teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +1935 -1640
- teradataml/__init__.py +70 -60
- teradataml/_version.py +11 -11
- teradataml/analytics/Transformations.py +2995 -2995
- teradataml/analytics/__init__.py +81 -83
- teradataml/analytics/analytic_function_executor.py +2040 -2010
- teradataml/analytics/analytic_query_generator.py +958 -958
- teradataml/analytics/byom/H2OPredict.py +514 -514
- teradataml/analytics/byom/PMMLPredict.py +437 -437
- teradataml/analytics/byom/__init__.py +14 -14
- teradataml/analytics/json_parser/__init__.py +130 -130
- teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
- teradataml/analytics/json_parser/json_store.py +191 -191
- teradataml/analytics/json_parser/metadata.py +1637 -1637
- teradataml/analytics/json_parser/utils.py +798 -803
- teradataml/analytics/meta_class.py +196 -196
- teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
- teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
- teradataml/analytics/sqle/__init__.py +97 -110
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
- teradataml/analytics/table_operator/__init__.py +10 -10
- teradataml/analytics/uaf/__init__.py +63 -63
- teradataml/analytics/utils.py +693 -692
- teradataml/analytics/valib.py +1603 -1600
- teradataml/automl/__init__.py +1683 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +1011 -0
- teradataml/automl/data_transformation.py +789 -0
- teradataml/automl/feature_engineering.py +1580 -0
- teradataml/automl/feature_exploration.py +554 -0
- teradataml/automl/model_evaluation.py +151 -0
- teradataml/automl/model_training.py +1026 -0
- teradataml/catalog/__init__.py +1 -3
- teradataml/catalog/byom.py +1759 -1716
- teradataml/catalog/function_argument_mapper.py +859 -861
- teradataml/catalog/model_cataloging_utils.py +491 -1510
- teradataml/clients/auth_client.py +133 -0
- teradataml/clients/pkce_client.py +481 -481
- teradataml/common/aed_utils.py +7 -2
- teradataml/common/bulk_exposed_utils.py +111 -111
- teradataml/common/constants.py +1438 -1441
- teradataml/common/deprecations.py +160 -0
- teradataml/common/exceptions.py +73 -73
- teradataml/common/formula.py +742 -742
- teradataml/common/garbagecollector.py +597 -635
- teradataml/common/messagecodes.py +424 -431
- teradataml/common/messages.py +228 -231
- teradataml/common/sqlbundle.py +693 -693
- teradataml/common/td_coltype_code_to_tdtype.py +48 -48
- teradataml/common/utils.py +2424 -2500
- teradataml/common/warnings.py +25 -25
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/config/dummy_file1.cfg +4 -4
- teradataml/config/dummy_file2.cfg +2 -2
- teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
- teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
- teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
- teradataml/context/aed_context.py +217 -217
- teradataml/context/context.py +1091 -999
- teradataml/data/A_loan.csv +19 -19
- teradataml/data/BINARY_REALS_LEFT.csv +11 -11
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
- teradataml/data/B_loan.csv +49 -49
- teradataml/data/BuoyData2.csv +17 -17
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
- teradataml/data/Convolve2RealsLeft.csv +5 -5
- teradataml/data/Convolve2RealsRight.csv +5 -5
- teradataml/data/Convolve2ValidLeft.csv +11 -11
- teradataml/data/Convolve2ValidRight.csv +11 -11
- teradataml/data/DFFTConv_Real_8_8.csv +65 -65
- teradataml/data/Orders1_12mf.csv +24 -24
- teradataml/data/Pi_loan.csv +7 -7
- teradataml/data/SMOOTHED_DATA.csv +7 -7
- teradataml/data/TestDFFT8.csv +9 -9
- teradataml/data/TestRiver.csv +109 -109
- teradataml/data/Traindata.csv +28 -28
- teradataml/data/acf.csv +17 -17
- teradataml/data/adaboost_example.json +34 -34
- teradataml/data/adaboostpredict_example.json +24 -24
- teradataml/data/additional_table.csv +10 -10
- teradataml/data/admissions_test.csv +21 -21
- teradataml/data/admissions_train.csv +41 -41
- teradataml/data/admissions_train_nulls.csv +41 -41
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -13
- teradataml/data/ageandpressure.csv +31 -31
- teradataml/data/antiselect_example.json +36 -36
- teradataml/data/antiselect_input.csv +8 -8
- teradataml/data/antiselect_input_mixed_case.csv +8 -8
- teradataml/data/applicant_external.csv +6 -6
- teradataml/data/applicant_reference.csv +6 -6
- teradataml/data/arima_example.json +9 -9
- teradataml/data/assortedtext_input.csv +8 -8
- teradataml/data/attribution_example.json +33 -33
- teradataml/data/attribution_sample_table.csv +27 -27
- teradataml/data/attribution_sample_table1.csv +6 -6
- teradataml/data/attribution_sample_table2.csv +11 -11
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +42 -42
- teradataml/data/bank_web_clicks2.csv +91 -91
- teradataml/data/bank_web_url.csv +85 -85
- teradataml/data/barrier.csv +2 -2
- teradataml/data/barrier_new.csv +3 -3
- teradataml/data/betweenness_example.json +13 -13
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -8
- teradataml/data/bin_fit_ip.csv +3 -3
- teradataml/data/binary_complex_left.csv +11 -11
- teradataml/data/binary_complex_right.csv +11 -11
- teradataml/data/binary_matrix_complex_left.csv +21 -21
- teradataml/data/binary_matrix_complex_right.csv +21 -21
- teradataml/data/binary_matrix_real_left.csv +21 -21
- teradataml/data/binary_matrix_real_right.csv +21 -21
- teradataml/data/blood2ageandweight.csv +26 -26
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -507
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -11
- teradataml/data/burst_data.csv +5 -5
- teradataml/data/burst_example.json +20 -20
- teradataml/data/byom_example.json +17 -17
- teradataml/data/bytes_table.csv +3 -3
- teradataml/data/cal_housing_ex_raw.csv +70 -70
- teradataml/data/callers.csv +7 -7
- teradataml/data/calls.csv +10 -10
- teradataml/data/cars_hist.csv +33 -33
- teradataml/data/cat_table.csv +24 -24
- teradataml/data/ccm_example.json +31 -31
- teradataml/data/ccm_input.csv +91 -91
- teradataml/data/ccm_input2.csv +13 -13
- teradataml/data/ccmexample.csv +101 -101
- teradataml/data/ccmprepare_example.json +8 -8
- teradataml/data/ccmprepare_input.csv +91 -91
- teradataml/data/cfilter_example.json +12 -12
- teradataml/data/changepointdetection_example.json +18 -18
- teradataml/data/changepointdetectionrt_example.json +8 -8
- teradataml/data/chi_sq.csv +2 -2
- teradataml/data/churn_data.csv +14 -14
- teradataml/data/churn_emission.csv +35 -35
- teradataml/data/churn_initial.csv +3 -3
- teradataml/data/churn_state_transition.csv +5 -5
- teradataml/data/citedges_2.csv +745 -745
- teradataml/data/citvertices_2.csv +1210 -1210
- teradataml/data/clicks2.csv +16 -16
- teradataml/data/clickstream.csv +12 -12
- teradataml/data/clickstream1.csv +11 -11
- teradataml/data/closeness_example.json +15 -15
- teradataml/data/complaints.csv +21 -21
- teradataml/data/complaints_mini.csv +3 -3
- teradataml/data/complaints_testtoken.csv +224 -224
- teradataml/data/complaints_tokens_test.csv +353 -353
- teradataml/data/complaints_traintoken.csv +472 -472
- teradataml/data/computers_category.csv +1001 -1001
- teradataml/data/computers_test1.csv +1252 -1252
- teradataml/data/computers_train1.csv +5009 -5009
- teradataml/data/computers_train1_clustered.csv +5009 -5009
- teradataml/data/confusionmatrix_example.json +9 -9
- teradataml/data/conversion_event_table.csv +3 -3
- teradataml/data/corr_input.csv +17 -17
- teradataml/data/correlation_example.json +11 -11
- teradataml/data/coxhazardratio_example.json +39 -39
- teradataml/data/coxph_example.json +15 -15
- teradataml/data/coxsurvival_example.json +28 -28
- teradataml/data/cpt.csv +41 -41
- teradataml/data/credit_ex_merged.csv +45 -45
- teradataml/data/customer_loyalty.csv +301 -301
- teradataml/data/customer_loyalty_newseq.csv +31 -31
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +146 -146
- teradataml/data/decisionforest_example.json +37 -37
- teradataml/data/decisionforestpredict_example.json +38 -38
- teradataml/data/decisiontree_example.json +21 -21
- teradataml/data/decisiontreepredict_example.json +45 -45
- teradataml/data/dfft2_size4_real.csv +17 -17
- teradataml/data/dfft2_test_matrix16.csv +17 -17
- teradataml/data/dfft2conv_real_4_4.csv +65 -65
- teradataml/data/diabetes.csv +443 -443
- teradataml/data/diabetes_test.csv +89 -89
- teradataml/data/dict_table.csv +5 -5
- teradataml/data/docperterm_table.csv +4 -4
- teradataml/data/docs/__init__.py +1 -1
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
- teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
- teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
- teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
- teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
- teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
- teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
- teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
- teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
- teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
- teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
- teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
- teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
- teradataml/data/dtw_example.json +17 -17
