teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1303) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1935 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2040 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +798 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1683 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +1011 -0
  31. teradataml/automl/data_transformation.py +789 -0
  32. teradataml/automl/feature_engineering.py +1580 -0
  33. teradataml/automl/feature_exploration.py +554 -0
  34. teradataml/automl/model_evaluation.py +151 -0
  35. teradataml/automl/model_training.py +1026 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/auth_client.py +133 -0
  41. teradataml/clients/pkce_client.py +481 -481
  42. teradataml/common/aed_utils.py +7 -2
  43. teradataml/common/bulk_exposed_utils.py +111 -111
  44. teradataml/common/constants.py +1438 -1441
  45. teradataml/common/deprecations.py +160 -0
  46. teradataml/common/exceptions.py +73 -73
  47. teradataml/common/formula.py +742 -742
  48. teradataml/common/garbagecollector.py +597 -635
  49. teradataml/common/messagecodes.py +424 -431
  50. teradataml/common/messages.py +228 -231
  51. teradataml/common/sqlbundle.py +693 -693
  52. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  53. teradataml/common/utils.py +2424 -2500
  54. teradataml/common/warnings.py +25 -25
  55. teradataml/common/wrapper_utils.py +1 -110
  56. teradataml/config/dummy_file1.cfg +4 -4
  57. teradataml/config/dummy_file2.cfg +2 -2
  58. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  59. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  60. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  61. teradataml/context/aed_context.py +217 -217
  62. teradataml/context/context.py +1091 -999
  63. teradataml/data/A_loan.csv +19 -19
  64. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  65. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  66. teradataml/data/B_loan.csv +49 -49
  67. teradataml/data/BuoyData2.csv +17 -17
  68. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  69. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  70. teradataml/data/Convolve2RealsLeft.csv +5 -5
  71. teradataml/data/Convolve2RealsRight.csv +5 -5
  72. teradataml/data/Convolve2ValidLeft.csv +11 -11
  73. teradataml/data/Convolve2ValidRight.csv +11 -11
  74. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  75. teradataml/data/Orders1_12mf.csv +24 -24
  76. teradataml/data/Pi_loan.csv +7 -7
  77. teradataml/data/SMOOTHED_DATA.csv +7 -7
  78. teradataml/data/TestDFFT8.csv +9 -9
  79. teradataml/data/TestRiver.csv +109 -109
  80. teradataml/data/Traindata.csv +28 -28
  81. teradataml/data/acf.csv +17 -17
  82. teradataml/data/adaboost_example.json +34 -34
  83. teradataml/data/adaboostpredict_example.json +24 -24
  84. teradataml/data/additional_table.csv +10 -10
  85. teradataml/data/admissions_test.csv +21 -21
  86. teradataml/data/admissions_train.csv +41 -41
  87. teradataml/data/admissions_train_nulls.csv +41 -41
  88. teradataml/data/advertising.csv +201 -0
  89. teradataml/data/ageandheight.csv +13 -13
  90. teradataml/data/ageandpressure.csv +31 -31
  91. teradataml/data/antiselect_example.json +36 -36
  92. teradataml/data/antiselect_input.csv +8 -8
  93. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  94. teradataml/data/applicant_external.csv +6 -6
  95. teradataml/data/applicant_reference.csv +6 -6
  96. teradataml/data/arima_example.json +9 -9
  97. teradataml/data/assortedtext_input.csv +8 -8
  98. teradataml/data/attribution_example.json +33 -33
  99. teradataml/data/attribution_sample_table.csv +27 -27
  100. teradataml/data/attribution_sample_table1.csv +6 -6
  101. teradataml/data/attribution_sample_table2.csv +11 -11
  102. teradataml/data/bank_churn.csv +10001 -0
  103. teradataml/data/bank_marketing.csv +11163 -0
  104. teradataml/data/bank_web_clicks1.csv +42 -42
  105. teradataml/data/bank_web_clicks2.csv +91 -91
  106. teradataml/data/bank_web_url.csv +85 -85
  107. teradataml/data/barrier.csv +2 -2
  108. teradataml/data/barrier_new.csv +3 -3
  109. teradataml/data/betweenness_example.json +13 -13
  110. teradataml/data/bike_sharing.csv +732 -0
  111. teradataml/data/bin_breaks.csv +8 -8
  112. teradataml/data/bin_fit_ip.csv +3 -3
  113. teradataml/data/binary_complex_left.csv +11 -11
  114. teradataml/data/binary_complex_right.csv +11 -11
  115. teradataml/data/binary_matrix_complex_left.csv +21 -21
  116. teradataml/data/binary_matrix_complex_right.csv +21 -21
  117. teradataml/data/binary_matrix_real_left.csv +21 -21
  118. teradataml/data/binary_matrix_real_right.csv +21 -21
  119. teradataml/data/blood2ageandweight.csv +26 -26
  120. teradataml/data/bmi.csv +501 -0
  121. teradataml/data/boston.csv +507 -507
  122. teradataml/data/boston2cols.csv +721 -0
  123. teradataml/data/breast_cancer.csv +570 -0
  124. teradataml/data/buoydata_mix.csv +11 -11
  125. teradataml/data/burst_data.csv +5 -5
  126. teradataml/data/burst_example.json +20 -20
  127. teradataml/data/byom_example.json +17 -17
  128. teradataml/data/bytes_table.csv +3 -3
  129. teradataml/data/cal_housing_ex_raw.csv +70 -70
  130. teradataml/data/callers.csv +7 -7
  131. teradataml/data/calls.csv +10 -10
  132. teradataml/data/cars_hist.csv +33 -33
  133. teradataml/data/cat_table.csv +24 -24
  134. teradataml/data/ccm_example.json +31 -31
  135. teradataml/data/ccm_input.csv +91 -91
  136. teradataml/data/ccm_input2.csv +13 -13
  137. teradataml/data/ccmexample.csv +101 -101
  138. teradataml/data/ccmprepare_example.json +8 -8
  139. teradataml/data/ccmprepare_input.csv +91 -91
  140. teradataml/data/cfilter_example.json +12 -12
  141. teradataml/data/changepointdetection_example.json +18 -18
  142. teradataml/data/changepointdetectionrt_example.json +8 -8
  143. teradataml/data/chi_sq.csv +2 -2
  144. teradataml/data/churn_data.csv +14 -14
  145. teradataml/data/churn_emission.csv +35 -35
  146. teradataml/data/churn_initial.csv +3 -3
  147. teradataml/data/churn_state_transition.csv +5 -5
  148. teradataml/data/citedges_2.csv +745 -745
  149. teradataml/data/citvertices_2.csv +1210 -1210
  150. teradataml/data/clicks2.csv +16 -16
  151. teradataml/data/clickstream.csv +12 -12
  152. teradataml/data/clickstream1.csv +11 -11
  153. teradataml/data/closeness_example.json +15 -15
  154. teradataml/data/complaints.csv +21 -21
  155. teradataml/data/complaints_mini.csv +3 -3
  156. teradataml/data/complaints_testtoken.csv +224 -224
  157. teradataml/data/complaints_tokens_test.csv +353 -353
  158. teradataml/data/complaints_traintoken.csv +472 -472
  159. teradataml/data/computers_category.csv +1001 -1001
  160. teradataml/data/computers_test1.csv +1252 -1252
  161. teradataml/data/computers_train1.csv +5009 -5009
  162. teradataml/data/computers_train1_clustered.csv +5009 -5009
  163. teradataml/data/confusionmatrix_example.json +9 -9
  164. teradataml/data/conversion_event_table.csv +3 -3
  165. teradataml/data/corr_input.csv +17 -17
  166. teradataml/data/correlation_example.json +11 -11
  167. teradataml/data/coxhazardratio_example.json +39 -39
  168. teradataml/data/coxph_example.json +15 -15
  169. teradataml/data/coxsurvival_example.json +28 -28
  170. teradataml/data/cpt.csv +41 -41
  171. teradataml/data/credit_ex_merged.csv +45 -45
  172. teradataml/data/customer_loyalty.csv +301 -301
  173. teradataml/data/customer_loyalty_newseq.csv +31 -31
  174. teradataml/data/customer_segmentation_test.csv +2628 -0
  175. teradataml/data/customer_segmentation_train.csv +8069 -0
  176. teradataml/data/dataframe_example.json +146 -146
  177. teradataml/data/decisionforest_example.json +37 -37
  178. teradataml/data/decisionforestpredict_example.json +38 -38
  179. teradataml/data/decisiontree_example.json +21 -21
  180. teradataml/data/decisiontreepredict_example.json +45 -45
  181. teradataml/data/dfft2_size4_real.csv +17 -17
  182. teradataml/data/dfft2_test_matrix16.csv +17 -17
  183. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  184. teradataml/data/diabetes.csv +443 -443
  185. teradataml/data/diabetes_test.csv +89 -89
  186. teradataml/data/dict_table.csv +5 -5
  187. teradataml/data/docperterm_table.csv +4 -4
  188. teradataml/data/docs/__init__.py +1 -1
  189. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  190. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  191. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  192. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  193. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  194. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  195. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  196. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  197. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  198. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  199. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  200. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  201. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  202. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  203. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  204. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  205. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  206. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  207. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  208. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  209. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  210. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  211. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  212. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  213. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  214. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  215. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  216. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  217. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
  218. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
  219. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  220. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
  221. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  222. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  223. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  224. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  225. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  226. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  227. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  228. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  229. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  230. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  231. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  232. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  233. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  234. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  235. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  236. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  237. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  238. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  239. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  240. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  241. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  242. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
  243. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  244. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  245. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  246. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  247. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  248. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  249. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  250. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  251. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
  252. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  253. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  254. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  255. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  256. teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
  257. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  258. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  259. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
  260. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  261. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  262. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  263. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
  264. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  265. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  266. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  267. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
  268. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  269. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  270. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  271. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  272. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  273. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  274. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  275. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  276. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
  277. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  278. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  279. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  280. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  281. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
  282. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
  283. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  284. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  285. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  286. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  287. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  288. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  289. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  290. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  291. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
  292. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  293. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  294. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  295. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  296. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  297. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  298. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  299. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  300. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
  301. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  302. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
  303. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
  304. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  305. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  306. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  307. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  308. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  309. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  310. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  311. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  312. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
  313. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  314. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  315. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  316. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  317. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  318. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  319. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  320. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  321. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  322. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  323. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  324. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
  325. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
  326. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
  327. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  328. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  329. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  330. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  331. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  332. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  333. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  334. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  335. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  336. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  337. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  338. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  339. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  340. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  341. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  342. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  343. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  344. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  345. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  346. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  347. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  348. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  349. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  350. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  351. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  352. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  353. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  354. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  355. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  356. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  357. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  358. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  359. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  360. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  361. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  362. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  363. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  364. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  365. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  366. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  367. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  368. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  369. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  370. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  371. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  372. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  373. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  374. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  375. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  376. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  377. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  378. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  379. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  380. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  381. teradataml/data/dtw_example.json +17 -17
  382. teradataml/data/dtw_t1.csv +11 -11
  383. teradataml/data/dtw_t2.csv +4 -4
  384. teradataml/data/dwt2d_example.json +15 -15
  385. teradataml/data/dwt_example.json +14 -14
  386. teradataml/data/dwt_filter_dim.csv +5 -5
  387. teradataml/data/emission.csv +9 -9
  388. teradataml/data/emp_table_by_dept.csv +19 -19
  389. teradataml/data/employee_info.csv +4 -4
  390. teradataml/data/employee_table.csv +6 -6
  391. teradataml/data/excluding_event_table.csv +2 -2
  392. teradataml/data/finance_data.csv +6 -6
  393. teradataml/data/finance_data2.csv +61 -61
  394. teradataml/data/finance_data3.csv +93 -93
  395. teradataml/data/fish.csv +160 -0
  396. teradataml/data/fm_blood2ageandweight.csv +26 -26
  397. teradataml/data/fmeasure_example.json +11 -11
  398. teradataml/data/followers_leaders.csv +10 -10
  399. teradataml/data/fpgrowth_example.json +12 -12
  400. teradataml/data/frequentpaths_example.json +29 -29
  401. teradataml/data/friends.csv +9 -9
  402. teradataml/data/fs_input.csv +33 -33
  403. teradataml/data/fs_input1.csv +33 -33
  404. teradataml/data/genData.csv +513 -513
  405. teradataml/data/geodataframe_example.json +39 -39
  406. teradataml/data/glass_types.csv +215 -0
  407. teradataml/data/glm_admissions_model.csv +12 -12
  408. teradataml/data/glm_example.json +56 -29
  409. teradataml/data/glml1l2_example.json +28 -28
  410. teradataml/data/glml1l2predict_example.json +54 -54
  411. teradataml/data/glmpredict_example.json +54 -54
  412. teradataml/data/gq_t1.csv +21 -21
  413. teradataml/data/hconvolve_complex_right.csv +5 -5
  414. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  415. teradataml/data/histogram_example.json +11 -11
  416. teradataml/data/hmmdecoder_example.json +78 -78
  417. teradataml/data/hmmevaluator_example.json +24 -24
  418. teradataml/data/hmmsupervised_example.json +10 -10
  419. teradataml/data/hmmunsupervised_example.json +7 -7
  420. teradataml/data/house_values.csv +12 -12
  421. teradataml/data/house_values2.csv +13 -13
  422. teradataml/data/housing_cat.csv +7 -7
  423. teradataml/data/housing_data.csv +9 -9
  424. teradataml/data/housing_test.csv +47 -47
  425. teradataml/data/housing_test_binary.csv +47 -47
  426. teradataml/data/housing_train.csv +493 -493
  427. teradataml/data/housing_train_attribute.csv +4 -4
  428. teradataml/data/housing_train_binary.csv +437 -437
  429. teradataml/data/housing_train_parameter.csv +2 -2
  430. teradataml/data/housing_train_response.csv +493 -493
  431. teradataml/data/housing_train_segment.csv +201 -0
  432. teradataml/data/ibm_stock.csv +370 -370
  433. teradataml/data/ibm_stock1.csv +370 -370
  434. teradataml/data/identitymatch_example.json +21 -21
  435. teradataml/data/idf_table.csv +4 -4
  436. teradataml/data/impressions.csv +101 -101
  437. teradataml/data/inflation.csv +21 -21
  438. teradataml/data/initial.csv +3 -3
  439. teradataml/data/insect2Cols.csv +61 -0
  440. teradataml/data/insect_sprays.csv +12 -12
  441. teradataml/data/insurance.csv +1339 -1339
  442. teradataml/data/interpolator_example.json +12 -12
  443. teradataml/data/iris_altinput.csv +481 -481
  444. teradataml/data/iris_attribute_output.csv +8 -8
  445. teradataml/data/iris_attribute_test.csv +121 -121
  446. teradataml/data/iris_attribute_train.csv +481 -481
  447. teradataml/data/iris_category_expect_predict.csv +31 -31
  448. teradataml/data/iris_data.csv +151 -0
  449. teradataml/data/iris_input.csv +151 -151
  450. teradataml/data/iris_response_train.csv +121 -121
  451. teradataml/data/iris_test.csv +31 -31
  452. teradataml/data/iris_train.csv +121 -121
  453. teradataml/data/join_table1.csv +4 -4
  454. teradataml/data/join_table2.csv +4 -4
  455. teradataml/data/jsons/anly_function_name.json +6 -6
  456. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  457. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  458. teradataml/data/jsons/byom/h2opredict.json +194 -194
  459. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  460. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  461. teradataml/data/jsons/paired_functions.json +435 -435
