teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1303) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1935 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2040 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +798 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1683 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +1011 -0
  31. teradataml/automl/data_transformation.py +789 -0
  32. teradataml/automl/feature_engineering.py +1580 -0
  33. teradataml/automl/feature_exploration.py +554 -0
  34. teradataml/automl/model_evaluation.py +151 -0
  35. teradataml/automl/model_training.py +1026 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/auth_client.py +133 -0
  41. teradataml/clients/pkce_client.py +481 -481
  42. teradataml/common/aed_utils.py +7 -2
  43. teradataml/common/bulk_exposed_utils.py +111 -111
  44. teradataml/common/constants.py +1438 -1441
  45. teradataml/common/deprecations.py +160 -0
  46. teradataml/common/exceptions.py +73 -73
  47. teradataml/common/formula.py +742 -742
  48. teradataml/common/garbagecollector.py +597 -635
  49. teradataml/common/messagecodes.py +424 -431
  50. teradataml/common/messages.py +228 -231
  51. teradataml/common/sqlbundle.py +693 -693
  52. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  53. teradataml/common/utils.py +2424 -2500
  54. teradataml/common/warnings.py +25 -25
  55. teradataml/common/wrapper_utils.py +1 -110
  56. teradataml/config/dummy_file1.cfg +4 -4
  57. teradataml/config/dummy_file2.cfg +2 -2
  58. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  59. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  60. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  61. teradataml/context/aed_context.py +217 -217
  62. teradataml/context/context.py +1091 -999
  63. teradataml/data/A_loan.csv +19 -19
  64. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  65. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  66. teradataml/data/B_loan.csv +49 -49
  67. teradataml/data/BuoyData2.csv +17 -17
  68. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  69. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  70. teradataml/data/Convolve2RealsLeft.csv +5 -5
  71. teradataml/data/Convolve2RealsRight.csv +5 -5
  72. teradataml/data/Convolve2ValidLeft.csv +11 -11
  73. teradataml/data/Convolve2ValidRight.csv +11 -11
  74. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  75. teradataml/data/Orders1_12mf.csv +24 -24
  76. teradataml/data/Pi_loan.csv +7 -7
  77. teradataml/data/SMOOTHED_DATA.csv +7 -7
  78. teradataml/data/TestDFFT8.csv +9 -9
  79. teradataml/data/TestRiver.csv +109 -109
  80. teradataml/data/Traindata.csv +28 -28
  81. teradataml/data/acf.csv +17 -17
  82. teradataml/data/adaboost_example.json +34 -34
  83. teradataml/data/adaboostpredict_example.json +24 -24
  84. teradataml/data/additional_table.csv +10 -10
  85. teradataml/data/admissions_test.csv +21 -21
  86. teradataml/data/admissions_train.csv +41 -41
  87. teradataml/data/admissions_train_nulls.csv +41 -41
  88. teradataml/data/advertising.csv +201 -0
  89. teradataml/data/ageandheight.csv +13 -13
  90. teradataml/data/ageandpressure.csv +31 -31
  91. teradataml/data/antiselect_example.json +36 -36
  92. teradataml/data/antiselect_input.csv +8 -8
  93. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  94. teradataml/data/applicant_external.csv +6 -6
  95. teradataml/data/applicant_reference.csv +6 -6
  96. teradataml/data/arima_example.json +9 -9
  97. teradataml/data/assortedtext_input.csv +8 -8
  98. teradataml/data/attribution_example.json +33 -33
  99. teradataml/data/attribution_sample_table.csv +27 -27
  100. teradataml/data/attribution_sample_table1.csv +6 -6
  101. teradataml/data/attribution_sample_table2.csv +11 -11
  102. teradataml/data/bank_churn.csv +10001 -0
  103. teradataml/data/bank_marketing.csv +11163 -0
  104. teradataml/data/bank_web_clicks1.csv +42 -42
  105. teradataml/data/bank_web_clicks2.csv +91 -91
  106. teradataml/data/bank_web_url.csv +85 -85
  107. teradataml/data/barrier.csv +2 -2
  108. teradataml/data/barrier_new.csv +3 -3
  109. teradataml/data/betweenness_example.json +13 -13
  110. teradataml/data/bike_sharing.csv +732 -0
  111. teradataml/data/bin_breaks.csv +8 -8
  112. teradataml/data/bin_fit_ip.csv +3 -3
  113. teradataml/data/binary_complex_left.csv +11 -11
  114. teradataml/data/binary_complex_right.csv +11 -11
  115. teradataml/data/binary_matrix_complex_left.csv +21 -21
  116. teradataml/data/binary_matrix_complex_right.csv +21 -21
  117. teradataml/data/binary_matrix_real_left.csv +21 -21
  118. teradataml/data/binary_matrix_real_right.csv +21 -21
  119. teradataml/data/blood2ageandweight.csv +26 -26
  120. teradataml/data/bmi.csv +501 -0
  121. teradataml/data/boston.csv +507 -507
  122. teradataml/data/boston2cols.csv +721 -0
  123. teradataml/data/breast_cancer.csv +570 -0
  124. teradataml/data/buoydata_mix.csv +11 -11
  125. teradataml/data/burst_data.csv +5 -5
  126. teradataml/data/burst_example.json +20 -20
  127. teradataml/data/byom_example.json +17 -17
  128. teradataml/data/bytes_table.csv +3 -3
  129. teradataml/data/cal_housing_ex_raw.csv +70 -70
  130. teradataml/data/callers.csv +7 -7
  131. teradataml/data/calls.csv +10 -10
  132. teradataml/data/cars_hist.csv +33 -33
  133. teradataml/data/cat_table.csv +24 -24
  134. teradataml/data/ccm_example.json +31 -31
  135. teradataml/data/ccm_input.csv +91 -91
  136. teradataml/data/ccm_input2.csv +13 -13
  137. teradataml/data/ccmexample.csv +101 -101
  138. teradataml/data/ccmprepare_example.json +8 -8
  139. teradataml/data/ccmprepare_input.csv +91 -91
  140. teradataml/data/cfilter_example.json +12 -12
  141. teradataml/data/changepointdetection_example.json +18 -18
  142. teradataml/data/changepointdetectionrt_example.json +8 -8
  143. teradataml/data/chi_sq.csv +2 -2
  144. teradataml/data/churn_data.csv +14 -14
  145. teradataml/data/churn_emission.csv +35 -35
  146. teradataml/data/churn_initial.csv +3 -3
  147. teradataml/data/churn_state_transition.csv +5 -5
  148. teradataml/data/citedges_2.csv +745 -745
  149. teradataml/data/citvertices_2.csv +1210 -1210
  150. teradataml/data/clicks2.csv +16 -16
  151. teradataml/data/clickstream.csv +12 -12
  152. teradataml/data/clickstream1.csv +11 -11
  153. teradataml/data/closeness_example.json +15 -15
  154. teradataml/data/complaints.csv +21 -21
  155. teradataml/data/complaints_mini.csv +3 -3
  156. teradataml/data/complaints_testtoken.csv +224 -224
  157. teradataml/data/complaints_tokens_test.csv +353 -353
  158. teradataml/data/complaints_traintoken.csv +472 -472
  159. teradataml/data/computers_category.csv +1001 -1001
  160. teradataml/data/computers_test1.csv +1252 -1252
  161. teradataml/data/computers_train1.csv +5009 -5009
  162. teradataml/data/computers_train1_clustered.csv +5009 -5009
  163. teradataml/data/confusionmatrix_example.json +9 -9
  164. teradataml/data/conversion_event_table.csv +3 -3
  165. teradataml/data/corr_input.csv +17 -17
  166. teradataml/data/correlation_example.json +11 -11
  167. teradataml/data/coxhazardratio_example.json +39 -39
  168. teradataml/data/coxph_example.json +15 -15
  169. teradataml/data/coxsurvival_example.json +28 -28
  170. teradataml/data/cpt.csv +41 -41
  171. teradataml/data/credit_ex_merged.csv +45 -45
  172. teradataml/data/customer_loyalty.csv +301 -301
  173. teradataml/data/customer_loyalty_newseq.csv +31 -31
  174. teradataml/data/customer_segmentation_test.csv +2628 -0
  175. teradataml/data/customer_segmentation_train.csv +8069 -0
  176. teradataml/data/dataframe_example.json +146 -146
  177. teradataml/data/decisionforest_example.json +37 -37
  178. teradataml/data/decisionforestpredict_example.json +38 -38
  179. teradataml/data/decisiontree_example.json +21 -21
  180. teradataml/data/decisiontreepredict_example.json +45 -45
  181. teradataml/data/dfft2_size4_real.csv +17 -17
  182. teradataml/data/dfft2_test_matrix16.csv +17 -17
  183. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  184. teradataml/data/diabetes.csv +443 -443
  185. teradataml/data/diabetes_test.csv +89 -89
  186. teradataml/data/dict_table.csv +5 -5
  187. teradataml/data/docperterm_table.csv +4 -4
  188. teradataml/data/docs/__init__.py +1 -1
  189. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  190. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  191. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  192. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  193. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  194. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  195. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  196. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  197. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  198. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  199. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  200. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  201. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  202. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  203. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  204. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  205. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  206. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  207. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  208. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  209. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  210. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  211. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  212. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  213. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  214. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  215. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  216. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  217. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
  218. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
  219. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  220. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
  221. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  222. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  223. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  224. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  225. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  226. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  227. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  228. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  229. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  230. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  231. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  232. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  233. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  234. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  235. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  236. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  237. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  238. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  239. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  240. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  241. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  242. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
  243. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  244. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  245. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  246. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  247. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  248. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  249. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  250. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  251. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
  252. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  253. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  254. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  255. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  256. teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
  257. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  258. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  259. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
  260. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  261. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  262. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  263. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
  264. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  265. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  266. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  267. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
  268. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  269. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  270. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  271. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  272. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  273. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  274. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  275. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  276. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
  277. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  278. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  279. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  280. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  281. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
  282. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
  283. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  284. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  285. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  286. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  287. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  288. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  289. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  290. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  291. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
  292. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  293. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  294. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  295. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  296. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  297. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  298. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  299. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  300. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
  301. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  302. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
  303. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
  304. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  305. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  306. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  307. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  308. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  309. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  310. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  311. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  312. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
  313. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  314. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  315. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  316. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  317. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  318. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  319. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  320. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  321. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  322. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  323. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  324. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
  325. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
  326. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
  327. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  328. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  329. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  330. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  331. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  332. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  333. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  334. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  335. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  336. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  337. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  338. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  339. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  340. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  341. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  342. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  343. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  344. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  345. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  346. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  347. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  348. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  349. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  350. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  351. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  352. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  353. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  354. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  355. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  356. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  357. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  358. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  359. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  360. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  361. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  362. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  363. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  364. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  365. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  366. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  367. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  368. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  369. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  370. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  371. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  372. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  373. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  374. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  375. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  376. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  377. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  378. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  379. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  380. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  381. teradataml/data/dtw_example.json +17 -17
  382. teradataml/data/dtw_t1.csv +11 -11
  383. teradataml/data/dtw_t2.csv +4 -4
  384. teradataml/data/dwt2d_example.json +15 -15
  385. teradataml/data/dwt_example.json +14 -14
  386. teradataml/data/dwt_filter_dim.csv +5 -5
  387. teradataml/data/emission.csv +9 -9
  388. teradataml/data/emp_table_by_dept.csv +19 -19
  389. teradataml/data/employee_info.csv +4 -4
  390. teradataml/data/employee_table.csv +6 -6
  391. teradataml/data/excluding_event_table.csv +2 -2
  392. teradataml/data/finance_data.csv +6 -6
  393. teradataml/data/finance_data2.csv +61 -61
  394. teradataml/data/finance_data3.csv +93 -93
  395. teradataml/data/fish.csv +160 -0
  396. teradataml/data/fm_blood2ageandweight.csv +26 -26
  397. teradataml/data/fmeasure_example.json +11 -11
  398. teradataml/data/followers_leaders.csv +10 -10
  399. teradataml/data/fpgrowth_example.json +12 -12
  400. teradataml/data/frequentpaths_example.json +29 -29
  401. teradataml/data/friends.csv +9 -9
  402. teradataml/data/fs_input.csv +33 -33
  403. teradataml/data/fs_input1.csv +33 -33
  404. teradataml/data/genData.csv +513 -513
  405. teradataml/data/geodataframe_example.json +39 -39
  406. teradataml/data/glass_types.csv +215 -0
  407. teradataml/data/glm_admissions_model.csv +12 -12
  408. teradataml/data/glm_example.json +56 -29
  409. teradataml/data/glml1l2_example.json +28 -28
  410. teradataml/data/glml1l2predict_example.json +54 -54
  411. teradataml/data/glmpredict_example.json +54 -54
  412. teradataml/data/gq_t1.csv +21 -21
  413. teradataml/data/hconvolve_complex_right.csv +5 -5
  414. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  415. teradataml/data/histogram_example.json +11 -11
  416. teradataml/data/hmmdecoder_example.json +78 -78
  417. teradataml/data/hmmevaluator_example.json +24 -24
  418. teradataml/data/hmmsupervised_example.json +10 -10
  419. teradataml/data/hmmunsupervised_example.json +7 -7
  420. teradataml/data/house_values.csv +12 -12
  421. teradataml/data/house_values2.csv +13 -13
  422. teradataml/data/housing_cat.csv +7 -7
  423. teradataml/data/housing_data.csv +9 -9
  424. teradataml/data/housing_test.csv +47 -47
  425. teradataml/data/housing_test_binary.csv +47 -47
  426. teradataml/data/housing_train.csv +493 -493
  427. teradataml/data/housing_train_attribute.csv +4 -4
  428. teradataml/data/housing_train_binary.csv +437 -437
  429. teradataml/data/housing_train_parameter.csv +2 -2
  430. teradataml/data/housing_train_response.csv +493 -493
  431. teradataml/data/housing_train_segment.csv +201 -0
  432. teradataml/data/ibm_stock.csv +370 -370
  433. teradataml/data/ibm_stock1.csv +370 -370
  434. teradataml/data/identitymatch_example.json +21 -21
  435. teradataml/data/idf_table.csv +4 -4
  436. teradataml/data/impressions.csv +101 -101
  437. teradataml/data/inflation.csv +21 -21
  438. teradataml/data/initial.csv +3 -3
  439. teradataml/data/insect2Cols.csv +61 -0
  440. teradataml/data/insect_sprays.csv +12 -12
  441. teradataml/data/insurance.csv +1339 -1339
  442. teradataml/data/interpolator_example.json +12 -12
  443. teradataml/data/iris_altinput.csv +481 -481
  444. teradataml/data/iris_attribute_output.csv +8 -8
  445. teradataml/data/iris_attribute_test.csv +121 -121
  446. teradataml/data/iris_attribute_train.csv +481 -481
  447. teradataml/data/iris_category_expect_predict.csv +31 -31
  448. teradataml/data/iris_data.csv +151 -0
  449. teradataml/data/iris_input.csv +151 -151
  450. teradataml/data/iris_response_train.csv +121 -121
  451. teradataml/data/iris_test.csv +31 -31
  452. teradataml/data/iris_train.csv +121 -121
  453. teradataml/data/join_table1.csv +4 -4
  454. teradataml/data/join_table2.csv +4 -4
  455. teradataml/data/jsons/anly_function_name.json +6 -6
  456. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  457. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  458. teradataml/data/jsons/byom/h2opredict.json +194 -194
  459. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  460. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  461. teradataml/data/jsons/paired_functions.json +435 -435