- teradataml/data/dtw_t1.csv +11 -11
- teradataml/data/dtw_t2.csv +4 -4
- teradataml/data/dwt2d_example.json +15 -15
- teradataml/data/dwt_example.json +14 -14
- teradataml/data/dwt_filter_dim.csv +5 -5
- teradataml/data/emission.csv +9 -9
- teradataml/data/emp_table_by_dept.csv +19 -19
- teradataml/data/employee_info.csv +4 -4
- teradataml/data/employee_table.csv +6 -6
- teradataml/data/excluding_event_table.csv +2 -2
- teradataml/data/finance_data.csv +6 -6
- teradataml/data/finance_data2.csv +61 -61
- teradataml/data/finance_data3.csv +93 -93
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -26
- teradataml/data/fmeasure_example.json +11 -11
- teradataml/data/followers_leaders.csv +10 -10
- teradataml/data/fpgrowth_example.json +12 -12
- teradataml/data/frequentpaths_example.json +29 -29
- teradataml/data/friends.csv +9 -9
- teradataml/data/fs_input.csv +33 -33
- teradataml/data/fs_input1.csv +33 -33
- teradataml/data/genData.csv +513 -513
- teradataml/data/geodataframe_example.json +39 -39
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -12
- teradataml/data/glm_example.json +56 -29
- teradataml/data/glml1l2_example.json +28 -28
- teradataml/data/glml1l2predict_example.json +54 -54
- teradataml/data/glmpredict_example.json +54 -54
- teradataml/data/gq_t1.csv +21 -21
- teradataml/data/hconvolve_complex_right.csv +5 -5
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
- teradataml/data/histogram_example.json +11 -11
- teradataml/data/hmmdecoder_example.json +78 -78
- teradataml/data/hmmevaluator_example.json +24 -24
- teradataml/data/hmmsupervised_example.json +10 -10
- teradataml/data/hmmunsupervised_example.json +7 -7
- teradataml/data/house_values.csv +12 -12
- teradataml/data/house_values2.csv +13 -13
- teradataml/data/housing_cat.csv +7 -7
- teradataml/data/housing_data.csv +9 -9
- teradataml/data/housing_test.csv +47 -47
- teradataml/data/housing_test_binary.csv +47 -47
- teradataml/data/housing_train.csv +493 -493
- teradataml/data/housing_train_attribute.csv +4 -4
- teradataml/data/housing_train_binary.csv +437 -437
- teradataml/data/housing_train_parameter.csv +2 -2
- teradataml/data/housing_train_response.csv +493 -493
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -370
- teradataml/data/ibm_stock1.csv +370 -370
- teradataml/data/identitymatch_example.json +21 -21
- teradataml/data/idf_table.csv +4 -4
- teradataml/data/impressions.csv +101 -101
- teradataml/data/inflation.csv +21 -21
- teradataml/data/initial.csv +3 -3
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +12 -12
- teradataml/data/insurance.csv +1339 -1339
- teradataml/data/interpolator_example.json +12 -12
- teradataml/data/iris_altinput.csv +481 -481
- teradataml/data/iris_attribute_output.csv +8 -8
- teradataml/data/iris_attribute_test.csv +121 -121
- teradataml/data/iris_attribute_train.csv +481 -481
- teradataml/data/iris_category_expect_predict.csv +31 -31
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -151
- teradataml/data/iris_response_train.csv +121 -121
- teradataml/data/iris_test.csv +31 -31
- teradataml/data/iris_train.csv +121 -121
- teradataml/data/join_table1.csv +4 -4
- teradataml/data/join_table2.csv +4 -4
- teradataml/data/jsons/anly_function_name.json +6 -6
- teradataml/data/jsons/byom/dataikupredict.json +147 -147
- teradataml/data/jsons/byom/datarobotpredict.json +146 -146
- teradataml/data/jsons/byom/h2opredict.json +194 -194
- teradataml/data/jsons/byom/onnxpredict.json +186 -186
- teradataml/data/jsons/byom/pmmlpredict.json +146 -146
- teradataml/data/jsons/paired_functions.json +435 -435
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
- teradataml/data/kmeans_example.json +22 -17
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +0 -0
- teradataml/data/knn_example.json +18 -18
- teradataml/data/knnrecommender_example.json +6 -6
- teradataml/data/knnrecommenderpredict_example.json +12 -12
- teradataml/data/lar_example.json +17 -17
- teradataml/data/larpredict_example.json +30 -30
- teradataml/data/lc_new_predictors.csv +5 -5
- teradataml/data/lc_new_reference.csv +9 -9
- teradataml/data/lda_example.json +8 -8
- teradataml/data/ldainference_example.json +14 -14
- teradataml/data/ldatopicsummary_example.json +8 -8
- teradataml/data/levendist_input.csv +13 -13
- teradataml/data/levenshteindistance_example.json +10 -10
- teradataml/data/linreg_example.json +9 -9
- teradataml/data/load_example_data.py +326 -323
- teradataml/data/loan_prediction.csv +295 -295
- teradataml/data/lungcancer.csv +138 -138
- teradataml/data/mappingdata.csv +12 -12
- teradataml/data/milk_timeseries.csv +157 -157
- teradataml/data/min_max_titanic.csv +4 -4
- teradataml/data/minhash_example.json +6 -6
- teradataml/data/ml_ratings.csv +7547 -7547
- teradataml/data/ml_ratings_10.csv +2445 -2445
- teradataml/data/model1_table.csv +5 -5
- teradataml/data/model2_table.csv +5 -5
- teradataml/data/models/iris_db_glm_model.pmml +56 -56
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
- teradataml/data/modularity_example.json +12 -12
- teradataml/data/movavg_example.json +7 -7
- teradataml/data/mtx1.csv +7 -7
- teradataml/data/mtx2.csv +13 -13
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -9
- teradataml/data/naivebayes_example.json +9 -9
- teradataml/data/naivebayespredict_example.json +19 -19
- teradataml/data/naivebayestextclassifier2_example.json +6 -6
- teradataml/data/naivebayestextclassifier_example.json +8 -8
- teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
- teradataml/data/name_Find_configure.csv +10 -10
- teradataml/data/namedentityfinder_example.json +14 -14
- teradataml/data/namedentityfinderevaluator_example.json +10 -10
- teradataml/data/namedentityfindertrainer_example.json +6 -6
- teradataml/data/nb_iris_input_test.csv +31 -31
- teradataml/data/nb_iris_input_train.csv +121 -121
- teradataml/data/nbp_iris_model.csv +13 -13
- teradataml/data/ner_extractor_text.csv +2 -2
- teradataml/data/ner_sports_test2.csv +29 -29
- teradataml/data/ner_sports_train.csv +501 -501
- teradataml/data/nerevaluator_example.json +5 -5
- teradataml/data/nerextractor_example.json +18 -18
- teradataml/data/nermem_sports_test.csv +17 -17
- teradataml/data/nermem_sports_train.csv +50 -50
- teradataml/data/nertrainer_example.json +6 -6
- teradataml/data/ngrams_example.json +6 -6
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
- teradataml/data/npath_example.json +23 -23
- teradataml/data/ntree_example.json +14 -14
- teradataml/data/numeric_strings.csv +4 -4
- teradataml/data/numerics.csv +4 -4
- teradataml/data/ocean_buoy.csv +17 -17
- teradataml/data/ocean_buoy2.csv +17 -17
- teradataml/data/ocean_buoys.csv +27 -27
- teradataml/data/ocean_buoys2.csv +10 -10
- teradataml/data/ocean_buoys_nonpti.csv +28 -28
- teradataml/data/ocean_buoys_seq.csv +29 -29
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -4
- teradataml/data/orders1.csv +11 -11
- teradataml/data/orders1_12.csv +12 -12
- teradataml/data/orders_ex.csv +4 -4
- teradataml/data/pack_example.json +8 -8
- teradataml/data/package_tracking.csv +19 -19
- teradataml/data/package_tracking_pti.csv +18 -18
- teradataml/data/pagerank_example.json +13 -13
- teradataml/data/paragraphs_input.csv +6 -6
- teradataml/data/pathanalyzer_example.json +7 -7
- teradataml/data/pathgenerator_example.json +7 -7
- teradataml/data/phrases.csv +7 -7
- teradataml/data/pivot_example.json +8 -8
- teradataml/data/pivot_input.csv +22 -22
- teradataml/data/playerRating.csv +31 -31
- teradataml/data/postagger_example.json +6 -6
- teradataml/data/posttagger_output.csv +44 -44
- teradataml/data/production_data.csv +16 -16
- teradataml/data/production_data2.csv +7 -7
- teradataml/data/randomsample_example.json +31 -31
- teradataml/data/randomwalksample_example.json +8 -8
- teradataml/data/rank_table.csv +6 -6
- teradataml/data/ref_mobile_data.csv +4 -4
- teradataml/data/ref_mobile_data_dense.csv +2 -2
- teradataml/data/ref_url.csv +17 -17
- teradataml/data/restaurant_reviews.csv +7 -7
- teradataml/data/river_data.csv +145 -145
- teradataml/data/roc_example.json +7 -7
- teradataml/data/roc_input.csv +101 -101
- teradataml/data/rule_inputs.csv +6 -6
- teradataml/data/rule_table.csv +2 -2
- teradataml/data/sales.csv +7 -7
- teradataml/data/sales_transaction.csv +501 -501
- teradataml/data/salesdata.csv +342 -342
- teradataml/data/sample_cities.csv +2 -2
- teradataml/data/sample_shapes.csv +10 -10
- teradataml/data/sample_streets.csv +2 -2
- teradataml/data/sampling_example.json +15 -15
- teradataml/data/sax_example.json +8 -8
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -23
- teradataml/data/scale_housing.csv +11 -11
- teradataml/data/scale_housing_test.csv +6 -6
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -11
- teradataml/data/scalebypartition_example.json +13 -13
- teradataml/data/scalemap_example.json +13 -13
- teradataml/data/scalesummary_example.json +12 -12
- teradataml/data/score_category.csv +101 -101
- teradataml/data/score_summary.csv +4 -4
- teradataml/data/script_example.json +9 -9
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +15 -15
- teradataml/data/scripts/mapper_replace.py +15 -15
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
