. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  483. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  484. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  485. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  486. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  487. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  488. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  489. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  490. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  491. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  492. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  493. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  494. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  495. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  496. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  497. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  498. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  499. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  500. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  501. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  502. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  503. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  504. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  505. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  506. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  507. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  508. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  509. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  510. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  511. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  512. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  513. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  514. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  515. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  516. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  517. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  518. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  519. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  520. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  521. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  522. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  523. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  524. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  525. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  526. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  527. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  528. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  529. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  531. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  532. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  533. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  534. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  535. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  536. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  537. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  539. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  540. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  541. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  542. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  543. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  544. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  545. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  546. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  547. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  548. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  549. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  550. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  551. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  552. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  553. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  554. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  555. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  556. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  557. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  558. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  559. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  560. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  561. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  562. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  563. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  564. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  565. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  566. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  567. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  568. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
  569. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  570. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  571. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  572. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  573. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  574. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  575. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  576. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  577. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  578. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  579. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
  580. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  581. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  582. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  583. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
  584. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
  585. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  586. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  587. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
  588. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  589. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  590. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  591. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
  592. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  593. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  594. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  595. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
  596. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  597. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  598. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  599. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  600. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  601. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  602. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  603. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  604. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  605. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  606. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  607. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  608. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  609. teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
  610. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  611. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  612. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  613. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  614. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  615. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  616. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  617. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  618. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
  619. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
  620. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
  621. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  622. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  623. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  624. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  625. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  626. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  627. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  628. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  629. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  630. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  631. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  632. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  633. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  634. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  635. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
  636. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
  637. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
  638. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  639. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  640. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  641. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  642. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  643. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  644. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  645. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  646. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  647. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  648. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  649. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  650. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  651. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  653. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  654. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  655. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  656. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  657. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  658. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  659. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  660. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  661. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  662. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  663. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  664. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  665. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  666. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  667. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  668. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  669. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  670. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  671. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  672. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  673. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  674. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  675. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  676. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  677. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  678. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  679. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  680. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  681. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  682. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  683. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  684. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  685. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  686. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  687. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  688. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  689. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  690. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  691. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  692. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  693. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  694. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  695. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  696. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  697. teradataml/data/kmeans_example.json +22 -17
  698. teradataml/data/kmeans_table.csv +10 -0
  699. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  700. teradataml/data/knn_example.json +18 -18
  701. teradataml/data/knnrecommender_example.json +6 -6
  702. teradataml/data/knnrecommenderpredict_example.json +12 -12
  703. teradataml/data/lar_example.json +17 -17
  704. teradataml/data/larpredict_example.json +30 -30
  705. teradataml/data/lc_new_predictors.csv +5 -5
  706. teradataml/data/lc_new_reference.csv +9 -9
  707. teradataml/data/lda_example.json +8 -8
  708. teradataml/data/ldainference_example.json +14 -14
  709. teradataml/data/ldatopicsummary_example.json +8 -8
  710. teradataml/data/levendist_input.csv +13 -13
  711. teradataml/data/levenshteindistance_example.json +10 -10
  712. teradataml/data/linreg_example.json +9 -9
  713. teradataml/data/load_example_data.py +326 -323
  714. teradataml/data/loan_prediction.csv +295 -295
  715. teradataml/data/lungcancer.csv +138 -138
  716. teradataml/data/mappingdata.csv +12 -12
  717. teradataml/data/milk_timeseries.csv +157 -157
  718. teradataml/data/min_max_titanic.csv +4 -4
  719. teradataml/data/minhash_example.json +6 -6
  720. teradataml/data/ml_ratings.csv +7547 -7547
  721. teradataml/data/ml_ratings_10.csv +2445 -2445
  722. teradataml/data/model1_table.csv +5 -5
  723. teradataml/data/model2_table.csv +5 -5
  724. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  725. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  726. teradataml/data/modularity_example.json +12 -12
  727. teradataml/data/movavg_example.json +7 -7
  728. teradataml/data/mtx1.csv +7 -7
  729. teradataml/data/mtx2.csv +13 -13
  730. teradataml/data/multi_model_classification.csv +401 -0
  731. teradataml/data/multi_model_regression.csv +401 -0
  732. teradataml/data/mvdfft8.csv +9 -9
  733. teradataml/data/naivebayes_example.json +9 -9
  734. teradataml/data/naivebayespredict_example.json +19 -19
  735. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  736. teradataml/data/naivebayestextclassifier_example.json +8 -8
  737. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  738. teradataml/data/name_Find_configure.csv +10 -10
  739. teradataml/data/namedentityfinder_example.json +14 -14
  740. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  741. teradataml/data/namedentityfindertrainer_example.json +6 -6
  742. teradataml/data/nb_iris_input_test.csv +31 -31
  743. teradataml/data/nb_iris_input_train.csv +121 -121
  744. teradataml/data/nbp_iris_model.csv +13 -13
  745. teradataml/data/ner_extractor_text.csv +2 -2
  746. teradataml/data/ner_sports_test2.csv +29 -29
  747. teradataml/data/ner_sports_train.csv +501 -501
  748. teradataml/data/nerevaluator_example.json +5 -5
  749. teradataml/data/nerextractor_example.json +18 -18
  750. teradataml/data/nermem_sports_test.csv +17 -17
  751. teradataml/data/nermem_sports_train.csv +50 -50
  752. teradataml/data/nertrainer_example.json +6 -6
  753. teradataml/data/ngrams_example.json +6 -6
  754. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  755. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  756. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  757. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  758. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  759. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  760. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  761. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  762. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  763. teradataml/data/npath_example.json +23 -23