  462. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  463. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  464. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  465. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  466. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  467. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  468. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  469. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  470. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  471. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  472. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  473. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  474. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  475. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  476. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  477. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  478. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  479. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  480. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  481. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  482. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  483. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  484. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  485. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  486. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  487. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  488. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  489. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  490. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  491. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  492. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  493. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  494. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  495. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  496. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  497. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  498. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  499. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  500. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  501. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  502. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  503. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  504. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  505. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  506. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  507. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  508. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  509. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  510. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  511. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  512. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  513. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  514. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  515. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  516. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  517. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  518. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  519. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  520. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  521. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  522. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  523. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  524. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  525. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  526. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  527. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  528. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  529. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  531. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  532. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  533. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  534. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  535. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  536. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  537. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  539. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  540. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  541. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  542. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  543. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  544. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  545. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  546. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  547. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  548. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  549. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  550. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  551. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  552. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  553. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  554. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  555. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  556. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  557. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  558. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  559. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  560. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  561. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  562. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  563. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  564. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  565. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  566. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  567. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  568. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
  569. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  570. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  571. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  572. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  573. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  574. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  575. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  576. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  577. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  578. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  579. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
  580. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  581. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  582. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  583. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
  584. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
  585. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  586. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  587. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
  588. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  589. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  590. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  591. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
  592. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  593. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  594. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  595. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
  596. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  597. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  598. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  599. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  600. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  601. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  602. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  603. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  604. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  605. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  606. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  607. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  608. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  609. teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
  610. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  611. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  612. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  613. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  614. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  615. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  616. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  617. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  618. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
  619. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
  620. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
  621. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  622. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  623. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  624. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  625. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  626. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  627. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  628. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  629. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  630. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  631. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  632. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  633. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  634. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  635. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
  636. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
  637. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
  638. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  639. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  640. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  641. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  642. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  643. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  644. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  645. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  646. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  647. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  648. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  649. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  650. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  651. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  653. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  654. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  655. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  656. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  657. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  658. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  659. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  660. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  661. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  662. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  663. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  664. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  665. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  666. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  667. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  668. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  669. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  670. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  671. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  672. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  673. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  674. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  675. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  676. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  677. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  678. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  679. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  680. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  681. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  682. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  683. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  684. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  685. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  686. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  687. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  688. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  689. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  690. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  691. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  692. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  693. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  694. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  695. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  696. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  697. teradataml/data/kmeans_example.json +22 -17
  698. teradataml/data/kmeans_table.csv +10 -0
  699. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  700. teradataml/data/knn_example.json +18 -18
  701. teradataml/data/knnrecommender_example.json +6 -6
  702. teradataml/data/knnrecommenderpredict_example.json +12 -12
  703. teradataml/data/lar_example.json +17 -17
  704. teradataml/data/larpredict_example.json +30 -30
  705. teradataml/data/lc_new_predictors.csv +5 -5
  706. teradataml/data/lc_new_reference.csv +9 -9
  707. teradataml/data/lda_example.json +8 -8
  708. teradataml/data/ldainference_example.json +14 -14
  709. teradataml/data/ldatopicsummary_example.json +8 -8
  710. teradataml/data/levendist_input.csv +13 -13
  711. teradataml/data/levenshteindistance_example.json +10 -10
  712. teradataml/data/linreg_example.json +9 -9
  713. teradataml/data/load_example_data.py +326 -323
  714. teradataml/data/loan_prediction.csv +295 -295
  715. teradataml/data/lungcancer.csv +138 -138
  716. teradataml/data/mappingdata.csv +12 -12
  717. teradataml/data/milk_timeseries.csv +157 -157
  718. teradataml/data/min_max_titanic.csv +4 -4
  719. teradataml/data/minhash_example.json +6 -6
  720. teradataml/data/ml_ratings.csv +7547 -7547
  721. teradataml/data/ml_ratings_10.csv +2445 -2445
  722. teradataml/data/model1_table.csv +5 -5
  723. teradataml/data/model2_table.csv +5 -5
  724. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  725. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  726. teradataml/data/modularity_example.json +12 -12
  727. teradataml/data/movavg_example.json +7 -7
  728. teradataml/data/mtx1.csv +7 -7
  729. teradataml/data/mtx2.csv +13 -13
  730. teradataml/data/multi_model_classification.csv +401 -0
  731. teradataml/data/multi_model_regression.csv +401 -0
  732. teradataml/data/mvdfft8.csv +9 -9
  733. teradataml/data/naivebayes_example.json +9 -9
  734. teradataml/data/naivebayespredict_example.json +19 -19
  735. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  736. teradataml/data/naivebayestextclassifier_example.json +8 -8
  737. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  738. teradataml/data/name_Find_configure.csv +10 -10
  739. teradataml/data/namedentityfinder_example.json +14 -14
  740. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  741. teradataml/data/namedentityfindertrainer_example.json +6 -6
  742. teradataml/data/nb_iris_input_test.csv +31 -31
  743. teradataml/data/nb_iris_input_train.csv +121 -121
  744. teradataml/data/nbp_iris_model.csv +13 -13
  745. teradataml/data/ner_extractor_text.csv +2 -2
  746. teradataml/data/ner_sports_test2.csv +29 -29
  747. teradataml/data/ner_sports_train.csv +501 -501
  748. teradataml/data/nerevaluator_example.json +5 -5
  749. teradataml/data/nerextractor_example.json +18 -18
  750. teradataml/data/nermem_sports_test.csv +17 -17
  751. teradataml/data/nermem_sports_train.csv +50 -50
  752. teradataml/data/nertrainer_example.json +6 -6
  753. teradataml/data/ngrams_example.json +6 -6
  754. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  755. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  756. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  757. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  758. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  759. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  760. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  761. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  762. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  763. teradataml/data/npath_example.json +23 -23
  764. teradataml/data/ntree_example.json +14 -14
  765. teradataml/data/numeric_strings.csv +4 -4
  766. teradataml/data/numerics.csv +4 -4
  767. teradataml/data/ocean_buoy.csv +17 -17
  768. teradataml/data/ocean_buoy2.csv +17 -17
  769. teradataml/data/ocean_buoys.csv +27 -27
  770. teradataml/data/ocean_buoys2.csv +10 -10
  771. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  772. teradataml/data/ocean_buoys_seq.csv +29 -29
  773. teradataml/data/onehot_encoder_train.csv +4 -0
  774. teradataml/data/openml_example.json +92 -0
  775. teradataml/data/optional_event_table.csv +4 -4
  776. teradataml/data/orders1.csv +11 -11
  777. teradataml/data/orders1_12.csv +12 -12
  778. teradataml/data/orders_ex.csv +4 -4
  779. teradataml/data/pack_example.json +8 -8
  780. teradataml/data/package_tracking.csv +19 -19
  781. teradataml/data/package_tracking_pti.csv +18 -18
  782. teradataml/data/pagerank_example.json +13 -13
  783. teradataml/data/paragraphs_input.csv +6 -6
  784. teradataml/data/pathanalyzer_example.json +7 -7
  785. teradataml/data/pathgenerator_example.json +7 -7
  786. teradataml/data/phrases.csv +7 -7
  787. teradataml/data/pivot_example.json +8 -8
  788. teradataml/data/pivot_input.csv +22 -22
  789. teradataml/data/playerRating.csv +31 -31
  790. teradataml/data/postagger_example.json +6 -6
  791. teradataml/data/posttagger_output.csv +44 -44
  792. teradataml/data/production_data.csv +16 -16
  793. teradataml/data/production_data2.csv +7 -7
  794. teradataml/data/randomsample_example.json +31 -31
  795. teradataml/data/randomwalksample_example.json +8 -8
  796. teradataml/data/rank_table.csv +6 -6
  797. teradataml/data/ref_mobile_data.csv +4 -4
  798. teradataml/data/ref_mobile_data_dense.csv +2 -2
  799. teradataml/data/ref_url.csv +17 -17
  800. teradataml/data/restaurant_reviews.csv +7 -7
  801. teradataml/data/river_data.csv +145 -145
  802. teradataml/data/roc_example.json +7 -7
  803. teradataml/data/roc_input.csv +101 -101
  804. teradataml/data/rule_inputs.csv +6 -6
  805. teradataml/data/rule_table.csv +2 -2
  806. teradataml/data/sales.csv +7 -7
  807. teradataml/data/sales_transaction.csv +501 -501
  808. teradataml/data/salesdata.csv +342 -342
  809. teradataml/data/sample_cities.csv +2 -2
  810. teradataml/data/sample_shapes.csv +10 -10
  811. teradataml/data/sample_streets.csv +2 -2
  812. teradataml/data/sampling_example.json +15 -15
  813. teradataml/data/sax_example.json +8 -8
  814. teradataml/data/scale_attributes.csv +3 -0
  815. teradataml/data/scale_example.json +74 -23
  816. teradataml/data/scale_housing.csv +11 -11
  817. teradataml/data/scale_housing_test.csv +6 -6
  818. teradataml/data/scale_input_part_sparse.csv +31 -0
  819. teradataml/data/scale_input_partitioned.csv +16 -0
  820. teradataml/data/scale_input_sparse.csv +11 -0
  821. teradataml/data/scale_parameters.csv +3 -0
  822. teradataml/data/scale_stat.csv +11 -11
  823. teradataml/data/scalebypartition_example.json +13 -13
  824. teradataml/data/scalemap_example.json +13 -13
  825. teradataml/data/scalesummary_example.json +12 -12
  826. teradataml/data/score_category.csv +101 -101
  827. teradataml/data/score_summary.csv +4 -4
  828. teradataml/data/script_example.json +9 -9
  829. teradataml/data/scripts/deploy_script.py +84 -0
  830. teradataml/data/scripts/mapper.R +20 -0
  831. teradataml/data/scripts/mapper.py +15 -15
  832. teradataml/data/scripts/mapper_replace.py +15 -15
  833. teradataml/data/scripts/sklearn/__init__.py +0 -0
  834. teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
  835. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
  836. teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
  837. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
  838. teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
  839. teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
  840. teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
  841. teradataml/data/seeds.csv +10 -10
  842. teradataml/data/sentenceextractor_example.json +6 -6
  843. teradataml/data/sentiment_extract_input.csv +11 -11
  844. teradataml/data/sentiment_train.csv +16 -16
  845. teradataml/data/sentiment_word.csv +20 -20
  846. teradataml/data/sentiment_word_input.csv +19 -19
  847. teradataml/data/sentimentextractor_example.json +24 -24
  848. teradataml/data/sentimenttrainer_example.json +8 -8
  849. teradataml/data/sequence_table.csv +10 -10
  850. teradataml/data/seriessplitter_example.json +7 -7
  851. teradataml/data/sessionize_example.json +17 -17
  852. teradataml/data/sessionize_table.csv +116 -116
  853. teradataml/data/setop_test1.csv +24 -24
  854. teradataml/data/setop_test2.csv +22 -22
  855. teradataml/data/soc_nw_edges.csv +10 -10
  856. teradataml/data/soc_nw_vertices.csv +7 -7
  857. teradataml/data/souvenir_timeseries.csv +167 -167
  858. teradataml/data/sparse_iris_attribute.csv +5 -5
  859. teradataml/data/sparse_iris_test.csv +121 -121
  860. teradataml/data/sparse_iris_train.csv +601 -601
  861. teradataml/data/star1.csv +6 -6
  862. teradataml/data/state_transition.csv +5 -5
  863. teradataml/data/stock_data.csv +53 -53
  864. teradataml/data/stock_movement.csv +11 -11
  865. teradataml/data/stock_vol.csv +76 -76
  866. teradataml/data/stop_words.csv +8 -8
  867. teradataml/data/store_sales.csv +37 -37
  868. teradataml/data/stringsimilarity_example.json +7 -7
  869. teradataml/data/strsimilarity_input.csv +13 -13
  870. teradataml/data/students.csv +101 -101
  871. teradataml/data/svm_iris_input_test.csv +121 -121
  872. teradataml/data/svm_iris_input_train.csv +481 -481
  873. teradataml/data/svm_iris_model.csv +7 -7
  874. teradataml/data/svmdense_example.json +9 -9
  875. teradataml/data/svmdensepredict_example.json +18 -18
  876. teradataml/data/svmsparse_example.json +7 -7
  877. teradataml/data/svmsparsepredict_example.json +13 -13
  878. teradataml/data/svmsparsesummary_example.json +7 -7
  879. teradataml/data/target_mobile_data.csv +13 -13
  880. teradataml/data/target_mobile_data_dense.csv +5 -5
  881. teradataml/data/templatedata.csv +1201 -1201
  882. teradataml/data/templates/open_source_ml.json +9 -0
  883. teradataml/data/teradataml_example.json +150 -1
  884. teradataml/data/test_classification.csv +101 -0
  885. teradataml/data/test_loan_prediction.csv +53 -53
  886. teradataml/data/test_pacf_12.csv +37 -37
  887. teradataml/data/test_prediction.csv +101 -0
  888. teradataml/data/test_regression.csv +101 -0
  889. teradataml/data/test_river2.csv +109 -109
  890. teradataml/data/text_inputs.csv +6 -6
  891. teradataml/data/textchunker_example.json +7 -7
  892. teradataml/data/textclassifier_example.json +6 -6
  893. teradataml/data/textclassifier_input.csv +7 -7
  894. teradataml/data/textclassifiertrainer_example.json +6 -6
  895. teradataml/data/textmorph_example.json +5 -5
  896. teradataml/data/textparser_example.json +15 -15
  897. teradataml/data/texttagger_example.json +11 -11
  898. teradataml/data/texttokenizer_example.json +6 -6
  899. teradataml/data/texttrainer_input.csv +11 -11
  900. teradataml/data/tf_example.json +6 -6
  901. teradataml/data/tfidf_example.json +13 -13
  902. teradataml/data/tfidf_input1.csv +201 -201
  903. teradataml/data/tfidf_train.csv +6 -6
  904. teradataml/data/time_table1.csv +535 -535
  905. teradataml/data/time_table2.csv +14 -14
  906. teradataml/data/timeseriesdata.csv +1601 -1601
  907. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  908. teradataml/data/titanic.csv +892 -892
  909. teradataml/data/token_table.csv +696 -696
  910. teradataml/data/train_multiclass.csv +101 -0
  911. teradataml/data/train_regression.csv +101 -0
  912. teradataml/data/train_regression_multiple_labels.csv +101 -0
  913. teradataml/data/train_tracking.csv +27 -27
  914. teradataml/data/transformation_table.csv +5 -5
  915. teradataml/data/transformation_table_new.csv +1 -1
  916. teradataml/data/tv_spots.csv +16 -16
  917. teradataml/data/twod_climate_data.csv +117 -117
  918. teradataml/data/uaf_example.json +475 -475
  919. teradataml/data/univariatestatistics_example.json +8 -8
  920. teradataml/data/unpack_example.json +9 -9
  921. teradataml/data/unpivot_example.json +9 -9
  922. teradataml/data/unpivot_input.csv +8 -8
  923. teradataml/data/us_air_pass.csv +36 -36
  924. teradataml/data/us_population.csv +624 -624
  925. teradataml/data/us_states_shapes.csv +52 -52
  926. teradataml/data/varmax_example.json +17 -17
  927. teradataml/data/vectordistance_example.json +25 -25
  928. teradataml/data/ville_climatedata.csv +121 -121
