teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +1935 -1640
- teradataml/__init__.py +70 -60
- teradataml/_version.py +11 -11
- teradataml/analytics/Transformations.py +2995 -2995
- teradataml/analytics/__init__.py +81 -83
- teradataml/analytics/analytic_function_executor.py +2040 -2010
- teradataml/analytics/analytic_query_generator.py +958 -958
- teradataml/analytics/byom/H2OPredict.py +514 -514
- teradataml/analytics/byom/PMMLPredict.py +437 -437
- teradataml/analytics/byom/__init__.py +14 -14
- teradataml/analytics/json_parser/__init__.py +130 -130
- teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
- teradataml/analytics/json_parser/json_store.py +191 -191
- teradataml/analytics/json_parser/metadata.py +1637 -1637
- teradataml/analytics/json_parser/utils.py +798 -803
- teradataml/analytics/meta_class.py +196 -196
- teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
- teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
- teradataml/analytics/sqle/__init__.py +97 -110
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
- teradataml/analytics/table_operator/__init__.py +10 -10
- teradataml/analytics/uaf/__init__.py +63 -63
- teradataml/analytics/utils.py +693 -692
- teradataml/analytics/valib.py +1603 -1600
- teradataml/automl/__init__.py +1683 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +1011 -0
- teradataml/automl/data_transformation.py +789 -0
- teradataml/automl/feature_engineering.py +1580 -0
- teradataml/automl/feature_exploration.py +554 -0
- teradataml/automl/model_evaluation.py +151 -0
- teradataml/automl/model_training.py +1026 -0
- teradataml/catalog/__init__.py +1 -3
- teradataml/catalog/byom.py +1759 -1716
- teradataml/catalog/function_argument_mapper.py +859 -861
- teradataml/catalog/model_cataloging_utils.py +491 -1510
- teradataml/clients/auth_client.py +133 -0
- teradataml/clients/pkce_client.py +481 -481
- teradataml/common/aed_utils.py +7 -2
- teradataml/common/bulk_exposed_utils.py +111 -111
- teradataml/common/constants.py +1438 -1441
- teradataml/common/deprecations.py +160 -0
- teradataml/common/exceptions.py +73 -73
- teradataml/common/formula.py +742 -742
- teradataml/common/garbagecollector.py +597 -635
- teradataml/common/messagecodes.py +424 -431
- teradataml/common/messages.py +228 -231
- teradataml/common/sqlbundle.py +693 -693
- teradataml/common/td_coltype_code_to_tdtype.py +48 -48
- teradataml/common/utils.py +2424 -2500
- teradataml/common/warnings.py +25 -25
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/config/dummy_file1.cfg +4 -4
- teradataml/config/dummy_file2.cfg +2 -2
- teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
- teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
- teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
- teradataml/context/aed_context.py +217 -217
- teradataml/context/context.py +1091 -999
- teradataml/data/A_loan.csv +19 -19
- teradataml/data/BINARY_REALS_LEFT.csv +11 -11
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
- teradataml/data/B_loan.csv +49 -49
- teradataml/data/BuoyData2.csv +17 -17
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
- teradataml/data/Convolve2RealsLeft.csv +5 -5
- teradataml/data/Convolve2RealsRight.csv +5 -5
- teradataml/data/Convolve2ValidLeft.csv +11 -11
- teradataml/data/Convolve2ValidRight.csv +11 -11
- teradataml/data/DFFTConv_Real_8_8.csv +65 -65
- teradataml/data/Orders1_12mf.csv +24 -24
- teradataml/data/Pi_loan.csv +7 -7
- teradataml/data/SMOOTHED_DATA.csv +7 -7
- teradataml/data/TestDFFT8.csv +9 -9
- teradataml/data/TestRiver.csv +109 -109
- teradataml/data/Traindata.csv +28 -28
- teradataml/data/acf.csv +17 -17
- teradataml/data/adaboost_example.json +34 -34
- teradataml/data/adaboostpredict_example.json +24 -24
- teradataml/data/additional_table.csv +10 -10
- teradataml/data/admissions_test.csv +21 -21
- teradataml/data/admissions_train.csv +41 -41
- teradataml/data/admissions_train_nulls.csv +41 -41
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -13
- teradataml/data/ageandpressure.csv +31 -31
- teradataml/data/antiselect_example.json +36 -36
- teradataml/data/antiselect_input.csv +8 -8
- teradataml/data/antiselect_input_mixed_case.csv +8 -8
- teradataml/data/applicant_external.csv +6 -6
- teradataml/data/applicant_reference.csv +6 -6
- teradataml/data/arima_example.json +9 -9
- teradataml/data/assortedtext_input.csv +8 -8
- teradataml/data/attribution_example.json +33 -33
- teradataml/data/attribution_sample_table.csv +27 -27
- teradataml/data/attribution_sample_table1.csv +6 -6
- teradataml/data/attribution_sample_table2.csv +11 -11
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +42 -42
- teradataml/data/bank_web_clicks2.csv +91 -91
- teradataml/data/bank_web_url.csv +85 -85
- teradataml/data/barrier.csv +2 -2
- teradataml/data/barrier_new.csv +3 -3
- teradataml/data/betweenness_example.json +13 -13
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -8
- teradataml/data/bin_fit_ip.csv +3 -3
- teradataml/data/binary_complex_left.csv +11 -11
- teradataml/data/binary_complex_right.csv +11 -11
- teradataml/data/binary_matrix_complex_left.csv +21 -21
- teradataml/data/binary_matrix_complex_right.csv +21 -21
- teradataml/data/binary_matrix_real_left.csv +21 -21
- teradataml/data/binary_matrix_real_right.csv +21 -21
- teradataml/data/blood2ageandweight.csv +26 -26
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -507
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -11
- teradataml/data/burst_data.csv +5 -5
- teradataml/data/burst_example.json +20 -20
- teradataml/data/byom_example.json +17 -17
- teradataml/data/bytes_table.csv +3 -3
- teradataml/data/cal_housing_ex_raw.csv +70 -70
- teradataml/data/callers.csv +7 -7
- teradataml/data/calls.csv +10 -10
- teradataml/data/cars_hist.csv +33 -33
- teradataml/data/cat_table.csv +24 -24
- teradataml/data/ccm_example.json +31 -31
- teradataml/data/ccm_input.csv +91 -91
- teradataml/data/ccm_input2.csv +13 -13
- teradataml/data/ccmexample.csv +101 -101
- teradataml/data/ccmprepare_example.json +8 -8
- teradataml/data/ccmprepare_input.csv +91 -91
- teradataml/data/cfilter_example.json +12 -12
- teradataml/data/changepointdetection_example.json +18 -18
- teradataml/data/changepointdetectionrt_example.json +8 -8
- teradataml/data/chi_sq.csv +2 -2
- teradataml/data/churn_data.csv +14 -14
- teradataml/data/churn_emission.csv +35 -35
- teradataml/data/churn_initial.csv +3 -3
- teradataml/data/churn_state_transition.csv +5 -5
- teradataml/data/citedges_2.csv +745 -745
- teradataml/data/citvertices_2.csv +1210 -1210
- teradataml/data/clicks2.csv +16 -16
- teradataml/data/clickstream.csv +12 -12
- teradataml/data/clickstream1.csv +11 -11
- teradataml/data/closeness_example.json +15 -15
- teradataml/data/complaints.csv +21 -21
- teradataml/data/complaints_mini.csv +3 -3
- teradataml/data/complaints_testtoken.csv +224 -224
- teradataml/data/complaints_tokens_test.csv +353 -353
- teradataml/data/complaints_traintoken.csv +472 -472
- teradataml/data/computers_category.csv +1001 -1001
- teradataml/data/computers_test1.csv +1252 -1252
- teradataml/data/computers_train1.csv +5009 -5009
- teradataml/data/computers_train1_clustered.csv +5009 -5009
- teradataml/data/confusionmatrix_example.json +9 -9
- teradataml/data/conversion_event_table.csv +3 -3
- teradataml/data/corr_input.csv +17 -17
- teradataml/data/correlation_example.json +11 -11
- teradataml/data/coxhazardratio_example.json +39 -39
- teradataml/data/coxph_example.json +15 -15
- teradataml/data/coxsurvival_example.json +28 -28
- teradataml/data/cpt.csv +41 -41
- teradataml/data/credit_ex_merged.csv +45 -45
- teradataml/data/customer_loyalty.csv +301 -301
- teradataml/data/customer_loyalty_newseq.csv +31 -31
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +146 -146
- teradataml/data/decisionforest_example.json +37 -37
- teradataml/data/decisionforestpredict_example.json +38 -38
- teradataml/data/decisiontree_example.json +21 -21
- teradataml/data/decisiontreepredict_example.json +45 -45
- teradataml/data/dfft2_size4_real.csv +17 -17
- teradataml/data/dfft2_test_matrix16.csv +17 -17
- teradataml/data/dfft2conv_real_4_4.csv +65 -65
- teradataml/data/diabetes.csv +443 -443
- teradataml/data/diabetes_test.csv +89 -89
- teradataml/data/dict_table.csv +5 -5
- teradataml/data/docperterm_table.csv +4 -4
- teradataml/data/docs/__init__.py +1 -1
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
- teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
- teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
- teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
- teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
- teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
- teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
- teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
- teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
- teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
- teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
- teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
- teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
- teradataml/data/dtw_example.json +17 -17
- teradataml/data/dtw_t1.csv +11 -11
- teradataml/data/dtw_t2.csv +4 -4
- teradataml/data/dwt2d_example.json +15 -15
- teradataml/data/dwt_example.json +14 -14
- teradataml/data/dwt_filter_dim.csv +5 -5
- teradataml/data/emission.csv +9 -9
- teradataml/data/emp_table_by_dept.csv +19 -19
- teradataml/data/employee_info.csv +4 -4
- teradataml/data/employee_table.csv +6 -6
- teradataml/data/excluding_event_table.csv +2 -2
- teradataml/data/finance_data.csv +6 -6
- teradataml/data/finance_data2.csv +61 -61
- teradataml/data/finance_data3.csv +93 -93
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -26
- teradataml/data/fmeasure_example.json +11 -11
- teradataml/data/followers_leaders.csv +10 -10
- teradataml/data/fpgrowth_example.json +12 -12
- teradataml/data/frequentpaths_example.json +29 -29
- teradataml/data/friends.csv +9 -9
- teradataml/data/fs_input.csv +33 -33
- teradataml/data/fs_input1.csv +33 -33
- teradataml/data/genData.csv +513 -513
- teradataml/data/geodataframe_example.json +39 -39
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -12
- teradataml/data/glm_example.json +56 -29
- teradataml/data/glml1l2_example.json +28 -28
- teradataml/data/glml1l2predict_example.json +54 -54
- teradataml/data/glmpredict_example.json +54 -54
- teradataml/data/gq_t1.csv +21 -21
- teradataml/data/hconvolve_complex_right.csv +5 -5
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
- teradataml/data/histogram_example.json +11 -11
- teradataml/data/hmmdecoder_example.json +78 -78
- teradataml/data/hmmevaluator_example.json +24 -24
- teradataml/data/hmmsupervised_example.json +10 -10
- teradataml/data/hmmunsupervised_example.json +7 -7
- teradataml/data/house_values.csv +12 -12
- teradataml/data/house_values2.csv +13 -13
- teradataml/data/housing_cat.csv +7 -7
- teradataml/data/housing_data.csv +9 -9
- teradataml/data/housing_test.csv +47 -47
- teradataml/data/housing_test_binary.csv +47 -47
- teradataml/data/housing_train.csv +493 -493
- teradataml/data/housing_train_attribute.csv +4 -4
- teradataml/data/housing_train_binary.csv +437 -437
- teradataml/data/housing_train_parameter.csv +2 -2
- teradataml/data/housing_train_response.csv +493 -493
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -370
- teradataml/data/ibm_stock1.csv +370 -370
- teradataml/data/identitymatch_example.json +21 -21
- teradataml/data/idf_table.csv +4 -4
- teradataml/data/impressions.csv +101 -101
- teradataml/data/inflation.csv +21 -21
- teradataml/data/initial.csv +3 -3
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +12 -12
- teradataml/data/insurance.csv +1339 -1339
- teradataml/data/interpolator_example.json +12 -12
- teradataml/data/iris_altinput.csv +481 -481
- teradataml/data/iris_attribute_output.csv +8 -8
- teradataml/data/iris_attribute_test.csv +121 -121
- teradataml/data/iris_attribute_train.csv +481 -481
- teradataml/data/iris_category_expect_predict.csv +31 -31
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -151
- teradataml/data/iris_response_train.csv +121 -121
- teradataml/data/iris_test.csv +31 -31
- teradataml/data/iris_train.csv +121 -121
- teradataml/data/join_table1.csv +4 -4
- teradataml/data/join_table2.csv +4 -4
- teradataml/data/jsons/anly_function_name.json +6 -6
- teradataml/data/jsons/byom/dataikupredict.json +147 -147
- teradataml/data/jsons/byom/datarobotpredict.json +146 -146
- teradataml/data/jsons/byom/h2opredict.json +194 -194
- teradataml/data/jsons/byom/onnxpredict.json +186 -186
- teradataml/data/jsons/byom/pmmlpredict.json +146 -146
- teradataml/data/jsons/paired_functions.json +435 -435
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
- teradataml/data/kmeans_example.json +22 -17
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +0 -0
- teradataml/data/knn_example.json +18 -18
- teradataml/data/knnrecommender_example.json +6 -6
- teradataml/data/knnrecommenderpredict_example.json +12 -12
- teradataml/data/lar_example.json +17 -17
- teradataml/data/larpredict_example.json +30 -30
- teradataml/data/lc_new_predictors.csv +5 -5
- teradataml/data/lc_new_reference.csv +9 -9
- teradataml/data/lda_example.json +8 -8
- teradataml/data/ldainference_example.json +14 -14
- teradataml/data/ldatopicsummary_example.json +8 -8
- teradataml/data/levendist_input.csv +13 -13
- teradataml/data/levenshteindistance_example.json +10 -10
- teradataml/data/linreg_example.json +9 -9
- teradataml/data/load_example_data.py +326 -323
- teradataml/data/loan_prediction.csv +295 -295
- teradataml/data/lungcancer.csv +138 -138
- teradataml/data/mappingdata.csv +12 -12
- teradataml/data/milk_timeseries.csv +157 -157
- teradataml/data/min_max_titanic.csv +4 -4
- teradataml/data/minhash_example.json +6 -6
- teradataml/data/ml_ratings.csv +7547 -7547
- teradataml/data/ml_ratings_10.csv +2445 -2445
- teradataml/data/model1_table.csv +5 -5
