teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1303) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1935 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2040 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +798 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1683 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +1011 -0
  31. teradataml/automl/data_transformation.py +789 -0
  32. teradataml/automl/feature_engineering.py +1580 -0
  33. teradataml/automl/feature_exploration.py +554 -0
  34. teradataml/automl/model_evaluation.py +151 -0
  35. teradataml/automl/model_training.py +1026 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/auth_client.py +133 -0
  41. teradataml/clients/pkce_client.py +481 -481
  42. teradataml/common/aed_utils.py +7 -2
  43. teradataml/common/bulk_exposed_utils.py +111 -111
  44. teradataml/common/constants.py +1438 -1441
  45. teradataml/common/deprecations.py +160 -0
  46. teradataml/common/exceptions.py +73 -73
  47. teradataml/common/formula.py +742 -742
  48. teradataml/common/garbagecollector.py +597 -635
  49. teradataml/common/messagecodes.py +424 -431
  50. teradataml/common/messages.py +228 -231
  51. teradataml/common/sqlbundle.py +693 -693
  52. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  53. teradataml/common/utils.py +2424 -2500
  54. teradataml/common/warnings.py +25 -25
  55. teradataml/common/wrapper_utils.py +1 -110
  56. teradataml/config/dummy_file1.cfg +4 -4
  57. teradataml/config/dummy_file2.cfg +2 -2
  58. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  59. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  60. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  61. teradataml/context/aed_context.py +217 -217
  62. teradataml/context/context.py +1091 -999
  63. teradataml/data/A_loan.csv +19 -19
  64. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  65. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  66. teradataml/data/B_loan.csv +49 -49
  67. teradataml/data/BuoyData2.csv +17 -17
  68. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  69. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  70. teradataml/data/Convolve2RealsLeft.csv +5 -5
  71. teradataml/data/Convolve2RealsRight.csv +5 -5
  72. teradataml/data/Convolve2ValidLeft.csv +11 -11
  73. teradataml/data/Convolve2ValidRight.csv +11 -11
  74. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  75. teradataml/data/Orders1_12mf.csv +24 -24
  76. teradataml/data/Pi_loan.csv +7 -7
  77. teradataml/data/SMOOTHED_DATA.csv +7 -7
  78. teradataml/data/TestDFFT8.csv +9 -9
  79. teradataml/data/TestRiver.csv +109 -109
  80. teradataml/data/Traindata.csv +28 -28
  81. teradataml/data/acf.csv +17 -17
  82. teradataml/data/adaboost_example.json +34 -34
  83. teradataml/data/adaboostpredict_example.json +24 -24
  84. teradataml/data/additional_table.csv +10 -10
  85. teradataml/data/admissions_test.csv +21 -21
  86. teradataml/data/admissions_train.csv +41 -41
  87. teradataml/data/admissions_train_nulls.csv +41 -41
  88. teradataml/data/advertising.csv +201 -0
  89. teradataml/data/ageandheight.csv +13 -13
  90. teradataml/data/ageandpressure.csv +31 -31
  91. teradataml/data/antiselect_example.json +36 -36
  92. teradataml/data/antiselect_input.csv +8 -8
  93. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  94. teradataml/data/applicant_external.csv +6 -6
  95. teradataml/data/applicant_reference.csv +6 -6
  96. teradataml/data/arima_example.json +9 -9
  97. teradataml/data/assortedtext_input.csv +8 -8
  98. teradataml/data/attribution_example.json +33 -33
  99. teradataml/data/attribution_sample_table.csv +27 -27
  100. teradataml/data/attribution_sample_table1.csv +6 -6
  101. teradataml/data/attribution_sample_table2.csv +11 -11
  102. teradataml/data/bank_churn.csv +10001 -0
  103. teradataml/data/bank_marketing.csv +11163 -0
  104. teradataml/data/bank_web_clicks1.csv +42 -42
  105. teradataml/data/bank_web_clicks2.csv +91 -91
  106. teradataml/data/bank_web_url.csv +85 -85
  107. teradataml/data/barrier.csv +2 -2
  108. teradataml/data/barrier_new.csv +3 -3
  109. teradataml/data/betweenness_example.json +13 -13
  110. teradataml/data/bike_sharing.csv +732 -0
  111. teradataml/data/bin_breaks.csv +8 -8
  112. teradataml/data/bin_fit_ip.csv +3 -3
  113. teradataml/data/binary_complex_left.csv +11 -11
  114. teradataml/data/binary_complex_right.csv +11 -11
  115. teradataml/data/binary_matrix_complex_left.csv +21 -21
  116. teradataml/data/binary_matrix_complex_right.csv +21 -21
  117. teradataml/data/binary_matrix_real_left.csv +21 -21
  118. teradataml/data/binary_matrix_real_right.csv +21 -21
  119. teradataml/data/blood2ageandweight.csv +26 -26
  120. teradataml/data/bmi.csv +501 -0
  121. teradataml/data/boston.csv +507 -507
  122. teradataml/data/boston2cols.csv +721 -0
  123. teradataml/data/breast_cancer.csv +570 -0
  124. teradataml/data/buoydata_mix.csv +11 -11
  125. teradataml/data/burst_data.csv +5 -5
  126. teradataml/data/burst_example.json +20 -20
  127. teradataml/data/byom_example.json +17 -17
  128. teradataml/data/bytes_table.csv +3 -3
  129. teradataml/data/cal_housing_ex_raw.csv +70 -70
  130. teradataml/data/callers.csv +7 -7
  131. teradataml/data/calls.csv +10 -10
  132. teradataml/data/cars_hist.csv +33 -33
  133. teradataml/data/cat_table.csv +24 -24
  134. teradataml/data/ccm_example.json +31 -31
  135. teradataml/data/ccm_input.csv +91 -91
  136. teradataml/data/ccm_input2.csv +13 -13
  137. teradataml/data/ccmexample.csv +101 -101
  138. teradataml/data/ccmprepare_example.json +8 -8
  139. teradataml/data/ccmprepare_input.csv +91 -91
  140. teradataml/data/cfilter_example.json +12 -12
  141. teradataml/data/changepointdetection_example.json +18 -18
  142. teradataml/data/changepointdetectionrt_example.json +8 -8
  143. teradataml/data/chi_sq.csv +2 -2
  144. teradataml/data/churn_data.csv +14 -14
  145. teradataml/data/churn_emission.csv +35 -35
  146. teradataml/data/churn_initial.csv +3 -3
  147. teradataml/data/churn_state_transition.csv +5 -5
  148. teradataml/data/citedges_2.csv +745 -745
  149. teradataml/data/citvertices_2.csv +1210 -1210
  150. teradataml/data/clicks2.csv +16 -16
  151. teradataml/data/clickstream.csv +12 -12
  152. teradataml/data/clickstream1.csv +11 -11
  153. teradataml/data/closeness_example.json +15 -15
  154. teradataml/data/complaints.csv +21 -21
  155. teradataml/data/complaints_mini.csv +3 -3
  156. teradataml/data/complaints_testtoken.csv +224 -224
  157. teradataml/data/complaints_tokens_test.csv +353 -353
  158. teradataml/data/complaints_traintoken.csv +472 -472
  159. teradataml/data/computers_category.csv +1001 -1001
  160. teradataml/data/computers_test1.csv +1252 -1252
  161. teradataml/data/computers_train1.csv +5009 -5009
  162. teradataml/data/computers_train1_clustered.csv +5009 -5009
  163. teradataml/data/confusionmatrix_example.json +9 -9
  164. teradataml/data/conversion_event_table.csv +3 -3
  165. teradataml/data/corr_input.csv +17 -17
  166. teradataml/data/correlation_example.json +11 -11
  167. teradataml/data/coxhazardratio_example.json +39 -39
  168. teradataml/data/coxph_example.json +15 -15
  169. teradataml/data/coxsurvival_example.json +28 -28
  170. teradataml/data/cpt.csv +41 -41
  171. teradataml/data/credit_ex_merged.csv +45 -45
  172. teradataml/data/customer_loyalty.csv +301 -301
  173. teradataml/data/customer_loyalty_newseq.csv +31 -31
  174. teradataml/data/customer_segmentation_test.csv +2628 -0
  175. teradataml/data/customer_segmentation_train.csv +8069 -0
  176. teradataml/data/dataframe_example.json +146 -146
  177. teradataml/data/decisionforest_example.json +37 -37
  178. teradataml/data/decisionforestpredict_example.json +38 -38
  179. teradataml/data/decisiontree_example.json +21 -21
  180. teradataml/data/decisiontreepredict_example.json +45 -45
  181. teradataml/data/dfft2_size4_real.csv +17 -17
  182. teradataml/data/dfft2_test_matrix16.csv +17 -17
  183. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  184. teradataml/data/diabetes.csv +443 -443
  185. teradataml/data/diabetes_test.csv +89 -89
  186. teradataml/data/dict_table.csv +5 -5
  187. teradataml/data/docperterm_table.csv +4 -4
  188. teradataml/data/docs/__init__.py +1 -1
  189. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  190. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  191. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  192. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  193. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  194. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  195. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  196. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  197. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  198. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  199. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  200. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  201. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  202. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  203. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  204. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  205. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  206. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  207. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  208. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  209. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  210. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  211. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  212. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  213. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  214. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  215. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  216. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  217. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
  218. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
  219. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  220. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
  221. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  222. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  223. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  224. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  225. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  226. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  227. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  228. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  229. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  230. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  231. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  232. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  233. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  234. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  235. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  236. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  237. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  238. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  239. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  240. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  241. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  242. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
  243. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  244. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  245. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  246. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  247. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  248. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  249. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  250. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  251. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
  252. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  253. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  254. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  255. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  256. teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
  257. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  258. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  259. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
  260. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  261. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  262. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  263. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
  264. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  265. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  266. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  267. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
  268. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  269. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  270. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  271. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  272. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  273. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  274. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  275. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  276. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
  277. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  278. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  279. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  280. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  281. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
  282. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
  283. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  284. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  285. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  286. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  287. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  288. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  289. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  290. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  291. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
  292. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  293. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  294. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  295. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  296. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  297. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  298. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  299. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  300. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
  301. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  302. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
  303. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
  304. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  305. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  306. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  307. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  308. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  309. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  310. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  311. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  312. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
  313. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  314. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  315. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  316. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  317. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  318. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  319. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  320. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  321. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  322. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  323. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  324. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
  325. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
  326. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
  327. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  328. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  329. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  330. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  331. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  332. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  333. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  334. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  335. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  336. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  337. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  338. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  339. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  340. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  341. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  342. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  343. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  344. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  345. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  346. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  347. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  348. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  349. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  350. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  351. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  352. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  353. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  354. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  355. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  356. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  357. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  358. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  359. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  360. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  361. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  362. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  363. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  364. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  365. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  366. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  367. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  368. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  369. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  370. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  371. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  372. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  373. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  374. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  375. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  376. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  377. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  378. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  379. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  380. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  381. teradataml/data/dtw_example.json +17 -17
  382. teradataml/data/dtw_t1.csv +11 -11
  383. teradataml/data/dtw_t2.csv +4 -4
  384. teradataml/data/dwt2d_example.json +15 -15
  385. teradataml/data/dwt_example.json +14 -14
  386. teradataml/data/dwt_filter_dim.csv +5 -5
  387. teradataml/data/emission.csv +9 -9
  388. teradataml/data/emp_table_by_dept.csv +19 -19
  389. teradataml/data/employee_info.csv +4 -4
  390. teradataml/data/employee_table.csv +6 -6
  391. teradataml/data/excluding_event_table.csv +2 -2
  392. teradataml/data/finance_data.csv +6 -6
  393. teradataml/data/finance_data2.csv +61 -61
  394. teradataml/data/finance_data3.csv +93 -93
  395. teradataml/data/fish.csv +160 -0
  396. teradataml/data/fm_blood2ageandweight.csv +26 -26
  397. teradataml/data/fmeasure_example.json +11 -11
  398. teradataml/data/followers_leaders.csv +10 -10
  399. teradataml/data/fpgrowth_example.json +12 -12
  400. teradataml/data/frequentpaths_example.json +29 -29
  401. teradataml/data/friends.csv +9 -9
  402. teradataml/data/fs_input.csv +33 -33
  403. teradataml/data/fs_input1.csv +33 -33
  404. teradataml/data/genData.csv +513 -513
  405. teradataml/data/geodataframe_example.json +39 -39
  406. teradataml/data/glass_types.csv +215 -0
  407. teradataml/data/glm_admissions_model.csv +12 -12
  408. teradataml/data/glm_example.json +56 -29
  409. teradataml/data/glml1l2_example.json +28 -28
  410. teradataml/data/glml1l2predict_example.json +54 -54
  411. teradataml/data/glmpredict_example.json +54 -54
  412. teradataml/data/gq_t1.csv +21 -21
  413. teradataml/data/hconvolve_complex_right.csv +5 -5
  414. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  415. teradataml/data/histogram_example.json +11 -11
  416. teradataml/data/hmmdecoder_example.json +78 -78
  417. teradataml/data/hmmevaluator_example.json +24 -24
  418. teradataml/data/hmmsupervised_example.json +10 -10
  419. teradataml/data/hmmunsupervised_example.json +7 -7
  420. teradataml/data/house_values.csv +12 -12
  421. teradataml/data/house_values2.csv +13 -13
  422. teradataml/data/housing_cat.csv +7 -7
  423. teradataml/data/housing_data.csv +9 -9
  424. teradataml/data/housing_test.csv +47 -47
  425. teradataml/data/housing_test_binary.csv +47 -47
  426. teradataml/data/housing_train.csv +493 -493
  427. teradataml/data/housing_train_attribute.csv +4 -4
  428. teradataml/data/housing_train_binary.csv +437 -437
  429. teradataml/data/housing_train_parameter.csv +2 -2
  430. teradataml/data/housing_train_response.csv +493 -493
  431. teradataml/data/housing_train_segment.csv +201 -0
  432. teradataml/data/ibm_stock.csv +370 -370
  433. teradataml/data/ibm_stock1.csv +370 -370
  434. teradataml/data/identitymatch_example.json +21 -21
  435. teradataml/data/idf_table.csv +4 -4
  436. teradataml/data/impressions.csv +101 -101
  437. teradataml/data/inflation.csv +21 -21
  438. teradataml/data/initial.csv +3 -3
  439. teradataml/data/insect2Cols.csv +61 -0
  440. teradataml/data/insect_sprays.csv +12 -12
  441. teradataml/data/insurance.csv +1339 -1339
  442. teradataml/data/interpolator_example.json +12 -12
  443. teradataml/data/iris_altinput.csv +481 -481
  444. teradataml/data/iris_attribute_output.csv +8 -8
  445. teradataml/data/iris_attribute_test.csv +121 -121
  446. teradataml/data/iris_attribute_train.csv +481 -481
  447. teradataml/data/iris_category_expect_predict.csv +31 -31
  448. teradataml/data/iris_data.csv +151 -0
  449. teradataml/data/iris_input.csv +151 -151
  450. teradataml/data/iris_response_train.csv +121 -121
  451. teradataml/data/iris_test.csv +31 -31
  452. teradataml/data/iris_train.csv +121 -121
  453. teradataml/data/join_table1.csv +4 -4
  454. teradataml/data/join_table2.csv +4 -4
  455. teradataml/data/jsons/anly_function_name.json +6 -6
  456. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  457. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  458. teradataml/data/jsons/byom/h2opredict.json +194 -194
  459. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  460. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  461. teradataml/data/jsons/paired_functions.json +435 -435