  929. teradataml/data/ville_tempdata.csv +12 -12
  930. teradataml/data/ville_tempdata1.csv +12 -12
  931. teradataml/data/ville_temperature.csv +11 -11
  932. teradataml/data/waveletTable.csv +1605 -1605
  933. teradataml/data/waveletTable2.csv +1605 -1605
  934. teradataml/data/weightedmovavg_example.json +8 -8
  935. teradataml/data/wft_testing.csv +5 -5
  936. teradataml/data/wine_data.csv +1600 -0
  937. teradataml/data/word_embed_input_table1.csv +5 -5
  938. teradataml/data/word_embed_input_table2.csv +4 -4
  939. teradataml/data/word_embed_model.csv +22 -22
  940. teradataml/data/words_input.csv +13 -13
  941. teradataml/data/xconvolve_complex_left.csv +6 -6
  942. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  943. teradataml/data/xgboost_example.json +35 -35
  944. teradataml/data/xgboostpredict_example.json +31 -31
  945. teradataml/data/ztest_example.json +16 -0
  946. teradataml/dataframe/copy_to.py +1769 -1698
  947. teradataml/dataframe/data_transfer.py +2812 -2745
  948. teradataml/dataframe/dataframe.py +17630 -16946
  949. teradataml/dataframe/dataframe_utils.py +1875 -1740
  950. teradataml/dataframe/fastload.py +794 -603
  951. teradataml/dataframe/indexer.py +424 -424
  952. teradataml/dataframe/setop.py +1179 -1166
  953. teradataml/dataframe/sql.py +10174 -6432
  954. teradataml/dataframe/sql_function_parameters.py +439 -388
  955. teradataml/dataframe/sql_functions.py +652 -652
  956. teradataml/dataframe/sql_interfaces.py +220 -220
  957. teradataml/dataframe/vantage_function_types.py +674 -630
  958. teradataml/dataframe/window.py +693 -692
  959. teradataml/dbutils/__init__.py +3 -3
  960. teradataml/dbutils/dbutils.py +1167 -1150
  961. teradataml/dbutils/filemgr.py +267 -267
  962. teradataml/gen_ai/__init__.py +2 -2
  963. teradataml/gen_ai/convAI.py +472 -472
  964. teradataml/geospatial/__init__.py +3 -3
  965. teradataml/geospatial/geodataframe.py +1105 -1094
  966. teradataml/geospatial/geodataframecolumn.py +392 -387
  967. teradataml/geospatial/geometry_types.py +925 -925
  968. teradataml/hyperparameter_tuner/__init__.py +1 -1
  969. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  970. teradataml/hyperparameter_tuner/utils.py +281 -187
  971. teradataml/lib/aed_0_1.dll +0 -0
  972. teradataml/lib/libaed_0_1.dylib +0 -0
  973. teradataml/lib/libaed_0_1.so +0 -0
  974. teradataml/libaed_0_1.dylib +0 -0
  975. teradataml/libaed_0_1.so +0 -0
  976. teradataml/opensource/__init__.py +1 -0
  977. teradataml/opensource/sklearn/__init__.py +1 -0
  978. teradataml/opensource/sklearn/_class.py +255 -0
  979. teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
  980. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  981. teradataml/opensource/sklearn/constants.py +54 -0
  982. teradataml/options/__init__.py +130 -124
  983. teradataml/options/configure.py +358 -336
  984. teradataml/options/display.py +176 -176
  985. teradataml/plot/__init__.py +2 -2
  986. teradataml/plot/axis.py +1388 -1388
  987. teradataml/plot/constants.py +15 -15
  988. teradataml/plot/figure.py +398 -398
  989. teradataml/plot/plot.py +760 -760
  990. teradataml/plot/query_generator.py +83 -83
  991. teradataml/plot/subplot.py +216 -216
  992. teradataml/scriptmgmt/UserEnv.py +3791 -3761
  993. teradataml/scriptmgmt/__init__.py +3 -3
  994. teradataml/scriptmgmt/lls_utils.py +1719 -1604
  995. teradataml/series/series.py +532 -532
  996. teradataml/series/series_utils.py +71 -71
  997. teradataml/table_operators/Apply.py +949 -917
  998. teradataml/table_operators/Script.py +1718 -1982
  999. teradataml/table_operators/TableOperator.py +1255 -1616
  1000. teradataml/table_operators/__init__.py +2 -3
  1001. teradataml/table_operators/apply_query_generator.py +262 -262
  1002. teradataml/table_operators/query_generator.py +507 -507
  1003. teradataml/table_operators/table_operator_query_generator.py +460 -460
  1004. teradataml/table_operators/table_operator_util.py +631 -639
  1005. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  1006. teradataml/table_operators/templates/dataframe_map.template +176 -176
  1007. teradataml/table_operators/templates/script_executor.template +170 -170
  1008. teradataml/utils/dtypes.py +684 -684
  1009. teradataml/utils/internal_buffer.py +84 -84
  1010. teradataml/utils/print_versions.py +205 -205
  1011. teradataml/utils/utils.py +410 -410
  1012. teradataml/utils/validators.py +2277 -2115
  1013. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
  1014. teradataml-20.0.0.1.dist-info/RECORD +1056 -0
  1015. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
  1016. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
  1017. teradataml/analytics/mle/AdaBoost.py +0 -651
  1018. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1019. teradataml/analytics/mle/Antiselect.py +0 -342
  1020. teradataml/analytics/mle/Arima.py +0 -641
  1021. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1022. teradataml/analytics/mle/Attribution.py +0 -1070
  1023. teradataml/analytics/mle/Betweenness.py +0 -658
  1024. teradataml/analytics/mle/Burst.py +0 -711
  1025. teradataml/analytics/mle/CCM.py +0 -600
  1026. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1027. teradataml/analytics/mle/CFilter.py +0 -460
  1028. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1029. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1030. teradataml/analytics/mle/Closeness.py +0 -737
  1031. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1032. teradataml/analytics/mle/Correlation.py +0 -477
  1033. teradataml/analytics/mle/Correlation2.py +0 -573
  1034. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1035. teradataml/analytics/mle/CoxPH.py +0 -556
  1036. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1037. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1038. teradataml/analytics/mle/DTW.py +0 -623
  1039. teradataml/analytics/mle/DWT.py +0 -564
  1040. teradataml/analytics/mle/DWT2D.py +0 -599
  1041. teradataml/analytics/mle/DecisionForest.py +0 -716
  1042. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1043. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1044. teradataml/analytics/mle/DecisionTree.py +0 -830
  1045. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1046. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1047. teradataml/analytics/mle/FMeasure.py +0 -402
  1048. teradataml/analytics/mle/FPGrowth.py +0 -734
  1049. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1050. teradataml/analytics/mle/GLM.py +0 -558
  1051. teradataml/analytics/mle/GLML1L2.py +0 -547
  1052. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1053. teradataml/analytics/mle/GLMPredict.py +0 -529
  1054. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1055. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1056. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1057. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1058. teradataml/analytics/mle/Histogram.py +0 -561
  1059. teradataml/analytics/mle/IDWT.py +0 -476
  1060. teradataml/analytics/mle/IDWT2D.py +0 -493
  1061. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1062. teradataml/analytics/mle/Interpolator.py +0 -918
  1063. teradataml/analytics/mle/KMeans.py +0 -485
  1064. teradataml/analytics/mle/KNN.py +0 -627
  1065. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1066. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1067. teradataml/analytics/mle/LAR.py +0 -439
  1068. teradataml/analytics/mle/LARPredict.py +0 -478
  1069. teradataml/analytics/mle/LDA.py +0 -548
  1070. teradataml/analytics/mle/LDAInference.py +0 -492
  1071. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1072. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1073. teradataml/analytics/mle/LinReg.py +0 -433
  1074. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1075. teradataml/analytics/mle/MinHash.py +0 -544
  1076. teradataml/analytics/mle/Modularity.py +0 -587
  1077. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1078. teradataml/analytics/mle/NERExtractor.py +0 -595
  1079. teradataml/analytics/mle/NERTrainer.py +0 -458
  1080. teradataml/analytics/mle/NGrams.py +0 -570
  1081. teradataml/analytics/mle/NPath.py +0 -634
  1082. teradataml/analytics/mle/NTree.py +0 -549
  1083. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1084. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1085. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1086. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1087. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1088. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1089. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1090. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1091. teradataml/analytics/mle/POSTagger.py +0 -417
  1092. teradataml/analytics/mle/Pack.py +0 -411
  1093. teradataml/analytics/mle/PageRank.py +0 -535
  1094. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1095. teradataml/analytics/mle/PathGenerator.py +0 -367
  1096. teradataml/analytics/mle/PathStart.py +0 -464
  1097. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1098. teradataml/analytics/mle/Pivot.py +0 -471
  1099. teradataml/analytics/mle/ROC.py +0 -425
  1100. teradataml/analytics/mle/RandomSample.py +0 -637
  1101. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1102. teradataml/analytics/mle/SAX.py +0 -779
  1103. teradataml/analytics/mle/SVMDense.py +0 -677
  1104. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1105. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1106. teradataml/analytics/mle/SVMSparse.py +0 -557
  1107. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1108. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1109. teradataml/analytics/mle/Sampling.py +0 -549
  1110. teradataml/analytics/mle/Scale.py +0 -565
  1111. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1112. teradataml/analytics/mle/ScaleMap.py +0 -378
  1113. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1114. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1115. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1116. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1117. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1118. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1119. teradataml/analytics/mle/Sessionize.py +0 -475
  1120. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1121. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1122. teradataml/analytics/mle/TF.py +0 -389
  1123. teradataml/analytics/mle/TFIDF.py +0 -504
  1124. teradataml/analytics/mle/TextChunker.py +0 -414
  1125. teradataml/analytics/mle/TextClassifier.py +0 -399
  1126. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1127. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1128. teradataml/analytics/mle/TextMorph.py +0 -494
  1129. teradataml/analytics/mle/TextParser.py +0 -623
  1130. teradataml/analytics/mle/TextTagger.py +0 -530
  1131. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1132. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1133. teradataml/analytics/mle/Unpack.py +0 -526
  1134. teradataml/analytics/mle/Unpivot.py +0 -438
  1135. teradataml/analytics/mle/VarMax.py +0 -776
  1136. teradataml/analytics/mle/VectorDistance.py +0 -762
  1137. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1138. teradataml/analytics/mle/XGBoost.py +0 -842
  1139. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1140. teradataml/analytics/mle/__init__.py +0 -123
  1141. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1142. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1143. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1144. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1145. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1146. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1147. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1148. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1149. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1150. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1151. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1152. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1153. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1154. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1155. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1156. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1157. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1158. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1159. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1160. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1161. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1162. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1163. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1164. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1165. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1166. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1167. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1168. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1169. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1170. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1171. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1172. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1173. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1174. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1175. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1176. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1177. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1178. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1179. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1180. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1181. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1182. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1183. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1184. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1185. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1186. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1187. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1188. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1189. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1190. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1191. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1192. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1193. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1194. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1195. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1196. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1197. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1198. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1199. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1200. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1201. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1202. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1203. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1204. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1205. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1206. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1207. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1208. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1209. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1210. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1211. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1212. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1213. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1214. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1215. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1216. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1217. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1218. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1219. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1220. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1221. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1222. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1223. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1224. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1225. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1226. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1227. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1228. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1229. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1230. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1231. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1232. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1233. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1234. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1235. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1236. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1237. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1238. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1239. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1240. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1241. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1242. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1243. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1244. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1245. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1246. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1247. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1248. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1249. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1250. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1251. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1252. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1253. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1254. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1255. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1256. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1257. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1258. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1259. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1260. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1261. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1262. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1263. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1264. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1265. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1266. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1267. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1268. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1269. teradataml/analytics/sqle/Antiselect.py +0 -321
  1270. teradataml/analytics/sqle/Attribution.py +0 -603
  1271. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1272. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1273. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1274. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1275. teradataml/analytics/sqle/NPath.py +0 -632
  1276. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1277. teradataml/analytics/sqle/Pack.py +0 -388
  1278. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1279. teradataml/analytics/sqle/Sessionize.py +0 -390
  1280. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1281. teradataml/analytics/sqle/Unpack.py +0 -503
  1282. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1283. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1284. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1285. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1286. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1287. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1288. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1289. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1290. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1291. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1292. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1293. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1294. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1295. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1296. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1297. teradataml/catalog/model_cataloging.py +0 -980
  1298. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1299. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1300. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1301. teradataml/table_operators/sandbox_container_util.py +0 -643
  1302. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1303. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
teradataml/README.md CHANGED
@@ -1,1640 +1,1935 @@
1
- ## Teradata Python package for Advanced Analytics.
2
-
3
- teradataml makes available to Python users a collection of analytic functions that reside on Teradata Vantage. This allows users to perform analytics on Teradata Vantage with no SQL coding. In addition, the teradataml library provides functions for scaling data manipulation and transformation, data filtering and sub-setting, and can be used in conjunction with other open-source python libraries.
4
-
5
- For community support, please visit the [Teradata Community](https://support.teradata.com/community?id=community_forum&sys_id=14fe131e1bf7f304682ca8233a4bcb1d).
6
-
7
- For Teradata customer support, please visit [Teradata Support](https://support.teradata.com/csm).
8
-
9
- Copyright 2023, Teradata. All Rights Reserved.
10
-
11
- ### Table of Contents
12
- * [Release Notes](#release-notes)
13
- * [Installation and Requirements](#installation-and-requirements)
14
- * [Using the Teradata Python Package](#using-the-teradata-python-package)
15
- * [Documentation](#documentation)
16
- * [License](#license)
17
-
18
- ## Release Notes:
19
- #### teradataml 17.20.00.07
20
- * ##### New Features/Functionality
21
- * ###### Open Analytics Framework (OpenAF) APIs:
22
- * Manage all user environments.
23
- * `create_env()`:
24
- * new argument `conda_env` is added to create a conda environment.
25
- * `list_user_envs()`:
26
- * User can list conda environment(s) by using filter with new argument `conda_env`.
27
- * Conda environment(s) can be managed using APIs for installing , updating, removing files/libraries.
28
- * ##### Bug Fixes
29
- * `columns` argument for `FillNa` function is made optional.
30
-
31
- ## Release Notes:
32
- #### teradataml 17.20.00.06
33
- * ##### New Features/Functionality
34
- * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
35
- * `ColumnExpression.nulls_first()` - Displays NULL values at first.
36
- * `ColumnExpression.nulls_last()` - Displays NULL values at last.
37
- * _Bit Byte Manipulation Functions_
38
- * `DataFrameColumn.bit_and()` - Returns the logical AND operation on the bits from
39
- the column and corresponding bits from the argument.
40
- * `DataFrameColumn.bit_get()` - Returns the bit specified by input argument from the column and
41
- returns either 0 or 1 to indicate the value of that bit.
42
- * `DataFrameColumn.bit_or()` - Returns the logical OR operation on the bits from the column and
43
- corresponding bits from the argument.
44
- * `DataFrameColumn.bit_xor()` - Returns the bitwise XOR operation on the binary representation of the
45
- column and corresponding bits from the argument.
46
- * `DataFrameColumn.bitand()` - It is an alias for `DataFrameColumn.bit_and()` function.
47
- * `DataFrameColumn.bitnot()` - Returns a bitwise complement on the binary representation of the column.
48
- * `DataFrameColumn.bitor()` - It is an alias for `DataFrameColumn.bit_or()` function.
49
- * `DataFrameColumn.bitwise_not()` - It is an alias for `DataFrameColumn.bitnot()` function.
50
- * `DataFrameColumn.bitwiseNOT()` - It is an alias for `DataFrameColumn.bitnot()` function.
51
- * `DataFrameColumn.bitxor()` - It is an alias for `DataFrameColumn.bit_xor()` function.
52
- * `DataFrameColumn.countset()` - Returns the count of the binary bits within the column that are either set to 1
53
- or set to 0, depending on the input argument value.
54
- * `DataFrameColumn.getbit()` - It is an alias for `DataFrameColumn.bit_get()` function.
55
- * `DataFrameColumn.rotateleft()` - Returns an expression rotated to the left by the specified number of bits,
56
- with the most significant bits wrapping around to the right.
57
- * `DataFrameColumn.rotateright()` - Returns an expression rotated to the right by the specified number of bits,
58
- with the least significant bits wrapping around to the left.