- teradataml/data/model2_table.csv +5 -5
- teradataml/data/models/iris_db_glm_model.pmml +56 -56
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
- teradataml/data/modularity_example.json +12 -12
- teradataml/data/movavg_example.json +7 -7
- teradataml/data/mtx1.csv +7 -7
- teradataml/data/mtx2.csv +13 -13
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -9
- teradataml/data/naivebayes_example.json +9 -9
- teradataml/data/naivebayespredict_example.json +19 -19
- teradataml/data/naivebayestextclassifier2_example.json +6 -6
- teradataml/data/naivebayestextclassifier_example.json +8 -8
- teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
- teradataml/data/name_Find_configure.csv +10 -10
- teradataml/data/namedentityfinder_example.json +14 -14
- teradataml/data/namedentityfinderevaluator_example.json +10 -10
- teradataml/data/namedentityfindertrainer_example.json +6 -6
- teradataml/data/nb_iris_input_test.csv +31 -31
- teradataml/data/nb_iris_input_train.csv +121 -121
- teradataml/data/nbp_iris_model.csv +13 -13
- teradataml/data/ner_extractor_text.csv +2 -2
- teradataml/data/ner_sports_test2.csv +29 -29
- teradataml/data/ner_sports_train.csv +501 -501
- teradataml/data/nerevaluator_example.json +5 -5
- teradataml/data/nerextractor_example.json +18 -18
- teradataml/data/nermem_sports_test.csv +17 -17
- teradataml/data/nermem_sports_train.csv +50 -50
- teradataml/data/nertrainer_example.json +6 -6
- teradataml/data/ngrams_example.json +6 -6
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
- teradataml/data/npath_example.json +23 -23
- teradataml/data/ntree_example.json +14 -14
- teradataml/data/numeric_strings.csv +4 -4
- teradataml/data/numerics.csv +4 -4
- teradataml/data/ocean_buoy.csv +17 -17
- teradataml/data/ocean_buoy2.csv +17 -17
- teradataml/data/ocean_buoys.csv +27 -27
- teradataml/data/ocean_buoys2.csv +10 -10
- teradataml/data/ocean_buoys_nonpti.csv +28 -28
- teradataml/data/ocean_buoys_seq.csv +29 -29
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -4
- teradataml/data/orders1.csv +11 -11
- teradataml/data/orders1_12.csv +12 -12
- teradataml/data/orders_ex.csv +4 -4
- teradataml/data/pack_example.json +8 -8
- teradataml/data/package_tracking.csv +19 -19
- teradataml/data/package_tracking_pti.csv +18 -18
- teradataml/data/pagerank_example.json +13 -13
- teradataml/data/paragraphs_input.csv +6 -6
- teradataml/data/pathanalyzer_example.json +7 -7
- teradataml/data/pathgenerator_example.json +7 -7
- teradataml/data/phrases.csv +7 -7
- teradataml/data/pivot_example.json +8 -8
- teradataml/data/pivot_input.csv +22 -22
- teradataml/data/playerRating.csv +31 -31
- teradataml/data/postagger_example.json +6 -6
- teradataml/data/posttagger_output.csv +44 -44
- teradataml/data/production_data.csv +16 -16
- teradataml/data/production_data2.csv +7 -7
- teradataml/data/randomsample_example.json +31 -31
- teradataml/data/randomwalksample_example.json +8 -8
- teradataml/data/rank_table.csv +6 -6
- teradataml/data/ref_mobile_data.csv +4 -4
- teradataml/data/ref_mobile_data_dense.csv +2 -2
- teradataml/data/ref_url.csv +17 -17
- teradataml/data/restaurant_reviews.csv +7 -7
- teradataml/data/river_data.csv +145 -145
- teradataml/data/roc_example.json +7 -7
- teradataml/data/roc_input.csv +101 -101
- teradataml/data/rule_inputs.csv +6 -6
- teradataml/data/rule_table.csv +2 -2
- teradataml/data/sales.csv +7 -7
- teradataml/data/sales_transaction.csv +501 -501
- teradataml/data/salesdata.csv +342 -342
- teradataml/data/sample_cities.csv +2 -2
- teradataml/data/sample_shapes.csv +10 -10
- teradataml/data/sample_streets.csv +2 -2
- teradataml/data/sampling_example.json +15 -15
- teradataml/data/sax_example.json +8 -8
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -23
- teradataml/data/scale_housing.csv +11 -11
- teradataml/data/scale_housing_test.csv +6 -6
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -11
- teradataml/data/scalebypartition_example.json +13 -13
- teradataml/data/scalemap_example.json +13 -13
- teradataml/data/scalesummary_example.json +12 -12
- teradataml/data/score_category.csv +101 -101
- teradataml/data/score_summary.csv +4 -4
- teradataml/data/script_example.json +9 -9
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +15 -15
- teradataml/data/scripts/mapper_replace.py +15 -15
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
- teradataml/data/seeds.csv +10 -10
- teradataml/data/sentenceextractor_example.json +6 -6
- teradataml/data/sentiment_extract_input.csv +11 -11
- teradataml/data/sentiment_train.csv +16 -16
- teradataml/data/sentiment_word.csv +20 -20
- teradataml/data/sentiment_word_input.csv +19 -19
- teradataml/data/sentimentextractor_example.json +24 -24
- teradataml/data/sentimenttrainer_example.json +8 -8
- teradataml/data/sequence_table.csv +10 -10
- teradataml/data/seriessplitter_example.json +7 -7
- teradataml/data/sessionize_example.json +17 -17
- teradataml/data/sessionize_table.csv +116 -116
- teradataml/data/setop_test1.csv +24 -24
- teradataml/data/setop_test2.csv +22 -22
- teradataml/data/soc_nw_edges.csv +10 -10
- teradataml/data/soc_nw_vertices.csv +7 -7
- teradataml/data/souvenir_timeseries.csv +167 -167
- teradataml/data/sparse_iris_attribute.csv +5 -5
- teradataml/data/sparse_iris_test.csv +121 -121
- teradataml/data/sparse_iris_train.csv +601 -601
- teradataml/data/star1.csv +6 -6
- teradataml/data/state_transition.csv +5 -5
- teradataml/data/stock_data.csv +53 -53
- teradataml/data/stock_movement.csv +11 -11
- teradataml/data/stock_vol.csv +76 -76
- teradataml/data/stop_words.csv +8 -8
- teradataml/data/store_sales.csv +37 -37
- teradataml/data/stringsimilarity_example.json +7 -7
- teradataml/data/strsimilarity_input.csv +13 -13
- teradataml/data/students.csv +101 -101
- teradataml/data/svm_iris_input_test.csv +121 -121
- teradataml/data/svm_iris_input_train.csv +481 -481
- teradataml/data/svm_iris_model.csv +7 -7
- teradataml/data/svmdense_example.json +9 -9
- teradataml/data/svmdensepredict_example.json +18 -18
- teradataml/data/svmsparse_example.json +7 -7
- teradataml/data/svmsparsepredict_example.json +13 -13
- teradataml/data/svmsparsesummary_example.json +7 -7
- teradataml/data/target_mobile_data.csv +13 -13
- teradataml/data/target_mobile_data_dense.csv +5 -5
- teradataml/data/templatedata.csv +1201 -1201
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +150 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -53
- teradataml/data/test_pacf_12.csv +37 -37
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -109
- teradataml/data/text_inputs.csv +6 -6
- teradataml/data/textchunker_example.json +7 -7
- teradataml/data/textclassifier_example.json +6 -6
- teradataml/data/textclassifier_input.csv +7 -7
- teradataml/data/textclassifiertrainer_example.json +6 -6
- teradataml/data/textmorph_example.json +5 -5
- teradataml/data/textparser_example.json +15 -15
- teradataml/data/texttagger_example.json +11 -11
- teradataml/data/texttokenizer_example.json +6 -6
- teradataml/data/texttrainer_input.csv +11 -11
- teradataml/data/tf_example.json +6 -6
- teradataml/data/tfidf_example.json +13 -13
- teradataml/data/tfidf_input1.csv +201 -201
- teradataml/data/tfidf_train.csv +6 -6
- teradataml/data/time_table1.csv +535 -535
- teradataml/data/time_table2.csv +14 -14
- teradataml/data/timeseriesdata.csv +1601 -1601
- teradataml/data/timeseriesdatasetsd4.csv +105 -105
- teradataml/data/titanic.csv +892 -892
- teradataml/data/token_table.csv +696 -696
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +27 -27
- teradataml/data/transformation_table.csv +5 -5
- teradataml/data/transformation_table_new.csv +1 -1
- teradataml/data/tv_spots.csv +16 -16
- teradataml/data/twod_climate_data.csv +117 -117
- teradataml/data/uaf_example.json +475 -475
- teradataml/data/univariatestatistics_example.json +8 -8
- teradataml/data/unpack_example.json +9 -9
- teradataml/data/unpivot_example.json +9 -9
- teradataml/data/unpivot_input.csv +8 -8
- teradataml/data/us_air_pass.csv +36 -36
- teradataml/data/us_population.csv +624 -624
- teradataml/data/us_states_shapes.csv +52 -52
- teradataml/data/varmax_example.json +17 -17
- teradataml/data/vectordistance_example.json +25 -25
- teradataml/data/ville_climatedata.csv +121 -121
- teradataml/data/ville_tempdata.csv +12 -12
- teradataml/data/ville_tempdata1.csv +12 -12
- teradataml/data/ville_temperature.csv +11 -11
- teradataml/data/waveletTable.csv +1605 -1605
- teradataml/data/waveletTable2.csv +1605 -1605
- teradataml/data/weightedmovavg_example.json +8 -8
- teradataml/data/wft_testing.csv +5 -5
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +5 -5
- teradataml/data/word_embed_input_table2.csv +4 -4
- teradataml/data/word_embed_model.csv +22 -22
- teradataml/data/words_input.csv +13 -13
- teradataml/data/xconvolve_complex_left.csv +6 -6
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
- teradataml/data/xgboost_example.json +35 -35
- teradataml/data/xgboostpredict_example.json +31 -31
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +1769 -1698
- teradataml/dataframe/data_transfer.py +2812 -2745
- teradataml/dataframe/dataframe.py +17630 -16946
- teradataml/dataframe/dataframe_utils.py +1875 -1740
- teradataml/dataframe/fastload.py +794 -603
- teradataml/dataframe/indexer.py +424 -424
- teradataml/dataframe/setop.py +1179 -1166
- teradataml/dataframe/sql.py +10174 -6432
- teradataml/dataframe/sql_function_parameters.py +439 -388
- teradataml/dataframe/sql_functions.py +652 -652
- teradataml/dataframe/sql_interfaces.py +220 -220
- teradataml/dataframe/vantage_function_types.py +674 -630
- teradataml/dataframe/window.py +693 -692
- teradataml/dbutils/__init__.py +3 -3
- teradataml/dbutils/dbutils.py +1167 -1150
- teradataml/dbutils/filemgr.py +267 -267
- teradataml/gen_ai/__init__.py +2 -2
- teradataml/gen_ai/convAI.py +472 -472
- teradataml/geospatial/__init__.py +3 -3
- teradataml/geospatial/geodataframe.py +1105 -1094
- teradataml/geospatial/geodataframecolumn.py +392 -387
- teradataml/geospatial/geometry_types.py +925 -925
- teradataml/hyperparameter_tuner/__init__.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
- teradataml/hyperparameter_tuner/utils.py +281 -187
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +130 -124
- teradataml/options/configure.py +358 -336
- teradataml/options/display.py +176 -176
- teradataml/plot/__init__.py +2 -2
- teradataml/plot/axis.py +1388 -1388
- teradataml/plot/constants.py +15 -15
- teradataml/plot/figure.py +398 -398
- teradataml/plot/plot.py +760 -760
- teradataml/plot/query_generator.py +83 -83
- teradataml/plot/subplot.py +216 -216
- teradataml/scriptmgmt/UserEnv.py +3791 -3761
- teradataml/scriptmgmt/__init__.py +3 -3
- teradataml/scriptmgmt/lls_utils.py +1719 -1604
- teradataml/series/series.py +532 -532
- teradataml/series/series_utils.py +71 -71
- teradataml/table_operators/Apply.py +949 -917
- teradataml/table_operators/Script.py +1718 -1982
- teradataml/table_operators/TableOperator.py +1255 -1616
- teradataml/table_operators/__init__.py +2 -3
- teradataml/table_operators/apply_query_generator.py +262 -262
- teradataml/table_operators/query_generator.py +507 -507
- teradataml/table_operators/table_operator_query_generator.py +460 -460
- teradataml/table_operators/table_operator_util.py +631 -639
- teradataml/table_operators/templates/dataframe_apply.template +184 -184
- teradataml/table_operators/templates/dataframe_map.template +176 -176
- teradataml/table_operators/templates/script_executor.template +170 -170
- teradataml/utils/dtypes.py +684 -684
- teradataml/utils/internal_buffer.py +84 -84
- teradataml/utils/print_versions.py +205 -205
- teradataml/utils/utils.py +410 -410
- teradataml/utils/validators.py +2277 -2115
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
- teradataml-20.0.0.1.dist-info/RECORD +1056 -0
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- teradataml-17.20.0.7.dist-info/RECORD +0 -1280
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
|
@@ -1,1252 +1,1252 @@
|
|
|
1
|
-
"id","price","speed","hd","ram","screen"
|
|
2
|
-
3752,3095,66,1080,16,15
|
|
3
|
-
4282,2299,66,540,8,15
|
|
4
|
-
734,1879,50,210,4,15
|
|
5
|
-
5628,1749,66,545,8,15
|
|
6
|
-
4955,1819,33,270,4,14
|
|
7
|
-
5016,1718,66,340,4,14
|
|
8
|
-
3140,1744,50,107,2,14
|
|
9
|
-
122,2199,33,210,4,14
|
|
10
|
-
326,1495,33,85,2,14
|
|
11
|
-
2936,1469,25,120,4,14
|
|
12
|
-
3405,1195,25,107,2,14
|
|
13
|
-
591,2245,33,250,8,15
|
|
14
|
-
2467,1784,25,120,4,14
|
|
15
|
-
3527,1890,66,214,4,14
|
|
16
|
-
4343,1588,33,340,4,15
|
|
17
|
-
3609,1695,50,214,4,14
|
|
18
|
-
2997,2244,66,214,4,14
|
|
19
|
-
2385,2799,50,320,8,15
|
|
20
|
-
5811,1740,50,528,8,15
|
|
21
|
-
5485,3090,100,1000,24,15
|
|
22
|
-
4995,1640,50,214,4,15
|
|
23
|
-
4730,3244,50,1000,24,15
|
|
24
|
-
3996,3299,66,1000,16,15
|
|
25
|
-
5954,2345,100,850,16,15
|
|
26
|
-
5994,1515,66,1000,4,14
|
|
27
|
-
5382,2040,33,1000,8,14
|
|
28
|
-
2854,1490,33,107,2,14
|
|
29
|
-
856,2590,50,340,8,15
|
|
30
|
-
5586,1440,50,340,4,15
|
|
31
|
-
5178,1499,50,545,4,15
|
|
32
|
-
4526,2443,33,528,8,14
|
|
33
|
-
2528,2044,33,214,4,14
|
|
34
|
-
3506,1395,33,107,2,14
|
|
35
|
-
5647,2640,50,1000,24,15
|
|
36
|
-
162,1595,25,170,4,15
|
|
37
|
-
1182,2294,33,426,8,14
|
|
38
|
-
1426,1799,33,120,4,14
|
|
39
|
-
4770,3193,66,1000,24,15
|
|
40
|
-
3445,2144,75,214,4,14
|
|
41
|
-
4200,2154,66,426,8,14
|
|
42
|
-
3771,1995,66,540,8,15
|
|
43
|
-
5239,2195,33,720,16,15
|
|
44
|
-
4852,2540,50,720,16,15
|
|
45
|
-
978,2095,50,214,4,14
|
|
46
|
-
1691,2394,66,214,4,14
|
|
47
|
-
1323,3789,66,527,8,15
|
|
48
|
-
1630,1990,66,107,2,15
|
|
49
|
-
1569,2495,66,340,8,15
|
|
50
|
-
1956,2390,33,426,8,15
|
|
51
|
-
5809,1659,66,340,4,17
|
|
52
|
-
5117,1989,66,425,8,15
|
|
53
|
-
2038,2295,33,426,8,14
|
|
54
|
-
5912,2554,50,1000,24,15
|
|
55
|
-
1180,2199,66,340,4,14
|
|
56
|
-
2568,2889,33,340,4,17
|
|
57
|
-
5035,2244,66,528,8,14
|
|
58
|
-
5769,1999,100,545,8,15
|
|
59
|
-
1771,2144,33,214,4,14