  462. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  463. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  464. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  465. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  466. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  467. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  468. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  469. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  470. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  471. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  472. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  473. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  474. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  475. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  476. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  477. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  478. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  479. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  480. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  481. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  482. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  483. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  484. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  485. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  486. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  487. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  488. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  489. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  490. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  491. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  492. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  493. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  494. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  495. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  496. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  497. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  498. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  499. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  500. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  501. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  502. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  503. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  504. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  505. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  506. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  507. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  508. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  509. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  510. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  511. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  512. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  513. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  514. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  515. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  516. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  517. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  518. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  519. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  520. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  521. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  522. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  523. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  524. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  525. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  526. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  527. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  528. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  529. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  531. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  532. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  533. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  534. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  535. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  536. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  537. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  539. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  540. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  541. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  542. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  543. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  544. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  545. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  546. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  547. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  548. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  549. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  550. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  551. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  552. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  553. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  554. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  555. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  556. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  557. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  558. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  559. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  560. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  561. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  562. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  563. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  564. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  565. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  566. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  567. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  568. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
  569. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  570. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  571. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  572. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  573. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  574. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  575. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  576. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  577. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  578. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  579. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
  580. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  581. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  582. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  583. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
  584. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
  585. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  586. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  587. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
  588. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  589. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  590. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  591. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
  592. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  593. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  594. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  595. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
  596. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  597. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  598. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  599. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  600. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  601. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  602. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  603. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  604. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  605. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  606. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  607. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  608. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  609. teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
  610. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  611. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  612. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  613. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  614. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  615. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  616. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  617. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  618. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
  619. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
  620. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
  621. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  622. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  623. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  624. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  625. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  626. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  627. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  628. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  629. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  630. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  631. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  632. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  633. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  634. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  635. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
  636. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
  637. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
  638. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  639. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  640. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  641. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  642. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  643. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  644. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  645. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  646. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  647. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  648. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  649. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  650. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  651. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  653. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  654. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  655. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  656. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  657. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  658. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  659. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  660. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  661. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  662. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  663. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  664. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  665. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  666. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  667. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  668. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  669. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  670. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  671. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  672. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  673. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  674. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  675. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  676. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  677. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  678. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  679. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  680. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  681. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  682. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  683. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  684. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  685. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  686. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  687. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  688. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  689. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  690. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  691. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  692. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  693. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  694. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  695. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  696. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  697. teradataml/data/kmeans_example.json +22 -17
  698. teradataml/data/kmeans_table.csv +10 -0
  699. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  700. teradataml/data/knn_example.json +18 -18
  701. teradataml/data/knnrecommender_example.json +6 -6
  702. teradataml/data/knnrecommenderpredict_example.json +12 -12
  703. teradataml/data/lar_example.json +17 -17
  704. teradataml/data/larpredict_example.json +30 -30
  705. teradataml/data/lc_new_predictors.csv +5 -5
  706. teradataml/data/lc_new_reference.csv +9 -9
  707. teradataml/data/lda_example.json +8 -8
  708. teradataml/data/ldainference_example.json +14 -14
  709. teradataml/data/ldatopicsummary_example.json +8 -8
  710. teradataml/data/levendist_input.csv +13 -13
  711. teradataml/data/levenshteindistance_example.json +10 -10
  712. teradataml/data/linreg_example.json +9 -9
  713. teradataml/data/load_example_data.py +326 -323
  714. teradataml/data/loan_prediction.csv +295 -295
  715. teradataml/data/lungcancer.csv +138 -138
  716. teradataml/data/mappingdata.csv +12 -12
  717. teradataml/data/milk_timeseries.csv +157 -157
  718. teradataml/data/min_max_titanic.csv +4 -4
  719. teradataml/data/minhash_example.json +6 -6
  720. teradataml/data/ml_ratings.csv +7547 -7547
  721. teradataml/data/ml_ratings_10.csv +2445 -2445
  722. teradataml/data/model1_table.csv +5 -5
  723. teradataml/data/model2_table.csv +5 -5
  724. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  725. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  726. teradataml/data/modularity_example.json +12 -12
  727. teradataml/data/movavg_example.json +7 -7
  728. teradataml/data/mtx1.csv +7 -7
  729. teradataml/data/mtx2.csv +13 -13
  730. teradataml/data/multi_model_classification.csv +401 -0
  731. teradataml/data/multi_model_regression.csv +401 -0
  732. teradataml/data/mvdfft8.csv +9 -9
  733. teradataml/data/naivebayes_example.json +9 -9
  734. teradataml/data/naivebayespredict_example.json +19 -19
  735. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  736. teradataml/data/naivebayestextclassifier_example.json +8 -8
  737. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  738. teradataml/data/name_Find_configure.csv +10 -10
  739. teradataml/data/namedentityfinder_example.json +14 -14
  740. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  741. teradataml/data/namedentityfindertrainer_example.json +6 -6
  742. teradataml/data/nb_iris_input_test.csv +31 -31
  743. teradataml/data/nb_iris_input_train.csv +121 -121
  744. teradataml/data/nbp_iris_model.csv +13 -13
  745. teradataml/data/ner_extractor_text.csv +2 -2
  746. teradataml/data/ner_sports_test2.csv +29 -29
  747. teradataml/data/ner_sports_train.csv +501 -501
  748. teradataml/data/nerevaluator_example.json +5 -5
  749. teradataml/data/nerextractor_example.json +18 -18
  750. teradataml/data/nermem_sports_test.csv +17 -17
  751. teradataml/data/nermem_sports_train.csv +50 -50
  752. teradataml/data/nertrainer_example.json +6 -6
  753. teradataml/data/ngrams_example.json +6 -6
  754. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  755. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  756. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  757. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  758. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  759. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  760. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  761. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  762. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  763. teradataml/data/npath_example.json +23 -23
  764. teradataml/data/ntree_example.json +14 -14
  765. teradataml/data/numeric_strings.csv +4 -4
  766. teradataml/data/numerics.csv +4 -4
  767. teradataml/data/ocean_buoy.csv +17 -17
  768. teradataml/data/ocean_buoy2.csv +17 -17
  769. teradataml/data/ocean_buoys.csv +27 -27
  770. teradataml/data/ocean_buoys2.csv +10 -10
  771. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  772. teradataml/data/ocean_buoys_seq.csv +29 -29
  773. teradataml/data/onehot_encoder_train.csv +4 -0
  774. teradataml/data/openml_example.json +92 -0
  775. teradataml/data/optional_event_table.csv +4 -4
  776. teradataml/data/orders1.csv +11 -11
  777. teradataml/data/orders1_12.csv +12 -12
  778. teradataml/data/orders_ex.csv +4 -4
  779. teradataml/data/pack_example.json +8 -8
  780. teradataml/data/package_tracking.csv +19 -19
  781. teradataml/data/package_tracking_pti.csv +18 -18
  782. teradataml/data/pagerank_example.json +13 -13
  783. teradataml/data/paragraphs_input.csv +6 -6
  784. teradataml/data/pathanalyzer_example.json +7 -7
  785. teradataml/data/pathgenerator_example.json +7 -7
  786. teradataml/data/phrases.csv +7 -7
  787. teradataml/data/pivot_example.json +8 -8
  788. teradataml/data/pivot_input.csv +22 -22
  789. teradataml/data/playerRating.csv +31 -31
  790. teradataml/data/postagger_example.json +6 -6
  791. teradataml/data/posttagger_output.csv +44 -44
  792. teradataml/data/production_data.csv +16 -16
  793. teradataml/data/production_data2.csv +7 -7
  794. teradataml/data/randomsample_example.json +31 -31
  795. teradataml/data/randomwalksample_example.json +8 -8
  796. teradataml/data/rank_table.csv +6 -6
  797. teradataml/data/ref_mobile_data.csv +4 -4
  798. teradataml/data/ref_mobile_data_dense.csv +2 -2
  799. teradataml/data/ref_url.csv +17 -17
  800. teradataml/data/restaurant_reviews.csv +7 -7
  801. teradataml/data/river_data.csv +145 -145
  802. teradataml/data/roc_example.json +7 -7
  803. teradataml/data/roc_input.csv +101 -101
  804. teradataml/data/rule_inputs.csv +6 -6
  805. teradataml/data/rule_table.csv +2 -2
  806. teradataml/data/sales.csv +7 -7
  807. teradataml/data/sales_transaction.csv +501 -501
  808. teradataml/data/salesdata.csv +342 -342
  809. teradataml/data/sample_cities.csv +2 -2
  810. teradataml/data/sample_shapes.csv +10 -10
  811. teradataml/data/sample_streets.csv +2 -2
  812. teradataml/data/sampling_example.json +15 -15
  813. teradataml/data/sax_example.json +8 -8
  814. teradataml/data/scale_attributes.csv +3 -0
  815. teradataml/data/scale_example.json +74 -23
  816. teradataml/data/scale_housing.csv +11 -11
  817. teradataml/data/scale_housing_test.csv +6 -6
  818. teradataml/data/scale_input_part_sparse.csv +31 -0
  819. teradataml/data/scale_input_partitioned.csv +16 -0
  820. teradataml/data/scale_input_sparse.csv +11 -0
  821. teradataml/data/scale_parameters.csv +3 -0
  822. teradataml/data/scale_stat.csv +11 -11
  823. teradataml/data/scalebypartition_example.json +13 -13
  824. teradataml/data/scalemap_example.json +13 -13
  825. teradataml/data/scalesummary_example.json +12 -12
  826. teradataml/data/score_category.csv +101 -101
  827. teradataml/data/score_summary.csv +4 -4
  828. teradataml/data/script_example.json +9 -9
  829. teradataml/data/scripts/deploy_script.py +84 -0
  830. teradataml/data/scripts/mapper.R +20 -0
  831. teradataml/data/scripts/mapper.py +15 -15
  832. teradataml/data/scripts/mapper_replace.py +15 -15
  833. teradataml/data/scripts/sklearn/__init__.py +0 -0
  834. teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
  835. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
  836. teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
  837. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
  838. teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
  839. teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
  840. teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
  841. teradataml/data/seeds.csv +10 -10
  842. teradataml/data/sentenceextractor_example.json +6 -6
  843. teradataml/data/sentiment_extract_input.csv +11 -11
  844. teradataml/data/sentiment_train.csv +16 -16
  845. teradataml/data/sentiment_word.csv +20 -20
  846. teradataml/data/sentiment_word_input.csv +19 -19
  847. teradataml/data/sentimentextractor_example.json +24 -24
  848. teradataml/data/sentimenttrainer_example.json +8 -8
  849. teradataml/data/sequence_table.csv +10 -10
  850. teradataml/data/seriessplitter_example.json +7 -7
  851. teradataml/data/sessionize_example.json +17 -17
  852. teradataml/data/sessionize_table.csv +116 -116
  853. teradataml/data/setop_test1.csv +24 -24
  854. teradataml/data/setop_test2.csv +22 -22
  855. teradataml/data/soc_nw_edges.csv +10 -10
  856. teradataml/data/soc_nw_vertices.csv +7 -7
  857. teradataml/data/souvenir_timeseries.csv +167 -167
  858. teradataml/data/sparse_iris_attribute.csv +5 -5
  859. teradataml/data/sparse_iris_test.csv +121 -121
  860. teradataml/data/sparse_iris_train.csv +601 -601
  861. teradataml/data/star1.csv +6 -6
  862. teradataml/data/state_transition.csv +5 -5
  863. teradataml/data/stock_data.csv +53 -53
  864. teradataml/data/stock_movement.csv +11 -11
  865. teradataml/data/stock_vol.csv +76 -76
  866. teradataml/data/stop_words.csv +8 -8
  867. teradataml/data/store_sales.csv +37 -37
  868. teradataml/data/stringsimilarity_example.json +7 -7
  869. teradataml/data/strsimilarity_input.csv +13 -13
  870. teradataml/data/students.csv +101 -101
  871. teradataml/data/svm_iris_input_test.csv +121 -121
  872. teradataml/data/svm_iris_input_train.csv +481 -481
  873. teradataml/data/svm_iris_model.csv +7 -7
  874. teradataml/data/svmdense_example.json +9 -9
  875. teradataml/data/svmdensepredict_example.json +18 -18
  876. teradataml/data/svmsparse_example.json +7 -7
  877. teradataml/data/svmsparsepredict_example.json +13 -13
  878. teradataml/data/svmsparsesummary_example.json +7 -7
  879. teradataml/data/target_mobile_data.csv +13 -13
  880. teradataml/data/target_mobile_data_dense.csv +5 -5
  881. teradataml/data/templatedata.csv +1201 -1201
  882. teradataml/data/templates/open_source_ml.json +9 -0
  883. teradataml/data/teradataml_example.json +150 -1
  884. teradataml/data/test_classification.csv +101 -0
  885. teradataml/data/test_loan_prediction.csv +53 -53
  886. teradataml/data/test_pacf_12.csv +37 -37
  887. teradataml/data/test_prediction.csv +101 -0
  888. teradataml/data/test_regression.csv +101 -0
  889. teradataml/data/test_river2.csv +109 -109
  890. teradataml/data/text_inputs.csv +6 -6
  891. teradataml/data/textchunker_example.json +7 -7
  892. teradataml/data/textclassifier_example.json +6 -6
  893. teradataml/data/textclassifier_input.csv +7 -7
  894. teradataml/data/textclassifiertrainer_example.json +6 -6
  895. teradataml/data/textmorph_example.json +5 -5
  896. teradataml/data/textparser_example.json +15 -15
  897. teradataml/data/texttagger_example.json +11 -11
  898. teradataml/data/texttokenizer_example.json +6 -6
  899. teradataml/data/texttrainer_input.csv +11 -11
  900. teradataml/data/tf_example.json +6 -6
  901. teradataml/data/tfidf_example.json +13 -13
  902. teradataml/data/tfidf_input1.csv +201 -201
  903. teradataml/data/tfidf_train.csv +6 -6
  904. teradataml/data/time_table1.csv +535 -535
  905. teradataml/data/time_table2.csv +14 -14
  906. teradataml/data/timeseriesdata.csv +1601 -1601
  907. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  908. teradataml/data/titanic.csv +892 -892
  909. teradataml/data/token_table.csv +696 -696
  910. teradataml/data/train_multiclass.csv +101 -0
  911. teradataml/data/train_regression.csv +101 -0
  912. teradataml/data/train_regression_multiple_labels.csv +101 -0
  913. teradataml/data/train_tracking.csv +27 -27
  914. teradataml/data/transformation_table.csv +5 -5
  915. teradataml/data/transformation_table_new.csv +1 -1
  916. teradataml/data/tv_spots.csv +16 -16
  917. teradataml/data/twod_climate_data.csv +117 -117
  918. teradataml/data/uaf_example.json +475 -475
  919. teradataml/data/univariatestatistics_example.json +8 -8
  920. teradataml/data/unpack_example.json +9 -9
  921. teradataml/data/unpivot_example.json +9 -9
  922. teradataml/data/unpivot_input.csv +8 -8
  923. teradataml/data/us_air_pass.csv +36 -36
  924. teradataml/data/us_population.csv +624 -624
  925. teradataml/data/us_states_shapes.csv +52 -52
  926. teradataml/data/varmax_example.json +17 -17
  927. teradataml/data/vectordistance_example.json +25 -25