59
- * `DataFrameColumn.setbit()` - Sets the value of the bit specified by input argument to the value
60
- of column.
61
- * `DataFrameColumn.shiftleft()` - Returns the expression when value in column is shifted by the specified
62
- number of bits to the left.
63
- * `DataFrameColumn.shiftright()` - Returns the expression when column expression is shifted by the specified
64
- number of bits to the right.
65
- * `DataFrameColumn.subbitstr()` - Extracts a bit substring from the column expression based on the specified
66
- bit position.
67
- * `DataFrameColumn.to_byte()` - Converts a numeric data type to the Vantage byte representation
68
- (byte value) of the column expression value.
69
-
70
- * _Regular Expression Functions_
71
- * `DataFrameColumn.regexp_instr()` - Searches string value in column for a match to value specified in argument.
72
- * `DataFrameColumn.regexp_replace()` - Replaces the portions of string value in a column that matches the value
73
- specified regex string and replaces with the replace string.
74
- * `DataFrameColumn.regexp_similar()` - Compares value in column to value in argument and returns integer value.
75
- * `DataFrameColumn.regexp_substr()` - Extracts a substring from column that matches a regular expression
76
- specified in the input argument.
77
-
78
- * ###### Open Analytics Framework (OpenAF) APIs:
79
- * Manage all user environments.
80
- * `create_env()`:
81
- * User can create one or more user environments using newly added argument `template` by providing specifications in template json file. New feature allows user to create complete user environment, including file and library installation, in just single function call.
82
- * UserEnv Class – Manage individual user environment.
83
- * Properties:
84
- * `models` - Supports listing of models in user environment.
85
- * Methods:
86
- * `install_model()` - Install a model in user environment.
87
- * `uninstall_model()` - Uninstall a model from user environment.
88
- * `snapshot()`- Take the snapshot of the user environment.
89
-
90
- * ###### teradataml: Bring Your Own Model
91
- * _New Functions_
92
- * `DataRobotPredict()` - Score the data in Vantage using the model trained externally in datarobot and stored
93
- in Vantage.
94
-
95
- * ##### Updates
96
- * `DataFrame.describe()`
97
- * Method now accepts an argument `statistics`, which specifies the aggregate operation to be performed.
98
- * `DataFrame.sort()`
99
- * Method now accepts ColumnExpressions as well.
100
- * Enables sorting using NULLS FIRST and NULLS LAST.
101
- * `view_log()` downloads the Apply query logs based on query id.
102
- * Arguments which accepts floating numbers will accept integers also for `Analytics Database Analytic Functions`.
103
- * Argument `ignore_nulls` added to `DataFrame.plot()` to ignore the null values while plotting the data.
104
- * `Dataframe.sample()`
105
- * Method supports column stratification.
106
-
107
- * ##### Bug Fixes
108
- * `DataFrameColumn.cast()` accepts all teradatasqlalchemy types.
109
- * Minor bug fix related to `DataFrame.merge()`.
110
-
111
- #### teradataml 17.20.00.05
112
- * ##### New Features/Functionality
113
- * ###### teradataml: Hyperparameter-Tuning - Technique to identify best model parameters.
114
- Hyperparameter tuning is an optimization method to determine the optimal set of
115
- hyperparameters for the given dataset and learning model. teradataml hyperparameter tuning feature
116
- offers best model identification, parallel execution, early stopping feature, best data identification,
117
- model evaluation, model prediction, live logging, input data hyper-parameterization, input data sampling,
118
- numerous scoring functions, hyper-parameterization for non-model trainer functions.
119
- * `GridSearch`
120
- GridSearch is an exhaustive search algorithm that covers all possible
121
- parameter values to identify optimal hyperparameters.
122
- * Methods of GridSearch
123
- * `__init__()` - Instantiate an object of GridSearch for given model function and parameters.
124
- * `evaluate()` - Function to perform evaluation on the given teradataml DataFrame using default model.
125
- * `fit()` - Function to perform hyperparameter-tuning for given hyperparameters and model on teradataml DataFrame.
126
- * `get_error_log()` - Useful to get the error log if model execution failed, using the model identifier.
127
- * `get_input_data()` - Useful to get the input data using the data identifier, when input data is also parameterized.
128
- * `get_model()` - Returns the trained model for the given model identifier.
129
- * `get_parameter_grid()` - Returns the hyperparameter space used for hyperparameter optimization.
130
- * `is_running()` - Returns the execution status of hyperaparameter tuning.
131
- * `predict()` - Function to perform prediction on the given teradataml DataFrame using default model.
132
- * `set_model()` - Function to update the default model.
133
- * Properties of GridSearch
134
- * `best_data_id` - Returns the best data identifier used for model training.
135
- * `best_model` - Returns the best trained model.
136
- * `best_model_id` - Returns the identifier for best model.
137
- * `best_params_` - Returns the best set of hyperparameter.
138
- * `best_sampled_data_` - Returns the best sampled data used to train the best model.
139
- * `best_score_` - Returns the best trained model score.
140
- * `model_stats` - Returns the model evaluation reports.
141
- * `models` - Returns the metadata of all the models.
142
- * `RandomSearch`
143
- RandomSearch algorithm performs random sampling on hyperparameter
144
- space to identify optimal hyperparameters.
145
- * Methods of RandomSearch
146
- * `__init__()` - Instantiate an object of RandomSearch for given model function and parameters.
147
- * `evaluate()` - Function to perform evaluation on the given teradataml DataFrame using default model.
148
- * `fit()` - Function to perform hyperparameter-tuning for given hyperparameters and model on teradataml DataFrame.
149
- * `get_error_log()` - Useful to get the error log if model execution failed, using the model identifier.
150
- * `get_input_data()` - Useful to get the input data using the data identifier, when input data is also parameterized.
151
- * `get_model()` - Returns the trained model for the given model identifier.
152
- * `get_parameter_grid()` - Returns the hyperparameter space used for hyperparameter optimization.
153
- * `is_running()` - Returns the execution status of hyperaparameter tuning.
154
- * `predict()` - Function to perform prediction on the given teradataml DataFrame using default model.
155
- * `set_model()` - Function to update the default model.
156
- * Properties of GridSearch
157
- * `best_data_id` - Returns the best data identifier used for model training.
158
- * `best_model` - Returns the best trained model.
159
- * `best_model_id` - Returns the identifier for best model.
160
- * `best_params_` - Returns the best set of hyperparameter.
161
- * `best_sampled_data_` - Returns the best sampled data used to train the best model.
162
- * `best_score_` - Returns the best trained model score.
163
- * `model_stats` - Returns the model evaluation reports.
164
- * `models` - Returns the metadata of all the models.
165
-
166
- * ###### teradataml: Analytic Functions
167
- teradataml currently has different functions to generate a model, predict, transform and evaluate. All these functions are needed to be invoked individually, i.e., predict(), evaluate(), transform() cannot be invoked using the model trainer function output. Enhancement done to this feature now enables user to invoke these functions as methods of the model trainer function. Below is the list of functions, updated with this enhancement:
168
- * Analytics Database Analytic Functions
169
- * `BincodeFit()` - Supports `transform()` method.
170
- * `DecisionForest()` - Supports `predict()`, `evaluate()` methods.
171
- * `Fit()` - Supports `transform()` method.
172
- * `GLM()` - Supports `predict()`, `evaluate()` methods.
173
- * `GLMPerSegment()` - Supports `predict()`, `evaluate()` methods.
174
- * `KMeans()` - Supports `predict()` method.
175
- * `KNN()` - Supports `predict()`, `evaluate()` methods.
176
- * `NaiveBayesTextClassifierTrainer()` - Supports `predict()`, `evaluate()` methods.
177
- * `NonLinearCombineFit()` - Supports `transform()` method.
178
- * `OneClassSVM()` - Supports `predict()` method.
179
- * `OneHotEncodingFit()` - Supports `transform()` method.
180
- * `OrdinalEncodingFit()` - Supports `transform()` method.
181
- * `OutlierFilterFit()` - Supports `transform()` method.
182
- * `PolynomialFeaturesFit()` - Supports `transform()` method.
183
- * `RandomProjectionFit()` - Supports `transform()` method.
184
- * `RowNormalizeFit()` - Supports `transform()` method.
185
- * `ScaleFit()` - Supports `transform()` method.
186
- * `SimpleImputeFit()` - Supports `transform()` method.
187
- * `SVM()` - Supports `predict()`, `evaluate()` methods.
188
- * `TargetEncodingFit()` - Supports `transform()` method.
189
- * `XGBoost()` - Supports `predict()`, `evaluate()` methods.
190
- * Time Series Analytic (UAF) Functions
191
- * `ArimaEstimate()` - Supports `forecast()`, `validate()` methods.
192
- * `DFFT()` - Supports `convolve()`, `inverse()` methods.
193
- * `IDFFT()` - Supports `inverse()` method.
194
- * `DFFT2()` - Supports `convolve()`, `inverse()` methods.
195
- * `IDFFT2()` - Supports `inverse()` method.
196
- * `DIFF()` - Supports `inverse()` method.
197
- * `UNDIFF()` - Supports `inverse()` method.
198
- * `SeasonalNormalize()` - Supports `inverse()` method.
199
-
200
- * ###### teradataml: DataFrame
201
- * New Functions
202
- * `DataFrame.plot()` - Generates the below type of plots on teradataml DataFrame.
203
- * line - Generates line plot.
204
- * bar - Generates bar plot.
205
- * scatter - Generates scatter plot.
206
- * corr - Generates correlation plot.
207
- * wiggle - Generates a wiggle plot.
208
- * mesh - Generates a mesh plot.
209
- * `DataFrame.itertuples()` - iterate over teradataml DataFrame rows as namedtuples or list.
210
- * ###### teradataml: GeoDataFrame
211
- * New Functions
212
- * `GeoDataFrame.plot()` - Generate the below type of plots on teradataml GeoDataFrame.
213
- * line - Generates line plot.
214
- * bar - Generates bar plot.
215
- * scatter - Generates scatter plot.
216
- * corr - Generates correlation plot.
217
- * wiggle - Generates a wiggle plot.
218
- * mesh - Generates a mesh plot.
219
- * geometry - Generates plot on geospatial data.
220
- * Plot:
221
- * `Axis` - Genertes the axis for plot.
222
- * `Figure` - Generates the figure for plot.
223
- * `subplots` - Helps in generating multiple plots on a single `Figure`.
224
- * Bring Your Own Model (BYOM) Function:
225
- * `DataikuPredict` - Score the data in Vantage using the model trained externally in Dataiku UI and stored in Vantage.
226
- * `async_run_status()` - Function to check the status of asynchronous run(s) using unique run id(s).
227
-
228
- * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
229
- * _Regular Arithmetic Functions_
230
- * `DataFrameColumn.abs()` - Computes the absolute value.
231
- * `DataFrameColumn.ceil()` - Returns the ceiling value of the column.
232
- * `DataFrameColumn.ceiling()` - It is an alias for `DataFrameColumn.ceil()` function.
233
- * `DataFrameColumn.degrees()` - Converts radians value from the column to degrees.
234
- * `DataFrameColumn.exp()` - Raises e (the base of natural logarithms) to the power of the value in the column, where e = 2.71828182845905.
235
- * `DataFrameColumn.floor()` - Returns the largest integer equal to or less than the value in the column.
236
- * `DataFrameColumn.ln()` - Computes the natural logarithm of values in column.
237
- * `DataFrameColumn.log10()` - Computes the base 10 logarithm.
238
- * `DataFrameColumn.mod()` - Returns the modulus of the column.
239
- * `DataFrameColumn.pmod()` - It is an alias for `DataFrameColumn.mod()` function.
240
- * `DataFrameColumn.nullifzero()` - Converts data from zero to null to avoid problems with division by zero.
241
- * `DataFrameColumn.pow()` - Computes the power of the column raised to expression or constant.
242
- * `DataFrameColumn.power()` - It is an alias for `DataFrameColumn.pow()` function.
243
- * `DataFrameColumn.radians()` - Converts degree value from the column to radians.
244
- * `DataFrameColumn.round()` - Returns the rounded off value.
245
- * `DataFrameColumn.sign()` - Returns the sign.
246
- * `DataFrameColumn.signum()` - It is an alias for `DataFrameColumn.sign()` function.
247
- * `DataFrameColumn.sqrt()` - Computes the square root of values in the column.
248
- * `DataFrameColumn.trunc()` - Provides the truncated value of columns.
249
- * `DataFrameColumn.width_bucket()` - Returns the number of the partition to which column is assigned.
250
- * `DataFrameColumn.zeroifnull()` - Converts data from null to zero to avoid problems with null.
251
- * _Trigonometric Functions_
252
- * `DataFrameColumn.acos()` - Returns the arc-cosine value.
253
- * `DataFrameColumn.asin()` - Returns the arc-sine value.
254
- * `DataFrameColumn.atan()` - Returns the arc-tangent value.
255
- * `DataFrameColumn.atan2()` - Returns the arc-tangent value based on x and y coordinates.
256
- * `DataFrameColumn.cos()` - Returns the cosine value.
257
- * `DataFrameColumn.sin()` - Returns the sine value.
258
- * `DataFrameColumn.tan()` - Returns the tangent value.
259
- * _Hyperbolic Functions_
260
- * `DataFrameColumn.acosh()` - Returns the inverse hyperbolic cosine value.
261
- * `DataFrameColumn.asinh()` - Returns the inverse hyperbolic sine value.
262
- * `DataFrameColumn.atanh()` - Returns the inverse hyperbolic tangent value.
263
- * `DataFrameColumn.cosh()` - Returns the hyperbolic cosine value.
264
- * `DataFrameColumn.sinh()` - Returns the hyperbolic sine value
265
- * `DataFrameColumn.tanh()` - Returns the hyperbolic tangent value.
266
- * _String Functions_
267
- * `DataFrameColumn.ascii()` - Returns the decimal representation of the first character in column.
268
- * `DataFrameColumn.char2hexint()` - Returns the hexadecimal representation for a character string in a column.
269
- * `DataFrameColumn.chr()` - Returns the Latin ASCII character of a given a numeric code value in column.
270
- * `DataFrameColumn.char()` - It is an alias for `DataFrameColumn.chr()` function.
271
- * `DataFrameColumn.character_length()` - Returns the number of characters in the column.
272
- * `DataFrameColumn.char_length()` - It is an alias for `DataFrameColumn.character_length()` function.
273
- * `DataFrameColumn.edit_distance()` - Returns the minimum number of edit operations required to
274
- transform string in a column into string specified in argument.
275
- * `DataFrameColumn.index()` - Returns the position of a string in a column where string specified in argument starts.
276
- * `DataFrameColumn.initcap()` - Modifies a string column and returns the string with the first character
277
- of each word in uppercase.
278
- * `DataFrameColumn.instr()` - Searches the string in a column for occurrences of search string passed as argument.
279
- * `DataFrameColumn.lcase()` - Returns a character string identical to string values in column,
280
- with all uppercase letters replaced with their lowercase equivalents.
281
- * `DataFrameColumn.left()` - Truncates string in a column to a specified number of characters desired from
282
- the left side of the string.
283
- * `DataFrameColumn.length()` - It is an alias for `DataFrameColumn.character_length()` function.
284
- * `DataFrameColumn.levenshtein()` - It is an alias for `DataFrameColumn.edit_distance()` function.
285
- * `DataFrameColumn.locate()` - Returns the position of the first occurrence of a string in a column within
286
- string in argument.
287
- * `DataFrameColumn.lower()` - It is an alias for `DataFrameColumn.character_lcase()` function.
288
- * `DataFrameColumn.lpad()` - Returns the string in a column padded to the left with the characters specified
289
- in argument so that the resulting string has length specified in argument.
290
- * `DataFrameColumn.ltrim()` - Returns the string in a column, with its left-most characters removed up
291
- to the first character that is not in the string specified in argument.