  764. teradataml/data/ntree_example.json +14 -14
  765. teradataml/data/numeric_strings.csv +4 -4
  766. teradataml/data/numerics.csv +4 -4
  767. teradataml/data/ocean_buoy.csv +17 -17
  768. teradataml/data/ocean_buoy2.csv +17 -17
  769. teradataml/data/ocean_buoys.csv +27 -27
  770. teradataml/data/ocean_buoys2.csv +10 -10
  771. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  772. teradataml/data/ocean_buoys_seq.csv +29 -29
  773. teradataml/data/onehot_encoder_train.csv +4 -0
  774. teradataml/data/openml_example.json +92 -0
  775. teradataml/data/optional_event_table.csv +4 -4
  776. teradataml/data/orders1.csv +11 -11
  777. teradataml/data/orders1_12.csv +12 -12
  778. teradataml/data/orders_ex.csv +4 -4
  779. teradataml/data/pack_example.json +8 -8
  780. teradataml/data/package_tracking.csv +19 -19
  781. teradataml/data/package_tracking_pti.csv +18 -18
  782. teradataml/data/pagerank_example.json +13 -13
  783. teradataml/data/paragraphs_input.csv +6 -6
  784. teradataml/data/pathanalyzer_example.json +7 -7
  785. teradataml/data/pathgenerator_example.json +7 -7
  786. teradataml/data/phrases.csv +7 -7
  787. teradataml/data/pivot_example.json +8 -8
  788. teradataml/data/pivot_input.csv +22 -22
  789. teradataml/data/playerRating.csv +31 -31
  790. teradataml/data/postagger_example.json +6 -6
  791. teradataml/data/posttagger_output.csv +44 -44
  792. teradataml/data/production_data.csv +16 -16
  793. teradataml/data/production_data2.csv +7 -7
  794. teradataml/data/randomsample_example.json +31 -31
  795. teradataml/data/randomwalksample_example.json +8 -8
  796. teradataml/data/rank_table.csv +6 -6
  797. teradataml/data/ref_mobile_data.csv +4 -4
  798. teradataml/data/ref_mobile_data_dense.csv +2 -2
  799. teradataml/data/ref_url.csv +17 -17
  800. teradataml/data/restaurant_reviews.csv +7 -7
  801. teradataml/data/river_data.csv +145 -145
  802. teradataml/data/roc_example.json +7 -7
  803. teradataml/data/roc_input.csv +101 -101
  804. teradataml/data/rule_inputs.csv +6 -6
  805. teradataml/data/rule_table.csv +2 -2
  806. teradataml/data/sales.csv +7 -7
  807. teradataml/data/sales_transaction.csv +501 -501
  808. teradataml/data/salesdata.csv +342 -342
  809. teradataml/data/sample_cities.csv +2 -2
  810. teradataml/data/sample_shapes.csv +10 -10
  811. teradataml/data/sample_streets.csv +2 -2
  812. teradataml/data/sampling_example.json +15 -15
  813. teradataml/data/sax_example.json +8 -8
  814. teradataml/data/scale_attributes.csv +3 -0
  815. teradataml/data/scale_example.json +74 -23
  816. teradataml/data/scale_housing.csv +11 -11
  817. teradataml/data/scale_housing_test.csv +6 -6
  818. teradataml/data/scale_input_part_sparse.csv +31 -0
  819. teradataml/data/scale_input_partitioned.csv +16 -0
  820. teradataml/data/scale_input_sparse.csv +11 -0
  821. teradataml/data/scale_parameters.csv +3 -0
  822. teradataml/data/scale_stat.csv +11 -11
  823. teradataml/data/scalebypartition_example.json +13 -13
  824. teradataml/data/scalemap_example.json +13 -13
  825. teradataml/data/scalesummary_example.json +12 -12
  826. teradataml/data/score_category.csv +101 -101
  827. teradataml/data/score_summary.csv +4 -4
  828. teradataml/data/script_example.json +9 -9
  829. teradataml/data/scripts/deploy_script.py +84 -0
  830. teradataml/data/scripts/mapper.R +20 -0
  831. teradataml/data/scripts/mapper.py +15 -15
  832. teradataml/data/scripts/mapper_replace.py +15 -15
  833. teradataml/data/scripts/sklearn/__init__.py +0 -0
  834. teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
  835. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
  836. teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
  837. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
  838. teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
  839. teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
  840. teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
  841. teradataml/data/seeds.csv +10 -10
  842. teradataml/data/sentenceextractor_example.json +6 -6
  843. teradataml/data/sentiment_extract_input.csv +11 -11
  844. teradataml/data/sentiment_train.csv +16 -16
  845. teradataml/data/sentiment_word.csv +20 -20
  846. teradataml/data/sentiment_word_input.csv +19 -19
  847. teradataml/data/sentimentextractor_example.json +24 -24
  848. teradataml/data/sentimenttrainer_example.json +8 -8
  849. teradataml/data/sequence_table.csv +10 -10
  850. teradataml/data/seriessplitter_example.json +7 -7
  851. teradataml/data/sessionize_example.json +17 -17
  852. teradataml/data/sessionize_table.csv +116 -116
  853. teradataml/data/setop_test1.csv +24 -24
  854. teradataml/data/setop_test2.csv +22 -22
  855. teradataml/data/soc_nw_edges.csv +10 -10
  856. teradataml/data/soc_nw_vertices.csv +7 -7
  857. teradataml/data/souvenir_timeseries.csv +167 -167
  858. teradataml/data/sparse_iris_attribute.csv +5 -5
  859. teradataml/data/sparse_iris_test.csv +121 -121
  860. teradataml/data/sparse_iris_train.csv +601 -601
  861. teradataml/data/star1.csv +6 -6
  862. teradataml/data/state_transition.csv +5 -5
  863. teradataml/data/stock_data.csv +53 -53
  864. teradataml/data/stock_movement.csv +11 -11
  865. teradataml/data/stock_vol.csv +76 -76
  866. teradataml/data/stop_words.csv +8 -8
  867. teradataml/data/store_sales.csv +37 -37
  868. teradataml/data/stringsimilarity_example.json +7 -7
  869. teradataml/data/strsimilarity_input.csv +13 -13
  870. teradataml/data/students.csv +101 -101
  871. teradataml/data/svm_iris_input_test.csv +121 -121
  872. teradataml/data/svm_iris_input_train.csv +481 -481
  873. teradataml/data/svm_iris_model.csv +7 -7
  874. teradataml/data/svmdense_example.json +9 -9
  875. teradataml/data/svmdensepredict_example.json +18 -18
  876. teradataml/data/svmsparse_example.json +7 -7
  877. teradataml/data/svmsparsepredict_example.json +13 -13
  878. teradataml/data/svmsparsesummary_example.json +7 -7
  879. teradataml/data/target_mobile_data.csv +13 -13
  880. teradataml/data/target_mobile_data_dense.csv +5 -5
  881. teradataml/data/templatedata.csv +1201 -1201
  882. teradataml/data/templates/open_source_ml.json +9 -0
  883. teradataml/data/teradataml_example.json +150 -1
  884. teradataml/data/test_classification.csv +101 -0
  885. teradataml/data/test_loan_prediction.csv +53 -53
  886. teradataml/data/test_pacf_12.csv +37 -37
  887. teradataml/data/test_prediction.csv +101 -0
  888. teradataml/data/test_regression.csv +101 -0
  889. teradataml/data/test_river2.csv +109 -109
  890. teradataml/data/text_inputs.csv +6 -6
  891. teradataml/data/textchunker_example.json +7 -7
  892. teradataml/data/textclassifier_example.json +6 -6
  893. teradataml/data/textclassifier_input.csv +7 -7
  894. teradataml/data/textclassifiertrainer_example.json +6 -6
  895. teradataml/data/textmorph_example.json +5 -5
  896. teradataml/data/textparser_example.json +15 -15
  897. teradataml/data/texttagger_example.json +11 -11
  898. teradataml/data/texttokenizer_example.json +6 -6
  899. teradataml/data/texttrainer_input.csv +11 -11
  900. teradataml/data/tf_example.json +6 -6
  901. teradataml/data/tfidf_example.json +13 -13
  902. teradataml/data/tfidf_input1.csv +201 -201
  903. teradataml/data/tfidf_train.csv +6 -6
  904. teradataml/data/time_table1.csv +535 -535
  905. teradataml/data/time_table2.csv +14 -14
  906. teradataml/data/timeseriesdata.csv +1601 -1601
  907. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  908. teradataml/data/titanic.csv +892 -892
  909. teradataml/data/token_table.csv +696 -696
  910. teradataml/data/train_multiclass.csv +101 -0
  911. teradataml/data/train_regression.csv +101 -0
  912. teradataml/data/train_regression_multiple_labels.csv +101 -0
  913. teradataml/data/train_tracking.csv +27 -27
  914. teradataml/data/transformation_table.csv +5 -5
  915. teradataml/data/transformation_table_new.csv +1 -1
  916. teradataml/data/tv_spots.csv +16 -16
  917. teradataml/data/twod_climate_data.csv +117 -117
  918. teradataml/data/uaf_example.json +475 -475
  919. teradataml/data/univariatestatistics_example.json +8 -8
  920. teradataml/data/unpack_example.json +9 -9
  921. teradataml/data/unpivot_example.json +9 -9
  922. teradataml/data/unpivot_input.csv +8 -8
  923. teradataml/data/us_air_pass.csv +36 -36
  924. teradataml/data/us_population.csv +624 -624
  925. teradataml/data/us_states_shapes.csv +52 -52
  926. teradataml/data/varmax_example.json +17 -17
  927. teradataml/data/vectordistance_example.json +25 -25
  928. teradataml/data/ville_climatedata.csv +121 -121
  929. teradataml/data/ville_tempdata.csv +12 -12
  930. teradataml/data/ville_tempdata1.csv +12 -12
  931. teradataml/data/ville_temperature.csv +11 -11
  932. teradataml/data/waveletTable.csv +1605 -1605
  933. teradataml/data/waveletTable2.csv +1605 -1605
  934. teradataml/data/weightedmovavg_example.json +8 -8
  935. teradataml/data/wft_testing.csv +5 -5
  936. teradataml/data/wine_data.csv +1600 -0
  937. teradataml/data/word_embed_input_table1.csv +5 -5
  938. teradataml/data/word_embed_input_table2.csv +4 -4
  939. teradataml/data/word_embed_model.csv +22 -22
  940. teradataml/data/words_input.csv +13 -13
  941. teradataml/data/xconvolve_complex_left.csv +6 -6
  942. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  943. teradataml/data/xgboost_example.json +35 -35
  944. teradataml/data/xgboostpredict_example.json +31 -31
  945. teradataml/data/ztest_example.json +16 -0
  946. teradataml/dataframe/copy_to.py +1769 -1698
  947. teradataml/dataframe/data_transfer.py +2812 -2745
  948. teradataml/dataframe/dataframe.py +17630 -16946
  949. teradataml/dataframe/dataframe_utils.py +1875 -1740
  950. teradataml/dataframe/fastload.py +794 -603
  951. teradataml/dataframe/indexer.py +424 -424
  952. teradataml/dataframe/setop.py +1179 -1166
  953. teradataml/dataframe/sql.py +10174 -6432
  954. teradataml/dataframe/sql_function_parameters.py +439 -388
  955. teradataml/dataframe/sql_functions.py +652 -652
  956. teradataml/dataframe/sql_interfaces.py +220 -220
  957. teradataml/dataframe/vantage_function_types.py +674 -630
  958. teradataml/dataframe/window.py +693 -692
  959. teradataml/dbutils/__init__.py +3 -3
  960. teradataml/dbutils/dbutils.py +1167 -1150
  961. teradataml/dbutils/filemgr.py +267 -267
  962. teradataml/gen_ai/__init__.py +2 -2
  963. teradataml/gen_ai/convAI.py +472 -472
  964. teradataml/geospatial/__init__.py +3 -3
  965. teradataml/geospatial/geodataframe.py +1105 -1094
  966. teradataml/geospatial/geodataframecolumn.py +392 -387
  967. teradataml/geospatial/geometry_types.py +925 -925
  968. teradataml/hyperparameter_tuner/__init__.py +1 -1
  969. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  970. teradataml/hyperparameter_tuner/utils.py +281 -187
  971. teradataml/lib/aed_0_1.dll +0 -0
  972. teradataml/lib/libaed_0_1.dylib +0 -0
  973. teradataml/lib/libaed_0_1.so +0 -0
  974. teradataml/libaed_0_1.dylib +0 -0
  975. teradataml/libaed_0_1.so +0 -0
  976. teradataml/opensource/__init__.py +1 -0
  977. teradataml/opensource/sklearn/__init__.py +1 -0
  978. teradataml/opensource/sklearn/_class.py +255 -0
  979. teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
  980. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  981. teradataml/opensource/sklearn/constants.py +54 -0
  982. teradataml/options/__init__.py +130 -124
  983. teradataml/options/configure.py +358 -336
  984. teradataml/options/display.py +176 -176
  985. teradataml/plot/__init__.py +2 -2
  986. teradataml/plot/axis.py +1388 -1388
  987. teradataml/plot/constants.py +15 -15
  988. teradataml/plot/figure.py +398 -398
  989. teradataml/plot/plot.py +760 -760
  990. teradataml/plot/query_generator.py +83 -83
  991. teradataml/plot/subplot.py +216 -216
  992. teradataml/scriptmgmt/UserEnv.py +3791 -3761
  993. teradataml/scriptmgmt/__init__.py +3 -3
  994. teradataml/scriptmgmt/lls_utils.py +1719 -1604
  995. teradataml/series/series.py +532 -532
  996. teradataml/series/series_utils.py +71 -71
  997. teradataml/table_operators/Apply.py +949 -917
  998. teradataml/table_operators/Script.py +1718 -1982
  999. teradataml/table_operators/TableOperator.py +1255 -1616
  1000. teradataml/table_operators/__init__.py +2 -3
  1001. teradataml/table_operators/apply_query_generator.py +262 -262
  1002. teradataml/table_operators/query_generator.py +507 -507
  1003. teradataml/table_operators/table_operator_query_generator.py +460 -460
  1004. teradataml/table_operators/table_operator_util.py +631 -639
  1005. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  1006. teradataml/table_operators/templates/dataframe_map.template +176 -176
  1007. teradataml/table_operators/templates/script_executor.template +170 -170
  1008. teradataml/utils/dtypes.py +684 -684
  1009. teradataml/utils/internal_buffer.py +84 -84
  1010. teradataml/utils/print_versions.py +205 -205
  1011. teradataml/utils/utils.py +410 -410
  1012. teradataml/utils/validators.py +2277 -2115
  1013. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
  1014. teradataml-20.0.0.1.dist-info/RECORD +1056 -0
  1015. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
  1016. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
  1017. teradataml/analytics/mle/AdaBoost.py +0 -651
  1018. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1019. teradataml/analytics/mle/Antiselect.py +0 -342
  1020. teradataml/analytics/mle/Arima.py +0 -641
  1021. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1022. teradataml/analytics/mle/Attribution.py +0 -1070
  1023. teradataml/analytics/mle/Betweenness.py +0 -658
  1024. teradataml/analytics/mle/Burst.py +0 -711
  1025. teradataml/analytics/mle/CCM.py +0 -600
  1026. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1027. teradataml/analytics/mle/CFilter.py +0 -460
  1028. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1029. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1030. teradataml/analytics/mle/Closeness.py +0 -737
  1031. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1032. teradataml/analytics/mle/Correlation.py +0 -477
  1033. teradataml/analytics/mle/Correlation2.py +0 -573
  1034. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1035. teradataml/analytics/mle/CoxPH.py +0 -556
  1036. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1037. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1038. teradataml/analytics/mle/DTW.py +0 -623
  1039. teradataml/analytics/mle/DWT.py +0 -564
  1040. teradataml/analytics/mle/DWT2D.py +0 -599
  1041. teradataml/analytics/mle/DecisionForest.py +0 -716
  1042. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1043. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1044. teradataml/analytics/mle/DecisionTree.py +0 -830
  1045. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1046. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1047. teradataml/analytics/mle/FMeasure.py +0 -402
  1048. teradataml/analytics/mle/FPGrowth.py +0 -734
  1049. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1050. teradataml/analytics/mle/GLM.py +0 -558
  1051. teradataml/analytics/mle/GLML1L2.py +0 -547
  1052. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1053. teradataml/analytics/mle/GLMPredict.py +0 -529
  1054. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1055. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1056. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1057. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1058. teradataml/analytics/mle/Histogram.py +0 -561
  1059. teradataml/analytics/mle/IDWT.py +0 -476
  1060. teradataml/analytics/mle/IDWT2D.py +0 -493
  1061. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1062. teradataml/analytics/mle/Interpolator.py +0 -918
  1063. teradataml/analytics/mle/KMeans.py +0 -485