  928. teradataml/data/ville_climatedata.csv +121 -121
  929. teradataml/data/ville_tempdata.csv +12 -12
  930. teradataml/data/ville_tempdata1.csv +12 -12
  931. teradataml/data/ville_temperature.csv +11 -11
  932. teradataml/data/waveletTable.csv +1605 -1605
  933. teradataml/data/waveletTable2.csv +1605 -1605
  934. teradataml/data/weightedmovavg_example.json +8 -8
  935. teradataml/data/wft_testing.csv +5 -5
  936. teradataml/data/wine_data.csv +1600 -0
  937. teradataml/data/word_embed_input_table1.csv +5 -5
  938. teradataml/data/word_embed_input_table2.csv +4 -4
  939. teradataml/data/word_embed_model.csv +22 -22
  940. teradataml/data/words_input.csv +13 -13
  941. teradataml/data/xconvolve_complex_left.csv +6 -6
  942. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  943. teradataml/data/xgboost_example.json +35 -35
  944. teradataml/data/xgboostpredict_example.json +31 -31
  945. teradataml/data/ztest_example.json +16 -0
  946. teradataml/dataframe/copy_to.py +1769 -1698
  947. teradataml/dataframe/data_transfer.py +2812 -2745
  948. teradataml/dataframe/dataframe.py +17630 -16946
  949. teradataml/dataframe/dataframe_utils.py +1875 -1740
  950. teradataml/dataframe/fastload.py +794 -603
  951. teradataml/dataframe/indexer.py +424 -424
  952. teradataml/dataframe/setop.py +1179 -1166
  953. teradataml/dataframe/sql.py +10174 -6432
  954. teradataml/dataframe/sql_function_parameters.py +439 -388
  955. teradataml/dataframe/sql_functions.py +652 -652
  956. teradataml/dataframe/sql_interfaces.py +220 -220
  957. teradataml/dataframe/vantage_function_types.py +674 -630
  958. teradataml/dataframe/window.py +693 -692
  959. teradataml/dbutils/__init__.py +3 -3
  960. teradataml/dbutils/dbutils.py +1167 -1150
  961. teradataml/dbutils/filemgr.py +267 -267
  962. teradataml/gen_ai/__init__.py +2 -2
  963. teradataml/gen_ai/convAI.py +472 -472
  964. teradataml/geospatial/__init__.py +3 -3
  965. teradataml/geospatial/geodataframe.py +1105 -1094
  966. teradataml/geospatial/geodataframecolumn.py +392 -387
  967. teradataml/geospatial/geometry_types.py +925 -925
  968. teradataml/hyperparameter_tuner/__init__.py +1 -1
  969. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  970. teradataml/hyperparameter_tuner/utils.py +281 -187
  971. teradataml/lib/aed_0_1.dll +0 -0
  972. teradataml/lib/libaed_0_1.dylib +0 -0
  973. teradataml/lib/libaed_0_1.so +0 -0
  974. teradataml/libaed_0_1.dylib +0 -0
  975. teradataml/libaed_0_1.so +0 -0
  976. teradataml/opensource/__init__.py +1 -0
  977. teradataml/opensource/sklearn/__init__.py +1 -0
  978. teradataml/opensource/sklearn/_class.py +255 -0
  979. teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
  980. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  981. teradataml/opensource/sklearn/constants.py +54 -0
  982. teradataml/options/__init__.py +130 -124
  983. teradataml/options/configure.py +358 -336
  984. teradataml/options/display.py +176 -176
  985. teradataml/plot/__init__.py +2 -2
  986. teradataml/plot/axis.py +1388 -1388
  987. teradataml/plot/constants.py +15 -15
  988. teradataml/plot/figure.py +398 -398
  989. teradataml/plot/plot.py +760 -760
  990. teradataml/plot/query_generator.py +83 -83
  991. teradataml/plot/subplot.py +216 -216
  992. teradataml/scriptmgmt/UserEnv.py +3791 -3761
  993. teradataml/scriptmgmt/__init__.py +3 -3
  994. teradataml/scriptmgmt/lls_utils.py +1719 -1604
  995. teradataml/series/series.py +532 -532
  996. teradataml/series/series_utils.py +71 -71
  997. teradataml/table_operators/Apply.py +949 -917
  998. teradataml/table_operators/Script.py +1718 -1982
  999. teradataml/table_operators/TableOperator.py +1255 -1616
  1000. teradataml/table_operators/__init__.py +2 -3
  1001. teradataml/table_operators/apply_query_generator.py +262 -262
  1002. teradataml/table_operators/query_generator.py +507 -507
  1003. teradataml/table_operators/table_operator_query_generator.py +460 -460
  1004. teradataml/table_operators/table_operator_util.py +631 -639
  1005. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  1006. teradataml/table_operators/templates/dataframe_map.template +176 -176
  1007. teradataml/table_operators/templates/script_executor.template +170 -170
  1008. teradataml/utils/dtypes.py +684 -684
  1009. teradataml/utils/internal_buffer.py +84 -84
  1010. teradataml/utils/print_versions.py +205 -205
  1011. teradataml/utils/utils.py +410 -410
  1012. teradataml/utils/validators.py +2277 -2115
  1013. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
  1014. teradataml-20.0.0.1.dist-info/RECORD +1056 -0
  1015. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
  1016. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
  1017. teradataml/analytics/mle/AdaBoost.py +0 -651
  1018. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1019. teradataml/analytics/mle/Antiselect.py +0 -342
  1020. teradataml/analytics/mle/Arima.py +0 -641
  1021. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1022. teradataml/analytics/mle/Attribution.py +0 -1070
  1023. teradataml/analytics/mle/Betweenness.py +0 -658
  1024. teradataml/analytics/mle/Burst.py +0 -711
  1025. teradataml/analytics/mle/CCM.py +0 -600
  1026. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1027. teradataml/analytics/mle/CFilter.py +0 -460
  1028. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1029. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1030. teradataml/analytics/mle/Closeness.py +0 -737
  1031. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1032. teradataml/analytics/mle/Correlation.py +0 -477
  1033. teradataml/analytics/mle/Correlation2.py +0 -573
  1034. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1035. teradataml/analytics/mle/CoxPH.py +0 -556
  1036. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1037. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1038. teradataml/analytics/mle/DTW.py +0 -623
  1039. teradataml/analytics/mle/DWT.py +0 -564
  1040. teradataml/analytics/mle/DWT2D.py +0 -599
  1041. teradataml/analytics/mle/DecisionForest.py +0 -716
  1042. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1043. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1044. teradataml/analytics/mle/DecisionTree.py +0 -830
  1045. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1046. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1047. teradataml/analytics/mle/FMeasure.py +0 -402
  1048. teradataml/analytics/mle/FPGrowth.py +0 -734
  1049. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1050. teradataml/analytics/mle/GLM.py +0 -558
  1051. teradataml/analytics/mle/GLML1L2.py +0 -547
  1052. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1053. teradataml/analytics/mle/GLMPredict.py +0 -529
  1054. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1055. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1056. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1057. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1058. teradataml/analytics/mle/Histogram.py +0 -561
  1059. teradataml/analytics/mle/IDWT.py +0 -476
  1060. teradataml/analytics/mle/IDWT2D.py +0 -493
  1061. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1062. teradataml/analytics/mle/Interpolator.py +0 -918
  1063. teradataml/analytics/mle/KMeans.py +0 -485
  1064. teradataml/analytics/mle/KNN.py +0 -627
  1065. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1066. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1067. teradataml/analytics/mle/LAR.py +0 -439
  1068. teradataml/analytics/mle/LARPredict.py +0 -478
  1069. teradataml/analytics/mle/LDA.py +0 -548
  1070. teradataml/analytics/mle/LDAInference.py +0 -492
  1071. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1072. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1073. teradataml/analytics/mle/LinReg.py +0 -433
  1074. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1075. teradataml/analytics/mle/MinHash.py +0 -544
  1076. teradataml/analytics/mle/Modularity.py +0 -587
  1077. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1078. teradataml/analytics/mle/NERExtractor.py +0 -595
  1079. teradataml/analytics/mle/NERTrainer.py +0 -458
  1080. teradataml/analytics/mle/NGrams.py +0 -570
  1081. teradataml/analytics/mle/NPath.py +0 -634
  1082. teradataml/analytics/mle/NTree.py +0 -549
  1083. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1084. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1085. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1086. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1087. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1088. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1089. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1090. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1091. teradataml/analytics/mle/POSTagger.py +0 -417
  1092. teradataml/analytics/mle/Pack.py +0 -411
  1093. teradataml/analytics/mle/PageRank.py +0 -535
  1094. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1095. teradataml/analytics/mle/PathGenerator.py +0 -367
  1096. teradataml/analytics/mle/PathStart.py +0 -464
  1097. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1098. teradataml/analytics/mle/Pivot.py +0 -471
  1099. teradataml/analytics/mle/ROC.py +0 -425
  1100. teradataml/analytics/mle/RandomSample.py +0 -637
  1101. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1102. teradataml/analytics/mle/SAX.py +0 -779
  1103. teradataml/analytics/mle/SVMDense.py +0 -677
  1104. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1105. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1106. teradataml/analytics/mle/SVMSparse.py +0 -557
  1107. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1108. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1109. teradataml/analytics/mle/Sampling.py +0 -549
  1110. teradataml/analytics/mle/Scale.py +0 -565
  1111. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1112. teradataml/analytics/mle/ScaleMap.py +0 -378
  1113. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1114. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1115. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1116. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1117. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1118. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1119. teradataml/analytics/mle/Sessionize.py +0 -475
  1120. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1121. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1122. teradataml/analytics/mle/TF.py +0 -389
  1123. teradataml/analytics/mle/TFIDF.py +0 -504
  1124. teradataml/analytics/mle/TextChunker.py +0 -414
  1125. teradataml/analytics/mle/TextClassifier.py +0 -399
  1126. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1127. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1128. teradataml/analytics/mle/TextMorph.py +0 -494
  1129. teradataml/analytics/mle/TextParser.py +0 -623
  1130. teradataml/analytics/mle/TextTagger.py +0 -530
  1131. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1132. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1133. teradataml/analytics/mle/Unpack.py +0 -526
  1134. teradataml/analytics/mle/Unpivot.py +0 -438
  1135. teradataml/analytics/mle/VarMax.py +0 -776
  1136. teradataml/analytics/mle/VectorDistance.py +0 -762
  1137. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1138. teradataml/analytics/mle/XGBoost.py +0 -842
  1139. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1140. teradataml/analytics/mle/__init__.py +0 -123
  1141. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1142. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1143. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1144. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1145. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1146. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1147. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1148. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1149. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1150. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1151. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1152. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1153. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1154. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1155. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1156. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1157. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1158. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1159. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1160. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1161. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1162. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1163. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1164. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1165. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1166. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1167. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1168. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1169. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1170. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1171. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1172. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1173. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1174. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1175. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1176. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1177. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1178. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1179. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1180. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1181. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1182. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1183. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1184. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1185. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1186. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1187. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1188. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1189. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1190. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1191. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1192. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1193. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1194. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1195. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1196. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1197. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1198. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1199. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1200. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1201. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1202. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1203. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1204. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1205. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1206. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1207. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1208. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1209. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1210. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1211. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1212. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1213. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1214. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1215. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1216. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1217. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1218. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1219. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1220. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1221. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1222. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1223. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1224. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1225. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1226. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1227. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1228. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1229. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1230. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1231. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1232. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1233. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1234. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1235. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1236. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1237. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1238. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1239. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1240. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1241. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1242. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1243. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1244. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1245. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1246. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1247. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1248. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1249. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1250. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1251. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1252. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1253. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1254. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1255. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1256. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1257. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1258. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1259. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1260. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1261. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1262. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1263. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1264. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1265. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1266. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1267. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1268. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1269. teradataml/analytics/sqle/Antiselect.py +0 -321
  1270. teradataml/analytics/sqle/Attribution.py +0 -603
  1271. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1272. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1273. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1274. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1275. teradataml/analytics/sqle/NPath.py +0 -632
  1276. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1277. teradataml/analytics/sqle/Pack.py +0 -388
  1278. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1279. teradataml/analytics/sqle/Sessionize.py +0 -390
  1280. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1281. teradataml/analytics/sqle/Unpack.py +0 -503
  1282. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1283. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1284. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1285. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1286. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1287. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1288. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1289. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1290. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1291. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1292. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1293. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1294. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1295. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1296. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1297. teradataml/catalog/model_cataloging.py +0 -980
  1298. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1299. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1300. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1301. teradataml/table_operators/sandbox_container_util.py +0 -643
  1302. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1303. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
@@ -1,1510 +1,491 @@
1
- """
2
- Copyright (c) 2020 by Teradata Corporation. All rights reserved.
3
- TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
4
-
5
- Primary Owner: Rohit.Khurd@teradata.com
6
- Secondary Owner:
7
-
8
- teradataml Model Cataloging utilities
9
- -------------------------------------
10
- The teradataml Model Cataloging utility functions provide internal utilities that
11
- the Model Cataloging APIs make use of.
12
- """
13
- import importlib
14
- import warnings
15
- import pandas as pd
16
- import re
17
-
18
- from teradataml.common.constants import ModelCatalogingConstants as mac,\
19
- FunctionArgumentMapperConstants as famc
20
- from teradataml.common.constants import TeradataConstants
21
- from teradataml.common.exceptions import TeradataMlException
22
- from teradataml.common.utils import UtilFuncs
23
- from teradataml.common.messagecodes import MessageCodes
24
- from teradataml.common.messages import Messages
25
- from teradataml.context.context import get_connection, get_context, _get_current_databasename
26
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
27
- from teradataml.catalog.function_argument_mapper import _argument_mapper
28
- from teradataml.common.sqlbundle import SQLBundle
29
- from teradataml.utils.utils import execute_sql
30
- from teradatasqlalchemy import CLOB
31
- from teradatasqlalchemy.dialect import preparer, dialect as td_dialect
32
- from sqlalchemy.sql.expression import select, case as case_when
33
- from sqlalchemy import func
34
-
35
-
36
- def __get_arg_sql_name_from_tdml(function_arg_map, arg_type, name):
37
- """
38
- DESCRIPTION:
39
- Internal function to find SQL equivalent name for given teradataml name.
40
-
41
- PARAMETERS:
42
- function_arg_map:
43
- Required Argument.
44
- The teradataml-sql map for the function obtained using function_argument_mapper.
45
- Types: dict
46
-
47
- arg_type:
48
- Required Argument.
49
- Specifies a string representing the type of lookup, one of the keys in the function argument map.
50
- Acceptable values: 'arguments', 'inputs', 'outputs'
51
- Types: str
52
-
53
- name:
54
- Required Argument.
55
- Specifies the teradataml input, output, or argument name to lookup.
56
- Types: str
57
-
58
- RETURNS:
59
- A String representing the SQL equivalent name for the teradataml name passed as input.
60
-
61
- EXAMPLES:
62
- >>> sql_name = __get_arg_sql_name_from_tdml(function_arg_map, arg_type, name)
63
- """
64
- if name in function_arg_map[arg_type][famc.TDML_TO_SQL.value]:
65
- sql_name = function_arg_map[arg_type][famc.TDML_TO_SQL.value][name]
66
-
67
- if isinstance(sql_name, dict):
68
- sql_name = sql_name[famc.TDML_NAME.value]
69
-
70
- if isinstance(sql_name, list):
71
- sql_name = sql_name[0]
72
-
73
- return sql_name
74
-
75
- # No SQL name found for given teradataml input name
76
- return None
77
-
78
-
79
- def __get_arg_tdml_name_from_sql(function_arg_map, arg_type, name):
80
- """
81
- DESCRIPTION:
82
- Internal function to find teradataml equivalent name and type, if any, for given SQL name.
83
-
84
- PARAMETERS:
85
- function_arg_map:
86
- Required Argument.
87
- The teradataml-sql map for the function obtained using function_argument_mapper.
88
- Types: dict
89
-
90
- arg_type:
91
- Required Argument.
92
- Specifies a string representing the type of lookup, one of the keys in the function argument map.
93
- Acceptable values: 'arguments', 'inputs', 'outputs'
94
- Types: str
95
-
96
- name:
97
- Required Argument.
98
- Specifies the SQL input, output, or argument name to lookup.
99
- Types: str
100
-
101
- RETURNS:
102
- * A String representing the teradataml equivalent name for the SQL name when arg_type
103
- is 'inputs' or 'outputs'.
104
- * A dictionary with tdml_name and tdml_type for the SQL name when arg_type
105
- is 'arguments'.