  462. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  463. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  464. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  465. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  466. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  467. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  468. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  469. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  470. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  471. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  472. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  473. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  474. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  475. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  476. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  477. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  478. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  479. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  480. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  481. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  482. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  483. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  484. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  485. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  486. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  487. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  488. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  489. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  490. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  491. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  492. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  493. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  494. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  495. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  496. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  497. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  498. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  499. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  500. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  501. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  502. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  503. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  504. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  505. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  506. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  507. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  508. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  509. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  510. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  511. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  512. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  513. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  514. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  515. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  516. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  517. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  518. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  519. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  520. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  521. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  522. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  523. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  524. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  525. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  526. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  527. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  528. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  529. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  531. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  532. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  533. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  534. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  535. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  536. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  537. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  539. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  540. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  541. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  542. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  543. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  544. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  545. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  546. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  547. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  548. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  549. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  550. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  551. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  552. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  553. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  554. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  555. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  556. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  557. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  558. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  559. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  560. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  561. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  562. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  563. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  564. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  565. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  566. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  567. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  568. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
  569. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  570. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  571. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  572. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  573. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  574. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  575. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  576. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  577. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  578. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  579. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
  580. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  581. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  582. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  583. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
  584. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
  585. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  586. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  587. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
  588. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  589. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  590. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  591. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
  592. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  593. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  594. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  595. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
  596. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  597. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  598. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  599. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  600. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  601. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  602. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  603. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  604. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  605. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  606. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  607. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  608. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  609. teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
  610. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  611. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  612. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  613. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  614. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  615. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  616. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  617. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  618. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
  619. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
  620. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
  621. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  622. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  623. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  624. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  625. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  626. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  627. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  628. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  629. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  630. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  631. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  632. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  633. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  634. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  635. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
  636. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
  637. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
  638. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  639. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  640. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  641. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  642. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  643. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  644. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  645. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  646. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  647. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  648. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  649. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  650. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  651. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  653. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  654. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  655. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  656. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  657. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  658. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  659. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  660. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  661. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  662. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  663. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  664. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  665. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  666. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  667. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  668. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  669. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  670. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  671. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  672. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  673. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  674. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  675. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  676. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  677. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  678. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  679. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  680. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  681. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  682. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  683. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  684. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  685. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  686. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  687. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  688. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  689. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  690. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  691. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  692. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  693. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  694. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  695. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  696. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  697. teradataml/data/kmeans_example.json +22 -17
  698. teradataml/data/kmeans_table.csv +10 -0
  699. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  700. teradataml/data/knn_example.json +18 -18
  701. teradataml/data/knnrecommender_example.json +6 -6
  702. teradataml/data/knnrecommenderpredict_example.json +12 -12
  703. teradataml/data/lar_example.json +17 -17
  704. teradataml/data/larpredict_example.json +30 -30
  705. teradataml/data/lc_new_predictors.csv +5 -5
  706. teradataml/data/lc_new_reference.csv +9 -9
  707. teradataml/data/lda_example.json +8 -8
  708. teradataml/data/ldainference_example.json +14 -14
  709. teradataml/data/ldatopicsummary_example.json +8 -8
  710. teradataml/data/levendist_input.csv +13 -13
  711. teradataml/data/levenshteindistance_example.json +10 -10
  712. teradataml/data/linreg_example.json +9 -9
  713. teradataml/data/load_example_data.py +326 -323
  714. teradataml/data/loan_prediction.csv +295 -295
  715. teradataml/data/lungcancer.csv +138 -138
  716. teradataml/data/mappingdata.csv +12 -12
  717. teradataml/data/milk_timeseries.csv +157 -157
  718. teradataml/data/min_max_titanic.csv +4 -4
  719. teradataml/data/minhash_example.json +6 -6
  720. teradataml/data/ml_ratings.csv +7547 -7547
  721. teradataml/data/ml_ratings_10.csv +2445 -2445
  722. teradataml/data/model1_table.csv +5 -5
  723. teradataml/data/model2_table.csv +5 -5
  724. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  725. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  726. teradataml/data/modularity_example.json +12 -12
  727. teradataml/data/movavg_example.json +7 -7
  728. teradataml/data/mtx1.csv +7 -7
  729. teradataml/data/mtx2.csv +13 -13
  730. teradataml/data/multi_model_classification.csv +401 -0
  731. teradataml/data/multi_model_regression.csv +401 -0
  732. teradataml/data/mvdfft8.csv +9 -9
  733. teradataml/data/naivebayes_example.json +9 -9
  734. teradataml/data/naivebayespredict_example.json +19 -19
  735. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  736. teradataml/data/naivebayestextclassifier_example.json +8 -8
  737. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  738. teradataml/data/name_Find_configure.csv +10 -10
  739. teradataml/data/namedentityfinder_example.json +14 -14
  740. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  741. teradataml/data/namedentityfindertrainer_example.json +6 -6
  742. teradataml/data/nb_iris_input_test.csv +31 -31
  743. teradataml/data/nb_iris_input_train.csv +121 -121
  744. teradataml/data/nbp_iris_model.csv +13 -13
  745. teradataml/data/ner_extractor_text.csv +2 -2
  746. teradataml/data/ner_sports_test2.csv +29 -29
  747. teradataml/data/ner_sports_train.csv +501 -501
  748. teradataml/data/nerevaluator_example.json +5 -5
  749. teradataml/data/nerextractor_example.json +18 -18
  750. teradataml/data/nermem_sports_test.csv +17 -17
  751. teradataml/data/nermem_sports_train.csv +50 -50
  752. teradataml/data/nertrainer_example.json +6 -6
  753. teradataml/data/ngrams_example.json +6 -6
  754. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  755. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  756. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  757. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  758. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  759. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  760. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  761. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  762. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  763. teradataml/data/npath_example.json +23 -23
  764. teradataml/data/ntree_example.json +14 -14
  765. teradataml/data/numeric_strings.csv +4 -4
  766. teradataml/data/numerics.csv +4 -4
  767. teradataml/data/ocean_buoy.csv +17 -17
  768. teradataml/data/ocean_buoy2.csv +17 -17
  769. teradataml/data/ocean_buoys.csv +27 -27
  770. teradataml/data/ocean_buoys2.csv +10 -10
  771. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  772. teradataml/data/ocean_buoys_seq.csv +29 -29
  773. teradataml/data/onehot_encoder_train.csv +4 -0
  774. teradataml/data/openml_example.json +92 -0
  775. teradataml/data/optional_event_table.csv +4 -4
  776. teradataml/data/orders1.csv +11 -11
  777. teradataml/data/orders1_12.csv +12 -12
  778. teradataml/data/orders_ex.csv +4 -4
  779. teradataml/data/pack_example.json +8 -8
  780. teradataml/data/package_tracking.csv +19 -19
  781. teradataml/data/package_tracking_pti.csv +18 -18
  782. teradataml/data/pagerank_example.json +13 -13
  783. teradataml/data/paragraphs_input.csv +6 -6
  784. teradataml/data/pathanalyzer_example.json +7 -7
  785. teradataml/data/pathgenerator_example.json +7 -7
  786. teradataml/data/phrases.csv +7 -7
  787. teradataml/data/pivot_example.json +8 -8
  788. teradataml/data/pivot_input.csv +22 -22
  789. teradataml/data/playerRating.csv +31 -31
  790. teradataml/data/postagger_example.json +6 -6
  791. teradataml/data/posttagger_output.csv +44 -44
  792. teradataml/data/production_data.csv +16 -16
  793. teradataml/data/production_data2.csv +7 -7
  794. teradataml/data/randomsample_example.json +31 -31
  795. teradataml/data/randomwalksample_example.json +8 -8
  796. teradataml/data/rank_table.csv +6 -6
  797. teradataml/data/ref_mobile_data.csv +4 -4
  798. teradataml/data/ref_mobile_data_dense.csv +2 -2
  799. teradataml/data/ref_url.csv +17 -17
  800. teradataml/data/restaurant_reviews.csv +7 -7
  801. teradataml/data/river_data.csv +145 -145
  802. teradataml/data/roc_example.json +7 -7
  803. teradataml/data/roc_input.csv +101 -101
  804. teradataml/data/rule_inputs.csv +6 -6
  805. teradataml/data/rule_table.csv +2 -2
  806. teradataml/data/sales.csv +7 -7
  807. teradataml/data/sales_transaction.csv +501 -501
  808. teradataml/data/salesdata.csv +342 -342
  809. teradataml/data/sample_cities.csv +2 -2
  810. teradataml/data/sample_shapes.csv +10 -10
  811. teradataml/data/sample_streets.csv +2 -2
  812. teradataml/data/sampling_example.json +15 -15
  813. teradataml/data/sax_example.json +8 -8
  814. teradataml/data/scale_attributes.csv +3 -0
  815. teradataml/data/scale_example.json +74 -23
  816. teradataml/data/scale_housing.csv +11 -11
  817. teradataml/data/scale_housing_test.csv +6 -6
  818. teradataml/data/scale_input_part_sparse.csv +31 -0
  819. teradataml/data/scale_input_partitioned.csv +16 -0
  820. teradataml/data/scale_input_sparse.csv +11 -0
  821. teradataml/data/scale_parameters.csv +3 -0
  822. teradataml/data/scale_stat.csv +11 -11
  823. teradataml/data/scalebypartition_example.json +13 -13
  824. teradataml/data/scalemap_example.json +13 -13
  825. teradataml/data/scalesummary_example.json +12 -12
  826. teradataml/data/score_category.csv +101 -101
  827. teradataml/data/score_summary.csv +4 -4
  828. teradataml/data/script_example.json +9 -9
  829. teradataml/data/scripts/deploy_script.py +84 -0
  830. teradataml/data/scripts/mapper.R +20 -0
  831. teradataml/data/scripts/mapper.py +15 -15
  832. teradataml/data/scripts/mapper_replace.py +15 -15
  833. teradataml/data/scripts/sklearn/__init__.py +0 -0
  834. teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
  835. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
  836. teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
  837. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
  838. teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
  839. teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
  840. teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
  841. teradataml/data/seeds.csv +10 -10
  842. teradataml/data/sentenceextractor_example.json +6 -6
  843. teradataml/data/sentiment_extract_input.csv +11 -11
  844. teradataml/data/sentiment_train.csv +16 -16
  845. teradataml/data/sentiment_word.csv +20 -20
  846. teradataml/data/sentiment_word_input.csv +19 -19
  847. teradataml/data/sentimentextractor_example.json +24 -24
  848. teradataml/data/sentimenttrainer_example.json +8 -8
  849. teradataml/data/sequence_table.csv +10 -10
  850. teradataml/data/seriessplitter_example.json +7 -7
  851. teradataml/data/sessionize_example.json +17 -17
  852. teradataml/data/sessionize_table.csv +116 -116
  853. teradataml/data/setop_test1.csv +24 -24
  854. teradataml/data/setop_test2.csv +22 -22
  855. teradataml/data/soc_nw_edges.csv +10 -10
  856. teradataml/data/soc_nw_vertices.csv +7 -7
  857. teradataml/data/souvenir_timeseries.csv +167 -167
  858. teradataml/data/sparse_iris_attribute.csv +5 -5
  859. teradataml/data/sparse_iris_test.csv +121 -121
  860. teradataml/data/sparse_iris_train.csv +601 -601
  861. teradataml/data/star1.csv +6 -6
  862. teradataml/data/state_transition.csv +5 -5
  863. teradataml/data/stock_data.csv +53 -53
  864. teradataml/data/stock_movement.csv +11 -11
  865. teradataml/data/stock_vol.csv +76 -76
  866. teradataml/data/stop_words.csv +8 -8
  867. teradataml/data/store_sales.csv +37 -37
  868. teradataml/data/stringsimilarity_example.json +7 -7
  869. teradataml/data/strsimilarity_input.csv +13 -13
  870. teradataml/data/students.csv +101 -101
  871. teradataml/data/svm_iris_input_test.csv +121 -121
  872. teradataml/data/svm_iris_input_train.csv +481 -481
  873. teradataml/data/svm_iris_model.csv +7 -7
  874. teradataml/data/svmdense_example.json +9 -9
  875. teradataml/data/svmdensepredict_example.json +18 -18
  876. teradataml/data/svmsparse_example.json +7 -7
  877. teradataml/data/svmsparsepredict_example.json +13 -13
  878. teradataml/data/svmsparsesummary_example.json +7 -7
  879. teradataml/data/target_mobile_data.csv +13 -13
  880. teradataml/data/target_mobile_data_dense.csv +5 -5
  881. teradataml/data/templatedata.csv +1201 -1201
  882. teradataml/data/templates/open_source_ml.json +9 -0
  883. teradataml/data/teradataml_example.json +150 -1
  884. teradataml/data/test_classification.csv +101 -0
  885. teradataml/data/test_loan_prediction.csv +53 -53
  886. teradataml/data/test_pacf_12.csv +37 -37
  887. teradataml/data/test_prediction.csv +101 -0
  888. teradataml/data/test_regression.csv +101 -0
  889. teradataml/data/test_river2.csv +109 -109
  890. teradataml/data/text_inputs.csv +6 -6
  891. teradataml/data/textchunker_example.json +7 -7
  892. teradataml/data/textclassifier_example.json +6 -6
  893. teradataml/data/textclassifier_input.csv +7 -7
  894. teradataml/data/textclassifiertrainer_example.json +6 -6
  895. teradataml/data/textmorph_example.json +5 -5
  896. teradataml/data/textparser_example.json +15 -15
  897. teradataml/data/texttagger_example.json +11 -11
  898. teradataml/data/texttokenizer_example.json +6 -6
  899. teradataml/data/texttrainer_input.csv +11 -11
  900. teradataml/data/tf_example.json +6 -6
  901. teradataml/data/tfidf_example.json +13 -13
  902. teradataml/data/tfidf_input1.csv +201 -201
  903. teradataml/data/tfidf_train.csv +6 -6
  904. teradataml/data/time_table1.csv +535 -535
  905. teradataml/data/time_table2.csv +14 -14
  906. teradataml/data/timeseriesdata.csv +1601 -1601
  907. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  908. teradataml/data/titanic.csv +892 -892
  909. teradataml/data/token_table.csv +696 -696
  910. teradataml/data/train_multiclass.csv +101 -0
  911. teradataml/data/train_regression.csv +101 -0
  912. teradataml/data/train_regression_multiple_labels.csv +101 -0
  913. teradataml/data/train_tracking.csv +27 -27