  1064. teradataml/analytics/mle/KNN.py +0 -627
  1065. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1066. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1067. teradataml/analytics/mle/LAR.py +0 -439
  1068. teradataml/analytics/mle/LARPredict.py +0 -478
  1069. teradataml/analytics/mle/LDA.py +0 -548
  1070. teradataml/analytics/mle/LDAInference.py +0 -492
  1071. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1072. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1073. teradataml/analytics/mle/LinReg.py +0 -433
  1074. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1075. teradataml/analytics/mle/MinHash.py +0 -544
  1076. teradataml/analytics/mle/Modularity.py +0 -587
  1077. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1078. teradataml/analytics/mle/NERExtractor.py +0 -595
  1079. teradataml/analytics/mle/NERTrainer.py +0 -458
  1080. teradataml/analytics/mle/NGrams.py +0 -570
  1081. teradataml/analytics/mle/NPath.py +0 -634
  1082. teradataml/analytics/mle/NTree.py +0 -549
  1083. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1084. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1085. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1086. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1087. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1088. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1089. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1090. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1091. teradataml/analytics/mle/POSTagger.py +0 -417
  1092. teradataml/analytics/mle/Pack.py +0 -411
  1093. teradataml/analytics/mle/PageRank.py +0 -535
  1094. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1095. teradataml/analytics/mle/PathGenerator.py +0 -367
  1096. teradataml/analytics/mle/PathStart.py +0 -464
  1097. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1098. teradataml/analytics/mle/Pivot.py +0 -471
  1099. teradataml/analytics/mle/ROC.py +0 -425
  1100. teradataml/analytics/mle/RandomSample.py +0 -637
  1101. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1102. teradataml/analytics/mle/SAX.py +0 -779
  1103. teradataml/analytics/mle/SVMDense.py +0 -677
  1104. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1105. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1106. teradataml/analytics/mle/SVMSparse.py +0 -557
  1107. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1108. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1109. teradataml/analytics/mle/Sampling.py +0 -549
  1110. teradataml/analytics/mle/Scale.py +0 -565
  1111. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1112. teradataml/analytics/mle/ScaleMap.py +0 -378
  1113. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1114. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1115. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1116. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1117. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1118. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1119. teradataml/analytics/mle/Sessionize.py +0 -475
  1120. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1121. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1122. teradataml/analytics/mle/TF.py +0 -389
  1123. teradataml/analytics/mle/TFIDF.py +0 -504
  1124. teradataml/analytics/mle/TextChunker.py +0 -414
  1125. teradataml/analytics/mle/TextClassifier.py +0 -399
  1126. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1127. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1128. teradataml/analytics/mle/TextMorph.py +0 -494
  1129. teradataml/analytics/mle/TextParser.py +0 -623
  1130. teradataml/analytics/mle/TextTagger.py +0 -530
  1131. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1132. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1133. teradataml/analytics/mle/Unpack.py +0 -526
  1134. teradataml/analytics/mle/Unpivot.py +0 -438
  1135. teradataml/analytics/mle/VarMax.py +0 -776
  1136. teradataml/analytics/mle/VectorDistance.py +0 -762
  1137. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1138. teradataml/analytics/mle/XGBoost.py +0 -842
  1139. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1140. teradataml/analytics/mle/__init__.py +0 -123
  1141. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1142. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1143. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1144. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1145. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1146. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1147. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1148. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1149. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1150. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1151. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1152. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1153. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1154. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1155. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1156. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1157. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1158. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1159. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1160. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1161. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1162. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1163. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1164. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1165. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1166. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1167. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1168. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1169. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1170. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1171. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1172. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1173. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1174. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1175. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1176. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1177. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1178. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1179. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1180. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1181. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1182. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1183. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1184. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1185. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1186. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1187. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1188. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1189. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1190. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1191. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1192. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1193. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1194. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1195. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1196. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1197. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1198. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1199. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1200. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1201. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1202. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1203. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1204. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1205. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1206. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1207. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1208. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1209. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1210. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1211. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1212. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1213. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1214. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1215. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1216. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1217. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1218. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1219. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1220. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1221. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1222. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1223. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1224. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1225. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1226. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1227. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1228. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1229. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1230. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1231. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1232. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1233. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1234. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1235. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1236. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1237. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1238. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1239. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1240. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1241. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1242. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1243. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1244. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1245. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1246. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1247. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1248. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1249. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1250. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1251. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1252. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1253. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1254. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1255. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1256. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1257. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1258. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1259. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1260. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1261. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1262. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1263. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1264. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1265. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1266. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1267. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1268. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1269. teradataml/analytics/sqle/Antiselect.py +0 -321
  1270. teradataml/analytics/sqle/Attribution.py +0 -603
  1271. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1272. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1273. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1274. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1275. teradataml/analytics/sqle/NPath.py +0 -632
  1276. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1277. teradataml/analytics/sqle/Pack.py +0 -388
  1278. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1279. teradataml/analytics/sqle/Sessionize.py +0 -390
  1280. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1281. teradataml/analytics/sqle/Unpack.py +0 -503
  1282. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1283. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1284. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1285. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1286. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1287. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1288. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1289. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1290. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1291. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1292. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1293. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1294. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1295. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1296. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1297. teradataml/catalog/model_cataloging.py +0 -980
  1298. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1299. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1300. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1301. teradataml/table_operators/sandbox_container_util.py +0 -643
  1302. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1303. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
@@ -1,693 +1,694 @@
1
- """
2
- Unpublished work.
3
- Copyright (c) 2021 by Teradata Corporation. All rights reserved.
4
- TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
5
-
6
- Primary Owner: pradeep.garre@teradata.com
7
- Secondary Owner: PankajVinod.Purandare@teradata.com
8
-
9
- This file implements the core framework that allows user to execute any Vantage Window Functions.
10
- """
11
-
12
- from teradataml.utils.validators import _Validators
13
- from teradataml.common.messages import Messages
14
- from teradataml.common.messagecodes import MessageCodes
15
- from sqlalchemy import desc, nullsfirst, nullslast
16
- from teradataml.common.exceptions import TeradataMlException
17
- from teradataml.utils.dtypes import _Dtypes
18
-
19
-
20
- class Window:
21
- """ A class for executing window functions. """
22
- def __init__(self,
23
- object,
24
- partition_columns=None,
25
- order_columns=None,
26
- sort_ascending=True,
27
- nulls_first=None,
28
- window_start_point=None,
29
- window_end_point=None,
30
- ignore_window=False):
31
- """
32
- DESCRIPTION:
33
- Constructor for Window class.
34
-
35
- PARAMETERS:
36
- object:
37
- Required Argument.
38
- Specifies where the window object is initiated from.
39
- Window object can be initiated from either teradataml DataFrame
40
- or a column in a teradataml DataFrame.
41
- Types: teradataml DataFrame, _SQLColumnExpression
42
-
43
- partition_columns:
44
- Optional Argument.
45
- Specifies the name(s) of the column(s) over which the ordered
46
- aggregate function executes by partitioning the rows.
47
- Such a grouping is static.
48
- Notes:
49
- 1. If this argument is not specified, then the entire data
50
- from teradataml DataFrame, constitutes a single
51
- partition, over which the ordered aggregate function
52
- executes.
53
- 2. "partition_columns" does not support CLOB and BLOB type
54
- of columns.
55
- Refer 'DataFrame.tdtypes' to get the types of the
56
- columns of a teradataml DataFrame.
57
- Types: str OR list of Strings (str)
58
-
59
- order_columns:
60
- Optional Argument.
61
- Specifies the name(s) of the column(s) to order the rows in a
62
- partition, which determines the sort order of the rows over
63
- which the function is applied.
64
- Note:
65
- "order_columns" does not support CLOB and BLOB type
66
- of columns.