|
|
60
|
-
4974,2893,33,1000,24,15
|
|
61
|
-
1874,2095,50,214,4,14
|
|
62
|
-
3220,1259,25,120,4,14
|
|
63
|
-
4789,2590,66,720,16,15
|
|
64
|
-
2894,2795,66,528,16,14
|
|
65
|
-
2343,2185,33,420,8,17
|
|
66
|
-
4688,1554,33,214,4,14
|
|
67
|
-
1363,2099,33,120,4,14
|
|
68
|
-
4892,2004,33,528,8,14
|
|
69
|
-
3750,2127,33,540,8,14
|
|
70
|
-
2608,3439,66,340,8,17
|
|
71
|
-
4177,3199,66,527,16,17
|
|
72
|
-
528,1590,33,107,2,14
|
|
73
|
-
59,2945,66,210,8,17
|
|
74
|
-
4953,1844,66,214,4,14
|
|
75
|
-
2362,2690,50,426,8,14
|
|
76
|
-
1527,1395,33,212,4,14
|
|
77
|
-
4484,1349,33,210,4,15
|
|
78
|
-
2587,2195,33,426,8,14
|
|
79
|
-
1220,2015,33,250,8,15
|
|
80
|
-
3933,2625,66,540,16,15
|
|
81
|
-
324,2390,33,245,8,14
|
|
82
|
-
38,3795,66,500,8,14
|
|
83
|
-
608,1595,33,107,2,14
|
|
84
|
-
1384,2344,50,214,4,14
|
|
85
|
-
2934,1969,33,120,4,15
|
|
86
|
-
772,2544,66,214,4,14
|
|
87
|
-
2953,2229,66,212,4,14
|
|
88
|
-
976,2644,50,426,8,14
|
|
89
|
-
385,2395,33,245,8,14
|
|
90
|
-
2301,1804,25,120,4,14
|
|
91
|
-
5094,2699,100,730,16,15
|
|
92
|
-
3790,1554,33,214,4,14
|
|
93
|
-
4341,2795,33,1000,24,14
|
|
94
|
-
2770,1295,33,212,4,14
|
|
95
|
-
2402,2259,33,245,4,14
|
|
96
|
-
1710,2794,33,528,16,14
|
|
97
|
-
5197,2090,66,1000,8,14
|
|
98
|
-
5584,1775,75,540,8,15
|
|
99
|
-
322,2995,66,340,16,14
|
|
100
|
-
4116,1499,33,340,4,14
|
|
101
|
-
5931,1873,100,528,8,14
|
|
102
|
-
5910,1723,50,528,8,14
|
|
103
|
-
179,1945,33,170,4,14
|
|
104
|
-
3973,1590,33,214,4,14
|
|
105
|
-
425,2405,50,250,8,14
|
|
106
|
-
3483,2425,66,340,8,17
|
|
107
|
-
2993,2249,25,170,4,15
|
|
108
|
-
4972,1579,66,212,4,15
|
|
109
|
-
1016,2109,33,120,4,14
|
|
110
|
-
526,2999,66,245,16,15
|
|
111
|
-
913,1599,66,130,4,14
|
|
112
|
-
3830,1999,33,420,4,14
|
|
113
|
-
1281,2090,33,214,4,15
|
|
114
|
-
5481,2940,100,720,16,17
|
|
115
|
-
301,1990,25,130,4,14
|
|
116
|
-
2341,2890,50,528,16,15
|
|
117
|
-
5706,1823,66,528,8,14
|
|
118
|
-
6215,1554,66,528,8,14
|
|
119
|
-
3319,2499,66,528,16,15
|
|
120
|
-
1668,2049,33,212,4,14
|
|
121
|
-
1546,2375,66,340,8,15
|
|
122
|
-
1117,2644,25,540,16,14
|
|
123
|
-
5664,1949,100,730,8,14
|
|
124
|
-
1933,1944,25,214,4,14
|
|
125
|
-
3422,1995,33,340,8,15
|
|
126
|
-
1382,2579,33,340,4,14
|
|
127
|
-
3115,2970,66,420,16,15
|
|
128
|
-
5420,2148,100,545,8,17
|
|
129
|
-
1872,2044,66,107,2,14
|
|
130
|
-
3523,2094,25,426,8,14
|
|
131
|
-
5256,2740,66,720,16,17
|
|
132
|
-
2198,2395,50,424,4,17
|
|
133
|
-
2137,3544,66,340,16,17
|
|
134
|
-
4257,2299,66,340,4,14
|
|
135
|
-
892,2994,33,452,16,14
|
|
136
|
-
4339,1725,33,340,4,14
|
|
137
|
-
4278,1548,33,340,4,14
|
|
138
|
-
4726,2240,50,1000,8,14
|
|
139
|
-
2095,1999,33,230,8,15
|
|
140
|
-
3197,3239,50,340,8,17
|
|
141
|
-
3605,2190,50,426,8,15
|
|
142
|
-
5929,2994,100,1000,24,15
|
|
143
|
-
484,1999,50,212,4,14
|
|
144
|
-
240,3795,66,500,8,14
|
|
145
|
-
4543,1828,66,425,8,14
|
|
146
|
-
5582,1440,50,340,4,14
|
|
147
|
-
3298,2544,33,528,16,14
|
|
148
|
-
4930,2740,50,720,16,17
|
|
149
|
-
1647,1299,25,170,4,14
|
|
150
|
-
2156,2495,66,424,8,15
|
|
151
|
-
1218,2799,66,450,8,15
|
|
152
|
-
749,1690,33,107,2,14
|
|
153
|
-
2116,1890,33,214,4,15
|
|
154
|
-
545,2390,33,340,8,14
|
|
155
|
-
3563,2044,25,426,8,14
|
|
156
|
-
1279,1795,33,214,4,14
|
|
157
|
-
4461,2218,66,340,8,17
|
|
158
|
-
1748,2175,66,250,4,15
|
|
159
|
-
5969,1704,66,850,8,14
|
|
160
|
-
3155,2090,33,426,8,14
|
|
161
|
-
2177,2344,33,426,8,14
|
|
162
|
-
2013,1749,33,212,4,14
|
|
163
|
-
2400,2195,66,214,4,14
|
|
164
|
-
1544,2899,50,240,4,14
|
|
165
|
-
2503,2244,50,214,4,14
|
|
166
|
-
2747,2389,33,120,4,17
|
|
167
|
-
2665,1495,25,214,4,14
|
|
168
|
-
3685,1995,33,426,8,14
|
|
169
|
-
15,2699,50,212,8,14
|
|
170
|
-
4888,2790,66,720,16,17
|
|
171
|
-
2114,1799,25,424,4,14
|
|
172
|
-
463,3495,66,500,8,14
|
|
173
|
-
953,1595,33,212,4,15
|
|
174
|
-
2604,1494,33,240,4,15
|
|
175
|
-
3582,2390,50,420,8,15
|
|
176
|
-
4684,2099,33,212,8,14
|
|
177
|
-
4909,1499,50,545,4,15
|
|
178
|
-
116,3165,66,250,4,17
|
|
179
|
-
2440,1894,50,340,4,15
|
|
180
|
-
6091,1844,66,850,8,14
|
|
181
|
-
4358,1840,66,214,4,15
|
|
182
|
-
2930,2890,66,528,16,15
|
|
183
|
-
156,2575,66,250,8,15
|
|
184
|
-
4011,2549,100,420,8,15
|
|
185
|
-
5092,1890,50,528,8,15
|
|
186
|
-
564,1895,33,212,8,14
|
|
187
|
-
625,2109,33,120,4,14
|
|
188
|
-
2869,2294,50,424,8,14
|
|
189
|
-
3073,3019,66,340,8,15
|
|
190
|
-
5458,2063,66,270,4,14
|
|
191
|
-
482,1695,50,107,2,14
|
|
192
|
-
4276,1840,66,214,4,14
|
|
193
|
-
1258,1695,33,107,2,14
|
|
194
|
-
5927,1599,66,545,4,15
|
|
195
|
-
747,2244,25,340,8,14
|
|
196
|
-
1727,2194,25,426,8,14
|
|
197
|
-
5479,1659,66,425,8,14
|
|
198
|
-
5050,1989,66,540,8,15
|
|
199
|
-
1216,1899,33,230,4,14
|
|
200
|
-
4541,2340,50,1000,8,14
|
|
201
|
-
1584,1999,66,170,4,14
|
|
202
|
-
1420,3144,66,528,16,14
|
|
203
|
-
1481,1795,33,212,8,14
|
|
204
|
-
2461,2609,66,245,4,14
|
|
205
|
-
768,1399,25,170,4,14
|
|
206
|
-
3561,2575,100,530,8,15
|
|
207
|
-
2419,2699,66,528,8,15
|
|
208
|
-
1319,3094,50,528,16,14
|
|
209
|
-
2093,1944,25,214,4,14
|
|
210
|
-
1012,1865,25,170,4,17
|
|
211
|
-
3622,2495,100,540,8,15
|
|
212
|
-
3725,1690,66,107,2,14
|
|
213
|
-
3765,1618,33,340,4,17
|
|
214
|
-
3826,2945,33,1000,24,14
|
|
215
|
-
3887,1795,66,340,8,14
|
|
216
|
-
3786,2399,75,428,16,15
|
|
217
|
-
4030,1899,66,340,8,15
|
|
218
|
-
4152,2740,33,1000,16,14
|
|
219
|
-
3010,1495,25,214,4,14
|
|
220
|
-
2175,1790,50,107,2,15
|
|
221
|
-
1664,1795,50,107,2,14
|
|
222
|
-
6089,1690,66,850,8,15
|
|
223
|
-
1195,1790,25,214,4,14
|
|
224
|
-
4989,1908,50,540,8,15
|
|
225
|
-
1929,2359,33,245,8,14
|
|
226
|
-
1113,2099,33,120,4,14
|
|
227
|
-
5416,2990,66,1000,24,17
|
|
228
|
-
360,2295,33,245,8,14
|
|
229
|
-
2398,2499,50,320,8,15
|
|
230
|
-
2051,3090,66,528,16,15
|
|
231
|
-
3336,1495,33,212,4,14
|
|
232
|
-
4581,2693,50,720,16,15
|
|
233
|
-
5477,1499,50,545,4,15
|
|
234
|
-
236,2295,66,130,4,14
|
|
235
|
-
787,2494,66,214,4,14
|
|
236
|
-
5315,1640,66,214,4,14
|
|
237
|
-
4335,1399,33,210,4,14
|
|
238
|
-
93,2420,33,170,8,15
|
|
239
|
-
6150,1454,100,528,4,14
|
|
240
|
-
217,2295,33,245,8,14
|
|
241
|
-
440,2990,50,452,16,14
|
|
242
|
-
562,2195,50,214,4,14
|
|
243
|
-
1786,1495,33,212,4,15
|
|
244
|
-
4907,1540,33,214,4,14
|
|
245
|
-
2785,2927,66,424,16,15
|
|
246
|
-
5048,1590,33,214,4,14
|
|
247
|
-
6007,2604,75,1200,24,15
|
|
248
|
-
278,2399,33,212,8,14
|
|
249
|
-
623,2299,33,450,8,14
|
|
250
|
-
2499,1799,50,340,4,15
|
|
251
|
-
3050,1644,25,214,4,14
|
|
252
|
-
2623,1495,25,214,4,14
|
|
253
|
-
5986,2495,50,1200,24,15
|
|
254
|
-
2968,1844,33,214,4,14
|
|
255
|
-
3784,3745,66,2100,16,15
|
|
256
|
-
135,1749,25,120,4,14
|
|
257
|
-
3620,3349,100,527,16,17
|
|
258
|
-
419,3495,33,452,8,14
|
|
259
|
-
3641,1490,33,107,2,15
|
|
260
|
-
4091,1399,33,210,4,14
|
|
261
|
-
6026,1654,50,850,8,14
|
|
262
|
-
4905,1445,33,214,4,14
|
|
263
|
-
5109,2390,50,720,16,15
|
|
264
|
-
5763,1799,66,540,8,14
|
|
265
|
-
1111,1944,25,214,4,14
|
|
266
|
-
5761,1894,50,528,8,14
|
|
267
|
-
11,2195,33,170,8,15
|
|
268
|
-
2541,1795,33,420,8,15
|
|
269
|
-
4598,1999,66,527,8,14
|
|
270
|
-
5353,1823,33,528,8,14
|
|
271
|
-
3294,2690,100,426,8,15
|
|
272
|
-
461,2695,66,250,8,14
|
|
273
|
-
30,3244,66,245,8,14
|
|
274
|
-
3273,3129,66,527,8,14
|
|
275
|
-
5231,1718,66,428,4,17
|
|
276
|
-
991,1795,50,107,2,14
|
|
277
|
-
3782,2093,33,426,8,14
|
|
278
|
-
5618,1740,50,528,8,15
|
|
279
|
-
2743,2425,66,424,4,14
|
|
280
|
-
3805,2590,66,528,16,14
|
|
281
|
-
5189,1923,33,528,8,14
|
|
282
|
-
3130,1794,33,212,4,14
|
|
283
|
-
5088,1889,66,425,8,15
|
|
284
|
-
5212,1898,66,420,8,14
|
|
285
|
-
91,2975,50,210,4,17
|
|
286
|
-
1315,1490,25,107,2,15
|
|
287
|
-
928,2015,33,250,8,15
|
|
288
|
-
848,2225,66,250,4,14
|
|
289
|
-
152,2225,33,250,8,15
|
|
290
|
-
1580,2595,33,340,8,17
|
|
291
|
-
4680,2090,33,1000,8,14
|
|
292
|
-
3662,1744,66,107,2,14
|
|
293
|
-
4842,2390,33,720,16,15
|
|
294
|
-
2987,1399,50,260,4,14
|
|
295
|
-
2131,1895,33,340,8,15
|
|
296
|
-
5803,1580,66,540,8,15
|
|
297
|
-
4638,1745,50,214,4,14
|
|
298
|
-
2640,2249,25,170,4,15
|
|
299
|
-
2600,3229,66,527,8,14
|
|
300
|
-
6129,2744,75,1200,24,15
|
|
301
|
-
2558,2244,66,214,4,14
|
|
302
|
-
6127,2344,66,1000,16,15
|
|
303
|
-
51,2499,33,170,4,14
|
|
304
|
-
1765,1895,50,340,4,15
|
|
305
|
-
3027,2190,33,426,8,14
|
|
306
|
-
1498,2029,33,120,4,14
|
|
307
|
-
5006,1489,33,424,4,15
|
|
308
|
-
1479,1499,25,120,4,14
|
|
309
|
-
70,3095,66,245,8,14
|
|
310
|
-
1763,2415,33,340,8,17
|
|
311
|
-
3925,1199,33,340,4,14
|
|
312
|
-
4354,2590,66,720,16,15
|
|
313
|
-
3088,1795,50,212,8,14
|
|
314
|
-
4577,1568,33,250,2,17
|
|
315
|
-
5862,2208,75,545,8,17
|
|
316
|
-
255,1495,33,85,2,14
|
|
317
|
-
3822,2558,25,212,4,17
|
|
318
|
-
2028,1795,50,340,4,14
|
|
319
|
-
2905,1555,50,340,4,14
|
|
320
|
-
1662,2059,33,120,4,14
|
|
321
|
-
5229,2198,100,420,8,14
|
|
322
|
-
5168,1199,33,340,4,14
|
|
323
|
-
356,2799,50,240,4,15
|
|
324
|
-
4741,1595,50,340,8,14
|
|
325
|
-
3679,2290,66,528,8,14
|
|
326
|
-
539,3599,66,450,8,14
|
|
327
|
-
1824,1825,66,340,4,14
|
|
328
|
-
112,2095,33,130,4,14
|
|
329
|
-
926,2044,25,214,4,14
|
|
330
|
-
2680,3659,66,424,8,17
|
|
331
|
-
6045,2390,66,1000,16,17
|
|
332
|
-
846,1694,25,107,2,14
|
|
333
|
-
5820,2594,100,850,16,15
|
|
334
|
-
1803,2790,50,426,8,14
|
|
335
|
-
1681,2395,66,340,8,15
|
|
336
|
-
2253,2890,25,528,16,14
|
|
337
|
-
2598,1390,33,107,2,15
|
|
338
|
-
3536,2244,100,107,2,14
|
|
339
|
-
5902,2204,66,850,16,15
|
|
340
|
-
5067,2804,66,1000,24,15
|
|
341
|
-
6085,1595,66,850,8,14
|
|
342
|
-
314,3895,50,452,8,14
|
|
343
|
-
6167,1949,66,420,8,15
|
|
344
|
-
3252,1994,50,214,4,14
|
|
345
|
-
3719,1594,33,340,4,14
|
|
346
|
-
5208,1499,50,340,4,15
|
|
347
|
-
1538,1699,66,170,4,14
|
|
348
|
-
703,1999,33,245,8,14
|
|
349
|
-
497,2990,50,452,16,15
|
|
350
|
-
579,2790,66,340,8,14
|
|
351
|
-
4821,1995,66,528,8,14
|
|
352
|
-
4924,2190,66,1000,8,14
|
|
353
|
-
823,2945,66,250,8,15
|
|
354
|
-
844,2644,25,452,16,14
|
|
355
|
-
1130,2694,25,540,16,14
|
|
356
|
-
5923,2594,100,850,16,15
|
|
357
|
-
4310,3045,66,1000,24,14
|
|
358
|
-
4800,1799,66,545,8,15
|
|
359
|
-
6024,1595,50,850,8,14
|
|
360
|
-
3435,1995,66,340,8,14
|
|
361
|
-
1353,2544,33,426,8,14
|
|
362
|
-
5065,2248,66,1000,8,14
|
|
363
|
-
1395,3515,66,424,16,17
|
|
364
|
-
2293,1990,66,107,2,15
|
|
365
|
-
5309,2690,33,720,16,17
|
|
366
|
-
5799,2124,75,545,8,17
|
|
367
|
-
1721,2390,33,426,8,14
|
|
368
|
-
1477,2890,33,528,16,15
|
|
369
|
-
3759,2093,33,426,8,14
|
|
370
|
-
3250,3349,100,527,16,17
|
|
371
|
-
2455,1399,25,270,4,14
|
|
372
|
-
3149,1589,25,212,4,14
|
|
373
|
-
1679,2890,33,528,16,15
|
|
374
|
-
762,1590,25,107,2,14
|
|
375
|
-
2720,1594,33,212,4,14
|
|
376
|
-
3210,1999,33,340,8,14
|
|
377
|
-
129,1495,33,85,2,14
|
|
378
|
-
1496,2690,33,528,16,15
|
|
379
|
-
171,2425,66,250,8,14
|
|
380
|
-
4148,1199,33,210,4,14
|
|
381
|
-
2270,2815,50,424,8,17
|
|
382
|
-
1149,1994,50,107,2,14
|
|
383
|
-
4127,2749,100,420,8,17
|
|
384
|
-
3597,2743,100,426,8,14
|
|
385
|
-
2739,2295,66,424,8,15
|
|
386
|
-
1618,3144,50,528,16,14
|
|
387
|
-
3046,2444,50,426,8,14
|
|
388
|
-
4066,3040,33,1000,24,15
|
|
389
|
-
5145,1438,33,212,4,14
|
|
390
|
-
5839,2744,50,1000,24,15
|
|
391
|
-
3311,2669,50,340,8,14
|
|
392
|
-
1782,1795,50,340,4,14
|
|
393
|
-
3534,2558,100,425,8,14
|
|
394
|
-
3290,2090,100,107,2,14
|
|
395
|
-
4983,1499,33,428,4,14
|
|
396
|
-
1374,2390,33,426,8,15
|
|
397
|
-
4941,3290,66,1000,24,17
|
|
398
|
-
4493,1740,33,214,4,14
|
|
399
|
-
2434,1795,66,420,4,14
|
|
400
|
-
1700,1894,33,107,2,14
|
|
401
|
-
5206,2044,50,528,8,14
|
|
402
|
-
4289,1995,66,340,4,14
|
|
403
|
-
2026,2244,25,426,8,14
|
|
404
|
-
4371,1399,33,210,4,14
|
|
405
|
-
1984,2744,50,340,8,17
|
|
406
|
-
4758,3143,33,1000,24,15
|
|
407
|
-
680,1695,50,107,2,14
|
|
408
|
-
1740,3515,66,424,16,17
|
|
409
|
-
373,2690,66,245,8,14
|
|
410
|
-
3881,2190,66,426,8,15
|
|
411
|
-
3025,2544,66,426,8,14
|
|
412
|
-
4411,3004,33,1000,24,14
|
|
413
|
-
638,1499,25,170,4,14
|
|
414
|
-
1332,1799,33,170,4,14
|
|
415
|
-
945,3609,66,527,4,15
|
|
416
|
-
3269,2344,100,214,4,14
|
|
417
|
-
434,1995,33,214,4,14
|
|
418
|
-
1801,3708,66,527,8,15
|
|
419
|
-
4432,2393,33,720,16,14
|
|
420
|
-
1046,1899,25,120,4,14
|
|
421
|
-
2779,2595,33,528,16,14
|
|
422
|
-
924,1695,25,214,8,14
|
|
423
|
-
5166,2695,50,1000,24,15
|
|
424
|
-
2922,1344,25,107,2,14
|
|
425
|
-
964,1544,25,107,2,14
|
|
426
|
-
2392,2354,33,212,4,14
|
|
427
|
-
802,2895,50,452,16,14
|
|
428
|
-
1311,2199,50,230,8,15
|
|
429
|
-
2840,2799,50,340,8,14
|
|
430
|
-
312,2599,50,212,8,14
|
|
431
|
-
5023,2440,50,720,16,15
|
|
432
|
-
3452,2429,100,420,8,15
|
|
433
|
-
1025,2894,66,340,4,14
|
|
434
|
-
1515,2344,50,340,8,15
|
|
435
|
-
3677,1499,33,210,4,15
|
|
436
|
-
903,2890,33,452,16,15
|
|
437
|
-
4981,1418,33,340,4,14
|
|
438
|
-
2249,3090,33,528,16,14
|
|
439
|
-
1862,2375,33,545,8,15
|
|
440
|
-
230,2915,50,250,8,17
|
|
441
|
-
2901,1594,33,107,2,14
|
|
442
|
-
2983,1390,33,107,2,15
|
|
443
|
-
4880,2598,66,730,16,15
|
|
444
|
-
3309,1995,33,426,8,14
|
|
445
|
-
5246,1599,66,545,4,15
|
|
446
|
-
3248,2395,33,528,16,14
|
|
447
|
-
5614,1840,75,540,8,15
|
|
448
|
-
2636,1449,50,245,4,14
|
|
449
|
-
3166,2195,50,420,8,15
|
|
450
|
-
2106,2320,33,528,8,14
|
|
451
|
-
3799,1854,33,426,8,14
|
|
452
|
-
4308,2170,66,340,4,14
|
|
453
|
-
209,2295,66,170,4,14
|
|
454
|
-
2697,1590,25,214,4,15
|
|
455
|
-
3982,1595,33,210,4,14
|
|
456
|
-
4165,2444,33,528,16,14
|
|
457
|
-
1004,3515,66,424,16,17
|
|
458
|
-
5511,2740,66,1000,24,15
|
|
459
|
-
5919,1895,100,540,8,15
|
|
460
|
-
2085,2743,33,340,4,14
|
|
461
|
-
4022,3194,33,1000,24,14
|
|
462
|
-
2554,1799,33,170,4,14
|
|
463
|
-
2024,2644,66,426,8,14
|
|
464
|
-
5898,2204,100,850,8,17
|
|
465
|
-
1269,2295,50,340,8,15
|
|
466
|
-
5368,1890,33,528,8,15
|
|
467
|
-
2289,2100,25,424,4,17
|
|
468
|
-
127,2945,50,250,4,17
|
|
469
|
-
2941,2890,66,528,16,14
|
|
470
|
-
739,2495,25,452,16,14