106
-
107
-
108
- EXAMPLES:
109
- >>> tdml_name = __get_arg_tdml_name_from_sql(function_arg_map, arg_type, name)
110
- """
111
- if name in function_arg_map[arg_type][famc.SQL_TO_TDML.value]:
112
- tdml_name = function_arg_map[arg_type][famc.SQL_TO_TDML.value][name]
113
-
114
- # Check for alternate names.
115
- if isinstance(tdml_name, dict) and famc.ALTERNATE_TO.value in tdml_name:
116
- alternate_to = function_arg_map[arg_type][famc.SQL_TO_TDML.value][name][
117
- famc.ALTERNATE_TO.value]
118
- tdml_name = function_arg_map[arg_type][famc.SQL_TO_TDML.value][alternate_to]
119
-
120
- if isinstance(tdml_name, list):
121
- tdml_name = tdml_name[0]
122
-
123
- return tdml_name
124
-
125
- # No teradataml name found for given teradataml input name
126
- return None
127
-
128
-
129
- def __get_model_inputs_outputs(model, function_arg_map):
130
- """
131
- DESCRIPTION:
132
- Internal function to get input and output information of the model to be saved.
133
-
134
- PARAMETERS:
135
- model:
136
- Required Argument.
137
- The model (analytic function object instance) to be saved.
138
- Types: teradataml Analytic Function object
139
-
140
- function_arg_map:
141
- Required Argument.
142
- The teradataml-sql map for the function obtained using function_argument_mapper.
143
- Types: dict
144
-
145
- RETURNS:
146
- A tuple of two dictionaries, and a list:
147
- * The first containing input information.
148
- * The second containing output information.
149
- * The list containing names of tables to remove entries from GC for.
150
-
151
- EXAMPLE:
152
- >>> inputs, outputs, tables_to_not_gc = __get_model_inputs_outputs(model, function_arg_map)
153
- """
154
- input_json = {}
155
- output_json = {}
156
- remove_tables_entries_from_gc = []
157
-
158
- # First, let's identify the output DataFrames
159
- output_tables = [df._table_name for df in model._mlresults]
160
-
161
- for key in model.__dict__:
162
- if not key.startswith('_'):
163
- member = getattr(model, key)
164
- # The DataFrame is input if it is not output
165
- if isinstance(member, DataFrame):
166
- if member._table_name not in output_tables:
167
- # Populate the input dictionary
168
- # We construct a dictionary of the following form:
169
- # { "<schema_name> :
170
- # { "<table_name>" :
171
- # { "nrows": <num_rows>,
172
- # "ncols": <num_cols>,
173
- # "input_name": <SQL name for the input>,
174
- # "client_specific_input_name": <tdml name for the input>
175
- # },
176
- # ...
177
- # }
178
- # }
179
- tdp = preparer(td_dialect)
180
- nrows, ncols = member.shape
181
- db_schema = UtilFuncs._extract_db_name(member._table_name)
182
- # Add quotes around the DB name in case we are getting it using _get_current_databasename()
183
- db_schema = tdp.quote(_get_current_databasename()) if db_schema is None else db_schema
184
- db_table_name = UtilFuncs._extract_table_name(member._table_name)
185
-
186
- if db_schema not in input_json:
187
- input_json[db_schema] = {}
188
- input_json[db_schema][db_table_name] = {}
189
- input_json[db_schema][db_table_name]["nrows"] = int(nrows)
190
- input_json[db_schema][db_table_name]["ncols"] = ncols
191
- input_json[db_schema][db_table_name]["input_name"] = __get_arg_sql_name_from_tdml(function_arg_map,
192
- arg_type=famc.INPUTS.value,
193
- name=key)
194
- input_json[db_schema][db_table_name]["client_specific_input_name"] = key
195
- else:
196
- # Populate the output dictionary
197
- # We construct a dictionary of the following form:
198
- # { "<Output SQL Name> :
199
- # { "table_name": "<Database qualified name of the table>",
200
- # "client_specific_name": "<TDML specific name of the output>"
201
- # },
202
- # ...
203
- # }
204
-
205
- # teradataml Analytic functions models can be of two types:
206
- # 1. Non-lazy OR
207
- # 2. Lazy
208
- # When model is non-lazy, that means model tables are already present/created on the system.
209
- # When model is lazy, it may happen that model tables are yet to be evaluated/created.
210
- # So first, let's make sure that model is evaluated, i.e., model tables are created,
211
- # if they are not created already.
212
- #
213
- if member._table_name is None:
214
- member._table_name = df_utils._execute_node_return_db_object_name(member._nodeid,
215
- member._metaexpr)
216
- output_table_name = member._table_name
217
- if __is_view(output_table_name):
218
- # If output table is not of type table, which means it's a view.
219
- # So instead of using view name for persisting, we must materialize the same.
220
- #
221
- # To do so, let's just generate another temporary table name. One can notice, when
222
- # we generate the temporary table name, we set the following flag 'gc_on_quit=True'.
223
- # One can say, why to mark it for GC, when we are going to persist it.
224
- # Only reason we added it for GC, so that, if in case anything goes wrong from the point
225
- # we create the table to the end of the model saving, later this will be GC'ed as
226
- # model saving had failed. Later we remove entry from GC, when model info is saved in
227
- # MC tables and model is persisted in table.
228
- #
229
- output_table_name = UtilFuncs._generate_temp_table_name(prefix="td_saved_model_",
230
- use_default_database=True,
231
- gc_on_quit=True, quote=False,
232
- table_type=TeradataConstants.TERADATA_TABLE)
233
-
234
- base_query = SQLBundle._build_base_query(member._table_name)
235
- crt_table_query = SQLBundle._build_create_table_with_data(output_table_name, base_query)
236
- UtilFuncs._execute_ddl_statement(crt_table_query)
237
-
238
- # Append the name of the table to remove entry from GC.
239
- remove_tables_entries_from_gc.append(output_table_name)
240
-
241
- sql_name = __get_arg_sql_name_from_tdml(function_arg_map, arg_type=famc.OUTPUTS.value, name=key)
242
- output_json[sql_name] = {}
243
- output_json[sql_name]["table_name"] = output_table_name
244
- output_json[sql_name]["client_specific_name"] = key
245
-
246
- return input_json, output_json, remove_tables_entries_from_gc
247
-
248
-
249
- def __check_if_client_specific_use(key, function_arg_map, is_sql_name=False):
250
- """
251
- DESCRIPTION:
252
- Internal function to check if the argument corresponds to a client-only specific argument.
253
-
254
- PARAMETERS:
255
- key:
256
- Required Argument.
257
- The teradataml or SQL argument name to check for.
258
- Types: str
259
-
260
- function_arg_map:
261
- Required Argument.
262
- The teradataml-sql map for the function obtained using function_argument_mapper.
263
- Types: dict
264
-
265
- is_sql_name:
266
- Optional Argument.
267
- Specifies a boolean value indicating whether the key is a SQL or teradataml key.
268
- Types: bool
269
- Default Value: False
270
-
271
- RETURNS:
272
- A tuple containing:
273
- * A boolean value indicating whether the argument is or has:
274
- - a client-only specific argument: True
275
- - else False
276
- * A string specifying whether it is used in sequence_column ('used_in_sequence_by') or formula ('used_in_formula')
277
-
278
- EXAMPLES:
279
- >>> client_only, where_used = __check_if_client_specific_use(key, function_arg_map, is_sql_name=False)
280
- """
281
- # Let's assume SQL Name was passed
282
- sql_name = key
283
-
284
- if not is_sql_name:
285
- if key in function_arg_map[famc.ARGUMENTS.value][famc.TDML_TO_SQL.value]:
286
- sql_name = __get_arg_sql_name_from_tdml(function_arg_map, arg_type=famc.ARGUMENTS.value, name=key)
287
- else:
288
- # No SQL name found for given teradataml input name
289
- return False, None
290
-
291
- if isinstance(sql_name, dict):
292
- sql_name = sql_name[famc.TDML_NAME.value]
293
-
294
- if isinstance(sql_name, list):
295
- sql_name = sql_name[0]
296
-
297
- # Check if SQL name is an alternate name
298
- sql_block = function_arg_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value][sql_name]
299
- if famc.ALTERNATE_TO.value in sql_block:
300
- alternate_to = function_arg_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value][sql_name][famc.ALTERNATE_TO.value]
301
- sql_block = function_arg_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value][alternate_to]
302
-
303
- # Check and return boolean indicating if it is a formula or sequence_input_by argument
304
- if famc.USED_IN_SEQUENCE_INPUT_BY.value in sql_block:
305
- return True, famc.USED_IN_SEQUENCE_INPUT_BY.value
306
- elif famc.USED_IN_FORMULA.value in sql_block:
307
- return True, famc.USED_IN_FORMULA.value
308
- else:
309
- return False, None
310
-
311
-
312
- def __get_model_parameters(model, function_arg_map):
313
- """
314
- DESCRIPTION:
315
- Internal function to get parameter information of the model to be saved.
316
-
317
- PARAMETERS:
318
- model:
319
- Required argument.
320
- The model (analytic function object instance) to be saved.
321
- Types: teradataml Analytic Function object.
322
-
323
- function_arg_map:
324
- Required argument.
325
- The teradataml-sql map for the function obtained using function_argument_mapper.
326
- Types: dict
327
-
328
- RETURNS:
329
- A dict containing the information about parameters passed to model.
330
-
331
- EXAMPLES:
332
- >>> model_parameters = __get_model_parameters(model, function_arg_map)
333
- """
334
- parameter_json = {}
335
-
336
- # Get the attributes that are specific to the SQL syntax of the model algorithm
337
- sql_specific_attributes = model._get_sql_specific_attributes()
338
-
339
- # First, let's identify the parameters
340
- nonsql_argument_counter = 1
341
- for key in model.__dict__:
342
- if not key.startswith('_'):
343
- member = getattr(model, key)
344
- # Check if this is an attribute, not a DataFrame
345
- if not isinstance(member, DataFrame) and key != "sqlmr_query":
346
- # Check if it is a special or client specific argument
347
- special_use, used_in = __check_if_client_specific_use(key, function_arg_map)
348
-
349
- value = member
350
- # Add quotes to Boolean values as they tend to be handled in unintended way with JSON.
351
- if type(member) == bool or key == famc.TDML_FORMULA_NAME.value:
352
- value = str(member)
353
- else:
354
- if isinstance(member, list):
355
- # We try to save the list as a string representation that could readily be used,
356
- # in SQL, and has no language specific representation.
357
- # Here, we remove the '[' and ']' from the string representation.
358
- # We also avoid adding quotes around single-item list.
359
- if len(member) == 1:
360
- value = str(member[0]) if type(member[0]) == bool else member[0]
361
- elif len(member) > 1:
362
- if type(member[0]) == bool:
363
- member = ['{}'.format(val) for val in member]
364
- value = str(member).lstrip('[').rstrip(']')
365
- else:
366
- # Empty list has no meaning, but no chance of running into this with the validation
367
- # in the function wrappers.
368
- value = None
369
- if value is not None:
370
- if special_use:
371
- sql_name = '__nonsql_argument_{}__'.format(nonsql_argument_counter)
372
- nonsql_argument_counter = nonsql_argument_counter + 1
373
- else:
374
- sql_name = __get_arg_sql_name_from_tdml(function_arg_map,arg_type=famc.ARGUMENTS.value,name=key)
375
- parameter_json[sql_name] = {}
376
- parameter_json[sql_name]["value"] = value
377
- parameter_json[sql_name]["client_specific_name"] = key
378
-
379
- sql_name = '__nonsql_argument_{}__'.format(nonsql_argument_counter)
380
- parameter_json[sql_name] = {}
381
- parameter_json[sql_name]["value"] = model.__class__.__name__
382
- parameter_json[sql_name]["client_specific_name"] = "__class_name__"
383
-
384
- # Add the SQL specific arguments
385
- for sql_name in sql_specific_attributes:
386
- parameter_json[sql_name] = {}
387
- parameter_json[sql_name]["value"] = sql_specific_attributes[sql_name]
388
- # Also save the formula related property names for corresponding SQL arguments
389
- if hasattr(model, '_sql_formula_attribute_mapper'):
390
- if sql_name in model._sql_formula_attribute_mapper:
391
- parameter_json[sql_name]["client_specific_name"] = model._sql_formula_attribute_mapper[sql_name]
392
-
393
- return parameter_json
394
-
395
-
396
- def __check_if_model_exists(name, created=False, accessible=False,
397
- raise_error_if_exists=False, raise_error_if_model_not_found=False):
398
- """
399
- DESCRIPTION:
400
- Internal function to check if model with model_name, exists or not.
401
-
402
- PARAMETERS:
403
- name:
404
- Required Argument.
405
- Specifies the name of the model to check whether it exists or not.
406
- Types: str
407
-
408
- created:
409
- Optional Argument.
410
- Specifies whether to check if the model exists and is created by the user.
411
- Default Value: False (Check for all models)
412
- Types: bool
413
-
414
- accessible:
415
- Optional Argument.
416
- Specifies whether to check if the model exists and is accessible by the user.
417
- Default Value: False (Check for all models)
418
- Types: bool
419
-
420
- raise_error_if_exists:
421
- Optional Argument.
422
- Specifies the flag to decide whether to raise error when model exists or not.
423
- Default Value: False (Do not raise exception)
424
- Types: bool
425
-
426
- raise_error_if_model_not_found:
427
- Optional Argument.
428
- Specifies the flag to decide whether to raise error when model is found or not.
429
- Default Value: False (Do not raise exception)
430
- Types: bool
431
-
432
- RETURNS:
433
- None.
434
-
435
- RAISES:
436
- TeradataMlException - MODEL_ALREADY_EXISTS, MODEL_NOT_FOUND
437
-
438
- EXAMPLES:
439
- >>> meta_df = __check_if_model_exists("glm_out")
440
- """
441
- # Get the DataFrame for the Models metadata table.
442
- if created:
443
- current_user = __get_current_user()
444
- models_meta_df = DataFrame(in_schema(mac.MODEL_CATALOG_DB.value, mac.MODELS.value))
445
- models_meta_df = models_meta_df[models_meta_df[mac.CREATED_BY.value].str.lower() == current_user.lower()]
446
- elif accessible:
447
- models_meta_df = DataFrame(in_schema(mac.MODEL_CATALOG_DB.value, mac.MODELSX.value))
448
- else:
449
- models_meta_df = DataFrame(in_schema(mac.MODEL_CATALOG_DB.value, mac.MODELS.value))
450
-
451
- # Get the model created by current client user, using teradataml, with name as model_name.
452
- model_name = models_meta_df.Name
453
-
454
- # Filter Expression.
455
- if name is not None:
456
- models_meta_df = models_meta_df[model_name == name]
457
-
458
- num_rows = models_meta_df.shape[0]
459
-
460
- if raise_error_if_exists:
461
- if num_rows == 1 and name is not None:
462
- # If model with name 'name' already exists.
463
- raise TeradataMlException(Messages.get_message(MessageCodes.MODEL_ALREADY_EXISTS,
464
- name),
465
- MessageCodes.MODEL_ALREADY_EXISTS)
466
-
467
- if raise_error_if_model_not_found:
468
- if num_rows == 0:
469
- if not created:
470
- # 'name' MODEL_NOT_FOUND
471
- raise TeradataMlException(Messages.get_message(MessageCodes.MODEL_NOT_FOUND,
472
- name, ''),
473
- MessageCodes.MODEL_NOT_FOUND)
474
- else:
475
- # 'name' MODEL_NOT_FOUND or not created by user.
476
- raise TeradataMlException(Messages.get_message(MessageCodes.MODEL_NOT_FOUND,
477
- name, ' or not created by user'),
478
- MessageCodes.MODEL_NOT_FOUND)
479
-
480
-
481
- def __check_if_model_cataloging_tables_exists(raise_error_if_does_not_exists=True):
482
- """
483
- DESCRIPTION:
484
- Check whether Model Cataloging tables (one of the views - ModelCataloging.ModelsV) exists or not.