292
- * `DataFrameColumn.ngram()` - Returns the number of n-gram matches between string in a column,
293
- and string specified in argument.
294
- * `DataFrameColumn.nvp()` - Extracts the value of a name-value pair where the name in the pair matches
295
- the name and the number of the occurrence specified.
296
- * `DataFrameColumn.oreplace()` - Replaces every occurrence of search string in the column.
297
- * `DataFrameColumn.otranslate()` - Returns string in a column with every occurrence of each character in
298
- string in argument replaced with the corresponding character in another argument.
299
- * `DataFrameColumn.replace()` - It is an alias for `DataFrameColumn.oreplace()` function.
300
- * `DataFrameColumn.reverse()` - Returns the reverse of string in column.
301
- * `DataFrameColumn.right()` - Truncates input string to a specified number of characters desired from
302
- the right side of the string.
303
- * `DataFrameColumn.rpad()` - Returns the string in a column padded to the right with the characters specified
304
- in argument so the resulting string has length specified in argument.
305
- * `DataFrameColumn.rtrim()` - Returns the string in column, with its right-most characters removed up
306
- to the first character that is not in the string specified in argument.
307
- * `DataFrameColumn.soundex()` - Returns a character string that represents the Soundex code for
308
- string in a column.
309
- * `DataFrameColumn.string_cs()` - Returns a heuristically derived integer value that can be used to determine
310
- which KANJI1-compatible client character set was used to encode string in a column.
311
- * `DataFrameColumn.translate()` - It is an alias for `DataFrameColumn.otranslate()` function.
312
- * `DataFrameColumn.upper()` - Returns a character string with all lowercase letters in a column replaced
313
- with their uppercase equivalents.
314
-
315
- * ##### teradataml Options
316
- * Configuration Options
317
- * `configure.indb_install_location`
318
- Specifies the installation location of In-DB Python package.
319
-
320
- * ##### Updates
321
- * Open Analytics Framework (OpenAF) APIs:
322
- * `set_auth_token()`
323
- * `set_auth_token()` does not accept username and password anymore. Instead, function opens up a browser session and user should authenticate in browser.
324
- * After token expiry, teradataml will open a browser and user needs to authenticate again.
325
- * If client machine does not have browser, then user should copy the URL posted by teradataml and authenticate themselves.
326
- * Security fixes - `auth_token` is not set or retrieved from the `configure` option anymore.
327
- * Manage all user environments.
328
- * `create_env()` - supports creation of R environment.
329
- * `remove_env()` - Supports removal of remote R environment.
330
- * `remove_all_envs()` - Supports removal of all remote R environments.
331
- * `remove_env()` and `remove_all_envs()` supports asynchronous call.
332
- * UserEnv Class Supports managing of R remote environments.
333
- * Properties:
334
- * `libs` - Supports listing of libraries in R remote environment.
335
- * Methods:
336
- * `install_lib()` - Supports installing of libraries in remote R environment.
337
- * `uninstall_lib()` - Supports uninstalling of libraries in remote R environment.
338
- * `update_lib()` - Supports updating of libraries in remote R environment.
339
- * Unbounded Array Framework (UAF) Functions:
340
- * `ArimaEstimate()`
341
- * Added support for `CSS` algorithm via `algorithm` argument.
342
-
343
- * ##### Bug Fixes
344
- * Installation location of In-DB 2.0.0 package is changed. Script() will now work with both 2.0.0 and previous version.
345
-
346
- ## Release Notes:
347
- #### teradataml 17.20.00.04
348
- * ##### New Features/Functionality
349
- * teradataml is now compatible with SQLAlchemy 2.0.X
350
- * **Important notes** when user has sqlalchemy version >= 2.0:
351
- * Users will not be able to run the `execute()` method on SQLAlchemy engine object returned by
352
- `get_context()` and `create_context()` teradataml functions. This is due to the SQLAlchemy has
353
- removed the support for `execute()` method on the engine object. Thus, user scripts where
354
- `get_context().execute()` and `create_context().execute()`, is used, Teradata recommends to
355
- replace those with either `execute_sql()` function exposed by teradataml or `exec_driver_sql()`
356
- method on the `Connection` object returned by `get_connection()` function in teradataml.
357
- * Now `get_connection().execute()` accepts only executable sqlalchemy object. Refer to
358
- `sqlalchemy.engine.base.execute()` for more details.
359
- * Teradata recommends to use either `execute_sql()` function exposed by teradataml or
360
- `exec_driver_sql()` method on the `Connection` object returned by `get_connection()`
361
- function in teradataml, in such cases.
362
- * New utility function `execute_sql()` is added to execute the SQL.
363
- * Extending compatibility for MAC with ARM processors.
364
- * Added support for floor division (//) between two teradataml DataFrame Columns.
365
- * Analytics Database Analytic Functions:
366
- * `GLMPerSegment()`
367
- * `GLMPredictPerSegment()`
368
- * `OneClassSVM()`
369
- * `OneClassSVMPredict()`
370
- * `SVM()`
371
- * `SVMPredict()`
372
- * `TargetEncodingFit()`
373
- * `TargetEncodingTransform()`
374
- * `TrainTestSplit()`
375
- * `WordEmbeddings()`
376
- * `XGBoost()`
377
- * `XGBoostPredict()`
378
-
379
- * ###### teradataml Options
380
- * Display Options
381
- * `display.geometry_column_length`
382
- Option to display the default length of geometry column in GeoDataFrame.
383
-
384
- * ##### Updates
385
- * `set_auth_token()` function can generate the client id automatically based on org_id when user do not specify it.
386
- * Analytics Database Analytic Functions:
387
- * `ColumnTransformer()`
388
- * Does not allow list values for arguments - `onehotencoding_fit_data` and `ordinalencoding_fit_data`.
389
- * `OrdidnalEncodingFit()`
390
- * New arguments added - `category_data`, `target_column_names`, `categories_column`, `ordinal_values_column`.
391
- * Allows the list of values for arguments - `target_column`, `start_value`, `default_value`.
392
- * `OneHotEncodingFit()`
393
- * New arguments added - `category_data`, `approach`, `target_columns`, `categories_column`, `category_counts`.
394
- * Allows the list of values for arguments - `target_column`, `other_column`.
395
-
396
- * ##### Bug Fixes
397
- * `DataFrame.sample()` method output is now deterministic.
398
- * `copy_to_sql()` now preserves the rows of the table even when the view content is copied to the same table name.
399
- * `list_user_envs()` does not raise warning when no user environments found.
400
-
401
- ## Release Notes:
402
- #### teradataml 17.20.00.03
403
-
404
- * ##### Updates
405
- * DataFrame.join
406
- * New arguments `lprefix` and `rprefix` added.
407
- * Behavior of arguments `lsuffix` and `rsuffix` will be changed in future, use new arguments instead.
408
- * New and old affix arguments can now be used independently.
409
- * Analytic functions can be imported regardless of context creation.
410
- Import after create context constraint is now removed.
411
- * `ReadNOS` and `WriteNOS` now accept dictionary value for `authorization` and `row_format` arguments.
412
- * `WriteNOS` supports writing CSV files to external store.
413
- * Following model cataloging APIs will be deprecated in future:
414
- * describe_model
415
- * delete_model
416
- * list_models
417
- * publish_model
418
- * retrieve_model
419
- * save_model
420
-
421
- * ##### Bug Fixes
422
- * `copy_to_sql()` bug related to NaT value has been fixed.
423
- * Tooltip on PyCharm IDE now points to SQLE.
424
- * `value` argument of `FillNa()`, a Vantage Analytic Library function supports special characters.
425
- * `case` function accepts DataFrame column as value in `whens` argument.
426
-
427
- ## Release Notes:
428
- #### teradataml 17.20.00.02
429
- * ##### New Features/Functionality
430
- * ###### teradataml: Open Analytics
431
- * New Functions
432
- * `set_auth_token()` - Sets the JWT token automatically for using Open AF API's.
433
-
434
- * ###### teradataml Options
435
- * Display Options
436
- * `display.suppress_vantage_runtime_warnings`
437
- Suppresses the VantageRuntimeWarning raised by teradataml, when set to True.
438
-
439
- * ##### Updates
440
- * SimpleImputeFit function arguments `stats_columns` and `stats` are made to be optional.
441
- * New argument `table_format` is added to ReadNOS().
442
- * Argument `full_scan` is changed to `scan_pct` in ReadNOS().
443
-
444
- * ##### Bug Fixes
445
- * Minor bug fix related to read_csv.
446
- * APPLY and `DataFrame.apply()` supports hash by and local order by.
447
- * Output column names are changed for DataFrame.dtypes and DataFrame.tdtypes.
448
-
449
- ## Release Notes:
450
- #### teradataml 17.20.00.01
451
- * ##### New Features/Functionality
452
- * ###### teradataml: DataFrame
453
- * New Functions
454
- * `DataFrame.pivot()` - Rotate data from rows into columns to create easy-to-read DataFrames.
455
- * `DataFrame.unpivot()` - Rotate data from columns into rows to create easy-to-read DataFrames.
456
- * `DataFrame.drop_duplicate()` - Drop duplicate rows from teradataml DataFrame.
457
- * New properties
458
- * `Dataframe.is_art` - Check whether teradataml DataFrame is created on an Analytic Result Table, i.e., ART table or not.
459
-
460
- * ###### teradataml: Unbounded Array Framework (UAF) Functions:
461
- * New Functions
462
- * New Functions Supported on Database Versions: 17.20.x.x
463
- * MODEL PREPARATION AND PARAMETER ESTIMATION functions:
464
- 1. `ACF()`
465
- 2. `ArimaEstimate()`
466
- 3. `ArimaValidate()`
467
- 4. `DIFF()`
468
- 5. `LinearRegr()`
469
- 6. `MultivarRegr()`
470
- 7. `PACF()`
471
- 8. `PowerTransform()`
472
- 9. `SeasonalNormalize()`
473
- 10. `Smoothma()`
474
- 11. `UNDIFF()`
475
- 12. `Unnormalize()`
476
- * SERIES FORECASTING functions:
477
- 1. `ArimaForecast()`
478
- 2. `DTW()`
479
- 3. `HoltWintersForecaster()`
480
- 4. `MAMean()`
481
- 5. `SimpleExp()`
482
- * DATA PREPARATION functions:
483
- 1. `BinaryMatrixOp()`
484
- 2. `BinarySeriesOp()`
485
- 3. `GenseriesFormula()`
486
- 4. `MatrixMultiply()`
487
- 5. `Resample()`
488
- * DIAGNOSTIC STATISTICAL TEST functions:
489
- 1. `BreuschGodfrey()`
490
- 2. `BreuschPaganGodfrey()`
491
- 3. `CumulPeriodogram()`
492
- 4. `DickeyFuller()`
493
- 5. `DurbinWatson()`
494
- 6. `FitMetrics()`
495
- 7. `GoldfeldQuandt()`
496
- 8. `Portman()`
497
- 9. `SelectionCriteria()`
498
- 10. `SignifPeriodicities()`
499
- 11. `SignifResidmean()`
500
- 12. `WhitesGeneral()`
501
- * TEMPORAL AND SPATIAL functions:
502
- 1. `Convolve()`
503
- 2. `Convolve2()`
504
- 3. `DFFT()`
505
- 4. `DFFT2()`
506
- 5. `DFFT2Conv()`
507
- 6. `DFFTConv()`
508
- 7. `GenseriesSinusoids()`
509
- 8. `IDFFT()`
510
- 9. `IDFFT2()`
511
- 10. `LineSpec()`
512
- 11. `PowerSpec()`
513
- * GENERAL UTILITY functions:
514
- 1. `ExtractResults()`
515
- 2. `InputValidator()`
516
- 3. `MInfo()`
517
- 4. `SInfo()`
518
- 5. `TrackingOp()`
519
-
520
- * New Features: Inputs to Unbounded Array Framework (UAF) functions
521
- * `TDAnalyticResult()` - Allows to prepare function output generated by UAF functions to be passed.
522
- * `TDGenSeries()` - Allows to generate a series, that can be passed to a UAF function.
523
- * `TDMatrix()` - Represents a Matrix in time series, that can be created from a teradataml DataFrame.
524
- * `TDSeries()` - Represents a Series in time series, that can be created from a teradataml DataFrame.
525
-
526
- * ##### Updates
527
- * Native Object Store (NOS) functions support authorization by specifying authorization object.
528
- * `display_analytic_functions()` categorizes the analytic functions based on function type.
529
- * ColumnTransformer accepts multiple values for arguments nonlinearcombine_fit_data,
530
- onehotencoding_fit_data, ordinalencoding_fit_data.
531
-
532
- * ##### Bug Fixes
533
- * Redundant warnings thrown by teradataml are suppressed.
534
- * OpenAF supports when context is created with JWT Token.
535
- * New argument "match_column_order" added to copy_to_sql, that allows DataFrame loading with any column order.
536
- * `copy_to_sql` updated to map data type timezone(tzinfo) to TIMESTAMP(timezone=True), instead of VARCHAR.
537
- * Improved performance for DataFrame.sum and DataFrameColumn.sum functions.
538
-
539
- ## Release Notes:
540
- #### teradataml 17.20.00.00
541
- * ##### New Features/Functionality
542
- * ###### teradataml: Analytics Database Analytic Functions
543
- * _New Functions_
544
- * ###### New Functions Supported on Database Versions: 17.20.x.x
545
- * `ANOVA()`​
546
- * `ClassificationEvaluator()`​
547
- * `ColumnTransformer()`​
548
- * `DecisionForest()`
549
- * `GLM​()`
550
- * `GetFutileColumns()`
551
- * `KMeans()`​
552
- * `KMeansPredict()`​​
553
- * `NaiveBayesTextClassifierTrainer()`​
554
- * `NonLinearCombineFit()`​
555
- * `NonLinearCombineTransform()`​
556
- * `OrdinalEncodingFit​()`
557
- * `OrdinalEncodingTransform()`​
558
- * `RandomProjectionComponents​()`
559
- * `RandomProjectionFit​()`
560
- * `RandomProjectionTransform()`​
561
- * `RegressionEvaluator​()`
562
- * `ROC​()`
563
- * `SentimentExtractor()`​
564
- * `Silhouette​()`
565
- * `TDGLMPredict​()`
566
- * `TextParser​()`
567
- * `VectorDistance()`
568
- * _Updates_
569
- * `display_analytic_functions()` categorizes the analytic functions based on function type.
570
- * Users can provide range value for columns argument.
571
-
572
- * ###### teradataml: Open Analytics
573
- * Manage all user environments.
574
- * `list_base_envs()` - list the available python base versions.​
575
- * `create_env()` - create a new user environment.
576
- * `get_env()` - get existing user environment.
577
- * `list_user_envs()` - list the available user environments.​
578
- * `remove_env()` - delete user environment.​
579
- * `remove_all_envs()` - delete all the user environments.
580
- * UserEnv Class Manage individual user environment.
581
- * Properties
582
- * `files` - Get files in user environment.
583
- * `libs` - Get libraries in user environment.
584
- * Methods
585
- * `install_file()` - Install a file in user environment.​
586
- * `remove_file()` - Remove a file in user environment.​
587
- * `install_lib()` - Install a library in user environment.​
588
- * `update_lib()` - Update a library in user environment.​
589
- * `uninstall_lib()` - Uninstall a library in user environment.​
590
- * `status()` - Check the status of​
591
- * file installation​
592
- * library installation​
593
- * library update​
594
- * library uninstallation​
595
- * `refresh()` - Refresh the environment details in local client.