67
- Refer 'DataFrame.tdtypes' to get the types of the
68
- columns of a teradataml DataFrame.
69
- Types: str OR list of Strings (str)
70
-
71
- sort_ascending:
72
- Optional Argument.
73
- Specifies whether column ordering should be in ascending or
74
- descending order.
75
- Default Value: True (ascending)
76
- Note:
77
- When "order_columns" argument is not specified, argument
78
- is ignored.
79
- Types: bool
80
-
81
- nulls_first:
82
- Optional Argument.
83
- Specifies whether null results are to be listed first or last
84
- or scattered.
85
- Default Value: None
86
- Note:
87
- When "order_columns" argument is not specified, argument is
88
- ignored.
89
- Types: bool
90
-
91
- window_start_point:
92
- Optional Argument.
93
- Specifies a starting point for a window. Based on the integer
94
- value, n, starting point of the window is decided.
95
- * If 'n' is negative, window start point is n rows
96
- preceding the current row/data point.
97
- * If 'n' is positive, window start point is n rows
98
- following the current row/data point.
99
- * If 'n' is 0, window start at current row itself.
100
- * If 'n' is None, window start as Unbounded preceding,
101
- i.e., all rows before current row/data point are
102
- considered.
103
- Notes:
104
- 1. Value passed to this should always satisfy following condition:
105
- window_start_point <= window_end_point
106
- 2. Following functions does not require any window to
107
- perform window aggregation. So, "window_start_point" is
108
- insignificant for below functions:
109
- * cume_dist
110
- * rank
111
- * dense_rank
112
- * percent_rank
113
- * row_number
114
- * lead
115
- * lag
116
- Default Value: None
117
- Types: int
118
-
119
- window_end_point:
120
- Optional Argument.
121
- Specifies an end point for a window. Based on the integer value,
122
- n, starting point of the window is decided.
123
- * If 'n' is negative, window end point is n rows preceding
124
- the current row/data point.
125
- * If 'n' is positive, window end point is n rows following
126
- the current row/data point.
127
- * If 'n' is 0, window end's at current row itself.
128
- * If 'n' is None, window end's at Unbounded following,
129
- i.e., all rows before current row/data point are
130
- considered.
131
- Notes:
132
- 1. Value passed to this should always satisfy following condition:
133
- window_start_point <= window_end_point
134
- 2. Following functions does not require any window to
135
- perform window aggregation. So, "window_end_point" is
136
- insignificant for below functions:
137
- * cume_dist
138
- * rank
139
- * dense_rank
140
- * percent_rank
141
- * row_number
142
- * lead
143
- * lag
144
- Default Value: None
145
- Types: int
146
-
147
- ignore_window:
148
- Optional Argument.
149
- Specifies a flag to ignore parameters related to creating
150
- window ("window_start_point", "window_end_point") and use other
151
- arguments, if specified.
152
- When set to True, window is ignored, i.e., ROWS clause is not
153
- included.
154
- When set to False, window will be created, which is specified
155
- by "window_start_point" and "window_end_point" parameters.
156
- Default Value: False
157
- Types: bool
158
-
159
- RAISES:
160
- TypeError OR ValueError
161
-
162
- EXAMPLES:
163
- # Create a Window from a teradataml DataFrame.
164
- from teradataml import *
165
- load_example_data("dataframe","sales")
166
- df = DataFrame.from_table('sales')
167
- window = Window(object = df)
168
-
169
- # Create a window from a teradataml DataFrame column.
170
- window = Window(object = df.Feb)
171
- """
172
- self.__object = object
173
- self.__partition_columns = partition_columns
174
- self.__order_columns = order_columns
175
- self.__sort_ascending = sort_ascending
176
- self.__nulls_first = nulls_first
177
- self.__window_start_point = window_start_point
178
- self.__window_end_point = window_end_point
179
- self.__ignore_window = ignore_window
180
-
181
- from teradataml.dataframe.dataframe import DataFrame, DataFrameGroupBy
182
- from teradataml.dataframe.sql import _SQLColumnExpression
183
-
184
- awu_matrix = []
185
- awu_matrix.append(["object", object, False, (DataFrame, _SQLColumnExpression)])
186
- awu_matrix.append(["partition_columns", partition_columns, True, (str, list), True])
187
- awu_matrix.append(["order_columns", order_columns, True, (str, list), True])
188
- awu_matrix.append(["sort_ascending", sort_ascending, True, bool])
189
- awu_matrix.append(["nulls_first", nulls_first, True, (bool, type(None))])
190
- awu_matrix.append(["window_start_point", window_start_point, True, int])
191
- awu_matrix.append(["window_end_point", window_end_point, True, int])
192
- awu_matrix.append(["ignore_window", ignore_window, True, bool])
193
-
194
- # Validate argument types
195
- _Validators._validate_function_arguments(awu_matrix)
196
-
197
- # Check "window_end_point" is always greater than or equal to "window_start_point".
198
- if window_start_point is not None and window_end_point is not None and\
199
- window_start_point > window_end_point:
200
- raise ValueError(Messages.get_message(MessageCodes.INT_ARGUMENT_COMPARISON,
201
- "window_end_point",
202
- "greater than or equal",
203
- "window_start_point"))
204
-
205
- self.__is_window_on_tdml_column = isinstance(self.__object, _SQLColumnExpression)
206
-
207
- # Variable to check if the Window object is initiated on DataFrameGroupBy.
208
- self.__is_window_on_tdml_groupby_dataframe = isinstance(
209
- self.__object, DataFrameGroupBy)
210
-
211
- # A variable to decide whether the output columns should contain
212
- # unsupported sort columns or not.
213
- self.__sort_check_required = self.__partition_columns is None and self.__order_columns is None
214
-
215
- # Check whether columns mentioned in "partition_columns" are existed in
216
- # teradataml DataFrame and supports sorting.
217
- if partition_columns:
218
- self.__validate_window_columns(partition_columns, "partition_columns")
219
-
220
- # Check whether columns mentioned in "order_columns" are existed in
221
- # teradataml DataFrame and supports sorting.
222
- if order_columns:
223
- self.__validate_window_columns(order_columns, "order_columns")
224
-
225
- # Raise Error, if the Column is of type CLOB or BLOB, and window has no
226
- # "partition_columns" and no "order_columns".
227
- if self.__is_window_on_tdml_column and self.__sort_check_required and \
228
- type(self.__object.type) in _Dtypes._get_sort_unsupported_data_types():
229
- raise TeradataMlException(Messages.get_message(MessageCodes.EXECUTION_FAILED,
230
- "create Window", "Window with"
231
- " no 'partition_columns' and no 'order_columns' "
232
- "on {} type of Column({}) is unsupported."
233
- "".format(self.__object.type, self.__object.name)),
234
- MessageCodes.EXECUTION_FAILED)
235
-
236
- self.__aggregate_functions = ['sum',
237
- 'avg',
238
- 'mean',
239
- 'corr',
240
- 'count',
241
- 'covar_pop',
242
- 'covar_samp',
243
- 'cume_dist',
244
- 'dense_rank',
245
- 'first_value',
246
- 'last_value',
247
- 'lag',
248
- 'lead',
249
- 'max',
250
- 'min',
251
- 'percent_rank',
252
- 'rank',
253
- 'regr_avgx',
254
- 'regr_avgy',
255
- 'regr_count',
256
- 'regr_intercept',
257
- 'regr_r2',
258
- 'regr_slope',
259
- 'regr_sxx',
260
- 'regr_sxy',
261
- 'regr_syy',
262
- 'row_number',
263
- 'std',
264
- 'var'
265
- ]
266
-
267
- # Some Window Aggregate functions do not accept ROWS clause.
268
- # Maintaining all such functions here so while constructing the ROWS
269
- # clause, below variable can be checked and take appropriate action.
270
- self.__no_rows_clause_functions = {"cume_dist",
271
- "rank",
272
- "dense_rank",
273
- "percent_rank",
274
- "row_number",
275
- "lead",
276
- "lag"}
277
-
278
- # Some Window Aggregate functions do not accept Column as a parameter
279
- # for the function. So, while running window aggregate functions on
280
- # DataFrame, it is not required to trigger these functions on all the
281
- # columns in the DataFrame as result is same for all the columns.
282
- self.__no_column_arg_functions = {"cume_dist",
283
- "rank",
284
- "dense_rank",
285
- "percent_rank",
286
- "row_number"}
287
-
288
- def __repr__(self):
289
- """
290
- DESCRIPTION:
291
- String representation of Window Object.
292
-
293
- RETURNS:
294
- str.
295
-
296
- RAISES:
297
- None.
298
-
299
- EXAMPLES:
300
- # Create a Window from a teradataml DataFrame.
301
- from teradataml import *
302
- load_example_data("dataframe","sales")
303
- df = DataFrame.from_table('sales')
304
- window = Window(object = df)
305
- print(window)
306
-
307
- """
308
- return "{} [partition_columns={}, order_columns={}, sort_ascending={}, nulls_first={}, " \
309
- "window_start_point={}, window_end_point={}, ignore_window={}]".format(self.__class__.__name__,
310
- self.__partition_columns,
311
- self.__order_columns,
312
- self.__sort_ascending,
313
- self.__nulls_first,
314
- self.__window_start_point,
315
- self.__window_end_point,
316
- self.__ignore_window)
317
-
318
- def __getattr__(self, item):
319
- """
320
- DESCRIPTION:
321
- Magic Method to call the corresponding window function.
322
- Window class do not implement the exact methods but whenever any attribute
323
- is referred by Window Object, this function gets triggered.
324
- Based on the input method, corresponding expression is processed.
325
-
326
- PARAMETERS:
327
- item:
328
- Required Argument.
329
- Name of the window function.
330
- Types: str
331
-
332
- RETURNS:
333
- A function, which actually process the corresponding SQL window function.
334
-
335
- EXAMPLES:
336
- # Create a window from a teradataml DataFrame.