  914. teradataml/data/transformation_table.csv +5 -5
  915. teradataml/data/transformation_table_new.csv +1 -1
  916. teradataml/data/tv_spots.csv +16 -16
  917. teradataml/data/twod_climate_data.csv +117 -117
  918. teradataml/data/uaf_example.json +475 -475
  919. teradataml/data/univariatestatistics_example.json +8 -8
  920. teradataml/data/unpack_example.json +9 -9
  921. teradataml/data/unpivot_example.json +9 -9
  922. teradataml/data/unpivot_input.csv +8 -8
  923. teradataml/data/us_air_pass.csv +36 -36
  924. teradataml/data/us_population.csv +624 -624
  925. teradataml/data/us_states_shapes.csv +52 -52
  926. teradataml/data/varmax_example.json +17 -17
  927. teradataml/data/vectordistance_example.json +25 -25
  928. teradataml/data/ville_climatedata.csv +121 -121
  929. teradataml/data/ville_tempdata.csv +12 -12
  930. teradataml/data/ville_tempdata1.csv +12 -12
  931. teradataml/data/ville_temperature.csv +11 -11
  932. teradataml/data/waveletTable.csv +1605 -1605
  933. teradataml/data/waveletTable2.csv +1605 -1605
  934. teradataml/data/weightedmovavg_example.json +8 -8
  935. teradataml/data/wft_testing.csv +5 -5
  936. teradataml/data/wine_data.csv +1600 -0
  937. teradataml/data/word_embed_input_table1.csv +5 -5
  938. teradataml/data/word_embed_input_table2.csv +4 -4
  939. teradataml/data/word_embed_model.csv +22 -22
  940. teradataml/data/words_input.csv +13 -13
  941. teradataml/data/xconvolve_complex_left.csv +6 -6
  942. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  943. teradataml/data/xgboost_example.json +35 -35
  944. teradataml/data/xgboostpredict_example.json +31 -31
  945. teradataml/data/ztest_example.json +16 -0
  946. teradataml/dataframe/copy_to.py +1769 -1698
  947. teradataml/dataframe/data_transfer.py +2812 -2745
  948. teradataml/dataframe/dataframe.py +17630 -16946
  949. teradataml/dataframe/dataframe_utils.py +1875 -1740
  950. teradataml/dataframe/fastload.py +794 -603
  951. teradataml/dataframe/indexer.py +424 -424
  952. teradataml/dataframe/setop.py +1179 -1166
  953. teradataml/dataframe/sql.py +10174 -6432
  954. teradataml/dataframe/sql_function_parameters.py +439 -388
  955. teradataml/dataframe/sql_functions.py +652 -652
  956. teradataml/dataframe/sql_interfaces.py +220 -220
  957. teradataml/dataframe/vantage_function_types.py +674 -630
  958. teradataml/dataframe/window.py +693 -692
  959. teradataml/dbutils/__init__.py +3 -3
  960. teradataml/dbutils/dbutils.py +1167 -1150
  961. teradataml/dbutils/filemgr.py +267 -267
  962. teradataml/gen_ai/__init__.py +2 -2
  963. teradataml/gen_ai/convAI.py +472 -472
  964. teradataml/geospatial/__init__.py +3 -3
  965. teradataml/geospatial/geodataframe.py +1105 -1094
  966. teradataml/geospatial/geodataframecolumn.py +392 -387
  967. teradataml/geospatial/geometry_types.py +925 -925
  968. teradataml/hyperparameter_tuner/__init__.py +1 -1
  969. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  970. teradataml/hyperparameter_tuner/utils.py +281 -187
  971. teradataml/lib/aed_0_1.dll +0 -0
  972. teradataml/lib/libaed_0_1.dylib +0 -0
  973. teradataml/lib/libaed_0_1.so +0 -0
  974. teradataml/libaed_0_1.dylib +0 -0
  975. teradataml/libaed_0_1.so +0 -0
  976. teradataml/opensource/__init__.py +1 -0
  977. teradataml/opensource/sklearn/__init__.py +1 -0
  978. teradataml/opensource/sklearn/_class.py +255 -0
  979. teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
  980. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  981. teradataml/opensource/sklearn/constants.py +54 -0
  982. teradataml/options/__init__.py +130 -124
  983. teradataml/options/configure.py +358 -336
  984. teradataml/options/display.py +176 -176
  985. teradataml/plot/__init__.py +2 -2
  986. teradataml/plot/axis.py +1388 -1388
  987. teradataml/plot/constants.py +15 -15
  988. teradataml/plot/figure.py +398 -398
  989. teradataml/plot/plot.py +760 -760
  990. teradataml/plot/query_generator.py +83 -83
  991. teradataml/plot/subplot.py +216 -216
  992. teradataml/scriptmgmt/UserEnv.py +3791 -3761
  993. teradataml/scriptmgmt/__init__.py +3 -3
  994. teradataml/scriptmgmt/lls_utils.py +1719 -1604
  995. teradataml/series/series.py +532 -532
  996. teradataml/series/series_utils.py +71 -71
  997. teradataml/table_operators/Apply.py +949 -917
  998. teradataml/table_operators/Script.py +1718 -1982
  999. teradataml/table_operators/TableOperator.py +1255 -1616
  1000. teradataml/table_operators/__init__.py +2 -3
  1001. teradataml/table_operators/apply_query_generator.py +262 -262
  1002. teradataml/table_operators/query_generator.py +507 -507
  1003. teradataml/table_operators/table_operator_query_generator.py +460 -460
  1004. teradataml/table_operators/table_operator_util.py +631 -639
  1005. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  1006. teradataml/table_operators/templates/dataframe_map.template +176 -176
  1007. teradataml/table_operators/templates/script_executor.template +170 -170
  1008. teradataml/utils/dtypes.py +684 -684
  1009. teradataml/utils/internal_buffer.py +84 -84
  1010. teradataml/utils/print_versions.py +205 -205
  1011. teradataml/utils/utils.py +410 -410
  1012. teradataml/utils/validators.py +2277 -2115
  1013. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
  1014. teradataml-20.0.0.1.dist-info/RECORD +1056 -0
  1015. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
  1016. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
  1017. teradataml/analytics/mle/AdaBoost.py +0 -651
  1018. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1019. teradataml/analytics/mle/Antiselect.py +0 -342
  1020. teradataml/analytics/mle/Arima.py +0 -641
  1021. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1022. teradataml/analytics/mle/Attribution.py +0 -1070
  1023. teradataml/analytics/mle/Betweenness.py +0 -658
  1024. teradataml/analytics/mle/Burst.py +0 -711
  1025. teradataml/analytics/mle/CCM.py +0 -600
  1026. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1027. teradataml/analytics/mle/CFilter.py +0 -460
  1028. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1029. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1030. teradataml/analytics/mle/Closeness.py +0 -737
  1031. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1032. teradataml/analytics/mle/Correlation.py +0 -477
  1033. teradataml/analytics/mle/Correlation2.py +0 -573
  1034. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1035. teradataml/analytics/mle/CoxPH.py +0 -556
  1036. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1037. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1038. teradataml/analytics/mle/DTW.py +0 -623
  1039. teradataml/analytics/mle/DWT.py +0 -564
  1040. teradataml/analytics/mle/DWT2D.py +0 -599
  1041. teradataml/analytics/mle/DecisionForest.py +0 -716
  1042. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1043. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1044. teradataml/analytics/mle/DecisionTree.py +0 -830
  1045. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1046. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1047. teradataml/analytics/mle/FMeasure.py +0 -402
  1048. teradataml/analytics/mle/FPGrowth.py +0 -734
  1049. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1050. teradataml/analytics/mle/GLM.py +0 -558
  1051. teradataml/analytics/mle/GLML1L2.py +0 -547
  1052. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1053. teradataml/analytics/mle/GLMPredict.py +0 -529
  1054. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1055. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1056. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1057. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1058. teradataml/analytics/mle/Histogram.py +0 -561
  1059. teradataml/analytics/mle/IDWT.py +0 -476
  1060. teradataml/analytics/mle/IDWT2D.py +0 -493
  1061. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1062. teradataml/analytics/mle/Interpolator.py +0 -918
  1063. teradataml/analytics/mle/KMeans.py +0 -485
  1064. teradataml/analytics/mle/KNN.py +0 -627
  1065. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1066. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1067. teradataml/analytics/mle/LAR.py +0 -439
  1068. teradataml/analytics/mle/LARPredict.py +0 -478
  1069. teradataml/analytics/mle/LDA.py +0 -548
  1070. teradataml/analytics/mle/LDAInference.py +0 -492
  1071. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1072. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1073. teradataml/analytics/mle/LinReg.py +0 -433
  1074. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1075. teradataml/analytics/mle/MinHash.py +0 -544
  1076. teradataml/analytics/mle/Modularity.py +0 -587
  1077. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1078. teradataml/analytics/mle/NERExtractor.py +0 -595
  1079. teradataml/analytics/mle/NERTrainer.py +0 -458
  1080. teradataml/analytics/mle/NGrams.py +0 -570
  1081. teradataml/analytics/mle/NPath.py +0 -634
  1082. teradataml/analytics/mle/NTree.py +0 -549
  1083. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1084. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1085. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1086. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1087. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1088. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1089. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1090. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1091. teradataml/analytics/mle/POSTagger.py +0 -417
  1092. teradataml/analytics/mle/Pack.py +0 -411
  1093. teradataml/analytics/mle/PageRank.py +0 -535
  1094. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1095. teradataml/analytics/mle/PathGenerator.py +0 -367
  1096. teradataml/analytics/mle/PathStart.py +0 -464
  1097. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1098. teradataml/analytics/mle/Pivot.py +0 -471
  1099. teradataml/analytics/mle/ROC.py +0 -425
  1100. teradataml/analytics/mle/RandomSample.py +0 -637
  1101. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1102. teradataml/analytics/mle/SAX.py +0 -779
  1103. teradataml/analytics/mle/SVMDense.py +0 -677
  1104. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1105. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1106. teradataml/analytics/mle/SVMSparse.py +0 -557
  1107. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1108. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1109. teradataml/analytics/mle/Sampling.py +0 -549
  1110. teradataml/analytics/mle/Scale.py +0 -565
  1111. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1112. teradataml/analytics/mle/ScaleMap.py +0 -378
  1113. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1114. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1115. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1116. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1117. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1118. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1119. teradataml/analytics/mle/Sessionize.py +0 -475
  1120. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1121. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1122. teradataml/analytics/mle/TF.py +0 -389
  1123. teradataml/analytics/mle/TFIDF.py +0 -504
  1124. teradataml/analytics/mle/TextChunker.py +0 -414
  1125. teradataml/analytics/mle/TextClassifier.py +0 -399
  1126. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1127. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1128. teradataml/analytics/mle/TextMorph.py +0 -494
  1129. teradataml/analytics/mle/TextParser.py +0 -623
  1130. teradataml/analytics/mle/TextTagger.py +0 -530
  1131. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1132. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1133. teradataml/analytics/mle/Unpack.py +0 -526
  1134. teradataml/analytics/mle/Unpivot.py +0 -438
  1135. teradataml/analytics/mle/VarMax.py +0 -776
  1136. teradataml/analytics/mle/VectorDistance.py +0 -762
  1137. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1138. teradataml/analytics/mle/XGBoost.py +0 -842
  1139. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1140. teradataml/analytics/mle/__init__.py +0 -123
  1141. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1142. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1143. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1144. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1145. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1146. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1147. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1148. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1149. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1150. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1151. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1152. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1153. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1154. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1155. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1156. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1157. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1158. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1159. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1160. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1161. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1162. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1163. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1164. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1165. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1166. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1167. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1168. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1169. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1170. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1171. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1172. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1173. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1174. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1175. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1176. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1177. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1178. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1179. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1180. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1181. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1182. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1183. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1184. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1185. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1186. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1187. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1188. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1189. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1190. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1191. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1192. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1193. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1194. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1195. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1196. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1197. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1198. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1199. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1200. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1201. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1202. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1203. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1204. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1205. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1206. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1207. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1208. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1209. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1210. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1211. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1212. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1213. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1214. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1215. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1216. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1217. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1218. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1219. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1220. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1221. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1222. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1223. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1224. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1225. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1226. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1227. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1228. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1229. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1230. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1231. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1232. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1233. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1234. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1235. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1236. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1237. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1238. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1239. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1240. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1241. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1242. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1243. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1244. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1245. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1246. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1247. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1248. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1249. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1250. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1251. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1252. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1253. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1254. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1255. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1256. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1257. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1258. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1259. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1260. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1261. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1262. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1263. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1264. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1265. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1266. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1267. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1268. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1269. teradataml/analytics/sqle/Antiselect.py +0 -321
  1270. teradataml/analytics/sqle/Attribution.py +0 -603
  1271. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1272. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1273. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1274. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1275. teradataml/analytics/sqle/NPath.py +0 -632
  1276. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1277. teradataml/analytics/sqle/Pack.py +0 -388
  1278. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1279. teradataml/analytics/sqle/Sessionize.py +0 -390
  1280. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1281. teradataml/analytics/sqle/Unpack.py +0 -503
  1282. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1283. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1284. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1285. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1286. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1287. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1288. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1289. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1290. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1291. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1292. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1293. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1294. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1295. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1296. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1297. teradataml/catalog/model_cataloging.py +0 -980
  1298. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1299. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1300. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1301. teradataml/table_operators/sandbox_container_util.py +0 -643
  1302. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1303. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
@@ -1,1339 +1,1339 @@
1
- age,sex,bmi,children,smoker,region,charges
2
- 19,female,27.9,0,yes,southwest,16884.924
3
- 18,male,33.77,1,no,southeast,1725.5523
4
- 28,male,33,3,no,southeast,4449.462
5
- 33,male,22.705,0,no,northwest,21984.47061
6
- 32,male,28.88,0,no,northwest,3866.8552
7
- 31,female,25.74,0,no,southeast,3756.6216
8
- 46,female,33.44,1,no,southeast,8240.5896
9
- 37,female,27.74,3,no,northwest,7281.5056
10
- 37,male,29.83,2,no,northeast,6406.4107
11
- 60,female,25.84,0,no,northwest,28923.13692
12
- 25,male,26.22,0,no,northeast,2721.3208
13
- 62,female,26.29,0,yes,southeast,27808.7251
14
- 23,male,34.4,0,no,southwest,1826.843
15
- 56,female,39.82,0,no,southeast,11090.7178
16
- 27,male,42.13,0,yes,southeast,39611.7577
17
- 19,male,24.6,1,no,southwest,1837.237
18
- 52,female,30.78,1,no,northeast,10797.3362
19
- 23,male,23.845,0,no,northeast,2395.17155
20
- 56,male,40.3,0,no,southwest,10602.385
21
- 30,male,35.3,0,yes,southwest,36837.467
22
- 60,female,36.005,0,no,northeast,13228.84695
23
- 30,female,32.4,1,no,southwest,4149.736
24
- 18,male,34.1,0,no,southeast,1137.011
25
- 34,female,31.92,1,yes,northeast,37701.8768
26
- 37,male,28.025,2,no,northwest,6203.90175
27
- 59,female,27.72,3,no,southeast,14001.1338
28
- 63,female,23.085,0,no,northeast,14451.83515
29
- 55,female,32.775,2,no,northwest,12268.63225
30
- 23,male,17.385,1,no,northwest,2775.19215
31
- 31,male,36.3,2,yes,southwest,38711
32
- 22,male,35.6,0,yes,southwest,35585.576
33
- 18,female,26.315,0,no,northeast,2198.18985
34
- 19,female,28.6,5,no,southwest,4687.797
35
- 63,male,28.31,0,no,northwest,13770.0979
36
- 28,male,36.4,1,yes,southwest,51194.55914
37
- 19,male,20.425,0,no,northwest,1625.43375
38
- 62,female,32.965,3,no,northwest,15612.19335
39
- 26,male,20.8,0,no,southwest,2302.3
40
- 35,male,36.67,1,yes,northeast,39774.2763
41
- 60,male,39.9,0,yes,southwest,48173.361
42
- 24,female,26.6,0,no,northeast,3046.062
43
- 31,female,36.63,2,no,southeast,4949.7587
44
- 41,male,21.78,1,no,southeast,6272.4772
45
- 37,female,30.8,2,no,southeast,6313.759
46
- 38,male,37.05,1,no,northeast,6079.6715
47
- 55,male,37.3,0,no,southwest,20630.28351
48
- 18,female,38.665,2,no,northeast,3393.35635
49
- 28,female,34.77,0,no,northwest,3556.9223
50
- 60,female,24.53,0,no,southeast,12629.8967
51
- 36,male,35.2,1,yes,southeast,38709.176
52
- 18,female,35.625,0,no,northeast,2211.13075
53
- 21,female,33.63,2,no,northwest,3579.8287
54
- 48,male,28,1,yes,southwest,23568.272
55
- 36,male,34.43,0,yes,southeast,37742.5757
56
- 40,female,28.69,3,no,northwest,8059.6791
57
- 58,male,36.955,2,yes,northwest,47496.49445
58
- 58,female,31.825,2,no,northeast,13607.36875
59
- 18,male,31.68,2,yes,southeast,34303.1672
60
- 53,female,22.88,1,yes,southeast,23244.7902
61