596
- * Apply Class Execute a user script on VantageCloud Lake.​
597
- * `__init__()` - Instantiate an object of apply for script execution.​
598
- * `install_file()` - Install a file in user environment.​
599
- * `remove_file()` - Remove a file in user environment.​
600
- * `set_data()` Reset data and related arguments.​
601
- * `execute_script()` Executes Python script.
602
-
603
- * ###### teradataml: DataFrame
604
- * _New Functions_
605
- * `DataFrame.apply()` - Execute a user defined Python function on VantageLake Cloud.
606
-
607
- * ###### teradataml: Bring Your Own Model
608
- * _New Functions_
609
- * `ONNXPredict()` - Score using model trained externally on ONNX and stored in Vantage.
610
-
611
- * ###### teradataml: Options
612
- * _New Functions_
613
- * set_config_params() New API to set all config params in one go.
614
- * _New Configuration Options_
615
- * For Open Analytics support.​
616
- * ues_url User Environment Service URL for VantageCloud Lake.​
617
- * auth_token – Authentication token to connect to VantageCloud Lake.
618
- * certificate_file Path to a CA_BUNDLE file or directory with certificates of trusted CAs.
619
-
620
- * ##### Updates
621
- * `accumulate` argument is working for `ScaleTransform()`.
622
- * Following functions have `accumulate` argument added on Database Versions: 17.20.x.x
623
- * `ConvertTo()`
624
- * `GetRowsWithoutMissingValues()`
625
- * `GetRowsWithoutMissingValues()`
626
- * `OutlierFilterFit()` supports multiple output.
627
- * For `OutlierFilterFit()` function below arguments are optional in teradataml 17.20.x.x
628
- * `lower_percentile`
629
- * `upper_percentile`
630
- * `outlier_method`
631
- * `replacement_value`
632
- * `percentile_method`
633
- * Analytics Database analytic functions In line help, i.e., help() for the functions
634
- is available.​
635
-
636
- * ##### Bug Fixes
637
- * Vantage Analytic Library FillNa() function: Now `columns` argument is required.
638
- * `output_responses` argument in MLE function `DecisionTreePredict()`, does not allow empty string.
639
- * teradataml closes docker sandbox environment properly.
640
- * Users can create context using JWT token.
641
-
642
- #### teradataml 17.10.00.02
643
- * ##### New Features/Functionality
644
- * ###### Database Utility
645
- * `list_td_reserved_keywords()` - Validates if the specified string is Teradata reserved
646
- keyword or not, else lists down all the Teradata reserved keywords.
647
-
648
- * ##### Updates
649
- * ###### DataFrame
650
- * _Updates_
651
- * Multiple columns can be selected using slice operator ([]).
652
-
653
- * ###### Script
654
- * _Updates_
655
- * A warning will be raised, when Teradata reserved keyword is used in Script local mode.
656
-
657
- * ##### Bug Fixes
658
- * Numeric overflow issue observed for describe(), sum(), csum(), and mean() has been fixed.
659
- * Error messages are updated for SQLE function arguments accepting multiple datatypes.
660
- * Error messages are updated for SQLE function arguments volatile and persist arguments when
661
- non-boolean value is provided.
662
- * DataFrame sample() method can handle column names with special characters like space, hyphen,
663
- period etc.
664
- * In-DB SQLE functions can be loaded for any locale setting.
665
- * `create_context()` - Password containing special characters requires URL encoding as per
666
- https://docs.microfocus.com/OMi/10.62/Content/OMi/ExtGuide/ExtApps/URL_encoding.html.
667
- teradataml has added a fix to take care of the URL encoding of the password while creating a context.
668
- Also, a new argument is added to give a more control over the URL encoding to be done at the time of context creation.
669
-
670
- #### teradataml 17.10.00.01
671
- * ##### New Features/Functionality
672
- * ###### Geospatial
673
- The Geospatial feature in teradataml enables data manipulation, exploration and analysis on tables, views, and queries on Teradata Vantage that contains Geospatial data.
674
- * ###### Geomtery Types
675
- * Point
676
- * LineString
677
- * Polygon
678
- * MultiPoint
679
- * MultiLineString
680
- * MultiPolygon
681
- * GeometryCollection
682
- * GeoSequence
683
- * ###### teradataml GeoDataFrame
684
- * Properties
685
- * columns
686
- * dtypes
687
- * geometry
688
- * iloc
689
- * index
690
- * loc
691
- * shape
692
- * size
693
- * tdtypes
694
- * Geospatial Specific Properties
695
- * ###### Properties for all Types of Geometries
696
- * boundary
697
- * centroid
698
- * convex_hell
699
- * coord_dim
700
- * dimension
701
- * geom_type
702
- * is_3D
703
- * is_empty
704
- * is_simple
705
- * is_valid
706
- * max_x
707
- * max_y
708
- * max_z
709
- * min_x
710
- * min_y
711
- * min_z
712
- * srid
713
- * ###### Properties for Point Geometry
714
- * x
715
- * y
716
- * z
717
- * ###### Properties for LineString Geometry
718
- * is_closed_3D
719
- * is_closed
720
- * is_ring
721
- * ###### Properties for Polygon Geometry
722
- * area
723
- * exterior
724
- * perimeter
725
- * Methods
726
- * `__getattr__()`
727
- * `__getitem__()`
728
- * `__init__()`
729
- * `__repr__()`
730
- * `assign()`
731
- * `concat()`
732
- * `count()`
733
- * `drop()`
734
- * `dropna()`
735
- * `filter()`
736
- * `from_query()`
737
- * `from_table()`
738
- * `get()`
739
- * `get_values()`
740
- * `groupby()`
741
- * `head()`
742
- * `info()`
743
- * `join()`
744
- * `keys()`
745
- * `merge()`
746
- * `sample()`
747
- * `select()`
748
- * `set_index()`
749
- * `show_query()`
750
- * `sort()`
751
- * `sort_index()`
752
- * `squeeze()`
753
- * `tail()`
754
- * `to_csv()`
755
- * `to_pandas()`
756
- * `to_sql()`
757
- * Geospatial Specific Methods
758
- * ###### Methods for All Type of Geometry
759
- * `buffer()`
760
- * `contains()`
761
- * `crosses()`
762
- * `difference()`
763
- * `disjoint()`
764
- * `distance()`
765
- * `distance_3D()`
766
- * `envelope()`
767
- * `geom_equals()`
768
- * `intersection()`
769
- * `intersects()`
770
- * `make_2D()`
771
- * `mbb()`
772
- * `mbr()`
773
- * `overlaps()`
774
- * `relates()`
775
- * `set_exterior()`
776
- * `set_srid()`
777
- * `simplify()`
778
- * `sym_difference()`
779
- * `to_binary()`
780
- * `to_text()`
781
- * `touches()`
782
- * `transform()`
783
- * `union()`
784
- * `within()`
785
- * `wkb_geom_to_sql()`
786
- * `wkt_geom_to_sql()`
787
- * ###### Methods for Point Geometry
788
- * `spherical_buffer()`
789
- * `spherical_distance()`
790
- * `spheriodal_buffer()`
791
- * `spheriodal_distance()`
792
- * `set_x()`
793
- * `set_y()`
794
- * `set_z()`
795
- * ###### Methods for LineString Geometry
796
- * `end_point()`
797
- * `length()`
798
- * `length_3D()`
799
- * `line_interpolate_point()`
800
- * `num_points()`
801
- * `point()`
802
- * `start_point()`
803
- * ###### Methods for Polygon Geometry
804
- * `interiors()`
805
- * `num_interior_ring()`
806
- * `point_on_surface()`
807
- * ###### Methods for GeometryCollection Geometry
808
- * `geom_component()`
809
- * `num_geometry()`
810
- * ###### Methods for GeoSequence Geometry
811
- * `clip()`
812
- * `get_final_timestamp()`
813
- * `get_init_timestamp()`
814
- * `get_link()`
815
- * `get_user_field()`
816
- * `get_user_field_count()`
817
- * `point_heading()`
818
- * `set_link()`
819
- * `speed()`
820
- * ###### Filtering Functions and Methods
821
- * `intersects_mbb()`
822
- * `mbb_filter()`
823
- * `mbr_filter()`
824
- * `within_mbb()`
825
- * ###### teradataml GeoDataFrameColumn
826
- * Geospatial Specific Properties
827
- * ###### Properties for all Types of Geometries
828
- * boundary
829
- * centroid
830
- * convex_hell
831
- * coord_dim
832
- * dimension
833
- * geom_type
834
- * is_3D
835
- * is_empty
836
- * is_simple
837
- * is_valid
838
- * max_x
839
- * max_y
840
- * max_z
841
- * min_x
842
- * min_y
843
- * min_z
844
- * srid
845
- * ###### Properties for Point Geometry
846
- * x
847
- * y
848
- * z
849
- * ###### Properties for LineString Geometry
850
- * is_closed_3D
851
- * is_closed
852
- * is_ring
853
- * ###### Properties for Polygon Geometry
854
- * area
855
- * exterior
856
- * perimeter
857
- * Geospatial Specific Methods
858
- * ###### Methods for All Type of Geometry
859
- * `buffer()`
860
- * `contains()`
861
- * `crosses()`
862
- * `difference()`
863
- * `disjoint()`
864
- * `distance()`
865
- * `distance_3D()`
866
- * `envelope()`
867
- * `geom_equals()`
868
- * `intersection()`
869
- * `intersects()`
870
- * `make_2D()`
871
- * `mbb()`
872
- * `mbr()`
873
- * `overlaps()`
874
- * `relates()`
875
- * `set_exterior()`
876
- * `set_srid()`
877
- * `simplify()`
878
- * `sym_difference()`
879
- * `to_binary()`
880
- * `to_text()`
881
- * `touches()`
882
- * `transform()`
883
- * `union()`
884
- * `within()`
885
- * `wkb_geom_to_sql()`
886
- * `wkt_geom_to_sql()`
887
- * ###### Methods for Point Geometry
888
- * `spherical_buffer()`
889
- * `spherical_distance()`
890
- * `spheriodal_buffer()`
891
- * `spheriodal_distance()`
892
- * `set_x()`
893
- * `set_y()`
894
- * `set_z()`
895
- * ###### Methods for LineString Geometry
896
- * `endpoint()`
897
- * `length()`
898
- * `length_3D()`
899
- * `line_interpolate_point()`
900
- * `num_points()`
901
- * `point()`
902
- * `start_point()`
903
- * ###### Methods for Polygon Geometry
904
- * `interiors()`
905
- * `num_interior_ring()`
906
- * `point_on_surface()`
907
- * ###### Methods for GeometryCollection Geometry
908
- * `geom_component()`
909
- * `num_geometry()`
910
- * ###### Methods for GeoSequence Geometry
911
- * `clip()`
912
- * `get_final_timestamp()`
913
- * `get_init_timestamp()`
914
- * `get_link()`
915
- * `get_user_field()`
916
- * `get_user_field_count()`
917
- * `point_heading()`
918
- * `set_link()`
919
- * `speed()`
920
- * ###### Filtering Functions and Methods
921
- * `intersects_mbb()`
922
- * `mbb_filter()`
923
- * `mbr_filter()`
924
- * `within_mbb()`
925
-
926
- * ###### teradataml DataFrame
927
- * _New Functions_
928
- * `to_csv()`
929
-
930
- * ###### teradataml: SQLE Engine Analytic Functions
931
- * _New Functions_
932
- * Newly added SQLE functions are accessible only after establishing the connection to Vantage.
933
- * `display_analytic_functions()` API displays all the available SQLE Analytic functions based on database version.
934
- * ###### Functions Supported on DatabaseVersions: 16.20.x.x, 17.10.x.x, 17.05.x.x
935
- * `Antiselect()`
936
- * `Attribution()`
937
- * `DecisionForestPredict()`
938
- * `DecisionTreePredict()`
939
- * `GLMPredict()`
940
- * `MovingAverage()`
941
- * `NaiveBayesPredict()`
942
- * `NaiveBayesTextClassifierPredict()`
943
- * `NGramSplitter()`
944
- * `NPath()`
945
- * `Pack()`
946
- * `Sessionize()`
947
- * `StringSimilarity()`
948
- * `SVMParsePredict()`
949
- * `Unpack()`
950
- * ###### Functions Supported on DatabaseVersions: 17.10.x.x
951
- * `Antiselect()`
952
- * `Attribution()`
953
- * `BincoodeFit()`
954
- * `BncodeTransform()`
955
- * `CategoricalSummary()`
956
- * `ChiSq()`
957
- * `ColumnSummary()`
958
- * `ConvertTo()`
959
- * `DecisionForestPredict()`
960
- * `DecisionTreePredict()`
961
- * `GLMPredict()`
962
- * `FillRowId()`
963
- * `FTest()`
964
- * `Fit()`
965
- * `Transform()`
966
- * `GetRowsWithMissingValues()`
967
- * `GetRowsWithoutMissingValues()`
968
- * `MovingAverage()`
969
- * `Histogram()`
970
- * `NaiveBayesPredict()`
971
- * `NaiveBayesTextClassifierPredict()`
972
- * `NGramSplitter()`
973
- * `NPath()`
974
- * `NumApply()`
975
- * `OneHotEncodingFit()`
976
- * `OneHotEncodingTransform()`
977
- * `OutlierFilterFit()`
978
- * `OutlierFilterTransform()`
979
- * `Pack()`
980
- * `PolynomialFeatuesFit()`
981
- * `PolynomialFeatuesTransform()`
982
- * `QQNorm()`
983
- * `RoundColumns()`
984
- * `RowNormalizeFit()`
985
- * `RowNormalizeTransform()`
986
- * `ScaleFit()`
987
- * `ScaleTransform()`
988
- * `Sessionize()`
989
- * `SimpleImputeFit()`
990
- * `SimpleImputeTransform()`
991
- * `StrApply()`
992
- * `StringSimilarity()`
993
- * `SVMParsePredict()`
994
- * `UniVariateStatistics()`
995
- * `Unpack()`
996
- * `WhichMax()`
997
- * `WhichMin()`
998
- * `ZTest()`
999
-
1000
- * ###### teradataml: General Functions
1001
- * _New Functions_
1002
- * Data Transfer Utility
1003
- * `read_csv()`
1004
-
1005
- * ###### Operators
1006
- * _New Functions_
1007
- * Table Operators
1008
- * `read_nos()`
1009
- * `write_nos()`
1010
-
1011
- * ###### teradataml: Bring Your Own Model
1012
- * _New Functions_
1013
- * Model Cataloging
1014
- * `get_license()`
1015
- * `set_byom_catalog()`
1016
- * `set_license()`
1017
-
1018
- * ##### Updates
1019
- * ###### teradataml: General Functions
1020
- * Data Transfer Utility
1021
- * `copy_to_sql()` - New argument "chunksize" added to load data in chunks.
1022
- * Following Data Transfer Utility Functions updated to specify the number of Teradata sessions to open for data transfer using "open_session" argument:
1023
- * `fastexport()`
1024
- * `fastload()`
1025
- * `to_pandas()`
1026
-
1027
- * ###### Operators
1028
- * Following Set Operator Functions updated to work with Geospatial data:
1029
- * `concat()`
1030
- * `td_intersect()`
1031
- * `td_expect()`
1032
- * `td_minus()`
1033
-
1034
- * ###### teradataml: Bring Your Own Model
1035
- * Model cataloging APIs mentioned below are updated to use session level parameters set by `set_byom_catalog()` and `set_license()` such as table name, schema name and license details respectively.
1036
- * `delete_byom()`
1037
- * `list_byom()`
1038
- * `retrieve_byom()`
1039
- * `save_byom()`
1040
- * `view_log()` - Allows user to view BYOM logs.
1041
-
1042
- * ##### Bug Fixes
1043
- * CS0733758 - `db_python_package_details()` function is fixed to support latest STO release for pip and Python aliases used.