337
- from teradataml import *
338
- load_example_data("dataframe","sales")
339
- df = DataFrame.from_table('sales')
340
- window = Window(object = df)
341
- window.mean()
342
- """
343
- if item not in self.__aggregate_functions:
344
- raise AttributeError("'{}' object has no attribute '{}'".format(self.__class__.__name__,
345
- item))
346
- return lambda *args, **kwargs: \
347
- self.__process_window_aggregates(item, *args, **kwargs)
348
-
349
- def __process_window_aggregates(self, func_name, *args, **kwargs):
350
- """
351
- Description:
352
- Function to process the window expression. All window functions are actually
353
- processed in this function and generates a DataFrame or _SQLColumnExpression
354
- according to the Window class.
355
-
356
- PARAMETERS:
357
- func_name:
358
- Required Argument.
359
- Specifies the name of the window function.
360
- Types: str
361
-
362
- args:
363
- Optional Argument.
364
- Specifies the positional arguments to be passed to the window function.
365
- Types: Tuple
366
-
367
- kwargs:
368
- Optional Argument.
369
- Specifies the keyword arguments to be passed to the window function.
370
- Types: Dictionary
371
-
372
- RETURNS:
373
- Either a new teradataml DataFrame or an _SQLColumnExpression, according to Window class.
374
-
375
- EXAMPLES:
376
- # Create a Window from a teradataml DataFrame.
377
- from teradataml import *
378
- load_example_data("dataframe","sales")
379
- df = DataFrame.from_table('sales')
380
- window = Window(object = df)
381
- window.__process_window_aggregates("mean")
382
- """
383
-
384
- # sqlalchemy Over clause accepts 3 parameters to frame the SQL query:
385
- # partition_by, order_by & rows.
386
- window_properties = {"window_function": func_name,
387
- "partition_by": self.__partition_columns,
388
- "order_by": self.__generate_sqlalchemy_order_by_syntax(),
389
- "rows": (self.__window_start_point,
390
- self.__window_end_point
391
- ),
392
- "is_window_aggregate": True
393
- }
394
-
395
- # If "window_properties" do not have key "rows", then _SQLColumnExpression
396
- # do not construct ROWS clause. So, removing "rows" either if window to be
397
- # ignored or if function does not require ROWS clause.
398
- if self.__ignore_window or (func_name in self.__no_rows_clause_functions):
399
- window_properties.pop("rows")
400
-
401
- if self.__is_window_on_tdml_column:
402
- aggregate_function = getattr(self.__object, func_name)
403
- kwargs.update({"window_properties": window_properties})
404
- return aggregate_function(*args, **kwargs)
405
- else:
406
- return self.__process_dataframe_window_aggregate(func_name, *args, **kwargs)
407
-
408
- def __validate_window_columns(self, columns_in_window, window_arg_name):
409
- """
410
- DESCRIPTION:
411
- Validates, whether the columns mentioned in Window class is
412
- available in teradataml DataFrame or not. And if available, it
413
- then checks for types, which do not support sorting, in
414
- "partition_columns" and "order_columns".
415
-
416
- PARAMETERS:
417
- columns_in_window:
418
- Required Argument.
419
- Specifies the column names mentioned in either
420
- "partition_columns" or "order_columns".
421
- Types: str OR list of Strings (str)
422
-
423
- window_arg_name:
424
- Required Argument.
425
- Specifies the name of the argument which is being validated.
426
- Types: str
427
-
428
- RAISES:
429
- ValueError
430
-
431
- RETURNS:
432
- None
433
-
434
- EXAMPLES:
435
- # Create a Window from a teradataml DataFrame.
436
- from teradataml import *
437
- load_example_data("dataframe","sales")
438
- df = DataFrame.from_table('sales')
439
- window = Window(object = df)
440
- window.__validate_window_columns("Feb", "partition_columns")
441
- window.__validate_window_columns("Feb", "order_columns")
442
- """
443
-
444
- if self.__is_window_on_tdml_column:
445
- _Validators._validate_columnexpression_dataframe_has_columns(columns_in_window,
446
- window_arg_name,
447
- self.__object
448
- )
449
- else:
450
- _Validators._validate_dataframe_has_argument_columns(columns_in_window,
451
- window_arg_name,
452
- self.__object,
453
- 'teradataml'
454
- )
455
-
456
- from teradataml.common.utils import UtilFuncs
457
- window_columns = UtilFuncs._as_list(columns_in_window)
458
- columns = UtilFuncs._get_all_columns(self.__object,
459
- self.__is_window_on_tdml_column)
460
- columns_and_types = {c.name.lower(): type(c.type) for c in columns}
461
- invalid_types = ["{}({})".format(column, columns_and_types[column.lower()].__name__)
462
- for column in window_columns if columns_and_types[column.lower()]
463
- in _Dtypes._get_sort_unsupported_data_types()
464
- ]
465
-
466
- if invalid_types:
467
- invalid_column_types = (col_type.__name__ for col_type in
468
- _Dtypes._get_sort_unsupported_data_types())
469
- error_message = Messages.get_message(MessageCodes.INVALID_COLUMN_DATATYPE,
470
- ", ".join(invalid_types),
471
- window_arg_name,
472
- "Unsupported",
473
- ", ".join(invalid_column_types))
474
-
475
- raise ValueError(error_message)
476
-
477
- def __process_dataframe_window_aggregate(self, func_name, *args, **kwargs):
478
- """
479
- Description:
480
- Function processes window aggregate function on a teradataml
481
- DataFrame, by following below steps:
482
- * Same window aggregate function is executed on each supported
483
- column of the teradataml DataFrame.
484
- * Each generated window aggregate _SQLColumnExpression is
485
- passed as input to DataFrame.assign() function.
486
-
487
- PARAMETERS:
488
- func_name:
489
- Required Argument.
490
- Specifies the name of the window function.
491
- Types: str
492
-
493
- args:
494
- Optional Argument.
495
- Specifies the positional arguments to be passed to the window function.
496
- Types: Tuple
497
-
498
- kwargs:
499
- Optional Argument.
500
- Specifies the keyword arguments to be passed to the window function.
501
- Types: Dictionary
502
-
503
- RETURNS:
504
- teradataml DataFrame.
505
-
506
- EXAMPLES:
507
- # Create a Window from a teradataml DataFrame.
508
- from teradataml import *
509
- load_example_data("dataframe","sales")
510
- df = DataFrame.from_table('sales')
511
- window = df.window()
512
- window.__process_dataframe_window_aggregate("mean")
513
- """
514
-
515
- new_columns = self.__get_columns_and_expressions(func_name,
516
- *args,
517
- **kwargs)
518
-
519
- # If __sort_check_required is True, then "new_columns" contains
520
- # the valid original columns.
521
- if self.__sort_check_required:
522
- return self.__object.assign(drop_columns=True, **new_columns)
523
- return self.__object.assign(**new_columns)
524
-
525
- def __get_columns_and_expressions(self, func_name, *args, **kwargs):
526
- """
527
- Description:
528
- Function to get the column name and corresponding _SQLColumnExpression,
529
- for a given window aggregate function. This function validates
530
- whether window aggregate function is valid for a column or not, and
531
- only if it is valid, then it returns the column name and
532
- _SQLColumnExpression.
533
-
534
- PARAMETERS:
535
- func_name:
536
- Required Argument.
537
- Specifies the name of the window function.
538
- Types: str
539
-
540
- args:
541
- Optional Argument.
542
- Specifies the positional arguments to be passed to the window function.
543
- Types: Tuple
544
-
545
- kwargs:
546
- Optional Argument.
547
- Specifies the keyword arguments to be passed to the window function.
548
- Types: Dictionary
549
-
550
- RETURNS:
551
- dict
552
-
553
- EXAMPLES:
554
- # Create a Window from a teradataml DataFrame.
555
- from teradataml import *
556
- load_example_data("dataframe","sales")
557
- df = DataFrame.from_table('sales')
558
- window = df.window()
559
- window.__get_columns_and_expressions("mean")
560
- """
561
-
562
- # Dict to hold the columns to be projected, when partition and order
563
- # columns are None.
564
- original_columns = {}
565
-
566
- # Dict to hold the new window agg columns to be projected.
567
- new_columns = {}
568
-
569
- # If window is initiated on DataFrame, then every column should
570
- # be checked if it can participate in window aggregation. However,
571
- # if window is on DataFrameGroupBy object, then only grouping columns
572
- # should participate in window aggregation.
573
- columns = self.__object._metaexpr.c
574
- if self.__is_window_on_tdml_groupby_dataframe:
575
- columns = self.__object._get_groupby_columns_expression()
576
-
577
- column_names = []
578
- for column in columns:
579
- column_names.append(column.name)
580
- # By Default, window aggregates sort on "order_columns" and
581
- # "partition_columns". If both are not specified, window aggregates
582
- # sorts on all columns in DataFrame. Thus, remove columns of types
583
- # that does not support sorting.
584
- if self.__sort_check_required and type(column.type) in \
585
- _Dtypes._get_sort_unsupported_data_types():
586
- continue
587
- else:
588
- try:
589
- # Grouping columns are not dropping even though "drop_columns"
590
- # set to True in DataFrame.assign(). So, skipping the column addition
591
- # in such cases as adding the column results in duplicate columns
592
- # in DataFrame.
593
- if self.__sort_check_required and not self.__is_window_on_tdml_groupby_dataframe:
594
- original_columns[column.name] = column
595
- window = column.window(partition_columns=self.__partition_columns,
596
- order_columns=self.__order_columns,
597
- sort_ascending=self.__sort_ascending,
598
- nulls_first=self.__nulls_first,
599
- window_start_point=self.__window_start_point,
600
- window_end_point=self.__window_end_point,
601
- ignore_window=self.__ignore_window)
602
-
603
- # For the functions which does not accept column as a parameter,
604
- # do not trigger aggregate function on all columns. Triggering
605
- # on one column is enough.
606
- if func_name in self.__no_column_arg_functions:
607
- if not new_columns:
608
- sql_column_expression = getattr(window, func_name)(*args, **kwargs)
609
- new_columns["{}_{}".format("col", func_name)] = sql_column_expression
610
- else:
611
- sql_column_expression = getattr(window, func_name)(*args, **kwargs)
612
- new_columns["{}_{}".format(column.name, func_name)] = sql_column_expression
613
- except RuntimeError:
614
- # RuntimeError being raised, if, a window aggregate function is
615
- # applied on an un-supported column.