485
-
486
- PARAMETERS:
487
- raise_error_if_does_not_exists:
488
- Optional Argument.
489
- Specifies the flag to decide whether to raise error when Model Cataloging tables does not exist.
490
- Default Value: True (Raise exception)
491
- Types: bool
492
-
493
- RAISES:
494
- None.
495
-
496
- RETURNS:
497
- True, if the view exists, else False.
498
-
499
- EXAMPLES:
500
- >>> __check_if_model_cataloging_tables_exists()
501
- """
502
- # Get current connection().
503
- conn = get_connection()
504
-
505
- # Check whether tables exists on the system or not.
506
- model_table_exists = conn.dialect.has_view(conn, view_name=mac.MODELS.value,
507
- schema=mac.MODEL_CATALOG_DB.value)
508
-
509
- # If both tables exist, return True.
510
- if model_table_exists:
511
- return True
512
-
513
- # We are here means the Model Cataloging view does not exist.
514
- # Let's raise error if 'raise_error_if_does_not_exists' set to True.
515
- if raise_error_if_does_not_exists:
516
- # Raise error, as one or both Model Cataloging tables does not exist.
517
- # MODEL_CATALOGING_TABLE_DOES_EXIST
518
- raise TeradataMlException(
519
- Messages.get_message(MessageCodes.MODEL_CATALOGING_TABLE_DOES_EXIST),
520
- MessageCodes.MODEL_CATALOGING_TABLE_DOES_EXIST)
521
-
522
-
523
- def __get_tables_for_model(name, current_user):
524
- """
525
- DESCRIPTION:
526
- Function to get model tables for a given model name.
527
-
528
- PARAMETERS:
529
- name:
530
- Required Argument.
531
- Specifies the name of the model to get the model tables for.
532
- Types: str
533
-
534
- current_user:
535
- Required Argument.
536
- Specifies the name of the current Vantage user.
537
- Types: str
538
-
539
- RETURNS:
540
- A list of model tables associated with the model.
541
-
542
- EXAMPLES:
543
- >>> table_list = __get_tables_for_model(name, current_user)
544
- """
545
- # Get list of tables
546
- model_object_info = DataFrame(in_schema(mac.MODEL_CATALOG_DB.value, mac.MODELS_OBJECTS.value))
547
- model_info = DataFrame(in_schema(mac.MODEL_CATALOG_DB.value, mac.MODELSX.value))
548
- model_info = model_info[model_info[mac.CREATED_BY.value].str.lower() == current_user.lower()]
549
- model_info = model_info[model_info[mac.MODEL_NAME.value] == name]
550
- model_objects_to_publish = model_info.join(model_object_info,
551
- on=[model_info.Name == model_object_info.ModelName],
552
- how='inner').select([mac.MODEL_OBJ_TABLE_NAME.value])
553
-
554
- model_objects_to_publish = model_objects_to_publish.to_pandas().squeeze()
555
- if isinstance(model_objects_to_publish, str):
556
- # If there is only one output table
557
- return [model_objects_to_publish]
558
- else:
559
- # For multiple or no output tables
560
- return model_objects_to_publish.tolist()
561
-
562
-
563
- def __get_current_user(conn=None):
564
- """
565
- DESCRIPTION:
566
- Internal function to return the current Vantage user
567
-
568
- PARAMETERS:
569
- conn:
570
- Optional Argument,
571
- The underlying SQLAlchemy engine for the connection.
572
- Types: SQLAlchemy engine
573
-
574
- RETURNS:
575
- A string representing the name of the current database user.
576
-
577
- EXAMPLE:
578
- >>> current_user = __get_current_user()
579
- """
580
- if conn is None:
581
- conn = get_connection()
582
-
583
- return execute_sql('select user').fetchall()[0][0]
584
-
585
-
586
- def __get_like_filter_expression_on_col(metaexpr, column_name, like):
587
- """
588
- DESCRIPTION:
589
- Internal function to get the filter expression on column_name containing string matching with like.
590
- (Case insensitive matching)
591
-
592
- PARAMETERS:
593
- metaexpr:
594
- Required Argument.
595
- Specifies the teradataml DataFrame meta data.
596
- Types: _MetaExpression
597
-
598
- column_name:
599
- Required Argument.
600
- Specifies the column name which is to be used in filter expression.
601
- Types: str
602
-
603
- like:
604
- Required Argument.
605
- Specifies the pattern to be matched in filter expression.
606
- Types: str
607
-
608
- RETURNS:
609
- _SQLColumnExpression object
610
-
611
- RAISES:
612
- None
613
-
614
- EXAMPLES:
615
- >>> filter_expression = __get_like_filter_expression_on_col(models_meta_df._metaexpr,
616
- ... mmc.MMT_COL_model_class.value,
617
- ... function_name)
618
- """
619
- return metaexpr._filter(0, 'like', [column_name], like = like, match_arg='i')
620
-
621
-
622
- def __get_model_engine(model):
623
- """
624
- DESCRIPTION:
625
- Internal function to return the engine name on which the model was generated.
626
-
627
- PARAMETERS:
628
- model:
629
- Required Argument.
630
- Model object, for which engine is to be found.
631
- Types: str
632
-
633
- RETURNS:
634
- Engine name ('ML Engine' or 'Advanced SQL Engine')
635
-
636
- RAISES:
637
- TeradataMlException
638
-
639
- EXAMPLES:
640
- >>> __get_model_engine(model)
641
- """
642
- if ".mle." in str(type(model)):
643
- return mac.MODEL_ENGINE_ML.value
644
- elif ".sqle." in str(type(model)):
645
- return mac.MODEL_ENGINE_ADVSQL.value
646
- else:
647
- raise TeradataMlException(Messages.get_message(MessageCodes.UNKNOWN_MODEL_ENGINE,
648
- str(type(model))),
649
- MessageCodes.UNKNOWN_MODEL_ENGINE)
650
-
651
-
652
- def __get_wrapper_class(model_engine, model_class):
653
- """
654
- DESCRIPTION:
655
- Internal function to the wrapper class that can be executed to create the instance of the
656
- model_class from engine specified in model_engine.
657
-
658
- PARAMETERS:
659
- model_engine:
660
- Required Argument.
661
- Model engine string 'ML Engine' or 'Advanced SQL Engine'.
662
- Types: str
663
-
664
- model_class:
665
- Required Argument.
666
- Model class string for the analytical function wrapper.
667
- Types: str
668
-
669
- RETURNS:
670
- A wrapper CLASS
671
-
672
- RAISES:
673
- ValueError - When invalid engine is passed.
674
- AttributeError - When model_class wrapper function, does is not from model_engine.
675
-
676
- EXAMPLES:
677
- >>> __get_wrapper_class("ML Engine", "GLM")
678
- """
679
- if model_engine == mac.MODEL_ENGINE_ML.value:
680
- module_name = "teradataml.analytics.mle"
681
- elif model_engine == mac.MODEL_ENGINE_ADVSQL.value:
682
- module_name = "teradataml.analytics.sqle"
683
- else:
684
- raise ValueError("Invalid Engine found in Model Cataloging table.")
685
-
686
- wrapper_module = importlib.import_module(module_name)
687
-
688
- return getattr(wrapper_module, model_class)
689
-
690
-
691
- def __is_view(tablename):
692
- """
693
- DESCRIPTION:
694
- Internal function to check whether the object is view or not.
695
-
696
- PARAMETERS:
697
- tablename:
698
- Required Argument.
699
- Table name or view name to be checked.
700
- Types: str
701
-
702
- RAISES:
703
- None.
704
-
705
- RETURNS:
706
- True when the tablename is view, else false.
707
-
708
- EXAMPLES:
709
- >>> __is_view('"dbaname"."tablename"')
710
- """
711
- db_name = UtilFuncs._teradata_unquote_arg(UtilFuncs._extract_db_name(tablename), "\"")
712
- table_view_name = UtilFuncs._teradata_unquote_arg(UtilFuncs._extract_table_name(tablename), "\"")
713
- query = SQLBundle._build_select_table_kind(db_name, "{0}".format(table_view_name), "'V'")
714
-
715
- pdf = pd.read_sql(query, get_context())
716
- if pdf.shape[0] > 0:
717
- return True
718
- else:
719
- return False
720
-
721
-
722
- def __delete_model_tableview(tableviewname):
723
- """
724
- DESCRIPTION:
725
- Internal function to remove table name or view.
726
-
727
- PARAMETERS:
728
- tableviewname:
729
- Required Argument.
730
- Table name or view name to be deleted.
731
- Types: str
732
-
733
- RAISES:
734
- None.
735
-
736
- RETURNS:
737
- bool
738
-
739
- EXAMPLES:
740
- >>> __delete_model_tableview('"dbname"."tableviewname"')
741
- """
742
- if not __is_view(tableviewname):
743
- try:
744
- UtilFuncs._drop_table(tableviewname)
745
- except:
746
- return False
747
- else:
748
- try:
749
- UtilFuncs._drop_view(tableviewname)
750
- except:
751
- return False
752
-
753
- return True
754
-
755
-
756
- def __get_all_formula_related_args(function_arg_map):
757
- """
758
- DESCRIPTION:
759
- Internal function to find a list of all formula related arguments for a function.
760
-
761
- PARAMETERS:
762
- function_arg_map:
763
- Required Argument.
764
- The teradataml-sql map for the function obtained using function_argument_mapper.
765
- Types: dict
766
-
767
- RETURNS:
768
- A dictionary mapping all SQL Arguments for the function related to formula to its role in formula.
769
-
770
- EXAMPLE:
771
- >>> __get_all_formula_related_args(function_arg_map)
772
- """
773
- formula_args = {}
774
- for arg_name in function_arg_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value]:
775
- arg = function_arg_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value][arg_name]
776
- # Ignore alternate names
777
- if famc.ALTERNATE_TO.value in arg:
778
- alternate_name = arg[famc.ALTERNATE_TO.value]
779
- arg = function_arg_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value][alternate_name]
780
-
781
- if famc.USED_IN_FORMULA.value in arg:
782
- formula_args[arg_name] = {}
783
- formula_args[arg_name][famc.USED_IN_FORMULA.value] = arg[famc.USED_IN_FORMULA.value]
784
- formula_args[arg_name]['arg_value'] = None
785
-
786
- return formula_args
787
-
788
-
789
- def __fix_imbalanced_quotes(arg):
790
- """
791
- DESCRIPTION:
792
- Internal function to fix imbalanced quotes around a string.
793
-
794
- PARAMETERS:
795
- arg:
796
- Required Argument.
797
- The string to fix the imbalanced quotes for, if any.
798
- Types: str
799
-
800
- RETURNS:
801
- The input string with any imbalanced quotes stripped.
802
-
803
- EXAMPLE:
804
- >>> __fix_imbalanced_quotes('hello"')
805
- hello
806
- """
807
- for quote in ["'", '"']:
808
- if (arg.startswith(quote) and not arg.endswith(quote)) or (not arg.startswith(quote) and arg.endswith(quote)):
809
- return arg.strip(quote)
810
-
811
- return arg
812
-
813
-
814
- def __get_tdml_parameter_value_for_sequence(function_arg_map, attr_value):
815
- """
816
- DESCRIPTION:
817
- Internal function to form sequence_column teradataml argument from SQL arguments.
818
-
819
- PARAMETERS:
820
- function_arg_map:
821
- Required Argument.
822
- The teradataml-sql map for the function obtained using function_argument_mapper.
823
- Types: dict
824
-
825
- attr_value:
826
- Required Argument.
827
- The value of the SQL sequence argument.
828
-
829
- RETURNS:
830
- A dictionary mapping the teradataml sequence argument to its values.
831
-
832
- EXAMPLES:
833
- >>> tdml_sequence_args = __get_tdml_parameter_value_for_sequence(function_arg_map, sql_sequence_arg)
834
- """
835
- sequence_dict = {}
836
- tdml_name = None
837
- for column in attr_value.split(','):
838
- if len(column) == 0:
839
- continue
840
- if ':' in column:
841
- input_name, col_val = column.split(':')
842
- input_name = __fix_imbalanced_quotes(input_name)
843
- col_val = __fix_imbalanced_quotes(col_val)
844
- tdml_name = '{}_{}'.format(__get_arg_tdml_name_from_sql(function_arg_map, famc.INPUTS.value,
845
- input_name.lower()),
846
- 'sequence_column')
847
- tdml_name = __fix_imbalanced_quotes(tdml_name)
848
- sequence_dict[tdml_name] = [col_val]
849
- else:
850
- if tdml_name not in sequence_dict:
851
- # This means there is only one input and the input name was not specified in the
852
- # SequenceInputBy clause. So we get the only input name.
853
- tdml_name = list(function_arg_map[famc.INPUTS.value][famc.TDML_TO_SQL.value].keys())[0]
854
- tdml_name = '{}_{}'.format(tdml_name, 'sequence_column')
855
- sequence_dict[tdml_name] = []
856
- column = __fix_imbalanced_quotes(column)
857
- sequence_dict[tdml_name].append(column)
858
-
859
- return sequence_dict
860
-
861
-
862
- def __get_target_column(name):
863
- """
864
- DESCRIPTION:
865
- Internal function to get the target column of a saved model.
866
-
867
- PARAMETERS:
868
- name:
869
- Required Argument.
870
- Specifies the name used to save the model.
871
- Types: str
872
-
873
- RETURNS:
874
- A String representing the name of the target column.
875
-
876
- EXAMPLES:
877
- >>> target_column = __get_target_column('GLMModel')
878
- """
879
- model_details = DataFrame(in_schema(mac.MODEL_CATALOG_DB.value, mac.MODELS_DETAILSX.value))
880
- model_details = model_details[model_details[mac.MODEL_DERIVED_NAME.value] == name]
881
- target_column = model_details.select([mac.MODEL_DERIVED_TARGET_COLUMN.value]).squeeze()
882
- return target_column
883
-
884
-
885
- def __get_tdml_parameter_value_for_formula(formula_args, target_column):
886
- """
887
- DESCRIPTION:
888
- Internal function to build the formula argument based on the SQL equivalent inputs.
889
-
890
- PARAMETERS:
891
- formula_args:
892
- Required Argument.
893
- A dictionary mapping all SQL Arguments for the function related to formula to its role in formula.
894
- Types: dict
895
-
896
- target_column:
897
- Required Argument.
898
- The target column for the model, if any.
899
- Types: str
900
-
901
- RETURNS:
902
- A String representing the formula argument to be used with teradataml.
903
-
904
- EXAMPLES:
905
- >>> formula = __get_tdml_parameter_value_for_formula(formula_args, target_column)
906
- """
907
- dependent_var = target_column
908
- all_vars = []
909
-
910
- for arg in formula_args:
911
- if formula_args[arg]['arg_value'] is not None:
912
- if formula_args[arg][famc.USED_IN_FORMULA.value] == famc.DEPENDENT_ATTR.value:
913
- dependent_var = formula_args[arg]['arg_value'].strip("'")
914
- else:
915
- all_vars.extend(formula_args[arg]['arg_value'].split(','))
916
-
917
- # Remove duplicates
918
- all_vars = list(set(all_vars))
919
- all_vars = [var.strip("'") for var in all_vars]
920
-
921
- # Remove dependent variable if it occurs in all_vars
922
- if dependent_var in all_vars:
923
- all_vars.pop(all_vars.index(dependent_var))
924
-
925
- formula = '{} ~ {}'.format(dependent_var, ' + '. join(all_vars))
926
- return formula
927
-
928
-
929
- def __cast_arg_values_to_tdml_types(value, type_):
930
- """
931
- DESCRIPTION:
932
- Internal function used by retrieve_model() to cast the retrieved model parameters to the expected python types.