- 34,female,37.335,2,no,northwest,5989.52365
62
- 43,male,27.36,3,no,northeast,8606.2174
63
- 25,male,33.66,4,no,southeast,4504.6624
64
- 64,male,24.7,1,no,northwest,30166.61817
65
- 28,female,25.935,1,no,northwest,4133.64165
66
- 20,female,22.42,0,yes,northwest,14711.7438
67
- 19,female,28.9,0,no,southwest,1743.214
68
- 61,female,39.1,2,no,southwest,14235.072
69
- 40,male,26.315,1,no,northwest,6389.37785
70
- 40,female,36.19,0,no,southeast,5920.1041
71
- 28,male,23.98,3,yes,southeast,17663.1442
72
- 27,female,24.75,0,yes,southeast,16577.7795
73
- 31,male,28.5,5,no,northeast,6799.458
74
- 53,female,28.1,3,no,southwest,11741.726
75
- 58,male,32.01,1,no,southeast,11946.6259
76
- 44,male,27.4,2,no,southwest,7726.854
77
- 57,male,34.01,0,no,northwest,11356.6609
78
- 29,female,29.59,1,no,southeast,3947.4131
79
- 21,male,35.53,0,no,southeast,1532.4697
80
- 22,female,39.805,0,no,northeast,2755.02095
81
- 41,female,32.965,0,no,northwest,6571.02435
82
- 31,male,26.885,1,no,northeast,4441.21315
83
- 45,female,38.285,0,no,northeast,7935.29115
84
- 22,male,37.62,1,yes,southeast,37165.1638
85
- 48,female,41.23,4,no,northwest,11033.6617
86
- 37,female,34.8,2,yes,southwest,39836.519
87
- 45,male,22.895,2,yes,northwest,21098.55405
88
- 57,female,31.16,0,yes,northwest,43578.9394
89
- 56,female,27.2,0,no,southwest,11073.176
90
- 46,female,27.74,0,no,northwest,8026.6666
91
- 55,female,26.98,0,no,northwest,11082.5772
92
- 21,female,39.49,0,no,southeast,2026.9741
93
- 53,female,24.795,1,no,northwest,10942.13205
94
- 59,male,29.83,3,yes,northeast,30184.9367
95
- 35,male,34.77,2,no,northwest,5729.0053
96
- 64,female,31.3,2,yes,southwest,47291.055
97
- 28,female,37.62,1,no,southeast,3766.8838
98
- 54,female,30.8,3,no,southwest,12105.32
99
- 55,male,38.28,0,no,southeast,10226.2842
100
- 56,male,19.95,0,yes,northeast,22412.6485
101
- 38,male,19.3,0,yes,southwest,15820.699
102
- 41,female,31.6,0,no,southwest,6186.127
103
- 30,male,25.46,0,no,northeast,3645.0894
104
- 18,female,30.115,0,no,northeast,21344.8467
105
- 61,female,29.92,3,yes,southeast,30942.1918
106
- 34,female,27.5,1,no,southwest,5003.853
107
- 20,male,28.025,1,yes,northwest,17560.37975
108
- 19,female,28.4,1,no,southwest,2331.519
109
- 26,male,30.875,2,no,northwest,3877.30425
110
- 29,male,27.94,0,no,southeast,2867.1196
111
- 63,male,35.09,0,yes,southeast,47055.5321
112
- 54,male,33.63,1,no,northwest,10825.2537
113
- 55,female,29.7,2,no,southwest,11881.358
114
- 37,male,30.8,0,no,southwest,4646.759
115
- 21,female,35.72,0,no,northwest,2404.7338
116
- 52,male,32.205,3,no,northeast,11488.31695
117
- 60,male,28.595,0,no,northeast,30259.99556
118
- 58,male,49.06,0,no,southeast,11381.3254
119
- 29,female,27.94,1,yes,southeast,19107.7796
120
- 49,female,27.17,0,no,southeast,8601.3293
121
- 37,female,23.37,2,no,northwest,6686.4313
122
- 44,male,37.1,2,no,southwest,7740.337
123
- 18,male,23.75,0,no,northeast,1705.6245
124
- 20,female,28.975,0,no,northwest,2257.47525
125
- 44,male,31.35,1,yes,northeast,39556.4945
126
- 47,female,33.915,3,no,northwest,10115.00885
127
- 26,female,28.785,0,no,northeast,3385.39915
128
- 19,female,28.3,0,yes,southwest,17081.08
129
- 52,female,37.4,0,no,southwest,9634.538
130
- 32,female,17.765,2,yes,northwest,32734.1863
131
- 38,male,34.7,2,no,southwest,6082.405
132
- 59,female,26.505,0,no,northeast,12815.44495
133
- 61,female,22.04,0,no,northeast,13616.3586
134
- 53,female,35.9,2,no,southwest,11163.568
135
- 19,male,25.555,0,no,northwest,1632.56445
136
- 20,female,28.785,0,no,northeast,2457.21115
137
- 22,female,28.05,0,no,southeast,2155.6815
138
- 19,male,34.1,0,no,southwest,1261.442
139
- 22,male,25.175,0,no,northwest,2045.68525
140
- 54,female,31.9,3,no,southeast,27322.73386
141
- 22,female,36,0,no,southwest,2166.732
142
- 34,male,22.42,2,no,northeast,27375.90478
143
- 26,male,32.49,1,no,northeast,3490.5491
144
- 34,male,25.3,2,yes,southeast,18972.495
145
- 29,male,29.735,2,no,northwest,18157.876
146
- 30,male,28.69,3,yes,northwest,20745.9891
147
- 29,female,38.83,3,no,southeast,5138.2567
148
- 46,male,30.495,3,yes,northwest,40720.55105
149
- 51,female,37.73,1,no,southeast,9877.6077
150
- 53,female,37.43,1,no,northwest,10959.6947
151
- 19,male,28.4,1,no,southwest,1842.519
152
- 35,male,24.13,1,no,northwest,5125.2157
153
- 48,male,29.7,0,no,southeast,7789.635
154
- 32,female,37.145,3,no,northeast,6334.34355
155
- 42,female,23.37,0,yes,northeast,19964.7463
156
- 40,female,25.46,1,no,northeast,7077.1894
157
- 44,male,39.52,0,no,northwest,6948.7008
158
- 48,male,24.42,0,yes,southeast,21223.6758
159
- 18,male,25.175,0,yes,northeast,15518.18025
160
- 30,male,35.53,0,yes,southeast,36950.2567
161
- 50,female,27.83,3,no,southeast,19749.38338
162
- 42,female,26.6,0,yes,northwest,21348.706
163
- 18,female,36.85,0,yes,southeast,36149.4835
164
- 54,male,39.6,1,no,southwest,10450.552
165
- 32,female,29.8,2,no,southwest,5152.134
166
- 37,male,29.64,0,no,northwest,5028.1466
167
- 47,male,28.215,4,no,northeast,10407.08585
168
- 20,female,37,5,no,southwest,4830.63
169
- 32,female,33.155,3,no,northwest,6128.79745
170
- 19,female,31.825,1,no,northwest,2719.27975
171
- 27,male,18.905,3,no,northeast,4827.90495
172
- 63,male,41.47,0,no,southeast,13405.3903
173
- 49,male,30.3,0,no,southwest,8116.68
174
- 18,male,15.96,0,no,northeast,1694.7964
175
- 35,female,34.8,1,no,southwest,5246.047
176
- 24,female,33.345,0,no,northwest,2855.43755
177
- 63,female,37.7,0,yes,southwest,48824.45
178
- 38,male,27.835,2,no,northwest,6455.86265
179
- 54,male,29.2,1,no,southwest,10436.096
180
- 46,female,28.9,2,no,southwest,8823.279
181
- 41,female,33.155,3,no,northeast,8538.28845
182
- 58,male,28.595,0,no,northwest,11735.87905
183
- 18,female,38.28,0,no,southeast,1631.8212
184
- 22,male,19.95,3,no,northeast,4005.4225
185
- 44,female,26.41,0,no,northwest,7419.4779
186
- 44,male,30.69,2,no,southeast,7731.4271
187
- 36,male,41.895,3,yes,northeast,43753.33705
188
- 26,female,29.92,2,no,southeast,3981.9768
189
- 30,female,30.9,3,no,southwest,5325.651
190
- 41,female,32.2,1,no,southwest,6775.961
191
- 29,female,32.11,2,no,northwest,4922.9159
192
- 61,male,31.57,0,no,southeast,12557.6053
193
- 36,female,26.2,0,no,southwest,4883.866
194
- 25,male,25.74,0,no,southeast,2137.6536
195
- 56,female,26.6,1,no,northwest,12044.342
196
- 18,male,34.43,0,no,southeast,1137.4697
197
- 19,male,30.59,0,no,northwest,1639.5631
198
- 39,female,32.8,0,no,southwest,5649.715
199
- 45,female,28.6,2,no,southeast,8516.829
200
- 51,female,18.05,0,no,northwest,9644.2525
201
- 64,female,39.33,0,no,northeast,14901.5167
202
- 19,female,32.11,0,no,northwest,2130.6759
203
- 48,female,32.23,1,no,southeast,8871.1517
204
- 60,female,24.035,0,no,northwest,13012.20865
205
- 27,female,36.08,0,yes,southeast,37133.8982
206
- 46,male,22.3,0,no,southwest,7147.105
207
- 28,female,28.88,1,no,northeast,4337.7352
208
- 59,male,26.4,0,no,southeast,11743.299
209
- 35,male,27.74,2,yes,northeast,20984.0936
210
- 63,female,31.8,0,no,southwest,13880.949
211
- 40,male,41.23,1,no,northeast,6610.1097
212
- 20,male,33,1,no,southwest,1980.07
213
- 40,male,30.875,4,no,northwest,8162.71625
214
- 24,male,28.5,2,no,northwest,3537.703
215
- 34,female,26.73,1,no,southeast,5002.7827
216
- 45,female,30.9,2,no,southwest,8520.026
217
- 41,female,37.1,2,no,southwest,7371.772
218
- 53,female,26.6,0,no,northwest,10355.641
219
- 27,male,23.1,0,no,southeast,2483.736
220
- 26,female,29.92,1,no,southeast,3392.9768
221
- 24,female,23.21,0,no,southeast,25081.76784
222
- 34,female,33.7,1,no,southwest,5012.471
223
- 53,female,33.25,0,no,northeast,10564.8845
224
- 32,male,30.8,3,no,southwest,5253.524
225
- 19,male,34.8,0,yes,southwest,34779.615
226
- 42,male,24.64,0,yes,southeast,19515.5416
227
- 55,male,33.88,3,no,southeast,11987.1682
228
- 28,male,38.06,0,no,southeast,2689.4954
229
- 58,female,41.91,0,no,southeast,24227.33724
230
- 41,female,31.635,1,no,northeast,7358.17565
231
- 47,male,25.46,2,no,northeast,9225.2564
232
- 42,female,36.195,1,no,northwest,7443.64305
233
- 59,female,27.83,3,no,southeast,14001.2867
234
- 19,female,17.8,0,no,southwest,1727.785
235
- 59,male,27.5,1,no,southwest,12333.828
236
- 39,male,24.51,2,no,northwest,6710.1919
237
- 40,female,22.22,2,yes,southeast,19444.2658
238
- 18,female,26.73,0,no,southeast,1615.7667
239
- 31,male,38.39,2,no,southeast,4463.2051
240
- 19,male,29.07,0,yes,northwest,17352.6803
241
- 44,male,38.06,1,no,southeast,7152.6714
242
- 23,female,36.67,2,yes,northeast,38511.6283
243
- 33,female,22.135,1,no,northeast,5354.07465
244
- 55,female,26.8,1,no,southwest,35160.13457
245
- 40,male,35.3,3,no,southwest,7196.867
246
- 63,female,27.74,0,yes,northeast,29523.1656
247
- 54,male,30.02,0,no,northwest,24476.47851
248
- 60,female,38.06,0,no,southeast,12648.7034
249
- 24,male,35.86,0,no,southeast,1986.9334
250
- 19,male,20.9,1,no,southwest,1832.094
251
- 29,male,28.975,1,no,northeast,4040.55825
252
- 18,male,17.29,2,yes,northeast,12829.4551
253
- 63,female,32.2,2,yes,southwest,47305.305
254
- 54,male,34.21,2,yes,southeast,44260.7499
255
- 27,male,30.3,3,no,southwest,4260.744
256
- 50,male,31.825,0,yes,northeast,41097.16175
257
- 55,female,25.365,3,no,northeast,13047.33235
258
- 56,male,33.63,0,yes,northwest,43921.1837
259
- 38,female,40.15,0,no,southeast,5400.9805
260
- 51,male,24.415,4,no,northwest,11520.09985
261
- 19,male,31.92,0,yes,northwest,33750.2918
262
- 58,female,25.2,0,no,southwest,11837.16
263
- 20,female,26.84,1,yes,southeast,17085.2676
264
- 52,male,24.32,3,yes,northeast,24869.8368
265
- 19,male,36.955,0,yes,northwest,36219.40545
266
- 53,female,38.06,3,no,southeast,20462.99766
267
- 46,male,42.35,3,yes,southeast,46151.1245
268
- 40,male,19.8,1,yes,southeast,17179.522
269
- 59,female,32.395,3,no,northeast,14590.63205
270
- 45,male,30.2,1,no,southwest,7441.053
271
- 49,male,25.84,1,no,northeast,9282.4806
272
- 18,male,29.37,1,no,southeast,1719.4363
273
- 50,male,34.2,2,yes,southwest,42856.838
274
- 41,male,37.05,2,no,northwest,7265.7025
275
- 50,male,27.455,1,no,northeast,9617.66245
276
- 25,male,27.55,0,no,northwest,2523.1695
277
- 47,female,26.6,2,no,northeast,9715.841
278
- 19,male,20.615,2,no,northwest,2803.69785
279
- 22,female,24.3,0,no,southwest,2150.469
280
- 59,male,31.79,2,no,southeast,12928.7911
281
- 51,female,21.56,1,no,southeast,9855.1314
282
- 40,female,28.12,1,yes,northeast,22331.5668
283
- 54,male,40.565,3,yes,northeast,48549.17835
284
- 30,male,27.645,1,no,northeast,4237.12655
285
- 55,female,32.395,1,no,northeast,11879.10405
286
- 52,female,31.2,0,no,southwest,9625.92
287
- 46,male,26.62,1,no,southeast,7742.1098
288
- 46,female,48.07,2,no,northeast,9432.9253
289
- 63,female,26.22,0,no,northwest,14256.1928
290
- 59,female,36.765,1,yes,northeast,47896.79135
291
- 52,male,26.4,3,no,southeast,25992.82104
292
- 28,female,33.4,0,no,southwest,3172.018
293
- 29,male,29.64,1,no,northeast,20277.80751
294
- 25,male,45.54,2,yes,southeast,42112.2356
295
- 22,female,28.82,0,no,southeast,2156.7518
296
- 25,male,26.8,3,no,southwest,3906.127
297
- 18,male,22.99,0,no,northeast,1704.5681
298
- 19,male,27.7,0,yes,southwest,16297.846
299
- 47,male,25.41,1,yes,southeast,21978.6769
300
- 31,male,34.39,3,yes,northwest,38746.3551
301
- 48,female,28.88,1,no,northwest,9249.4952
302
- 36,male,27.55,3,no,northeast,6746.7425
303
- 53,female,22.61,3,yes,northeast,24873.3849
304
- 56,female,37.51,2,no,southeast,12265.5069
305
- 28,female,33,2,no,southeast,4349.462
306
- 57,female,38,2,no,southwest,12646.207
307
- 29,male,33.345,2,no,northwest,19442.3535
308
- 28,female,27.5,2,no,southwest,20177.67113
309
- 30,female,33.33,1,no,southeast,4151.0287
310
- 58,male,34.865,0,no,northeast,11944.59435
311
- 41,female,33.06,2,no,northwest,7749.1564
312
- 50,male,26.6,0,no,southwest,8444.474
313
- 19,female,24.7,0,no,southwest,1737.376
314
- 43,male,35.97,3,yes,southeast,42124.5153
315
- 49,male,35.86,0,no,southeast,8124.4084
316
- 27,female,31.4,0,yes,southwest,34838.873
317
- 52,male,33.25,0,no,northeast,9722.7695
318
- 50,male,32.205,0,no,northwest,8835.26495
319
- 54,male,32.775,0,no,northeast,10435.06525
320
- 44,female,27.645,0,no,northwest,7421.19455
321
- 32,male,37.335,1,no,northeast,4667.60765
322
- 34,male,25.27,1,no,northwest,4894.7533
323
- 26,female,29.64,4,no,northeast,24671.66334
324
- 34,male,30.8,0,yes,southwest,35491.64
325
- 57,male,40.945,0,no,northeast,11566.30055
326
- 29,male,27.2,0,no,southwest,2866.091
327
- 40,male,34.105,1,no,northeast,6600.20595
328
- 27,female,23.21,1,no,southeast,3561.8889
329
- 45,male,36.48,2,yes,northwest,42760.5022
330
- 64,female,33.8,1,yes,southwest,47928.03
331
- 52,male,36.7,0,no,southwest,9144.565
332
- 61,female,36.385,1,yes,northeast,48517.56315
333
- 52,male,27.36,0,yes,northwest,24393.6224
334
- 61,female,31.16,0,no,northwest,13429.0354
335
- 56,female,28.785,0,no,northeast,11658.37915
336
- 43,female,35.72,2,no,northeast,19144.57652
337
- 64,male,34.5,0,no,southwest,13822.803
338
- 60,male,25.74,0,no,southeast,12142.5786
339
- 62,male,27.55,1,no,northwest,13937.6665
340
- 50,male,32.3,1,yes,northeast,41919.097
341
- 46,female,27.72,1,no,southeast,8232.6388
342
- 24,female,27.6,0,no,southwest,18955.22017
343
- 62,male,30.02,0,no,northwest,13352.0998
344
- 60,female,27.55,0,no,northeast,13217.0945
345
- 63,male,36.765,0,no,northeast,13981.85035
346
- 49,female,41.47,4,no,southeast,10977.2063
347
- 34,female,29.26,3,no,southeast,6184.2994
348
- 33,male,35.75,2,no,southeast,4889.9995
349
- 46,male,33.345,1,no,northeast,8334.45755
350
- 36,female,29.92,1,no,southeast,5478.0368
351
- 19,male,27.835,0,no,northwest,1635.73365
352
- 57,female,23.18,0,no,northwest,11830.6072
353
- 50,female,25.6,0,no,southwest,8932.084
354
- 30,female,27.7,0,no,southwest,3554.203
355
- 33,male,35.245,0,no,northeast,12404.8791
356
- 18,female,38.28,0,no,southeast,14133.03775
357
- 46,male,27.6,0,no,southwest,24603.04837
358
- 46,male,43.89,3,no,southeast,8944.1151
359
- 47,male,29.83,3,no,northwest,9620.3307
360
- 23,male,41.91,0,no,southeast,1837.2819
361
- 18,female,20.79,0,no,southeast,1607.5101
362
- 48,female,32.3,2,no,northeast,10043.249
363
- 35,male,30.5,1,no,southwest,4751.07
364
- 19,female,21.7,0,yes,southwest,13844.506
365
- 21,female,26.4,1,no,southwest,2597.779
366
- 21,female,21.89,2,no,southeast,3180.5101
367
- 49,female,30.78,1,no,northeast,9778.3472
368
- 56,female,32.3,3,no,northeast,13430.265
369
- 42,female,24.985,2,no,northwest,8017.06115
370
- 44,male,32.015,2,no,northwest,8116.26885
371
- 18,male,30.4,3,no,northeast,3481.868
372
- 61,female,21.09,0,no,northwest,13415.0381
373
- 57,female,22.23,0,no,northeast,12029.2867
374
- 42,female,33.155,1,no,northeast,7639.41745
375
- 26,male,32.9,2,yes,southwest,36085.219
376
- 20,male,33.33,0,no,southeast,1391.5287
377
- 23,female,28.31,0,yes,northwest,18033.9679
378
- 39,female,24.89,3,yes,northeast,21659.9301
379
- 24,male,40.15,0,yes,southeast,38126.2465
380
- 64,female,30.115,3,no,northwest,16455.70785
381
- 62,male,31.46,1,no,southeast,27000.98473
382
- 27,female,17.955,2,yes,northeast,15006.57945
383
- 55,male,30.685,0,yes,northeast,42303.69215
384
- 55,male,33,0,no,southeast,20781.48892
385
- 35,female,43.34,2,no,southeast,5846.9176
386
- 44,male,22.135,2,no,northeast,8302.53565
387
- 19,male,34.4,0,no,southwest,1261.859
388
- 58,female,39.05,0,no,southeast,11856.4115
389
- 50,male,25.365,2,no,northwest,30284.64294
390
- 26,female,22.61,0,no,northwest,3176.8159
391
- 24,female,30.21,3,no,northwest,4618.0799
392
- 48,male,35.625,4,no,northeast,10736.87075
393
- 19,female,37.43,0,no,northwest,2138.0707
394
- 48,male,31.445,1,no,northeast,8964.06055
395
- 49,male,31.35,1,no,northeast,9290.1395
396
- 46,female,32.3,2,no,northeast,9411.005
397
- 46,male,19.855,0,no,northwest,7526.70645
398
- 43,female,34.4,3,no,southwest,8522.003
399
- 21,male,31.02,0,no,southeast,16586.49771
400
- 64,male,25.6,2,no,southwest,14988.432
401
- 18,female,38.17,0,no,southeast,1631.6683
402
- 51,female,20.6,0,no,southwest,9264.797
403
- 47,male,47.52,1,no,southeast,8083.9198
404
- 64,female,32.965,0,no,northwest,14692.66935
405
- 49,male,32.3,3,no,northwest,10269.46
406
- 31,male,20.4,0,no,southwest,3260.199
407
- 52,female,38.38,2,no,northeast,11396.9002
408
- 33,female,24.31,0,no,southeast,4185.0979
409
- 47,female,23.6,1,no,southwest,8539.671
410
- 38,male,21.12,3,no,southeast,6652.5288
411
- 32,male,30.03,1,no,southeast,4074.4537
412
- 19,male,17.48,0,no,northwest,1621.3402
413
- 44,female,20.235,1,yes,northeast,19594.80965
414
- 26,female,17.195,2,yes,northeast,14455.64405
415
- 25,male,23.9,5,no,southwest,5080.096
416
- 19,female,35.15,0,no,northwest,2134.9015
417
- 43,female,35.64,1,no,southeast,7345.7266
418
- 52,male,34.1,0,no,southeast,9140.951
419
- 36,female,22.6,2,yes,southwest,18608.262
420
- 64,male,39.16,1,no,southeast,14418.2804
421
- 63,female,26.98,0,yes,northwest,28950.4692
422
- 64,male,33.88,0,yes,southeast,46889.2612
423
- 61,male,35.86,0,yes,southeast,46599.1084
424
- 40,male,32.775,1,yes,northeast,39125.33225
425
- 25,male,30.59,0,no,northeast,2727.3951
426
- 48,male,30.2,2,no,southwest,8968.33
427
- 45,male,24.31,5,no,southeast,9788.8659
428
- 38,female,27.265,1,no,northeast,6555.07035
429
- 18,female,29.165,0,no,northeast,7323.734819
430
- 21,female,16.815,1,no,northeast,3167.45585
431
- 27,female,30.4,3,no,northwest,18804.7524
432
- 19,male,33.1,0,no,southwest,23082.95533
433
- 29,female,20.235,2,no,northwest,4906.40965
434
- 42,male,26.9,0,no,southwest,5969.723
435
- 60,female,30.5,0,no,southwest,12638.195
436
- 31,male,28.595,1,no,northwest,4243.59005
437
- 60,male,33.11,3,no,southeast,13919.8229
438
- 22,male,31.73,0,no,northeast,2254.7967
439
- 35,male,28.9,3,no,southwest,5926.846
440
- 52,female,46.75,5,no,southeast,12592.5345
441
- 26,male,29.45,0,no,northeast,2897.3235
442
- 31,female,32.68,1,no,northwest,4738.2682
443
- 33,female,33.5,0,yes,southwest,37079.372
444
- 18,male,43.01,0,no,southeast,1149.3959
445
- 59,female,36.52,1,no,southeast,28287.89766
446
- 56,male,26.695,1,yes,northwest,26109.32905
447
- 45,female,33.1,0,no,southwest,7345.084
448
- 60,male,29.64,0,no,northeast,12730.9996
449
- 56,female,25.65,0,no,northwest,11454.0215
450
- 40,female,29.6,0,no,southwest,5910.944
451
- 35,male,38.6,1,no,southwest,4762.329
452
- 39,male,29.6,4,no,southwest,7512.267
453
- 30,male,24.13,1,no,northwest,4032.2407
454
- 24,male,23.4,0,no,southwest,1969.614
455
- 20,male,29.735,0,no,northwest,1769.53165
456
- 32,male,46.53,2,no,southeast,4686.3887
457
- 59,male,37.4,0,no,southwest,21797.0004
458
- 55,female,30.14,2,no,southeast,11881.9696
459
- 57,female,30.495,0,no,northwest,11840.77505
460
- 56,male,39.6,0,no,southwest,10601.412
461
- 40,female,33,3,no,southeast,7682.67
462
- 49,female,36.63,3,no,southeast,10381.4787
463
- 42,male,30,0,yes,southwest,22144.032
464
- 62,female,38.095,2,no,northeast,15230.32405
465
- 56,male,25.935,0,no,northeast,11165.41765
466
- 19,male,25.175,0,no,northwest,1632.03625
467
- 30,female,28.38,1,yes,southeast,19521.9682
468
- 60,female,28.7,1,no,southwest,13224.693
469
- 56,female,33.82,2,no,northwest,12643.3778
470
- 28,female,24.32,1,no,northeast,23288.9284
471
- 18,female,24.09,1,no,southeast,2201.0971
472
- 27,male,32.67,0,no,southeast,2497.0383
473
- 18,female,30.115,0,no,northeast,2203.47185
474
- 19,female,29.8,0,no,southwest,1744.465
475
- 47,female,33.345,0,no,northeast,20878.78443
476
- 54,male,25.1,3,yes,southwest,25382.297
477
- 61,male,28.31,1,yes,northwest,28868.6639
478
- 24,male,28.5,0,yes,northeast,35147.52848
479
- 25,male,35.625,0,no,northwest,2534.39375
480
- 21,male,36.85,0,no,southeast,1534.3045
481
- 23,male,32.56,0,no,southeast,1824.2854
482
- 63,male,41.325,3,no,northwest,15555.18875
483
- 49,male,37.51,2,no,southeast,9304.7019
484
- 18,female,31.35,0,no,southeast,1622.1885
485
- 51,female,39.5,1,no,southwest,9880.068
486
- 48,male,34.3,3,no,southwest,9563.029
487
- 31,female,31.065,0,no,northeast,4347.02335
488
- 54,female,21.47,3,no,northwest,12475.3513
489
- 19,male,28.7,0,no,southwest,1253.936
490
- 44,female,38.06,0,yes,southeast,48885.13561
491
- 53,male,31.16,1,no,northwest,10461.9794
492
- 19,female,32.9,0,no,southwest,1748.774
493
- 61,female,25.08,0,no,southeast,24513.09126
494
- 18,female,25.08,0,no,northeast,2196.4732
495
- 61,male,43.4,0,no,southwest,12574.049
496
- 21,male,25.7,4,yes,southwest,17942.106
497
- 20,male,27.93,0,no,northeast,1967.0227
498
- 31,female,23.6,2,no,southwest,4931.647
499
- 45,male,28.7,2,no,southwest,8027.968
500
- 44,female,23.98,2,no,southeast,8211.1002
501
- 62,female,39.2,0,no,southwest,13470.86
502
- 29,male,34.4,0,yes,southwest,36197.699
503
- 43,male,26.03,0,no,northeast,6837.3687
504
- 51,male,23.21,1,yes,southeast,22218.1149
505
- 19,male,30.25,0,yes,southeast,32548.3405
506
- 38,female,28.93,1,no,southeast,5974.3847
507
- 37,male,30.875,3,no,northwest,6796.86325
508
- 22,male,31.35,1,no,northwest,2643.2685
509
- 21,male,23.75,2,no,northwest,3077.0955
510
- 24,female,25.27,0,no,northeast,3044.2133
511
- 57,female,28.7,0,no,southwest,11455.28
512
- 56,male,32.11,1,no,northeast,11763.0009
513
- 27,male,33.66,0,no,southeast,2498.4144
514
- 51,male,22.42,0,no,northeast,9361.3268
515
- 19,male,30.4,0,no,southwest,1256.299
516
- 39,male,28.3,1,yes,southwest,21082.16
517
- 58,male,35.7,0,no,southwest,11362.755
518
- 20,male,35.31,1,no,southeast,27724.28875
519
- 45,male,30.495,2,no,northwest,8413.46305
520
- 35,female,31,1,no,southwest,5240.765
521
- 31,male,30.875,0,no,northeast,3857.75925
522
- 50,female,27.36,0,no,northeast,25656.57526
523
- 32,female,44.22,0,no,southeast,3994.1778
524
- 51,female,33.915,0,no,northeast,9866.30485
525
- 38,female,37.73,0,no,southeast,5397.6167
526
- 42,male,26.07,1,yes,southeast,38245.59327
527
- 18,female,33.88,0,no,southeast,11482.63485
528
- 19,female,30.59,2,no,northwest,24059.68019
529
- 51,female,25.8,1,no,southwest,9861.025
530
- 46,male,39.425,1,no,northeast,8342.90875
531
- 18,male,25.46,0,no,northeast,1708.0014
532
- 57,male,42.13,1,yes,southeast,48675.5177
533
- 62,female,31.73,0,no,northeast,14043.4767
534
- 59,male,29.7,2,no,southeast,12925.886
535
- 37,male,36.19,0,no,southeast,19214.70553
536
- 64,male,40.48,0,no,southeast,13831.1152
537
- 38,male,28.025,1,no,northeast,6067.12675
538
- 33,female,38.9,3,no,southwest,5972.378
539
- 46,female,30.2,2,no,southwest,8825.086
540
- 46,female,28.05,1,no,southeast,8233.0975
541
- 53,male,31.35,0,no,southeast,27346.04207
542
- 34,female,38,3,no,southwest,6196.448
543
- 20,female,31.79,2,no,southeast,3056.3881
544
- 63,female,36.3,0,no,southeast,13887.204
545
- 54,female,47.41,0,yes,southeast,63770.42801
546
- 54,male,30.21,0,no,northwest,10231.4999
547
- 49,male,25.84,2,yes,northwest,23807.2406
548
- 28,male,35.435,0,no,northeast,3268.84665
549
- 54,female,46.7,2,no,southwest,11538.421
550
- 25,female,28.595,0,no,northeast,3213.62205
551
- 43,female,46.2,0,yes,southeast,45863.205
552
- 63,male,30.8,0,no,southwest,13390.559
553
- 32,female,28.93,0,no,southeast,3972.9247
554
- 62,male,21.4,0,no,southwest,12957.118
555
- 52,female,31.73,2,no,northwest,11187.6567
556
- 25,female,41.325,0,no,northeast,17878.90068
557
- 28,male,23.8,2,no,southwest,3847.674
558
- 46,male,33.44,1,no,northeast,8334.5896
559
- 34,male,34.21,0,no,southeast,3935.1799
560
- 35,female,34.105,3,yes,northwest,39983.42595
561
- 19,male,35.53,0,no,northwest,1646.4297
562
- 46,female,19.95,2,no,northwest,9193.8385
563
- 54,female,32.68,0,no,northeast,10923.9332
564
- 27,male,30.5,0,no,southwest,2494.022
565
- 50,male,44.77,1,no,southeast,9058.7303
566
- 18,female,32.12,2,no,southeast,2801.2588
567
- 19,female,30.495,0,no,northwest,2128.43105
568
- 38,female,40.565,1,no,northwest,6373.55735
569
- 41,male,30.59,2,no,northwest,7256.7231
570
- 49,female,31.9,5,no,southwest,11552.904
571
- 48,male,40.565,2,yes,northwest,45702.02235
572
- 31,female,29.1,0,no,southwest,3761.292
573
- 18,female,37.29,1,no,southeast,2219.4451
574
- 30,female,43.12,2,no,southeast,4753.6368
575
- 62,female,36.86,1,no,northeast,31620.00106
576
- 57,female,34.295,2,no,northeast,13224.05705
577
- 58,female,27.17,0,no,northwest,12222.8983
578
- 22,male,26.84,0,no,southeast,1664.9996
579
- 31,female,38.095,1,yes,northeast,58571.07448
580
- 52,male,30.2,1,no,southwest,9724.53
581
- 25,female,23.465,0,no,northeast,3206.49135
582
- 59,male,25.46,1,no,northeast,12913.9924
583
- 19,male,30.59,0,no,northwest,1639.5631
584
- 39,male,45.43,2,no,southeast,6356.2707
585
- 32,female,23.65,1,no,southeast,17626.23951
586
- 19,male,20.7,0,no,southwest,1242.816
587
- 33,female,28.27,1,no,southeast,4779.6023
588
- 21,male,20.235,3,no,northeast,3861.20965