616
- pass
617
-
618
- # Raise the error. Window aggregate does not support the columns in the
619
- # DataFrame.
620
- if not new_columns:
621
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_AGGREGATE_UNSUPPORTED,
622
- ",".join(column_names),
623
- func_name),
624
- MessageCodes.TDMLDF_AGGREGATE_UNSUPPORTED)
625
- new_columns.update(original_columns)
626
- return new_columns
627
-
628
- def __generate_sqlalchemy_order_by_syntax(self):
629
- """
630
- Description:
631
- Function to get the order_by clause, which can be sourced to
632
- sqlalchemy Over clause. sqlalchemy Over clause which accepts only
633
- order_by, and thus, the information about nulls_first &
634
- sort_ascending needs to be embedded with order_by clause.
635
-
636
- RETURNS:
637
- An Object of type sqlalchemy element.
638
-
639
- EXAMPLES:
640
- # Create a Window from a teradataml DataFrame.
641
- from teradataml import *
642
- load_example_data("dataframe","sales")
643
- df = DataFrame.from_table('sales')
644
- window = df.window()
645
- window.__generate_sqlalchemy_order_by_syntax()
646
- """
647
-
648
- # Check if order_columns is None. If it is None, No need to consider
649
- # sort_ascending & nulls_first.
650
- if self.__order_columns is None:
651
- return
652
-
653
- from teradataml.common.utils import UtilFuncs
654
- order_by = UtilFuncs._as_list(self.__order_columns)
655
- wrap_order_by = lambda sqlalc_func: [sqlalc_func(ele) for
656
- ele in order_by]
657
-
658
- if not self.__sort_ascending:
659
- order_by = wrap_order_by(desc)
660
-
661
- if self.__nulls_first is None:
662
- return order_by
663
-
664
- if self.__nulls_first is True:
665
- order_by = wrap_order_by(nullsfirst)
666
- else:
667
- order_by = wrap_order_by(nullslast)
668
-
669
- return order_by
670
-
671
- def __dir__(self):
672
- """
673
- DESCRIPTION:
674
- Function returns the attributes and/or names of the methods of the
675
- Window object.
676
-
677
- RETURNS:
678
- list of Strings (str).
679
-
680
- EXAMPLES:
681
- # Create a window from a teradataml DataFrame.
682
- from teradataml import *
683
- load_example_data("dataframe","sales")
684
- df = DataFrame.from_table('sales')
685
- window = Window(object = df)
686
- dir(window)
687
- """
688
-
689
- # Since Window class do not implement the exact methods, lookup for
690
- # the available methods, do not return the Aggregate functions.
691
- # So Overwriting this with teradata supporting Aggregate functions.
692
- return [attr for attr in super(self.__class__, self).__dir__()] + \
1
+ """
2
+ Unpublished work.
3
+ Copyright (c) 2021 by Teradata Corporation. All rights reserved.
4
+ TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
5
+
6
+ Primary Owner: pradeep.garre@teradata.com
7
+ Secondary Owner: PankajVinod.Purandare@teradata.com
8
+
9
+ This file implements the core framework that allows user to execute any Vantage Window Functions.
10
+ """
11
+
12
+ from teradataml.utils.validators import _Validators
13
+ from teradataml.common.messages import Messages
14
+ from teradataml.common.messagecodes import MessageCodes
15
+ from sqlalchemy import desc, nullsfirst, nullslast
16
+ from teradataml.common.exceptions import TeradataMlException
17
+ from teradataml.common.utils import UtilFuncs
18
+ from teradataml.utils.dtypes import _Dtypes
19
+ from teradatasqlalchemy.telemetry.queryband import collect_queryband
20
+
21
+
22
+ class Window:
23
+ """ A class for executing window functions. """
24
+ def __init__(self,
25
+ object,
26
+ partition_columns=None,
27
+ order_columns=None,
28
+ sort_ascending=True,
29
+ nulls_first=None,
30
+ window_start_point=None,
31
+ window_end_point=None,
32
+ ignore_window=False):
33
+ """
34
+ DESCRIPTION:
35
+ Constructor for Window class.
36
+
37
+ PARAMETERS:
38
+ object:
39
+ Required Argument.
40
+ Specifies where the window object is initiated from.
41
+ Window object can be initiated from either teradataml DataFrame
42
+ or a column in a teradataml DataFrame.
43
+ Types: teradataml DataFrame, _SQLColumnExpression
44
+
45
+ partition_columns:
46
+ Optional Argument.
47
+ Specifies the name(s) of the column(s) over which the ordered
48
+ aggregate function executes by partitioning the rows.
49
+ Such a grouping is static.
50
+ Notes:
51
+ 1. If this argument is not specified, then the entire data
52
+ from teradataml DataFrame, constitutes a single
53
+ partition, over which the ordered aggregate function
54
+ executes.
55
+ 2. "partition_columns" does not support CLOB and BLOB type
56
+ of columns.
57
+ Refer 'DataFrame.tdtypes' to get the types of the
58
+ columns of a teradataml DataFrame.
59
+ Types: str OR list of Strings (str) OR ColumnExpression OR list of ColumnExpressions
60
+
61
+ order_columns:
62
+ Optional Argument.
63
+ Specifies the name(s) of the column(s) to order the rows in a
64
+ partition, which determines the sort order of the rows over
65
+ which the function is applied.
66
+ Note:
67
+ "order_columns" does not support CLOB and BLOB type
68
+ of columns.
69
+ Refer 'DataFrame.tdtypes' to get the types of the
70
+ columns of a teradataml DataFrame.
71
+ Types: str OR list of Strings (str) OR ColumnExpression OR list of ColumnExpressions
72
+
73
+ sort_ascending:
74
+ Optional Argument.
75
+ Specifies whether column ordering should be in ascending or
76
+ descending order.
77
+ Default Value: True (ascending)
78
+ Note:
79
+ When "order_columns" argument is not specified, argument
80
+ is ignored.
81
+ Types: bool
82
+
83
+ nulls_first:
84
+ Optional Argument.
85
+ Specifies whether null results are to be listed first or last
86
+ or scattered.
87
+ Default Value: None
88
+ Note:
89
+ When "order_columns" argument is not specified, argument is
90
+ ignored.
91
+ Types: bool
92
+
93
+ window_start_point:
94
+ Optional Argument.
95
+ Specifies a starting point for a window. Based on the integer
96
+ value, n, starting point of the window is decided.
97
+ * If 'n' is negative, window start point is n rows
98
+ preceding the current row/data point.
99
+ * If 'n' is positive, window start point is n rows
100
+ following the current row/data point.
101
+ * If 'n' is 0, window start at current row itself.
102
+ * If 'n' is None, window start as Unbounded preceding,
103
+ i.e., all rows before current row/data point are
104
+ considered.
105
+ Notes:
106
+ 1. Value passed to this should always satisfy following condition:
107
+ window_start_point <= window_end_point
108
+ 2. Following functions does not require any window to
109
+ perform window aggregation. So, "window_start_point" is
110
+ insignificant for below functions:
111
+ * cume_dist
112
+ * rank
113
+ * dense_rank
114
+ * percent_rank
115
+ * row_number
116
+ * lead
117
+ * lag
118
+ Default Value: None
119
+ Types: int
120
+
121
+ window_end_point:
122
+ Optional Argument.
123
+ Specifies an end point for a window. Based on the integer value,
124
+ n, starting point of the window is decided.
125
+ * If 'n' is negative, window end point is n rows preceding
126
+ the current row/data point.
127
+ * If 'n' is positive, window end point is n rows following
128
+ the current row/data point.
129
+ * If 'n' is 0, window end's at current row itself.
130
+ * If 'n' is None, window end's at Unbounded following,
131
+ i.e., all rows before current row/data point are
132
+ considered.
133
+ Notes:
134
+ 1. Value passed to this should always satisfy following condition:
135
+ window_start_point <= window_end_point
136
+ 2. Following functions does not require any window to
137
+ perform window aggregation. So, "window_end_point" is
138
+ insignificant for below functions:
139
+ * cume_dist
140
+ * rank
141
+ * dense_rank
142
+ * percent_rank
143
+ * row_number
144
+ * lead
145
+ * lag
146
+ Default Value: None
147
+ Types: int
148
+
149
+ ignore_window:
150
+ Optional Argument.
151
+ Specifies a flag to ignore parameters related to creating
152
+ window ("window_start_point", "window_end_point") and use other
153
+ arguments, if specified.
154
+ When set to True, window is ignored, i.e., ROWS clause is not
155
+ included.
156
+ When set to False, window will be created, which is specified
157
+ by "window_start_point" and "window_end_point" parameters.
158
+ Default Value: False
159
+ Types: bool
160
+
161
+ RAISES:
162
+ TypeError OR ValueError
163
+
164
+ EXAMPLES:
165
+ # Create a Window from a teradataml DataFrame.
166
+ from teradataml import *
167
+ load_example_data("dataframe","sales")
168
+ df = DataFrame.from_table('sales')
169
+ window = Window(object = df)
170
+
171
+ # Create a window from a teradataml DataFrame column.
172
+ window = Window(object = df.Feb)
173
+ """
174
+ self.__object = object
175
+ self.__partition_columns = partition_columns
176
+ self.__order_columns = order_columns
177
+ self.__sort_ascending = sort_ascending
178
+ self.__nulls_first = nulls_first
179
+ self.__window_start_point = window_start_point
180
+ self.__window_end_point = window_end_point
181
+ self.__ignore_window = ignore_window
182
+
183
+ from teradataml.dataframe.dataframe import DataFrame, DataFrameGroupBy
184
+ from teradataml.dataframe.sql import _SQLColumnExpression
185
+
186
+ awu_matrix = []
187
+ awu_matrix.append(["object", object, False, (DataFrame, _SQLColumnExpression)])
188
+ awu_matrix.append(["partition_columns", partition_columns, True, (str, list, _SQLColumnExpression), True])
189
+ awu_matrix.append(["order_columns", order_columns, True, (str, list, _SQLColumnExpression), True])
190
+ awu_matrix.append(["sort_ascending", sort_ascending, True, bool])
191
+ awu_matrix.append(["nulls_first", nulls_first, True, (bool, type(None))])
192
+ awu_matrix.append(["window_start_point", window_start_point, True, int])
193
+ awu_matrix.append(["window_end_point", window_end_point, True, int])
194
+ awu_matrix.append(["ignore_window", ignore_window, True, bool])
195
+
196
+ # Validate argument types
197
+ _Validators._validate_function_arguments(awu_matrix)
198
+
199
+ # Check "window_end_point" is always greater than or equal to "window_start_point".