933
-
934
- PARAMETERS:
935
- value:
936
- Required Argument.
937
- Specifies the value retrieved that needs a type cast.
938
- Types: str
939
-
940
- type_:
941
- Required Argument.
942
- Specifies the Python type the value needs to be cast to.
943
- Type: Python type or tuple of Python types
944
-
945
- RETURNS:
946
- The value cast to the required Python type.
947
-
948
- RAISES:
949
- None
950
-
951
- EXAMPLE:
952
- >>> cast_value = __cast_arg_values_to_tdml_types('0.1', float)
953
- """
954
- return_value = None
955
- required_type = type_
956
-
957
- accepted_bool_values = ['1', 't', 'true', 'y', 'yes']
958
-
959
- # If the required_type is a tuple, we need to consider the possibility of the value being a list
960
- if isinstance(required_type, tuple):
961
- # The function_argument_mapper adds the type of the object in the list as the first value in the tuple
962
- required_type = required_type[0]
963
-
964
- # Use regex to split the string value into a list.
965
- # This is required only when we expect the values to be a list as well, in which case,
966
- # the 'value' will be a comma-separated list of strings.
967
- # The pattern matches anything but whitespace and comma and not in quotes, or anything in quotes,
968
- # basically avoiding splitting on a comma when surrounded by quotes.
969
- pattern = r"[^',\s]+|'[^']*'"
970
- values = re.findall(pattern, value)
971
- if len(values) > 1:
972
- if required_type == bool:
973
- # Remove the quotes surrounding items in a list,
974
- # and check for their presence in the acceptable TRUE values.
975
- return_value = [val.strip().strip("'").lower() in accepted_bool_values for val in values]
976
- else:
977
- # Remove the quotes surrounding items in a list cast them to the required type.
978
- return_value = [required_type(val.strip().strip("'")) for val in values]
979
- else:
980
- value = values[0]
981
-
982
- if return_value is None:
983
- if required_type == bool:
984
- # Remove the quotes surrounding the value,
985
- # and check for their presence in the acceptable TRUE values.
986
- return_value = value.strip().strip("'").lower() in accepted_bool_values
987
- else:
988
- # Remove the quotes surrounding the value and cast it to the required type.
989
- return_value = required_type(value.strip().strip("'"))
990
-
991
- return return_value
992
-
993
-
994
- def __get_model_access(name):
995
- """
996
- DESCRIPTION:
997
- Internal function to get the current access level of a saved model.
998
-
999
- PARAMETERS:
1000
- name:
1001
- Required Argument.
1002
- Specifies the name of the saved model to get the access level for.
1003
- Types: str
1004
-
1005
- RAISES:
1006
- None.
1007
-
1008
- RETURNS:
1009
- A String representing the access level of the saved model.
1010
-
1011
- EXAMPLES:
1012
- >>> __get_model_access('saved_glm_model')
1013
- """
1014
- df = DataFrame(in_schema(mac.MODEL_CATALOG_DB.value, mac.MODELS_DETAILS.value))
1015
- return df[df[mac.MODEL_DERIVED_NAME.value] == name].select([mac.MODEL_ACCESS.value]).squeeze()
1016
-
1017
-
1018
- def __get_tdml_type_for_tdml_arg(name, function_arg_map):
1019
- """
1020
- DESCRIPTION:
1021
- Internal function to get the Python type for the given teradataml model class attribute.
1022
-
1023
- PARAMETERS:
1024
- name:
1025
- Required Argument.
1026
- Specifies the teradataml name for the attribute to get the expected python type for.
1027
- Types: str
1028
-
1029
- function_arg_map:
1030
- Required Argument.
1031
- Specifies the teradataml-sql map for the function obtained using function_argument_mapper.
1032
- Types: dict
1033
-
1034
- RETURNS:
1035
- Python type for the given teradataml model class attribute name.
1036
- None when argument name not found.
1037
-
1038
- RAISES:
1039
- None
1040
-
1041
- EXAMPLES:
1042
- >>> from teradataml.catalog.function_argument_mapper import _argument_mapper
1043
- >>> function_arg_map = _argument_mapper._get_function_map('ML Engine', 'glm')
1044
- >>> tdml_type = __get_tdml_type_for_tdml_arg('linkfunction', function_arg_map)
1045
- """
1046
- # Let's check if the function argument mapper has the information about the argument we are looking for.
1047
- # If not, let's return None.
1048
- if name not in function_arg_map[famc.ARGUMENTS.value][famc.TDML_TO_SQL.value]:
1049
- return None
1050
-
1051
- tdml_type = str
1052
- sql_name = function_arg_map[famc.ARGUMENTS.value][famc.TDML_TO_SQL.value][name]
1053
-
1054
- # We can ignore formula letting it default to str
1055
- special_use, used_in = __check_if_client_specific_use(name, function_arg_map)
1056
- if not special_use or used_in == famc.USED_IN_SEQUENCE_INPUT_BY.value:
1057
- tdml_type = function_arg_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value][sql_name][famc.TDML_TYPE.value]
1058
-
1059
- return tdml_type
1060
-
1061
-
1062
- def __retrieve_model_class(name, model_client, function_arg_map):
1063
- """
1064
- DESCRIPTION:
1065
- Internal function to get the teradataml class used for generating model given it's name.
1066
-
1067
- PARAMETERS:
1068
- name:
1069
- Optional Argument. Required when model was saved by teradataml.
1070
- Specifies the name of the model to retrieve the model attributes and output information for.
1071
- Types: str
1072
-
1073
- model_client:
1074
- Required Argument.
1075
- Specified the name of the client used to generate the model.
1076
- Types: str
1077
-
1078
- function_arg_map:
1079
- Optional Argument. Required when model was not saved by teradataml.
1080
- Specifies the teradataml-sql map for the function obtained using function_argument_mapper.
1081
- Types: dict
1082
-
1083
- RETURNS:
1084
- A String representing the teradataml class name corresponding to the model.
1085
-
1086
- EXAMPLES:
1087
- >>> model_class = __retrieve_model_class(name, model_client, function_arg_map)
1088
- """
1089
- if model_client == mac.MODEL_TDML.value:
1090
- # Create DF on top of ModelAttributesV view
1091
- model_arguments = DataFrame(in_schema(mac.MODEL_CATALOG_DB.value, mac.MODELS_ATTRS.value))
1092
- model_arguments = model_arguments[model_arguments[mac.MODEL_DERIVED_NAME.value] == name]
1093
- model_class = model_arguments[model_arguments.ClientSpecificAttributeName.str.
1094
- contains(mac.MODEL_CLIENT_CLASS_KEY.value) == 1].\
1095
- select([mac.MODEL_ATTR_VALUE.value]).squeeze()
1096
- else:
1097
- model_class = function_arg_map[famc.FUNCTION_TDML_NAME.value]
1098
-
1099
- return model_class
1100
-
1101
-
1102
- def __retrieve_model_client_engine_algorithm(name, return_details=False):
1103
- """
1104
- DESCRIPTION:
1105
- Internal function to get the the model generating engine, client, algorithm, and optionally the model details
1106
- given the model name.
1107
-
1108
- PARAMETERS:
1109
- name:
1110
- Required Argument.
1111
- Specifies the name of the model to retrieve the model attributes and output information for.
1112
- Types: str
1113
-
1114
- return_details:
1115
- Optional Argument.
1116
- Specifies whether to also return the row from the ModelDetailsV corresponding to the model.
1117
- Types: bool
1118
- Default Value: False
1119
-
1120
- RETURNS:
1121
- A tuple containing:
1122
- * the name of the client that was used to generate the model,
1123
- * the name of the engine that generated the model, and
1124
- * the name of the algorithm used to generate the model.
1125
- * If return_details=True, then additionally, the ModelDetailsV row related to the model.
1126
-
1127
- EXAMPLES:
1128
- >>> model_client, model_engine, algorithm = __retrieve_model_client_engine_algorithm(name)
1129
- """
1130
-
1131
- model_details = DataFrame(in_schema(mac.MODEL_CATALOG_DB.value, mac.MODELS_DETAILS.value))
1132
- model_details = model_details[model_details[mac.MODEL_DERIVED_NAME.value] == name]
1133
- model_algorithm = model_details.select([mac.MODEL_DERIVED_ALGORITHM.value]).squeeze().lower()
1134
-
1135
- model_client_and_eng = model_details.select([mac.MODEL_DERIVED_GENCLIENT.value,
1136
- mac.MODEL_DERIVED_GENENG.value]).squeeze()
1137
-
1138
- model_client = model_client_and_eng.select([mac.MODEL_DERIVED_GENCLIENT.value]).squeeze()
1139
- model_engine = model_client_and_eng.select([mac.MODEL_DERIVED_GENENG.value]).squeeze()
1140
-
1141
- if return_details:
1142
- return model_client, model_engine, model_algorithm, model_details
1143
- else:
1144
- return model_client, model_engine, model_algorithm
1145
-
1146
-
1147
- def __retrieve_model_attributes(name, model_client, function_arg_map):
1148
- """
1149
- DESCRIPTION:
1150
- Internal function to get the the attributes used for generating model given it's name.
1151
-
1152
- PARAMETERS:
1153
- name:
1154
- Required Argument.
1155
- Specifies the name of the model to retrieve the model attributes and output information for.
1156
- Types: str
1157
-
1158
- model_client:
1159
- Required Argument.
1160
- Specified the name of the engine that generated the model.
1161
- Types: str
1162
-
1163
- function_arg_map:
1164
- Required Argument.
1165
- Specifies the teradataml-sql map for the function obtained using function_argument_mapper.
1166
- Types: dict
1167
-
1168
- RETURNS:
1169
- A tuple of dictionaries:
1170
- * the first one containing the attribute names and their values, and
1171
- * the second one containing the formula related properties and their values, if the model saving client was
1172
- teradataml.
1173
-
1174
- EXAMPLES:
1175
- >>> model_parameters, formula_related_params = __retrieve_model_attributes(name, model_client, function_arg_map)
1176
- """
1177
- # Create DF on top of ModelAttributesV view and
1178
- # 1. get only rows related to the model named 'name'.
1179
- model_arguments = DataFrame(in_schema(mac.MODEL_CATALOG_DB.value, mac.MODELS_ATTRS.value))
1180
- model_arguments = model_arguments[model_arguments[mac.MODEL_DERIVED_NAME.value] == name]
1181
-
1182
- if model_client == mac.MODEL_TDML.value:
1183
- attr_name_to_use = mac.MODEL_ATTR_CLIENT_NAME.value
1184
- else:
1185
- attr_name_to_use = mac.MODEL_ATTR_NAME.value
1186
-
1187
- if model_client != mac.MODEL_TDML.value:
1188
- # 2. Filter out the the row where "AttributeName" is not like __nonsql_argument_
1189
- model_arguments = model_arguments.assign(notSqlonly=model_arguments.AttributeName.str.contains('__nonsql_argument_'))
1190
- model_arguments = model_arguments[model_arguments.notSqlonly == 0]
1191
- else:
1192
- # 2. Filter out the the row where "ClientSpecificAttributeName" is not NULL
1193
- model_arguments = model_arguments[model_arguments[attr_name_to_use] != None]
1194
-
1195
- # Make sure the non-lazy view exists before SQLAlchemy construct can be used
1196
- if model_arguments._table_name is None:
1197
- model_arguments._table_name = df_utils._execute_node_return_db_object_name(model_arguments._nodeid,
1198
- model_arguments._metaexpr)
1199
-
1200
- # Since lengthier arguments can be a clob column, casting the smaller to clob
1201
- # to select one of the two as applicable without values being truncated.
1202
- select_expression = [model_arguments[attr_name_to_use].expression.label("AttrName"),
1203
- case_when([(model_arguments[mac.MODEL_ATTR_VALUE.value].expression == None,
1204
- model_arguments[mac.MODEL_ATTR_VALUEC.value].expression)],
1205
- else_=func.cast(model_arguments[mac.MODEL_ATTR_VALUE.value].expression,
1206
- type_=CLOB)).expression.label("AttrValue")]
1207
-
1208
- # Get the final list of AttNames (Client/SQL) and their values (CLOB type)
1209
- final_list = DataFrame.from_query(str(select(select_expression).compile(compile_kwargs={"literal_binds": True})))
1210
-
1211
- # Model Parameters
1212
- final_list = final_list[final_list["AttrName"] != mac.MODEL_CLIENT_CLASS_KEY.value]
1213
- params = final_list.to_pandas().to_dict()
1214
- model_parameters = {}
1215
- formula_related_params = {}
1216
-
1217
- index_len = len(params["AttrName"])
1218
- if model_client == mac.MODEL_TDML.value:
1219
- for i in range(index_len):
1220
- # Check if the arguments are related to formula
1221
- if params["AttrName"][i] == '__all_columns':
1222
- formula_related_params['__all_columns'] = __cast_arg_values_to_tdml_types(params["AttrValue"][i],
1223
- (str, list))
1224
- elif params["AttrName"][i] == '__numeric_columns':
1225
- formula_related_params['__numeric_columns'] = __cast_arg_values_to_tdml_types(params["AttrValue"][i],
1226
- (str, list))
1227
- elif params["AttrName"][i] == '__categorical_columns':
1228
- formula_related_params['__categorical_columns'] = __cast_arg_values_to_tdml_types(params["AttrValue"]
1229
- [i], (str, list))
1230
- elif params["AttrName"][i] == '__response_column':
1231
- formula_related_params['__response_column'] = __cast_arg_values_to_tdml_types(params["AttrValue"][i],
1232
- str)
1233
- else:
1234
- tdml_type = __get_tdml_type_for_tdml_arg(params["AttrName"][i], function_arg_map)
1235
- # tdml_type can be None when we do not have information about the argument in
1236
- # the function argument mapper. Let's ignore it in the retrieval.
1237
- if tdml_type is not None:
1238
- model_parameters[params["AttrName"][i]] = __cast_arg_values_to_tdml_types(params["AttrValue"][i],
1239
- tdml_type)
1240
- else:
1241
- formula_args = None
1242
- for i in range(index_len):
1243
- model_param_name = __get_arg_tdml_name_from_sql(function_arg_map,
1244
- arg_type=famc.ARGUMENTS.value,
1245
- name=params["AttrName"][i].lower())
1246
-
1247
- attr_value = params["AttrValue"][i]
1248
-
1249
- special_use, used_in = __check_if_client_specific_use(params["AttrName"][i].lower(),
1250
- function_arg_map, is_sql_name=True)
1251
- if special_use:
1252
- if used_in == famc.USED_IN_FORMULA.value:
1253
- # Get formula
1254
- if formula_args is None:
1255
- formula_args = __get_all_formula_related_args(function_arg_map)
1256
- formula_args[params["AttrName"][i].lower()]['arg_value'] = attr_value
1257
- else:
1258
- # Get dictionary of sequence_column arguments
1259
- sequence_by = __get_tdml_parameter_value_for_sequence(function_arg_map, attr_value)
1260
- if sequence_by:
1261
- for seq_key in sequence_by:
1262
- model_parameters[seq_key] = sequence_by[seq_key]
1263
- else:
1264
- # tdml_name can be None when we do not have information about the SQL argument in
1265
- # the function argument mapper. Let's ignore it in the retrieval.
1266
- if model_param_name is None:
1267
- warnings.warn(Messages.get_message(MessageCodes.CANNOT_TRANSLATE_TO_TDML_NAME,
1268
- params["AttrName"][i]))
1269
- continue
1270
- model_param_type = model_param_name[famc.TDML_TYPE.value]
1271
- model_param_name = model_param_name[famc.TDML_NAME.value]
1272
- model_parameters[model_param_name] = __cast_arg_values_to_tdml_types(attr_value,
1273
- model_param_type)
1274
-
1275
- if formula_args is not None:
1276
- formula = __get_tdml_parameter_value_for_formula(formula_args, __get_target_column(name))
1277
- model_parameters[famc.TDML_FORMULA_NAME.value] = formula
1278
-
1279
- return model_parameters, formula_related_params
1280
-
1281
-
1282
- def __retrieve_model_outputs(name, model_client, function_arg_map):
1283
- """
1284
- DESCRIPTION:
1285
- Internal function to get the output DataFrames corresponding to a saved model given it's name.