- teradataml/data/seeds.csv +10 -10
- teradataml/data/sentenceextractor_example.json +6 -6
- teradataml/data/sentiment_extract_input.csv +11 -11
- teradataml/data/sentiment_train.csv +16 -16
- teradataml/data/sentiment_word.csv +20 -20
- teradataml/data/sentiment_word_input.csv +19 -19
- teradataml/data/sentimentextractor_example.json +24 -24
- teradataml/data/sentimenttrainer_example.json +8 -8
- teradataml/data/sequence_table.csv +10 -10
- teradataml/data/seriessplitter_example.json +7 -7
- teradataml/data/sessionize_example.json +17 -17
- teradataml/data/sessionize_table.csv +116 -116
- teradataml/data/setop_test1.csv +24 -24
- teradataml/data/setop_test2.csv +22 -22
- teradataml/data/soc_nw_edges.csv +10 -10
- teradataml/data/soc_nw_vertices.csv +7 -7
- teradataml/data/souvenir_timeseries.csv +167 -167
- teradataml/data/sparse_iris_attribute.csv +5 -5
- teradataml/data/sparse_iris_test.csv +121 -121
- teradataml/data/sparse_iris_train.csv +601 -601
- teradataml/data/star1.csv +6 -6
- teradataml/data/state_transition.csv +5 -5
- teradataml/data/stock_data.csv +53 -53
- teradataml/data/stock_movement.csv +11 -11
- teradataml/data/stock_vol.csv +76 -76
- teradataml/data/stop_words.csv +8 -8
- teradataml/data/store_sales.csv +37 -37
- teradataml/data/stringsimilarity_example.json +7 -7
- teradataml/data/strsimilarity_input.csv +13 -13
- teradataml/data/students.csv +101 -101
- teradataml/data/svm_iris_input_test.csv +121 -121
- teradataml/data/svm_iris_input_train.csv +481 -481
- teradataml/data/svm_iris_model.csv +7 -7
- teradataml/data/svmdense_example.json +9 -9
- teradataml/data/svmdensepredict_example.json +18 -18
- teradataml/data/svmsparse_example.json +7 -7
- teradataml/data/svmsparsepredict_example.json +13 -13
- teradataml/data/svmsparsesummary_example.json +7 -7
- teradataml/data/target_mobile_data.csv +13 -13
- teradataml/data/target_mobile_data_dense.csv +5 -5
- teradataml/data/templatedata.csv +1201 -1201
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +150 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -53
- teradataml/data/test_pacf_12.csv +37 -37
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -109
- teradataml/data/text_inputs.csv +6 -6
- teradataml/data/textchunker_example.json +7 -7
- teradataml/data/textclassifier_example.json +6 -6
- teradataml/data/textclassifier_input.csv +7 -7
- teradataml/data/textclassifiertrainer_example.json +6 -6
- teradataml/data/textmorph_example.json +5 -5
- teradataml/data/textparser_example.json +15 -15
- teradataml/data/texttagger_example.json +11 -11
- teradataml/data/texttokenizer_example.json +6 -6
- teradataml/data/texttrainer_input.csv +11 -11
- teradataml/data/tf_example.json +6 -6
- teradataml/data/tfidf_example.json +13 -13
- teradataml/data/tfidf_input1.csv +201 -201
- teradataml/data/tfidf_train.csv +6 -6
- teradataml/data/time_table1.csv +535 -535
- teradataml/data/time_table2.csv +14 -14
- teradataml/data/timeseriesdata.csv +1601 -1601
- teradataml/data/timeseriesdatasetsd4.csv +105 -105
- teradataml/data/titanic.csv +892 -892
- teradataml/data/token_table.csv +696 -696
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +27 -27
- teradataml/data/transformation_table.csv +5 -5
- teradataml/data/transformation_table_new.csv +1 -1
- teradataml/data/tv_spots.csv +16 -16
- teradataml/data/twod_climate_data.csv +117 -117
- teradataml/data/uaf_example.json +475 -475
- teradataml/data/univariatestatistics_example.json +8 -8
- teradataml/data/unpack_example.json +9 -9
- teradataml/data/unpivot_example.json +9 -9
- teradataml/data/unpivot_input.csv +8 -8
- teradataml/data/us_air_pass.csv +36 -36
- teradataml/data/us_population.csv +624 -624
- teradataml/data/us_states_shapes.csv +52 -52
- teradataml/data/varmax_example.json +17 -17
- teradataml/data/vectordistance_example.json +25 -25
- teradataml/data/ville_climatedata.csv +121 -121
- teradataml/data/ville_tempdata.csv +12 -12
- teradataml/data/ville_tempdata1.csv +12 -12
- teradataml/data/ville_temperature.csv +11 -11
- teradataml/data/waveletTable.csv +1605 -1605
- teradataml/data/waveletTable2.csv +1605 -1605
- teradataml/data/weightedmovavg_example.json +8 -8
- teradataml/data/wft_testing.csv +5 -5
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +5 -5
- teradataml/data/word_embed_input_table2.csv +4 -4
- teradataml/data/word_embed_model.csv +22 -22
- teradataml/data/words_input.csv +13 -13
- teradataml/data/xconvolve_complex_left.csv +6 -6
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
- teradataml/data/xgboost_example.json +35 -35
- teradataml/data/xgboostpredict_example.json +31 -31
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +1769 -1698
- teradataml/dataframe/data_transfer.py +2812 -2745
- teradataml/dataframe/dataframe.py +17630 -16946
- teradataml/dataframe/dataframe_utils.py +1875 -1740
- teradataml/dataframe/fastload.py +794 -603
- teradataml/dataframe/indexer.py +424 -424
- teradataml/dataframe/setop.py +1179 -1166
- teradataml/dataframe/sql.py +10174 -6432
- teradataml/dataframe/sql_function_parameters.py +439 -388
- teradataml/dataframe/sql_functions.py +652 -652
- teradataml/dataframe/sql_interfaces.py +220 -220
- teradataml/dataframe/vantage_function_types.py +674 -630
- teradataml/dataframe/window.py +693 -692
- teradataml/dbutils/__init__.py +3 -3
- teradataml/dbutils/dbutils.py +1167 -1150
- teradataml/dbutils/filemgr.py +267 -267
- teradataml/gen_ai/__init__.py +2 -2
- teradataml/gen_ai/convAI.py +472 -472
- teradataml/geospatial/__init__.py +3 -3
- teradataml/geospatial/geodataframe.py +1105 -1094
- teradataml/geospatial/geodataframecolumn.py +392 -387
- teradataml/geospatial/geometry_types.py +925 -925
- teradataml/hyperparameter_tuner/__init__.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
- teradataml/hyperparameter_tuner/utils.py +281 -187
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +130 -124
- teradataml/options/configure.py +358 -336
- teradataml/options/display.py +176 -176
- teradataml/plot/__init__.py +2 -2
- teradataml/plot/axis.py +1388 -1388
- teradataml/plot/constants.py +15 -15
- teradataml/plot/figure.py +398 -398
- teradataml/plot/plot.py +760 -760
- teradataml/plot/query_generator.py +83 -83
- teradataml/plot/subplot.py +216 -216
- teradataml/scriptmgmt/UserEnv.py +3791 -3761
- teradataml/scriptmgmt/__init__.py +3 -3
- teradataml/scriptmgmt/lls_utils.py +1719 -1604
- teradataml/series/series.py +532 -532
- teradataml/series/series_utils.py +71 -71
- teradataml/table_operators/Apply.py +949 -917
- teradataml/table_operators/Script.py +1718 -1982
- teradataml/table_operators/TableOperator.py +1255 -1616
- teradataml/table_operators/__init__.py +2 -3
- teradataml/table_operators/apply_query_generator.py +262 -262
- teradataml/table_operators/query_generator.py +507 -507
- teradataml/table_operators/table_operator_query_generator.py +460 -460
- teradataml/table_operators/table_operator_util.py +631 -639
- teradataml/table_operators/templates/dataframe_apply.template +184 -184
- teradataml/table_operators/templates/dataframe_map.template +176 -176
- teradataml/table_operators/templates/script_executor.template +170 -170
- teradataml/utils/dtypes.py +684 -684
- teradataml/utils/internal_buffer.py +84 -84
- teradataml/utils/print_versions.py +205 -205
- teradataml/utils/utils.py +410 -410
- teradataml/utils/validators.py +2277 -2115
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
- teradataml-20.0.0.1.dist-info/RECORD +1056 -0
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- teradataml-17.20.0.7.dist-info/RECORD +0 -1280
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
|
@@ -1,12 +1,12 @@
|
|
|
1
|
-
{
|
|
2
|
-
"friends" : {
|
|
3
|
-
"friends_name" : "varchar(20)",
|
|
4
|
-
"location" : "varchar(20)",
|
|
5
|
-
"group_id" : "varchar(20)"
|
|
6
|
-
},
|
|
7
|
-
"followers_leaders" :{
|
|
8
|
-
"follower" : "varchar(20)",
|
|
9
|
-
"leader" : "varchar(20)",
|
|
10
|
-
"intensity" : "real"
|
|
11
|
-
}
|
|
12
|
-
}
|
|
1
|
+
{
|
|
2
|
+
"friends" : {
|
|
3
|
+
"friends_name" : "varchar(20)",
|
|
4
|
+
"location" : "varchar(20)",
|
|
5
|
+
"group_id" : "varchar(20)"
|
|
6
|
+
},
|
|
7
|
+
"followers_leaders" :{
|
|
8
|
+
"follower" : "varchar(20)",
|
|
9
|
+
"leader" : "varchar(20)",
|
|
10
|
+
"intensity" : "real"
|
|
11
|
+
}
|
|
12
|
+
}
|
|
@@ -1,8 +1,8 @@
|
|
|
1
|
-
{
|
|
2
|
-
"ibm_stock": {
|
|
3
|
-
"id": "integer",
|
|
4
|
-
"name": "varchar(15)",
|
|
5
|
-
"\"period\"": "date",
|
|
6
|
-
"stockprice": "real"
|
|
7
|
-
}
|
|
1
|
+
{
|
|
2
|
+
"ibm_stock": {
|
|
3
|
+
"id": "integer",
|
|
4
|
+
"name": "varchar(15)",
|
|
5
|
+
"\"period\"": "date",
|
|
6
|
+
"stockprice": "real"
|
|
7
|
+
}
|
|
8
8
|
}
|
teradataml/data/mtx1.csv
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
|
-
buoy_id,row_i,column_i,speed1
|
|
2
|
-
35,1,1,1e+00
|
|
3
|
-
35,1,2,2e+00
|
|
4
|
-
35,1,3,3e+00
|
|
5
|
-
35,2,1,4e+00
|
|
6
|
-
35,2,2,5e+00
|
|
7
|
-
35,2,3,6e+00
|
|
1
|
+
buoy_id,row_i,column_i,speed1
|
|
2
|
+
35,1,1,1e+00
|
|
3
|
+
35,1,2,2e+00
|
|
4
|
+
35,1,3,3e+00
|
|
5
|
+
35,2,1,4e+00
|
|
6
|
+
35,2,2,5e+00
|
|
7
|
+
35,2,3,6e+00
|
teradataml/data/mtx2.csv
CHANGED
|
@@ -1,13 +1,13 @@