1044
- * DataFrame `print()` issue related to `Response Row size is greater than the 1MB allowed maximum.` has been fixed to print the data with lot of columns.
1045
- * New parameter "chunksize" is added to `DataFrame.to_sql()` and `copy_to_sql()` to fix the issue where the function was failing with error - "Request requires too many SPOOL files.". Reducing the chunksize than the default one will result in successful operation.
1046
- * `remove_context()` is fixed to remove the active connection from database.
1047
- * Support added to specify the number of Teradata data transfer sessions to open for data transfer using `fastexport()` and `fastload()` functions.
1048
- * `DataFrame.to_sql()` is fixed to support temporary table when default database differs from the username.
1049
- * `DataFrame.to_pandas()` now by default support data transfer using regular method. Change is carried out for user to allow the data transfer if utility throttles are configured, i.e., TASM configuration does not support data export using FastExport.
1050
- * `save_byom()` now notifies if VARCHAR column is trimmed out if data passed to the API is greater than the length of the VARCHAR column.
1051
- * Standard error can now be captured for `DataFrame.map_row()` and `DataFrame.map_parition()` when executed in LOCAL mode.
1052
- * Vantage Analytic Library - Underlying SQL can be retrieved using newly added arguments "gen_sql"/"gen_sql_only" for the functions. Query can be viewed with the help `show_query()`.
1053
- * Documentation example has been fixed for `fastexport()` to show the correct import statement.
1054
-
1055
-
1056
- #### teradataml 17.00.00.05
1057
- Fixed [CS0733758] db_python_package_details() fails on recent STO release due to changes in pip and python aliases.
1058
-
1059
-
1060
- #### teradataml 17.00.00.04
1061
- * ##### New Features/Functionality
1062
- * ###### Analytic Functions
1063
- * Bring Your Own Analytics Functions
1064
- The BYOM feature in Vantage provides flexibility to score the data in Vantage using external models using following BYOM functions:
1065
- * `H2OPredict()` - Score using model trained externally in H2O and stored in Vantage.
1066
- * `PMMLPredict()` - Score using model trained externally in PMML and stored in Vantage.
1067
- * BYOM Model Catalog APIs
1068
- * `save_byom()` - Save externally trained models in Teradata Vantage.
1069
- * `delete_byom()` - Delete a model from the user specified table in Teradata Vantage.
1070
- * `list_byom()` - List models.
1071
- * `retrieve_byom()` - Function to retrieve a saved model.
1072
- * Vantage Analytic Library Functions
1073
- * _New Functions_
1074
- * `XmlToHtmlReport()` - Transforms XML output of VAL functions to HTML.
1075
- * ###### teradataml DataFrame
1076
- * `DataFrame.window()` - Generates Window object on a teradataml DataFrame to run window aggregate functions.
1077
- * `DataFrame.csum()` - Returns column-wise cumulative sum for rows in the partition of the dataframe.
1078
- * `DataFrame.mavg()` - Returns moving average for the current row and the preceding rows.
1079
- * `DataFrame.mdiff()` - Returns moving difference for the current row and the preceding rows.
1080
- * `DataFrame.mlinreg()` - Returns moving linear regression for the current row and the preceding rows.
1081
- * `DataFrame.msum()` - Returns moving sum for the current row and the preceding rows.
1082
- * _Regular Aggregate Functions_
1083
- * `DataFrame.corr()` - Returns the Sample Pearson product moment correlation coefficient.
1084
- * `DataFrame.covar_pop()` - Returns the population covariance.
1085
- * `DataFrame.covar_samp()` - Returns the sample covariance.
1086
- * `DataFrame.regr_avgx()` - Returns the mean of the independent variable.
1087
- * `DataFrame.regr_avgy()` - Returns the mean of the dependent variable.
1088
- * `DataFrame.regr_count()` - Returns the count of the dependent and independent variable arguments.
1089
- * `DataFrame.rege_intercept()` - Returns the intercept of the univariate linear regression line.
1090
- * `DataFrame.regr_r2()` - Returns the coefficient of determination.
1091
- * `DataFrame.regr_slope()` - Returns the slope of the univariate linear regression line through.
1092
- * `DataFrame.regr_sxx()` - Returns the sum of the squares of the independent variable expression.
1093
- * `DataFrame.regr_sxy()` - Returns the sum of the products of the independent variable and the dependent variable.
1094
- * `DataFrame.regr_syy()` - Returns the sum of the squares of the dependent variable expression.
1095
- * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
1096
- * `ColumnExpression.window()` - Generates Window object on a teradataml DataFrameColumn to run window aggregate functions.
1097
- * `ColumnExpression.desc()` - Sorts ColumnExpression in descending order.
1098
- * `ColumnExpression.asc()` - Sorts ColumnExpression in ascending order.
1099
- * `ColumnExpression.distinct()` - Removes duplicate value from ColumnExpression.
1100
- * _Regular Aggregate Functions_
1101
- * `ColumnExpression.corr()` - Returns the Sample Pearson product moment correlation coefficient.
1102
- * `ColumnExpression.count()` - Returns the column-wise count.
1103
- * `ColumnExpression.covar_pop()` - Returns the population covariance.
1104
- * `ColumnExpression.covar_samp()` - Returns the sample covariance.
1105
- * `ColumnExpression.kurtosis()` - Returns kurtosis value for a column.
1106
- * `ColumnExpression.median()` - Returns column-wise median value.
1107
- * `ColumnExpression.max()` - Returns the column-wise max value.
1108
- * `ColumnExpression.mean()` - Returns the column-wise average value.
1109
- * `ColumnExpression.min()` - Returns the column-wise min value.
1110
- * `ColumnExpression.regr_avgx()` - Returns the mean of the independent variable.
1111
- * `ColumnExpression.regr_avgy()` - Returns the mean of the dependent variable.
1112
- * `ColumnExpression.regr_count()` - Returns the count of the dependent and independent variable arguments.
1113
- * `ColumnExpression.rege_intercept()` - Returns the intercept of the univariate linear regression line.
1114
- * `ColumnExpression.regr_r2()` - Returns the coefficient of determination arguments.
1115
- * `ColumnExpression.regr_slope()` - Returns the slope of the univariate linear regression line.
1116
- * `ColumnExpression.regr_sxx()` - Returns the sum of the squares of the independent variable expression.
1117
- * `ColumnExpression.regr_sxy()` - Returns the sum of the products of the independent variable and the dependent variable.
1118
- * `ColumnExpression.regr_syy()` - Returns the sum of the squares of the dependent variable expression.
1119
- * `ColumnExpression.skew()` - Returns skew value for a column.
1120
- * `ColumnExpression.std()` - Returns the column-wise population/sample standard deviation.
1121
- * `ColumnExpression.sum()` - Returns the column-wise sum.
1122
- * `ColumnExpression.var()` - Returns the column-wise population/sample variance.
1123
- * `ColumnExpression.percentile()` - Returns the column-wise percentile.
1124
- * ###### teradataml Window - Window Aggregate Functions
1125
- Following set of _Window Aggregate Functions_ return the results over a specified window which can be of any type:
1126
- * Cumulative/Expanding window
1127
- * Moving/Rolling window
1128
- * Contracting/Remaining window
1129
- * Grouping window
1130
- _Window Aggregate Functions_
1131
- * `Window.corr()` - Returns the Sample Pearson product moment correlation coefficient.
1132
- * `Window.count()` - Returns the count.
1133
- * `Window.covar_pop()` - Returns the population covariance.
1134
- * `Window.covar_samp()` - Returns the sample covariance.
1135
- * `Window.cume_dist()` - Returns the cumulative distribution of values.
1136
- * `Window.dense_Rank()` - Returns the ordered ranking of all the rows.
1137
- * `Window.first_value()` - Returns the first value of an ordered set of values.
1138
- * `Window.lag()` - Returns data from the row preceding the current row at a specified offset value.
1139
- * `Window.last_value()` - Returns the last value of an ordered set of values.
1140
- * `Window.lead()` - Returns data from the row following the current row at a specified offset value.
1141
- * `Window.max()` - Returns the column-wise max value.
1142
- * `Window.mean()` - Returns the column-wise average value.
1143
- * `Window.min()` - Returns the column-wise min value.
1144
- * `Window.percent_rank()` - Returns the relative rank of all the rows.
1145
- * `Window.rank()` - Returns the rank (1 … n) of all the rows.
1146
- * `Window.regr_avgx()` - Returns the mean of the independent variable arguments.
1147
- * `Window.regr_avgy()` - Returns the mean of the dependent variable arguments.
1148
- * `Window.regr_count()` - Returns the count of the dependent and independent variable arguments.
1149
- * `Window.rege_intercept()` - Returns the intercept of the univariate linear regression line arguments.
1150
- * `Window.regr_r2()` - Returns the coefficient of determination arguments.
1151
- * `Window.regr_slope()` - Returns the slope of the univariate linear regression line.
1152
- * `Window.regr_sxx()` - Returns the sum of the squares of the independent variable expression.
1153
- * `Window.regr_sxy()` - Returns the sum of the products of the independent variable and the dependent variable.
1154
- * `Window.regr_syy()` - Returns the sum of the squares of the dependent variable expression.
1155
- * `Window.row_number()` - Returns the sequential row number.
1156
- * `Window.std()` - Returns the column-wise population/sample standard deviation.
1157
- * `Window.sum()` - Returns the column-wise sum.
1158
- * `Window.var()` - Returns the column-wise population/sample variance.
1159
- * ###### General functions
1160
- * _New functions_
1161
- * `fastexport()` - Exports teradataml DataFrame to Pandas DataFrame using FastExport data transfer protocol.
1162
- * ###### teradataml Options
1163
- * Display Options
1164
- * `display.blob_length`
1165
- Specifies default display length of BLOB column in teradataml DataFrame.
1166
- * Configuration Options
1167
- * `configure.temp_table_database`
1168
- Specifies database name for storing the tables created internally.
1169
- * `configure.temp_view_database`
1170
- Specifies database name for storing the views created internally.
1171
- * `configure.byom_install_location`
1172
- Specifies the install location for the BYOM functions.
1173
- * `configure.val_install_location`
1174
- Specifies the install location for the Vantage Analytic Library functions.
1175
- * ##### Updates
1176
- * ###### teradataml DataFrame
1177
- * `to_pandas()` -
1178
- * Support added to transfer data to Pandas DataFrame using fastexport protocol improving the performance.
1179
- * Support added for other arguments similar to Pandas `read_sql()`:
1180
- * `coerce_float`
1181
- * `parse_dates`
1182
- * ###### Analytic functions
1183
- * Vantage Analytic Library Functions
1184
- * Support added to accept datetime.date object for literals/values in
1185
- following transformation functions:
1186
- * `FillNa()`
1187
- * `Binning()`
1188
- * `OneHotEncoder()`
1189
- * `LabelEncoder()`
1190
- * All transformation functions now supports accepting
1191
- teradatasqlalchemy datatypes as input to "datatype" argument for
1192
- casting the result.
1193
- * ##### Bug Fixes.
1194
- * CS0249633 - Support added for teradataml to work with user/database/tablename
1195
- containing period (.).
1196
- * CS0086594 - Use of dbc.tablesvx versus dbc.tablesvx in teradatasqlalchemy.
1197
- * IPython integration to print the teradataml DataFrames in pretty format.
1198
- * teradataml DataFrame APIs now support column names same as that of Teradata
1199
- reserved keywords.
1200
- * Issue has been fixed for duplicate rows being loaded via teradataml
1201
- fastload() API.
1202
- * VAL - Empty string now can be passed as input for recoding values using
1203
- LabelEncoder.
1204
- * teradataml extension with SQLAlchemy functions:
1205
- * mod() function is fixed to return correct datatype.
1206
- * sum() function is fixed to return correct datatype.
1207
-
1208
-
1209
- #### teradataml 17.00.00.03
1210
- - New release of SQLAlchemy1.4.x introduced backward compatibility issue. A fix has been carried out so that teradataml can support latest SQLAlchemy changes.
1211
- - Other minor bug fixes.
1212
-
1213
- #### teradataml 17.00.00.02
1214
- Fixed the internal library load issue related to the GCC version discrepancies on CentOS platform.
1215
-
1216
- #### teradataml 17.00.00.01
1217
- * ##### New Features/Functionality
1218
- * ###### Analytic Functions
1219
- * Vantage Analytic Library
1220
- teradataml now supports executing analytic functions offered by Vantage Analytic Library.
1221
- These functions are available via new 'valib' sub-package of teradataml.
1222
- Following functions are added as part of this:
1223
- * Association Rules:
1224
- * `Association()`
1225
- * Descriptive Statistics:
1226
- * `AdaptiveHistogram()`
1227
- * `Explore()`
1228
- * `Frequency()`
1229
- * `Histogram()`
1230
- * `Overlaps()`
1231
- * `Statistics()`
1232
- * `TextAnalyzer()`
1233
- * `Values()`
1234
- * Decision Tree:
1235
- * `DecisionTree()`
1236
- * `DecisionTreePredict()`
1237
- * `DecisionTreeEvaluator()`
1238
- * Fast K-Means Clustering:
1239
- * `KMeans()`
1240
- * `KMeansPredict()`
1241
- * Linear Regression:
1242
- * `LinReg()`
1243
- * `LinRegPredict()`
1244
- * Logistic Regression:
1245
- * `LogReg()`
1246
- * `LogRegPredict()`
1247
- * `LogRegEvaluator()`
1248
- * Factor Analysis:
1249
- * `PCA()`
1250
- * `PCAPredict()`
1251
- * `PCAEvaluator()`
1252
- * Matrix Building:
1253
- * `Matrix()`
1254
- * Statistical Tests:
1255
- * `BinomialTest()`
1256
- * `ChiSquareTest()`
1257
- * `KSTest()`
1258
- * `ParametricTest()`
1259
- * `RankTest()`
1260
- * Variable Transformation:
1261
- * `Transform()`
1262
- * Transformation Techniques supported for variable transformation:
1263
- * `Binning()` - Perform bin coding to replaces continuous numeric column with a
1264
- categorical one to produce ordinal values.
1265
- * `Derive()` - Perform free-form transformation done using arithmetic formula.
1266
- * `FillNa()` - Perform missing value/null replacement transformations.
1267
- * `LabelEncoder()` - Re-express categorical column values into a new coding scheme.
1268
- * `MinMaxScalar()` - Rescale data limiting the upper and lower boundaries.
1269
- * `OneHotEncoder()` - Re-express a categorical data element as one or more
1270
- numeric data elements, creating a binary numeric field for each
1271
- categorical data value.
1272
- * `Retain()` - Copy one or more columns into the final analytic data set.
1273
- * `Sigmoid()` - Rescale data using sigmoid or s-shaped functions.
1274
- * `ZScore()` - Rescale data using Z-Score values.
1275
- * ML Engine Functions (mle)
1276
- * Correlation2
1277
- * NaiveBayesTextClassifier2
1278
- * ###### DataFrame
1279
- * _New Functions_
1280
- * `DataFrame.map_row()` - Function to apply a user defined function to each row in the
1281
- teradataml DataFrame.
1282
- * `DataFrame.map_partition()` - Function to apply a user defined function to a group or
1283
- partition of rows in the teradataml DataFrame.
1284
- * _New Property_
1285
- * `DataFrame.tdtypes` - Get the teradataml DataFrame metadata containing column names and
1286
- corresponding teradatasqlalchemy types.
1287
- * ###### General functions
1288
- * _New functions_
1289
- * Database Utility Functions
1290
- * `db_python_package_details()` - Lists the details of Python packages installed on Vantage.
1291
- * General Utility Functions
1292
- * `print_options()`
1293
- * `view_log()`
1294
- * `setup_sandbox_env()`
1295
- * `copy_files_from_container()`
1296
- * `cleanup_sandbox_env()`
1297
- * ##### Updates
1298
- * ###### `create_context()`
1299
- * Supports all connection parameters supported by teradatasql.connect().