1286
-
1287
- PARAMETERS:
1288
- name:
1289
- Required Argument.
1290
- Specifies the name of the model to retrieve the model output information for.
1291
- Types: str
1292
-
1293
- model_client:
1294
- Required Argument.
1295
- Specifies the name of the client that generated the model.
1296
- Types: str
1297
-
1298
- function_arg_map:
1299
- Required Argument.
1300
- Specifies the teradataml-sql map for the function obtained using function_argument_mapper.
1301
- Types: dict
1302
-
1303
- RAISES:
1304
- TeradataMlException
1305
-
1306
- RETURNS:
1307
- A Pandas DataFrame with the teradataml specific name for the output, and the underlying
1308
- table names corresponding to them.
1309
-
1310
- EXAMPLES:
1311
- >>> output_df = __retrieve_model_outputs(name, model_client, function_arg_map)
1312
- """
1313
- # Let's also get the output table map
1314
- model_outputs = DataFrame(in_schema(mac.MODEL_CATALOG_DB.value, mac.MODELS_OBJECTS.value))
1315
- model_outputs = model_outputs[model_outputs[mac.MODEL_DERIVED_NAME.value] == name]
1316
- if model_client == mac.MODEL_TDML.value:
1317
- model_outputs = model_outputs.assign(drop_columns=True,
1318
- OutputName=model_outputs[mac.MODEL_OBJ_CLIENT_NAME.value],
1319
- OutputTableName=model_outputs[mac.MODEL_OBJ_TABLE_NAME.value]).to_pandas()
1320
- else:
1321
- model_outputs = model_outputs.assign(drop_columns=True,
1322
- OutputName=model_outputs[mac.MODEL_OBJ_NAME.value],
1323
- OutputTableName=model_outputs[mac.MODEL_OBJ_TABLE_NAME.value]).to_pandas()
1324
- output_names = []
1325
- output_table_names = []
1326
- index_len = len(model_outputs["OutputName"])
1327
- for i in range(index_len):
1328
- output_name = __get_arg_tdml_name_from_sql(function_arg_map, famc.OUTPUTS.value,
1329
- model_outputs["OutputName"][i].lower())
1330
- # We raise an exception when we are not able to get the teradataml name
1331
- # for the SQL name of the output table.
1332
- if output_name is None:
1333
- raise TeradataMlException(Messages.get_message(MessageCodes.CANNOT_TRANSLATE_TO_TDML_NAME),
1334
- MessageCodes.CANNOT_TRANSLATE_TO_TDML_NAME)
1335
- output_names.append(output_name)
1336
- output_table_names.append(model_outputs["OutputTableName"][i])
1337
- model_outputs = pd.DataFrame({'OutputName': output_names, 'OutputTableName': output_table_names})
1338
-
1339
- return model_outputs
1340
-
1341
-
1342
- def __retrieve_model_inputs(name, model_client, function_arg_map):
1343
- """
1344
- DESCRIPTION:
1345
- Internal function to get the input DataFrames corresponding to a saved model given it's name.
1346
-
1347
- PARAMETERS:
1348
- name:
1349
- Required Argument.
1350
- Specifies the name of the model to retrieve the model input information for.
1351
- Types: str
1352
-
1353
- model_client:
1354
- Required Argument.
1355
- Specifies the name of the client that generated the model.
1356
- Types: str
1357
-
1358
- function_arg_map:
1359
- Required Argument.
1360
- Specifies the teradataml-sql map for the function obtained using function_argument_mapper.
1361
- Types: dict
1362
-
1363
- RETURNS:
1364
- A dict mapping the teradataml specific name for the input to actual input DataFrame.
1365
- The dictionary is of the following form:
1366
- {
1367
- <tdml_input_name> :
1368
- {
1369
- 'TableName' : <actual_table_name>,
1370
- 'NRows': <number of rows>,
1371
- 'NCols': <number of columns>
1372
- }
1373
- }
1374
-
1375
- EXAMPLES:
1376
- >>> input_info = __retrieve_model_inputs(name, model_client, function_arg_map)
1377
- """
1378
- model_inputs = {}
1379
-
1380
- # First get the model_id
1381
- model_id = DataFrame(in_schema(mac.MODEL_CATALOG_DB.value, mac.MODELS.value))
1382
- model_id = model_id[model_id[mac.MODEL_NAME.value] == name].select([mac.MODEL_ID.value]).squeeze().item()
1383
-
1384
- # Now find the inputs related to the model
1385
- model_training_data = DataFrame(in_schema(mac.MODEL_CATALOG_DB.value, mac.MODELS_INPUTSX.value))
1386
- model_training_data = model_training_data[model_training_data[mac.MODEL_ID.value] == model_id]
1387
- model_training_data = model_training_data.to_pandas().to_dict()
1388
-
1389
- index_len = len(model_training_data[mac.MODEL_ID.value])
1390
- for i in range(index_len):
1391
- if model_client == mac.MODEL_TDML.value:
1392
- input_name = model_training_data[mac.MODEL_INPUT_CLIENT_NAME.value][i]
1393
- table_name = model_training_data[mac.MODEL_INPUT_TABLE_NAME.value][i]
1394
- else:
1395
- input_name = __get_arg_tdml_name_from_sql(function_arg_map, famc.INPUTS.value,
1396
- model_training_data[mac.MODEL_INPUT_NAME.value][i].lower())
1397
- # if input_name is None then we have been unable to get the tdml name from the SQL name
1398
- # for the input. In this case, we ignore the input initialization and continue.
1399
- if input_name is None:
1400
- warnings.warn(Messages.get_message(MessageCodes.CANNOT_TRANSLATE_TO_TDML_NAME,
1401
- model_training_data[mac.MODEL_INPUT_NAME.value][i]))
1402
- continue
1403
- table_name = model_training_data[mac.MODEL_INPUT_TABLE_NAME.value][i]
1404
-
1405
- # No need for further processing if the TableName associated with an input is None.
1406
- if table_name is None:
1407
- continue
1408
-
1409
- nrows = model_training_data[mac.MODEL_INPUT_NROWS.value][i]
1410
- ncols = model_training_data[mac.MODEL_INPUT_NCOLS.value][i]
1411
-
1412
- model_inputs[input_name] = {}
1413
- model_inputs[input_name][mac.MODEL_OBJ_TABLE_NAME.value] = table_name
1414
- model_inputs[input_name][mac.MODEL_INPUT_NROWS.value] = nrows
1415
- model_inputs[input_name][mac.MODEL_INPUT_NCOLS.value] = ncols
1416
-
1417
- return model_inputs
1418
-
1419
-
1420
- def __retrieve_argument_and_output_map(name):
1421
- """
1422
- DESCRIPTION:
1423
- Internal function to get the teradataml function class corresponding to the model to retrieve,
1424
- along with the attributes and output objects to initialize the model with.
1425
-
1426
- PARAMETERS:
1427
- name:
1428
- Required Argument.
1429
- Specifies the name of the model to retrieve the model attributes and output information for.
1430
- Types: str
1431
-
1432
- RETURNS:
1433
- A tuple with the following elements:
1434
- * the function class to initialize for the model,
1435
- * the model generating engine to help with the initialization, and
1436
- * the dictionary containing the attributes and their values including output table objects.
1437
-
1438
- EXAMPLES:
1439
- >>> model_class, model_engine, attribute_dictionary = __retrieve_argument_and_output_map(name)
1440
- """
1441
- # First, let's get the model engine, client, algorithm, and other details.
1442
- model_client, model_engine, model_algorithm, model_details = __retrieve_model_client_engine_algorithm(name, True)
1443
-
1444
- # Get the build_time, algorithm_name/model_class, target_column, prediction_type to be returned later as parameters.
1445
- # model_algorithm is also use to figure out the Python class to be instantiated.
1446
- build_time = model_details.select([mac.MODEL_DERIVED_BUILD_TIME.value]).squeeze()
1447
- prediction_type = model_details.select([mac.MODEL_DERIVED_PREDICTION_TYPE.value]).squeeze()
1448
- target_column = model_details.select([mac.MODEL_DERIVED_TARGET_COLUMN.value]).squeeze()
1449
-
1450
- # Get the teradataml model class corresponding to the model
1451
- function_arg_map = _argument_mapper._get_function_map(engine=model_engine,
1452
- function_name=model_algorithm.lower())
1453
- model_class = __retrieve_model_class(name, model_client, function_arg_map)
1454
-
1455
- # Get the model attributes and formula related arguments
1456
- model_parameters, formula_related_args = __retrieve_model_attributes(name, model_client, function_arg_map)
1457
- # Also append the algorithm_name, build_time, target_column, and prediction_type for the function
1458
- model_parameters['__algorithm_name'] = model_algorithm
1459
- if build_time is not None:
1460
- model_parameters['__build_time'] = build_time.item()
1461
- if target_column is not None:
1462
- model_parameters['__target_column'] = target_column
1463
- if prediction_type is not None:
1464
- model_parameters['__prediction_type'] = prediction_type
1465
-
1466
- # Merge the formula related arguments
1467
- model_parameters = {**model_parameters, **formula_related_args}
1468
-
1469
- # Try plugging in the input DataFrames as well
1470
- model_inputs = __retrieve_model_inputs(name, model_client, function_arg_map)
1471
- for input_name in model_inputs:
1472
- table_name = model_inputs[input_name][mac.MODEL_OBJ_TABLE_NAME.value]
1473
- sname = UtilFuncs._extract_db_name(table_name)
1474
- tname = UtilFuncs._extract_table_name(table_name)
1475
-
1476
- # Add quoted around the DB and Table names if necessary.
1477
- tdp = preparer(td_dialect)
1478
- if sname is not None:
1479
- sname = tdp.quote(UtilFuncs._teradata_unquote_arg(sname, quote='"'))
1480
- if tname is not None:
1481
- tname = tdp.quote(UtilFuncs._teradata_unquote_arg(tname, quote='"'))
1482
-
1483
- # Try creating the input DataFrames
1484
- try:
1485
- if sname is None:
1486
- input = DataFrame(tname)
1487
- else:
1488
- input = DataFrame(in_schema(sname, tname))
1489
-
1490
- model_inputs[input_name] = input
1491
- except Exception as err:
1492
- # We are most likely not able to create a DataFrame on the input as the input may no longer be existent.
1493
- # In this case, we just initialize it to None.
1494
- warnings.warn("Unable to fetch input details for the '{}' argument "
1495
- "from underlying object named '{}'".format(input_name, table_name))
1496
- model_inputs[input_name] = None
1497
-
1498
- # Let's also get the output table map
1499
- model_outputs = __retrieve_model_outputs(name, model_client, function_arg_map)
1500
- tables = model_outputs.to_dict()
1501
- model_tables = {}
1502
- index_len = len(tables["OutputName"])
1503
- for i in range(index_len):
1504
- output_name = tables["OutputName"][i]
1505
- model_tables[output_name] = tables["OutputTableName"][i]
1506
-
1507
- return model_class, model_engine, {**model_inputs, **model_parameters, **model_tables}
1508
-
1509
-
1510
- from teradataml.dataframe.dataframe import DataFrame, in_schema
1
+ """
2
+ Copyright (c) 2020 by Teradata Corporation. All rights reserved.
3
+ TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
4
+
5
+ Primary Owner: Rohit.Khurd@teradata.com
6
+ Secondary Owner:
7
+
8
+ teradataml Model Cataloging utilities
9
+ -------------------------------------
10
+ The teradataml Model Cataloging utility functions provide internal utilities that
11
+ the Model Cataloging APIs make use of.
12
+ """
13
+ import importlib
14
+ import warnings
15
+ import pandas as pd
16
+ import re
17
+
18
+ from teradataml.common.constants import ModelCatalogingConstants as mac,\
19
+ FunctionArgumentMapperConstants as famc
20
+ from teradataml.common.constants import TeradataConstants
21
+ from teradataml.common.exceptions import TeradataMlException
22
+ from teradataml.common.utils import UtilFuncs
23
+ from teradataml.common.messagecodes import MessageCodes
24
+ from teradataml.common.messages import Messages
25
+ from teradataml.context.context import get_connection, get_context, _get_current_databasename
26
+ from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
27
+ from teradataml.catalog.function_argument_mapper import _argument_mapper
28
+ from teradataml.common.sqlbundle import SQLBundle
29
+ from teradataml.utils.utils import execute_sql
30
+ from teradatasqlalchemy import CLOB
31
+ from teradatasqlalchemy.dialect import preparer, dialect as td_dialect
32
+ from sqlalchemy.sql.expression import select, case as case_when
33
+ from sqlalchemy import func
34
+
35
+
36
+ def __get_arg_sql_name_from_tdml(function_arg_map, arg_type, name):
37
+ """
38
+ DESCRIPTION:
39
+ Internal function to find SQL equivalent name for given teradataml name.
40
+
41
+ PARAMETERS:
42
+ function_arg_map:
43
+ Required Argument.
44
+ The teradataml-sql map for the function obtained using function_argument_mapper.
45
+ Types: dict
46
+
47
+ arg_type:
48
+ Required Argument.
49
+ Specifies a string representing the type of lookup, one of the keys in the function argument map.
50
+ Acceptable values: 'arguments', 'inputs', 'outputs'
51
+ Types: str
52
+
53
+ name:
54
+ Required Argument.
55
+ Specifies the teradataml input, output, or argument name to lookup.
56
+ Types: str
57
+
58
+ RETURNS:
59
+ A String representing the SQL equivalent name for the teradataml name passed as input.
60
+
61
+ EXAMPLES:
62
+ >>> sql_name = __get_arg_sql_name_from_tdml(function_arg_map, arg_type, name)
63
+ """
64
+ if name in function_arg_map[arg_type][famc.TDML_TO_SQL.value]:
65
+ sql_name = function_arg_map[arg_type][famc.TDML_TO_SQL.value][name]
66
+
67
+ if isinstance(sql_name, dict):
68
+ sql_name = sql_name[famc.TDML_NAME.value]
69
+
70
+ if isinstance(sql_name, list):
71
+ sql_name = sql_name[0]
72
+
73
+ return sql_name
74
+
75
+ # No SQL name found for given teradataml input name
76
+ return None
77
+
78
+
79
+ def __get_arg_tdml_name_from_sql(function_arg_map, arg_type, name):
80
+ """
81
+ DESCRIPTION:
82
+ Internal function to find teradataml equivalent name and type, if any, for given SQL name.
83
+
84
+ PARAMETERS:
85
+ function_arg_map:
86
+ Required Argument.
87
+ The teradataml-sql map for the function obtained using function_argument_mapper.
88
+ Types: dict
89
+
90
+ arg_type:
91
+ Required Argument.
92
+ Specifies a string representing the type of lookup, one of the keys in the function argument map.
93
+ Acceptable values: 'arguments', 'inputs', 'outputs'
94
+ Types: str
95
+
96
+ name:
97
+ Required Argument.
98
+ Specifies the SQL input, output, or argument name to lookup.
99
+ Types: str
100
+
101
+ RETURNS:
102
+ * A String representing the teradataml equivalent name for the SQL name when arg_type
103
+ is 'inputs' or 'outputs'.
104
+ * A dictionary with tdml_name and tdml_type for the SQL name when arg_type
105
+ is 'arguments'.