|
|
471
|
-
2758,1695,33,420,4,15
|
|
472
|
-
4083,2495,66,528,16,14
|
|
473
|
-
45,3495,50,340,16,14
|
|
474
|
-
4960,1395,33,340,8,14
|
|
475
|
-
3961,2404,33,528,16,14
|
|
476
|
-
1534,2090,25,426,8,14
|
|
477
|
-
4001,2359,50,340,4,14
|
|
478
|
-
3879,3015,66,1080,16,15
|
|
479
|
-
1881,1890,33,107,2,14
|
|
480
|
-
5082,2745,66,1000,24,15
|
|
481
|
-
432,2695,33,452,16,14
|
|
482
|
-
1330,1999,66,245,8,14
|
|
483
|
-
66,1495,25,170,4,14
|
|
484
|
-
1452,1599,33,212,4,14
|
|
485
|
-
1900,1899,66,245,4,15
|
|
486
|
-
3736,1790,50,214,4,15
|
|
487
|
-
3349,1795,66,340,8,14
|
|
488
|
-
4939,2345,33,720,16,15
|
|
489
|
-
4918,1399,33,210,4,14
|
|
490
|
-
636,1725,33,170,4,14
|
|
491
|
-
5143,2544,33,720,16,15
|
|
492
|
-
3124,2425,33,424,8,17
|
|
493
|
-
1696,2690,66,340,8,15
|
|
494
|
-
5061,1399,66,428,4,14
|
|
495
|
-
4735,1590,33,214,4,15
|
|
496
|
-
5122,1795,33,528,8,14
|
|
497
|
-
4571,2118,66,340,4,17
|
|
498
|
-
5999,1829,66,420,8,14
|
|
499
|
-
5000,2118,66,1000,8,14
|
|
500
|
-
4449,3044,33,1000,24,14
|
|
501
|
-
472,1599,25,170,4,14
|
|
502
|
-
3919,1894,33,214,4,14
|
|
503
|
-
3654,1499,33,210,4,14
|
|
504
|
-
4714,2398,33,270,4,15
|
|
505
|
-
4897,2094,33,528,8,14
|
|
506
|
-
1839,2444,66,214,4,14
|
|
507
|
-
697,2690,50,340,8,15
|
|
508
|
-
2348,1695,33,420,4,15
|
|
509
|
-
4693,2690,33,720,16,17
|
|
510
|
-
4041,1195,25,214,4,14
|
|
511
|
-
3980,3490,100,1000,24,14
|
|
512
|
-
5896,1640,100,340,4,15
|
|
513
|
-
2878,1999,66,450,4,14
|
|
514
|
-
4510,2593,33,720,16,15
|
|
515
|
-
4245,2890,33,1000,24,14
|
|
516
|
-
6161,2154,66,1000,16,15
|
|
517
|
-
125,2420,33,170,8,15
|
|
518
|
-
1961,3678,66,527,8,15
|
|
519
|
-
554,1890,66,107,2,15
|
|
520
|
-
1532,1539,25,120,4,14
|
|
521
|
-
3143,3099,100,527,16,15
|
|
522
|
-
4775,2199,66,730,8,15
|
|
523
|
-
5917,2108,75,545,8,17
|
|
524
|
-
3877,1249,25,100,4,14
|
|
525
|
-
5488,1699,50,212,8,14
|
|
526
|
-
3633,2275,66,530,8,15
|
|
527
|
-
1288,1749,50,212,4,14
|
|
528
|
-
1797,3044,33,528,16,14
|
|
529
|
-
3469,1260,33,210,4,15
|
|
530
|
-
3898,1995,33,540,8,15
|
|
531
|
-
2960,2320,50,528,8,14
|
|
532
|
-
6018,1873,100,850,8,14
|
|
533
|
-
2327,2644,66,426,8,14
|
|
534
|
-
1818,3544,66,340,16,17
|
|
535
|
-
3694,2775,66,420,16,15
|
|
536
|
-
3795,2999,100,528,16,17
|
|
537
|
-
716,1495,25,107,2,14
|
|
538
|
-
5101,2323,33,720,16,15
|
|
539
|
-
3959,1495,33,214,4,14
|
|
540
|
-
573,1699,33,170,4,14
|
|
541
|
-
3734,2550,66,340,8,15
|
|
542
|
-
2144,1999,33,340,8,14
|
|
543
|
-
1410,1395,25,107,2,14
|
|
544
|
-
5242,1495,33,214,4,14
|
|
545
|
-
777,2244,33,214,4,14
|
|
546
|
-
4489,1999,66,428,8,15
|
|
547
|
-
4285,2699,66,527,16,15
|
|
548
|
-
2285,1819,33,424,4,14
|
|
549
|
-
838,2290,33,340,8,14
|
|
550
|
-
5223,1728,66,428,4,17
|
|
551
|
-
4550,3345,66,1000,24,15
|
|
552
|
-
4161,3208,66,270,4,15
|
|
553
|
-
1307,2690,33,528,16,14
|
|
554
|
-
594,1599,66,130,4,14
|
|
555
|
-
2470,2795,66,340,8,15
|
|
556
|
-
5282,1854,33,528,8,14
|
|
557
|
-
1368,1644,25,107,2,14
|
|
558
|
-
3000,2290,50,426,8,15
|
|
559
|
-
3408,1599,33,210,4,14
|
|
560
|
-
653,2390,33,340,8,15
|
|
561
|
-
3774,2099,66,420,8,15
|
|
562
|
-
451,1395,25,107,2,14
|
|
563
|
-
4876,2399,66,730,16,15
|
|
564
|
-
5547,2224,100,545,8,17
|
|
565
|
-
2163,1988,25,120,4,14
|
|
566
|
-
920,1575,33,210,4,14
|
|
567
|
-
4264,2015,66,540,8,15
|
|
568
|
-
918,2109,33,120,4,14
|
|
569
|
-
6180,1545,100,1000,4,14
|
|
570
|
-
2857,1495,33,212,4,14
|
|
571
|
-
104,2999,66,330,4,15
|
|
572
|
-
3589,2355,66,340,8,15
|
|
573
|
-
4100,2943,33,1000,24,14
|
|
574
|
-
634,1399,25,170,4,14
|
|
575
|
-
369,1795,66,85,2,14
|
|
576
|
-
4058,2629,66,270,4,14
|
|
577
|
-
1408,2744,66,426,8,14
|
|
578
|
-
3448,2669,50,340,8,14
|
|
579
|
-
1776,3044,66,245,4,15
|
|
580
|
-
1509,2025,66,340,4,15
|
|
581
|
-
3549,2259,25,212,4,17
|
|
582
|
-
899,1990,33,214,4,15
|
|
583
|
-
2041,1894,50,340,4,15
|
|
584
|
-
5730,1885,66,1000,8,14
|
|
585
|
-
4283,3984,66,364,8,17
|
|
586
|
-
3917,2079,50,212,4,14
|
|
587
|
-
4916,1640,33,214,4,14
|
|
588
|
-
5648,1195,50,340,4,14
|
|
589
|
-
3875,2299,66,428,16,15
|
|
590
|
-
3040,1994,66,107,2,14
|
|
591
|
-
4304,2099,66,420,8,14
|
|
592
|
-
876,2444,33,340,8,14
|
|
593
|
-
2264,1695,33,340,8,14
|
|
594
|
-
1225,3609,66,527,4,15
|
|
595
|
-
409,2590,33,340,8,15
|
|
596
|
-
3282,2094,66,214,4,14
|
|
597
|
-
184,2644,50,245,8,14
|
|
598
|
-
6119,2299,100,850,16,15
|
|
599
|
-
3692,1899,66,340,8,15
|
|
600
|
-
2405,3354,66,420,4,15
|
|
601
|
-
2325,1744,33,107,2,14
|
|
602
|
-
4222,3644,100,1000,24,14
|
|
603
|
-
735,1590,25,107,2,15
|
|
604
|
-
5953,2404,100,850,16,15
|
|
605
|
-
2794,2319,33,340,4,14
|
|
606
|
-
2407,2320,33,528,8,14
|
|
607
|
-
123,2355,50,250,8,14
|
|
608
|
-
4811,1740,33,214,4,15
|
|
609
|
-
2590,1559,66,245,4,14
|
|
610
|
-
5894,1449,66,365,8,15
|
|
611
|
-
592,1945,33,250,4,15
|
|
612
|
-
2731,2569,50,340,8,14
|
|
613
|
-
5465,2238,75,545,8,17
|
|
614
|
-
3345,2775,66,530,16,17
|
|
615
|
-
3406,2999,100,527,16,15
|
|
616
|
-
2058,1914,25,212,4,14
|
|
617
|
-
3181,1795,50,420,4,14
|
|
618
|
-
4344,1740,33,214,4,15
|
|
619
|
-
1591,1799,33,230,4,14
|
|
620
|
-
2588,2594,50,426,8,14
|
|
621
|
-
693,2390,66,214,4,15
|
|
622
|
-
5751,2204,50,850,16,15
|
|
623
|
-
5812,1645,50,528,8,14
|
|
624
|
-
4464,2054,33,528,8,14
|
|
625
|
-
3099,1644,33,107,2,14
|
|
626
|
-
2998,2495,33,528,16,14
|
|
627
|
-
3997,2154,100,214,4,14
|
|
628
|
-
1507,5399,66,1200,32,17
|
|
629
|
-
550,1790,50,107,2,15
|
|
630
|
-
2121,2195,66,214,4,14
|
|
631
|
-
1917,2478,33,245,8,14
|
|
632
|
-
2771,1795,50,340,4,14
|
|
633
|
-
1019,1795,25,107,4,14
|
|
634
|
-
1713,3595,66,340,16,17
|
|
635
|
-
3385,1595,33,340,8,14
|
|
636
|
-
3036,1399,25,245,4,14
|
|
637
|
-
815,1849,33,170,4,14
|
|
638
|
-
4527,2090,66,214,4,15
|
|
639
|
-
4119,1854,33,426,8,14
|
|
640
|
-
5850,1881,100,270,4,14
|
|
641
|
-
5505,1938,66,545,4,17
|
|
642
|
-
367,2099,33,120,4,14
|
|
643
|
-
3711,1795,66,214,4,14
|
|
644
|
-
283,2299,50,212,4,14
|
|
645
|
-
3221,1444,25,107,2,14
|
|
646
|
-
5118,2840,66,1000,24,15
|
|
647
|
-
1162,2675,66,340,8,17
|
|
648
|
-
4769,2090,66,528,8,14
|
|
649
|
-
3690,2775,100,425,8,17
|
|
650
|
-
2569,1544,33,107,2,14
|
|
651
|
-
4037,1299,33,340,4,14
|
|
652
|
-
2689,1719,33,120,4,14
|
|
653
|
-
5362,2094,66,528,8,14
|
|
654
|
-
4975,1295,50,214,4,14
|
|
655
|
-
2222,2620,66,528,8,14
|
|
656
|
-
6176,1395,100,528,4,14
|
|
657
|
-
3139,2344,25,528,16,14
|
|
658
|
-
346,2199,50,213,8,14
|
|
659
|
-
2487,1599,33,120,4,14
|
|
660
|
-
1078,2890,33,540,16,15
|
|
661
|
-
855,2794,33,452,16,14
|
|
662
|
-
5158,1758,50,545,4,17
|
|
663
|
-
4424,2490,33,720,16,14
|
|
664
|
-
5768,2654,66,1000,24,15
|
|
665
|
-
1324,2044,50,107,2,14
|
|
666
|
-
2609,3144,66,528,16,14
|
|
667
|
-
3078,2244,33,426,8,14
|
|
668
|
-
3219,1295,33,212,4,14
|
|
669
|
-
6218,2744,66,1200,24,15
|
|
670
|
-
529,2499,50,170,4,14
|
|
671
|
-
2201,2170,66,340,4,15
|
|
672
|
-
670,2049,33,450,4,14
|
|
673
|
-
1181,1890,50,107,2,15
|
|
674
|
-
2874,1525,33,340,4,14
|
|
675
|
-
447,2220,33,250,8,14
|
|
676
|
-
1139,2999,66,450,8,15
|
|
677
|
-
1650,2194,33,214,4,14
|
|
678
|
-
3669,1635,66,210,4,14
|
|
679
|
-
4872,1868,66,425,8,14
|
|
680
|
-
5095,2098,66,540,8,14
|
|
681
|
-
1711,1279,33,130,4,14
|
|
682
|
-
5871,1908,66,545,4,17
|
|
683
|
-
5341,2695,33,1000,24,15
|
|
684
|
-
6033,1499,66,540,8,14
|
|
685
|
-
895,2675,66,340,8,17
|
|
686
|
-
3322,2290,25,528,16,15
|
|
687
|
-
2853,2359,50,340,4,14
|
|
688
|
-
4218,1958,25,212,4,15
|
|
689
|
-
2302,2095,33,212,4,17
|
|
690
|
-
4260,2988,33,270,4,17
|
|
691
|
-
304,2799,50,245,16,15
|
|
692
|
-
3810,3415,66,1080,16,17
|
|
693
|
-
487,2859,66,212,4,15
|
|
694
|
-
1833,1995,33,424,8,14
|
|
695
|
-
5055,1890,50,528,8,14
|
|
696
|
-
5951,1844,50,528,8,14
|
|
697
|
-
1955,3205,66,545,8,17
|
|
698
|
-
5116,1640,66,214,4,14
|
|
699
|
-
5524,1898,66,420,8,14
|
|
700
|
-
1587,3015,66,340,8,17
|
|
701
|
-
405,2890,33,452,16,14
|
|
702
|
-
1425,1519,50,130,4,14
|
|
703
|
-
691,2299,50,230,4,14
|
|
704
|
-
914,2299,66,245,8,14
|
|
705
|
-
2077,2444,33,426,8,14
|
|
706
|
-
5911,2090,50,364,8,14
|
|
707
|
-
3709,2444,66,426,8,14
|
|
708
|
-
4401,1999,66,527,8,14
|
|
709
|
-
2546,2395,66,340,8,14
|
|
710
|
-
1282,1490,25,107,2,14
|
|
711
|
-
752,2395,33,340,8,17
|
|
712
|
-
1852,2095,33,426,8,14
|
|
713
|
-
4952,1904,33,528,8,14
|
|
714
|
-
2485,1790,25,214,4,15
|
|
715
|
-
4300,1918,33,340,4,17
|
|
716
|
-
1179,2945,66,250,8,15
|
|
717
|
-
2668,2590,25,528,16,15
|
|
718
|
-
3015,2295,66,424,8,15
|
|
719
|
-
6237,2790,66,1200,24,17
|
|
720
|
-
4258,1995,33,528,8,14
|
|
721
|
-
2117,1520,33,424,4,14
|
|
722
|
-
2138,1649,33,245,4,15
|
|
723
|
-
1465,1690,25,170,4,14
|
|
724
|
-
3585,1945,33,540,8,15
|
|
725
|
-
5604,2198,100,420,8,14
|
|
726
|
-
4544,1499,33,340,4,14
|
|
727
|
-
1934,2495,66,426,8,14
|
|
728
|
-
4523,1795,33,528,8,14
|
|
729
|
-
5869,1999,100,545,8,15
|
|
730
|
-
2464,2590,66,214,4,14
|
|
731
|
-
3606,1844,33,214,4,14
|
|
732
|
-
1770,2490,50,426,8,14
|
|
733
|
-
771,2095,25,340,8,14
|
|
734
|
-
649,1995,33,212,8,15
|
|
735
|
-
3871,2440,33,528,16,14
|
|
736
|
-
4115,1468,33,340,4,15
|
|
737
|
-
5257,1973,66,528,8,14
|
|
738
|
-
6012,1699,100,540,8,14
|
|
739
|
-
1322,2144,33,214,4,14
|
|
740
|
-
5991,1723,50,850,8,14
|
|
741
|
-
2973,2039,25,120,4,17
|
|
742
|
-
4870,2245,33,720,16,15
|
|
743
|
-
4605,1599,66,540,4,14
|
|
744
|
-
6256,2223,66,850,16,15
|
|
745
|
-
4380,2049,66,420,8,15
|
|
746
|
-
2321,2144,33,214,4,14
|
|
747
|
-
4197,2449,100,527,8,15
|
|
748
|
-
1219,1795,33,214,8,14
|
|
749
|
-
1158,1799,33,250,4,14
|
|
750
|
-
2790,2620,66,528,8,14
|
|
751
|
-
4931,2143,66,528,8,14
|
|
752
|
-
2157,2268,33,340,4,14
|
|
753
|
-
3768,2758,33,170,4,17
|
|
754
|
-
3055,1295,33,212,4,14
|
|
755
|
-
5196,2595,33,1000,24,15
|
|
756
|
-
2626,3799,66,527,8,17
|
|
757
|
-
1688,1899,50,340,4,14
|
|
758
|
-
3320,2199,50,450,8,15
|
|
759
|
-
1505,1939,66,212,4,14
|
|
760
|
-
4563,1899,66,420,8,14
|
|
761
|
-
6113,1994,100,850,8,14
|
|
762
|
-
5461,1399,33,210,4,14
|
|
763
|
-
1953,2674,33,245,8,14
|
|
764
|
-
5297,2159,66,730,8,17
|
|
765
|
-
4033,1395,33,214,4,14
|
|
766
|
-
3177,2744,50,528,16,14
|
|
767
|
-
4012,2195,75,420,4,14
|
|
768
|
-
2748,1399,33,245,4,14
|
|
769
|
-
1749,2544,50,426,8,14
|
|
770
|
-
1566,2329,33,340,8,17
|
|
771
|
-
5215,1268,33,428,4,15
|
|
772
|
-
668,2799,50,240,4,15
|
|
773
|
-
199,2220,33,250,4,14
|
|
774
|
-
4584,2640,50,720,16,15
|
|
775
|
-
3135,2195,100,214,4,14
|
|
776
|
-
2340,1590,33,107,2,15
|
|
777
|
-
933,2390,66,214,4,14
|
|
778
|
-
3972,2344,66,426,8,14
|
|
779
|
-
586,2250,66,170,4,14
|
|
780
|
-
5480,1754,50,528,8,14
|
|
781
|
-
3604,2343,66,426,8,14
|
|
782
|
-
5175,2239,66,425,8,17
|
|
783
|
-
5541,1398,66,340,4,14
|
|
784
|
-
2115,2099,66,245,4,15
|
|
785
|
-
5011,2408,100,270,4,14
|
|
786
|
-
3360,1694,25,214,4,14
|
|
787
|
-
2992,3397,66,450,16,15
|
|
788
|
-
1707,2834,66,426,8,15
|
|
789
|
-
2258,2044,33,214,4,14
|
|
790
|
-
811,2495,50,340,8,14
|
|
791
|
-
3461,1795,100,210,4,14
|
|
792
|
-
5194,1545,66,528,8,14
|
|
793
|
-
504,2695,66,340,8,14
|
|
794
|
-
1545,1694,33,107,2,14
|
|
795
|
-
912,2325,66,250,4,15
|
|
796
|
-
5663,1799,75,545,8,15
|
|
797
|
-
3236,1595,33,214,4,14
|
|
798
|
-
3217,3249,100,527,16,17
|
|
799
|
-
5806,2323,66,850,16,15
|
|
800
|
-
565,2295,50,212,8,15
|
|
801
|
-
2563,1744,33,214,4,14
|
|
802
|
-
3686,2115,33,425,8,15
|
|
803
|
-
1177,4395,50,1100,16,14
|
|
804
|
-
1299,2995,66,540,16,14
|
|
805
|
-
748,2044,33,107,2,14
|
|
806
|
-
1606,2494,33,426,8,14
|
|
807
|
-
1034,2495,33,340,4,14
|
|
808
|
-
626,3595,66,500,8,15
|
|
809
|
-
4969,2040,33,1000,8,14
|
|
810
|
-
6031,2204,66,1000,16,15
|
|
811
|
-
4052,1799,66,250,4,15
|
|
812
|
-
4113,1704,33,426,4,14
|
|
813
|
-
1339,1899,33,120,4,14
|
|
814
|
-
3951,1854,66,214,4,14
|
|
815
|
-
3766,2345,33,528,16,14
|
|
816
|
-
2155,2559,66,340,8,17
|
|
817
|
-
1930,2049,33,212,4,14
|
|
818
|
-
5623,2794,50,1000,24,15
|
|
819
|
-
2399,2090,50,107,2,14
|
|
820
|
-
3562,1739,33,120,4,14
|
|
821
|
-
3806,1899,33,420,4,14
|
|
822
|
-
4277,1999,66,528,8,15
|
|
823
|
-
2868,1999,25,170,4,14
|
|
824
|
-
1013,2175,66,250,8,15
|
|
825
|
-
5682,1823,66,528,8,14
|
|
826
|
-
1993,1395,25,107,4,14
|
|
827
|
-
584,2545,66,250,8,15
|
|
828
|
-
1747,2345,66,250,4,15
|
|
829
|
-
6151,1795,100,850,8,15
|
|
830
|
-
4134,1899,66,420,8,14
|
|
831
|
-
1053,1999,33,120,4,14
|
|
832
|
-
3888,1938,25,120,4,15
|
|
833
|
-
5947,1690,50,528,8,15
|
|
834
|
-
3053,1890,50,214,4,14
|
|
835
|
-
4071,1488,50,340,4,15
|
|
836
|
-
4153,2345,33,528,16,14
|
|
837
|
-
3194,2799,50,340,8,15
|
|
838
|
-
3991,3778,66,340,4,17
|
|
839
|
-
176,2745,66,250,4,15
|
|
840
|
-
4418,1704,33,214,4,14
|
|
841
|
-
4397,1818,66,212,4,14
|
|
842
|
-
1911,2175,66,340,4,15
|
|
843
|
-
2990,1390,33,107,2,14
|
|
844
|
-
1196,3044,33,540,16,14
|
|
845
|
-
1644,2495,25,528,16,14
|
|
846
|
-
2441,1890,33,107,2,14
|
|
847
|
-
3459,2259,50,340,4,14
|
|
848
|
-
4275,1698,50,340,4,14
|
|
849
|
-
4723,2199,66,528,8,15
|
|
850
|
-
2502,2039,33,212,4,14
|
|
851
|
-
4988,2594,33,720,16,15
|
|
852
|
-
1522,3634,66,527,4,15
|
|
853
|
-
4050,2599,100,527,8,15
|
|
854
|
-
2359,1744,33,107,2,14
|
|
855
|
-
5518,2545,50,1000,24,15
|
|
856
|
-
2052,1425,25,120,4,14
|
|
857
|
-
2031,2585,50,528,8,14
|
|
858
|
-
5173,2159,66,730,8,17
|
|
859
|
-
2296,3199,66,340,16,15
|
|
860
|
-
3928,2099,66,420,8,14
|
|
861
|
-
2275,1395,25,107,4,14
|
|
862
|
-
5438,1694,66,340,4,14
|
|
863
|
-
5579,2308,100,545,8,17
|
|
864
|
-
237,1595,25,170,4,15
|
|
865
|
-
4681,1395,25,340,8,14
|
|
866
|
-
809,2295,66,250,8,15
|
|
867
|
-
3499,1915,66,425,8,15
|
|
868
|
-
4193,3190,66,1000,24,15
|
|
869
|
-
2601,1369,25,120,4,14
|
|
870
|
-
5764,2145,50,850,16,15
|
|
871
|
-
746,4248,66,345,16,17
|
|
872
|
-
2113,2024,25,170,4,14
|
|
873
|
-
2397,1844,33,107,2,14
|
|
874
|
-
3215,2494,100,214,4,14
|
|
875
|
-
3764,1694,33,214,4,14
|
|
876
|
-
94,2505,50,210,8,14
|
|
877
|
-
5129,1628,50,428,4,17
|
|
878
|
-
666,3789,66,527,8,15
|
|
879
|
-
1215,2694,66,426,8,14
|