589
- 34,female,30.21,1,yes,northwest,43943.8761
590
- 61,female,35.91,0,no,northeast,13635.6379
591
- 38,female,30.69,1,no,southeast,5976.8311
592
- 58,female,29,0,no,southwest,11842.442
593
- 47,male,19.57,1,no,northwest,8428.0693
594
- 20,male,31.13,2,no,southeast,2566.4707
595
- 21,female,21.85,1,yes,northeast,15359.1045
596
- 41,male,40.26,0,no,southeast,5709.1644
597
- 46,female,33.725,1,no,northeast,8823.98575
598
- 42,female,29.48,2,no,southeast,7640.3092
599
- 34,female,33.25,1,no,northeast,5594.8455
600
- 43,male,32.6,2,no,southwest,7441.501
601
- 52,female,37.525,2,no,northwest,33471.97189
602
- 18,female,39.16,0,no,southeast,1633.0444
603
- 51,male,31.635,0,no,northwest,9174.13565
604
- 56,female,25.3,0,no,southwest,11070.535
605
- 64,female,39.05,3,no,southeast,16085.1275
606
- 19,female,28.31,0,yes,northwest,17468.9839
607
- 51,female,34.1,0,no,southeast,9283.562
608
- 27,female,25.175,0,no,northeast,3558.62025
609
- 59,female,23.655,0,yes,northwest,25678.77845
610
- 28,male,26.98,2,no,northeast,4435.0942
611
- 30,male,37.8,2,yes,southwest,39241.442
612
- 47,female,29.37,1,no,southeast,8547.6913
613
- 38,female,34.8,2,no,southwest,6571.544
614
- 18,female,33.155,0,no,northeast,2207.69745
615
- 34,female,19,3,no,northeast,6753.038
616
- 20,female,33,0,no,southeast,1880.07
617
- 47,female,36.63,1,yes,southeast,42969.8527
618
- 56,female,28.595,0,no,northeast,11658.11505
619
- 49,male,25.6,2,yes,southwest,23306.547
620
- 19,female,33.11,0,yes,southeast,34439.8559
621
- 55,female,37.1,0,no,southwest,10713.644
622
- 30,male,31.4,1,no,southwest,3659.346
623
- 37,male,34.1,4,yes,southwest,40182.246
624
- 49,female,21.3,1,no,southwest,9182.17
625
- 18,male,33.535,0,yes,northeast,34617.84065
626
- 59,male,28.785,0,no,northwest,12129.61415
627
- 29,female,26.03,0,no,northwest,3736.4647
628
- 36,male,28.88,3,no,northeast,6748.5912
629
- 33,male,42.46,1,no,southeast,11326.71487
630
- 58,male,38,0,no,southwest,11365.952
631
- 44,female,38.95,0,yes,northwest,42983.4585
632
- 53,male,36.1,1,no,southwest,10085.846
633
- 24,male,29.3,0,no,southwest,1977.815
634
- 29,female,35.53,0,no,southeast,3366.6697
635
- 40,male,22.705,2,no,northeast,7173.35995
636
- 51,male,39.7,1,no,southwest,9391.346
637
- 64,male,38.19,0,no,northeast,14410.9321
638
- 19,female,24.51,1,no,northwest,2709.1119
639
- 35,female,38.095,2,no,northeast,24915.04626
640
- 39,male,26.41,0,yes,northeast,20149.3229
641
- 56,male,33.66,4,no,southeast,12949.1554
642
- 33,male,42.4,5,no,southwest,6666.243
643
- 42,male,28.31,3,yes,northwest,32787.45859
644
- 61,male,33.915,0,no,northeast,13143.86485
645
- 23,female,34.96,3,no,northwest,4466.6214
646
- 43,male,35.31,2,no,southeast,18806.14547
647
- 48,male,30.78,3,no,northeast,10141.1362
648
- 39,male,26.22,1,no,northwest,6123.5688
649
- 40,female,23.37,3,no,northeast,8252.2843
650
- 18,male,28.5,0,no,northeast,1712.227
651
- 58,female,32.965,0,no,northeast,12430.95335
652
- 49,female,42.68,2,no,southeast,9800.8882
653
- 53,female,39.6,1,no,southeast,10579.711
654
- 48,female,31.13,0,no,southeast,8280.6227
655
- 45,female,36.3,2,no,southeast,8527.532
656
- 59,female,35.2,0,no,southeast,12244.531
657
- 52,female,25.3,2,yes,southeast,24667.419
658
- 26,female,42.4,1,no,southwest,3410.324
659
- 27,male,33.155,2,no,northwest,4058.71245
660
- 48,female,35.91,1,no,northeast,26392.26029
661
- 57,female,28.785,4,no,northeast,14394.39815
662
- 37,male,46.53,3,no,southeast,6435.6237
663
- 57,female,23.98,1,no,southeast,22192.43711
664
- 32,female,31.54,1,no,northeast,5148.5526
665
- 18,male,33.66,0,no,southeast,1136.3994
666
- 64,female,22.99,0,yes,southeast,27037.9141
667
- 43,male,38.06,2,yes,southeast,42560.4304
668
- 49,male,28.7,1,no,southwest,8703.456
669
- 40,female,32.775,2,yes,northwest,40003.33225
670
- 62,male,32.015,0,yes,northeast,45710.20785
671
- 40,female,29.81,1,no,southeast,6500.2359
672
- 30,male,31.57,3,no,southeast,4837.5823
673
- 29,female,31.16,0,no,northeast,3943.5954
674
- 36,male,29.7,0,no,southeast,4399.731
675
- 41,female,31.02,0,no,southeast,6185.3208
676
- 44,female,43.89,2,yes,southeast,46200.9851
677
- 45,male,21.375,0,no,northwest,7222.78625
678
- 55,female,40.81,3,no,southeast,12485.8009
679
- 60,male,31.35,3,yes,northwest,46130.5265
680
- 56,male,36.1,3,no,southwest,12363.547
681
- 49,female,23.18,2,no,northwest,10156.7832
682
- 21,female,17.4,1,no,southwest,2585.269
683
- 19,male,20.3,0,no,southwest,1242.26
684
- 39,male,35.3,2,yes,southwest,40103.89
685
- 53,male,24.32,0,no,northwest,9863.4718
686
- 33,female,18.5,1,no,southwest,4766.022
687
- 53,male,26.41,2,no,northeast,11244.3769
688
- 42,male,26.125,2,no,northeast,7729.64575
689
- 40,male,41.69,0,no,southeast,5438.7491
690
- 47,female,24.1,1,no,southwest,26236.57997
691
- 27,male,31.13,1,yes,southeast,34806.4677
692
- 21,male,27.36,0,no,northeast,2104.1134
693
- 47,male,36.2,1,no,southwest,8068.185
694
- 20,male,32.395,1,no,northwest,2362.22905
695
- 24,male,23.655,0,no,northwest,2352.96845
696
- 27,female,34.8,1,no,southwest,3577.999
697
- 26,female,40.185,0,no,northwest,3201.24515
698
- 53,female,32.3,2,no,northeast,29186.48236
699
- 41,male,35.75,1,yes,southeast,40273.6455
700
- 56,male,33.725,0,no,northwest,10976.24575
701
- 23,female,39.27,2,no,southeast,3500.6123
702
- 21,female,34.87,0,no,southeast,2020.5523
703
- 50,female,44.745,0,no,northeast,9541.69555
704
- 53,male,41.47,0,no,southeast,9504.3103
705
- 34,female,26.41,1,no,northwest,5385.3379
706
- 47,female,29.545,1,no,northwest,8930.93455
707
- 33,female,32.9,2,no,southwest,5375.038
708
- 51,female,38.06,0,yes,southeast,44400.4064
709
- 49,male,28.69,3,no,northwest,10264.4421
710
- 31,female,30.495,3,no,northeast,6113.23105
711
- 36,female,27.74,0,no,northeast,5469.0066
712
- 18,male,35.2,1,no,southeast,1727.54
713
- 50,female,23.54,2,no,southeast,10107.2206
714
- 43,female,30.685,2,no,northwest,8310.83915
715
- 20,male,40.47,0,no,northeast,1984.4533
716
- 24,female,22.6,0,no,southwest,2457.502
717
- 60,male,28.9,0,no,southwest,12146.971
718
- 49,female,22.61,1,no,northwest,9566.9909
719
- 60,male,24.32,1,no,northwest,13112.6048
720
- 51,female,36.67,2,no,northwest,10848.1343
721
- 58,female,33.44,0,no,northwest,12231.6136
722
- 51,female,40.66,0,no,northeast,9875.6804
723
- 53,male,36.6,3,no,southwest,11264.541
724
- 62,male,37.4,0,no,southwest,12979.358
725
- 19,male,35.4,0,no,southwest,1263.249
726
- 50,female,27.075,1,no,northeast,10106.13425
727
- 30,female,39.05,3,yes,southeast,40932.4295
728
- 41,male,28.405,1,no,northwest,6664.68595
729
- 29,female,21.755,1,yes,northeast,16657.71745
730
- 18,female,40.28,0,no,northeast,2217.6012
731
- 41,female,36.08,1,no,southeast,6781.3542
732
- 35,male,24.42,3,yes,southeast,19361.9988
733
- 53,male,21.4,1,no,southwest,10065.413
734
- 24,female,30.1,3,no,southwest,4234.927
735
- 48,female,27.265,1,no,northeast,9447.25035
736
- 59,female,32.1,3,no,southwest,14007.222
737
- 49,female,34.77,1,no,northwest,9583.8933
738
- 37,female,38.39,0,yes,southeast,40419.0191
739
- 26,male,23.7,2,no,southwest,3484.331
740
- 23,male,31.73,3,yes,northeast,36189.1017
741
- 29,male,35.5,2,yes,southwest,44585.45587
742
- 45,male,24.035,2,no,northeast,8604.48365
743
- 27,male,29.15,0,yes,southeast,18246.4955
744
- 53,male,34.105,0,yes,northeast,43254.41795
745
- 31,female,26.62,0,no,southeast,3757.8448
746
- 50,male,26.41,0,no,northwest,8827.2099
747
- 50,female,30.115,1,no,northwest,9910.35985
748
- 34,male,27,2,no,southwest,11737.84884
749
- 19,male,21.755,0,no,northwest,1627.28245
750
- 47,female,36,1,no,southwest,8556.907
751
- 28,male,30.875,0,no,northwest,3062.50825
752
- 37,female,26.4,0,yes,southeast,19539.243
753
- 21,male,28.975,0,no,northwest,1906.35825
754
- 64,male,37.905,0,no,northwest,14210.53595
755
- 58,female,22.77,0,no,southeast,11833.7823
756
- 24,male,33.63,4,no,northeast,17128.42608
757
- 31,male,27.645,2,no,northeast,5031.26955
758
- 39,female,22.8,3,no,northeast,7985.815
759
- 47,female,27.83,0,yes,southeast,23065.4207
760
- 30,male,37.43,3,no,northeast,5428.7277
761
- 18,male,38.17,0,yes,southeast,36307.7983
762
- 22,female,34.58,2,no,northeast,3925.7582
763
- 23,male,35.2,1,no,southwest,2416.955
764
- 33,male,27.1,1,yes,southwest,19040.876
765
- 27,male,26.03,0,no,northeast,3070.8087
766
- 45,female,25.175,2,no,northeast,9095.06825
767
- 57,female,31.825,0,no,northwest,11842.62375
768
- 47,male,32.3,1,no,southwest,8062.764
769
- 42,female,29,1,no,southwest,7050.642
770
- 64,female,39.7,0,no,southwest,14319.031
771
- 38,female,19.475,2,no,northwest,6933.24225
772
- 61,male,36.1,3,no,southwest,27941.28758
773
- 53,female,26.7,2,no,southwest,11150.78
774
- 44,female,36.48,0,no,northeast,12797.20962
775
- 19,female,28.88,0,yes,northwest,17748.5062
776
- 41,male,34.2,2,no,northwest,7261.741
777
- 51,male,33.33,3,no,southeast,10560.4917
778
- 40,male,32.3,2,no,northwest,6986.697
779
- 45,male,39.805,0,no,northeast,7448.40395
780
- 35,male,34.32,3,no,southeast,5934.3798
781
- 53,male,28.88,0,no,northwest,9869.8102
782
- 30,male,24.4,3,yes,southwest,18259.216
783
- 18,male,41.14,0,no,southeast,1146.7966
784
- 51,male,35.97,1,no,southeast,9386.1613
785
- 50,female,27.6,1,yes,southwest,24520.264
786
- 31,female,29.26,1,no,southeast,4350.5144
787
- 35,female,27.7,3,no,southwest,6414.178
788
- 60,male,36.955,0,no,northeast,12741.16745
789
- 21,male,36.86,0,no,northwest,1917.3184
790
- 29,male,22.515,3,no,northeast,5209.57885
791
- 62,female,29.92,0,no,southeast,13457.9608
792
- 39,female,41.8,0,no,southeast,5662.225
793
- 19,male,27.6,0,no,southwest,1252.407
794
- 22,female,23.18,0,no,northeast,2731.9122
795
- 53,male,20.9,0,yes,southeast,21195.818
796
- 39,female,31.92,2,no,northwest,7209.4918
797
- 27,male,28.5,0,yes,northwest,18310.742
798
- 30,male,44.22,2,no,southeast,4266.1658
799
- 30,female,22.895,1,no,northeast,4719.52405
800
- 58,female,33.1,0,no,southwest,11848.141
801
- 33,male,24.795,0,yes,northeast,17904.52705
802
- 42,female,26.18,1,no,southeast,7046.7222
803
- 64,female,35.97,0,no,southeast,14313.8463
804
- 21,male,22.3,1,no,southwest,2103.08
805
- 18,female,42.24,0,yes,southeast,38792.6856
806
- 23,male,26.51,0,no,southeast,1815.8759
807
- 45,female,35.815,0,no,northwest,7731.85785
808
- 40,female,41.42,1,no,northwest,28476.73499
809
- 19,female,36.575,0,no,northwest,2136.88225
810
- 18,male,30.14,0,no,southeast,1131.5066
811
- 25,male,25.84,1,no,northeast,3309.7926
812
- 46,female,30.8,3,no,southwest,9414.92
813
- 33,female,42.94,3,no,northwest,6360.9936
814
- 54,male,21.01,2,no,southeast,11013.7119
815
- 28,male,22.515,2,no,northeast,4428.88785
816
- 36,male,34.43,2,no,southeast,5584.3057
817
- 20,female,31.46,0,no,southeast,1877.9294
818
- 24,female,24.225,0,no,northwest,2842.76075
819
- 23,male,37.1,3,no,southwest,3597.596
820
- 47,female,26.125,1,yes,northeast,23401.30575
821
- 33,female,35.53,0,yes,northwest,55135.40209
822
- 45,male,33.7,1,no,southwest,7445.918
823
- 26,male,17.67,0,no,northwest,2680.9493
824
- 18,female,31.13,0,no,southeast,1621.8827
825
- 44,female,29.81,2,no,southeast,8219.2039
826
- 60,male,24.32,0,no,northwest,12523.6048
827
- 64,female,31.825,2,no,northeast,16069.08475
828
- 56,male,31.79,2,yes,southeast,43813.8661
829
- 36,male,28.025,1,yes,northeast,20773.62775
830
- 41,male,30.78,3,yes,northeast,39597.4072
831
- 39,male,21.85,1,no,northwest,6117.4945
832
- 63,male,33.1,0,no,southwest,13393.756
833
- 36,female,25.84,0,no,northwest,5266.3656
834
- 28,female,23.845,2,no,northwest,4719.73655
835
- 58,male,34.39,0,no,northwest,11743.9341
836
- 36,male,33.82,1,no,northwest,5377.4578
837
- 42,male,35.97,2,no,southeast,7160.3303
838
- 36,male,31.5,0,no,southwest,4402.233
839
- 56,female,28.31,0,no,northeast,11657.7189
840
- 35,female,23.465,2,no,northeast,6402.29135
841
- 59,female,31.35,0,no,northwest,12622.1795
842
- 21,male,31.1,0,no,southwest,1526.312
843
- 59,male,24.7,0,no,northeast,12323.936
844
- 23,female,32.78,2,yes,southeast,36021.0112
845
- 57,female,29.81,0,yes,southeast,27533.9129
846
- 53,male,30.495,0,no,northeast,10072.05505
847
- 60,female,32.45,0,yes,southeast,45008.9555
848
- 51,female,34.2,1,no,southwest,9872.701
849
- 23,male,50.38,1,no,southeast,2438.0552
850
- 27,female,24.1,0,no,southwest,2974.126
851
- 55,male,32.775,0,no,northwest,10601.63225
852
- 37,female,30.78,0,yes,northeast,37270.1512
853
- 61,male,32.3,2,no,northwest,14119.62
854
- 46,female,35.53,0,yes,northeast,42111.6647
855
- 53,female,23.75,2,no,northeast,11729.6795
856
- 49,female,23.845,3,yes,northeast,24106.91255
857
- 20,female,29.6,0,no,southwest,1875.344
858
- 48,female,33.11,0,yes,southeast,40974.1649
859
- 25,male,24.13,0,yes,northwest,15817.9857
860
- 25,female,32.23,1,no,southeast,18218.16139
861
- 57,male,28.1,0,no,southwest,10965.446
862
- 37,female,47.6,2,yes,southwest,46113.511
863
- 38,female,28,3,no,southwest,7151.092
864
- 55,female,33.535,2,no,northwest,12269.68865
865
- 36,female,19.855,0,no,northeast,5458.04645
866
- 51,male,25.4,0,no,southwest,8782.469
867
- 40,male,29.9,2,no,southwest,6600.361
868
- 18,male,37.29,0,no,southeast,1141.4451
869
- 57,male,43.7,1,no,southwest,11576.13
870
- 61,male,23.655,0,no,northeast,13129.60345
871
- 25,female,24.3,3,no,southwest,4391.652
872
- 50,male,36.2,0,no,southwest,8457.818
873
- 26,female,29.48,1,no,southeast,3392.3652
874
- 42,male,24.86,0,no,southeast,5966.8874
875
- 43,male,30.1,1,no,southwest,6849.026
876
- 44,male,21.85,3,no,northeast,8891.1395
877
- 23,female,28.12,0,no,northwest,2690.1138
878
- 49,female,27.1,1,no,southwest,26140.3603
879
- 33,male,33.44,5,no,southeast,6653.7886
880
- 41,male,28.8,1,no,southwest,6282.235
881
- 37,female,29.5,2,no,southwest,6311.952
882
- 22,male,34.8,3,no,southwest,3443.064
883
- 23,male,27.36,1,no,northwest,2789.0574
884
- 21,female,22.135,0,no,northeast,2585.85065
885
- 51,female,37.05,3,yes,northeast,46255.1125
886
- 25,male,26.695,4,no,northwest,4877.98105
887
- 32,male,28.93,1,yes,southeast,19719.6947
888
- 57,male,28.975,0,yes,northeast,27218.43725
889
- 36,female,30.02,0,no,northwest,5272.1758
890
- 22,male,39.5,0,no,southwest,1682.597
891
- 57,male,33.63,1,no,northwest,11945.1327
892
- 64,female,26.885,0,yes,northwest,29330.98315
893
- 36,female,29.04,4,no,southeast,7243.8136
894
- 54,male,24.035,0,no,northeast,10422.91665
895
- 47,male,38.94,2,yes,southeast,44202.6536
896
- 62,male,32.11,0,no,northeast,13555.0049
897
- 61,female,44,0,no,southwest,13063.883
898
- 43,female,20.045,2,yes,northeast,19798.05455
899
- 19,male,25.555,1,no,northwest,2221.56445
900
- 18,female,40.26,0,no,southeast,1634.5734
901
- 19,female,22.515,0,no,northwest,2117.33885
902
- 49,male,22.515,0,no,northeast,8688.85885
903
- 60,male,40.92,0,yes,southeast,48673.5588
904
- 26,male,27.265,3,no,northeast,4661.28635
905
- 49,male,36.85,0,no,southeast,8125.7845
906
- 60,female,35.1,0,no,southwest,12644.589
907
- 26,female,29.355,2,no,northeast,4564.19145
908
- 27,male,32.585,3,no,northeast,4846.92015
909
- 44,female,32.34,1,no,southeast,7633.7206
910
- 63,male,39.8,3,no,southwest,15170.069
911
- 32,female,24.6,0,yes,southwest,17496.306
912
- 22,male,28.31,1,no,northwest,2639.0429
913
- 18,male,31.73,0,yes,northeast,33732.6867
914
- 59,female,26.695,3,no,northwest,14382.70905
915
- 44,female,27.5,1,no,southwest,7626.993
916
- 33,male,24.605,2,no,northwest,5257.50795
917
- 24,female,33.99,0,no,southeast,2473.3341
918
- 43,female,26.885,0,yes,northwest,21774.32215
919
- 45,male,22.895,0,yes,northeast,35069.37452
920
- 61,female,28.2,0,no,southwest,13041.921
921
- 35,female,34.21,1,no,southeast,5245.2269
922
- 62,female,25,0,no,southwest,13451.122
923
- 62,female,33.2,0,no,southwest,13462.52
924
- 38,male,31,1,no,southwest,5488.262
925
- 34,male,35.815,0,no,northwest,4320.41085
926
- 43,male,23.2,0,no,southwest,6250.435
927
- 50,male,32.11,2,no,northeast,25333.33284
928
- 19,female,23.4,2,no,southwest,2913.569
929
- 57,female,20.1,1,no,southwest,12032.326
930
- 62,female,39.16,0,no,southeast,13470.8044
931
- 41,male,34.21,1,no,southeast,6289.7549
932
- 26,male,46.53,1,no,southeast,2927.0647
933
- 39,female,32.5,1,no,southwest,6238.298
934
- 46,male,25.8,5,no,southwest,10096.97
935
- 45,female,35.3,0,no,southwest,7348.142
936
- 32,male,37.18,2,no,southeast,4673.3922
937
- 59,female,27.5,0,no,southwest,12233.828
938
- 44,male,29.735,2,no,northeast,32108.66282
939
- 39,female,24.225,5,no,northwest,8965.79575
940
- 18,male,26.18,2,no,southeast,2304.0022
941
- 53,male,29.48,0,no,southeast,9487.6442
942
- 18,male,23.21,0,no,southeast,1121.8739
943
- 50,female,46.09,1,no,southeast,9549.5651
944
- 18,female,40.185,0,no,northeast,2217.46915
945
- 19,male,22.61,0,no,northwest,1628.4709
946
- 62,male,39.93,0,no,southeast,12982.8747
947
- 56,female,35.8,1,no,southwest,11674.13
948
- 42,male,35.8,2,no,southwest,7160.094
949
- 37,male,34.2,1,yes,northeast,39047.285
950
- 42,male,31.255,0,no,northwest,6358.77645
951
- 25,male,29.7,3,yes,southwest,19933.458
952
- 57,male,18.335,0,no,northeast,11534.87265
953
- 51,male,42.9,2,yes,southeast,47462.894
954
- 30,female,28.405,1,no,northwest,4527.18295
955
- 44,male,30.2,2,yes,southwest,38998.546
956
- 34,male,27.835,1,yes,northwest,20009.63365
957
- 31,male,39.49,1,no,southeast,3875.7341
958
- 54,male,30.8,1,yes,southeast,41999.52
959
- 24,male,26.79,1,no,northwest,12609.88702
960
- 43,male,34.96,1,yes,northeast,41034.2214
961
- 48,male,36.67,1,no,northwest,28468.91901
962
- 19,female,39.615,1,no,northwest,2730.10785
963
- 29,female,25.9,0,no,southwest,3353.284
964
- 63,female,35.2,1,no,southeast,14474.675
965
- 46,male,24.795,3,no,northeast,9500.57305
966
- 52,male,36.765,2,no,northwest,26467.09737
967
- 35,male,27.1,1,no,southwest,4746.344
968
- 51,male,24.795,2,yes,northwest,23967.38305
969
- 44,male,25.365,1,no,northwest,7518.02535
970
- 21,male,25.745,2,no,northeast,3279.86855
971
- 39,female,34.32,5,no,southeast,8596.8278
972
- 50,female,28.16,3,no,southeast,10702.6424
973
- 34,female,23.56,0,no,northeast,4992.3764
974
- 22,female,20.235,0,no,northwest,2527.81865
975
- 19,female,40.5,0,no,southwest,1759.338
976
- 26,male,35.42,0,no,southeast,2322.6218
977
- 29,male,22.895,0,yes,northeast,16138.76205
978
- 48,male,40.15,0,no,southeast,7804.1605
979
- 26,male,29.15,1,no,southeast,2902.9065
980
- 45,female,39.995,3,no,northeast,9704.66805
981
- 36,female,29.92,0,no,southeast,4889.0368
982
- 54,male,25.46,1,no,northeast,25517.11363
983
- 34,male,21.375,0,no,northeast,4500.33925
984
- 31,male,25.9,3,yes,southwest,19199.944
985
- 27,female,30.59,1,no,northeast,16796.41194
986
- 20,male,30.115,5,no,northeast,4915.05985
987
- 44,female,25.8,1,no,southwest,7624.63
988
- 43,male,30.115,3,no,northwest,8410.04685
989
- 45,female,27.645,1,no,northwest,28340.18885
990
- 34,male,34.675,0,no,northeast,4518.82625
991
- 24,female,20.52,0,yes,northeast,14571.8908
992
- 26,female,19.8,1,no,southwest,3378.91
993
- 38,female,27.835,2,no,northeast,7144.86265
994
- 50,female,31.6,2,no,southwest,10118.424
995
- 38,male,28.27,1,no,southeast,5484.4673
996
- 27,female,20.045,3,yes,northwest,16420.49455
997
- 39,female,23.275,3,no,northeast,7986.47525
998
- 39,female,34.1,3,no,southwest,7418.522
999
- 63,female,36.85,0,no,southeast,13887.9685
1000
- 33,female,36.29,3,no,northeast,6551.7501
1001
- 36,female,26.885,0,no,northwest,5267.81815
1002
- 30,male,22.99,2,yes,northwest,17361.7661
1003
- 24,male,32.7,0,yes,southwest,34472.841
1004
- 24,male,25.8,0,no,southwest,1972.95
1005
- 48,male,29.6,0,no,southwest,21232.18226
1006
- 47,male,19.19,1,no,northeast,8627.5411
1007
- 29,male,31.73,2,no,northwest,4433.3877
1008
- 28,male,29.26,2,no,northeast,4438.2634
1009
- 47,male,28.215,3,yes,northwest,24915.22085
1010
- 25,male,24.985,2,no,northeast,23241.47453
1011
- 51,male,27.74,1,no,northeast,9957.7216
1012
- 48,female,22.8,0,no,southwest,8269.044
1013
- 43,male,20.13,2,yes,southeast,18767.7377
1014
- 61,female,33.33,4,no,southeast,36580.28216
1015
- 48,male,32.3,1,no,northwest,8765.249
1016
- 38,female,27.6,0,no,southwest,5383.536
1017
- 59,male,25.46,0,no,northwest,12124.9924
1018
- 19,female,24.605,1,no,northwest,2709.24395
1019
- 26,female,34.2,2,no,southwest,3987.926
1020
- 54,female,35.815,3,no,northwest,12495.29085
1021
- 21,female,32.68,2,no,northwest,26018.95052
1022
- 51,male,37,0,no,southwest,8798.593
1023
- 22,female,31.02,3,yes,southeast,35595.5898
1024
- 47,male,36.08,1,yes,southeast,42211.1382
1025
- 18,male,23.32,1,no,southeast,1711.0268
1026
- 47,female,45.32,1,no,southeast,8569.8618
1027
- 21,female,34.6,0,no,southwest,2020.177
1028
- 19,male,26.03,1,yes,northwest,16450.8947
1029
- 23,male,18.715,0,no,northwest,21595.38229
1030
- 54,male,31.6,0,no,southwest,9850.432
1031
- 37,female,17.29,2,no,northeast,6877.9801
1032
- 46,female,23.655,1,yes,northwest,21677.28345
1033
- 55,female,35.2,0,yes,southeast,44423.803
1034
- 30,female,27.93,0,no,northeast,4137.5227
1035
- 18,male,21.565,0,yes,northeast,13747.87235
1036
- 61,male,38.38,0,no,northwest,12950.0712
1037
- 54,female,23,3,no,southwest,12094.478
1038
- 22,male,37.07,2,yes,southeast,37484.4493
1039
- 45,female,30.495,1,yes,northwest,39725.51805
1040
- 22,male,28.88,0,no,northeast,2250.8352
1041
- 19,male,27.265,2,no,northwest,22493.65964
1042
- 35,female,28.025,0,yes,northwest,20234.85475
1043
- 18,male,23.085,0,no,northeast,1704.70015
1044
- 20,male,30.685,0,yes,northeast,33475.81715
1045
- 28,female,25.8,0,no,southwest,3161.454
1046
- 55,male,35.245,1,no,northeast,11394.06555
1047
- 43,female,24.7,2,yes,northwest,21880.82
1048
- 43,female,25.08,0,no,northeast,7325.0482
1049
- 22,male,52.58,1,yes,southeast,44501.3982
1050
- 25,female,22.515,1,no,northwest,3594.17085
1051
- 49,male,30.9,0,yes,southwest,39727.614
1052
- 44,female,36.955,1,no,northwest,8023.13545
1053
- 64,male,26.41,0,no,northeast,14394.5579
1054
- 49,male,29.83,1,no,northeast,9288.0267
1055
- 47,male,29.8,3,yes,southwest,25309.489
1056
- 27,female,21.47,0,no,northwest,3353.4703
1057
- 55,male,27.645,0,no,northwest,10594.50155
1058
- 48,female,28.9,0,no,southwest,8277.523
1059
- 45,female,31.79,0,no,southeast,17929.30337
1060
- 24,female,39.49,0,no,southeast,2480.9791
1061
- 32,male,33.82,1,no,northwest,4462.7218
1062
- 24,male,32.01,0,no,southeast,1981.5819
1063
- 57,male,27.94,1,no,southeast,11554.2236
1064
- 59,male,41.14,1,yes,southeast,48970.2476
1065
- 36,male,28.595,3,no,northwest,6548.19505
1066
- 29,female,25.6,4,no,southwest,5708.867
1067
- 42,female,25.3,1,no,southwest,7045.499
1068
- 48,male,37.29,2,no,southeast,8978.1851
1069
- 39,male,42.655,0,no,northeast,5757.41345
1070
- 63,male,21.66,1,no,northwest,14349.8544
1071
- 54,female,31.9,1,no,southeast,10928.849
1072
- 37,male,37.07,1,yes,southeast,39871.7043
1073
- 63,male,31.445,0,no,northeast,13974.45555
1074
- 21,male,31.255,0,no,northwest,1909.52745
1075
- 54,female,28.88,2,no,northeast,12096.6512
1076
- 60,female,18.335,0,no,northeast,13204.28565
1077
- 32,female,29.59,1,no,southeast,4562.8421
1078
- 47,female,32,1,no,southwest,8551.347
1079
- 21,male,26.03,0,no,northeast,2102.2647
1080
- 28,male,31.68,0,yes,southeast,34672.1472
1081
- 63,male,33.66,3,no,southeast,15161.5344
1082
- 18,male,21.78,2,no,southeast,11884.04858
1083
- 32,male,27.835,1,no,northwest,4454.40265
1084
- 38,male,19.95,1,no,northwest,5855.9025
1085
- 32,male,31.5,1,no,southwest,4076.497
1086
- 62,female,30.495,2,no,northwest,15019.76005
1087
- 39,female,18.3,5,yes,southwest,19023.26
1088
- 55,male,28.975,0,no,northeast,10796.35025
1089
- 57,male,31.54,0,no,northwest,11353.2276
1090
- 52,male,47.74,1,no,southeast,9748.9106
1091
- 56,male,22.1,0,no,southwest,10577.087
1092
- 47,male,36.19,0,yes,southeast,41676.0811
1093
- 55,female,29.83,0,no,northeast,11286.5387
1094
- 23,male,32.7,3,no,southwest,3591.48
1095
- 22,female,30.4,0,yes,northwest,33907.548
1096
- 50,female,33.7,4,no,southwest,11299.343
1097
- 18,female,31.35,4,no,northeast,4561.1885
1098
- 51,female,34.96,2,yes,northeast,44641.1974
1099
- 22,male,33.77,0,no,southeast,1674.6323
1100
- 52,female,30.875,0,no,northeast,23045.56616
1101
- 25,female,33.99,1,no,southeast,3227.1211
1102
- 33,female,19.095,2,yes,northeast,16776.30405
1103
- 53,male,28.6,3,no,southwest,11253.421
1104
- 29,male,38.94,1,no,southeast,3471.4096
1105
- 58,male,36.08,0,no,southeast,11363.2832
1106
- 37,male,29.8,0,no,southwest,20420.60465
1107
- 54,female,31.24,0,no,southeast,10338.9316
1108
- 49,female,29.925,0,no,northwest,8988.15875
1109
- 50,female,26.22,2,no,northwest,10493.9458
1110
- 26,male,30,1,no,southwest,2904.088
1111
- 45,male,20.35,3,no,southeast,8605.3615
1112
- 54,female,32.3,1,no,northeast,11512.405