106
+
107
+
108
+ EXAMPLES:
109
+ >>> tdml_name = __get_arg_tdml_name_from_sql(function_arg_map, arg_type, name)
110
+ """
111
+ if name in function_arg_map[arg_type][famc.SQL_TO_TDML.value]:
112
+ tdml_name = function_arg_map[arg_type][famc.SQL_TO_TDML.value][name]
113
+
114
+ # Check for alternate names.
115
+ if isinstance(tdml_name, dict) and famc.ALTERNATE_TO.value in tdml_name:
116
+ alternate_to = function_arg_map[arg_type][famc.SQL_TO_TDML.value][name][
117
+ famc.ALTERNATE_TO.value]
118
+ tdml_name = function_arg_map[arg_type][famc.SQL_TO_TDML.value][alternate_to]
119
+
120
+ if isinstance(tdml_name, list):
121
+ tdml_name = tdml_name[0]
122
+
123
+ return tdml_name
124
+
125
+ # No teradataml name found for given teradataml input name
126
+ return None
127
+
128
+
129
+ def __get_model_inputs_outputs(model, function_arg_map):
130
+ """
131
+ DESCRIPTION:
132
+ Internal function to get input and output information of the model to be saved.
133
+
134
+ PARAMETERS:
135
+ model:
136
+ Required Argument.
137
+ The model (analytic function object instance) to be saved.
138
+ Types: teradataml Analytic Function object
139
+
140
+ function_arg_map:
141
+ Required Argument.
142
+ The teradataml-sql map for the function obtained using function_argument_mapper.
143
+ Types: dict
144
+
145
+ RETURNS:
146
+ A tuple of two dictionaries, and a list:
147
+ * The first containing input information.
148
+ * The second containing output information.
149
+ * The list containing names of tables to remove entries from GC for.
150
+
151
+ EXAMPLE:
152
+ >>> inputs, outputs, tables_to_not_gc = __get_model_inputs_outputs(model, function_arg_map)
153
+ """
154
+ input_json = {}
155
+ output_json = {}
156
+ remove_tables_entries_from_gc = []
157
+
158
+ # First, let's identify the output DataFrames
159
+ output_tables = [df._table_name for df in model._mlresults]
160
+
161
+ for key in model.__dict__:
162
+ if not key.startswith('_'):
163
+ member = getattr(model, key)
164
+ # The DataFrame is input if it is not output
165
+ if isinstance(member, DataFrame):
166
+ if member._table_name not in output_tables:
167
+ # Populate the input dictionary
168
+ # We construct a dictionary of the following form:
169
+ # { "<schema_name> :
170
+ # { "<table_name>" :
171
+ # { "nrows": <num_rows>,
172
+ # "ncols": <num_cols>,
173
+ # "input_name": <SQL name for the input>,
174
+ # "client_specific_input_name": <tdml name for the input>
175
+ # },
176
+ # ...
177
+ # }
178
+ # }
179
+ tdp = preparer(td_dialect)
180
+ nrows, ncols = member.shape
181
+ db_schema = UtilFuncs._extract_db_name(member._table_name)
182
+ # Add quotes around the DB name in case we are getting it using _get_current_databasename().
183
+ db_schema = tdp.quote(_get_current_databasename()) if db_schema is None else db_schema
184
+ db_table_name = UtilFuncs._extract_table_name(member._table_name)
185
+
186
+ if db_schema not in input_json:
187
+ input_json[db_schema] = {}
188
+ input_json[db_schema][db_table_name] = {}
189
+ input_json[db_schema][db_table_name]["nrows"] = int(nrows)
190
+ input_json[db_schema][db_table_name]["ncols"] = ncols
191
+ input_json[db_schema][db_table_name]["input_name"] = __get_arg_sql_name_from_tdml(function_arg_map,
192
+ arg_type=famc.INPUTS.value,
193
+ name=key)
194
+ input_json[db_schema][db_table_name]["client_specific_input_name"] = key
195
+ else:
196
+ # Populate the output dictionary
197
+ # We construct a dictionary of the following form:
198
+ # { "<Output SQL Name> :
199
+ # { "table_name": "<Database qualified name of the table>",
200
+ # "client_specific_name": "<TDML specific name of the output>"
201
+ # },
202
+ # ...
203
+ # }
204
+
205
+ # teradataml Analytic functions models can be of two types:
206
+ # 1. Non-lazy OR
207
+ # 2. Lazy
208
+ # When model is non-lazy, that means model tables are already present/created on the system.
209
+ # When model is lazy, it may happen that model tables are yet to be evaluated/created.
210
+ # So first, let's make sure that model is evaluated, i.e., model tables are created,
211
+ # if they are not created already.
212
+ #
213
+ if member._table_name is None:
214
+ member._table_name = df_utils._execute_node_return_db_object_name(member._nodeid,
215
+ member._metaexpr)
216
+ output_table_name = member._table_name
217
+ if __is_view(output_table_name):
218
+ # If output table is not of type table, which means it's a view.
219
+ # So instead of using view name for persisting, we must materialize the same.
220
+ #
221
+ # To do so, let's just generate another temporary table name. One can notice, when
222
+ # we generate the temporary table name, we set the following flag 'gc_on_quit=True'.
223
+ # One can say, why to mark it for GC, when we are going to persist it.
224
+ # Only reason we added it for GC, so that, if in case anything goes wrong from the point
225
+ # we create the table to the end of the model saving, later this will be GC'ed as
226
+ # model saving had failed. Later we remove entry from GC, when model info is saved in
227
+ # MC tables and model is persisted in table.
228
+ #
229
+ output_table_name = UtilFuncs._generate_temp_table_name(prefix="td_saved_model_",
230
+ use_default_database=True,
231
+ gc_on_quit=True, quote=False,
232
+ table_type=TeradataConstants.TERADATA_TABLE)
233
+
234
+ base_query = SQLBundle._build_base_query(member._table_name)
235
+ crt_table_query = SQLBundle._build_create_table_with_data(output_table_name, base_query)
236
+ UtilFuncs._execute_ddl_statement(crt_table_query)
237
+
238
+ # Append the name of the table to remove entry from GC.
239
+ remove_tables_entries_from_gc.append(output_table_name)
240
+
241
+ sql_name = __get_arg_sql_name_from_tdml(function_arg_map, arg_type=famc.OUTPUTS.value, name=key)
242
+ output_json[sql_name] = {}
243
+ output_json[sql_name]["table_name"] = output_table_name
244
+ output_json[sql_name]["client_specific_name"] = key
245
+
246
+ return input_json, output_json, remove_tables_entries_from_gc
247
+
248
+
249
+ def __check_if_client_specific_use(key, function_arg_map, is_sql_name=False):
250
+ """
251
+ DESCRIPTION:
252
+ Internal function to check if the argument corresponds to a client-only specific argument.
253
+
254
+ PARAMETERS:
255
+ key:
256
+ Required Argument.
257
+ The teradataml or SQL argument name to check for.
258
+ Types: str
259
+
260
+ function_arg_map:
261
+ Required Argument.
262
+ The teradataml-sql map for the function obtained using function_argument_mapper.
263
+ Types: dict
264
+
265
+ is_sql_name:
266
+ Optional Argument.
267
+ Specifies a boolean value indicating whether the key is a SQL or teradataml key.
268
+ Types: bool
269
+ Default Value: False
270
+
271
+ RETURNS:
272
+ A tuple containing:
273
+ * A boolean value indicating whether the argument is or has:
274
+ - a client-only specific argument: True
275
+ - else False
276
+ * A string specifying whether it is used in sequence_column ('used_in_sequence_by') or formula ('used_in_formula')
277
+
278
+ EXAMPLES:
279
+ >>> client_only, where_used = __check_if_client_specific_use(key, function_arg_map, is_sql_name=False)
280
+ """
281
+ # Let's assume SQL Name was passed
282
+ sql_name = key
283
+
284
+ if not is_sql_name:
285
+ if key in function_arg_map[famc.ARGUMENTS.value][famc.TDML_TO_SQL.value]:
286
+ sql_name = __get_arg_sql_name_from_tdml(function_arg_map, arg_type=famc.ARGUMENTS.value, name=key)
287
+ else:
288
+ # No SQL name found for given teradataml input name
289
+ return False, None
290
+
291
+ if isinstance(sql_name, dict):
292
+ sql_name = sql_name[famc.TDML_NAME.value]
293
+
294
+ if isinstance(sql_name, list):
295
+ sql_name = sql_name[0]
296
+
297
+ # Check if SQL name is an alternate name
298
+ sql_block = function_arg_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value][sql_name]
299
+ if famc.ALTERNATE_TO.value in sql_block:
300
+ alternate_to = function_arg_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value][sql_name][famc.ALTERNATE_TO.value]
301
+ sql_block = function_arg_map[famc.ARGUMENTS.value][famc.SQL_TO_TDML.value][alternate_to]
302
+
303
+ # Check and return boolean indicating if it is a formula or sequence_input_by argument
304
+ if famc.USED_IN_SEQUENCE_INPUT_BY.value in sql_block:
305
+ return True, famc.USED_IN_SEQUENCE_INPUT_BY.value
306
+ elif famc.USED_IN_FORMULA.value in sql_block:
307
+ return True, famc.USED_IN_FORMULA.value
308
+ else:
309
+ return False, None
310
+
311
+ def __check_if_model_exists(name, created=False, accessible=False,
312
+ raise_error_if_exists=False, raise_error_if_model_not_found=False):
313
+ """
314
+ DESCRIPTION:
315
+ Internal function to check if model with model_name, exists or not.
316
+
317
+ PARAMETERS:
318
+ name:
319
+ Required Argument.
320
+ Specifies the name of the model to check whether it exists or not.
321
+ Types: str
322
+
323
+ created:
324
+ Optional Argument.
325
+ Specifies whether to check if the model exists and is created by the user.
326
+ Default Value: False (Check for all models)
327
+ Types: bool
328
+
329
+ accessible:
330
+ Optional Argument.
331
+ Specifies whether to check if the model exists and is accessible by the user.
332
+ Default Value: False (Check for all models)
333
+ Types: bool
334
+
335
+ raise_error_if_exists:
336
+ Optional Argument.
337
+ Specifies the flag to decide whether to raise error when model exists or not.
338
+ Default Value: False (Do not raise exception)
339
+ Types: bool
340
+
341
+ raise_error_if_model_not_found:
342
+ Optional Argument.
343
+ Specifies the flag to decide whether to raise error when model is found or not.
344
+ Default Value: False (Do not raise exception)
345
+ Types: bool
346
+
347
+ RETURNS:
348
+ None.
349
+
350
+ RAISES:
351
+ TeradataMlException - MODEL_ALREADY_EXISTS, MODEL_NOT_FOUND
352
+
353
+ EXAMPLES:
354
+ >>> meta_df = __check_if_model_exists("glm_out")
355
+ """
356
+ # Get the DataFrame for the Models metadata table.
357
+ if created:
358
+ current_user = __get_current_user()
359
+ models_meta_df = DataFrame(in_schema(mac.MODEL_CATALOG_DB.value, mac.MODELS.value))
360
+ models_meta_df = models_meta_df[models_meta_df[mac.CREATED_BY.value].str.lower() == current_user.lower()]
361
+ elif accessible:
362
+ models_meta_df = DataFrame(in_schema(mac.MODEL_CATALOG_DB.value, mac.MODELSX.value))
363
+ else:
364
+ models_meta_df = DataFrame(in_schema(mac.MODEL_CATALOG_DB.value, mac.MODELS.value))
365
+
366
+ # Get the model created by current client user, using teradataml, with name as model_name.
367
+ model_name = models_meta_df.Name
368
+
369
+ # Filter Expression.
370
+ if name is not None:
371
+ models_meta_df = models_meta_df[model_name == name]
372
+
373
+ num_rows = models_meta_df.shape[0]
374
+
375
+ if raise_error_if_exists:
376
+ if num_rows == 1 and name is not None:
377
+ # If model with name 'name' already exists.
378
+ raise TeradataMlException(Messages.get_message(MessageCodes.MODEL_ALREADY_EXISTS,
379
+ name),
380
+ MessageCodes.MODEL_ALREADY_EXISTS)
381
+
382
+ if raise_error_if_model_not_found:
383
+ if num_rows == 0:
384
+ if not created:
385
+ # 'name' MODEL_NOT_FOUND
386
+ raise TeradataMlException(Messages.get_message(MessageCodes.MODEL_NOT_FOUND,
387
+ name, ''),
388
+ MessageCodes.MODEL_NOT_FOUND)
389
+ else:
390
+ # 'name' MODEL_NOT_FOUND or not created by user.
391
+ raise TeradataMlException(Messages.get_message(MessageCodes.MODEL_NOT_FOUND,
392
+ name, ' or not created by user'),
393
+ MessageCodes.MODEL_NOT_FOUND)
394
+
395
+ def __get_current_user(conn=None):
396
+ """
397
+ DESCRIPTION:
398
+ Internal function to return the current Vantage user
399
+
400
+ PARAMETERS:
401
+ conn:
402
+ Optional Argument,
403
+ The underlying SQLAlchemy engine for the connection.
404
+ Types: SQLAlchemy engine
405
+
406
+ RETURNS:
407
+ A string representing the name of the current database user.
408
+
409
+ EXAMPLE:
410
+ >>> current_user = __get_current_user()
411
+ """
412
+ if conn is None:
413
+ conn = get_connection()
414
+
415
+ return execute_sql('select user').fetchall()[0][0]
416
+
417
+
418
+ def __get_like_filter_expression_on_col(metaexpr, column_name, like):
419
+ """
420
+ DESCRIPTION:
421
+ Internal function to get the filter expression on column_name containing string matching with like.
422
+ (Case insensitive matching)
423
+
424
+ PARAMETERS:
425
+ metaexpr:
426
+ Required Argument.
427
+ Specifies the teradataml DataFrame meta data.
428
+ Types: _MetaExpression
429
+
430
+ column_name:
431
+ Required Argument.
432
+ Specifies the column name which is to be used in filter expression.
433
+ Types: str
434
+
435
+ like:
436
+ Required Argument.
437
+ Specifies the pattern to be matched in filter expression.
438
+ Types: str
439
+
440
+ RETURNS:
441
+ _SQLColumnExpression object
442
+
443
+ RAISES:
444
+ None
445
+
446
+ EXAMPLES:
447
+ >>> filter_expression = __get_like_filter_expression_on_col(models_meta_df._metaexpr,
448
+ ... mmc.MMT_COL_model_class.value,
449
+ ... function_name)
450
+ """
451
+ return metaexpr._filter(0, 'like', [column_name], like = like, match_arg='i')
452
+
453
+
454
+ def __get_wrapper_class(model_engine, model_class):
455
+ """
456
+ DESCRIPTION:
457
+ Internal function to the wrapper class that can be executed to create the instance of the
458
+ model_class from engine specified in model_engine.
459
+
460
+ PARAMETERS:
461
+ model_engine:
462
+ Required Argument.
463
+ Model engine string 'ML Engine' or 'Advanced SQL Engine'.
464
+ Types: str
465
+
466
+ model_class:
467
+ Required Argument.
468
+ Model class string for the analytical function wrapper.
469
+ Types: str
470
+
471
+ RETURNS:
472
+ A wrapper CLASS
473
+
474
+ RAISES:
475
+ ValueError - When invalid engine is passed.
476
+ AttributeError - When model_class wrapper function, does is not from model_engine.
477
+
478
+ EXAMPLES:
479
+ >>> __get_wrapper_class("SQL Engine", "GLM")
480
+ """
481
+ if model_engine == mac.MODEL_ENGINE_ADVSQL.value:
482
+ module_name = "teradataml.analytics.sqle"
483
+ else:
484
+ raise ValueError("Invalid Engine found in Model Cataloging table.")
485
+
486
+ wrapper_module = importlib.import_module(module_name)
487
+
488
+ return getattr(wrapper_module, model_class)
489
+
490
+
491
+ from teradataml.dataframe.dataframe import DataFrame, in_schema