|
|
|
1
|
-
buoy_id,row_i,column_i,speed2
|
|
2
|
-
38,1,1,2e+00
|
|
3
|
-
35,1,1,1e+00
|
|
4
|
-
38,1,2,8e+00
|
|
5
|
-
35,1,2,4e+00
|
|
6
|
-
38,2,1,4e+00
|
|
7
|
-
35,2,1,2e+00
|
|
8
|
-
38,2,2,1e+01
|
|
9
|
-
35,2,2,5e+00
|
|
10
|
-
38,3,1,6e+00
|
|
11
|
-
35,3,1,3e+00
|
|
12
|
-
38,3,2,1.2e+01
|
|
13
|
-
35,3,2,6e+00
|
|
1
|
+
buoy_id,row_i,column_i,speed2
|
|
2
|
+
38,1,1,2e+00
|
|
3
|
+
35,1,1,1e+00
|
|
4
|
+
38,1,2,8e+00
|
|
5
|
+
35,1,2,4e+00
|
|
6
|
+
38,2,1,4e+00
|
|
7
|
+
35,2,1,2e+00
|
|
8
|
+
38,2,2,1e+01
|
|
9
|
+
35,2,2,5e+00
|
|
10
|
+
38,3,1,6e+00
|
|
11
|
+
35,3,1,3e+00
|
|
12
|
+
38,3,2,1.2e+01
|
|
13
|
+
35,3,2,6e+00
|
|
@@ -0,0 +1,401 @@
|
|
|
1
|
+
col1,col2,col3,col4,label,group_column,partition_column_1,partition_column_2
|
|
2
|
+
-1.5619663534364174e+00,-1.0129061161937136e+00,-1.6521719822790243e-02,-1.0872793325122294e+00,0,9,1,11
|
|
3
|
+
-1.910596764989974e+00,-1.565935822754707e+00,3.2993890052681746e-02,-1.463975026596149e+00,0,9,1,10
|
|
4
|
+
-1.7959652399461496e+00,-1.7400651839794947e+00,7.46383155776787e-02,-1.486025578644776e+00,0,11,1,11
|
|
5
|
+
-3.105216736652249e-01,2.556528984098434e+00,-4.520667673710633e-01,9.142980356872824e-01,1,8,1,11
|
|
6
|
+
2.403354427469291e+00,-5.650586837835045e-01,3.709852868398361e-01,8.025156103624715e-01,1,9,1,10
|
|
7
|
+
-9.429268731123421e-01,1.7736457159891494e+00,-3.9809489886000066e-01,3.21281796252176e-01,1,8,1,10
|
|
8
|
+
1.766822293075869e+00,5.076426749493556e-01,1.2252563769418684e-01,9.683205525268038e-01,1,12,0,11
|
|
9
|
+
1.2558800922042508e+00,8.151851836838138e-01,1.315873825986899e-02,8.745295013897556e-01,1,9,1,10
|
|
10
|
+
1.2829086164365904e+00,8.676122013530927e-01,7.765563590800828e-03,9.076491419187571e-01,0,10,0,10
|
|
11
|
+
9.641820718442888e-01,1.0291938292386615e+00,-5.553295261581913e-02,8.367370942529135e-01,1,12,0,10
|
|
12
|
+
2.0367341765484186e+00,9.832555885867584e-01,7.64683581820573e-02,1.2794118830187975e+00,0,12,0,11
|
|
13
|
+
-3.936796834123787e-01,-9.52071431702522e-01,1.0921985063952863e-01,-5.596454441702241e-01,0,12,1,10
|
|
14
|
+
-1.3205387807893145e+00,-9.823404377762777e-01,6.534779561555487e-03,-9.708675531904407e-01,0,11,1,10
|
|
15
|
+
-1.206569901395833e+00,-1.7047299933558167e+00,1.3731860827243544e-01,-1.2179329612441814e+00,0,11,0,10
|
|
16
|
+
-1.0698973357592556e+00,-6.254768551825107e-01,-2.2436209470259635e-02,-7.167429227914257e-01,0,9,1,11
|
|
17
|
+
7.754714707166325e-01,-2.315557101031199e+00,4.668361323802441e-01,-6.154629721299252e-01,0,8,1,11
|
|
18
|
+
-1.1788174940048897e+00,-2.7131687715361963e-01,-9.271324245718937e-02,-6.18440994688334e-01,1,12,1,11
|
|
19
|
+
1.2756417979389776e+00,-9.733460902348429e-01,3.064941492708205e-01,1.499206601086847e-01,0,9,0,10
|
|
20
|
+
2.860742660198474e-01,1.772803152800326e+00,-2.552677197330185e-01,8.497590364985249e-01,1,10,1,11
|
|
21
|
+
-9.986726219773983e-01,7.009878986657848e-01,-2.3001750951288702e-01,-1.4238312867610026e-01,1,12,1,10
|
|
22
|
+
-1.5564820992914572e+00,1.8263962813038326e-01,-2.1043168735970635e-01,-5.948699654904157e-01,1,9,0,11
|
|
23
|
+
-1.097468670216047e+00,1.9708248362274672e+00,-4.481238070563971e-01,3.356075037356632e-01,1,11,0,10
|
|
24
|
+
5.760991553846762e-01,1.6411008040033468e+00,-2.0016368040835725e-01,9.205685499577815e-01,1,10,1,11
|
|
25
|
+
-7.377423691174478e-01,1.1178412193723117e+00,-2.6755584900112767e-01,1.4075819799781658e-01,1,12,0,10
|
|
26
|
+
1.335341689453424e+00,-3.8652751908111793e-01,2.1793465540341134e-01,4.161433754371209e-01,0,12,1,10
|
|
27
|
+
9.082253663109259e-01,-1.1692326099880423e+00,2.957120760853512e-01,-8.846679694776516e-02,0,9,0,11
|
|
28
|
+
1.816216258085091e+00,1.3532388056907703e+00,-9.340307501774281e-03,1.3361806853815001e+00,0,9,1,10
|
|
29
|
+
2.107510044982492e+00,1.2903815033055892e+00,3.4708156157339354e-02,1.4357555059942069e+00,0,8,0,11
|
|
30
|
+
-7.48043553379173e-02,-5.028751903389599e-01,7.314603476816459e-02,-2.3831389584413748e-01,0,11,1,11
|
|
31
|
+
-6.152257788527016e-01,-5.464720050729892e-01,1.7496118036175914e-02,-4.887201062539174e-01,0,12,0,10
|
|
32
|
+
-1.5357597797111833e+00,1.6373045050236446e-01,-2.0494875480536834e-01,-5.937042296572291e-01,1,8,1,10
|
|
33
|
+
-9.379603909920773e-01,-6.862278910281574e-01,2.7677857743147877e-03,-6.848738501851543e-01,0,11,0,10
|
|
34
|
+
-1.6344673589885939e-01,-5.190747740529623e-01,6.549053302421415e-02,-2.830956624587193e-01,0,9,1,11
|
|
35
|
+
-8.742175269440722e-01,-1.4610050724295185e+00,1.3624509297281823e-01,-9.750243195561323e-01,0,10,0,11
|
|
36
|
+
-1.7234536455619842e+00,-2.0234284760707233e-01,-1.6717073346171407e-01,-8.245183929643384e-01,0,8,0,10
|
|
37
|
+
9.817873280327158e-01,7.94929355383187e-01,-1.5367954135009021e-02,7.482882986030801e-01,1,10,1,10
|
|
38
|
+
1.6935472989076792e+00,4.0797671661621315e-01,1.302364995697196e-01,8.959386214517325e-01,1,10,0,11
|
|
39
|
+
7.515526966965824e-02,2.4057931176217258e+00,-3.827600346114281e-01,1.0184635719345185e+00,1,8,1,10
|
|
40
|
+
2.3164855319438926e-01,-3.317696752089145e+00,5.667713969126181e-01,-1.2602357926537873e+00,0,9,1,10
|
|
41
|
+
2.278604559340221e+00,-1.132650630050176e-01,2.829828265932067e-01,9.340258796596599e-01,1,12,0,11
|
|
42
|
+
1.9363214103550361e+00,1.2209483828049255e+00,2.613132518586378e-02,1.3336349799074219e+00,0,8,0,11
|
|
43
|
+
1.2648681332898146e+00,1.4536029649612936e-01,1.2320037942104187e-01,6.038383092532332e-01,0,9,1,11
|
|
44
|
+
-1.0803127747073438e-01,-7.381516102619048e-01,1.0757396183380799e-01,-3.490498845676986e-01,0,8,0,11
|
|
45
|
+
1.4397569452817076e+00,9.118124236631164e-02,1.5232175859396216e-01,6.568828204813797e-01,0,12,0,10
|
|
46
|
+
-1.0512113087951243e+00,7.922601773460847e-02,-1.3494038750680176e-01,-4.198476015029035e-01,1,12,0,11
|
|
47
|
+
4.858447009286827e-01,1.8752624050326396e+00,-2.48746690380766e-01,9.777152088902752e-01,1,10,0,10
|
|
48
|
+
1.0339653425820392e+00,-1.0111615946996322e+00,2.8458849115986645e-01,3.0430114320397772e-02,0,9,0,11
|
|
49
|
+
1.2913072393990745e+00,5.299990116547275e-01,6.367920051715466e-02,7.728766182156428e-01,0,8,0,11
|
|
50
|
+
-5.508176733514889e-01,1.3170435580810724e+00,-2.782688836221961e-01,3.0284163835737865e-01,1,11,1,11
|
|
51
|
+
2.0646576099693106e+00,-5.04978858089151e-01,3.2188518251501264e-01,6.814054285007303e-01,1,11,0,10
|
|
52
|
+
1.3704326226957102e+00,-1.8467060507952004e-01,1.8916137627726476e-01,5.139828970464947e-01,0,9,0,10
|
|
53
|
+
1.2181497435936939e+00,7.176223416841352e-01,2.4654189115395672e-02,8.18304010822483e-01,1,12,0,11
|
|
54
|
+
-1.0257898611087723e+00,-2.476906693605836e-01,-7.879096052845835e-02,-5.429109785107725e-01,1,11,0,10
|
|
55
|
+
-7.810450617904684e-01,1.340399560812375e+00,-3.087994881180771e-01,2.133514352373293e-01,1,9,1,11
|
|
56
|
+
-1.876448117768668e+00,-1.0417196347697408e+00,-4.834511398822236e-02,-1.2344071410531203e+00,0,8,0,11
|
|
57
|
+
1.1572968157017294e+00,-1.6874964511372885e+00,4.089650306199535e-01,-1.9372905334691626e-01,0,10,1,10
|
|
58
|
+
9.788311852662008e-01,-1.2654529082239838e+00,3.195671568018635e-01,-9.752639322603407e-02,0,8,1,10
|
|
59
|
+
6.827268587195439e-01,-4.9154871313965254e-01,1.5925416691391428e-01,9.228424106276586e-02,0,8,1,10
|
|
60
|
+
-1.6185873917476146e-01,2.0717035580473464e+00,-3.5591279841749596e-01,7.79537627171012e-01,1,12,0,11
|
|
61
|
+
-9.064870739809135e-01,-5.273887335569944e-01,-1.9425388356773543e-02,-6.062237516752229e-01,1,10,0,11
|
|
62
|
+
1.7712753572040656e+00,4.7018240258731114e-01,1.2913841995509262e-01,9.548818254834398e-01,1,9,0,10
|
|
63
|
+
-1.2173132357157672e+00,-7.509973872204208e-01,-1.9126071715170542e-02,-8.316243745705703e-01,0,9,0,11
|
|
64
|
+
2.7267668213668594e-01,-2.742244432362955e+00,4.778936529606326e-01,-1.0067062671697868e+00,0,8,1,10
|
|
65
|
+
1.4142103430950104e-01,-6.75032467746645e-01,1.262648493978953e-01,-2.1584162954695296e-01,0,12,1,10
|
|
66
|
+
-1.306776573860119e+00,-4.8176994950508223e-01,-7.332336403575404e-02,-7.597639584290327e-01,1,8,0,11
|
|
67
|
+
1.5104235245771154e+00,-4.8750057337088826e-01,2.546930582775772e-01,4.500902626290586e-01,0,11,1,11
|
|
68
|
+
6.694011171349543e-01,9.652764024551586e-01,-7.935670591231186e-02,6.836973223055627e-01,1,8,1,10
|
|
69
|
+
-7.417618124884573e-01,-1.319910570598342e+00,1.286637466217393e-01,-8.601963238449717e-01,1,9,1,11
|
|
70
|
+
1.1605466330165264e+00,1.1015009177156547e+00,-4.450080440161652e-02,9.508685100924439e-01,1,11,1,11
|
|
71
|
+
4.235175772933528e-01,1.8448687462105275e+00,-2.5103717677070886e-01,9.38438445813025e-01,1,9,0,11
|
|
72
|
+
1.1129850633886071e+00,-4.2599735128923355e-01,1.9854127984504727e-01,3.04287788924238e-01,0,8,0,11
|
|
73
|
+
-8.427055012466901e-01,-5.801675897846971e-01,-3.431683450694875e-03,-6.004132503092924e-01,0,12,1,10
|
|
74
|
+
-8.725115732005013e-01,3.578984212246439e-01,-1.5954022779247112e-01,-2.2872877898582522e-01,1,9,1,11
|
|
75
|
+
1.4449608530598825e+00,-2.0869130959105853e-01,2.0172308787093263e-01,5.362053950716629e-01,0,10,1,11
|
|
76
|
+
-1.408923826496847e+00,-4.690247436226771e-01,-8.725689255923828e-02,-7.984923321756652e-01,1,12,1,11
|
|
77
|
+