200
+ if window_start_point is not None and window_end_point is not None and\
201
+ window_start_point > window_end_point:
202
+ raise ValueError(Messages.get_message(MessageCodes.INT_ARGUMENT_COMPARISON,
203
+ "window_end_point",
204
+ "greater than or equal",
205
+ "window_start_point"))
206
+
207
+ self.__is_window_on_tdml_column = isinstance(self.__object, _SQLColumnExpression)
208
+
209
+ # Variable to check if the Window object is initiated on DataFrameGroupBy.
210
+ self.__is_window_on_tdml_groupby_dataframe = isinstance(
211
+ self.__object, DataFrameGroupBy)
212
+
213
+ # A variable to decide whether the output columns should contain
214
+ # unsupported sort columns or not.
215
+ self.__sort_check_required = self.__partition_columns is None and self.__order_columns is None
216
+
217
+ # Check whether columns mentioned in "partition_columns" are existed in
218
+ # teradataml DataFrame and supports sorting.
219
+ if partition_columns:
220
+ self.__validate_window_columns(partition_columns, "partition_columns")
221
+
222
+ # Check whether columns mentioned in "order_columns" are existed in
223
+ # teradataml DataFrame and supports sorting.
224
+ if order_columns:
225
+ self.__validate_window_columns(order_columns, "order_columns")
226
+
227
+ # Raise Error, if the Column is of type CLOB or BLOB, and window has no
228
+ # "partition_columns" and no "order_columns".
229
+ if self.__is_window_on_tdml_column and self.__sort_check_required and \
230
+ type(self.__object.type) in _Dtypes._get_sort_unsupported_data_types():
231
+ raise TeradataMlException(Messages.get_message(MessageCodes.EXECUTION_FAILED,
232
+ "create Window", "Window with"
233
+ " no 'partition_columns' and no 'order_columns' "
234
+ "on {} type of Column({}) is unsupported."
235
+ "".format(self.__object.type, self.__object.name)),
236
+ MessageCodes.EXECUTION_FAILED)
237
+
238
+ self.__aggregate_functions = ['sum',
239
+ 'avg',
240
+ 'mean',
241
+ 'corr',
242
+ 'count',
243
+ 'covar_pop',
244
+ 'covar_samp',
245
+ 'cume_dist',
246
+ 'dense_rank',
247
+ 'first_value',
248
+ 'last_value',
249
+ 'lag',
250
+ 'lead',
251
+ 'max',
252
+ 'min',
253
+ 'percent_rank',
254
+ 'rank',
255
+ 'regr_avgx',
256
+ 'regr_avgy',
257
+ 'regr_count',
258
+ 'regr_intercept',
259
+ 'regr_r2',
260
+ 'regr_slope',
261
+ 'regr_sxx',
262
+ 'regr_sxy',
263
+ 'regr_syy',
264
+ 'row_number',
265
+ 'std',
266
+ 'var'
267
+ ]
268
+
269
+ # Some Window Aggregate functions do not accept ROWS clause.
270
+ # Maintaining all such functions here so while constructing the ROWS
271
+ # clause, below variable can be checked and take appropriate action.
272
+ self.__no_rows_clause_functions = {"cume_dist",
273
+ "rank",
274
+ "dense_rank",
275
+ "percent_rank",
276
+ "row_number",
277
+ "lead",
278
+ "lag"}
279
+
280
+ # Some Window Aggregate functions do not accept Column as a parameter
281
+ # for the function. So, while running window aggregate functions on
282
+ # DataFrame, it is not required to trigger these functions on all the
283
+ # columns in the DataFrame as result is same for all the columns.
284
+ self.__no_column_arg_functions = {"cume_dist",
285
+ "rank",
286
+ "dense_rank",
287
+ "percent_rank",
288
+ "row_number"}
289
+
290
+ def __repr__(self):
291
+ """
292
+ DESCRIPTION:
293
+ String representation of Window Object.
294
+
295
+ RETURNS:
296
+ str.
297
+
298
+ RAISES:
299
+ None.
300
+
301
+ EXAMPLES:
302
+ # Create a Window from a teradataml DataFrame.
303
+ from teradataml import *
304
+ load_example_data("dataframe","sales")
305
+ df = DataFrame.from_table('sales')
306
+ window = Window(object = df)
307
+ print(window)
308
+
309
+ """
310
+ return "{} [partition_columns={}, order_columns={}, sort_ascending={}, nulls_first={}, " \
311
+ "window_start_point={}, window_end_point={}, ignore_window={}]".format(self.__class__.__name__,
312
+ self.__partition_columns,
313
+ self.__order_columns,
314
+ self.__sort_ascending,
315
+ self.__nulls_first,
316
+ self.__window_start_point,
317
+ self.__window_end_point,
318
+ self.__ignore_window)
319
+
320
+ def __getattr__(self, item):
321
+ """
322
+ DESCRIPTION:
323
+ Magic Method to call the corresponding window function.
324
+ Window class do not implement the exact methods but whenever any attribute
325
+ is referred by Window Object, this function gets triggered.
326
+ Based on the input method, corresponding expression is processed.
327
+
328
+ PARAMETERS:
329
+ item:
330
+ Required Argument.
331
+ Name of the window function.
332
+ Types: str
333
+
334
+ RETURNS:
335
+ A function, which actually process the corresponding SQL window function.
336
+
337
+ EXAMPLES:
338
+ # Create a window from a teradataml DataFrame.
339
+ from teradataml import *
340
+ load_example_data("dataframe","sales")
341
+ df = DataFrame.from_table('sales')
342
+ window = Window(object = df)
343
+ window.mean()
344
+ """
345
+ if item not in self.__aggregate_functions:
346
+ raise AttributeError("'{}' object has no attribute '{}'".format(self.__class__.__name__,
347
+ item))
348
+ return lambda *args, **kwargs: \
349
+ self.__process_window_aggregates(item, *args, **kwargs)
350
+
351
+ def __process_window_aggregates(self, func_name, *args, **kwargs):
352
+ """
353
+ Description:
354
+ Function to process the window expression. All window functions are actually
355
+ processed in this function and generates a DataFrame or _SQLColumnExpression
356
+ according to the Window class.
357
+
358
+ PARAMETERS:
359
+ func_name:
360
+ Required Argument.
361
+ Specifies the name of the window function.
362
+ Types: str
363
+
364
+ args:
365
+ Optional Argument.
366
+ Specifies the positional arguments to be passed to the window function.
367
+ Types: Tuple
368
+
369
+ kwargs:
370
+ Optional Argument.
371
+ Specifies the keyword arguments to be passed to the window function.
372
+ Types: Dictionary
373
+
374
+ RETURNS:
375
+ Either a new teradataml DataFrame or an _SQLColumnExpression, according to Window class.
376
+
377
+ EXAMPLES:
378
+ # Create a Window from a teradataml DataFrame.
379
+ from teradataml import *
380
+ load_example_data("dataframe","sales")
381
+ df = DataFrame.from_table('sales')
382
+ window = Window(object = df)
383
+ window.__process_window_aggregates("mean")
384
+ """
385
+
386
+ # sqlalchemy Over clause accepts 3 parameters to frame the SQL query:
387
+ # partition_by, order_by & rows.
388
+ from teradataml.dataframe.sql import ColumnExpression
389
+ window_properties = {"window_function": func_name,
390
+ "partition_by": [col if isinstance(col, str) else col.expression for col
391
+ in UtilFuncs._as_list(self.__partition_columns)
392
+ if col is not None],
393
+ "order_by": [col.expression if isinstance(col, ColumnExpression) else col for col
394
+ in UtilFuncs._as_list(self.__generate_sqlalchemy_order_by_syntax())
395
+ if col is not None],
396
+ "rows": (self.__window_start_point,
397
+ self.__window_end_point
398
+ ),
399
+ "is_window_aggregate": True
400
+ }
401
+
402
+ # If "window_properties" do not have key "rows", then _SQLColumnExpression
403
+ # do not construct ROWS clause. So, removing "rows" either if window to be
404
+ # ignored or if function does not require ROWS clause.
405
+ if self.__ignore_window or (func_name in self.__no_rows_clause_functions):
406
+ window_properties.pop("rows")
407
+
408
+ if self.__is_window_on_tdml_column:
409
+ aggregate_function = getattr(self.__object, func_name)
410
+ kwargs.update({"window_properties": window_properties})
411
+ return aggregate_function(*args, **kwargs)
412
+ else:
413
+ return self.__process_dataframe_window_aggregate(func_name, *args, **kwargs)
414
+
415
+ def __validate_window_columns(self, columns_in_window, window_arg_name):
416
+ """
417
+ DESCRIPTION:
418
+ Validates, whether the columns mentioned in Window class is
419
+ available in teradataml DataFrame or not. And if available, it
420
+ then checks for types, which do not support sorting, in
421
+ "partition_columns" and "order_columns".
422
+
423
+ PARAMETERS:
424
+ columns_in_window:
425
+ Required Argument.
426
+ Specifies the column names mentioned in either
427
+ "partition_columns" or "order_columns".
428
+ Types: str OR list of Strings (str)
429
+
430
+ window_arg_name:
431
+ Required Argument.
432
+ Specifies the name of the argument which is being validated.
433
+ Types: str
434
+
435
+ RAISES:
436
+ ValueError
437
+
438
+ RETURNS:
439
+ None
440
+
441
+ EXAMPLES:
442
+ # Create a Window from a teradataml DataFrame.