1113
- 38,male,38.39,3,yes,southeast,41949.2441
1114
- 48,female,25.85,3,yes,southeast,24180.9335
1115
- 28,female,26.315,3,no,northwest,5312.16985
1116
- 23,male,24.51,0,no,northeast,2396.0959
1117
- 55,male,32.67,1,no,southeast,10807.4863
1118
- 41,male,29.64,5,no,northeast,9222.4026
1119
- 25,male,33.33,2,yes,southeast,36124.5737
1120
- 33,male,35.75,1,yes,southeast,38282.7495
1121
- 30,female,19.95,3,no,northwest,5693.4305
1122
- 23,female,31.4,0,yes,southwest,34166.273
1123
- 46,male,38.17,2,no,southeast,8347.1643
1124
- 53,female,36.86,3,yes,northwest,46661.4424
1125
- 27,female,32.395,1,no,northeast,18903.49141
1126
- 23,female,42.75,1,yes,northeast,40904.1995
1127
- 63,female,25.08,0,no,northwest,14254.6082
1128
- 55,male,29.9,0,no,southwest,10214.636
1129
- 35,female,35.86,2,no,southeast,5836.5204
1130
- 34,male,32.8,1,no,southwest,14358.36437
1131
- 19,female,18.6,0,no,southwest,1728.897
1132
- 39,female,23.87,5,no,southeast,8582.3023
1133
- 27,male,45.9,2,no,southwest,3693.428
1134
- 57,male,40.28,0,no,northeast,20709.02034
1135
- 52,female,18.335,0,no,northwest,9991.03765
1136
- 28,male,33.82,0,no,northwest,19673.33573
1137
- 50,female,28.12,3,no,northwest,11085.5868
1138
- 44,female,25,1,no,southwest,7623.518
1139
- 26,female,22.23,0,no,northwest,3176.2877
1140
- 33,male,30.25,0,no,southeast,3704.3545
1141
- 19,female,32.49,0,yes,northwest,36898.73308
1142
- 50,male,37.07,1,no,southeast,9048.0273
1143
- 41,female,32.6,3,no,southwest,7954.517
1144
- 52,female,24.86,0,no,southeast,27117.99378
1145
- 39,male,32.34,2,no,southeast,6338.0756
1146
- 50,male,32.3,2,no,southwest,9630.397
1147
- 52,male,32.775,3,no,northwest,11289.10925
1148
- 60,male,32.8,0,yes,southwest,52590.82939
1149
- 20,female,31.92,0,no,northwest,2261.5688
1150
- 55,male,21.5,1,no,southwest,10791.96
1151
- 42,male,34.1,0,no,southwest,5979.731
1152
- 18,female,30.305,0,no,northeast,2203.73595
1153
- 58,female,36.48,0,no,northwest,12235.8392
1154
- 43,female,32.56,3,yes,southeast,40941.2854
1155
- 35,female,35.815,1,no,northwest,5630.45785
1156
- 48,female,27.93,4,no,northwest,11015.1747
1157
- 36,female,22.135,3,no,northeast,7228.21565
1158
- 19,male,44.88,0,yes,southeast,39722.7462
1159
- 23,female,23.18,2,no,northwest,14426.07385
1160
- 20,female,30.59,0,no,northeast,2459.7201
1161
- 32,female,41.1,0,no,southwest,3989.841
1162
- 43,female,34.58,1,no,northwest,7727.2532
1163
- 34,male,42.13,2,no,southeast,5124.1887
1164
- 30,male,38.83,1,no,southeast,18963.17192
1165
- 18,female,28.215,0,no,northeast,2200.83085
1166
- 41,female,28.31,1,no,northwest,7153.5539
1167
- 35,female,26.125,0,no,northeast,5227.98875
1168
- 57,male,40.37,0,no,southeast,10982.5013
1169
- 29,female,24.6,2,no,southwest,4529.477
1170
- 32,male,35.2,2,no,southwest,4670.64
1171
- 37,female,34.105,1,no,northwest,6112.35295
1172
- 18,male,27.36,1,yes,northeast,17178.6824
1173
- 43,female,26.7,2,yes,southwest,22478.6
1174
- 56,female,41.91,0,no,southeast,11093.6229
1175
- 38,male,29.26,2,no,northwest,6457.8434
1176
- 29,male,32.11,2,no,northwest,4433.9159
1177
- 22,female,27.1,0,no,southwest,2154.361
1178
- 52,female,24.13,1,yes,northwest,23887.6627
1179
- 40,female,27.4,1,no,southwest,6496.886
1180
- 23,female,34.865,0,no,northeast,2899.48935
1181
- 31,male,29.81,0,yes,southeast,19350.3689
1182
- 42,female,41.325,1,no,northeast,7650.77375
1183
- 24,female,29.925,0,no,northwest,2850.68375
1184
- 25,female,30.3,0,no,southwest,2632.992
1185
- 48,female,27.36,1,no,northeast,9447.3824
1186
- 23,female,28.49,1,yes,southeast,18328.2381
1187
- 45,male,23.56,2,no,northeast,8603.8234
1188
- 20,male,35.625,3,yes,northwest,37465.34375
1189
- 62,female,32.68,0,no,northwest,13844.7972
1190
- 43,female,25.27,1,yes,northeast,21771.3423
1191
- 23,female,28,0,no,southwest,13126.67745
1192
- 31,female,32.775,2,no,northwest,5327.40025
1193
- 41,female,21.755,1,no,northeast,13725.47184
1194
- 58,female,32.395,1,no,northeast,13019.16105
1195
- 48,female,36.575,0,no,northwest,8671.19125
1196
- 31,female,21.755,0,no,northwest,4134.08245
1197
- 19,female,27.93,3,no,northwest,18838.70366
1198
- 19,female,30.02,0,yes,northwest,33307.5508
1199
- 41,male,33.55,0,no,southeast,5699.8375
1200
- 40,male,29.355,1,no,northwest,6393.60345
1201
- 31,female,25.8,2,no,southwest,4934.705
1202
- 37,male,24.32,2,no,northwest,6198.7518
1203
- 46,male,40.375,2,no,northwest,8733.22925
1204
- 22,male,32.11,0,no,northwest,2055.3249
1205
- 51,male,32.3,1,no,northeast,9964.06
1206
- 18,female,27.28,3,yes,southeast,18223.4512
1207
- 35,male,17.86,1,no,northwest,5116.5004
1208
- 59,female,34.8,2,no,southwest,36910.60803
1209
- 36,male,33.4,2,yes,southwest,38415.474
1210
- 37,female,25.555,1,yes,northeast,20296.86345
1211
- 59,male,37.1,1,no,southwest,12347.172
1212
- 36,male,30.875,1,no,northwest,5373.36425
1213
- 39,male,34.1,2,no,southeast,23563.01618
1214
- 18,male,21.47,0,no,northeast,1702.4553
1215
- 52,female,33.3,2,no,southwest,10806.839
1216
- 27,female,31.255,1,no,northwest,3956.07145
1217
- 18,male,39.14,0,no,northeast,12890.05765
1218
- 40,male,25.08,0,no,southeast,5415.6612
1219
- 29,male,37.29,2,no,southeast,4058.1161
1220
- 46,female,34.6,1,yes,southwest,41661.602
1221
- 38,female,30.21,3,no,northwest,7537.1639
1222
- 30,female,21.945,1,no,northeast,4718.20355
1223
- 40,male,24.97,2,no,southeast,6593.5083
1224
- 50,male,25.3,0,no,southeast,8442.667
1225
- 20,female,24.42,0,yes,southeast,26125.67477
1226
- 41,male,23.94,1,no,northeast,6858.4796
1227
- 33,female,39.82,1,no,southeast,4795.6568
1228
- 38,male,16.815,2,no,northeast,6640.54485
1229
- 42,male,37.18,2,no,southeast,7162.0122
1230
- 56,male,34.43,0,no,southeast,10594.2257
1231
- 58,male,30.305,0,no,northeast,11938.25595
1232
- 52,male,34.485,3,yes,northwest,60021.39897
1233
- 20,female,21.8,0,yes,southwest,20167.33603
1234
- 54,female,24.605,3,no,northwest,12479.70895
1235
- 58,male,23.3,0,no,southwest,11345.519
1236
- 45,female,27.83,2,no,southeast,8515.7587
1237
- 26,male,31.065,0,no,northwest,2699.56835
1238
- 63,female,21.66,0,no,northeast,14449.8544
1239
- 58,female,28.215,0,no,northwest,12224.35085
1240
- 37,male,22.705,3,no,northeast,6985.50695
1241
- 25,female,42.13,1,no,southeast,3238.4357
1242
- 52,male,41.8,2,yes,southeast,47269.854
1243
- 64,male,36.96,2,yes,southeast,49577.6624
1244
- 22,female,21.28,3,no,northwest,4296.2712
1245
- 28,female,33.11,0,no,southeast,3171.6149
1246
- 18,male,33.33,0,no,southeast,1135.9407
1247
- 28,male,24.3,5,no,southwest,5615.369
1248
- 45,female,25.7,3,no,southwest,9101.798
1249
- 33,male,29.4,4,no,southwest,6059.173
1250
- 18,female,39.82,0,no,southeast,1633.9618
1251
- 32,male,33.63,1,yes,northeast,37607.5277
1252
- 24,male,29.83,0,yes,northeast,18648.4217
1253
- 19,male,19.8,0,no,southwest,1241.565
1254
- 20,male,27.3,0,yes,southwest,16232.847
1255
- 40,female,29.3,4,no,southwest,15828.82173
1256
- 34,female,27.72,0,no,southeast,4415.1588
1257
- 42,female,37.9,0,no,southwest,6474.013
1258
- 51,female,36.385,3,no,northwest,11436.73815
1259
- 54,female,27.645,1,no,northwest,11305.93455
1260
- 55,male,37.715,3,no,northwest,30063.58055
1261
- 52,female,23.18,0,no,northeast,10197.7722
1262
- 32,female,20.52,0,no,northeast,4544.2348
1263
- 28,male,37.1,1,no,southwest,3277.161
1264
- 41,female,28.05,1,no,southeast,6770.1925
1265
- 43,female,29.9,1,no,southwest,7337.748
1266
- 49,female,33.345,2,no,northeast,10370.91255
1267
- 64,male,23.76,0,yes,southeast,26926.5144
1268
- 55,female,30.5,0,no,southwest,10704.47
1269
- 24,male,31.065,0,yes,northeast,34254.05335
1270
- 20,female,33.3,0,no,southwest,1880.487
1271
- 45,male,27.5,3,no,southwest,8615.3
1272
- 26,male,33.915,1,no,northwest,3292.52985
1273
- 25,female,34.485,0,no,northwest,3021.80915
1274
- 43,male,25.52,5,no,southeast,14478.33015
1275
- 35,male,27.61,1,no,southeast,4747.0529
1276
- 26,male,27.06,0,yes,southeast,17043.3414
1277
- 57,male,23.7,0,no,southwest,10959.33
1278
- 22,female,30.4,0,no,northeast,2741.948
1279
- 32,female,29.735,0,no,northwest,4357.04365
1280
- 39,male,29.925,1,yes,northeast,22462.04375
1281
- 25,female,26.79,2,no,northwest,4189.1131
1282
- 48,female,33.33,0,no,southeast,8283.6807
1283
- 47,female,27.645,2,yes,northwest,24535.69855
1284
- 18,female,21.66,0,yes,northeast,14283.4594
1285
- 18,male,30.03,1,no,southeast,1720.3537
1286
- 61,male,36.3,1,yes,southwest,47403.88
1287
- 47,female,24.32,0,no,northeast,8534.6718
1288
- 28,female,17.29,0,no,northeast,3732.6251
1289
- 36,female,25.9,1,no,southwest,5472.449
1290
- 20,male,39.4,2,yes,southwest,38344.566
1291
- 44,male,34.32,1,no,southeast,7147.4728
1292
- 38,female,19.95,2,no,northeast,7133.9025
1293
- 19,male,34.9,0,yes,southwest,34828.654
1294
- 21,male,23.21,0,no,southeast,1515.3449
1295
- 46,male,25.745,3,no,northwest,9301.89355
1296
- 58,male,25.175,0,no,northeast,11931.12525
1297
- 20,male,22,1,no,southwest,1964.78
1298
- 18,male,26.125,0,no,northeast,1708.92575
1299
- 28,female,26.51,2,no,southeast,4340.4409
1300
- 33,male,27.455,2,no,northwest,5261.46945
1301
- 19,female,25.745,1,no,northwest,2710.82855
1302
- 45,male,30.36,0,yes,southeast,62592.87309
1303
- 62,male,30.875,3,yes,northwest,46718.16325
1304
- 25,female,20.8,1,no,southwest,3208.787
1305
- 43,male,27.8,0,yes,southwest,37829.7242
1306
- 42,male,24.605,2,yes,northeast,21259.37795
1307
- 24,female,27.72,0,no,southeast,2464.6188
1308
- 29,female,21.85,0,yes,northeast,16115.3045
1309
- 32,male,28.12,4,yes,northwest,21472.4788
1310
- 25,female,30.2,0,yes,southwest,33900.653
1311
- 41,male,32.2,2,no,southwest,6875.961
1312
- 42,male,26.315,1,no,northwest,6940.90985
1313
- 33,female,26.695,0,no,northwest,4571.41305
1314
- 34,male,42.9,1,no,southwest,4536.259
1315
- 19,female,34.7,2,yes,southwest,36397.576
1316
- 30,female,23.655,3,yes,northwest,18765.87545
1317
- 18,male,28.31,1,no,northeast,11272.33139
1318
- 19,female,20.6,0,no,southwest,1731.677
1319
- 18,male,53.13,0,no,southeast,1163.4627
1320
- 35,male,39.71,4,no,northeast,19496.71917
1321
- 39,female,26.315,2,no,northwest,7201.70085
1322
- 31,male,31.065,3,no,northwest,5425.02335
1323
- 62,male,26.695,0,yes,northeast,28101.33305
1324
- 62,male,38.83,0,no,southeast,12981.3457
1325
- 42,female,40.37,2,yes,southeast,43896.3763
1326
- 31,male,25.935,1,no,northwest,4239.89265
1327
- 61,male,33.535,0,no,northeast,13143.33665
1328
- 42,female,32.87,0,no,northeast,7050.0213
1329
- 51,male,30.03,1,no,southeast,9377.9047
1330
- 23,female,24.225,2,no,northeast,22395.74424
1331
- 52,male,38.6,2,no,southwest,10325.206
1332
- 57,female,25.74,2,no,southeast,12629.1656
1333
- 23,female,33.4,0,no,southwest,10795.93733
1334
- 52,female,44.7,3,no,southwest,11411.685
1335
- 50,male,30.97,3,no,northwest,10600.5483
1336
- 18,female,31.92,0,no,northeast,2205.9808
1337
- 18,female,36.85,0,no,southeast,1629.8335
1338
- 21,female,25.8,0,no,southwest,2007.945
1339
- 61,female,29.07,0,yes,northwest,29141.3603
1
+ age,sex,bmi,children,smoker,region,charges
2
+ 19,female,27.9,0,yes,southwest,16884.924
3
+ 18,male,33.77,1,no,southeast,1725.5523
4
+ 28,male,33,3,no,southeast,4449.462
5
+ 33,male,22.705,0,no,northwest,21984.47061
6
+ 32,male,28.88,0,no,northwest,3866.8552
7
+ 31,female,25.74,0,no,southeast,3756.6216
8
+ 46,female,33.44,1,no,southeast,8240.5896
9
+ 37,female,27.74,3,no,northwest,7281.5056
10
+ 37,male,29.83,2,no,northeast,6406.4107
11
+ 60,female,25.84,0,no,northwest,28923.13692
12
+ 25,male,26.22,0,no,northeast,2721.3208
13
+ 62,female,26.29,0,yes,southeast,27808.7251
14
+ 23,male,34.4,0,no,southwest,1826.843
15
+ 56,female,39.82,0,no,southeast,11090.7178
16
+ 27,male,42.13,0,yes,southeast,39611.7577
17
+ 19,male,24.6,1,no,southwest,1837.237
18
+ 52,female,30.78,1,no,northeast,10797.3362
19
+ 23,male,23.845,0,no,northeast,2395.17155
20
+ 56,male,40.3,0,no,southwest,10602.385
21
+ 30,male,35.3,0,yes,southwest,36837.467
22
+ 60,female,36.005,0,no,northeast,13228.84695
23
+ 30,female,32.4,1,no,southwest,4149.736
24
+ 18,male,34.1,0,no,southeast,1137.011
25
+ 34,female,31.92,1,yes,northeast,37701.8768
26
+ 37,male,28.025,2,no,northwest,6203.90175
27
+ 59,female,27.72,3,no,southeast,14001.1338
28
+ 63,female,23.085,0,no,northeast,14451.83515
29
+ 55,female,32.775,2,no,northwest,12268.63225
30
+ 23,male,17.385,1,no,northwest,2775.19215
31
+ 31,male,36.3,2,yes,southwest,38711
32
+ 22,male,35.6,0,yes,southwest,35585.576
33
+ 18,female,26.315,0,no,northeast,2198.18985
34
+ 19,female,28.6,5,no,southwest,4687.797
35
+ 63,male,28.31,0,no,northwest,13770.0979
36
+ 28,male,36.4,1,yes,southwest,51194.55914
37
+ 19,male,20.425,0,no,northwest,1625.43375
38
+ 62,female,32.965,3,no,northwest,15612.19335
39
+ 26,male,20.8,0,no,southwest,2302.3
40
+ 35,male,36.67,1,yes,northeast,39774.2763
41
+ 60,male,39.9,0,yes,southwest,48173.361
42
+ 24,female,26.6,0,no,northeast,3046.062
43
+ 31,female,36.63,2,no,southeast,4949.7587
44
+ 41,male,21.78,1,no,southeast,6272.4772
45
+ 37,female,30.8,2,no,southeast,6313.759
46
+ 38,male,37.05,1,no,northeast,6079.6715
47
+ 55,male,37.3,0,no,southwest,20630.28351
48
+ 18,female,38.665,2,no,northeast,3393.35635
49
+ 28,female,34.77,0,no,northwest,3556.9223
50
+ 60,female,24.53,0,no,southeast,12629.8967
51
+ 36,male,35.2,1,yes,southeast,38709.176
52
+ 18,female,35.625,0,no,northeast,2211.13075
53
+ 21,female,33.63,2,no,northwest,3579.8287
54
+ 48,male,28,1,yes,southwest,23568.272
55
+ 36,male,34.43,0,yes,southeast,37742.5757
56
+ 40,female,28.69,3,no,northwest,8059.6791
57
+ 58,male,36.955,2,yes,northwest,47496.49445
58
+ 58,female,31.825,2,no,northeast,13607.36875
59
+ 18,male,31.68,2,yes,southeast,34303.1672
60
+ 53,female,22.88,1,yes,southeast,23244.7902
61
+ 34,female,37.335,2,no,northwest,5989.52365
62
+ 43,male,27.36,3,no,northeast,8606.2174
63
+ 25,male,33.66,4,no,southeast,4504.6624
64
+ 64,male,24.7,1,no,northwest,30166.61817
65
+ 28,female,25.935,1,no,northwest,4133.64165
66
+ 20,female,22.42,0,yes,northwest,14711.7438
67
+ 19,female,28.9,0,no,southwest,1743.214
68
+ 61,female,39.1,2,no,southwest,14235.072
69
+ 40,male,26.315,1,no,northwest,6389.37785
70
+ 40,female,36.19,0,no,southeast,5920.1041
71
+ 28,male,23.98,3,yes,southeast,17663.1442
72
+ 27,female,24.75,0,yes,southeast,16577.7795
73
+ 31,male,28.5,5,no,northeast,6799.458
74
+ 53,female,28.1,3,no,southwest,11741.726
75
+ 58,male,32.01,1,no,southeast,11946.6259
76
+ 44,male,27.4,2,no,southwest,7726.854
77
+ 57,male,34.01,0,no,northwest,11356.6609
78
+ 29,female,29.59,1,no,southeast,3947.4131
79
+ 21,male,35.53,0,no,southeast,1532.4697
80
+ 22,female,39.805,0,no,northeast,2755.02095
81
+ 41,female,32.965,0,no,northwest,6571.02435
82
+ 31,male,26.885,1,no,northeast,4441.21315
83
+ 45,female,38.285,0,no,northeast,7935.29115
84
+ 22,male,37.62,1,yes,southeast,37165.1638
85
+ 48,female,41.23,4,no,northwest,11033.6617
86
+ 37,female,34.8,2,yes,southwest,39836.519
87
+ 45,male,22.895,2,yes,northwest,21098.55405
88
+ 57,female,31.16,0,yes,northwest,43578.9394
89
+ 56,female,27.2,0,no,southwest,11073.176
90
+ 46,female,27.74,0,no,northwest,8026.6666
91
+ 55,female,26.98,0,no,northwest,11082.5772
92
+ 21,female,39.49,0,no,southeast,2026.9741
93
+ 53,female,24.795,1,no,northwest,10942.13205
94
+ 59,male,29.83,3,yes,northeast,30184.9367
95
+ 35,male,34.77,2,no,northwest,5729.0053
96
+ 64,female,31.3,2,yes,southwest,47291.055
97
+ 28,female,37.62,1,no,southeast,3766.8838
98
+ 54,female,30.8,3,no,southwest,12105.32
99
+ 55,male,38.28,0,no,southeast,10226.2842
100
+ 56,male,19.95,0,yes,northeast,22412.6485
101
+ 38,male,19.3,0,yes,southwest,15820.699
102
+ 41,female,31.6,0,no,southwest,6186.127
103
+ 30,male,25.46,0,no,northeast,3645.0894
104
+ 18,female,30.115,0,no,northeast,21344.8467
105
+ 61,female,29.92,3,yes,southeast,30942.1918
106
+ 34,female,27.5,1,no,southwest,5003.853
107
+ 20,male,28.025,1,yes,northwest,17560.37975
108
+ 19,female,28.4,1,no,southwest,2331.519
109
+ 26,male,30.875,2,no,northwest,3877.30425
110
+ 29,male,27.94,0,no,southeast,2867.1196
111
+ 63,male,35.09,0,yes,southeast,47055.5321
112
+ 54,male,33.63,1,no,northwest,10825.2537
113
+ 55,female,29.7,2,no,southwest,11881.358
114
+ 37,male,30.8,0,no,southwest,4646.759
115
+ 21,female,35.72,0,no,northwest,2404.7338
116
+ 52,male,32.205,3,no,northeast,11488.31695
117
+ 60,male,28.595,0,no,northeast,30259.99556
118
+ 58,male,49.06,0,no,southeast,11381.3254
119
+ 29,female,27.94,1,yes,southeast,19107.7796
120
+ 49,female,27.17,0,no,southeast,8601.3293
121
+ 37,female,23.37,2,no,northwest,6686.4313
122
+ 44,male,37.1,2,no,southwest,7740.337
123
+ 18,male,23.75,0,no,northeast,1705.6245
124
+ 20,female,28.975,0,no,northwest,2257.47525
125
+ 44,male,31.35,1,yes,northeast,39556.4945
126
+ 47,female,33.915,3,no,northwest,10115.00885
127
+ 26,female,28.785,0,no,northeast,3385.39915
128
+ 19,female,28.3,0,yes,southwest,17081.08
129
+ 52,female,37.4,0,no,southwest,9634.538
130
+ 32,female,17.765,2,yes,northwest,32734.1863
131
+ 38,male,34.7,2,no,southwest,6082.405
132
+ 59,female,26.505,0,no,northeast,12815.44495
133
+ 61,female,22.04,0,no,northeast,13616.3586
134
+ 53,female,35.9,2,no,southwest,11163.568
135
+ 19,male,25.555,0,no,northwest,1632.56445
136
+ 20,female,28.785,0,no,northeast,2457.21115
137
+ 22,female,28.05,0,no,southeast,2155.6815
138
+ 19,male,34.1,0,no,southwest,1261.442
139
+ 22,male,25.175,0,no,northwest,2045.68525
140
+ 54,female,31.9,3,no,southeast,27322.73386
141
+ 22,female,36,0,no,southwest,2166.732
142
+ 34,male,22.42,2,no,northeast,27375.90478
143
+ 26,male,32.49,1,no,northeast,3490.5491
144
+ 34,male,25.3,2,yes,southeast,18972.495
145
+ 29,male,29.735,2,no,northwest,18157.876
146
+ 30,male,28.69,3,yes,northwest,20745.9891
147
+ 29,female,38.83,3,no,southeast,5138.2567
148
+ 46,male,30.495,3,yes,northwest,40720.55105
149
+ 51,female,37.73,1,no,southeast,9877.6077
150
+ 53,female,37.43,1,no,northwest,10959.6947
151
+ 19,male,28.4,1,no,southwest,1842.519
152
+ 35,male,24.13,1,no,northwest,5125.2157
153
+ 48,male,29.7,0,no,southeast,7789.635
154
+ 32,female,37.145,3,no,northeast,6334.34355
155
+ 42,female,23.37,0,yes,northeast,19964.7463
156
+ 40,female,25.46,1,no,northeast,7077.1894
157
+ 44,male,39.52,0,no,northwest,6948.7008
158
+ 48,male,24.42,0,yes,southeast,21223.6758
159
+ 18,male,25.175,0,yes,northeast,15518.18025
160
+ 30,male,35.53,0,yes,southeast,36950.2567
161
+ 50,female,27.83,3,no,southeast,19749.38338
162
+ 42,female,26.6,0,yes,northwest,21348.706
163
+ 18,female,36.85,0,yes,southeast,36149.4835
164
+ 54,male,39.6,1,no,southwest,10450.552
165
+ 32,female,29.8,2,no,southwest,5152.134
166
+ 37,male,29.64,0,no,northwest,5028.1466
167
+ 47,male,28.215,4,no,northeast,10407.08585
168
+ 20,female,37,5,no,southwest,4830.63
169
+ 32,female,33.155,3,no,northwest,6128.79745
170
+ 19,female,31.825,1,no,northwest,2719.27975
171
+ 27,male,18.905,3,no,northeast,4827.90495
172
+ 63,male,41.47,0,no,southeast,13405.3903
173
+ 49,male,30.3,0,no,southwest,8116.68
174
+ 18,male,15.96,0,no,northeast,1694.7964
175
+ 35,female,34.8,1,no,southwest,5246.047
176
+ 24,female,33.345,0,no,northwest,2855.43755
177
+ 63,female,37.7,0,yes,southwest,48824.45
178
+ 38,male,27.835,2,no,northwest,6455.86265
179
+ 54,male,29.2,1,no,southwest,10436.096
180
+ 46,female,28.9,2,no,southwest,8823.279
181
+ 41,female,33.155,3,no,northeast,8538.28845
182
+ 58,male,28.595,0,no,northwest,11735.87905
183
+ 18,female,38.28,0,no,southeast,1631.8212
184
+ 22,male,19.95,3,no,northeast,4005.4225
185
+ 44,female,26.41,0,no,northwest,7419.4779
186
+ 44,male,30.69,2,no,southeast,7731.4271
187
+ 36,male,41.895,3,yes,northeast,43753.33705
188
+ 26,female,29.92,2,no,southeast,3981.9768
189
+ 30,female,30.9,3,no,southwest,5325.651
190
+ 41,female,32.2,1,no,southwest,6775.961
191
+ 29,female,32.11,2,no,northwest,4922.9159
192
+ 61,male,31.57,0,no,southeast,12557.6053
193
+ 36,female,26.2,0,no,southwest,4883.866
194
+ 25,male,25.74,0,no,southeast,2137.6536
195
+ 56,female,26.6,1,no,northwest,12044.342
196
+ 18,male,34.43,0,no,southeast,1137.4697
197
+ 19,male,30.59,0,no,northwest,1639.5631
198
+ 39,female,32.8,0,no,southwest,5649.715
199
+ 45,female,28.6,2,no,southeast,8516.829
200
+ 51,female,18.05,0,no,northwest,9644.2525
201
+ 64,female,39.33,0,no,northeast,14901.5167
202
+ 19,female,32.11,0,no,northwest,2130.6759
203
+ 48,female,32.23,1,no,southeast,8871.1517
204
+ 60,female,24.035,0,no,northwest,13012.20865
205
+ 27,female,36.08,0,yes,southeast,37133.8982
206
+ 46,male,22.3,0,no,southwest,7147.105
207
+ 28,female,28.88,1,no,northeast,4337.7352
208
+ 59,male,26.4,0,no,southeast,11743.299
209
+ 35,male,27.74,2,yes,northeast,20984.0936
210
+ 63,female,31.8,0,no,southwest,13880.949
211
+ 40,male,41.23,1,no,northeast,6610.1097
212
+ 20,male,33,1,no,southwest,1980.07
213
+ 40,male,30.875,4,no,northwest,8162.71625
214
+ 24,male,28.5,2,no,northwest,3537.703
215
+ 34,female,26.73,1,no,southeast,5002.7827
216
+ 45,female,30.9,2,no,southwest,8520.026
217
+ 41,female,37.1,2,no,southwest,7371.772
218
+ 53,female,26.6,0,no,northwest,10355.641
219
+ 27,male,23.1,0,no,southeast,2483.736
220
+ 26,female,29.92,1,no,southeast,3392.9768
221
+ 24,female,23.21,0,no,southeast,25081.76784
222
+ 34,female,33.7,1,no,southwest,5012.471
223
+ 53,female,33.25,0,no,northeast,10564.8845
224
+ 32,male,30.8,3,no,southwest,5253.524
225
+ 19,male,34.8,0,yes,southwest,34779.615
226
+ 42,male,24.64,0,yes,southeast,19515.5416
227
+ 55,male,33.88,3,no,southeast,11987.1682
228
+ 28,male,38.06,0,no,southeast,2689.4954
229
+ 58,female,41.91,0,no,southeast,24227.33724
230
+ 41,female,31.635,1,no,northeast,7358.17565
231
+ 47,male,25.46,2,no,northeast,9225.2564
232
+ 42,female,36.195,1,no,northwest,7443.64305
233
+ 59,female,27.83,3,no,southeast,14001.2867
234
+ 19,female,17.8,0,no,southwest,1727.785
235
+ 59,male,27.5,1,no,southwest,12333.828
236
+ 39,male,24.51,2,no,northwest,6710.1919
237
+ 40,female,22.22,2,yes,southeast,19444.2658
238
+ 18,female,26.73,0,no,southeast,1615.7667
239
+ 31,male,38.39,2,no,southeast,4463.2051
240
+ 19,male,29.07,0,yes,northwest,17352.6803
241
+ 44,male,38.06,1,no,southeast,7152.6714
242
+ 23,female,36.67,2,yes,northeast,38511.6283
243
+ 33,female,22.135,1,no,northeast,5354.07465
244
+ 55,female,26.8,1,no,southwest,35160.13457
245
+ 40,male,35.3,3,no,southwest,7196.867
246
+ 63,female,27.74,0,yes,northeast,29523.1656
247
+ 54,male,30.02,0,no,northwest,24476.47851
248
+ 60,female,38.06,0,no,southeast,12648.7034
249
+ 24,male,35.86,0,no,southeast,1986.9334
250
+ 19,male,20.9,1,no,southwest,1832.094
251
+ 29,male,28.975,1,no,northeast,4040.55825
252
+ 18,male,17.29,2,yes,northeast,12829.4551
253
+ 63,female,32.2,2,yes,southwest,47305.305
254
+ 54,male,34.21,2,yes,southeast,44260.7499
255
+ 27,male,30.3,3,no,southwest,4260.744
256
+ 50,male,31.825,0,yes,northeast,41097.16175
257
+ 55,female,25.365,3,no,northeast,13047.33235
258
+ 56,male,33.63,0,yes,northwest,43921.1837
259
+ 38,female,40.15,0,no,southeast,5400.9805
260
+ 51,male,24.415,4,no,northwest,11520.09985
261
+ 19,male,31.92,0,yes,northwest,33750.2918
262
+ 58,female,25.2,0,no,southwest,11837.16
263
+ 20,female,26.84,1,yes,southeast,17085.2676
264
+ 52,male,24.32,3,yes,northeast,24869.8368
265
+ 19,male,36.955,0,yes,northwest,36219.40545
266
+ 53,female,38.06,3,no,southeast,20462.99766
267
+ 46,male,42.35,3,yes,southeast,46151.1245
268
+ 40,male,19.8,1,yes,southeast,17179.522
269
+ 59,female,32.395,3,no,northeast,14590.63205
270
+ 45,male,30.2,1,no,southwest,7441.053
271
+ 49,male,25.84,1,no,northeast,9282.4806
272
+ 18,male,29.37,1,no,southeast,1719.4363
273
+ 50,male,34.2,2,yes,southwest,42856.838
274
+ 41,male,37.05,2,no,northwest,7265.7025
275
+ 50,male,27.455,1,no,northeast,9617.66245
276
+ 25,male,27.55,0,no,northwest,2523.1695
277
+ 47,female,26.6,2,no,northeast,9715.841
278
+ 19,male,20.615,2,no,northwest,2803.69785
279
+ 22,female,24.3,0,no,southwest,2150.469
280
+ 59,male,31.79,2,no,southeast,12928.7911
281
+ 51,female,21.56,1,no,southeast,9855.1314
282
+ 40,female,28.12,1,yes,northeast,22331.5668
283
+ 54,male,40.565,3,yes,northeast,48549.17835
284
+ 30,male,27.645,1,no,northeast,4237.12655
285
+ 55,female,32.395,1,no,northeast,11879.10405
286
+ 52,female,31.2,0,no,southwest,9625.92
287
+ 46,male,26.62,1,no,southeast,7742.1098
288
+ 46,female,48.07,2,no,northeast,9432.9253
289
+ 63,female,26.22,0,no,northwest,14256.1928
290
+ 59,female,36.765,1,yes,northeast,47896.79135
291
+ 52,male,26.4,3,no,southeast,25992.82104
292
+ 28,female,33.4,0,no,southwest,3172.018
293
+ 29,male,29.64,1,no,northeast,20277.80751
294
+ 25,male,45.54,2,yes,southeast,42112.2356
295
+ 22,female,28.82,0,no,southeast,2156.7518