-7.876810733738175e-01,1.496993001484373e+00,-3.3505181243071724e-01,2.7468309336337515e-01,1,11,0,10
|
|
78
|
+
1.0823357639576783e+00,8.463573360449473e-01,-1.2062715650015543e-02,8.126330635154579e-01,1,11,1,11
|
|
79
|
+
-1.831416347018716e+00,-1.234122659419172e+00,-1.180778693823778e-02,-1.2938958318658658e+00,0,12,0,11
|
|
80
|
+
-7.139936033616989e-01,4.121626367193102e-01,-1.4996611296650492e-01,-1.382779443198878e-01,1,11,0,10
|
|
81
|
+
1.069805881529459e+00,6.585724650114038e-01,1.7040066172502394e-02,7.302693334557728e-01,1,11,0,10
|
|
82
|
+
-8.54370060892586e-01,2.7090187717767833e+00,-5.40023005034378e-01,7.427923873089803e-01,1,12,1,10
|
|
83
|
+
-1.5950429823792485e+00,-1.4615919876138e+00,5.265098128914833e-02,-1.2854263590651653e+00,0,9,0,11
|
|
84
|
+
1.0641083526365323e+00,-1.5050848299019488e+00,3.6846245632373764e-01,-1.590569748483569e-01,0,12,0,10
|
|
85
|
+
4.030989084149246e-01,-1.3506022351361668e-02,4.899856493575818e-02,1.6791195387812516e-01,0,10,1,11
|
|
86
|
+
1.1285642644365688e+00,-6.565295600298975e-01,2.378637107215194e-01,2.1649705009472453e-01,0,12,0,11
|
|
87
|
+
-1.0257326984466237e+00,6.266704829970496e-01,-2.210658552586876e-01,-1.8448913499621927e-01,1,11,1,11
|
|
88
|
+
-1.8534296768572087e+00,-1.8065645971857163e+00,7.878775398310026e-02,-1.5380096020217104e+00,0,11,1,10
|
|
89
|
+
-3.9364709515585106e-01,-1.083762424313826e+00,1.3065321861357682e-01,-6.136110492999922e-01,0,12,0,11
|
|
90
|
+
1.0143314593125652e-01,-8.546149800176146e-01,1.5084494954723654e-01,-3.0665805393190904e-01,0,12,1,10
|
|
91
|
+
-8.283116809506073e-01,-1.25577411767092e+00,1.0817840688890008e-01,-8.711482807194489e-01,0,10,0,11
|
|
92
|
+
1.0142578062196308e+00,-1.0630883927955401e+00,2.90750251760953e-01,6.65634132343107e-04,0,11,1,10
|
|
93
|
+
1.9042638597238348e+00,-1.0840862729072298e-01,2.3873067582228352e-01,7.749427628728186e-01,1,8,0,11
|
|
94
|
+
1.1947188659549985e+00,-4.092557004250411e-01,2.0530647002975383e-01,3.4631907888930985e-01,0,8,0,11
|
|
95
|
+
1.3168702548214934e+00,1.267836182223021e-01,1.3226086796609055e-01,6.185996119119529e-01,0,10,1,11
|
|
96
|
+
-9.037168329384393e-01,1.9363668121977415e+00,-4.2002151371875773e-01,4.048520939660887e-01,1,8,0,11
|
|
97
|
+
1.73895339608822e+00,4.4706072306152933e-01,1.2914826505865964e-01,9.31496635016423e-01,1,12,1,11
|
|
98
|
+
1.4941377714750228e+00,1.7280181443064735e-01,1.4535369553516733e-01,7.137381121867162e-01,0,12,0,11
|
|
99
|
+
7.005717218795817e-01,7.675520802509473e-01,-4.356277960070058e-02,6.160631795887865e-01,1,12,0,11
|
|
100
|
+
1.5826472560653726e+00,4.159594387147455e-01,1.1606173169067016e-01,8.514919165639657e-01,1,11,1,10
|
|
101
|
+
7.738456358321019e-01,-1.586752959428531e+00,3.480517873210538e-01,-3.1742855425305916e-01,0,8,0,10
|
|
102
|
+
1.6884231266187257e+00,1.2564595510248897e+00,-8.428878735685152e-03,1.241523584244941e+00,0,11,1,10
|
|
103
|
+
-8.44049684364818e-01,1.2398712923709525e+00,-2.997558901886703e-01,1.4503524887973646e-01,1,11,0,11
|
|
104
|
+
-2.186418534416472e+00,-1.0496619640998948e+00,-8.304102036564406e-02,-1.3710387579983838e+00,0,11,1,11
|
|
105
|
+
1.3531010625207152e-01,1.7026270354077593e+00,-2.6135231354216903e-01,7.561223347501631e-01,1,8,1,10
|
|
106
|
+
1.1522784943778421e+00,-3.85591649876342e-01,1.9652827517469929e-01,3.377573623671578e-01,0,11,0,10
|
|
107
|
+
-1.1186911188783615e+00,8.893996838544853e-01,-2.746115014132267e-01,-1.1679620769337506e-01,1,10,0,11
|
|
108
|
+
-1.2737711404505985e+00,-4.081103676867315e-05,-1.4788133881507282e-01,-5.481032592709683e-01,1,12,0,11
|
|
109
|
+
-1.3777880372564373e+00,1.3980898715295753e+00,-3.8747055274588726e-01,-1.977197874632297e-02,1,9,1,11
|
|
110
|
+
-1.2011699609085e+00,-1.3113290698053108e+00,7.392888868973127e-02,-1.0543559260492055e+00,0,9,0,10
|
|
111
|
+
2.1631202796016336e-01,-1.2392756061030403e+00,2.2677706188125524e-01,-4.1489812102284207e-01,0,12,1,10
|
|
112
|
+
-4.431496257229497e-01,1.1334304733726985e-01,-6.9894659242623e-02,-1.4422242745532696e-01,1,8,1,10
|
|
113
|
+
-7.74516765086447e-01,1.0384494256972983e+00,-2.589063166473753e-01,9.239228322520782e-02,1,12,0,11
|
|
114
|
+
6.049642421294295e-01,-2.252696413797016e+00,4.3681073608023124e-01,-6.630635793945326e-01,0,10,1,11
|
|
115
|
+
8.599210257010648e-02,1.5082348871384124e+00,-2.3544554598747097e-01,6.552208752774811e-01,1,8,0,11
|
|
116
|
+
-2.4672296906099722e-01,1.632967309453317e+00,-2.943718309009588e-01,5.631854066850903e-01,1,10,0,10
|
|
117
|
+
-3.288465171103229e+00,-2.049157792619524e+00,-4.8347129678866396e-02,-2.254924018509144e+00,0,12,0,11
|
|
118
|
+
9.200310639747121e-01,-1.2064825463748825e+00,3.031442900958209e-01,-9.865556911059276e-02,0,9,0,10
|
|
119
|
+
-2.426710078470182e+00,-5.877001452801761e-01,-1.8611278792698088e-01,-1.2850766075433755e+00,0,11,1,10
|
|
120
|
+
6.792800289277086e-01,1.486372650457171e+00,-1.6300579005818716e-01,9.015434169311605e-01,1,12,0,11
|
|
121
|
+
6.222043256751558e-01,-1.8171087675430369e+00,3.6793079824129205e-01,-4.770997163216006e-01,0,11,1,11
|
|
122
|
+
-8.412409028546991e-01,1.7368406309747573e+00,-3.802997519050155e-01,3.499496352201386e-01,1,12,0,10
|
|
123
|
+
5.870288650510758e-02,-2.9351653099057438e+00,4.844440614227178e-01,-1.177853823564227e+00,0,9,1,10
|
|
124
|
+
1.0525918557315794e+00,1.1982116918541663e+00,-7.277200487147768e-02,9.440583978324053e-01,1,12,1,10
|
|
125
|
+
4.5487137951311973e-01,-2.340037949218819e+00,4.3359734602867556e-01,-7.634474693527826e-01,0,8,1,11
|
|
126
|
+
1.413963994690396e+00,3.2934226567058045e-01,1.105720775734169e-01,7.434057422457934e-01,0,10,0,11
|
|
127
|
+
-4.241665405110945e-01,2.7479044602630065e+00,-4.9640303544442715e-01,9.438422491078122e-01,1,9,1,11
|
|
128
|
+
-1.0127131449495543e+00,1.1399375973380537e+00,-3.030762973945189e-01,3.149920382808841e-02,1,9,0,10
|
|
129
|
+
1.3037343625649818e+00,9.077146554878315e-01,3.657761331044479e-03,9.330480199211126e-01,1,8,0,10
|
|
130
|
+
-9.990362757771939e-01,1.6160924821903395e+00,-3.7897128877247843e-01,2.3255821770168383e-01,1,10,0,10
|
|
131
|
+
-1.336697857987846e+00,-3.155219167009986e-01,-1.0385022187623652e-01,-7.044942589297241e-01,1,11,0,11
|
|
132
|
+
-1.0385201754281599e+00,4.947734202448768e-01,-2.0108739554086086e-01,-2.440555085309583e-01,1,8,0,11
|
|
133
|
+
-9.099894030875804e-01,1.1056589982159089e+00,-2.85571788222214e-01,6.1649178685864225e-02,1,11,0,10
|
|
134
|
+
1.4035162049519934e-01,-6.670073512509909e-01,1.2483479051245348e-01,-2.13012319733515e-01,0,12,1,10
|
|
135
|
+
-2.274605518910241e+00,-1.6346644748721917e+00,1.9155308121665549e-03,-1.6487746888644437e+00,0,11,1,10
|
|
136
|
+
-4.403388940294919e-01,2.290675982008444e+00,-4.238775995754397e-01,7.494673227017785e-01,1,8,1,10
|
|
137
|
+
1.6195800628402206e+00,4.7907086567563295e-01,1.1007983461945947e-01,8.932527341575232e-01,1,8,0,10
|
|
138
|
+
-1.5819644239087314e+00,-9.365785479499765e-01,-3.126404596291063e-02,-1.0645978579778592e+00,0,11,1,10
|
|
139
|
+
-1.5984278679100012e+00,-1.9081404812395064e-01,-1.5453097001868507e-01,-7.659958779615201e-01,1,9,1,10
|
|
140
|
+
1.2650808602331634e+00,6.771697780626188e-01,3.6685702738409806e-02,8.219164879044032e-01,1,8,0,11
|
|
141
|
+
-2.0096020417395843e+00,-5.078211521821773e-01,-1.506839240498355e-01,-1.0728585589595547e+00,0,8,0,10
|
|
142
|
+
7.310643715800431e-01,-1.7427860510320388e+00,3.684754601693211e-01,-3.9979411432685824e-01,0,8,0,10
|
|
143
|
+
-2.2442943020746475e+00,-1.713672154368787e+00,1.8291363267746052e-02,-1.6681171229184164e+00,0,9,0,11
|
|
144
|
+
5.79671001277728e-01,-5.73365219679928e-01,1.6060282214309085e-01,1.440442754473703e-02,0,9,1,10
|
|
145
|
+
-8.105262923234027e-01,-1.134015223960283e+00,9.042996353629612e-02,-8.13586969448157e-01,0,8,0,10
|
|
146
|
+
5.66927591844206e-01,-1.7864797343013856e+00,3.565288843060528e-01,-4.883298268741737e-01,0,8,0,11
|
|
147
|
+
-7.387336618373876e-01,1.9407153721032402e+00,-4.0157418444438214e-01,4.776245837359359e-01,1,12,1,11
|
|
148
|
+
9.932489746392841e-01,1.1116235129331409e+00,-6.557168851035426e-02,8.830317980763334e-01,1,9,1,10
|
|
149
|
+
6.688323953960087e-01,1.279137889554843e+00,-1.304962459028432e-01,8.121032160032852e-01,1,11,0,11
|
|
150
|
+
9.692813752023611e-01,9.438094064258566e-01,-4.1046621999140304e-02,8.03932511720197e-01,1,9,1,11
|
|
151
|
+
1.9626893537873635e+00,1.2250596232346727e+00,2.85237018026106e-02,1.3466659316222755e+00,0,12,0,10
|
|
152
|
+
-1.8389731312667053e+00,-3.097064240365608e-01,-1.6311195683476937e-01,-9.182327824385993e-01,1,9,1,11
|
|
153
|
+
-1.4168228235533642e+00,-1.1043621244785344e+00,1.5212098341070235e-02,-1.062313493751601e+00,0,8,1,10
|
|
154
|
+
-1.0238897504244115e+00,1.3437756557705778e+00,-3.375437364491432e-01,1.1024249137484599e-01,1,10,1,10
|
|
155
|
+
6.071833838844566e-01,1.3959522620870872e+00,-1.5666261607537546e-01,8.334582368722101e-01,1,8,1,10
|
|
156
|
+
1.0083800037986497e+00,1.133392211107028e+00,-6.735727772000752e-02,8.984653807186457e-01,1,8,1,11
|
|
157
|
+
1.3036783278135844e+00,-4.435363288033649e-01,2.2353529192985688e-01,3.791513681204249e-01,0,12,1,11
|
|
158
|
+