443
+ from teradataml import *
444
+ load_example_data("dataframe","sales")
445
+ df = DataFrame.from_table('sales')
446
+ window = Window(object = df)
447
+ window.__validate_window_columns("Feb", "partition_columns")
448
+ window.__validate_window_columns("Feb", "order_columns")
449
+ """
450
+ from teradataml.common.utils import UtilFuncs
451
+ window_columns = UtilFuncs._as_list(columns_in_window)
452
+ if self.__is_window_on_tdml_column:
453
+ _Validators._validate_columnexpression_dataframe_has_columns(window_columns,
454
+ window_arg_name,
455
+ self.__object
456
+ )
457
+ else:
458
+ columns_in_expression = []
459
+ for col in window_columns:
460
+ if isinstance(col, str):
461
+ columns_in_expression.append(col)
462
+ else:
463
+ columns_in_expression = columns_in_expression + col._all_columns
464
+ _Validators._validate_dataframe_has_argument_columns(columns_in_expression,
465
+ window_arg_name,
466
+ self.__object,
467
+ 'teradataml'
468
+ )
469
+
470
+ columns = UtilFuncs._get_all_columns(self.__object,
471
+ self.__is_window_on_tdml_column)
472
+
473
+ # Validate invalid types.
474
+ _Validators._validate_invalid_column_types(
475
+ columns, window_arg_name, window_columns, _Dtypes._get_sort_unsupported_data_types())
476
+
477
+ @collect_queryband(arg_name="func_name", prefix="DF_WinAgg")
478
+ def __process_dataframe_window_aggregate(self, func_name, *args, **kwargs):
479
+ """
480
+ Description:
481
+ Function processes window aggregate function on a teradataml
482
+ DataFrame, by following below steps:
483
+ * Same window aggregate function is executed on each supported
484
+ column of the teradataml DataFrame.
485
+ * Each generated window aggregate _SQLColumnExpression is
486
+ passed as input to DataFrame.assign() function.
487
+
488
+ PARAMETERS:
489
+ func_name:
490
+ Required Argument.
491
+ Specifies the name of the window function.
492
+ Types: str
493
+
494
+ args:
495
+ Optional Argument.
496
+ Specifies the positional arguments to be passed to the window function.
497
+ Types: Tuple
498
+
499
+ kwargs:
500
+ Optional Argument.
501
+ Specifies the keyword arguments to be passed to the window function.
502
+ Types: Dictionary
503
+
504
+ RETURNS:
505
+ teradataml DataFrame.
506
+
507
+ EXAMPLES:
508
+ # Create a Window from a teradataml DataFrame.
509
+ from teradataml import *
510
+ load_example_data("dataframe","sales")
511
+ df = DataFrame.from_table('sales')
512
+ window = df.window()
513
+ window.__process_dataframe_window_aggregate("mean")
514
+ """
515
+
516
+ new_columns = self.__get_columns_and_expressions(func_name,
517
+ *args,
518
+ **kwargs)
519
+
520
+ # If __sort_check_required is True, then "new_columns" contains
521
+ # the valid original columns.
522
+ if self.__sort_check_required:
523
+ return self.__object.assign(drop_columns=True, **new_columns)
524
+ return self.__object.assign(**new_columns)
525
+
526
+ def __get_columns_and_expressions(self, func_name, *args, **kwargs):
527
+ """
528
+ Description:
529
+ Function to get the column name and corresponding _SQLColumnExpression,
530
+ for a given window aggregate function. This function validates
531
+ whether window aggregate function is valid for a column or not, and
532
+ only if it is valid, then it returns the column name and
533
+ _SQLColumnExpression.
534
+
535
+ PARAMETERS:
536
+ func_name:
537
+ Required Argument.
538
+ Specifies the name of the window function.
539
+ Types: str
540
+
541
+ args:
542
+ Optional Argument.
543
+ Specifies the positional arguments to be passed to the window function.
544
+ Types: Tuple
545
+
546
+ kwargs:
547
+ Optional Argument.
548
+ Specifies the keyword arguments to be passed to the window function.
549
+ Types: Dictionary
550
+
551
+ RETURNS:
552
+ dict
553
+
554
+ EXAMPLES:
555
+ # Create a Window from a teradataml DataFrame.
556
+ from teradataml import *
557
+ load_example_data("dataframe","sales")
558
+ df = DataFrame.from_table('sales')
559
+ window = df.window()
560
+ window.__get_columns_and_expressions("mean")
561
+ """
562
+
563
+ # Dict to hold the columns to be projected, when partition and order
564
+ # columns are None.
565
+ original_columns = {}
566
+
567
+ # Dict to hold the new window agg columns to be projected.
568
+ new_columns = {}
569
+
570
+ # If window is initiated on DataFrame, then every column should
571
+ # be checked if it can participate in window aggregation. However,
572
+ # if window is on DataFrameGroupBy object, then only grouping columns
573
+ # should participate in window aggregation.
574
+ columns = self.__object._metaexpr.c
575
+ if self.__is_window_on_tdml_groupby_dataframe:
576
+ columns = self.__object._get_groupby_columns_expression()
577
+
578
+ column_names = []
579
+ for column in columns:
580
+ column_names.append(column.name)
581
+ # By Default, window aggregates sort on "order_columns" and
582
+ # "partition_columns". If both are not specified, window aggregates
583
+ # sorts on all columns in DataFrame. Thus, remove columns of types
584
+ # that does not support sorting.
585
+ if self.__sort_check_required and type(column.type) in \
586
+ _Dtypes._get_sort_unsupported_data_types():
587
+ continue
588
+ else:
589
+ try:
590
+ # Grouping columns are not dropping even though "drop_columns"
591
+ # set to True in DataFrame.assign(). So, skipping the column addition
592
+ # in such cases as adding the column results in duplicate columns
593
+ # in DataFrame.
594
+ if self.__sort_check_required and not self.__is_window_on_tdml_groupby_dataframe:
595
+ original_columns[column.name] = column
596
+ window = column.window(partition_columns=self.__partition_columns,
597
+ order_columns=self.__order_columns,
598
+ sort_ascending=self.__sort_ascending,
599
+ nulls_first=self.__nulls_first,
600
+ window_start_point=self.__window_start_point,
601
+ window_end_point=self.__window_end_point,
602
+ ignore_window=self.__ignore_window)
603
+
604
+ # For the functions which does not accept column as a parameter,
605
+ # do not trigger aggregate function on all columns. Triggering
606
+ # on one column is enough.
607
+ if func_name in self.__no_column_arg_functions:
608
+ if not new_columns:
609
+ sql_column_expression = getattr(window, func_name)(*args, **kwargs)
610
+ new_columns["{}_{}".format("col", func_name)] = sql_column_expression
611
+ else:
612
+ sql_column_expression = getattr(window, func_name)(*args, **kwargs)
613
+ new_columns["{}_{}".format(column.name, func_name)] = sql_column_expression
614
+ except RuntimeError:
615
+ # RuntimeError being raised, if, a window aggregate function is
616
+ # applied on an un-supported column.
617
+ pass
618
+
619
+ # Raise the error. Window aggregate does not support the columns in the
620
+ # DataFrame.
621
+ if not new_columns:
622
+ raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_AGGREGATE_UNSUPPORTED,
623
+ ",".join(column_names),
624
+ func_name),
625
+ MessageCodes.TDMLDF_AGGREGATE_UNSUPPORTED)
626
+ new_columns.update(original_columns)
627
+ return new_columns
628
+
629
+ def __generate_sqlalchemy_order_by_syntax(self):
630
+ """
631
+ Description:
632
+ Function to get the order_by clause, which can be sourced to
633
+ sqlalchemy Over clause. sqlalchemy Over clause which accepts only
634
+ order_by, and thus, the information about nulls_first &
635
+ sort_ascending needs to be embedded with order_by clause.
636
+
637
+ RETURNS:
638
+ An Object of type sqlalchemy element.
639
+
640
+ EXAMPLES:
641
+ # Create a Window from a teradataml DataFrame.
642
+ from teradataml import *
643
+ load_example_data("dataframe","sales")
644
+ df = DataFrame.from_table('sales')
645
+ window = df.window()
646
+ window.__generate_sqlalchemy_order_by_syntax()
647
+ """
648
+
649
+ # Check if order_columns is None. If it is None, No need to consider
650
+ # sort_ascending & nulls_first.
651
+ if self.__order_columns is None:
652
+ return
653
+
654
+ from teradataml.common.utils import UtilFuncs
655
+ from teradataml.dataframe.sql import ColumnExpression
656
+ order_by = UtilFuncs._as_list(self.__order_columns)
657
+ wrap_order_by = lambda sqlalc_func: [sqlalc_func(ele) if not isinstance(ele, ColumnExpression) else ele for
658
+ ele in order_by]
659
+ if not self.__sort_ascending:
660
+ order_by = wrap_order_by(desc)
661
+
662
+ if self.__nulls_first is None:
663
+ return order_by
664
+
665
+ if self.__nulls_first is True:
666
+ order_by = wrap_order_by(nullsfirst)
667
+ else:
668
+ order_by = wrap_order_by(nullslast)
669
+
670
+ return order_by
671
+
672
+ def __dir__(self):
673
+ """
674
+ DESCRIPTION:
675
+ Function returns the attributes and/or names of the methods of the
676
+ Window object.
677
+
678
+ RETURNS:
679
+ list of Strings (str).
680
+
681
+ EXAMPLES:
682
+ # Create a window from a teradataml DataFrame.
683
+ from teradataml import *
684
+ load_example_data("dataframe","sales")
685
+ df = DataFrame.from_table('sales')
686
+ window = Window(object = df)
687
+ dir(window)
688
+ """
689
+
690
+ # Since Window class do not implement the exact methods, lookup for
691
+ # the available methods, do not return the Aggregate functions.
692
+ # So Overwriting this with teradata supporting Aggregate functions.
693
+ return [attr for attr in super(self.__class__, self).__dir__()] + \
693
694
  self.__aggregate_functions