296
+ 25,male,26.8,3,no,southwest,3906.127
297
+ 18,male,22.99,0,no,northeast,1704.5681
298
+ 19,male,27.7,0,yes,southwest,16297.846
299
+ 47,male,25.41,1,yes,southeast,21978.6769
300
+ 31,male,34.39,3,yes,northwest,38746.3551
301
+ 48,female,28.88,1,no,northwest,9249.4952
302
+ 36,male,27.55,3,no,northeast,6746.7425
303
+ 53,female,22.61,3,yes,northeast,24873.3849
304
+ 56,female,37.51,2,no,southeast,12265.5069
305
+ 28,female,33,2,no,southeast,4349.462
306
+ 57,female,38,2,no,southwest,12646.207
307
+ 29,male,33.345,2,no,northwest,19442.3535
308
+ 28,female,27.5,2,no,southwest,20177.67113
309
+ 30,female,33.33,1,no,southeast,4151.0287
310
+ 58,male,34.865,0,no,northeast,11944.59435
311
+ 41,female,33.06,2,no,northwest,7749.1564
312
+ 50,male,26.6,0,no,southwest,8444.474
313
+ 19,female,24.7,0,no,southwest,1737.376
314
+ 43,male,35.97,3,yes,southeast,42124.5153
315
+ 49,male,35.86,0,no,southeast,8124.4084
316
+ 27,female,31.4,0,yes,southwest,34838.873
317
+ 52,male,33.25,0,no,northeast,9722.7695
318
+ 50,male,32.205,0,no,northwest,8835.26495
319
+ 54,male,32.775,0,no,northeast,10435.06525
320
+ 44,female,27.645,0,no,northwest,7421.19455
321
+ 32,male,37.335,1,no,northeast,4667.60765
322
+ 34,male,25.27,1,no,northwest,4894.7533
323
+ 26,female,29.64,4,no,northeast,24671.66334
324
+ 34,male,30.8,0,yes,southwest,35491.64
325
+ 57,male,40.945,0,no,northeast,11566.30055
326
+ 29,male,27.2,0,no,southwest,2866.091
327
+ 40,male,34.105,1,no,northeast,6600.20595
328
+ 27,female,23.21,1,no,southeast,3561.8889
329
+ 45,male,36.48,2,yes,northwest,42760.5022
330
+ 64,female,33.8,1,yes,southwest,47928.03
331
+ 52,male,36.7,0,no,southwest,9144.565
332
+ 61,female,36.385,1,yes,northeast,48517.56315
333
+ 52,male,27.36,0,yes,northwest,24393.6224
334
+ 61,female,31.16,0,no,northwest,13429.0354
335
+ 56,female,28.785,0,no,northeast,11658.37915
336
+ 43,female,35.72,2,no,northeast,19144.57652
337
+ 64,male,34.5,0,no,southwest,13822.803
338
+ 60,male,25.74,0,no,southeast,12142.5786
339
+ 62,male,27.55,1,no,northwest,13937.6665
340
+ 50,male,32.3,1,yes,northeast,41919.097
341
+ 46,female,27.72,1,no,southeast,8232.6388
342
+ 24,female,27.6,0,no,southwest,18955.22017
343
+ 62,male,30.02,0,no,northwest,13352.0998
344
+ 60,female,27.55,0,no,northeast,13217.0945
345
+ 63,male,36.765,0,no,northeast,13981.85035
346
+ 49,female,41.47,4,no,southeast,10977.2063
347
+ 34,female,29.26,3,no,southeast,6184.2994
348
+ 33,male,35.75,2,no,southeast,4889.9995
349
+ 46,male,33.345,1,no,northeast,8334.45755
350
+ 36,female,29.92,1,no,southeast,5478.0368
351
+ 19,male,27.835,0,no,northwest,1635.73365
352
+ 57,female,23.18,0,no,northwest,11830.6072
353
+ 50,female,25.6,0,no,southwest,8932.084
354
+ 30,female,27.7,0,no,southwest,3554.203
355
+ 33,male,35.245,0,no,northeast,12404.8791
356
+ 18,female,38.28,0,no,southeast,14133.03775
357
+ 46,male,27.6,0,no,southwest,24603.04837
358
+ 46,male,43.89,3,no,southeast,8944.1151
359
+ 47,male,29.83,3,no,northwest,9620.3307
360
+ 23,male,41.91,0,no,southeast,1837.2819
361
+ 18,female,20.79,0,no,southeast,1607.5101
362
+ 48,female,32.3,2,no,northeast,10043.249
363
+ 35,male,30.5,1,no,southwest,4751.07
364
+ 19,female,21.7,0,yes,southwest,13844.506
365
+ 21,female,26.4,1,no,southwest,2597.779
366
+ 21,female,21.89,2,no,southeast,3180.5101
367
+ 49,female,30.78,1,no,northeast,9778.3472
368
+ 56,female,32.3,3,no,northeast,13430.265
369
+ 42,female,24.985,2,no,northwest,8017.06115
370
+ 44,male,32.015,2,no,northwest,8116.26885
371
+ 18,male,30.4,3,no,northeast,3481.868
372
+ 61,female,21.09,0,no,northwest,13415.0381
373
+ 57,female,22.23,0,no,northeast,12029.2867
374
+ 42,female,33.155,1,no,northeast,7639.41745
375
+ 26,male,32.9,2,yes,southwest,36085.219
376
+ 20,male,33.33,0,no,southeast,1391.5287
377
+ 23,female,28.31,0,yes,northwest,18033.9679
378
+ 39,female,24.89,3,yes,northeast,21659.9301
379
+ 24,male,40.15,0,yes,southeast,38126.2465
380
+ 64,female,30.115,3,no,northwest,16455.70785
381
+ 62,male,31.46,1,no,southeast,27000.98473
382
+ 27,female,17.955,2,yes,northeast,15006.57945
383
+ 55,male,30.685,0,yes,northeast,42303.69215
384
+ 55,male,33,0,no,southeast,20781.48892
385
+ 35,female,43.34,2,no,southeast,5846.9176
386
+ 44,male,22.135,2,no,northeast,8302.53565
387
+ 19,male,34.4,0,no,southwest,1261.859
388
+ 58,female,39.05,0,no,southeast,11856.4115
389
+ 50,male,25.365,2,no,northwest,30284.64294
390
+ 26,female,22.61,0,no,northwest,3176.8159
391
+ 24,female,30.21,3,no,northwest,4618.0799
392
+ 48,male,35.625,4,no,northeast,10736.87075
393
+ 19,female,37.43,0,no,northwest,2138.0707
394
+ 48,male,31.445,1,no,northeast,8964.06055
395
+ 49,male,31.35,1,no,northeast,9290.1395
396
+ 46,female,32.3,2,no,northeast,9411.005
397
+ 46,male,19.855,0,no,northwest,7526.70645
398
+ 43,female,34.4,3,no,southwest,8522.003
399
+ 21,male,31.02,0,no,southeast,16586.49771
400
+ 64,male,25.6,2,no,southwest,14988.432
401
+ 18,female,38.17,0,no,southeast,1631.6683
402
+ 51,female,20.6,0,no,southwest,9264.797
403
+ 47,male,47.52,1,no,southeast,8083.9198
404
+ 64,female,32.965,0,no,northwest,14692.66935
405
+ 49,male,32.3,3,no,northwest,10269.46
406
+ 31,male,20.4,0,no,southwest,3260.199
407
+ 52,female,38.38,2,no,northeast,11396.9002
408
+ 33,female,24.31,0,no,southeast,4185.0979
409
+ 47,female,23.6,1,no,southwest,8539.671
410
+ 38,male,21.12,3,no,southeast,6652.5288
411
+ 32,male,30.03,1,no,southeast,4074.4537
412
+ 19,male,17.48,0,no,northwest,1621.3402
413
+ 44,female,20.235,1,yes,northeast,19594.80965
414
+ 26,female,17.195,2,yes,northeast,14455.64405
415
+ 25,male,23.9,5,no,southwest,5080.096
416
+ 19,female,35.15,0,no,northwest,2134.9015
417
+ 43,female,35.64,1,no,southeast,7345.7266
418
+ 52,male,34.1,0,no,southeast,9140.951
419
+ 36,female,22.6,2,yes,southwest,18608.262
420
+ 64,male,39.16,1,no,southeast,14418.2804
421
+ 63,female,26.98,0,yes,northwest,28950.4692
422
+ 64,male,33.88,0,yes,southeast,46889.2612
423
+ 61,male,35.86,0,yes,southeast,46599.1084
424
+ 40,male,32.775,1,yes,northeast,39125.33225
425
+ 25,male,30.59,0,no,northeast,2727.3951
426
+ 48,male,30.2,2,no,southwest,8968.33
427
+ 45,male,24.31,5,no,southeast,9788.8659
428
+ 38,female,27.265,1,no,northeast,6555.07035
429
+ 18,female,29.165,0,no,northeast,7323.734819
430
+ 21,female,16.815,1,no,northeast,3167.45585
431
+ 27,female,30.4,3,no,northwest,18804.7524
432
+ 19,male,33.1,0,no,southwest,23082.95533
433
+ 29,female,20.235,2,no,northwest,4906.40965
434
+ 42,male,26.9,0,no,southwest,5969.723
435
+ 60,female,30.5,0,no,southwest,12638.195
436
+ 31,male,28.595,1,no,northwest,4243.59005
437
+ 60,male,33.11,3,no,southeast,13919.8229
438
+ 22,male,31.73,0,no,northeast,2254.7967
439
+ 35,male,28.9,3,no,southwest,5926.846
440
+ 52,female,46.75,5,no,southeast,12592.5345
441
+ 26,male,29.45,0,no,northeast,2897.3235
442
+ 31,female,32.68,1,no,northwest,4738.2682
443
+ 33,female,33.5,0,yes,southwest,37079.372
444
+ 18,male,43.01,0,no,southeast,1149.3959
445
+ 59,female,36.52,1,no,southeast,28287.89766
446
+ 56,male,26.695,1,yes,northwest,26109.32905
447
+ 45,female,33.1,0,no,southwest,7345.084
448
+ 60,male,29.64,0,no,northeast,12730.9996
449
+ 56,female,25.65,0,no,northwest,11454.0215
450
+ 40,female,29.6,0,no,southwest,5910.944
451
+ 35,male,38.6,1,no,southwest,4762.329
452
+ 39,male,29.6,4,no,southwest,7512.267
453
+ 30,male,24.13,1,no,northwest,4032.2407
454
+ 24,male,23.4,0,no,southwest,1969.614
455
+ 20,male,29.735,0,no,northwest,1769.53165
456
+ 32,male,46.53,2,no,southeast,4686.3887
457
+ 59,male,37.4,0,no,southwest,21797.0004
458
+ 55,female,30.14,2,no,southeast,11881.9696
459
+ 57,female,30.495,0,no,northwest,11840.77505
460
+ 56,male,39.6,0,no,southwest,10601.412
461
+ 40,female,33,3,no,southeast,7682.67
462
+ 49,female,36.63,3,no,southeast,10381.4787
463
+ 42,male,30,0,yes,southwest,22144.032
464
+ 62,female,38.095,2,no,northeast,15230.32405
465
+ 56,male,25.935,0,no,northeast,11165.41765
466
+ 19,male,25.175,0,no,northwest,1632.03625
467
+ 30,female,28.38,1,yes,southeast,19521.9682
468
+ 60,female,28.7,1,no,southwest,13224.693
469
+ 56,female,33.82,2,no,northwest,12643.3778
470
+ 28,female,24.32,1,no,northeast,23288.9284
471
+ 18,female,24.09,1,no,southeast,2201.0971
472
+ 27,male,32.67,0,no,southeast,2497.0383
473
+ 18,female,30.115,0,no,northeast,2203.47185
474
+ 19,female,29.8,0,no,southwest,1744.465
475
+ 47,female,33.345,0,no,northeast,20878.78443
476
+ 54,male,25.1,3,yes,southwest,25382.297
477
+ 61,male,28.31,1,yes,northwest,28868.6639
478
+ 24,male,28.5,0,yes,northeast,35147.52848
479
+ 25,male,35.625,0,no,northwest,2534.39375
480
+ 21,male,36.85,0,no,southeast,1534.3045
481
+ 23,male,32.56,0,no,southeast,1824.2854
482
+ 63,male,41.325,3,no,northwest,15555.18875
483
+ 49,male,37.51,2,no,southeast,9304.7019
484
+ 18,female,31.35,0,no,southeast,1622.1885
485
+ 51,female,39.5,1,no,southwest,9880.068
486
+ 48,male,34.3,3,no,southwest,9563.029
487
+ 31,female,31.065,0,no,northeast,4347.02335
488
+ 54,female,21.47,3,no,northwest,12475.3513
489
+ 19,male,28.7,0,no,southwest,1253.936
490
+ 44,female,38.06,0,yes,southeast,48885.13561
491
+ 53,male,31.16,1,no,northwest,10461.9794
492
+ 19,female,32.9,0,no,southwest,1748.774
493
+ 61,female,25.08,0,no,southeast,24513.09126
494
+ 18,female,25.08,0,no,northeast,2196.4732
495
+ 61,male,43.4,0,no,southwest,12574.049
496
+ 21,male,25.7,4,yes,southwest,17942.106
497
+ 20,male,27.93,0,no,northeast,1967.0227
498
+ 31,female,23.6,2,no,southwest,4931.647
499
+ 45,male,28.7,2,no,southwest,8027.968
500
+ 44,female,23.98,2,no,southeast,8211.1002
501
+ 62,female,39.2,0,no,southwest,13470.86
502
+ 29,male,34.4,0,yes,southwest,36197.699
503
+ 43,male,26.03,0,no,northeast,6837.3687
504
+ 51,male,23.21,1,yes,southeast,22218.1149
505
+ 19,male,30.25,0,yes,southeast,32548.3405
506
+ 38,female,28.93,1,no,southeast,5974.3847
507
+ 37,male,30.875,3,no,northwest,6796.86325
508
+ 22,male,31.35,1,no,northwest,2643.2685
509
+ 21,male,23.75,2,no,northwest,3077.0955
510
+ 24,female,25.27,0,no,northeast,3044.2133
511
+ 57,female,28.7,0,no,southwest,11455.28
512
+ 56,male,32.11,1,no,northeast,11763.0009
513
+ 27,male,33.66,0,no,southeast,2498.4144
514
+ 51,male,22.42,0,no,northeast,9361.3268
515
+ 19,male,30.4,0,no,southwest,1256.299
516
+ 39,male,28.3,1,yes,southwest,21082.16
517
+ 58,male,35.7,0,no,southwest,11362.755
518
+ 20,male,35.31,1,no,southeast,27724.28875
519
+ 45,male,30.495,2,no,northwest,8413.46305
520
+ 35,female,31,1,no,southwest,5240.765
521
+ 31,male,30.875,0,no,northeast,3857.75925
522
+ 50,female,27.36,0,no,northeast,25656.57526
523
+ 32,female,44.22,0,no,southeast,3994.1778
524
+ 51,female,33.915,0,no,northeast,9866.30485
525
+ 38,female,37.73,0,no,southeast,5397.6167
526
+ 42,male,26.07,1,yes,southeast,38245.59327
527
+ 18,female,33.88,0,no,southeast,11482.63485
528
+ 19,female,30.59,2,no,northwest,24059.68019
529
+ 51,female,25.8,1,no,southwest,9861.025
530
+ 46,male,39.425,1,no,northeast,8342.90875
531
+ 18,male,25.46,0,no,northeast,1708.0014
532
+ 57,male,42.13,1,yes,southeast,48675.5177
533
+ 62,female,31.73,0,no,northeast,14043.4767
534
+ 59,male,29.7,2,no,southeast,12925.886
535
+ 37,male,36.19,0,no,southeast,19214.70553
536
+ 64,male,40.48,0,no,southeast,13831.1152
537
+ 38,male,28.025,1,no,northeast,6067.12675
538
+ 33,female,38.9,3,no,southwest,5972.378
539
+ 46,female,30.2,2,no,southwest,8825.086
540
+ 46,female,28.05,1,no,southeast,8233.0975
541
+ 53,male,31.35,0,no,southeast,27346.04207
542
+ 34,female,38,3,no,southwest,6196.448
543
+ 20,female,31.79,2,no,southeast,3056.3881
544
+ 63,female,36.3,0,no,southeast,13887.204
545
+ 54,female,47.41,0,yes,southeast,63770.42801
546
+ 54,male,30.21,0,no,northwest,10231.4999
547
+ 49,male,25.84,2,yes,northwest,23807.2406
548
+ 28,male,35.435,0,no,northeast,3268.84665
549
+ 54,female,46.7,2,no,southwest,11538.421
550
+ 25,female,28.595,0,no,northeast,3213.62205
551
+ 43,female,46.2,0,yes,southeast,45863.205
552
+ 63,male,30.8,0,no,southwest,13390.559
553
+ 32,female,28.93,0,no,southeast,3972.9247
554
+ 62,male,21.4,0,no,southwest,12957.118
555
+ 52,female,31.73,2,no,northwest,11187.6567
556
+ 25,female,41.325,0,no,northeast,17878.90068
557
+ 28,male,23.8,2,no,southwest,3847.674
558
+ 46,male,33.44,1,no,northeast,8334.5896
559
+ 34,male,34.21,0,no,southeast,3935.1799
560
+ 35,female,34.105,3,yes,northwest,39983.42595
561
+ 19,male,35.53,0,no,northwest,1646.4297
562
+ 46,female,19.95,2,no,northwest,9193.8385
563
+ 54,female,32.68,0,no,northeast,10923.9332
564
+ 27,male,30.5,0,no,southwest,2494.022
565
+ 50,male,44.77,1,no,southeast,9058.7303
566
+ 18,female,32.12,2,no,southeast,2801.2588
567
+ 19,female,30.495,0,no,northwest,2128.43105
568
+ 38,female,40.565,1,no,northwest,6373.55735
569
+ 41,male,30.59,2,no,northwest,7256.7231
570
+ 49,female,31.9,5,no,southwest,11552.904
571
+ 48,male,40.565,2,yes,northwest,45702.02235
572
+ 31,female,29.1,0,no,southwest,3761.292
573
+ 18,female,37.29,1,no,southeast,2219.4451
574
+ 30,female,43.12,2,no,southeast,4753.6368
575
+ 62,female,36.86,1,no,northeast,31620.00106
576
+ 57,female,34.295,2,no,northeast,13224.05705
577
+ 58,female,27.17,0,no,northwest,12222.8983
578
+ 22,male,26.84,0,no,southeast,1664.9996
579
+ 31,female,38.095,1,yes,northeast,58571.07448
580
+ 52,male,30.2,1,no,southwest,9724.53
581
+ 25,female,23.465,0,no,northeast,3206.49135
582
+ 59,male,25.46,1,no,northeast,12913.9924
583
+ 19,male,30.59,0,no,northwest,1639.5631
584
+ 39,male,45.43,2,no,southeast,6356.2707
585
+ 32,female,23.65,1,no,southeast,17626.23951
586
+ 19,male,20.7,0,no,southwest,1242.816
587
+ 33,female,28.27,1,no,southeast,4779.6023
588
+ 21,male,20.235,3,no,northeast,3861.20965
589
+ 34,female,30.21,1,yes,northwest,43943.8761
590
+ 61,female,35.91,0,no,northeast,13635.6379
591
+ 38,female,30.69,1,no,southeast,5976.8311
592
+ 58,female,29,0,no,southwest,11842.442
593
+ 47,male,19.57,1,no,northwest,8428.0693
594
+ 20,male,31.13,2,no,southeast,2566.4707
595
+ 21,female,21.85,1,yes,northeast,15359.1045
596
+ 41,male,40.26,0,no,southeast,5709.1644
597
+ 46,female,33.725,1,no,northeast,8823.98575
598
+ 42,female,29.48,2,no,southeast,7640.3092
599
+ 34,female,33.25,1,no,northeast,5594.8455
600
+ 43,male,32.6,2,no,southwest,7441.501
601
+ 52,female,37.525,2,no,northwest,33471.97189
602
+ 18,female,39.16,0,no,southeast,1633.0444
603
+ 51,male,31.635,0,no,northwest,9174.13565
604
+ 56,female,25.3,0,no,southwest,11070.535
605
+ 64,female,39.05,3,no,southeast,16085.1275
606
+ 19,female,28.31,0,yes,northwest,17468.9839
607
+ 51,female,34.1,0,no,southeast,9283.562
608
+ 27,female,25.175,0,no,northeast,3558.62025
609
+ 59,female,23.655,0,yes,northwest,25678.77845
610
+ 28,male,26.98,2,no,northeast,4435.0942
611
+ 30,male,37.8,2,yes,southwest,39241.442
612
+ 47,female,29.37,1,no,southeast,8547.6913
613
+ 38,female,34.8,2,no,southwest,6571.544
614
+ 18,female,33.155,0,no,northeast,2207.69745
615
+ 34,female,19,3,no,northeast,6753.038
616
+ 20,female,33,0,no,southeast,1880.07
617
+ 47,female,36.63,1,yes,southeast,42969.8527
618
+ 56,female,28.595,0,no,northeast,11658.11505
619
+ 49,male,25.6,2,yes,southwest,23306.547
620
+ 19,female,33.11,0,yes,southeast,34439.8559
621
+ 55,female,37.1,0,no,southwest,10713.644
622
+ 30,male,31.4,1,no,southwest,3659.346
623
+ 37,male,34.1,4,yes,southwest,40182.246
624
+ 49,female,21.3,1,no,southwest,9182.17
625
+ 18,male,33.535,0,yes,northeast,34617.84065
626
+ 59,male,28.785,0,no,northwest,12129.61415
627
+ 29,female,26.03,0,no,northwest,3736.4647
628
+ 36,male,28.88,3,no,northeast,6748.5912
629
+ 33,male,42.46,1,no,southeast,11326.71487
630
+ 58,male,38,0,no,southwest,11365.952
631
+ 44,female,38.95,0,yes,northwest,42983.4585
632
+ 53,male,36.1,1,no,southwest,10085.846
633
+ 24,male,29.3,0,no,southwest,1977.815
634
+ 29,female,35.53,0,no,southeast,3366.6697
635
+ 40,male,22.705,2,no,northeast,7173.35995
636
+ 51,male,39.7,1,no,southwest,9391.346
637
+ 64,male,38.19,0,no,northeast,14410.9321
638
+ 19,female,24.51,1,no,northwest,2709.1119
639
+ 35,female,38.095,2,no,northeast,24915.04626
640
+ 39,male,26.41,0,yes,northeast,20149.3229
641
+ 56,male,33.66,4,no,southeast,12949.1554
642
+ 33,male,42.4,5,no,southwest,6666.243
643
+ 42,male,28.31,3,yes,northwest,32787.45859
644
+ 61,male,33.915,0,no,northeast,13143.86485
645
+ 23,female,34.96,3,no,northwest,4466.6214
646
+ 43,male,35.31,2,no,southeast,18806.14547
647
+ 48,male,30.78,3,no,northeast,10141.1362
648
+ 39,male,26.22,1,no,northwest,6123.5688
649
+ 40,female,23.37,3,no,northeast,8252.2843
650
+ 18,male,28.5,0,no,northeast,1712.227
651
+ 58,female,32.965,0,no,northeast,12430.95335
652
+ 49,female,42.68,2,no,southeast,9800.8882
653
+ 53,female,39.6,1,no,southeast,10579.711
654
+ 48,female,31.13,0,no,southeast,8280.6227
655
+ 45,female,36.3,2,no,southeast,8527.532
656
+ 59,female,35.2,0,no,southeast,12244.531
657
+ 52,female,25.3,2,yes,southeast,24667.419
658
+ 26,female,42.4,1,no,southwest,3410.324
659
+ 27,male,33.155,2,no,northwest,4058.71245
660
+ 48,female,35.91,1,no,northeast,26392.26029
661
+ 57,female,28.785,4,no,northeast,14394.39815
662
+ 37,male,46.53,3,no,southeast,6435.6237
663
+ 57,female,23.98,1,no,southeast,22192.43711
664
+ 32,female,31.54,1,no,northeast,5148.5526
665
+ 18,male,33.66,0,no,southeast,1136.3994
666
+ 64,female,22.99,0,yes,southeast,27037.9141
667
+ 43,male,38.06,2,yes,southeast,42560.4304
668
+ 49,male,28.7,1,no,southwest,8703.456
669
+ 40,female,32.775,2,yes,northwest,40003.33225
670
+ 62,male,32.015,0,yes,northeast,45710.20785
671
+ 40,female,29.81,1,no,southeast,6500.2359
672
+ 30,male,31.57,3,no,southeast,4837.5823
673
+ 29,female,31.16,0,no,northeast,3943.5954
674
+ 36,male,29.7,0,no,southeast,4399.731
675
+ 41,female,31.02,0,no,southeast,6185.3208
676
+ 44,female,43.89,2,yes,southeast,46200.9851
677
+ 45,male,21.375,0,no,northwest,7222.78625
678
+ 55,female,40.81,3,no,southeast,12485.8009
679
+ 60,male,31.35,3,yes,northwest,46130.5265
680
+ 56,male,36.1,3,no,southwest,12363.547
681
+ 49,female,23.18,2,no,northwest,10156.7832
682
+ 21,female,17.4,1,no,southwest,2585.269
683
+ 19,male,20.3,0,no,southwest,1242.26
684
+ 39,male,35.3,2,yes,southwest,40103.89
685
+ 53,male,24.32,0,no,northwest,9863.4718
686
+ 33,female,18.5,1,no,southwest,4766.022
687
+ 53,male,26.41,2,no,northeast,11244.3769
688
+ 42,male,26.125,2,no,northeast,7729.64575
689
+ 40,male,41.69,0,no,southeast,5438.7491
690
+ 47,female,24.1,1,no,southwest,26236.57997
691
+ 27,male,31.13,1,yes,southeast,34806.4677
692
+ 21,male,27.36,0,no,northeast,2104.1134
693
+ 47,male,36.2,1,no,southwest,8068.185
694
+ 20,male,32.395,1,no,northwest,2362.22905
695
+ 24,male,23.655,0,no,northwest,2352.96845
696
+ 27,female,34.8,1,no,southwest,3577.999
697
+ 26,female,40.185,0,no,northwest,3201.24515
698
+ 53,female,32.3,2,no,northeast,29186.48236
699
+ 41,male,35.75,1,yes,southeast,40273.6455
700
+ 56,male,33.725,0,no,northwest,10976.24575
701
+ 23,female,39.27,2,no,southeast,3500.6123
702
+ 21,female,34.87,0,no,southeast,2020.5523
703
+ 50,female,44.745,0,no,northeast,9541.69555
704
+ 53,male,41.47,0,no,southeast,9504.3103
705
+ 34,female,26.41,1,no,northwest,5385.3379
706
+ 47,female,29.545,1,no,northwest,8930.93455
707
+ 33,female,32.9,2,no,southwest,5375.038
708
+ 51,female,38.06,0,yes,southeast,44400.4064
709
+ 49,male,28.69,3,no,northwest,10264.4421
710
+ 31,female,30.495,3,no,northeast,6113.23105
711
+ 36,female,27.74,0,no,northeast,5469.0066
712
+ 18,male,35.2,1,no,southeast,1727.54
713
+ 50,female,23.54,2,no,southeast,10107.2206
714
+ 43,female,30.685,2,no,northwest,8310.83915
715
+ 20,male,40.47,0,no,northeast,1984.4533
716
+ 24,female,22.6,0,no,southwest,2457.502
717
+ 60,male,28.9,0,no,southwest,12146.971
718
+ 49,female,22.61,1,no,northwest,9566.9909
719
+ 60,male,24.32,1,no,northwest,13112.6048
720
+ 51,female,36.67,2,no,northwest,10848.1343
721
+ 58,female,33.44,0,no,northwest,12231.6136
722
+ 51,female,40.66,0,no,northeast,9875.6804
723
+ 53,male,36.6,3,no,southwest,11264.541
724
+ 62,male,37.4,0,no,southwest,12979.358
725
+ 19,male,35.4,0,no,southwest,1263.249
726
+ 50,female,27.075,1,no,northeast,10106.13425
727
+ 30,female,39.05,3,yes,southeast,40932.4295
728
+ 41,male,28.405,1,no,northwest,6664.68595
729
+ 29,female,21.755,1,yes,northeast,16657.71745
730
+ 18,female,40.28,0,no,northeast,2217.6012
731
+ 41,female,36.08,1,no,southeast,6781.3542
732
+ 35,male,24.42,3,yes,southeast,19361.9988
733
+ 53,male,21.4,1,no,southwest,10065.413
734
+ 24,female,30.1,3,no,southwest,4234.927
735
+ 48,female,27.265,1,no,northeast,9447.25035
736
+ 59,female,32.1,3,no,southwest,14007.222
737
+ 49,female,34.77,1,no,northwest,9583.8933
738
+ 37,female,38.39,0,yes,southeast,40419.0191
739
+ 26,male,23.7,2,no,southwest,3484.331
740
+ 23,male,31.73,3,yes,northeast,36189.1017
741
+ 29,male,35.5,2,yes,southwest,44585.45587
742
+ 45,male,24.035,2,no,northeast,8604.48365
743
+ 27,male,29.15,0,yes,southeast,18246.4955
744
+ 53,male,34.105,0,yes,northeast,43254.41795
745
+ 31,female,26.62,0,no,southeast,3757.8448
746
+ 50,male,26.41,0,no,northwest,8827.2099
747
+ 50,female,30.115,1,no,northwest,9910.35985
748
+ 34,male,27,2,no,southwest,11737.84884
749
+ 19,male,21.755,0,no,northwest,1627.28245
750
+ 47,female,36,1,no,southwest,8556.907
751
+ 28,male,30.875,0,no,northwest,3062.50825
752
+ 37,female,26.4,0,yes,southeast,19539.243
753
+ 21,male,28.975,0,no,northwest,1906.35825
754
+ 64,male,37.905,0,no,northwest,14210.53595
755
+ 58,female,22.77,0,no,southeast,11833.7823
756
+ 24,male,33.63,4,no,northeast,17128.42608
757
+ 31,male,27.645,2,no,northeast,5031.26955
758
+ 39,female,22.8,3,no,northeast,7985.815
759
+ 47,female,27.83,0,yes,southeast,23065.4207
760
+ 30,male,37.43,3,no,northeast,5428.7277
761
+ 18,male,38.17,0,yes,southeast,36307.7983
762
+ 22,female,34.58,2,no,northeast,3925.7582
763
+ 23,male,35.2,1,no,southwest,2416.955
764
+ 33,male,27.1,1,yes,southwest,19040.876
765
+ 27,male,26.03,0,no,northeast,3070.8087
766
+ 45,female,25.175,2,no,northeast,9095.06825
767
+ 57,female,31.825,0,no,northwest,11842.62375
768
+ 47,male,32.3,1,no,southwest,8062.764
769
+ 42,female,29,1,no,southwest,7050.642
770
+ 64,female,39.7,0,no,southwest,14319.031
771
+ 38,female,19.475,2,no,northwest,6933.24225
772
+ 61,male,36.1,3,no,southwest,27941.28758
773
+ 53,female,26.7,2,no,southwest,11150.78
774
+ 44,female,36.48,0,no,northeast,12797.20962
775
+ 19,female,28.88,0,yes,northwest,17748.5062
776
+ 41,male,34.2,2,no,northwest,7261.741
777
+ 51,male,33.33,3,no,southeast,10560.4917
778
+ 40,male,32.3,2,no,northwest,6986.697
779
+ 45,male,39.805,0,no,northeast,7448.40395
780
+ 35,male,34.32,3,no,southeast,5934.3798
781
+ 53,male,28.88,0,no,northwest,9869.8102
782
+ 30,male,24.4,3,yes,southwest,18259.216
783
+ 18,male,41.14,0,no,southeast,1146.7966
784
+ 51,male,35.97,1,no,southeast,9386.1613
785
+ 50,female,27.6,1,yes,southwest,24520.264
786
+ 31,female,29.26,1,no,southeast,4350.5144
787
+ 35,female,27.7,3,no,southwest,6414.178
788
+ 60,male,36.955,0,no,northeast,12741.16745
789
+ 21,male,36.86,0,no,northwest,1917.3184
790
+ 29,male,22.515,3,no,northeast,5209.57885
791
+ 62,female,29.92,0,no,southeast,13457.9608
792
+ 39,female,41.8,0,no,southeast,5662.225
793
+ 19,male,27.6,0,no,southwest,1252.407
794
+ 22,female,23.18,0,no,northeast,2731.9122
795
+ 53,male,20.9,0,yes,southeast,21195.818
796
+ 39,female,31.92,2,no,northwest,7209.4918
797
+ 27,male,28.5,0,yes,northwest,18310.742
798
+ 30,male,44.22,2,no,southeast,4266.1658
799
+ 30,female,22.895,1,no,northeast,4719.52405
800
+ 58,female,33.1,0,no,southwest,11848.141
801
+ 33,male,24.795,0,yes,northeast,17904.52705
802
+ 42,female,26.18,1,no,southeast,7046.7222
803
+ 64,female,35.97,0,no,southeast,14313.8463
804
+ 21,male,22.3,1,no,southwest,2103.08
805
+ 18,female,42.24,0,yes,southeast,38792.6856
806
+ 23,male,26.51,0,no,southeast,1815.8759
807
+ 45,female,35.815,0,no,northwest,7731.85785
808
+ 40,female,41.42,1,no,northwest,28476.73499
809
+ 19,female,36.575,0,no,northwest,2136.88225
810
+ 18,male,30.14,0,no,southeast,1131.5066
811
+ 25,male,25.84,1,no,northeast,3309.7926
812
+ 46,female,30.8,3,no,southwest,9414.92
813
+ 33,female,42.94,3,no,northwest,6360.9936
814
+ 54,male,21.01,2,no,southeast,11013.7119
815
+ 28,male,22.515,2,no,northeast,4428.88785
816
+ 36,male,34.43,2,no,southeast,5584.3057
817
+ 20,female,31.46,0,no,southeast,1877.9294
818
+ 24,female,24.225,0,no,northwest,2842.76075
819
+ 23,male,37.1,3,no,southwest,3597.596
820
+ 47,female,26.125,1,yes,northeast,23401.30575
821
+ 33,female,35.53,0,yes,northwest,55135.40209
822