|
880
|
-
4519,2854,66,720,16,15
|
|
881
|
-
5598,1299,66,270,4,14
|
|
882
|
-
4887,2543,66,720,16,15
|
|
883
|
-
1684,1895,33,170,4,14
|
|
884
|
-
5049,1195,33,214,4,14
|
|
885
|
-
1438,2090,33,214,4,14
|
|
886
|
-
5152,2754,33,1000,24,15
|
|
887
|
-
1949,2144,66,107,2,14
|
|
888
|
-
2500,2190,33,214,4,14
|
|
889
|
-
6128,1599,66,540,8,14
|
|
890
|
-
1583,1944,25,214,4,14
|
|
891
|
-
3152,2819,66,212,4,17
|
|
892
|
-
420,2195,66,170,4,14
|
|
893
|
-
357,3299,66,245,16,15
|
|
894
|
-
3520,2925,100,530,8,17
|
|
895
|
-
5293,1399,66,428,4,14
|
|
896
|
-
6048,1445,100,528,4,14
|
|
897
|
-
887,2899,50,240,4,14
|
|
898
|
-
971,3299,50,450,8,15
|
|
899
|
-
3478,1890,25,426,8,14
|
|
900
|
-
2153,2295,50,426,8,14
|
|
901
|
-
2763,2190,33,426,8,15
|
|
902
|
-
2174,1544,25,107,2,14
|
|
903
|
-
3743,2290,25,528,16,15
|
|
904
|
-
5762,1824,66,545,4,17
|
|
905
|
-
3293,2220,50,528,8,14
|
|
906
|
-
5661,1794,100,340,4,14
|
|
907
|
-
4946,1690,66,214,4,14
|
|
908
|
-
52,2395,33,130,4,14
|
|
909
|
-
3762,2499,100,450,8,15
|
|
910
|
-
4580,2499,66,527,16,15
|
|
911
|
-
3335,2065,100,340,4,14
|
|
912
|
-
6088,1694,100,528,4,14
|
|
913
|
-
1478,4048,66,345,16,17
|
|
914
|
-
1623,2559,66,340,8,17
|
|
915
|
-
6149,2223,75,1200,24,15
|
|
916
|
-
643,1899,25,120,4,14
|
|
917
|
-
1947,2145,33,340,4,15
|
|
918
|
-
3968,3190,66,1000,24,15
|
|
919
|
-
4191,2454,100,426,8,14
|
|
920
|
-
3049,1690,33,214,4,15
|
|
921
|
-
5434,1823,50,528,8,14
|
|
922
|
-
4702,1899,66,425,8,14
|
|
923
|
-
4660,1099,33,340,4,14
|
|
924
|
-
3987,1395,25,340,8,14
|
|
925
|
-
4088,2634,66,540,8,17
|
|
926
|
-
4294,999,33,250,2,14
|
|
927
|
-
2845,2895,66,528,8,15
|
|
928
|
-
1907,1495,33,107,4,14
|
|
929
|
-
662,2290,50,214,4,14
|
|
930
|
-
2010,2848,66,245,4,15
|
|
931
|
-
153,3599,66,330,8,14
|
|
932
|
-
92,2145,66,130,4,14
|
|
933
|
-
2334,2790,33,528,16,15
|
|
934
|
-
4151,2479,100,420,8,15
|
|
935
|
-
214,2125,66,170,4,14
|
|
936
|
-
5720,2224,100,850,8,17
|
|
937
|
-
254,1720,25,170,4,14
|
|
938
|
-
521,2095,33,214,4,14
|
|
939
|
-
5108,2790,33,1000,24,15
|
|
940
|
-
4904,1899,66,420,8,14
|
|
941
|
-
4944,1848,66,270,4,14
|
|
942
|
-
4008,1875,33,425,8,15
|
|
943
|
-
10,2575,50,210,4,15
|
|
944
|
-
2355,1558,25,120,4,14
|
|
945
|
-
2660,2394,33,426,8,14
|
|
946
|
-
4477,1468,50,340,4,15
|
|
947
|
-
5842,1865,66,270,4,14
|
|
948
|
-
5169,1790,33,528,8,15
|
|
949
|
-
1987,1539,25,120,4,14
|
|
950
|
-
5007,2404,50,720,16,15
|
|
951
|
-
4557,1395,33,340,4,14
|
|
952
|
-
4761,2004,50,528,8,14
|
|
953
|
-
3924,2490,100,426,8,15
|
|
954
|
-
4599,2049,66,420,8,15
|
|
955
|
-
4822,2544,33,720,16,15
|
|
956
|
-
2681,2644,66,426,8,14
|
|
957
|
-
2578,2744,50,340,8,17
|
|
958
|
-
5190,1488,33,424,4,14
|
|
959
|
-
3211,1890,25,426,8,15
|
|
960
|
-
723,2648,66,245,8,14
|
|
961
|
-
29,3095,33,340,16,14
|
|
962
|
-
3110,1395,33,107,2,14
|
|
963
|
-
3598,1399,33,210,4,14
|
|
964
|
-
2130,1790,25,107,2,14
|
|
965
|
-
763,1695,33,250,4,14
|
|
966
|
-
3375,1395,25,340,8,14
|
|
967
|
-
3190,1495,50,107,2,14
|
|
968
|
-
3537,2694,33,528,16,14
|
|
969
|
-
4250,1445,50,214,4,14
|
|
970
|
-
826,1795,33,107,2,14
|
|
971
|
-
6208,2323,100,850,16,15
|
|
972
|
-
2456,2999,66,450,16,15
|
|
973
|
-
4719,2194,50,528,8,14
|
|
974
|
-
5516,1899,33,212,8,14
|
|
975
|
-
6004,1844,50,850,8,14
|
|
976
|
-
1171,1844,33,107,2,14
|
|
977
|
-
2904,1944,33,214,4,14
|
|
978
|
-
2967,2395,66,426,8,14
|
|
979
|
-
3455,2265,100,340,8,15
|
|
980
|
-
2843,1695,66,107,2,14
|
|
981
|
-
885,3144,66,452,16,14
|
|
982
|
-
5638,1704,50,528,8,14
|
|
983
|
-
233,1999,33,170,4,14
|
|
984
|
-
5983,1840,100,850,8,15
|
|
985
|
-
1068,3599,33,345,16,17
|
|
986
|
-
3089,1195,25,214,4,14
|
|
987
|
-
5596,1795,75,730,8,15
|
|
988
|
-
6248,1654,100,528,8,14
|
|
989
|
-
4555,1448,33,340,4,15
|
|
990
|
-
6107,2199,66,850,16,15
|
|
991
|
-
6044,1723,66,850,8,14
|
|
992
|
-
4025,3928,100,728,8,15
|
|
993
|
-
5962,1295,50,340,4,14
|
|
994
|
-
1009,2090,25,426,8,14
|
|
995
|
-
3964,2625,66,540,8,15
|
|
996
|
-
4290,2298,33,528,8,17
|
|
997
|
-
2740,3175,66,540,16,15
|
|
998
|
-
3823,1529,33,210,4,14
|
|
999
|
-
2414,2095,33,426,8,14
|
|
1000
|
-
1659,3194,66,528,16,14
|
|
1001
|
-
1190,2194,33,214,4,14
|
|
1002
|
-
5495,1490,50,340,4,15
|
|
1003
|
-
2597,1695,33,214,4,14
|
|
1004
|
-
3249,2645,66,424,8,17
|
|
1005
|
-
3535,2690,100,528,8,14
|
|
1006
|
-
5964,1773,66,850,8,14
|
|
1007
|
-
48,1749,25,120,4,14
|
|
1008
|
-
5655,1679,50,540,8,14
|
|
1009
|
-
1455,2995,66,424,16,15
|
|
1010
|
-
866,1895,50,107,2,14
|
|
1011
|
-
2454,1595,33,420,4,14
|
|
1012
|
-
2433,2595,33,528,16,14
|
|
1013
|
-
5472,2048,75,545,8,17
|
|
1014
|
-
3680,2690,66,528,16,15
|
|
1015
|
-
2923,2944,66,528,16,14
|
|
1016
|
-
149,1975,33,250,8,14
|
|
1017
|
-
374,2195,25,245,8,14
|
|
1018
|
-
1600,1469,33,170,4,14
|
|
1019
|
-
3188,2029,33,340,8,14
|
|
1020
|
-
618,2275,33,250,8,15
|
|
1021
|
-
1781,2444,66,214,4,14
|
|
1022
|
-
1192,1639,66,130,4,14
|
|
1023
|
-
5125,1828,33,428,4,17
|
|
1024
|
-
883,1649,50,170,4,14
|
|
1025
|
-
3840,1594,33,340,4,14
|
|
1026
|
-
4597,1399,66,340,4,14
|
|
1027
|
-
2576,2044,50,214,4,14
|
|
1028
|
-
475,1895,33,170,4,14
|
|
1029
|
-
4778,1795,33,528,8,14
|
|
1030
|
-
3720,1290,25,107,2,14
|
|
1031
|
-
496,1999,33,213,8,14
|
|
1032
|
-
5369,1794,66,214,4,14
|
|
1033
|
-
5043,1990,66,528,8,15
|
|
1034
|
-
1640,2299,66,120,4,14
|
|
1035
|
-
3493,1890,75,107,2,15
|
|
1036
|
-
1005,1544,33,107,4,14
|
|
1037
|
-
271,2095,33,250,4,15
|
|
1038
|
-
1905,2595,33,528,16,14
|
|
1039
|
-
944,2194,66,107,2,14
|
|
1040
|
-
2738,1844,33,214,4,14
|
|
1041
|
-
5083,1499,33,428,4,14
|
|
1042
|
-
3108,2144,33,426,8,14
|
|
1043
|
-
5899,2473,100,850,16,15
|
|
1044
|
-
658,1395,33,107,2,14
|
|
1045
|
-
3003,2744,50,420,8,17
|
|
1046
|
-
5045,2740,33,720,16,17
|
|
1047
|
-
4145,1818,50,340,4,17
|
|
1048
|
-
107,2699,50,212,8,14
|
|
1049
|
-
2330,1644,33,107,2,14
|
|
1050
|
-
2496,2344,33,426,8,14
|
|
1051
|
-
3941,2165,66,540,8,15
|
|
1052
|
-
5470,2704,66,1000,24,15
|
|
1053
|
-
3268,2995,100,528,16,14
|
|
1054
|
-
5514,2745,100,1000,24,15
|
|
1055
|
-
4675,2099,66,420,8,14
|
|
1056
|
-
4185,1744,33,426,4,14
|
|
1057
|
-
46,2695,33,245,8,14
|
|
1058
|
-
416,1699,33,120,4,14
|
|
1059
|
-
984,2045,33,250,8,15
|
|
1060
|
-
1636,1699,33,210,4,15
|
|
1061
|
-
5409,2190,100,528,8,14
|
|
1062
|
-
5779,2490,50,850,16,17
|
|
1063
|
-
6204,2195,100,850,16,15
|
|
1064
|
-
3104,3090,100,528,16,15
|
|
1065
|
-
5878,1799,66,420,16,14
|
|
1066
|
-
2557,1995,66,214,4,14
|
|
1067
|
-
4389,1379,33,340,4,14
|
|
1068
|
-
4042,3044,100,528,16,14
|
|
1069
|
-
3186,1594,33,340,4,15
|
|
1070
|
-
1007,1509,50,130,4,14
|
|
1071
|
-
4246,2189,33,212,8,15
|
|
1072
|
-
147,2295,66,170,4,14
|
|
1073
|
-
637,2595,50,250,8,15
|
|
1074
|
-
1945,3044,66,245,4,15
|
|
1075
|
-
1758,2024,25,120,4,14
|
|
1076
|
-
4633,2318,66,528,8,17
|
|
1077
|
-
4593,2140,50,528,8,14
|
|
1078
|
-
1333,2190,33,212,8,14
|
|
1079
|
-
5306,2898,100,730,16,15
|
|
1080
|
-
2553,1999,33,340,8,14
|
|
1081
|
-
5327,2295,66,528,8,15
|
|
1082
|
-
4351,2554,66,720,16,14
|
|
1083
|
-
2757,1495,50,107,2,14
|
|
1084
|
-
2818,2344,33,426,8,14
|
|
1085
|
-
3247,1999,66,340,8,15
|
|
1086
|
-
2536,2574,33,245,4,14
|
|
1087
|
-
3226,2495,66,540,8,15
|
|
1088
|
-
330,2599,33,240,4,15
|
|
1089
|
-
1228,2290,66,214,4,15
|
|
1090
|
-
3270,3439,66,340,8,17
|
|
1091
|
-
6244,2745,66,1600,24,15
|
|
1092
|
-
5224,1695,33,528,8,14
|
|
1093
|
-
5184,2423,33,720,16,15
|
|
1094
|
-
721,3025,33,1370,8,14
|
|
1095
|
-
3491,2090,75,214,4,14
|
|
1096
|
-
1594,2395,50,340,4,17
|
|
1097
|
-
86,1999,33,120,8,14
|
|
1098
|
-
6084,2199,66,850,16,15
|
|
1099
|
-
5163,1948,66,425,8,14
|
|
1100
|
-
4591,1999,66,420,8,14
|
|
1101
|
-
3573,2435,100,340,8,15
|
|
1102
|
-
3127,1894,33,214,4,14
|
|
1103
|
-
5632,2345,100,850,16,15
|
|
1104
|
-
5529,1938,66,428,4,17
|
|
1105
|
-
1493,3914,66,527,4,15
|
|
1106
|
-
6145,1345,66,528,8,14
|
|
1107
|
-
65,2195,66,85,2,14
|
|
1108
|
-
3449,1899,50,340,8,15
|
|
1109
|
-
2492,2504,50,212,4,14
|
|
1110
|
-
1312,1779,33,120,4,14
|
|
1111
|
-
391,2295,66,130,4,14
|
|
1112
|
-
2776,2999,66,450,16,15
|
|
1113
|
-
2084,2095,33,426,8,14
|
|
1114
|
-
4595,2299,66,340,4,14
|
|
1115
|
-
5285,1295,50,214,4,14
|
|
1116
|
-
961,2225,66,340,8,15
|
|
1117
|
-
3552,3049,100,527,16,15
|
|
1118
|
-
5798,1908,66,545,4,17
|
|
1119
|
-
656,2398,33,245,8,14
|
|
1120
|
-
5182,1599,66,540,8,14
|
|
1121
|
-
1003,2325,66,250,8,15
|
|
1122
|
-
1169,2145,66,250,4,14
|
|
1123
|
-
5611,1940,100,528,8,15
|
|
1124
|
-
1491,3090,66,528,16,15
|
|
1125
|
-
1798,1295,25,212,4,14
|
|
1126
|
-
3167,1739,33,120,4,14
|
|
1127
|
-
1451,2944,33,528,16,14
|
|
1128
|
-
5712,2940,66,1000,24,17
|
|
1129
|
-
717,2999,66,345,16,15
|
|
1130
|
-
2351,2385,66,420,8,17
|
|
1131
|
-
2654,2744,25,528,16,14
|
|
1132
|
-
1083,1895,33,107,4,14
|
|
1133
|
-
4734,2004,33,528,8,14
|
|
1134
|
-
1943,1854,25,120,4,14
|
|
1135
|
-
3388,1494,25,107,2,14
|
|
1136
|
-
1674,1685,33,340,4,14
|
|
1137
|
-
2898,1290,25,107,2,15
|
|
1138
|
-
128,2295,33,245,8,14
|
|
1139
|
-
839,1299,33,130,4,14
|
|
1140
|
-
3081,1195,25,107,2,14
|
|
1141
|
-
614,2295,33,340,8,14
|
|
1142
|
-
3615,3659,66,424,8,17
|
|
1143
|
-
3857,1468,33,340,4,15
|
|
1144
|
-
1939,3589,66,527,8,15
|
|
1145
|
-
4570,2189,33,212,8,15
|
|
1146
|
-
5491,1989,66,425,8,15
|
|
1147
|
-
6202,2885,100,1600,24,15
|
|
1148
|
-
4345,2568,33,270,4,15
|
|
1149
|
-
5977,2840,75,1200,24,17
|
|
1150
|
-
2269,2290,66,107,2,14
|
|
1151
|
-
2307,2699,66,245,8,15
|
|
1152
|
-
1857,3714,66,527,4,15
|
|
1153
|
-
3020,1594,33,340,4,15
|
|
1154
|
-
2065,1794,33,212,4,14
|
|
1155
|
-
1165,1975,66,250,4,14
|
|
1156
|
-
4671,1195,25,128,4,14
|
|
1157
|
-
1409,3499,50,450,8,15
|
|
1158
|
-
1657,1699,25,212,4,14
|
|
1159
|
-
5916,1545,100,340,4,14
|
|
1160
|
-
2387,3090,66,528,16,15
|
|
1161
|
-
267,2645,50,170,8,14
|
|
1162
|
-
4940,2539,100,270,4,14
|
|
1163
|
-
2021,1944,33,214,4,14
|
|
1164
|
-
4263,1590,33,214,4,14
|
|
1165
|
-
5630,1499,66,365,8,15
|
|
1166
|
-
2391,1995,66,420,8,15
|
|
1167
|
-
1613,1790,25,214,4,15
|
|
1168
|
-
1979,2490,50,214,4,14
|
|
1169
|
-
3611,1995,75,214,4,14
|
|
1170
|
-
3125,1999,66,450,4,14
|
|
1171
|
-
3958,3490,100,1000,24,15
|
|
1172
|
-
2448,1890,33,214,4,15
|
|
1173
|
-
4610,2295,33,720,16,15
|
|
1174
|
-
576,2755,66,250,8,17
|
|
1175
|
-
532,1495,33,107,2,14
|
|
1176
|
-
4793,2290,66,1000,8,14
|
|
1177
|
-
3264,2039,33,212,4,14
|
|
1178
|
-
5531,1699,66,420,8,14
|
|
1179
|
-
5018,2993,33,1000,24,15
|
|
1180
|
-
5119,2094,66,528,8,14
|
|
1181
|
-
715,1995,66,107,2,14
|
|
1182
|
-
3451,1879,33,340,8,15
|
|
1183
|
-
5344,1345,66,214,4,14
|
|
1184
|
-
3304,1490,25,214,4,15
|
|
1185
|
-
1184,2395,33,340,8,17
|
|
1186
|
-
4919,1895,66,528,8,14
|
|
1187
|
-
2917,1744,50,107,2,14
|
|
1188
|
-
2162,2795,66,340,8,15
|
|
1189
|
-
4202,2744,66,528,16,14
|
|
1190
|
-
5857,1299,66,340,4,14
|
|
1191
|
-
368,2645,50,250,8,15
|
|
1192
|
-
6118,2790,75,1200,24,17
|
|
1193
|
-
3529,2309,33,120,4,17
|
|
1194
|
-
5653,1799,66,540,8,14
|
|
1195
|
-
4589,1588,33,340,4,15
|
|
1196
|
-
2896,2299,50,450,8,15
|
|
1197
|
-
980,1845,66,210,4,14
|
|
1198
|
-
1024,1894,25,214,4,14
|
|
1199
|
-
2509,3275,66,540,16,15
|
|
1200
|
-
5241,1199,33,210,4,14
|
|
1201
|
-
3386,1995,100,107,2,14
|
|
1202
|
-
4307,2095,66,528,8,14
|
|
1203
|
-
1163,2890,33,540,16,14
|
|
1204
|
-
5710,1715,75,540,8,15
|
|
1205
|
-
4120,2618,66,428,16,17
|
|
1206
|
-
5510,3340,100,1000,24,17
|
|
1207
|
-
4915,2118,66,730,8,15
|
|
1208
|
-
4568,1945,33,528,8,14
|
|
1209
|
-
3977,3044,100,528,16,14
|
|
1210
|
-
3430,1795,75,107,2,14
|
|
1211
|
-
286,2595,66,245,8,14
|
|
1212
|
-
5302,2254,33,720,16,15
|
|
1213
|
-
2835,2495,66,424,8,15
|
|
1214
|
-
3022,2869,66,340,8,14
|
|
1215
|
-
5649,2058,66,545,8,17
|
|
1216
|
-
204,1499,25,170,4,14
|
|
1217
|
-
1754,2565,66,545,4,15
|
|
1218
|
-
473,2525,50,250,8,14
|
|
1219
|
-
3100,1799,33,170,4,14
|
|
1220
|
-
673,3495,66,500,8,14
|
|
1221
|
-
3691,1395,25,340,8,14
|
|
1222
|
-
3756,2718,75,428,16,17
|
|
1223
|
-
5914,1704,66,528,8,14
|
|
1224
|
-
3613,2849,66,527,16,15
|
|
1225
|
-
4772,2445,66,528,8,14
|
|
1226
|
-
4612,3790,66,1000,24,15
|
|
1227
|
-
5975,1499,66,540,8,14
|
|
1228
|
-
5550,2108,75,545,8,17
|
|
1229
|
-
1142,2095,33,212,4,17
|
|
1230
|
-
1390,1590,33,107,2,15
|
|
1231
|
-
4469,2629,66,270,4,14
|
|
1232
|
-
1777,1579,50,170,4,14
|
|
1233
|
-
4978,1495,33,340,8,14
|
|
1234
|
-
4774,2890,66,720,16,17
|
|
1235
|
-
4366,3872,100,728,8,15
|
|
1236
|
-
4957,2199,66,528,8,15
|
|
1237
|
-
2408,2744,33,528,16,14
|
|
1238
|
-
2000,2975,33,545,8,17
|
|
1239
|
-
5283,2440,66,720,16,15
|
|
1240
|
-
5548,2394,50,850,16,15
|
|
1241
|
-
3733,2349,100,420,8,14
|
|
1242
|
-
5140,2199,66,540,8,15
|
|
1243
|
-
2591,1795,50,214,4,14
|
|
1244
|
-
5874,1699,66,540,8,14
|
|
1245
|
-
6139,1540,100,528,4,15
|
|
1246
|
-
5731,2994,100,1000,24,15
|
|
1247
|
-
3182,2244,100,107,2,14
|
|
1248
|
-
3447,1644,33,107,2,14
|
|
1249
|
-
3773,1599,50,340,4,14
|
|
1250
|
-
816,1744,25,107,2,14
|
|
1251
|
-
3630,2315,66,530,8,15
|
|
1252
|
-
1550,2749,33,340,4,15
|
|
1
|
+
"id","price","speed","hd","ram","screen"
|
|
2
|
+
3752,3095,66,1080,16,15
|
|
3
|
+
4282,2299,66,540,8,15
|
|
4
|
+
734,1879,50,210,4,15
|
|
5
|
+
5628,1749,66,545,8,15
|
|
6
|
+
4955,1819,33,270,4,14
|
|
7
|
+
5016,1718,66,340,4,14
|
|
8
|
+
3140,1744,50,107,2,14
|
|
9
|
+
122,2199,33,210,4,14
|
|
10
|
+
326,1495,33,85,2,14
|
|
11
|
+
2936,1469,25,120,4,14
|
|
12
|
+
3405,1195,25,107,2,14
|
|
13
|
+
591,2245,33,250,8,15
|
|
14
|
+
2467,1784,25,120,4,14
|
|
15
|
+
3527,1890,66,214,4,14
|
|
16
|
+
4343,1588,33,340,4,15
|
|
17
|
+
3609,1695,50,214,4,14
|
|
18
|
+
2997,2244,66,214,4,14
|
|
19
|
+
2385,2799,50,320,8,15
|
|
20
|
+
5811,1740,50,528,8,15
|
|
21
|
+
5485,3090,100,1000,24,15
|
|
22
|
+
4995,1640,50,214,4,15
|
|
23
|
+
4730,3244,50,1000,24,15
|
|
24
|
+
3996,3299,66,1000,16,15
|
|
25
|
+
5954,2345,100,850,16,15
|
|
26
|
+
5994,1515,66,1000,4,14
|
|
27
|
+
5382,2040,33,1000,8,14
|
|
28
|
+
2854,1490,33,107,2,14
|
|
29
|
+
856,2590,50,340,8,15
|
|
30
|