6.477630074378533e-01,1.7484091475984687e+00,-2.0930521673774588e-01,9.953898124204746e-01,1,8,1,11
|
|
159
|
+
-1.5817134615085018e+00,-1.6256878300972382e+00,8.090127646948245e-02,-1.3469530959021467e+00,0,12,1,10
|
|
160
|
+
3.319295764533333e-01,1.6034948762346328e+00,-2.2239289996720907e-01,8.000911514178671e-01,1,10,0,10
|
|
161
|
+
3.1320927089271144e-01,1.4077414815339009e+00,-1.9271215342466874e-01,7.11797498865994e-01,1,10,1,10
|
|
162
|
+
-5.475191130027872e-01,-1.2692444550497948e+00,1.4297109631180913e-01,-7.558484673722493e-01,0,9,1,11
|
|
163
|
+
-1.16153453415137e+00,-8.891019362785058e-01,9.823212027954609e-03,-8.642320714182798e-01,1,12,1,10
|
|
164
|
+
-1.2793448420877884e+00,-1.4201601953178402e+00,8.256227505955377e-02,-1.1326029788777527e+00,0,9,0,11
|
|
165
|
+
9.557731661579774e-01,8.613140314679069e-01,-2.91907935841519e-02,7.643055772440563e-01,1,11,1,10
|
|
166
|
+
-2.05722133866438e+00,-1.678799452956389e+00,3.433629228455842e-02,-1.5733279663532398e+00,0,9,1,10
|
|
167
|
+
5.453895465298431e-01,-2.1883853798456236e+00,4.1942887171547977e-01,-6.623369233567912e-01,0,9,1,11
|
|
168
|
+
-7.123446584691042e-01,-1.1707074114672544e+00,1.0779987697692905e-01,-7.863807228895237e-01,0,8,0,10
|
|
169
|
+
1.0160362881957754e+00,1.3536838365554942e+00,-1.0231559931659014e-01,9.920564599528581e-01,1,10,1,10
|
|
170
|
+
7.339938003105193e-01,1.4138559246075881e+00,-1.4485300935876816e-01,8.953616895031884e-01,1,12,0,11
|
|
171
|
+
6.882022124032217e-03,2.0942118943193027e+00,-3.3998427635154393e-01,8.613705792332134e-01,1,11,0,11
|
|
172
|
+
-3.14620475262366e-02,1.8333536189977708e+00,-3.0198762278713775e-01,7.379468476249987e-01,1,11,0,10
|
|
173
|
+
-1.1788338440279804e+00,5.29379162641062e-01,-2.230094229848173e-01,-2.902458267923136e-01,1,9,1,11
|
|
174
|
+
-1.5879450859496895e+00,-7.638675385804573e-01,-6.0063034454505435e-02,-9.963776828533588e-01,0,8,1,11
|
|
175
|
+
-1.0839778730759029e+00,1.8792459682678364e+00,-4.3165520428563786e-01,3.0387458867114e-01,1,11,0,10
|
|
176
|
+
1.441799942052639e+00,-7.863088254752237e-03,1.6867607034191498e-01,6.171640072092826e-01,0,9,1,10
|
|
177
|
+
-1.0993936064538306e+00,8.717628814475646e-01,-2.6950104137107533e-01,-1.1572200547897438e-01,1,12,1,11
|
|
178
|
+
9.268556858277839e-01,1.0655819530982704e+00,-6.57879421242683e-02,8.355914050290882e-01,1,10,1,10
|
|
179
|
+
-1.290009316023958e+00,2.0740937614236077e+00,-4.8728281954769215e-01,2.950893945149001e-01,1,8,0,10
|
|
180
|
+
-1.2863764822452777e+00,1.952826621987003e+00,-4.671276889399406e-01,2.4694562345642745e-01,1,11,0,10
|
|
181
|
+
1.4759937001959043e+00,3.214148052118395e-01,1.1906388589527356e-01,7.668468520610776e-01,0,12,1,11
|
|
182
|
+
9.427952101771355e-01,9.095424379674442e-01,-3.8545595207738814e-02,7.784899748187422e-01,1,8,0,11
|
|
183
|
+
1.2525368330177495e+00,8.315846269058222e-01,1.0101957326888927e-02,8.798130102921864e-01,1,9,0,10
|
|
184
|
+
3.655292138249906e-01,1.1721303031496721e+00,-1.4829754974395065e-01,6.37733955448087e-01,1,9,1,11
|
|
185
|
+
-6.525320941841034e-01,1.329430728950832e+00,-2.9209389759953236e-01,2.641527491306958e-01,1,12,0,10
|
|
186
|
+
-7.063133829409648e-01,4.353295100569218e-01,-1.5284427933210498e-01,-1.254772375420041e-01,1,12,0,10
|
|
187
|
+
1.8708134578254607e+00,1.3206926273983566e-01,1.9571493067862036e-01,8.591204613749507e-01,1,8,0,11
|
|
188
|
+
-9.638412479126751e-01,1.3284520205308685e+00,-3.280783987394739e-01,1.297994529061225e-01,1,8,1,11
|
|
189
|
+
-1.1203146877850454e+00,4.2540281967306326e-01,-1.9929552145194343e-01,-3.076853235867581e-01,1,10,0,11
|
|
190
|
+
1.4676878176066437e+00,-3.739591334316159e-01,2.3125516166299132e-01,4.7824186080554487e-01,0,11,0,10
|
|
191
|
+
-1.1856974151932453e+00,1.0068989852397978e+00,-3.015113215211102e-01,-9.746560449169706e-02,1,10,1,11
|
|
192
|
+
2.0645842942150727e+00,1.1041202874309297e+00,6.0033963762004455e-02,1.3409373843529653e+00,0,10,0,11
|
|
193
|
+
7.183971843130292e-01,1.5243738886373905e+00,-1.6464799142205305e-01,9.339515612017213e-01,1,11,0,10
|
|
194
|
+
6.469851931442171e-01,-5.812284871119505e-01,1.6969772650967277e-01,4.014569299482132e-02,0,12,1,11
|
|
195
|
+
-1.204995278539648e+00,-8.446405195275816e-01,-2.457728521565533e-03,-8.647080807976699e-01,0,8,0,11
|
|
196
|
+
-9.336977005951421e-01,-2.5313150858556543e-01,-6.721346543163616e-02,-5.055151436216716e-01,1,11,1,10
|
|
197
|
+
1.656566466568533e+00,6.829824514024119e-01,8.119227523304577e-02,9.927500531117871e-01,0,9,0,10
|
|
198
|
+
-1.1750967374649766e+00,-9.50745113499267e-01,1.8279571156030128e-02,-8.95335003873629e-01,1,10,0,11
|
|
199
|
+
1.8174245809547882e+00,5.473629057569782e-01,1.2193716335584168e-01,1.006375202721486e+00,0,12,0,10
|
|
200
|
+
1.455774705863295e+00,2.68049678034065e-01,1.2540031889166156e-01,7.362727328955849e-01,1,8,0,11
|
|
201
|
+
7.321933705934045e-01,-1.9963888577545947e+00,4.09874379271925e-01,-5.032591287602423e-01,0,10,1,11
|
|
202
|
+
-8.164132794452406e-01,1.1918250866365279e+00,-2.8872885523976055e-01,1.3723286744108654e-01,1,8,1,11
|
|
203
|
+
-2.2688490986827805e+00,-2.2531880201574346e+00,1.0323389663840071e-01,-1.8998281826485321e+00,0,11,0,10
|
|
204
|
+
-1.4146800662581496e+00,-1.0726924741891524e+00,1.030739360838831e-02,-1.0484102273088531e+00,0,12,1,11
|
|
205
|
+
-1.511730212934777e+00,4.544539385741456e-01,-2.4946721231671526e-01,-4.641982005036838e-01,1,9,0,10
|
|
206
|
+
9.589481171294696e-01,2.3621014710605714e-01,7.289865132876983e-02,5.094440565974124e-01,0,10,1,10
|
|
207
|
+
2.984029027720404e-01,1.6434064726802005e+00,-2.327800950370937e-01,8.02024684886619e-01,1,12,0,10
|
|
208
|
+
4.237529606875583e-01,-2.223412749270694e+00,4.110064365282861e-01,-7.290330875993747e-01,0,10,0,10
|
|
209
|
+
5.35681806677001e-01,-2.541742192400738e+00,4.7580221620503554e-01,-8.113536206010534e-01,0,12,1,11
|
|
210
|
+
6.558818627765176e-01,1.1587869075959085e+00,-1.1241556804149438e-01,7.571993755908804e-01,1,10,0,10
|
|
211
|
+
-1.0093122519523532e+00,1.4983900364181832e+00,-3.610110747151325e-01,1.7989082754842178e-01,1,10,0,10
|
|
212
|
+
5.836897319638539e-01,-1.9805368180339307e+00,3.9005319618985623e-01,-5.606605506284177e-01,0,11,0,10
|
|
213
|
+
1.442100546417216e+00,1.5173802018840488e-01,1.427396777308603e-01,6.827132289227172e-01,1,9,1,11
|
|
214
|
+
-2.655523162448061e+00,-1.5522297796219056e+00,-5.572424044413954e-02,-1.7788887479800914e+00,0,8,1,10
|
|
215
|
+
-1.3394859632449596e+00,-1.206418394887279e+00,4.079833560685786e-02,-1.0708689561499134e+00,1,12,1,11
|
|
216
|
+
-2.614121968037284e-01,-3.5873206404845264e+00,5.534007147761087e-01,-1.582910965804527e+00,0,11,1,11
|
|
217
|
+
-4.261822397804317e-01,-2.9138914273893235e-01,-2.064142971470534e-03,-3.028197461829847e-01,1,12,0,11
|
|
218
|
+
-6.977670095510121e-01,2.3918078347397964e+00,-4.702224499505795e-01,6.80153033261556e-01,1,11,1,11
|
|
219
|
+
5.150235517720323e-01,-2.600328594112993e+00,4.8293728850711765e-01,-8.44256927855811e-01,0,12,0,11
|
|
220
|
+
-1.2709319500016387e+00,-1.0120047638924548e+00,1.712142053508728e-02,-9.616816956852864e-01,0,9,1,10
|
|
221
|
+
-2.9620700040957857e+00,-1.496335099436763e+00,-1.0041061992542347e-01,-1.8878807040490058e+00,0,9,0,10
|
|
222
|
+
4.6677986535761495e-01,-1.8412355885035736e+00,3.5381170163571773e-01,-5.538662543880439e-01,0,9,0,10
|
|
223
|
+
-1.3367126411656436e+00,-1.1072089243034178e-01,-1.371784455972058e-01,-6.20553473923483e-01,1,8,1,11
|
|
224
|
+
-1.176549844975607e+00,1.2432785398244484e+00,-3.389144298918787e-01,3.361534698387514e-03,1,8,0,11
|
|
225
|
+
1.3253964199174006e+00,-1.0841028999862612e-01,1.7152300490576947e-01,5.25863234352193e-01,0,8,1,10
|
|
226
|
+
-2.113914262373725e+00,-1.6756949934197556e+00,2.7248926492830977e-02,-1.5964496603698468e+00,0,11,1,11
|
|
227
|
+
-1.260954815538369e+00,1.387301867744718e+00,-3.7215043509160645e-01,2.607781884828342e-02,1,11,0,10
|
|
228
|
+
-1.921344179694285e+00,-3.3182229815194597e-01,-1.6907660552088552e-01,-9.62741143976847e-01,0,12,0,10
|
|
229
|
+
1.0200823108366917e+00,1.0723562740327055e+00,-5.60664603787861e-02,8.78482331481329e-01,1,10,0,10
|
|
230
|
+
-9.709790567988047e-01,2.9023691666418716e-01,-1.5996224172607215e-01,-2.9883219671889794e-01,1,11,1,11
|
|
231
|
+
-1.7197177257782539e+00,1.5026821111552675e+00,-4.441893406072987e-01,-1.2402775544463418e-01,1,8,0,10
|
|
232
|
+
7.353260649456071e-01,-1.3964625052232544e+00,3.1261431349646657e-01,-2.5600368616379676e-01,0,9,0,11
|
|
233
|
+
1.2743856015018702e+00,-1.9016783887423783e-02,1.5105385065456942e-01,5.405560192793508e-01,0,11,1,10
|
|
234
|
+
-1.1593403494736676e+00,3.006345353485605e+00,-6.23813656289751e-01,7.334408013547717e-01,1,8,1,11
|
|
235
|
+
2.1866083072264972e+00,-1.5420273616291169e-02,2.563799162911429e-01,9.345473338607971e-01,1,8,0,10
|
|
236
|
+
1.6557073501170072e-01,-3.019788297072122e+00,5.106220662519951e-01,-1.1665566650626304e+00,0,9,1,11
|
|
237
|
+
-8.238860682069804e-01,2.140527317494917e+00,-4.439752425790582e-01,5.228867944017385e-01,1,11,1,10
|
|
238
|
+
6.819635460565169e-01,-5.439531735035463e-01,1.676931269420778e-01,7.047541275011812e-02,0,10,0,11
|
|
239
|
+