+ 45,male,33.7,1,no,southwest,7445.918
823
+ 26,male,17.67,0,no,northwest,2680.9493
824
+ 18,female,31.13,0,no,southeast,1621.8827
825
+ 44,female,29.81,2,no,southeast,8219.2039
826
+ 60,male,24.32,0,no,northwest,12523.6048
827
+ 64,female,31.825,2,no,northeast,16069.08475
828
+ 56,male,31.79,2,yes,southeast,43813.8661
829
+ 36,male,28.025,1,yes,northeast,20773.62775
830
+ 41,male,30.78,3,yes,northeast,39597.4072
831
+ 39,male,21.85,1,no,northwest,6117.4945
832
+ 63,male,33.1,0,no,southwest,13393.756
833
+ 36,female,25.84,0,no,northwest,5266.3656
834
+ 28,female,23.845,2,no,northwest,4719.73655
835
+ 58,male,34.39,0,no,northwest,11743.9341
836
+ 36,male,33.82,1,no,northwest,5377.4578
837
+ 42,male,35.97,2,no,southeast,7160.3303
838
+ 36,male,31.5,0,no,southwest,4402.233
839
+ 56,female,28.31,0,no,northeast,11657.7189
840
+ 35,female,23.465,2,no,northeast,6402.29135
841
+ 59,female,31.35,0,no,northwest,12622.1795
842
+ 21,male,31.1,0,no,southwest,1526.312
843
+ 59,male,24.7,0,no,northeast,12323.936
844
+ 23,female,32.78,2,yes,southeast,36021.0112
845
+ 57,female,29.81,0,yes,southeast,27533.9129
846
+ 53,male,30.495,0,no,northeast,10072.05505
847
+ 60,female,32.45,0,yes,southeast,45008.9555
848
+ 51,female,34.2,1,no,southwest,9872.701
849
+ 23,male,50.38,1,no,southeast,2438.0552
850
+ 27,female,24.1,0,no,southwest,2974.126
851
+ 55,male,32.775,0,no,northwest,10601.63225
852
+ 37,female,30.78,0,yes,northeast,37270.1512
853
+ 61,male,32.3,2,no,northwest,14119.62
854
+ 46,female,35.53,0,yes,northeast,42111.6647
855
+ 53,female,23.75,2,no,northeast,11729.6795
856
+ 49,female,23.845,3,yes,northeast,24106.91255
857
+ 20,female,29.6,0,no,southwest,1875.344
858
+ 48,female,33.11,0,yes,southeast,40974.1649
859
+ 25,male,24.13,0,yes,northwest,15817.9857
860
+ 25,female,32.23,1,no,southeast,18218.16139
861
+ 57,male,28.1,0,no,southwest,10965.446
862
+ 37,female,47.6,2,yes,southwest,46113.511
863
+ 38,female,28,3,no,southwest,7151.092
864
+ 55,female,33.535,2,no,northwest,12269.68865
865
+ 36,female,19.855,0,no,northeast,5458.04645
866
+ 51,male,25.4,0,no,southwest,8782.469
867
+ 40,male,29.9,2,no,southwest,6600.361
868
+ 18,male,37.29,0,no,southeast,1141.4451
869
+ 57,male,43.7,1,no,southwest,11576.13
870
+ 61,male,23.655,0,no,northeast,13129.60345
871
+ 25,female,24.3,3,no,southwest,4391.652
872
+ 50,male,36.2,0,no,southwest,8457.818
873
+ 26,female,29.48,1,no,southeast,3392.3652
874
+ 42,male,24.86,0,no,southeast,5966.8874
875
+ 43,male,30.1,1,no,southwest,6849.026
876
+ 44,male,21.85,3,no,northeast,8891.1395
877
+ 23,female,28.12,0,no,northwest,2690.1138
878
+ 49,female,27.1,1,no,southwest,26140.3603
879
+ 33,male,33.44,5,no,southeast,6653.7886
880
+ 41,male,28.8,1,no,southwest,6282.235
881
+ 37,female,29.5,2,no,southwest,6311.952
882
+ 22,male,34.8,3,no,southwest,3443.064
883
+ 23,male,27.36,1,no,northwest,2789.0574
884
+ 21,female,22.135,0,no,northeast,2585.85065
885
+ 51,female,37.05,3,yes,northeast,46255.1125
886
+ 25,male,26.695,4,no,northwest,4877.98105
887
+ 32,male,28.93,1,yes,southeast,19719.6947
888
+ 57,male,28.975,0,yes,northeast,27218.43725
889
+ 36,female,30.02,0,no,northwest,5272.1758
890
+ 22,male,39.5,0,no,southwest,1682.597
891
+ 57,male,33.63,1,no,northwest,11945.1327
892
+ 64,female,26.885,0,yes,northwest,29330.98315
893
+ 36,female,29.04,4,no,southeast,7243.8136
894
+ 54,male,24.035,0,no,northeast,10422.91665
895
+ 47,male,38.94,2,yes,southeast,44202.6536
896
+ 62,male,32.11,0,no,northeast,13555.0049
897
+ 61,female,44,0,no,southwest,13063.883
898
+ 43,female,20.045,2,yes,northeast,19798.05455
899
+ 19,male,25.555,1,no,northwest,2221.56445
900
+ 18,female,40.26,0,no,southeast,1634.5734
901
+ 19,female,22.515,0,no,northwest,2117.33885
902
+ 49,male,22.515,0,no,northeast,8688.85885
903
+ 60,male,40.92,0,yes,southeast,48673.5588
904
+ 26,male,27.265,3,no,northeast,4661.28635
905
+ 49,male,36.85,0,no,southeast,8125.7845
906
+ 60,female,35.1,0,no,southwest,12644.589
907
+ 26,female,29.355,2,no,northeast,4564.19145
908
+ 27,male,32.585,3,no,northeast,4846.92015
909
+ 44,female,32.34,1,no,southeast,7633.7206
910
+ 63,male,39.8,3,no,southwest,15170.069
911
+ 32,female,24.6,0,yes,southwest,17496.306
912
+ 22,male,28.31,1,no,northwest,2639.0429
913
+ 18,male,31.73,0,yes,northeast,33732.6867
914
+ 59,female,26.695,3,no,northwest,14382.70905
915
+ 44,female,27.5,1,no,southwest,7626.993
916
+ 33,male,24.605,2,no,northwest,5257.50795
917
+ 24,female,33.99,0,no,southeast,2473.3341
918
+ 43,female,26.885,0,yes,northwest,21774.32215
919
+ 45,male,22.895,0,yes,northeast,35069.37452
920
+ 61,female,28.2,0,no,southwest,13041.921
921
+ 35,female,34.21,1,no,southeast,5245.2269
922
+ 62,female,25,0,no,southwest,13451.122
923
+ 62,female,33.2,0,no,southwest,13462.52
924
+ 38,male,31,1,no,southwest,5488.262
925
+ 34,male,35.815,0,no,northwest,4320.41085
926
+ 43,male,23.2,0,no,southwest,6250.435
927
+ 50,male,32.11,2,no,northeast,25333.33284
928
+ 19,female,23.4,2,no,southwest,2913.569
929
+ 57,female,20.1,1,no,southwest,12032.326
930
+ 62,female,39.16,0,no,southeast,13470.8044
931
+ 41,male,34.21,1,no,southeast,6289.7549
932
+ 26,male,46.53,1,no,southeast,2927.0647
933
+ 39,female,32.5,1,no,southwest,6238.298
934
+ 46,male,25.8,5,no,southwest,10096.97
935
+ 45,female,35.3,0,no,southwest,7348.142
936
+ 32,male,37.18,2,no,southeast,4673.3922
937
+ 59,female,27.5,0,no,southwest,12233.828
938
+ 44,male,29.735,2,no,northeast,32108.66282
939
+ 39,female,24.225,5,no,northwest,8965.79575
940
+ 18,male,26.18,2,no,southeast,2304.0022
941
+ 53,male,29.48,0,no,southeast,9487.6442
942
+ 18,male,23.21,0,no,southeast,1121.8739
943
+ 50,female,46.09,1,no,southeast,9549.5651
944
+ 18,female,40.185,0,no,northeast,2217.46915
945
+ 19,male,22.61,0,no,northwest,1628.4709
946
+ 62,male,39.93,0,no,southeast,12982.8747
947
+ 56,female,35.8,1,no,southwest,11674.13
948
+ 42,male,35.8,2,no,southwest,7160.094
949
+ 37,male,34.2,1,yes,northeast,39047.285
950
+ 42,male,31.255,0,no,northwest,6358.77645
951
+ 25,male,29.7,3,yes,southwest,19933.458
952
+ 57,male,18.335,0,no,northeast,11534.87265
953
+ 51,male,42.9,2,yes,southeast,47462.894
954
+ 30,female,28.405,1,no,northwest,4527.18295
955
+ 44,male,30.2,2,yes,southwest,38998.546
956
+ 34,male,27.835,1,yes,northwest,20009.63365
957
+ 31,male,39.49,1,no,southeast,3875.7341
958
+ 54,male,30.8,1,yes,southeast,41999.52
959
+ 24,male,26.79,1,no,northwest,12609.88702
960
+ 43,male,34.96,1,yes,northeast,41034.2214
961
+ 48,male,36.67,1,no,northwest,28468.91901
962
+ 19,female,39.615,1,no,northwest,2730.10785
963
+ 29,female,25.9,0,no,southwest,3353.284
964
+ 63,female,35.2,1,no,southeast,14474.675
965
+ 46,male,24.795,3,no,northeast,9500.57305
966
+ 52,male,36.765,2,no,northwest,26467.09737
967
+ 35,male,27.1,1,no,southwest,4746.344
968
+ 51,male,24.795,2,yes,northwest,23967.38305
969
+ 44,male,25.365,1,no,northwest,7518.02535
970
+ 21,male,25.745,2,no,northeast,3279.86855
971
+ 39,female,34.32,5,no,southeast,8596.8278
972
+ 50,female,28.16,3,no,southeast,10702.6424
973
+ 34,female,23.56,0,no,northeast,4992.3764
974
+ 22,female,20.235,0,no,northwest,2527.81865
975
+ 19,female,40.5,0,no,southwest,1759.338
976
+ 26,male,35.42,0,no,southeast,2322.6218
977
+ 29,male,22.895,0,yes,northeast,16138.76205
978
+ 48,male,40.15,0,no,southeast,7804.1605
979
+ 26,male,29.15,1,no,southeast,2902.9065
980
+ 45,female,39.995,3,no,northeast,9704.66805
981
+ 36,female,29.92,0,no,southeast,4889.0368
982
+ 54,male,25.46,1,no,northeast,25517.11363
983
+ 34,male,21.375,0,no,northeast,4500.33925
984
+ 31,male,25.9,3,yes,southwest,19199.944
985
+ 27,female,30.59,1,no,northeast,16796.41194
986
+ 20,male,30.115,5,no,northeast,4915.05985
987
+ 44,female,25.8,1,no,southwest,7624.63
988
+ 43,male,30.115,3,no,northwest,8410.04685
989
+ 45,female,27.645,1,no,northwest,28340.18885
990
+ 34,male,34.675,0,no,northeast,4518.82625
991
+ 24,female,20.52,0,yes,northeast,14571.8908
992
+ 26,female,19.8,1,no,southwest,3378.91
993
+ 38,female,27.835,2,no,northeast,7144.86265
994
+ 50,female,31.6,2,no,southwest,10118.424
995
+ 38,male,28.27,1,no,southeast,5484.4673
996
+ 27,female,20.045,3,yes,northwest,16420.49455
997
+ 39,female,23.275,3,no,northeast,7986.47525
998
+ 39,female,34.1,3,no,southwest,7418.522
999
+ 63,female,36.85,0,no,southeast,13887.9685
1000
+ 33,female,36.29,3,no,northeast,6551.7501
1001
+ 36,female,26.885,0,no,northwest,5267.81815
1002
+ 30,male,22.99,2,yes,northwest,17361.7661
1003
+ 24,male,32.7,0,yes,southwest,34472.841
1004
+ 24,male,25.8,0,no,southwest,1972.95
1005
+ 48,male,29.6,0,no,southwest,21232.18226
1006
+ 47,male,19.19,1,no,northeast,8627.5411
1007
+ 29,male,31.73,2,no,northwest,4433.3877
1008
+ 28,male,29.26,2,no,northeast,4438.2634
1009
+ 47,male,28.215,3,yes,northwest,24915.22085
1010
+ 25,male,24.985,2,no,northeast,23241.47453
1011
+ 51,male,27.74,1,no,northeast,9957.7216
1012
+ 48,female,22.8,0,no,southwest,8269.044
1013
+ 43,male,20.13,2,yes,southeast,18767.7377
1014
+ 61,female,33.33,4,no,southeast,36580.28216
1015
+ 48,male,32.3,1,no,northwest,8765.249
1016
+ 38,female,27.6,0,no,southwest,5383.536
1017
+ 59,male,25.46,0,no,northwest,12124.9924
1018
+ 19,female,24.605,1,no,northwest,2709.24395
1019
+ 26,female,34.2,2,no,southwest,3987.926
1020
+ 54,female,35.815,3,no,northwest,12495.29085
1021
+ 21,female,32.68,2,no,northwest,26018.95052
1022
+ 51,male,37,0,no,southwest,8798.593
1023
+ 22,female,31.02,3,yes,southeast,35595.5898
1024
+ 47,male,36.08,1,yes,southeast,42211.1382
1025
+ 18,male,23.32,1,no,southeast,1711.0268
1026
+ 47,female,45.32,1,no,southeast,8569.8618
1027
+ 21,female,34.6,0,no,southwest,2020.177
1028
+ 19,male,26.03,1,yes,northwest,16450.8947
1029
+ 23,male,18.715,0,no,northwest,21595.38229
1030
+ 54,male,31.6,0,no,southwest,9850.432
1031
+ 37,female,17.29,2,no,northeast,6877.9801
1032
+ 46,female,23.655,1,yes,northwest,21677.28345
1033
+ 55,female,35.2,0,yes,southeast,44423.803
1034
+ 30,female,27.93,0,no,northeast,4137.5227
1035
+ 18,male,21.565,0,yes,northeast,13747.87235
1036
+ 61,male,38.38,0,no,northwest,12950.0712
1037
+ 54,female,23,3,no,southwest,12094.478
1038
+ 22,male,37.07,2,yes,southeast,37484.4493
1039
+ 45,female,30.495,1,yes,northwest,39725.51805
1040
+ 22,male,28.88,0,no,northeast,2250.8352
1041
+ 19,male,27.265,2,no,northwest,22493.65964
1042
+ 35,female,28.025,0,yes,northwest,20234.85475
1043
+ 18,male,23.085,0,no,northeast,1704.70015
1044
+ 20,male,30.685,0,yes,northeast,33475.81715
1045
+ 28,female,25.8,0,no,southwest,3161.454
1046
+ 55,male,35.245,1,no,northeast,11394.06555
1047
+ 43,female,24.7,2,yes,northwest,21880.82
1048
+ 43,female,25.08,0,no,northeast,7325.0482
1049
+ 22,male,52.58,1,yes,southeast,44501.3982
1050
+ 25,female,22.515,1,no,northwest,3594.17085
1051
+ 49,male,30.9,0,yes,southwest,39727.614
1052
+ 44,female,36.955,1,no,northwest,8023.13545
1053
+ 64,male,26.41,0,no,northeast,14394.5579
1054
+ 49,male,29.83,1,no,northeast,9288.0267
1055
+ 47,male,29.8,3,yes,southwest,25309.489
1056
+ 27,female,21.47,0,no,northwest,3353.4703
1057
+ 55,male,27.645,0,no,northwest,10594.50155
1058
+ 48,female,28.9,0,no,southwest,8277.523
1059
+ 45,female,31.79,0,no,southeast,17929.30337
1060
+ 24,female,39.49,0,no,southeast,2480.9791
1061
+ 32,male,33.82,1,no,northwest,4462.7218
1062
+ 24,male,32.01,0,no,southeast,1981.5819
1063
+ 57,male,27.94,1,no,southeast,11554.2236
1064
+ 59,male,41.14,1,yes,southeast,48970.2476
1065
+ 36,male,28.595,3,no,northwest,6548.19505
1066
+ 29,female,25.6,4,no,southwest,5708.867
1067
+ 42,female,25.3,1,no,southwest,7045.499
1068
+ 48,male,37.29,2,no,southeast,8978.1851
1069
+ 39,male,42.655,0,no,northeast,5757.41345
1070
+ 63,male,21.66,1,no,northwest,14349.8544
1071
+ 54,female,31.9,1,no,southeast,10928.849
1072
+ 37,male,37.07,1,yes,southeast,39871.7043
1073
+ 63,male,31.445,0,no,northeast,13974.45555
1074
+ 21,male,31.255,0,no,northwest,1909.52745
1075
+ 54,female,28.88,2,no,northeast,12096.6512
1076
+ 60,female,18.335,0,no,northeast,13204.28565
1077
+ 32,female,29.59,1,no,southeast,4562.8421
1078
+ 47,female,32,1,no,southwest,8551.347
1079
+ 21,male,26.03,0,no,northeast,2102.2647
1080
+ 28,male,31.68,0,yes,southeast,34672.1472
1081
+ 63,male,33.66,3,no,southeast,15161.5344
1082
+ 18,male,21.78,2,no,southeast,11884.04858
1083
+ 32,male,27.835,1,no,northwest,4454.40265
1084
+ 38,male,19.95,1,no,northwest,5855.9025
1085
+ 32,male,31.5,1,no,southwest,4076.497
1086
+ 62,female,30.495,2,no,northwest,15019.76005
1087
+ 39,female,18.3,5,yes,southwest,19023.26
1088
+ 55,male,28.975,0,no,northeast,10796.35025
1089
+ 57,male,31.54,0,no,northwest,11353.2276
1090
+ 52,male,47.74,1,no,southeast,9748.9106
1091
+ 56,male,22.1,0,no,southwest,10577.087
1092
+ 47,male,36.19,0,yes,southeast,41676.0811
1093
+ 55,female,29.83,0,no,northeast,11286.5387
1094
+ 23,male,32.7,3,no,southwest,3591.48
1095
+ 22,female,30.4,0,yes,northwest,33907.548
1096
+ 50,female,33.7,4,no,southwest,11299.343
1097
+ 18,female,31.35,4,no,northeast,4561.1885
1098
+ 51,female,34.96,2,yes,northeast,44641.1974
1099
+ 22,male,33.77,0,no,southeast,1674.6323
1100
+ 52,female,30.875,0,no,northeast,23045.56616
1101
+ 25,female,33.99,1,no,southeast,3227.1211
1102
+ 33,female,19.095,2,yes,northeast,16776.30405
1103
+ 53,male,28.6,3,no,southwest,11253.421
1104
+ 29,male,38.94,1,no,southeast,3471.4096
1105
+ 58,male,36.08,0,no,southeast,11363.2832
1106
+ 37,male,29.8,0,no,southwest,20420.60465
1107
+ 54,female,31.24,0,no,southeast,10338.9316
1108
+ 49,female,29.925,0,no,northwest,8988.15875
1109
+ 50,female,26.22,2,no,northwest,10493.9458
1110
+ 26,male,30,1,no,southwest,2904.088
1111
+ 45,male,20.35,3,no,southeast,8605.3615
1112
+ 54,female,32.3,1,no,northeast,11512.405
1113
+ 38,male,38.39,3,yes,southeast,41949.2441
1114
+ 48,female,25.85,3,yes,southeast,24180.9335
1115
+ 28,female,26.315,3,no,northwest,5312.16985
1116
+ 23,male,24.51,0,no,northeast,2396.0959
1117
+ 55,male,32.67,1,no,southeast,10807.4863
1118
+ 41,male,29.64,5,no,northeast,9222.4026
1119
+ 25,male,33.33,2,yes,southeast,36124.5737
1120
+ 33,male,35.75,1,yes,southeast,38282.7495
1121
+ 30,female,19.95,3,no,northwest,5693.4305
1122
+ 23,female,31.4,0,yes,southwest,34166.273
1123
+ 46,male,38.17,2,no,southeast,8347.1643
1124
+ 53,female,36.86,3,yes,northwest,46661.4424
1125
+ 27,female,32.395,1,no,northeast,18903.49141
1126
+ 23,female,42.75,1,yes,northeast,40904.1995
1127
+ 63,female,25.08,0,no,northwest,14254.6082
1128
+ 55,male,29.9,0,no,southwest,10214.636
1129
+ 35,female,35.86,2,no,southeast,5836.5204
1130
+ 34,male,32.8,1,no,southwest,14358.36437
1131
+ 19,female,18.6,0,no,southwest,1728.897
1132
+ 39,female,23.87,5,no,southeast,8582.3023
1133
+ 27,male,45.9,2,no,southwest,3693.428
1134
+ 57,male,40.28,0,no,northeast,20709.02034
1135
+ 52,female,18.335,0,no,northwest,9991.03765
1136
+ 28,male,33.82,0,no,northwest,19673.33573
1137
+ 50,female,28.12,3,no,northwest,11085.5868
1138
+ 44,female,25,1,no,southwest,7623.518
1139
+ 26,female,22.23,0,no,northwest,3176.2877
1140
+ 33,male,30.25,0,no,southeast,3704.3545
1141
+ 19,female,32.49,0,yes,northwest,36898.73308
1142
+ 50,male,37.07,1,no,southeast,9048.0273
1143
+ 41,female,32.6,3,no,southwest,7954.517
1144
+ 52,female,24.86,0,no,southeast,27117.99378
1145
+ 39,male,32.34,2,no,southeast,6338.0756
1146
+ 50,male,32.3,2,no,southwest,9630.397
1147
+ 52,male,32.775,3,no,northwest,11289.10925
1148
+ 60,male,32.8,0,yes,southwest,52590.82939
1149
+ 20,female,31.92,0,no,northwest,2261.5688
1150
+ 55,male,21.5,1,no,southwest,10791.96
1151
+ 42,male,34.1,0,no,southwest,5979.731
1152
+ 18,female,30.305,0,no,northeast,2203.73595
1153
+ 58,female,36.48,0,no,northwest,12235.8392
1154
+ 43,female,32.56,3,yes,southeast,40941.2854
1155
+ 35,female,35.815,1,no,northwest,5630.45785
1156
+ 48,female,27.93,4,no,northwest,11015.1747
1157
+ 36,female,22.135,3,no,northeast,7228.21565
1158
+ 19,male,44.88,0,yes,southeast,39722.7462
1159
+ 23,female,23.18,2,no,northwest,14426.07385
1160
+ 20,female,30.59,0,no,northeast,2459.7201
1161
+ 32,female,41.1,0,no,southwest,3989.841
1162
+ 43,female,34.58,1,no,northwest,7727.2532
1163
+ 34,male,42.13,2,no,southeast,5124.1887
1164
+ 30,male,38.83,1,no,southeast,18963.17192
1165
+ 18,female,28.215,0,no,northeast,2200.83085
1166
+ 41,female,28.31,1,no,northwest,7153.5539
1167
+ 35,female,26.125,0,no,northeast,5227.98875
1168
+ 57,male,40.37,0,no,southeast,10982.5013
1169
+ 29,female,24.6,2,no,southwest,4529.477
1170
+ 32,male,35.2,2,no,southwest,4670.64
1171
+ 37,female,34.105,1,no,northwest,6112.35295
1172
+ 18,male,27.36,1,yes,northeast,17178.6824
1173
+ 43,female,26.7,2,yes,southwest,22478.6
1174
+ 56,female,41.91,0,no,southeast,11093.6229
1175
+ 38,male,29.26,2,no,northwest,6457.8434
1176
+ 29,male,32.11,2,no,northwest,4433.9159
1177
+ 22,female,27.1,0,no,southwest,2154.361
1178
+ 52,female,24.13,1,yes,northwest,23887.6627
1179
+ 40,female,27.4,1,no,southwest,6496.886
1180
+ 23,female,34.865,0,no,northeast,2899.48935
1181
+ 31,male,29.81,0,yes,southeast,19350.3689
1182
+ 42,female,41.325,1,no,northeast,7650.77375
1183
+ 24,female,29.925,0,no,northwest,2850.68375
1184
+ 25,female,30.3,0,no,southwest,2632.992
1185
+ 48,female,27.36,1,no,northeast,9447.3824
1186
+ 23,female,28.49,1,yes,southeast,18328.2381
1187
+ 45,male,23.56,2,no,northeast,8603.8234
1188
+ 20,male,35.625,3,yes,northwest,37465.34375
1189
+ 62,female,32.68,0,no,northwest,13844.7972
1190
+ 43,female,25.27,1,yes,northeast,21771.3423
1191
+ 23,female,28,0,no,southwest,13126.67745
1192
+ 31,female,32.775,2,no,northwest,5327.40025
1193
+ 41,female,21.755,1,no,northeast,13725.47184
1194
+ 58,female,32.395,1,no,northeast,13019.16105
1195
+ 48,female,36.575,0,no,northwest,8671.19125
1196
+ 31,female,21.755,0,no,northwest,4134.08245
1197
+ 19,female,27.93,3,no,northwest,18838.70366
1198
+ 19,female,30.02,0,yes,northwest,33307.5508
1199
+ 41,male,33.55,0,no,southeast,5699.8375
1200
+ 40,male,29.355,1,no,northwest,6393.60345
1201
+ 31,female,25.8,2,no,southwest,4934.705
1202
+ 37,male,24.32,2,no,northwest,6198.7518
1203
+ 46,male,40.375,2,no,northwest,8733.22925
1204
+ 22,male,32.11,0,no,northwest,2055.3249
1205
+ 51,male,32.3,1,no,northeast,9964.06
1206
+ 18,female,27.28,3,yes,southeast,18223.4512
1207
+ 35,male,17.86,1,no,northwest,5116.5004
1208
+ 59,female,34.8,2,no,southwest,36910.60803
1209
+ 36,male,33.4,2,yes,southwest,38415.474
1210
+ 37,female,25.555,1,yes,northeast,20296.86345
1211
+ 59,male,37.1,1,no,southwest,12347.172
1212
+ 36,male,30.875,1,no,northwest,5373.36425
1213
+ 39,male,34.1,2,no,southeast,23563.01618
1214
+ 18,male,21.47,0,no,northeast,1702.4553
1215
+ 52,female,33.3,2,no,southwest,10806.839
1216
+ 27,female,31.255,1,no,northwest,3956.07145
1217
+ 18,male,39.14,0,no,northeast,12890.05765
1218
+ 40,male,25.08,0,no,southeast,5415.6612
1219
+ 29,male,37.29,2,no,southeast,4058.1161
1220
+ 46,female,34.6,1,yes,southwest,41661.602
1221
+ 38,female,30.21,3,no,northwest,7537.1639
1222
+ 30,female,21.945,1,no,northeast,4718.20355
1223
+ 40,male,24.97,2,no,southeast,6593.5083
1224
+ 50,male,25.3,0,no,southeast,8442.667
1225
+ 20,female,24.42,0,yes,southeast,26125.67477
1226
+ 41,male,23.94,1,no,northeast,6858.4796
1227
+ 33,female,39.82,1,no,southeast,4795.6568
1228
+ 38,male,16.815,2,no,northeast,6640.54485
1229
+ 42,male,37.18,2,no,southeast,7162.0122
1230
+ 56,male,34.43,0,no,southeast,10594.2257
1231
+ 58,male,30.305,0,no,northeast,11938.25595
1232
+ 52,male,34.485,3,yes,northwest,60021.39897
1233
+ 20,female,21.8,0,yes,southwest,20167.33603
1234
+ 54,female,24.605,3,no,northwest,12479.70895
1235
+ 58,male,23.3,0,no,southwest,11345.519
1236
+ 45,female,27.83,2,no,southeast,8515.7587
1237
+ 26,male,31.065,0,no,northwest,2699.56835
1238
+ 63,female,21.66,0,no,northeast,14449.8544
1239
+ 58,female,28.215,0,no,northwest,12224.35085
1240
+ 37,male,22.705,3,no,northeast,6985.50695
1241
+ 25,female,42.13,1,no,southeast,3238.4357
1242
+ 52,male,41.8,2,yes,southeast,47269.854
1243
+ 64,male,36.96,2,yes,southeast,49577.6624
1244
+ 22,female,21.28,3,no,northwest,4296.2712
1245
+ 28,female,33.11,0,no,southeast,3171.6149
1246
+ 18,male,33.33,0,no,southeast,1135.9407
1247
+ 28,male,24.3,5,no,southwest,5615.369
1248
+ 45,female,25.7,3,no,southwest,9101.798
1249
+ 33,male,29.4,4,no,southwest,6059.173
1250
+ 18,female,39.82,0,no,southeast,1633.9618
1251
+ 32,male,33.63,1,yes,northeast,37607.5277
1252
+ 24,male,29.83,0,yes,northeast,18648.4217
1253
+ 19,male,19.8,0,no,southwest,1241.565
1254
+ 20,male,27.3,0,yes,southwest,16232.847
1255
+ 40,female,29.3,4,no,southwest,15828.82173
1256
+ 34,female,27.72,0,no,southeast,4415.1588
1257
+ 42,female,37.9,0,no,southwest,6474.013
1258
+ 51,female,36.385,3,no,northwest,11436.73815
1259
+ 54,female,27.645,1,no,northwest,11305.93455
1260
+ 55,male,37.715,3,no,northwest,30063.58055
1261
+ 52,female,23.18,0,no,northeast,10197.7722
1262
+ 32,female,20.52,0,no,northeast,4544.2348
1263
+ 28,male,37.1,1,no,southwest,3277.161
1264
+ 41,female,28.05,1,no,southeast,6770.1925
1265
+ 43,female,29.9,1,no,southwest,7337.748
1266
+ 49,female,33.345,2,no,northeast,10370.91255
1267
+ 64,male,23.76,0,yes,southeast,26926.5144
1268
+ 55,female,30.5,0,no,southwest,10704.47
1269
+ 24,male,31.065,0,yes,northeast,34254.05335
1270
+ 20,female,33.3,0,no,southwest,1880.487
1271
+ 45,male,27.5,3,no,southwest,8615.3
1272
+ 26,male,33.915,1,no,northwest,3292.52985
1273
+ 25,female,34.485,0,no,northwest,3021.80915
1274
+ 43,male,25.52,5,no,southeast,14478.33015
1275
+ 35,male,27.61,1,no,southeast,4747.0529
1276
+ 26,male,27.06,0,yes,southeast,17043.3414
1277
+ 57,male,23.7,0,no,southwest,10959.33
1278
+ 22,female,30.4,0,no,northeast,2741.948
1279
+ 32,female,29.735,0,no,northwest,4357.04365
1280
+ 39,male,29.925,1,yes,northeast,22462.04375
1281
+ 25,female,26.79,2,no,northwest,4189.1131
1282
+ 48,female,33.33,0,no,southeast,8283.6807
1283
+ 47,female,27.645,2,yes,northwest,24535.69855
1284
+ 18,female,21.66,0,yes,northeast,14283.4594
1285
+ 18,male,30.03,1,no,southeast,1720.3537
1286
+ 61,male,36.3,1,yes,southwest,47403.88
1287
+ 47,female,24.32,0,no,northeast,8534.6718
1288
+ 28,female,17.29,0,no,northeast,3732.6251
1289
+ 36,female,25.9,1,no,southwest,5472.449
1290
+ 20,male,39.4,2,yes,southwest,38344.566
1291
+ 44,male,34.32,1,no,southeast,7147.4728
1292
+ 38,female,19.95,2,no,northeast,7133.9025
1293
+ 19,male,34.9,0,yes,southwest,34828.654
1294
+ 21,male,23.21,0,no,southeast,1515.3449
1295
+ 46,male,25.745,3,no,northwest,9301.89355
1296
+ 58,male,25.175,0,no,northeast,11931.12525
1297
+ 20,male,22,1,no,southwest,1964.78
1298
+ 18,male,26.125,0,no,northeast,1708.92575
1299
+ 28,female,26.51,2,no,southeast,4340.4409
1300
+ 33,male,27.455,2,no,northwest,5261.46945
1301
+ 19,female,25.745,1,no,northwest,2710.82855
1302
+ 45,male,30.36,0,yes,southeast,62592.87309
1303
+ 62,male,30.875,3,yes,northwest,46718.16325
1304
+ 25,female,20.8,1,no,southwest,3208.787
1305
+ 43,male,27.8,0,yes,southwest,37829.7242
1306
+ 42,male,24.605,2,yes,northeast,21259.37795
1307
+ 24,female,27.72,0,no,southeast,2464.6188
1308
+ 29,female,21.85,0,yes,northeast,16115.3045
1309
+ 32,male,28.12,4,yes,northwest,21472.4788
1310
+ 25,female,30.2,0,yes,southwest,33900.653
1311
+ 41,male,32.2,2,no,southwest,6875.961
1312
+ 42,male,26.315,1,no,northwest,6940.90985
1313
+ 33,female,26.695,0,no,northwest,4571.41305
1314
+ 34,male,42.9,1,no,southwest,4536.259
1315
+ 19,female,34.7,2,yes,southwest,36397.576
1316
+ 30,female,23.655,3,yes,northwest,18765.87545
1317
+ 18,male,28.31,1,no,northeast,11272.33139
1318
+ 19,female,20.6,0,no,southwest,1731.677
1319
+ 18,male,53.13,0,no,southeast,1163.4627
1320
+ 35,male,39.71,4,no,northeast,19496.71917
1321
+ 39,female,26.315,2,no,northwest,7201.70085
1322
+ 31,male,31.065,3,no,northwest,5425.02335
1323
+ 62,male,26.695,0,yes,northeast,28101.33305
1324
+ 62,male,38.83,0,no,southeast,12981.3457
1325
+ 42,female,40.37,2,yes,southeast,43896.3763
1326
+ 31,male,25.935,1,no,northwest,4239.89265
1327
+ 61,male,33.535,0,no,northeast,13143.33665
1328
+ 42,female,32.87,0,no,northeast,7050.0213
1329
+ 51,male,30.03,1,no,southeast,9377.9047
1330
+ 23,female,24.225,2,no,northeast,22395.74424
1331
+ 52,male,38.6,2,no,southwest,10325.206
1332
+ 57,female,25.74,2,no,southeast,12629.1656
1333
+ 23,female,33.4,0,no,southwest,10795.93733
1334
+ 52,female,44.7,3,no,southwest,11411.685
1335
+ 50,male,30.97,3,no,northwest,10600.5483
1336
+ 18,female,31.92,0,no,northeast,2205.9808
1337
+ 18,female,36.85,0,no,southeast,1629.8335
1338
+ 21,female,25.8,0,no,southwest,2007.945
1339
+ 61,female,29.07,0,yes,northwest,29141.3603