+
5586,1440,50,340,4,15
|
|
31
|
+
5178,1499,50,545,4,15
|
|
32
|
+
4526,2443,33,528,8,14
|
|
33
|
+
2528,2044,33,214,4,14
|
|
34
|
+
3506,1395,33,107,2,14
|
|
35
|
+
5647,2640,50,1000,24,15
|
|
36
|
+
162,1595,25,170,4,15
|
|
37
|
+
1182,2294,33,426,8,14
|
|
38
|
+
1426,1799,33,120,4,14
|
|
39
|
+
4770,3193,66,1000,24,15
|
|
40
|
+
3445,2144,75,214,4,14
|
|
41
|
+
4200,2154,66,426,8,14
|
|
42
|
+
3771,1995,66,540,8,15
|
|
43
|
+
5239,2195,33,720,16,15
|
|
44
|
+
4852,2540,50,720,16,15
|
|
45
|
+
978,2095,50,214,4,14
|
|
46
|
+
1691,2394,66,214,4,14
|
|
47
|
+
1323,3789,66,527,8,15
|
|
48
|
+
1630,1990,66,107,2,15
|
|
49
|
+
1569,2495,66,340,8,15
|
|
50
|
+
1956,2390,33,426,8,15
|
|
51
|
+
5809,1659,66,340,4,17
|
|
52
|
+
5117,1989,66,425,8,15
|
|
53
|
+
2038,2295,33,426,8,14
|
|
54
|
+
5912,2554,50,1000,24,15
|
|
55
|
+
1180,2199,66,340,4,14
|
|
56
|
+
2568,2889,33,340,4,17
|
|
57
|
+
5035,2244,66,528,8,14
|
|
58
|
+
5769,1999,100,545,8,15
|
|
59
|
+
1771,2144,33,214,4,14
|
|
60
|
+
4974,2893,33,1000,24,15
|
|
61
|
+
1874,2095,50,214,4,14
|
|
62
|
+
3220,1259,25,120,4,14
|
|
63
|
+
4789,2590,66,720,16,15
|
|
64
|
+
2894,2795,66,528,16,14
|
|
65
|
+
2343,2185,33,420,8,17
|
|
66
|
+
4688,1554,33,214,4,14
|
|
67
|
+
1363,2099,33,120,4,14
|
|
68
|
+
4892,2004,33,528,8,14
|
|
69
|
+
3750,2127,33,540,8,14
|
|
70
|
+
2608,3439,66,340,8,17
|
|
71
|
+
4177,3199,66,527,16,17
|
|
72
|
+
528,1590,33,107,2,14
|
|
73
|
+
59,2945,66,210,8,17
|
|
74
|
+
4953,1844,66,214,4,14
|
|
75
|
+
2362,2690,50,426,8,14
|
|
76
|
+
1527,1395,33,212,4,14
|
|
77
|
+
4484,1349,33,210,4,15
|
|
78
|
+
2587,2195,33,426,8,14
|
|
79
|
+
1220,2015,33,250,8,15
|
|
80
|
+
3933,2625,66,540,16,15
|
|
81
|
+
324,2390,33,245,8,14
|
|
82
|
+
38,3795,66,500,8,14
|
|
83
|
+
608,1595,33,107,2,14
|
|
84
|
+
1384,2344,50,214,4,14
|
|
85
|
+
2934,1969,33,120,4,15
|
|
86
|
+
772,2544,66,214,4,14
|
|
87
|
+
2953,2229,66,212,4,14
|
|
88
|
+
976,2644,50,426,8,14
|
|
89
|
+
385,2395,33,245,8,14
|
|
90
|
+
2301,1804,25,120,4,14
|
|
91
|
+
5094,2699,100,730,16,15
|
|
92
|
+
3790,1554,33,214,4,14
|
|
93
|
+
4341,2795,33,1000,24,14
|
|
94
|
+
2770,1295,33,212,4,14
|
|
95
|
+
2402,2259,33,245,4,14
|
|
96
|
+
1710,2794,33,528,16,14
|
|
97
|
+
5197,2090,66,1000,8,14
|
|
98
|
+
5584,1775,75,540,8,15
|
|
99
|
+
322,2995,66,340,16,14
|
|
100
|
+
4116,1499,33,340,4,14
|
|
101
|
+
5931,1873,100,528,8,14
|
|
102
|
+
5910,1723,50,528,8,14
|
|
103
|
+
179,1945,33,170,4,14
|
|
104
|
+
3973,1590,33,214,4,14
|
|
105
|
+
425,2405,50,250,8,14
|
|
106
|
+
3483,2425,66,340,8,17
|
|
107
|
+
2993,2249,25,170,4,15
|
|
108
|
+
4972,1579,66,212,4,15
|
|
109
|
+
1016,2109,33,120,4,14
|
|
110
|
+
526,2999,66,245,16,15
|
|
111
|
+
913,1599,66,130,4,14
|
|
112
|
+
3830,1999,33,420,4,14
|
|
113
|
+
1281,2090,33,214,4,15
|
|
114
|
+
5481,2940,100,720,16,17
|
|
115
|
+
301,1990,25,130,4,14
|
|
116
|
+
2341,2890,50,528,16,15
|
|
117
|
+
5706,1823,66,528,8,14
|
|
118
|
+
6215,1554,66,528,8,14
|
|
119
|
+
3319,2499,66,528,16,15
|
|
120
|
+
1668,2049,33,212,4,14
|
|
121
|
+
1546,2375,66,340,8,15
|
|
122
|
+
1117,2644,25,540,16,14
|
|
123
|
+
5664,1949,100,730,8,14
|
|
124
|
+
1933,1944,25,214,4,14
|
|
125
|
+
3422,1995,33,340,8,15
|
|
126
|
+
1382,2579,33,340,4,14
|
|
127
|
+
3115,2970,66,420,16,15
|
|
128
|
+
5420,2148,100,545,8,17
|
|
129
|
+
1872,2044,66,107,2,14
|
|
130
|
+
3523,2094,25,426,8,14
|
|
131
|
+
5256,2740,66,720,16,17
|
|
132
|
+
2198,2395,50,424,4,17
|
|
133
|
+
2137,3544,66,340,16,17
|
|
134
|
+
4257,2299,66,340,4,14
|
|
135
|
+
892,2994,33,452,16,14
|
|
136
|
+
4339,1725,33,340,4,14
|
|
137
|
+
4278,1548,33,340,4,14
|
|
138
|
+
4726,2240,50,1000,8,14
|
|
139
|
+
2095,1999,33,230,8,15
|
|
140
|
+
3197,3239,50,340,8,17
|
|
141
|
+
3605,2190,50,426,8,15
|
|
142
|
+
5929,2994,100,1000,24,15
|
|
143
|
+
484,1999,50,212,4,14
|
|
144
|
+
240,3795,66,500,8,14
|
|
145
|
+
4543,1828,66,425,8,14
|
|
146
|
+
5582,1440,50,340,4,14
|
|
147
|
+
3298,2544,33,528,16,14
|
|
148
|
+
4930,2740,50,720,16,17
|
|
149
|
+
1647,1299,25,170,4,14
|
|
150
|
+
2156,2495,66,424,8,15
|
|
151
|
+
1218,2799,66,450,8,15
|
|
152
|
+
749,1690,33,107,2,14
|
|
153
|
+
2116,1890,33,214,4,15
|
|
154
|
+
545,2390,33,340,8,14
|
|
155
|
+
3563,2044,25,426,8,14
|
|
156
|
+
1279,1795,33,214,4,14
|
|
157
|
+
4461,2218,66,340,8,17
|
|
158
|
+
1748,2175,66,250,4,15
|
|
159
|
+
5969,1704,66,850,8,14
|
|
160
|
+
3155,2090,33,426,8,14
|
|
161
|
+
2177,2344,33,426,8,14
|
|
162
|
+
2013,1749,33,212,4,14
|
|
163
|
+
2400,2195,66,214,4,14
|
|
164
|
+
1544,2899,50,240,4,14
|
|
165
|
+
2503,2244,50,214,4,14
|
|
166
|
+
2747,2389,33,120,4,17
|
|
167
|
+
2665,1495,25,214,4,14
|
|
168
|
+
3685,1995,33,426,8,14
|
|
169
|
+
15,2699,50,212,8,14
|
|
170
|
+
4888,2790,66,720,16,17
|
|
171
|
+
2114,1799,25,424,4,14
|
|
172
|
+
463,3495,66,500,8,14
|
|
173
|
+
953,1595,33,212,4,15
|
|
174
|
+
2604,1494,33,240,4,15
|
|
175
|
+
3582,2390,50,420,8,15
|
|
176
|
+
4684,2099,33,212,8,14
|
|
177
|
+
4909,1499,50,545,4,15
|
|
178
|
+
116,3165,66,250,4,17
|
|
179
|
+
2440,1894,50,340,4,15
|
|
180
|
+
6091,1844,66,850,8,14
|
|
181
|
+
4358,1840,66,214,4,15
|
|
182
|
+
2930,2890,66,528,16,15
|
|
183
|
+
156,2575,66,250,8,15
|
|
184
|
+
4011,2549,100,420,8,15
|
|
185
|
+
5092,1890,50,528,8,15
|
|
186
|
+
564,1895,33,212,8,14
|
|
187
|
+
625,2109,33,120,4,14
|
|
188
|
+
2869,2294,50,424,8,14
|
|
189
|
+
3073,3019,66,340,8,15
|
|
190
|
+
5458,2063,66,270,4,14
|
|
191
|
+
482,1695,50,107,2,14
|
|
192
|
+
4276,1840,66,214,4,14
|
|
193
|
+
1258,1695,33,107,2,14
|
|
194
|
+
5927,1599,66,545,4,15
|
|
195
|
+
747,2244,25,340,8,14
|
|
196
|
+
1727,2194,25,426,8,14
|
|
197
|
+
5479,1659,66,425,8,14
|
|
198
|
+
5050,1989,66,540,8,15
|
|
199
|
+
1216,1899,33,230,4,14
|
|
200
|
+
4541,2340,50,1000,8,14
|
|
201
|
+
1584,1999,66,170,4,14
|
|
202
|
+
1420,3144,66,528,16,14
|
|
203
|
+
1481,1795,33,212,8,14
|
|
204
|
+
2461,2609,66,245,4,14
|
|
205
|
+
768,1399,25,170,4,14
|
|
206
|
+
3561,2575,100,530,8,15
|
|
207
|
+
2419,2699,66,528,8,15
|
|
208
|
+
1319,3094,50,528,16,14
|
|
209
|
+
2093,1944,25,214,4,14
|
|
210
|
+
1012,1865,25,170,4,17
|
|
211
|
+
3622,2495,100,540,8,15
|
|
212
|
+
3725,1690,66,107,2,14
|
|
213
|
+
3765,1618,33,340,4,17
|
|
214
|
+
3826,2945,33,1000,24,14
|
|
215
|
+
3887,1795,66,340,8,14
|
|
216
|
+
3786,2399,75,428,16,15
|
|
217
|
+
4030,1899,66,340,8,15
|
|
218
|
+
4152,2740,33,1000,16,14
|
|
219
|
+
3010,1495,25,214,4,14
|
|
220
|
+
2175,1790,50,107,2,15
|
|
221
|
+
1664,1795,50,107,2,14
|
|
222
|
+
6089,1690,66,850,8,15
|
|
223
|
+
1195,1790,25,214,4,14
|
|
224
|
+
4989,1908,50,540,8,15
|
|
225
|
+
1929,2359,33,245,8,14
|
|
226
|
+
1113,2099,33,120,4,14
|
|
227
|
+
5416,2990,66,1000,24,17
|
|
228
|
+
360,2295,33,245,8,14
|
|
229
|
+
2398,2499,50,320,8,15
|
|
230
|
+
2051,3090,66,528,16,15
|
|
231
|
+
3336,1495,33,212,4,14
|
|
232
|
+
4581,2693,50,720,16,15
|
|
233
|
+
5477,1499,50,545,4,15
|
|
234
|
+
236,2295,66,130,4,14
|
|
235
|
+
787,2494,66,214,4,14
|
|
236
|
+
5315,1640,66,214,4,14
|
|
237
|
+
4335,1399,33,210,4,14
|
|
238
|
+
93,2420,33,170,8,15
|
|
239
|
+
6150,1454,100,528,4,14
|
|
240
|
+
217,2295,33,245,8,14
|
|
241
|
+
440,2990,50,452,16,14
|
|
242
|
+
562,2195,50,214,4,14
|
|
243
|
+
1786,1495,33,212,4,15
|
|
244
|
+
4907,1540,33,214,4,14
|
|
245
|
+
2785,2927,66,424,16,15
|
|
246
|
+
5048,1590,33,214,4,14
|
|
247
|
+
6007,2604,75,1200,24,15
|
|
248
|
+
278,2399,33,212,8,14
|
|
249
|
+
623,2299,33,450,8,14
|
|
250
|
+
2499,1799,50,340,4,15
|
|
251
|
+
3050,1644,25,214,4,14
|
|
252
|
+
2623,1495,25,214,4,14
|
|
253
|
+
5986,2495,50,1200,24,15
|
|
254
|
+
2968,1844,33,214,4,14
|
|
255
|
+
3784,3745,66,2100,16,15
|
|
256
|
+
135,1749,25,120,4,14
|
|
257
|
+
3620,3349,100,527,16,17
|
|
258
|
+
419,3495,33,452,8,14
|
|
259
|
+
3641,1490,33,107,2,15
|
|
260
|
+
4091,1399,33,210,4,14
|
|
261
|
+
6026,1654,50,850,8,14
|
|
262
|
+
4905,1445,33,214,4,14
|
|
263
|
+
5109,2390,50,720,16,15
|
|
264
|
+
5763,1799,66,540,8,14
|
|
265
|
+
1111,1944,25,214,4,14
|
|
266
|
+
5761,1894,50,528,8,14
|
|
267
|
+
11,2195,33,170,8,15
|
|
268
|
+
2541,1795,33,420,8,15
|
|
269
|
+
4598,1999,66,527,8,14
|
|
270
|
+
5353,1823,33,528,8,14
|
|
271
|
+
3294,2690,100,426,8,15
|
|
272
|
+
461,2695,66,250,8,14
|
|
273
|
+
30,3244,66,245,8,14
|
|
274
|
+
3273,3129,66,527,8,14
|
|
275
|
+
5231,1718,66,428,4,17
|
|
276
|
+
991,1795,50,107,2,14
|
|
277
|
+
3782,2093,33,426,8,14
|
|
278
|
+
5618,1740,50,528,8,15
|
|
279
|
+
2743,2425,66,424,4,14
|
|
280
|
+
3805,2590,66,528,16,14
|
|
281
|
+
5189,1923,33,528,8,14
|
|
282
|
+
3130,1794,33,212,4,14
|
|
283
|
+
5088,1889,66,425,8,15
|
|
284
|
+
5212,1898,66,420,8,14
|
|
285
|
+
91,2975,50,210,4,17
|
|
286
|
+
1315,1490,25,107,2,15
|
|
287
|
+
928,2015,33,250,8,15
|
|
288
|
+
848,2225,66,250,4,14
|
|
289
|
+
152,2225,33,250,8,15
|
|
290
|
+
1580,2595,33,340,8,17
|
|
291
|
+
4680,2090,33,1000,8,14
|
|
292
|
+
3662,1744,66,107,2,14
|
|
293
|
+
4842,2390,33,720,16,15
|
|
294
|
+
2987,1399,50,260,4,14
|
|
295
|
+
2131,1895,33,340,8,15
|
|
296
|
+
5803,1580,66,540,8,15
|
|
297
|
+
4638,1745,50,214,4,14
|
|
298
|
+
2640,2249,25,170,4,15
|
|
299
|
+
2600,3229,66,527,8,14
|
|
300
|
+
6129,2744,75,1200,24,15
|
|
301
|
+
2558,2244,66,214,4,14
|
|
302
|
+
6127,2344,66,1000,16,15
|
|
303
|
+
51,2499,33,170,4,14
|
|
304
|
+
1765,1895,50,340,4,15
|
|
305
|
+
3027,2190,33,426,8,14
|
|
306
|
+
1498,2029,33,120,4,14
|
|
307
|
+
5006,1489,33,424,4,15
|
|
308
|
+
1479,1499,25,120,4,14
|
|
309
|
+
70,3095,66,245,8,14
|
|
310
|
+
1763,2415,33,340,8,17
|
|
311
|
+
3925,1199,33,340,4,14
|
|
312
|
+
4354,2590,66,720,16,15
|
|
313
|
+
3088,1795,50,212,8,14
|
|
314
|
+
4577,1568,33,250,2,17
|
|
315
|
+
5862,2208,75,545,8,17
|
|
316
|
+
255,1495,33,85,2,14
|
|
317
|
+
3822,2558,25,212,4,17
|
|
318
|
+
2028,1795,50,340,4,14
|
|
319
|
+
2905,1555,50,340,4,14
|
|
320
|
+
1662,2059,33,120,4,14
|
|
321
|
+
5229,2198,100,420,8,14
|
|
322
|
+
5168,1199,33,340,4,14
|
|
323
|
+
356,2799,50,240,4,15
|
|
324
|
+
4741,1595,50,340,8,14
|
|
325
|
+
3679,2290,66,528,8,14
|
|
326
|
+
539,3599,66,450,8,14
|
|
327
|
+
1824,1825,66,340,4,14
|
|
328
|
+
112,2095,33,130,4,14
|
|
329
|
+
926,2044,25,214,4,14
|
|
330
|
+
2680,3659,66,424,8,17
|
|
331
|
+
6045,2390,66,1000,16,17
|
|
332
|
+
846,1694,25,107,2,14
|
|
333
|
+
5820,2594,100,850,16,15
|
|
334
|
+
1803,2790,50,426,8,14
|
|
335
|
+
1681,2395,66,340,8,15
|
|
336
|
+
2253,2890,25,528,16,14
|
|
337
|
+
2598,1390,33,107,2,15
|
|
338
|
+
3536,2244,100,107,2,14
|
|
339
|
+
5902,2204,66,850,16,15
|
|
340
|
+
5067,2804,66,1000,24,15
|
|
341
|
+
6085,1595,66,850,8,14
|
|
342
|
+
314,3895,50,452,8,14
|
|
343
|
+
6167,1949,66,420,8,15
|
|
344
|
+
3252,1994,50,214,4,14
|
|
345
|
+
3719,1594,33,340,4,14
|
|
346
|
+
5208,1499,50,340,4,15
|
|
347
|
+
1538,1699,66,170,4,14
|
|
348
|
+
703,1999,33,245,8,14
|
|
349
|
+
497,2990,50,452,16,15
|
|
350
|
+
579,2790,66,340,8,14
|
|
351
|
+
4821,1995,66,528,8,14
|
|
352
|
+
4924,2190,66,1000,8,14
|
|
353
|
+
823,2945,66,250,8,15
|
|
354
|
+
844,2644,25,452,16,14
|
|
355
|
+
1130,2694,25,540,16,14
|
|
356
|
+
5923,2594,100,850,16,15
|
|
357
|
+
4310,3045,66,1000,24,14
|
|
358
|
+
4800,1799,66,545,8,15
|
|
359
|
+
6024,1595,50,850,8,14
|
|
360
|
+
3435,1995,66,340,8,14
|
|
361
|
+
1353,2544,33,426,8,14
|
|
362
|
+
5065,2248,66,1000,8,14
|
|
363
|
+
1395,3515,66,424,16,17
|
|
364
|
+
2293,1990,66,107,2,15
|
|
365
|
+
5309,2690,33,720,16,17
|
|
366
|
+
5799,2124,75,545,8,17
|
|
367
|
+
1721,2390,33,426,8,14
|
|
368
|
+
1477,2890,33,528,16,15
|
|
369
|
+
3759,2093,33,426,8,14
|
|
370
|
+
3250,3349,100,527,16,17
|
|
371
|
+
2455,1399,25,270,4,14
|
|
372
|
+
3149,1589,25,212,4,14
|
|
373
|
+
1679,2890,33,528,16,15
|
|
374
|
+
762,1590,25,107,2,14
|
|
375
|
+
2720,1594,33,212,4,14
|
|
376
|
+
3210,1999,33,340,8,14
|
|
377
|
+
129,1495,33,85,2,14
|
|
378
|
+
1496,2690,33,528,16,15
|
|
379
|
+
171,2425,66,250,8,14
|
|
380
|
+
4148,1199,33,210,4,14
|
|
381
|
+
2270,2815,50,424,8,17
|
|
382
|
+
1149,1994,50,107,2,14
|
|
383
|
+
4127,2749,100,420,8,17
|
|
384
|
+
3597,2743,100,426,8,14
|
|
385
|
+
2739,2295,66,424,8,15
|
|
386
|
+
1618,3144,50,528,16,14
|
|
387
|
+
3046,2444,50,426,8,14
|
|
388
|
+
4066,3040,33,1000,24,15
|
|
389
|
+
5145,1438,33,212,4,14
|
|
390
|
+
5839,2744,50,1000,24,15
|
|
391
|
+
3311,2669,50,340,8,14
|
|
392
|
+
1782,1795,50,340,4,14
|
|
393
|
+
3534,2558,100,425,8,14
|
|
394
|
+
3290,2090,100,107,2,14
|
|
395
|
+
4983,1499,33,428,4,14
|
|
396
|
+
1374,2390,33,426,8,15
|
|
397
|
+
4941,3290,66,1000,24,17
|
|
398
|
+
4493,1740,33,214,4,14
|
|
399
|
+
2434,1795,66,420,4,14
|
|
400
|
+
1700,1894,33,107,2,14
|
|
401
|
+
5206,2044,50,528,8,14
|
|
402
|
+
4289,1995,66,340,4,14
|
|
403
|
+
2026,2244,25,426,8,14
|
|
404
|
+
4371,1399,33,210,4,14
|
|
405
|
+
1984,2744,50,340,8,17
|
|
406
|
+
4758,3143,33,1000,24,15
|
|
407
|
+
680,1695,50,107,2,14
|
|
408
|
+
1740,3515,66,424,16,17
|
|
409
|
+
373,2690,66,245,8,14
|
|
410
|
+
3881,2190,66,426,8,15
|
|
411
|
+
3025,2544,66,426,8,14
|
|
412
|
+
4411,3004,33,1000,24,14
|
|
413
|
+
638,1499,25,170,4,14
|
|
414
|
+
1332,1799,33,170,4,14
|
|
415
|
+
945,3609,66,527,4,15
|
|
416
|
+
3269,2344,100,214,4,14
|
|
417
|
+
434,1995,33,214,4,14
|
|
418
|
+
1801,3708,66,527,8,15
|
|
419
|
+
4432,2393,33,720,16,14
|
|
420
|
+
1046,1899,25,120,4,14
|
|
421
|
+
2779,2595,33,528,16,14
|
|
422
|
+
924,1695,25,214,8,14
|
|
423
|
+
5166,2695,50,1000,24,15
|
|
424
|
+
2922,1344,25,107,2,14
|
|
425
|
+
964,1544,25,107,2,14
|
|
426
|
+
2392,2354,33,212,4,14
|
|
427
|
+
802,2895,50,452,16,14
|
|
428
|
+
1311,2199,50,230,8,15
|
|
429
|
+
2840,2799,50,340,8,14
|
|
430
|
+
312,2599,50,212,8,14
|
|
431
|
+
5023,2440,50,720,16,15
|
|
432
|
+
3452,2429,100,420,8,15
|
|
433
|
+
1025,2894,66,340,4,14
|
|
434
|
+
1515,2344,50,340,8,15
|
|
435
|
+
3677,1499,33,210,4,15
|
|
436
|
+
903,2890,33,452,16,15
|
|
437
|
+
4981,1418,33,340,4,14
|
|
438
|
+
2249,3090,33,528,16,14
|
|
439
|
+
1862,2375,33,545,8,15
|
|
440
|
+
230,2915,50,250,8,17
|
|
441
|
+
2901,1594,33,107,2,14
|
|