1.9124073041977263e-01,1.9710013301537654e+00,-2.985301784577082e-01,8.901941106488206e-01,1,11,1,10
|
|
240
|
+
1.4562320612831878e+00,3.32775357904302e-01,1.1492085034348515e-01,7.630003320523955e-01,1,12,1,10
|
|
241
|
+
8.101214446155692e-01,-2.126624920363854e+00,4.401148504668952e-01,-5.23110987470277e-01,0,12,0,10
|
|
242
|
+
-8.942911900755797e-01,-1.5343378726813612e+00,1.45847664298133e-01,-1.0137205764624486e+00,0,11,0,11
|
|
243
|
+
-2.9607565310149386e-01,2.151818033131855e+00,-3.845324440176655e-01,7.546245132940604e-01,1,9,0,11
|
|
244
|
+
-1.1323902195498567e+00,-1.1496336947825394e+00,5.560230105925612e-02,-9.584826241249005e-01,0,9,0,10
|
|
245
|
+
8.227854012215208e-01,-1.527256552191846e+00,3.440521865280146e-01,-2.719830869855321e-01,0,10,0,10
|
|
246
|
+
-1.0004943664752821e+00,-5.036412703804826e-01,-3.420420369756434e-02,-6.369398278106818e-01,0,9,1,10
|
|
247
|
+
-1.0134542207762034e+00,8.557649114649566e-01,-2.5691997611017686e-01,-8.530095354074968e-02,1,9,0,10
|
|
248
|
+
4.937146371675454e-01,-1.952482383994814e+00,3.750416716589153e-01,-5.878762158506396e-01,0,11,0,10
|
|
249
|
+
-1.1673562332518972e+00,1.0485969688830432e-01,-1.5259637356753042e-01,-4.5931604928564373e-01,1,9,0,11
|
|
250
|
+
1.2751172975225329e+00,-2.3110232094405836e-01,1.8565069134500906e-01,4.539378186388998e-01,0,8,1,11
|
|
251
|
+
-1.1320684625079644e+00,-1.2097500479172714e+00,6.54221679311735e-02,-9.82985636541846e-01,0,10,1,10
|
|
252
|
+
7.843376739227866e-01,9.354885623439009e-01,-6.116502319713617e-02,7.209430513140915e-01,1,12,1,10
|
|
253
|
+
4.364177072562747e-01,-1.128773359580368e+00,2.343502569188219e-01,-2.748951752309441e-01,0,8,0,11
|
|
254
|
+
9.757423528977489e-01,1.1413594035632897e+00,-7.244306124634346e-02,8.876875613178221e-01,1,12,1,10
|
|
255
|
+
6.147221187000634e-01,-1.8019701981847316e+00,3.645986525375238e-01,-4.7411396810296114e-01,0,11,1,10
|
|
256
|
+
8.215651835444319e-01,-1.4301000980562248e+00,3.281006085719445e-01,-2.3268407622722154e-01,0,8,0,11
|
|
257
|
+
-1.721822105336194e+00,-8.494353378797357e-01,-6.1682358468455656e-02,-1.089057066756674e+00,0,9,1,10
|
|
258
|
+
-8.449702490257546e-01,1.453101117091768e+00,-3.345608646620491e-01,2.3204122097135105e-01,1,8,1,11
|
|
259
|
+
-2.464757122084692e-01,-7.211849031671105e-01,8.873929153588334e-02,-4.016660689236981e-01,0,12,1,10
|
|
260
|
+
1.1817501437386313e+00,-3.784098395732485e-01,1.9878133733513578e-01,3.5338241154465233e-01,0,9,0,10
|
|
261
|
+
1.3604577696733846e+00,1.9397211681438975e-01,1.2638815229108252e-01,6.648950364377288e-01,1,9,1,11
|
|
262
|
+
7.59546323004672e-01,4.5371444593571564e-02,8.080208062481206e-02,3.4542011126243594e-01,0,11,0,10
|
|
263
|
+
-7.254430167997282e-01,-6.512276898772562e-02,-7.362854302350706e-02,-3.388419101689187e-01,1,10,1,11
|
|
264
|
+
-1.1524928006759256e+00,-8.107936896947776e-01,-1.8698294532633053e-03,-8.282432887907631e-01,1,10,0,10
|
|
265
|
+
-1.1792010631789684e+00,1.7220334850927188e-01,-1.6493016904711208e-01,-4.36808817981001e-01,1,10,0,10
|
|
266
|
+
-8.656647556238188e-01,2.661709487207675e-01,-1.4381882561806586e-01,-2.633814212163668e-01,1,9,0,10
|
|
267
|
+
-1.00238422434375e+00,2.782308388040161e-01,-1.6165475505104537e-01,-3.172666612484112e-01,1,9,0,10
|
|
268
|
+
9.664546095715588e-01,-3.2080221090754724e-01,1.6441071862369744e-01,2.843567925041733e-01,0,11,1,11
|
|
269
|
+
2.3214058688227013e-02,2.2251358154191805e+00,-3.5939284822097056e-01,9.220632419279458e-01,1,11,0,11
|
|
270
|
+
-1.3294977462338522e+00,-1.509881753278997e+00,9.13394535664962e-02,-1.1909596155044126e+00,0,10,1,11
|
|
271
|
+
6.162913844131246e-01,-1.8212558804840293e+00,3.679191353682237e-01,-4.813438606655597e-01,0,8,0,10
|
|
272
|
+
1.6485458196604226e+00,-3.0014998596398623e-01,2.4024253554978095e-01,5.86316701690187e-01,1,11,1,11
|
|
273
|
+
1.0246109854249745e+00,-1.4251718323769142e+00,3.5087277006074874e-01,-1.432961309746374e-01,0,12,0,10
|
|
274
|
+
-7.332633072982352e-01,1.9773705102473802e+00,-4.069038167638416e-01,4.950032025108108e-01,1,10,0,10
|
|
275
|
+
-9.229114365717799e-01,-6.706677354777308e-01,1.9829604854669364e-03,-6.720204407514727e-01,0,10,1,10
|
|
276
|
+
1.0394000579381335e+00,7.435463639081736e-01,-3.176110074649824e-04,7.520165897057054e-01,1,9,1,11
|
|
277
|
+
1.1824555609661938e+00,9.634114048799853e-01,-1.9486331934196105e-02,9.036932700523483e-01,1,10,0,10
|
|
278
|
+
5.932069470027818e-01,-1.7960237786182212e+00,3.6113304919676303e-01,-4.8093424178556365e-01,0,8,1,10
|
|
279
|
+
-5.300916781868927e-01,-4.384047428591482e-01,9.79501488864714e-03,-4.077916998068737e-01,0,11,1,10
|
|
280
|
+
-1.027757617861052e+00,-7.666150477805855e-01,5.423208042172251e-03,-7.564627689678372e-01,1,12,1,11
|
|
281
|
+
3.444966392769391e-01,2.116381662810871e+00,-3.043939880697558e-01,1.0157288947356062e+00,1,8,0,11
|
|
282
|
+
1.2273633496323724e+00,-4.369505582169618e-01,2.136032563106381e-01,3.490135447880266e-01,0,9,0,10
|
|
283
|
+
2.4199712488344916e-01,1.9200179733329914e+00,-2.843409038906144e-01,8.911360218393471e-01,1,9,1,11
|
|
284
|
+
1.258086086106883e+00,-5.777211832167268e-01,2.4007732113669616e-01,3.0453179012180054e-01,0,11,0,10
|
|
285
|
+
-1.23692438918288e+00,-1.1801829601553837e+00,4.84367935117144e-02,-1.0159842919927962e+00,0,11,0,10
|
|
286
|
+
-6.124690179513514e-01,-5.472522805869958e-01,1.7943156121357606e-02,-4.878537411518946e-01,0,8,0,10
|
|
287
|
+
-3.0355858113854803e+00,-1.6588988201468553e+00,-8.249259860607228e-02,-1.9861478027571273e+00,0,10,0,10
|
|
288
|
+
-8.10307265632801e-01,-9.530135654081617e-01,6.100166779914143e-02,-7.393008469690395e-01,0,9,1,10
|
|
289
|
+
1.5261756043933206e-01,-3.176930984435243e+00,5.346894144686649e-01,-1.2365424197065453e+00,0,10,0,10
|
|
290
|
+
2.9892702347613853e-01,1.3393658808564974e+00,-1.832438510214289e-01,6.776251468718526e-01,1,10,1,11
|
|
291
|
+
6.591589652591472e-01,1.203011818715713e+00,-1.1923164329204414e-01,7.767370882069674e-01,1,12,0,10
|
|
292
|
+
1.8169321362472053e+00,1.0694117499208131e+00,3.6928926645696525e-02,1.2201491080906113e+00,0,12,0,10
|
|
293
|
+
2.980591928266417e+00,-1.0695927746859804e+00,5.201049405156191e-01,8.44086548378594e-01,1,12,1,11
|
|
294
|
+
1.09867539212952e+00,-7.489871189513401e-01,2.494388126831043e-01,1.6573827669758817e-01,0,12,0,10
|
|
295
|
+
3.1300992609240263e-01,-3.363424903735245e-01,9.107298645424089e-02,-3.181536257182316e-03,0,10,0,11
|
|
296
|
+
-1.1397944627260788e+00,1.0650572663484446e+00,-3.0564575552798423e-01,-5.3875329553041196e-02,1,8,0,10
|
|
297
|
+
-1.2671108770961945e+00,-5.2039126695532234e-02,-1.3864657366455482e-01,-5.665513458711676e-01,1,10,1,10
|
|
298
|
+
-1.4719082500819143e+00,-2.9194892588495724e-02,-1.6614141226909232e-01,-6.453091285192705e-01,1,11,1,10
|
|
299
|
+
1.8980129550115463e+00,2.3136846238819686e-01,1.827142709180828e-01,9.115263949679144e-01,1,10,1,11
|
|
300
|
+
1.6520362067354373e+00,1.708981436424395e-02,1.890245278117685e-01,7.178539326265468e-01,0,9,1,10
|
|
301
|
+
1.0579327291439677e+00,-9.192359922758135e-01,2.7241245335575837e-01,7.842290541104974e-02,0,11,1,10
|
|
302
|
+
-2.884083240067139e+00,-8.677940831921163e-01,-1.936363006489961e-01,-1.5966875257562871e+00,0,12,1,10
|
|
303
|
+
-1.8322382338376104e+00,-6.081646995977931e-01,-1.1376301579944552e-01,-1.0376717372508608e+00,0,10,0,10
|
|
304
|
+
-4.0241177632591807e-01,-1.2234187134434156e+00,1.5236136486342805e-01,-6.746269449046474e-01,0,11,1,11
|
|
305
|
+
1.1181371309367771e+00,6.473459626428267e-01,2.4478290654765075e-02,7.464639179944288e-01,1,10,1,11
|
|
306
|
+
4.636195864471222e-01,-3.08884137094493e-01,1.040909450385159e-01,7.287884054937221e-02,0,8,0,11
|
|
307
|
+
-7.267611459507655e-01,-1.9394958800031947e-02,-8.122269719598098e-02,-3.206654312053266e-01,1,8,1,10
|
|
308
|
+
1.138131522328894e+00,-2.576272474072909e-01,1.740626064573661e-01,3.841222237835846e-01,0,11,1,10
|
|
309
|
+
2.93757712577293e-01,1.7329539221584083e+00,-2.4789113580542343e-01,8.367310746784404e-01,1,11,1,11
|
|
310
|
+
1.8516724055836706e+00,-4.963071889776094e-02,2.2305996796211291e-01,7.764062067459259e-01,1,8,0,11
|
|
311
|
+
-1.7081778237704617e+00,-1.425748763140591e+00,3.3683112059774256e-02,-1.31941475567603e+00,0,12,0,10
|
|
312
|
+
2.0470206536493967e+00,-1.330940756758554e-01,2.593220636890824e-01,8.262506150520833e-01,1,12,0,10
|
|
313
|
+
1.0767876723274696e+00,7.222148405468509e-01,7.494382785479606e-03,7.593602668545629e-01,1,9,0,10
|
|
314
|
+
9.153891771059794e-01,-8.020833382674882e-01,2.367989796666845e-01,6.510875750587963e-02,0,9,0,11
|
|
315
|
+
1.4797215951212233e+00,2.851241916553504e-02,1.6715961730946025e-01,6.483913622304776e-01,0,8,0,11
|
|
316
|
+
2.1295862822505995e+00,-3.807763564907236e-01,3.092125517909048e-01,7.602534838864132e-01,1,10,1,10
|
|
317
|
+
7.612975629174997e-01,1.3062546720396395e+00,-1.2417342420386099e-01,8.630047937142519e-01,1,11,1,10
|
|
318
|
+
4.1034805758356274e-01,-1.8530776564585687e+00,3.4918684476081097e-01,-5.830021174254708e-01,0,11,1,11
|
|
319
|
+
-1.1699913889726818e+00,3.547324590836044e-01,-1.935631849455435e-01,-3.5802804454994275e-01,1,9,0,10
|
|
320
|
+
8.744870487557609e-01,7.628274212566606e-01,-2.260195385439759e-02,6.889599781829259e-01,1,10,0,11