442
|
+
2983,1390,33,107,2,15
|
|
443
|
+
4880,2598,66,730,16,15
|
|
444
|
+
3309,1995,33,426,8,14
|
|
445
|
+
5246,1599,66,545,4,15
|
|
446
|
+
3248,2395,33,528,16,14
|
|
447
|
+
5614,1840,75,540,8,15
|
|
448
|
+
2636,1449,50,245,4,14
|
|
449
|
+
3166,2195,50,420,8,15
|
|
450
|
+
2106,2320,33,528,8,14
|
|
451
|
+
3799,1854,33,426,8,14
|
|
452
|
+
4308,2170,66,340,4,14
|
|
453
|
+
209,2295,66,170,4,14
|
|
454
|
+
2697,1590,25,214,4,15
|
|
455
|
+
3982,1595,33,210,4,14
|
|
456
|
+
4165,2444,33,528,16,14
|
|
457
|
+
1004,3515,66,424,16,17
|
|
458
|
+
5511,2740,66,1000,24,15
|
|
459
|
+
5919,1895,100,540,8,15
|
|
460
|
+
2085,2743,33,340,4,14
|
|
461
|
+
4022,3194,33,1000,24,14
|
|
462
|
+
2554,1799,33,170,4,14
|
|
463
|
+
2024,2644,66,426,8,14
|
|
464
|
+
5898,2204,100,850,8,17
|
|
465
|
+
1269,2295,50,340,8,15
|
|
466
|
+
5368,1890,33,528,8,15
|
|
467
|
+
2289,2100,25,424,4,17
|
|
468
|
+
127,2945,50,250,4,17
|
|
469
|
+
2941,2890,66,528,16,14
|
|
470
|
+
739,2495,25,452,16,14
|
|
471
|
+
2758,1695,33,420,4,15
|
|
472
|
+
4083,2495,66,528,16,14
|
|
473
|
+
45,3495,50,340,16,14
|
|
474
|
+
4960,1395,33,340,8,14
|
|
475
|
+
3961,2404,33,528,16,14
|
|
476
|
+
1534,2090,25,426,8,14
|
|
477
|
+
4001,2359,50,340,4,14
|
|
478
|
+
3879,3015,66,1080,16,15
|
|
479
|
+
1881,1890,33,107,2,14
|
|
480
|
+
5082,2745,66,1000,24,15
|
|
481
|
+
432,2695,33,452,16,14
|
|
482
|
+
1330,1999,66,245,8,14
|
|
483
|
+
66,1495,25,170,4,14
|
|
484
|
+
1452,1599,33,212,4,14
|
|
485
|
+
1900,1899,66,245,4,15
|
|
486
|
+
3736,1790,50,214,4,15
|
|
487
|
+
3349,1795,66,340,8,14
|
|
488
|
+
4939,2345,33,720,16,15
|
|
489
|
+
4918,1399,33,210,4,14
|
|
490
|
+
636,1725,33,170,4,14
|
|
491
|
+
5143,2544,33,720,16,15
|
|
492
|
+
3124,2425,33,424,8,17
|
|
493
|
+
1696,2690,66,340,8,15
|
|
494
|
+
5061,1399,66,428,4,14
|
|
495
|
+
4735,1590,33,214,4,15
|
|
496
|
+
5122,1795,33,528,8,14
|
|
497
|
+
4571,2118,66,340,4,17
|
|
498
|
+
5999,1829,66,420,8,14
|
|
499
|
+
5000,2118,66,1000,8,14
|
|
500
|
+
4449,3044,33,1000,24,14
|
|
501
|
+
472,1599,25,170,4,14
|
|
502
|
+
3919,1894,33,214,4,14
|
|
503
|
+
3654,1499,33,210,4,14
|
|
504
|
+
4714,2398,33,270,4,15
|
|
505
|
+
4897,2094,33,528,8,14
|
|
506
|
+
1839,2444,66,214,4,14
|
|
507
|
+
697,2690,50,340,8,15
|
|
508
|
+
2348,1695,33,420,4,15
|
|
509
|
+
4693,2690,33,720,16,17
|
|
510
|
+
4041,1195,25,214,4,14
|
|
511
|
+
3980,3490,100,1000,24,14
|
|
512
|
+
5896,1640,100,340,4,15
|
|
513
|
+
2878,1999,66,450,4,14
|
|
514
|
+
4510,2593,33,720,16,15
|
|
515
|
+
4245,2890,33,1000,24,14
|
|
516
|
+
6161,2154,66,1000,16,15
|
|
517
|
+
125,2420,33,170,8,15
|
|
518
|
+
1961,3678,66,527,8,15
|
|
519
|
+
554,1890,66,107,2,15
|
|
520
|
+
1532,1539,25,120,4,14
|
|
521
|
+
3143,3099,100,527,16,15
|
|
522
|
+
4775,2199,66,730,8,15
|
|
523
|
+
5917,2108,75,545,8,17
|
|
524
|
+
3877,1249,25,100,4,14
|
|
525
|
+
5488,1699,50,212,8,14
|
|
526
|
+
3633,2275,66,530,8,15
|
|
527
|
+
1288,1749,50,212,4,14
|
|
528
|
+
1797,3044,33,528,16,14
|
|
529
|
+
3469,1260,33,210,4,15
|
|
530
|
+
3898,1995,33,540,8,15
|
|
531
|
+
2960,2320,50,528,8,14
|
|
532
|
+
6018,1873,100,850,8,14
|
|
533
|
+
2327,2644,66,426,8,14
|
|
534
|
+
1818,3544,66,340,16,17
|
|
535
|
+
3694,2775,66,420,16,15
|
|
536
|
+
3795,2999,100,528,16,17
|
|
537
|
+
716,1495,25,107,2,14
|
|
538
|
+
5101,2323,33,720,16,15
|
|
539
|
+
3959,1495,33,214,4,14
|
|
540
|
+
573,1699,33,170,4,14
|
|
541
|
+
3734,2550,66,340,8,15
|
|
542
|
+
2144,1999,33,340,8,14
|
|
543
|
+
1410,1395,25,107,2,14
|
|
544
|
+
5242,1495,33,214,4,14
|
|
545
|
+
777,2244,33,214,4,14
|
|
546
|
+
4489,1999,66,428,8,15
|
|
547
|
+
4285,2699,66,527,16,15
|
|
548
|
+
2285,1819,33,424,4,14
|
|
549
|
+
838,2290,33,340,8,14
|
|
550
|
+
5223,1728,66,428,4,17
|
|
551
|
+
4550,3345,66,1000,24,15
|
|
552
|
+
4161,3208,66,270,4,15
|
|
553
|
+
1307,2690,33,528,16,14
|
|
554
|
+
594,1599,66,130,4,14
|
|
555
|
+
2470,2795,66,340,8,15
|
|
556
|
+
5282,1854,33,528,8,14
|
|
557
|
+
1368,1644,25,107,2,14
|
|
558
|
+
3000,2290,50,426,8,15
|
|
559
|
+
3408,1599,33,210,4,14
|
|
560
|
+
653,2390,33,340,8,15
|
|
561
|
+
3774,2099,66,420,8,15
|
|
562
|
+
451,1395,25,107,2,14
|
|
563
|
+
4876,2399,66,730,16,15
|
|
564
|
+
5547,2224,100,545,8,17
|
|
565
|
+
2163,1988,25,120,4,14
|
|
566
|
+
920,1575,33,210,4,14
|
|
567
|
+
4264,2015,66,540,8,15
|
|
568
|
+
918,2109,33,120,4,14
|
|
569
|
+
6180,1545,100,1000,4,14
|
|
570
|
+
2857,1495,33,212,4,14
|
|
571
|
+
104,2999,66,330,4,15
|
|
572
|
+
3589,2355,66,340,8,15
|
|
573
|
+
4100,2943,33,1000,24,14
|
|
574
|
+
634,1399,25,170,4,14
|
|
575
|
+
369,1795,66,85,2,14
|
|
576
|
+
4058,2629,66,270,4,14
|
|
577
|
+
1408,2744,66,426,8,14
|
|
578
|
+
3448,2669,50,340,8,14
|
|
579
|
+
1776,3044,66,245,4,15
|
|
580
|
+
1509,2025,66,340,4,15
|
|
581
|
+
3549,2259,25,212,4,17
|
|
582
|
+
899,1990,33,214,4,15
|
|
583
|
+
2041,1894,50,340,4,15
|
|
584
|
+
5730,1885,66,1000,8,14
|
|
585
|
+
4283,3984,66,364,8,17
|
|
586
|
+
3917,2079,50,212,4,14
|
|
587
|
+
4916,1640,33,214,4,14
|
|
588
|
+
5648,1195,50,340,4,14
|
|
589
|
+
3875,2299,66,428,16,15
|
|
590
|
+
3040,1994,66,107,2,14
|
|
591
|
+
4304,2099,66,420,8,14
|
|
592
|
+
876,2444,33,340,8,14
|
|
593
|
+
2264,1695,33,340,8,14
|
|
594
|
+
1225,3609,66,527,4,15
|
|
595
|
+
409,2590,33,340,8,15
|
|
596
|
+
3282,2094,66,214,4,14
|
|
597
|
+
184,2644,50,245,8,14
|
|
598
|
+
6119,2299,100,850,16,15
|
|
599
|
+
3692,1899,66,340,8,15
|
|
600
|
+
2405,3354,66,420,4,15
|
|
601
|
+
2325,1744,33,107,2,14
|
|
602
|
+
4222,3644,100,1000,24,14
|
|
603
|
+
735,1590,25,107,2,15
|
|
604
|
+
5953,2404,100,850,16,15
|
|
605
|
+
2794,2319,33,340,4,14
|
|
606
|
+
2407,2320,33,528,8,14
|
|
607
|
+
123,2355,50,250,8,14
|
|
608
|
+
4811,1740,33,214,4,15
|
|
609
|
+
2590,1559,66,245,4,14
|
|
610
|
+
5894,1449,66,365,8,15
|
|
611
|
+
592,1945,33,250,4,15
|
|
612
|
+
2731,2569,50,340,8,14
|
|
613
|
+
5465,2238,75,545,8,17
|
|
614
|
+
3345,2775,66,530,16,17
|
|
615
|
+
3406,2999,100,527,16,15
|
|
616
|
+
2058,1914,25,212,4,14
|
|
617
|
+
3181,1795,50,420,4,14
|
|
618
|
+
4344,1740,33,214,4,15
|
|
619
|
+
1591,1799,33,230,4,14
|
|
620
|
+
2588,2594,50,426,8,14
|
|
621
|
+
693,2390,66,214,4,15
|
|
622
|
+
5751,2204,50,850,16,15
|
|
623
|
+
5812,1645,50,528,8,14
|
|
624
|
+
4464,2054,33,528,8,14
|
|
625
|
+
3099,1644,33,107,2,14
|
|
626
|
+
2998,2495,33,528,16,14
|
|
627
|
+
3997,2154,100,214,4,14
|
|
628
|
+
1507,5399,66,1200,32,17
|
|
629
|
+
550,1790,50,107,2,15
|
|
630
|
+
2121,2195,66,214,4,14
|
|
631
|
+
1917,2478,33,245,8,14
|
|
632
|
+
2771,1795,50,340,4,14
|
|
633
|
+
1019,1795,25,107,4,14
|
|
634
|
+
1713,3595,66,340,16,17
|
|
635
|
+
3385,1595,33,340,8,14
|
|
636
|
+
3036,1399,25,245,4,14
|
|
637
|
+
815,1849,33,170,4,14
|
|
638
|
+
4527,2090,66,214,4,15
|
|
639
|
+
4119,1854,33,426,8,14
|
|
640
|
+
5850,1881,100,270,4,14
|
|
641
|
+
5505,1938,66,545,4,17
|
|
642
|
+
367,2099,33,120,4,14
|
|
643
|
+
3711,1795,66,214,4,14
|
|
644
|
+
283,2299,50,212,4,14
|
|
645
|
+
3221,1444,25,107,2,14
|
|
646
|
+
5118,2840,66,1000,24,15
|
|
647
|
+
1162,2675,66,340,8,17
|
|
648
|
+
4769,2090,66,528,8,14
|
|
649
|
+
3690,2775,100,425,8,17
|
|
650
|
+
2569,1544,33,107,2,14
|
|
651
|
+
4037,1299,33,340,4,14
|
|
652
|
+
2689,1719,33,120,4,14
|
|
653
|
+
5362,2094,66,528,8,14
|
|
654
|
+
4975,1295,50,214,4,14
|
|
655
|
+
2222,2620,66,528,8,14
|
|
656
|
+
6176,1395,100,528,4,14
|
|
657
|
+
3139,2344,25,528,16,14
|
|
658
|
+
346,2199,50,213,8,14
|
|
659
|
+
2487,1599,33,120,4,14
|
|
660
|
+
1078,2890,33,540,16,15
|
|
661
|
+
855,2794,33,452,16,14
|
|
662
|
+
5158,1758,50,545,4,17
|
|
663
|
+
4424,2490,33,720,16,14
|
|
664
|
+
5768,2654,66,1000,24,15
|
|
665
|
+
1324,2044,50,107,2,14
|
|
666
|
+
2609,3144,66,528,16,14
|
|
667
|
+
3078,2244,33,426,8,14
|
|
668
|
+
3219,1295,33,212,4,14
|
|
669
|
+
6218,2744,66,1200,24,15
|
|
670
|
+
529,2499,50,170,4,14
|
|
671
|
+
2201,2170,66,340,4,15
|
|
672
|
+
670,2049,33,450,4,14
|
|
673
|
+
1181,1890,50,107,2,15
|
|
674
|
+
2874,1525,33,340,4,14
|
|
675
|
+
447,2220,33,250,8,14
|
|
676
|
+
1139,2999,66,450,8,15
|
|
677
|
+
1650,2194,33,214,4,14
|
|
678
|
+
3669,1635,66,210,4,14
|
|
679
|
+
4872,1868,66,425,8,14
|
|
680
|
+
5095,2098,66,540,8,14
|
|
681
|
+
1711,1279,33,130,4,14
|
|
682
|
+
5871,1908,66,545,4,17
|
|
683
|
+
5341,2695,33,1000,24,15
|
|
684
|
+
6033,1499,66,540,8,14
|
|
685
|
+
895,2675,66,340,8,17
|
|
686
|
+
3322,2290,25,528,16,15
|
|
687
|
+
2853,2359,50,340,4,14
|
|
688
|
+
4218,1958,25,212,4,15
|
|
689
|
+
2302,2095,33,212,4,17
|
|
690
|
+
4260,2988,33,270,4,17
|
|
691
|
+
304,2799,50,245,16,15
|
|
692
|
+
3810,3415,66,1080,16,17
|
|
693
|
+
487,2859,66,212,4,15
|
|
694
|
+
1833,1995,33,424,8,14
|
|
695
|
+
5055,1890,50,528,8,14
|
|
696
|
+
5951,1844,50,528,8,14
|
|
697
|
+
1955,3205,66,545,8,17
|
|
698
|
+
5116,1640,66,214,4,14
|
|
699
|
+
5524,1898,66,420,8,14
|
|
700
|
+
1587,3015,66,340,8,17
|
|
701
|
+
405,2890,33,452,16,14
|
|
702
|
+
1425,1519,50,130,4,14
|
|
703
|
+
691,2299,50,230,4,14
|
|
704
|
+
914,2299,66,245,8,14
|
|
705
|
+
2077,2444,33,426,8,14
|
|
706
|
+
5911,2090,50,364,8,14
|
|
707
|
+
3709,2444,66,426,8,14
|
|
708
|
+
4401,1999,66,527,8,14
|
|
709
|
+
2546,2395,66,340,8,14
|
|
710
|
+
1282,1490,25,107,2,14
|
|
711
|
+
752,2395,33,340,8,17
|
|
712
|
+
1852,2095,33,426,8,14
|
|
713
|
+
4952,1904,33,528,8,14
|
|
714
|
+
2485,1790,25,214,4,15
|
|
715
|
+
4300,1918,33,340,4,17
|
|
716
|
+
1179,2945,66,250,8,15
|
|
717
|
+
2668,2590,25,528,16,15
|
|
718
|
+
3015,2295,66,424,8,15
|
|
719
|
+
6237,2790,66,1200,24,17
|
|
720
|
+
4258,1995,33,528,8,14
|
|
721
|
+
2117,1520,33,424,4,14
|
|
722
|
+
2138,1649,33,245,4,15
|
|
723
|
+
1465,1690,25,170,4,14
|
|
724
|
+
3585,1945,33,540,8,15
|
|
725
|
+
5604,2198,100,420,8,14
|
|
726
|
+
4544,1499,33,340,4,14
|
|
727
|
+
1934,2495,66,426,8,14
|
|
728
|
+
4523,1795,33,528,8,14
|
|
729
|
+
5869,1999,100,545,8,15
|
|
730
|
+
2464,2590,66,214,4,14
|
|
731
|
+
3606,1844,33,214,4,14
|
|
732
|
+
1770,2490,50,426,8,14
|
|
733
|
+
771,2095,25,340,8,14
|
|
734
|
+
649,1995,33,212,8,15
|
|
735
|
+
3871,2440,33,528,16,14
|
|
736
|
+
4115,1468,33,340,4,15
|
|
737
|
+
5257,1973,66,528,8,14
|
|
738
|
+
6012,1699,100,540,8,14
|
|
739
|
+
1322,2144,33,214,4,14
|
|
740
|
+
5991,1723,50,850,8,14
|
|
741
|
+
2973,2039,25,120,4,17
|
|
742
|
+
4870,2245,33,720,16,15
|
|
743
|
+
4605,1599,66,540,4,14
|
|
744
|
+
6256,2223,66,850,16,15
|
|
745
|
+
4380,2049,66,420,8,15
|
|
746
|
+
2321,2144,33,214,4,14
|
|
747
|
+
4197,2449,100,527,8,15
|
|
748
|
+
1219,1795,33,214,8,14
|
|
749
|
+
1158,1799,33,250,4,14
|
|
750
|
+
2790,2620,66,528,8,14
|
|
751
|
+
4931,2143,66,528,8,14
|
|
752
|
+
2157,2268,33,340,4,14
|
|
753
|
+
3768,2758,33,170,4,17
|
|
754
|
+
3055,1295,33,212,4,14
|
|
755
|
+
5196,2595,33,1000,24,15
|
|
756
|
+
2626,3799,66,527,8,17
|
|
757
|
+
1688,1899,50,340,4,14
|
|
758
|
+
3320,2199,50,450,8,15
|
|
759
|
+
1505,1939,66,212,4,14
|
|
760
|
+
4563,1899,66,420,8,14
|
|
761
|
+
6113,1994,100,850,8,14
|
|
762
|
+
5461,1399,33,210,4,14
|
|
763
|
+
1953,2674,33,245,8,14
|
|
764
|
+
5297,2159,66,730,8,17
|
|
765
|
+
4033,1395,33,214,4,14
|
|
766
|
+
3177,2744,50,528,16,14
|
|
767
|
+
4012,2195,75,420,4,14
|
|
768
|
+
2748,1399,33,245,4,14
|
|
769
|
+
1749,2544,50,426,8,14
|
|
770
|
+
1566,2329,33,340,8,17
|
|
771
|
+
5215,1268,33,428,4,15
|
|
772
|
+
668,2799,50,240,4,15
|
|
773
|
+
199,2220,33,250,4,14
|
|
774
|
+
4584,2640,50,720,16,15
|
|
775
|
+
3135,2195,100,214,4,14
|
|
776
|
+
2340,1590,33,107,2,15
|
|
777
|
+
933,2390,66,214,4,14
|
|
778
|
+
3972,2344,66,426,8,14
|
|
779
|
+
586,2250,66,170,4,14
|
|
780
|
+
5480,1754,50,528,8,14
|
|
781
|
+
3604,2343,66,426,8,14
|
|
782
|
+
5175,2239,66,425,8,17
|
|
783
|
+
5541,1398,66,340,4,14
|
|
784
|
+
2115,2099,66,245,4,15
|
|
785
|
+
5011,2408,100,270,4,14
|
|
786
|
+
3360,1694,25,214,4,14
|
|
787
|
+
2992,3397,66,450,16,15
|
|
788
|
+
1707,2834,66,426,8,15
|
|
789
|
+
2258,2044,33,214,4,14
|
|
790
|
+
811,2495,50,340,8,14
|
|
791
|
+
3461,1795,100,210,4,14
|
|
792
|
+
5194,1545,66,528,8,14
|
|
793
|
+
504,2695,66,340,8,14
|
|
794
|
+
1545,1694,33,107,2,14
|
|
795
|
+
912,2325,66,250,4,15
|
|
796
|
+
5663,1799,75,545,8,15
|
|
797
|
+
3236,1595,33,214,4,14
|
|
798
|
+
3217,3249,100,527,16,17
|
|
799
|
+
5806,2323,66,850,16,15
|
|
800
|
+
565,2295,50,212,8,15
|
|
801
|
+
2563,1744,33,214,4,14
|
|
802
|
+
3686,2115,33,425,8,15
|
|
803
|
+
1177,4395,50,1100,16,14
|
|
804
|
+
1299,2995,66,540,16,14
|
|
805
|
+
748,2044,33,107,2,14
|
|
806
|
+
1606,2494,33,426,8,14
|
|
807
|
+
1034,2495,33,340,4,14
|
|
808
|
+
626,3595,66,500,8,15
|
|
809
|
+
4969,2040,33,1000,8,14
|
|
810
|
+
6031,2204,66,1000,16,15
|
|
811
|
+
4052,1799,66,250,4,15
|
|
812
|
+
4113,1704,33,426,4,14
|
|
813
|
+
1339,1899,33,120,4,14
|
|
814
|
+
3951,1854,66,214,4,14
|
|
815
|
+
3766,2345,33,528,16,14
|
|
816
|
+
2155,2559,66,340,8,17
|
|
817
|
+
1930,2049,33,212,4,14
|
|
818
|
+
5623,2794,50,1000,24,15
|
|
819
|
+
2399,2090,50,107,2,14
|
|
820
|
+
3562,1739,33,120,4,14
|
|
821
|
+
3806,1899,33,420,4,14
|
|
822
|
+
4277,1999,66,528,8,15
|
|
823
|
+
2868,1999,25,170,4,14
|
|
824
|
+
1013,2175,66,250,8,15
|
|
825
|
+
5682,1823,66,528,8,14
|
|
826
|
+
1993,1395,25,107,4,14
|
|
827
|
+
584,2545,66,250,8,15
|
|
828
|
+
1747,2345,66,250,4,15
|
|
829
|
+
6151,1795,100,850,8,15
|
|
830
|
+
4134,1899,66,420,8,14
|
|
831
|
+
1053,1999,33,120,4,14
|
|
832
|
+
3888,1938,25,120,4,15
|
|
833
|
+
5947,1690,50,528,8,15
|
|
834
|
+
3053,1890,50,214,4,14
|
|
835
|
+
4071,1488,50,340,4,15
|
|
836
|
+
4153,2345,33,528,16,14
|
|
837
|
+
3194,2799,50,340,8,15
|
|
838
|
+
3991,3778,66,340,4,17
|
|
839
|
+
176,2745,66,250,4,15
|
|
840
|
+
4418,1704,33,214,4,14
|
|
841
|
+
4397,1818,66,212,4,14
|
|
842
|
+
1911,2175,66,340,4,15
|
|
843
|
+
2990,1390,33,107,2,14
|
|
844
|
+
1196,3044,33,540,16,14
|
|
845
|
+
1644,2495,25,528,16,14
|
|
846
|
+
2441,1890,33,107,2,14
|
|
847
|
+
3459,2259,50,340,4,14
|
|
848
|
+
4275,1698,50,340,4,14
|
|
849
|
+
4723,2199,66,528,8,15
|
|
850
|
+
2502,2039,33,212,4,14
|
|
851
|
+
4988,2594,33,720,16,15
|
|
852
|
+
1522,3634,66,527,4,15
|
|
853
|
+
4050,2599,100,527,8,15
|
|
854
|
+
2359,1744,33,107,2,14
|
|
855
|
+
5518,2545,50,1000,24,15
|
|
856
|
+
2052,1425,25,120,4,14
|
|
857
|
+
2031,2585,50,528,8,14
|
|
858
|
+
5173,2159,66,730,8,17
|
|
859
|
+
2296,3199,66,340,16,15
|
|
860
|
+
3928,2099,66,420,8,14
|
|
861
|
+
2275,1395,25,107,4,14
|
|
862
|
+
5438,1694,66,340,4,14
|
|
863
|
+
5579,2308,100,545,8,17
|
|
864
|
+
237,1595,25,170,4,15
|
|
865
|
+
4681,1395,25,340,8,14
|
|
866
|
+
809,2295,66,250,8,15
|
|
867
|
+
3499,1915,66,425,8,15
|
|
868
|
+
4193,3190,66,1000,24,15
|
|
869
|
+
2601,1369,25,120,4,14
|
|
870
|
+
5764,2145,50,850,16,15
|
|
871
|
+
746,4248,66,345,16,17
|
|
872
|
+
2113,2024,25,170,4,14
|
|
873
|
+
2397,1844,33,107,2,14
|
|
874
|
+
3215,2494,100,214,4,14
|
|
875
|
+
3764,1694,33,214,4,14
|
|
876
|
+
94,2505,50,210,8,14
|
|
877
|
+
5129,1628,50,428,4,17
|
|
878
|
+
666,3789,66,527,8,15
|
|
879
|
+
1215,2694,66,426,8,14
|
|
880
|
+
4519,2854,66,720,16,15
|
|
881
|
+
5598,1299,66,270,4,14
|
|
882
|
+
4887,2543,66,720,16,15
|
|
883
|
+
1684,1895,33,170,4,14
|
|
884
|
+
5049,1195,33,214,4,14
|
|
885
|
+
1438,2090,33,214,4,14
|
|
886
|
+
5152,2754,33,1000,24,15
|
|
887
|
+
1949,2144,66,107,2,14
|
|
888
|
+
2500,2190,33,214,4,14
|
|
889
|
+
6128,1599,66,540,8,14
|
|
890
|
+
1583,1944,25,214,4,14
|
|
891
|
+
3152,2819,66,212,4,17
|
|
892
|
+
420,2195,66,170,4,14
|
|
893
|
+
357,3299,66,245,16,15
|
|
894
|
+
3520,2925,100,530,8,17
|
|
895
|
+
5293,1399,66,428,4,14
|
|
896
|
+
6048,1445,100,528,4,14
|
|
897
|
+
887,2899,50,240,4,14
|
|
898
|
+
971,3299,50,450,8,15
|
|
899
|
+
3478,1890,25,426,8,14
|
|
900
|
+
2153,2295,50,426,8,14
|
|
901
|
+
2763,2190,33,426,8,15
|
|
902
|
+
2174,1544,25,107,2,14
|
|
903
|
+
3743,2290,25,528,16,15
|
|
904
|
+
5762,1824,66,545,4,17
|
|
905
|
+
3293,2220,50,528,8,14
|
|
906
|
+
5661,1794,100,340,4,14
|
|
907
|
+
4946,1690,66,214,4,14
|
|
908
|
+
52,2395,33,130,4,14
|
|
909
|
+
3762,2499,100,450,8,15
|
|
910
|
+
4580,2499,66,527,16,15
|
|
911
|
+
3335,2065,100,340,4,14
|
|
912
|
+
6088,1694,100,528,4,14
|
|
913
|
+
1478,4048,66,345,16,17
|
|
914
|
+
1623,2559,66,340,8,17
|
|
915
|
+
6149,2223,75,1200,24,15
|
|
916
|
+
643,1899,25,120,4,14
|
|
917
|
+
1947,2145,33,340,4,15
|
|
918
|
+
3968,3190,66,1000,24,15
|
|
919
|
+
4191,2454,100,426,8,14
|
|
920
|
+
3049,1690,33,214,4,15
|
|
921
|
+
5434,1823,50,528,8,14
|
|
922
|
+
4702,1899,66,425,8,14
|
|
923
|
+
4660,1099,33,340,4,14
|
|
924
|
+
3987,1395,25,340,8,14
|
|
925
|
+
4088,2634,66,540,8,17
|
|
926
|
+
4294,999,33,250,2,14
|
|
927
|
+
2845,2895,66,528,8,15
|
|
928
|
+
1907,1495,33,107,4,14
|
|
929
|
+
662,2290,50,214,4,14
|
|
930
|
+
2010,2848,66,245,4,15
|
|
931
|
+
153,3599,66,330,8,14
|
|
932
|
+
92,2145,66,130,4,14
|
|
933
|
+
2334,2790,33,528,16,15
|
|
934
|
+
4151,2479,100,420,8,15
|
|
935
|
+
214,2125,66,170,4,14
|
|
936
|
+
5720,2224,100,850,8,17
|
|
937
|
+
254,1720,25,170,4,14
|
|
938
|
+
521,2095,33,214,4,14
|
|
939
|
+
5108,2790,33,1000,24,15
|
|
940
|
+
4904,1899,66,420,8,14
|
|
941
|
+
4944,1848,66,270,4,14
|
|
942
|
+
4008,1875,33,425,8,15
|
|
943
|
+
10,2575,50,210,4,15
|
|
944
|
+
2355,1558,25,120,4,14
|
|
945
|
+
2660,2394,33,426,8,14
|
|
946
|
+
4477,1468,50,340,4,15
|
|
947
|
+
5842,1865,66,270,4,14
|
|
948
|
+
5169,1790,33,528,8,15
|
|
949
|
+
1987,1539,25,120,4,14
|
|
950
|
+
5007,2404,50,720,16,15
|
|
951
|
+
4557,1395,33,340,4,14
|
|
952
|
+
4761,2004,50,528,8,14
|
|
953
|
+
3924,2490,100,426,8,15
|
|
954
|
+
4599,2049,66,420,8,15
|
|
955
|
+
4822,2544,33,720,16,15
|
|
956
|
+
2681,2644,66,426,8,14
|
|
957
|
+
2578,2744,50,340,8,17
|
|
958
|
+
5190,1488,33,424,4,14
|
|
959
|
+
3211,1890,25,426,8,15
|
|
960
|
+
723,2648,66,245,8,14
|
|
961
|
+
29,3095,33,340,16,14
|
|
962
|
+
3110,1395,33,107,2,14
|
|
963
|
+
3598,1399,33,210,4,14
|
|
964
|
+
2130,1790,25,107,2,14
|
|
965
|
+
763,1695,33,250,4,14
|
|
966
|
+
3375,1395,25,340,8,14
|
|
967
|
+
3190,1495,50,107,2,14
|
|
968
|
+
3537,2694,33,528,16,14
|
|
969
|
+
4250,1445,50,214,4,14
|
|
970
|
+
826,1795,33,107,2,14
|
|
971
|
+
6208,2323,100,850,16,15
|
|
972
|
+
2456,2999,66,450,16,15
|
|
973
|
+
4719,2194,50,528,8,14
|
|
974
|
+
5516,1899,33,212,8,14
|
|
975
|
+
6004,1844,50,850,8,14
|
|
976
|
+
1171,1844,33,107,2,14
|
|
977
|
+
2904,1944,33,214,4,14
|
|
978
|
+
2967,2395,66,426,8,14
|
|
979
|
+
3455,2265,100,340,8,15
|
|
980
|
+
2843,1695,66,107,2,14
|
|
981
|
+
885,3144,66,452,16,14
|
|
982
|
+
5638,1704,50,528,8,14
|
|
983
|
+
233,1999,33,170,4,14
|
|
984
|
+
5983,1840,100,850,8,15
|
|
985
|
+
1068,3599,33,345,16,17
|
|
986
|
+
3089,1195,25,214,4,14
|
|
987
|
+
5596,1795,75,730,8,15
|
|
988
|
+
6248,1654,100,528,8,14
|
|
989
|
+
4555,1448,33,340,4,15
|
|
990
|
+
6107,2199,66,850,16,15
|
|
991
|
+
6044,1723,66,850,8,14
|
|
992
|
+
4025,3928,100,728,8,15
|
|
993
|
+
5962,1295,50,340,4,14
|
|
994
|
+
1009,2090,25,426,8,14
|
|
995
|
+
3964,2625,66,540,8,15
|
|
996
|
+
4290,2298,33,528,8,17
|
|
997
|
+
2740,3175,66,540,16,15
|
|
998
|
+
3823,1529,33,210,4,14
|
|
999
|
+
2414,2095,33,426,8,14
|
|
1000
|
+
1659,3194,66,528,16,14
|
|
1001
|
+
1190,2194,33,214,4,14
|
|
1002
|
+
5495,1490,50,340,4,15
|
|
1003
|
+
2597,1695,33,214,4,14
|
|
1004
|
+
3249,2645,66,424,8,17
|
|
1005
|
+
3535,2690,100,528,8,14
|
|
1006
|
+
5964,1773,66,850,8,14
|
|
1007
|
+
48,1749,25,120,4,14
|
|
1008
|
+
5655,1679,50,540,8,14
|
|
1009
|
+
1455,2995,66,424,16,15
|
|
1010
|
+
866,1895,50,107,2,14
|
|
1011
|
+
2454,1595,33,420,4,14
|
|
1012
|
+
2433,2595,33,528,16,14
|
|
1013
|
+
5472,2048,75,545,8,17
|
|
1014
|
+
3680,2690,66,528,16,15
|
|
1015
|
+
2923,2944,66,528,16,14
|
|
1016
|
+
149,1975,33,250,8,14
|
|
1017
|
+
374,2195,25,245,8,14
|
|
1018
|
+
1600,1469,33,170,4,14
|
|
1019
|
+
3188,2029,33,340,8,14
|
|
1020
|
+
618,2275,33,250,8,15
|
|
1021
|
+
1781,2444,66,214,4,14
|
|
1022
|
+
1192,1639,66,130,4,14
|
|
1023
|
+
5125,1828,33,428,4,17
|
|
1024
|
+
883,1649,50,170,4,14
|
|
1025
|
+
3840,1594,33,340,4,14
|
|
1026
|
+
4597,1399,66,340,4,14
|
|
1027
|
+
2576,2044,50,214,4,14
|
|
1028
|
+
475,1895,33,170,4,14
|
|
1029
|
+
4778,1795,33,528,8,14
|
|
1030
|
+
3720,1290,25,107,2,14
|
|
1031
|
+
496,1999,33,213,8,14
|
|
1032
|
+
5369,1794,66,214,4,14
|
|
1033
|
+
5043,1990,66,528,8,15
|
|
1034
|
+
1640,2299,66,120,4,14
|
|
1035
|
+
3493,1890,75,107,2,15
|
|
1036
|
+
1005,1544,33,107,4,14
|
|
1037
|
+
271,2095,33,250,4,15
|
|
1038
|
+
1905,2595,33,528,16,14
|
|
1039
|
+
944,2194,66,107,2,14
|
|
1040
|
+
2738,1844,33,214,4,14
|
|
1041
|
+
5083,1499,33,428,4,14
|
|
1042
|
+
3108,2144,33,426,8,14
|
|
1043
|
+
5899,2473,100,850,16,15
|
|
1044
|
+
658,1395,33,107,2,14
|
|
1045
|
+
3003,2744,50,420,8,17
|
|
1046
|
+
5045,2740,33,720,16,17
|
|
1047
|
+
4145,1818,50,340,4,17
|
|
1048
|
+
107,2699,50,212,8,14
|
|
1049
|
+
2330,1644,33,107,2,14
|
|
1050
|
+
2496,2344,33,426,8,14
|
|
1051
|
+
3941,2165,66,540,8,15
|
|
1052
|
+
5470,2704,66,1000,24,15
|
|
1053
|
+
3268,2995,100,528,16,14
|
|
1054
|
+
5514,2745,100,1000,24,15
|
|
1055
|
+
4675,2099,66,420,8,14
|
|
1056
|
+
4185,1744,33,426,4,14
|
|
1057
|
+
46,2695,33,245,8,14
|
|
1058
|
+
416,1699,33,120,4,14
|
|
1059
|
+
984,2045,33,250,8,15
|
|
1060
|
+
1636,1699,33,210,4,15
|
|
1061
|
+
5409,2190,100,528,8,14
|
|
1062
|
+
5779,2490,50,850,16,17
|
|
1063
|
+
6204,2195,100,850,16,15
|
|
1064
|
+
3104,3090,100,528,16,15
|
|
1065
|
+
5878,1799,66,420,16,14
|
|
1066
|
+
2557,1995,66,214,4,14
|
|
1067
|
+
4389,1379,33,340,4,14
|
|
1068
|
+
4042,3044,100,528,16,14
|
|
1069
|
+
3186,1594,33,340,4,15
|
|
1070
|
+
1007,1509,50,130,4,14
|
|
1071
|
+
4246,2189,33,212,8,15
|
|
1072
|
+
147,2295,66,170,4,14
|
|
1073
|
+
637,2595,50,250,8,15
|
|
1074
|
+
1945,3044,66,245,4,15
|
|
1075
|
+
1758,2024,25,120,4,14
|
|
1076
|
+
4633,2318,66,528,8,17
|
|
1077
|
+
4593,2140,50,528,8,14
|
|
1078
|
+
1333,2190,33,212,8,14
|
|
1079
|
+
5306,2898,100,730,16,15
|
|
1080
|
+
2553,1999,33,340,8,14
|
|
1081
|
+
5327,2295,66,528,8,15
|
|
1082
|
+
4351,2554,66,720,16,14
|
|
1083
|
+
2757,1495,50,107,2,14
|
|
1084
|
+
2818,2344,33,426,8,14
|
|
1085
|
+
3247,1999,66,340,8,15
|
|
1086
|
+
2536,2574,33,245,4,14
|
|
1087
|
+
3226,2495,66,540,8,15
|
|
1088
|
+
330,2599,33,240,4,15
|
|
1089
|
+
1228,2290,66,214,4,15
|
|
1090
|
+
3270,3439,66,340,8,17
|
|
1091
|
+
6244,2745,66,1600,24,15
|
|
1092
|
+
5224,1695,33,528,8,14
|
|
1093
|
+
5184,2423,33,720,16,15
|
|
1094
|
+
721,3025,33,1370,8,14
|
|
1095
|
+
3491,2090,75,214,4,14
|
|
1096
|
+
1594,2395,50,340,4,17
|
|
1097
|
+
86,1999,33,120,8,14
|
|
1098
|
+
6084,2199,66,850,16,15
|
|
1099
|
+
5163,1948,66,425,8,14
|
|
1100
|
+
4591,1999,66,420,8,14
|
|
1101
|
+
3573,2435,100,340,8,15
|
|
1102
|
+
3127,1894,33,214,4,14
|
|
1103
|
+
5632,2345,100,850,16,15
|
|
1104
|
+
5529,1938,66,428,4,17
|
|
1105
|
+
1493,3914,66,527,4,15
|
|
1106
|
+
6145,1345,66,528,8,14
|
|
1107
|
+
65,2195,66,85,2,14
|
|
1108
|
+
3449,1899,50,340,8,15
|
|
1109
|
+
2492,2504,50,212,4,14
|
|
1110
|
+
1312,1779,33,120,4,14
|
|
1111
|
+
391,2295,66,130,4,14
|
|
1112
|
+
2776,2999,66,450,16,15
|
|
1113
|
+
2084,2095,33,426,8,14
|
|
1114
|
+
4595,2299,66,340,4,14
|
|
1115
|
+
5285,1295,50,214,4,14
|
|
1116
|
+
961,2225,66,340,8,15
|
|
1117
|
+
3552,3049,100,527,16,15
|
|
1118
|
+
5798,1908,66,545,4,17
|
|
1119
|
+
656,2398,33,245,8,14
|
|
1120
|
+
5182,1599,66,540,8,14
|
|
1121
|
+
1003,2325,66,250,8,15
|
|
1122
|
+
1169,2145,66,250,4,14
|
|
1123
|
+
5611,1940,100,528,8,15
|
|
1124
|
+
1491,3090,66,528,16,15
|
|
1125
|
+
1798,1295,25,212,4,14
|
|
1126
|
+
3167,1739,33,120,4,14
|
|
1127
|
+
1451,2944,33,528,16,14
|
|
1128
|
+
5712,2940,66,1000,24,17
|
|
1129
|
+
717,2999,66,345,16,15
|
|
1130
|
+
2351,2385,66,420,8,17
|
|
1131
|
+
2654,2744,25,528,16,14
|
|
1132
|
+
1083,1895,33,107,4,14
|
|
1133
|
+
4734,2004,33,528,8,14
|
|
1134
|
+
1943,1854,25,120,4,14
|
|
1135
|
+
3388,1494,25,107,2,14
|
|
1136
|
+
1674,1685,33,340,4,14
|
|
1137
|
+
2898,1290,25,107,2,15
|
|
1138
|
+
128,2295,33,245,8,14
|
|
1139
|
+
839,1299,33,130,4,14
|
|
1140
|
+
3081,1195,25,107,2,14
|
|
1141
|
+
614,2295,33,340,8,14
|
|
1142
|
+
3615,3659,66,424,8,17
|
|
1143
|
+
3857,1468,33,340,4,15
|
|
1144
|
+
1939,3589,66,527,8,15
|
|
1145
|
+
4570,2189,33,212,8,15
|
|
1146
|
+
5491,1989,66,425,8,15
|
|
1147
|
+
6202,2885,100,1600,24,15
|
|
1148
|
+
4345,2568,33,270,4,15
|
|
1149
|
+
5977,2840,75,1200,24,17
|
|
1150
|
+
2269,2290,66,107,2,14
|
|
1151
|
+
2307,2699,66,245,8,15
|
|
1152
|
+
1857,3714,66,527,4,15
|
|
1153
|
+
3020,1594,33,340,4,15
|
|
1154
|
+
2065,1794,33,212,4,14
|
|
1155
|
+
1165,1975,66,250,4,14
|
|
1156
|
+
4671,1195,25,128,4,14
|
|
1157
|
+
1409,3499,50,450,8,15
|
|
1158
|
+
1657,1699,25,212,4,14
|
|
1159
|
+
5916,1545,100,340,4,14
|
|
1160
|
+
2387,3090,66,528,16,15
|
|
1161
|
+
267,2645,50,170,8,14
|
|
1162
|
+
4940,2539,100,270,4,14
|
|
1163
|
+
2021,1944,33,214,4,14
|
|
1164
|
+
4263,1590,33,214,4,14
|
|
1165
|
+
5630,1499,66,365,8,15
|
|
1166
|
+
2391,1995,66,420,8,15
|
|
1167
|
+
1613,1790,25,214,4,15
|
|
1168
|
+
1979,2490,50,214,4,14
|
|
1169
|
+
3611,1995,75,214,4,14
|
|
1170
|
+
3125,1999,66,450,4,14
|
|
1171
|
+
3958,3490,100,1000,24,15
|
|
1172
|
+
2448,1890,33,214,4,15
|
|
1173
|
+
4610,2295,33,720,16,15
|
|
1174
|
+
576,2755,66,250,8,17
|
|
1175
|
+
532,1495,33,107,2,14
|
|
1176
|
+
4793,2290,66,1000,8,14
|
|
1177
|
+
3264,2039,33,212,4,14
|
|
1178
|
+
5531,1699,66,420,8,14
|
|
1179
|
+
5018,2993,33,1000,24,15
|
|
1180
|
+
5119,2094,66,528,8,14
|
|
1181
|
+
715,1995,66,107,2,14
|
|
1182
|
+
3451,1879,33,340,8,15
|
|
1183
|
+
5344,1345,66,214,4,14
|
|
1184
|
+
3304,1490,25,214,4,15
|
|
1185
|
+
1184,2395,33,340,8,17
|
|
1186
|
+
4919,1895,66,528,8,14
|
|
1187
|
+
2917,1744,50,107,2,14
|
|
1188
|
+
2162,2795,66,340,8,15
|
|
1189
|
+
4202,2744,66,528,16,14
|
|
1190
|
+
5857,1299,66,340,4,14
|
|
1191
|
+
368,2645,50,250,8,15
|
|
1192
|
+
6118,2790,75,1200,24,17
|
|
1193
|
+
3529,2309,33,120,4,17
|
|
1194
|
+
5653,1799,66,540,8,14
|
|
1195
|
+
4589,1588,33,340,4,15
|
|
1196
|
+
2896,2299,50,450,8,15
|
|
1197
|
+
980,1845,66,210,4,14
|
|
1198
|
+
1024,1894,25,214,4,14
|
|
1199
|
+
2509,3275,66,540,16,15
|
|
1200
|
+
5241,1199,33,210,4,14
|
|
1201
|
+
3386,1995,100,107,2,14
|
|
1202
|
+
4307,2095,66,528,8,14
|
|
1203
|
+
1163,2890,33,540,16,14
|
|
1204
|
+
5710,1715,75,540,8,15
|
|
1205
|
+
4120,2618,66,428,16,17
|
|
1206
|
+
5510,3340,100,1000,24,17
|
|
1207
|
+
4915,2118,66,730,8,15
|
|
1208
|
+
4568,1945,33,528,8,14
|
|
1209
|
+
3977,3044,100,528,16,14
|
|
1210
|
+
3430,1795,75,107,2,14
|
|
1211
|
+
286,2595,66,245,8,14
|
|
1212
|
+
5302,2254,33,720,16,15
|
|
1213
|
+
2835,2495,66,424,8,15
|
|
1214
|
+
3022,2869,66,340,8,14
|
|
1215
|
+
5649,2058,66,545,8,17
|
|
1216
|
+
204,1499,25,170,4,14
|
|
1217
|
+
1754,2565,66,545,4,15
|
|
1218
|
+
473,2525,50,250,8,14
|
|
1219
|
+
3100,1799,33,170,4,14
|
|
1220
|
+
673,3495,66,500,8,14
|
|
1221
|
+
3691,1395,25,340,8,14
|
|
1222
|
+
3756,2718,75,428,16,17
|
|
1223
|
+
5914,1704,66,528,8,14
|
|
1224
|
+
3613,2849,66,527,16,15
|
|
1225
|
+
4772,2445,66,528,8,14
|
|
1226
|
+
4612,3790,66,1000,24,15
|
|
1227
|
+
5975,1499,66,540,8,14
|
|
1228
|
+
5550,2108,75,545,8,17
|
|
1229
|
+
1142,2095,33,212,4,17
|
|
1230
|
+
1390,1590,33,107,2,15
|
|
1231
|
+
4469,2629,66,270,4,14
|
|
1232
|
+
1777,1579,50,170,4,14
|
|
1233
|
+
4978,1495,33,340,8,14
|
|
1234
|
+
4774,2890,66,720,16,17
|
|
1235
|
+
4366,3872,100,728,8,15
|
|
1236
|
+
4957,2199,66,528,8,15
|
|
1237
|
+
2408,2744,33,528,16,14
|
|
1238
|
+
2000,2975,33,545,8,17
|
|
1239
|
+
5283,2440,66,720,16,15
|
|
1240
|
+
5548,2394,50,850,16,15
|
|
1241
|
+
3733,2349,100,420,8,14
|
|
1242
|
+
5140,2199,66,540,8,15
|
|
1243
|
+
2591,1795,50,214,4,14
|
|
1244
|
+
5874,1699,66,540,8,14
|
|
1245
|
+
6139,1540,100,528,4,15
|
|
1246
|
+
5731,2994,100,1000,24,15
|
|
1247
|
+
3182,2244,100,107,2,14
|
|
1248
|
+
3447,1644,33,107,2,14
|
|
1249
|
+
3773,1599,50,340,4,14
|
|
1250
|
+
816,1744,25,107,2,14
|
|
1251
|
+
3630,2315,66,530,8,15
|
|
1252
|
+
1550,2749,33,340,4,15
|