|
|
321
|
+
-7.481732150606457e-02,2.222710866503292e+00,-3.7037993102500605e-01,8.78887684895731e-01,1,9,1,11
|
|
322
|
+
-3.1465519648307225e+00,-1.8055295747973639e+00,-7.151536728434543e-02,-2.093998418958823e+00,0,10,0,10
|
|
323
|
+
-1.1743341614198937e+00,1.7685133543642817e-01,-1.651214593044626e-01,-4.328094640124044e-01,1,8,1,11
|
|
324
|
+
9.392061689126343e-01,-6.182034865118263e-01,2.0964210839211045e-01,1.5072852613530424e-01,0,11,0,10
|
|
325
|
+
-1.1005098083589837e+00,5.14539771180905e-01,-2.1150104985985063e-01,-2.626266603409017e-01,1,10,1,10
|
|
326
|
+
8.536568316438387e-02,-1.2787099416226493e+00,2.179908698207832e-01,-4.8740654721914967e-01,0,8,0,11
|
|
327
|
+
1.7021128242062173e+00,2.295203674634334e-01,1.6027051480794327e-01,8.264756855944516e-01,1,11,0,11
|
|
328
|
+
-5.066609936524391e-01,2.3185073202845543e+00,-4.36106649323452e-01,7.32337775994528e-01,1,12,1,10
|
|
329
|
+
-1.106387488511438e+00,1.6797944453061204e+00,-4.0180101311593075e-01,2.124776274311696e-01,1,10,1,11
|
|
330
|
+
6.596614860668224e-01,-1.127167924454238e+00,2.600081653164137e-01,-1.781783284601952e-01,0,12,0,11
|
|
331
|
+
-1.0336420213116306e+00,-1.2951748307099165e+00,9.07505777073322e-02,-9.756493546003724e-01,0,11,1,11
|
|
332
|
+
3.269659657058398e-01,1.4733053541883312e+00,-2.0178393176355108e-01,7.445911962497799e-01,1,12,1,10
|
|
333
|
+
-1.2272051446514674e+00,-1.077442660498984e+00,3.284667580496006e-02,-9.69689381649475e-01,1,8,0,11
|
|
334
|
+
-1.0113054275653777e+00,-7.910968296958125e-01,1.1317177150976201e-02,-7.594186010334172e-01,1,12,0,11
|
|
335
|
+
2.082631343452287e+00,8.841059236229722e-01,9.79313882125954e-02,1.2585197511624577e+00,0,10,0,10
|
|
336
|
+
-1.3503134572383524e+00,-9.984291905617128e-01,5.695928759421404e-03,-9.902739120331971e-01,0,9,1,11
|
|
337
|
+
1.6192324161471072e+00,6.604279543121361e-02,1.7724999043596013e-01,7.238045414447164e-01,1,10,0,10
|
|
338
|
+
-1.3887967205029554e+00,-2.767338641505567e-01,-1.162108638941433e-01,-7.110126239544272e-01,0,8,1,11
|
|
339
|
+
1.4588391821477902e+00,6.278710266435993e-01,6.720372521303597e-02,8.85080711754702e-01,1,10,1,11
|
|
340
|
+
-2.3471726978418537e+00,-1.1377085567216112e+00,-8.737748247958818e-02,-1.4762990620237364e+00,0,10,1,11
|
|
341
|
+
5.282965469097152e-01,1.3758758854994615e+00,-1.6255461902546564e-01,7.912850666305988e-01,1,8,0,11
|
|
342
|
+
3.100202987193146e-01,1.6376998112166503e+00,-2.3050266288370402e-01,8.04684355160937e-01,1,9,1,10
|
|
343
|
+
7.48026004528336e-02,2.0590853983555824e+00,-3.26382525451811e-01,8.761976728956121e-01,1,12,1,10
|
|
344
|
+
1.30664173604463e+00,4.803003297061532e-01,7.354685478428034e-02,7.591035480776844e-01,1,9,1,11
|
|
345
|
+
-1.8047271955045812e+00,-1.3839091735411757e+00,1.5665090730976855e-02,-1.34380876170771e+00,0,9,1,10
|
|
346
|
+
-1.3903200345994189e+00,9.162518891015672e-01,-3.105178496301121e-01,-2.226678493905933e-01,1,8,0,11
|
|
347
|
+
-2.6965138386761076e+00,-1.244829177763283e+00,-1.1050551355240884e-01,-1.6705241675833036e+00,0,9,0,10
|
|
348
|
+
1.5574412971319918e+00,9.176889712691583e-02,1.6588957604527546e-01,7.077616862290443e-01,1,11,1,11
|
|
349
|
+
1.2229321436000378e+00,-4.991574265834253e-02,1.5010804932762664e-01,5.057509273263883e-01,0,8,1,10
|
|
350
|
+
6.290607312256012e-01,-1.9197397318702691e+00,3.854275981887389e-01,-5.162175320112057e-01,0,11,0,11
|
|
351
|
+
3.467172426158876e+00,-1.6424388862777572e+00,6.698152524491898e-01,8.18648169054552e-01,1,9,1,11
|
|
352
|
+
1.221527960188757e+00,4.8629518933193616e-01,6.268941373105313e-02,7.249375087417107e-01,1,11,1,10
|
|
353
|
+
-5.95868423741782e-01,2.8361708118716176e+00,-5.307013031764867e-01,9.061412814239103e-01,1,9,0,11
|
|
354
|
+
5.777701284162966e-01,-8.007675293558014e-01,1.9738645639572056e-01,-7.9624817683112e-02,0,9,1,11
|
|
355
|
+
5.229775912647898e-01,1.067168363879482e+00,-1.1293733853424096e-01,6.624583752869568e-01,1,10,1,10
|
|
356
|
+
8.16937703105329e-01,-9.74546293143912e-01,2.53432773887202e-01,-4.794547977129132e-02,0,8,1,10
|
|
357
|
+
-2.294111249984243e+00,-1.5715368956419031e+00,-1.0621648492148916e-02,-1.6312919916629833e+00,0,11,0,11
|
|
358
|
+
-6.126726188907861e-03,-1.0674462535987732e+00,1.729902222625891e-01,-4.401783293566592e-01,0,9,1,11
|
|
359
|
+
2.1849707817648745e-01,-9.689238693386376e-01,1.8303742113080212e-01,-3.03141794429452e-01,0,11,0,11
|
|
360
|
+
1.9777933180610654e+00,9.776641781589108e-01,7.053504811134806e-02,1.251758529613322e+00,0,9,0,11
|
|
361
|
+
-1.1648100200793827e+00,1.1243010440215528e+00,-3.181906427389324e-01,-4.03553914433018e-02,1,9,0,11
|
|
362
|
+
9.523658969142537e-01,-9.821418279055433e-01,2.703923152070754e-01,7.214064035327594e-03,0,12,0,10
|
|
363
|
+
5.534581821396569e-01,1.4774210745931704e+00,-1.761573610907093e-01,8.437347580945616e-01,1,10,0,11
|
|
364
|
+
-1.6357924309637697e+00,-1.5530704058174845e+00,6.28058115636915e-02,-1.340456945875803e+00,1,10,0,11
|
|
365
|
+
-1.1217556620993125e+00,8.166261516310499e-01,-2.631251367991855e-01,-1.479444280593636e-01,1,10,1,10
|
|
366
|
+
-1.1727388796369405e+00,5.00696498816402e-02,-1.4430553198659568e-01,-4.8409035727455063e-01,1,12,1,11
|
|
367
|
+
1.1340128958804345e+00,-3.380336980578167e-01,1.8666866576829866e-01,3.4939174195375966e-01,0,9,1,10
|
|
368
|
+
-2.869764010059474e+00,-1.4565007703551098e+00,-9.61757576193859e-02,-1.8318347434856384e+00,0,11,1,11
|
|
369
|
+
1.5087585734667839e+00,-2.7387268039045276e-01,2.1973688253209006e-01,5.369391019143446e-01,0,12,1,10
|
|
370
|
+
1.8838593374304733e+00,-2.7191742666487384e-02,2.2314553938902468e-01,7.99453458506666e-01,1,10,0,11
|
|
371
|
+
-7.026837029399067e-01,2.827239742118673e+00,-5.416495015856215e-01,8.565192974850218e-01,1,11,0,10
|
|
372
|
+
-1.4793392072220342e+00,1.6329585956670787e+00,-4.3748020683714384e-01,3.280370298342494e-02,1,9,1,11
|
|
373
|
+
9.577016978304657e-01,-1.410567531062401e+00,3.4072793276267904e-01,-1.661000479219118e-01,0,11,1,10
|
|
374
|
+
-7.952912153792506e-01,2.676939740340266e+00,-5.279437037270914e-01,7.550641465657191e-01,1,12,0,11
|
|
375
|
+
-2.1523595570669936e+00,-1.6561515455481706e+00,1.960510026066098e-02,-1.6049813682914733e+00,0,11,0,11
|
|
376
|
+
-1.537164191873603e+00,-7.506502231946508e-01,-5.6318051525095586e-02,-9.691096231245039e-01,1,8,1,10
|
|
377
|
+
-7.809615664616332e-02,2.2440748499787055e+00,-3.7423709329875765e-01,8.862338604024109e-01,1,9,0,11
|
|
378
|
+
8.545079824683341e-01,1.3762149373601598e+00,-1.2473583717922582e-01,9.317884208619667e-01,1,10,0,10
|
|
379
|
+
4.42080048133486e-01,-2.7036968071809353e+00,4.912890913671944e-01,-9.180137628950392e-01,0,11,1,11
|
|
380
|
+
1.6188581428927913e+00,5.306724713521636e-01,1.015990809626973e-01,9.140933998981541e-01,0,9,0,11
|
|
381
|
+
-6.699221051985385e-01,-1.3153839750605294e+00,1.362679182996777e-01,-8.274292333779996e-01,0,11,1,11
|
|
382
|
+
1.1524790587540394e+00,-5.853584317788212e-01,2.2905886505505096e-01,2.559600329365095e-01,0,8,0,11
|
|
383
|
+
-7.04176372416009e-01,-7.378867867135255e-01,3.831694810734591e-02,-6.054545232327018e-01,0,10,0,11
|
|
384
|
+
-2.6474611047004117e+00,-1.2705264214551544e+00,-1.0062875312623912e-01,-1.6599506387495833e+00,0,8,1,11
|
|
385
|
+
-1.2947095915250564e+00,-4.7469309949621175e-02,-1.4259448191676205e-01,-5.765535500482234e-01,0,8,0,10
|
|
386
|
+
-9.410518686086804e-01,8.006272308304891e-01,-2.3954153468594921e-01,-7.67479201114375e-02,1,9,0,11
|
|
387
|
+
-8.156136865920298e-01,-1.237972259056567e+00,1.0675584533777137e-01,-8.583875922751716e-01,0,10,1,10
|
|
388
|
+
8.136674078241493e-01,-1.64607329922185e+00,3.6232817134045003e-01,-3.246089605439768e-01,0,9,1,10
|
|
389
|
+
1.1999709987539657e+00,-6.611281256428915e-01,2.4690251662978677e-01,2.453374699498203e-01,0,9,1,11
|
|
390
|
+
-1.0938657174527338e+00,1.9169083680248695e+00,-4.389318694129605e-01,3.150576543567642e-01,1,12,0,11
|
|
391
|
+
8.217126287389542e-01,-1.355689550087538e+00,3.160091761912962e-01,-2.0212003736434564e-01,0,9,1,10
|
|
392
|
+
8.467526583641933e-01,-5.490250092982549e-01,1.876508713917347e-01,1.393030179575777e-01,0,11,0,11
|
|
393
|
+
-2.2652712344400974e+00,-1.354339416430477e+00,-4.261698762369545e-02,-1.5298541173599431e+00,0,8,1,10
|
|
394
|
+
1.442038821258027e+00,5.352056735829458e-01,8.033224928796909e-02,8.398685741663171e-01,1,10,0,10
|
|
395
|
+
-8.130510464567091e-01,8.278019492475474e-01,-2.2910236329183914e-01,-1.0532082086302186e-02,1,10,0,10
|
|
396
|
+
-1.1493587871243727e+00,-6.252562291957733e-01,-3.169778215142939e-02,-7.508436791693349e-01,1,8,0,11
|
|
397
|
+
1.0872191072196193e+00,-1.0061623856183433e+00,2.899578822865534e-01,5.539364695855564e-02,0,9,1,10
|
|
398
|
+
-5.72761601310471e-01,-8.63099499865426e-01,7.39499261886515e-02,-6.002327265702191e-01,0,8,0,10
|
|
399
|
+
5.995108047879022e-01,1.2989065494967753e+00,-1.4176153437832767e-01,7.903781682091061e-01,1,8,1,10
|
|
400
|
+
-6.55697611869257e-01,-7.084873816828801e-01,3.916139650510955e-02,-5.725440646709018e-01,1,9,0,10
|
|
401
|
+
-7.316234803035693e-01,1.3605108537626815e+00,-3.063341560165307e-01,2.4286041578583728e-01,1,8,1,11
|