1300
- * ###### Script
1301
- * `test_script()` can now be executed in 'local' mode, i.e., outside of the sandbox.
1302
- * `Script.setup_sto_env()` is deprecated. Use `setup_sandbox_env()` function instead.
1303
- * Added support for using "quotechar" argument.
1304
- * ###### Analytic functions
1305
- * _Updates_
1306
- * Visit teradataml User Guide to know more about the updates done to ML Engine analytic
1307
- functions. Following type of updates are done to several functions:
1308
- * New arguments are added, which are supported only on Vantage Version 1.3.
1309
- * Default value has been updated for few function arguments.
1310
- * Few arguments were required, but now they are optional.
1311
- * ##### Minor Bug Fixes.
1312
-
1313
- #### teradataml 17.00.00.00
1314
- * ##### New Features/Functionality
1315
- * ###### Model Cataloging - Functionality to catalog model metadata and related information in the Model Catalog.
1316
- * `save_model()` - Save a teradataml Analytic Function model.
1317
- * `retrieve_model()` - Retrieve a saved model.
1318
- * `list_model()` - List accessible models.
1319
- * `describe_model()` - List the details of a model.
1320
- * `delete_model()` - Remove a model from Model Catalog.
1321
- * `publish_model()` - Share a model.
1322
- * ###### Script - An interface to the SCRIPT table operator object in the Advanced SQL Engine.
1323
- Interface offers execution in two modes:
1324
- * Test/Debug - to test user scripts locally in a containerized environment.
1325
- Supporting methods:
1326
- * `setup_sto_env()` - Set up test environment.
1327
- * `test_script()` - Test user script in containerized environment.
1328
- * `set_data()` - Set test data parameters.
1329
- * In-Database Script Execution - to execute user scripts in database.
1330
- Supporting methods:
1331
- * `execute_script()` - Execute user script in Vantage.
1332
- * `install_file()` - Install or replace file in Database.
1333
- * `remove_file()` - Remove installed file from Database.
1334
- * `set_data()` - Set test data parameters.
1335
- * ###### DataFrame
1336
- * `DataFrame.show_query()` - Show underlying query for DataFrame.
1337
- * Regular Aggregates
1338
- * _New functions_
1339
- * `kurtosis()` - Calculate the kurtosis value.
1340
- * `skew()` - Calculate the skewness of the distribution.
1341
- * _Updates_\
1342
- New argument `distinct` is added to following aggregates to exclude duplicate values.
1343
- * `count()`
1344
- * `max()`
1345
- * `mean()`
1346
- * `min()`
1347
- * `sum()`
1348
- * `std()`
1349
- * New argument `population` is added to calculate the population standard deviation.
1350
- * `var()`
1351
- * New argument `population` is added to calculate the population variance.
1352
- * Time Series Aggregates
1353
- * _New functions_
1354
- * `kurtosis()` - Calculate the kurtosis value.
1355
- * `count()` - Get the total number of values.
1356
- * `max()` - Calculate the maximum value.
1357
- * `mean()` - Calculate the average value.
1358
- * `min()` - Calculate the minimum value.
1359
- * `percentile()` - Calculate the desired percentile.
1360
- * `skew()` - Calculate the skewness of the distribution.
1361
- * `sum()` - Calculate the column-wise sum value.
1362
- * `std()` - Calculate the sample and population standard deviation.
1363
- * `var()` - Calculate the sample and population standard variance.
1364
- * ###### General functions
1365
- * _New functions_
1366
- * Database Utility Functions
1367
- * `db_drop_table()`
1368
- * `db_drop_view()`
1369
- * `db_list_tables()`
1370
- * Vantage File Management Functions
1371
- * `install_file()` - Install a file in Database.
1372
- * `remove_file()` - Remove an installed file from Database.
1373
- * _Updates_
1374
- * `create_context()`
1375
- * Support added for Stored Password Protection feature.
1376
- * Kerberos authentication bug fix.
1377
- * New argument `database` added to `create_context()` API, that allows user to specify connecting database.
1378
- * ###### Analytic functions
1379
- * _New functions_
1380
- * `Betweenness`
1381
- * `Closeness`
1382
- * `FMeasure`
1383
- * `FrequentPaths`
1384
- * `IdentityMatch`
1385
- * `Interpolator`
1386
- * `ROC`
1387
- * _Updates_
1388
- * New methods are added to all analytic functions
1389
- * `show_query()`
1390
- * `get_build_time()`
1391
- * `get_prediction_type()`
1392
- * `get_target_column()`
1393
- * New properties are added to analytic function's Formula argument
1394
- * `response_column`
1395
- * `numeric_columns`
1396
- * `categorical_columns`
1397
- * `all_columns`
1398
-
1399
- #### teradataml 16.20.00.06
1400
- Fixed the DataFrame data display corruption issue observed with certain analytic functions.
1401
-
1402
- #### teradataml 16.20.00.05
1403
- Compatible with Vantage 1.1.1.\
1404
- The following ML Engine (`teradataml.analytics.mle`) functions have new and/or updated arguments to support the Vantage version:
1405
- * `AdaBoostPredict`
1406
- * `DecisionForestPredict`
1407
- * `DecisionTreePredict`
1408
- * `GLMPredict`
1409
- * `LDA`
1410
- * `NaiveBayesPredict`
1411
- * `NaiveBayesTextClassifierPredict`
1412
- * `SVMDensePredict`
1413
- * `SVMSparse`
1414
- * `SVMSparsePredict`
1415
- * `XGBoostPredict`
1416
-
1417
- #### teradataml 16.20.00.04
1418
- * ##### Improvements
1419
- * DataFrame creation is now quicker, impacting many APIs and Analytic functions.
1420
- * Improved performance by reducing the number of intermediate queries issued to Teradata Vantage when not required.
1421
- * The number of queries reduced by combining multiple operations into a single step whenever possible and unless the user expects or demands to see the intermediate results.
1422
- * The performance improvement is almost proportional to the number of chained and unexecuted operations on a teradataml DataFrame.
1423
- * Reduced number of intermediate internal objects created on Vantage.
1424
- * ##### New Features/Functionality
1425
- * ###### General functions
1426
- * _New functions_
1427
- * `show_versions()` - to list the version of teradataml and dependencies installed.
1428
- * `fastload()` - for high performance data loading of large amounts of data into a table on Vantage. Requires `teradatasql` version `16.20.0.48` or above.
1429
- * Set operators:
1430
- * `concat`
1431
- * `td_intersect`
1432
- * `td_except`
1433
- * `td_minus`
1434
- * `case()` - to help construct SQL CASE based expressions.
1435
- * _Updates_
1436
- * `copy_to_sql`
1437
- * Added support to `copy_to_sql` to save multi-level index.
1438
- * Corrected the type mapping for index when being saved.
1439
- * `create_context()` updated to support 'JWT' logon mechanism.
1440
- * ###### Analytic functions
1441
- * _New functions_
1442
- * `NERTrainer`
1443
- * `NERExtractor`
1444
- * `NEREvaluator`
1445
- * `GLML1L2`
1446
- * `GLML1L2Predict`
1447
- * _Updates_
1448
- * Added support to categorize numeric columns as categorical while using formula - `as_categorical()` in the `teradataml.common.formula` module.
1449
- * ###### DataFrame
1450
- * Added support to create DataFrame from Volatile and Primary Time Index tables.
1451
- * `DataFrame.sample()` - to sample data.
1452
- * `DataFrame.index` - Property to access `index_label` of DataFrame.
1453
- * Functionality to process Time Series Data
1454
- * Grouping/Resampling time series data:
1455
- * `groupby_time()`
1456
- * `resample()`
1457
- * Time Series Aggregates:
1458
- * `bottom()`
1459
- * `count()`
1460
- * `describe()`
1461
- * `delta_t()`
1462
- * `mad()`
1463
- * `median()`
1464
- * `mode()`
1465
- * `first()`
1466
- * `last()`
1467
- * `top()`
1468
- * DataFrame API and method argument validation added.
1469
- * `DataFrame.info()` - Default value for `null_counts` argument updated from `None` to `False`.
1470
- * `Dataframe.merge()` updated to accept columns expressions along with column names to `on`, `left_on`, `right_on` arguments.
1471
- * ###### DataFrame Column/ColumnExpression methods
1472
- * `cast()` - to help cast the column to a specified type.
1473
- * `isin()` and `~isin()` - to check the presence of values in a column.
1474
- * ##### Removed deprecated Analytic functions
1475
- * All the deprecated Analytic functions under the `teradataml.analytics module` have been removed.
1476
- Newer versions of the functions are available under the `teradataml.analytics.mle` and the `teradataml.analytics.sqle` modules.
1477
- The modules removed are:
1478
- * `teradataml.analytics.Antiselect`
1479
- * `teradataml.analytics.Arima`
1480
- * `teradataml.analytics.ArimaPredictor`
1481
- * `teradataml.analytics.Attribution`
1482
- * `teradataml.analytics.ConfusionMatrix`
1483
- * `teradataml.analytics.CoxHazardRatio`
1484
- * `teradataml.analytics.CoxPH`
1485
- * `teradataml.analytics.CoxSurvival`
1486
- * `teradataml.analytics.DecisionForest`
1487
- * `teradataml.analytics.DecisionForestEvaluator`
1488
- * `teradataml.analytics.DecisionForestPredict`
1489
- * `teradataml.analytics.DecisionTree`
1490
- * `teradataml.analytics.DecisionTreePredict`
1491
- * `teradataml.analytics.GLM`
1492
- * `teradataml.analytics.GLMPredict`
1493
- * `teradataml.analytics.KMeans`
1494
- * `teradataml.analytics.NGrams`
1495
- * `teradataml.analytics.NPath`
1496
- * `teradataml.analytics.NaiveBayes`
1497
- * `teradataml.analytics.NaiveBayesPredict`
1498
- * `teradataml.analytics.NaiveBayesTextClassifier`
1499
- * `teradataml.analytics.NaiveBayesTextClassifierPredict`
1500
- * `teradataml.analytics.Pack`
1501
- * `teradataml.analytics.SVMSparse`
1502
- * `teradataml.analytics.SVMSparsePredict`
1503
- * `teradataml.analytics.SentenceExtractor`
1504
- * `teradataml.analytics.Sessionize`
1505
- * `teradataml.analytics.TF`
1506
- * `teradataml.analytics.TFIDF`
1507
- * `teradataml.analytics.TextTagger`
1508
- * `teradataml.analytics.TextTokenizer`
1509
- * `teradataml.analytics.Unpack`
1510
- * `teradataml.analytics.VarMax`
1511
-
1512
- #### teradataml 16.20.00.03
1513
- * Fixed the garbage collection issue observed with `remove_context()` when context is created using a SQLAlchemy engine.
1514
- * Added 4 new Advanced SQL Engine (was NewSQL Engine) analytic functions supported only on Vantage 1.1:
1515
- * `Antiselect`, `Pack`, `StringSimilarity`, and `Unpack`.
1516
- * Updated the Machine Learning Engine `NGrams` function to work with Vantage 1.1.
1517
-
1518
- #### teradataml 16.20.00.02
1519
- * Python version 3.4.x will no longer be supported. The Python versions supported are 3.5.x, 3.6.x, and 3.7.x.
1520
- * Major issue with the usage of formula argument in analytic functions with Python3.7 has been fixed, allowing this package to be used with Python3.7 or later.
1521
- * Configurable alias name support for analytic functions has been added.
1522
- * Support added to create_context (connect to Teradata Vantage) with different logon mechanisms.
1523
- Logon mechanisms supported are: 'TD2', 'TDNEGO', 'LDAP' & 'KRB5'.
1524
- * copy_to_sql function and DataFrame 'to_sql' methods now provide following additional functionality:
1525
- * Create Primary Time Index tables.
1526
- * Create set/multiset tables.
1527
- * New DataFrame methods are added: 'median', 'var', 'squeeze', 'sort_index', 'concat'.
1528
- * DataFrame method 'join' is now updated to make use of ColumnExpressions (df.column_name) for the 'on' clause as opposed to strings.
1529
- * Series is supported as a first class object by calling squeeze on DataFrame.
1530
- * Methods supported by teradataml Series are: 'head', 'unique', 'name', '\_\_repr__'.
1531
- * Binary operations with teradataml Series is not yet supported. Try using Columns from teradataml.DataFrames.
1532
- * Sample datasets and commands to load the same have been provided in the function examples.
1533
- * New configuration property has been added 'column_casesenitive_handler'. Useful when one needs to play with case sensitive columns.
1534
-
1535
- #### teradataml 16.20.00.01
1536
- * New support has been added for Linux distributions: Red Hat 7+, Ubuntu 16.04+, CentOS 7+, SLES12+.
1537
- * 16.20.00.01 now has over 100 analytic functions. These functions have been organized into their own packages for better control over which engine to execute the analytic function on. Due to these namespace changes, the old analytic functions have been deprecated and will be removed in a future release. See the Deprecations section in the Teradata Python Package User Guide for more information.
1538
- * New DataFrame methods `shape`, `iloc`, `describe`, `get_values`, `merge`, and `tail`.
1539
- * New Series methods for NA checking (`isnull`, `notnull`) and string processing (`lower`, `strip`, `contains`).
1540
-
1541
- #### teradataml 16.20.00.00
1542
- * `teradataml 16.20.00.00` is the first release version. Please refer to the _Teradata Python Package User Guide_ for a list of Limitations and Usage Considerations.
1543
-
1544
- ## Installation and Requirements
1545
-
1546
- ### Package Requirements:
1547
- * Python 3.5 or later
1548
-
1549
- Note: 32-bit Python is not supported.
1550
-
1551
- ### Minimum System Requirements:
1552
- * Windows 7 (64Bit) or later
1553
- * macOS 10.9 (64Bit) or later
1554
- * Red Hat 7 or later versions
1555
- * Ubuntu 16.04 or later versions
1556
- * CentOS 7 or later versions
1557
- * SLES 12 or later versions
1558
- * Teradata Vantage Advanced SQL Engine:
1559
- * Advanced SQL Engine 16.20 Feature Update 1 or later
1560
- * For a Teradata Vantage system with the ML Engine:
1561
- * Teradata Machine Learning Engine 08.00.03.01 or later
1562
-
1563
- ### Installation
1564
-
1565
- Use pip to install the Teradata Python Package for Advanced Analytics.
1566
-
1567
- Platform | Command
1568
- -------------- | ---
1569
- macOS/Linux | `pip install teradataml`
1570
- Windows | `py -3 -m pip install teradataml`
1571
-
1572
- When upgrading to a new version of the Teradata Python Package, you may need to use pip install's `--no-cache-dir` option to force the download of the new version.
1573
-
1574
- Platform | Command
1575
- -------------- | ---
1576
- macOS/Linux | `pip install --no-cache-dir -U teradataml`
1577
- Windows | `py -3 -m pip install --no-cache-dir -U teradataml`
1578
-
1579
- ## Using the Teradata Python Package
1580
-
1581
- Your Python script must import the `teradataml` package in order to use the Teradata Python Package:
1582
-
1583
- ```
1584
- >>> import teradataml as tdml
1585
- >>> from teradataml import create_context, remove_context
1586
- >>> create_context(host = 'hostname', username = 'user', password = 'password')
1587
- >>> df = tdml.DataFrame('iris')
1588
- >>> df
1589
-
1590
- SepalLength SepalWidth PetalLength PetalWidth Name
1591
- 0 5.1 3.8 1.5 0.3 Iris-setosa
1592
- 1 6.9 3.1 5.1 2.3 Iris-virginica
1593
- 2 5.1 3.5 1.4 0.3 Iris-setosa
1594
- 3 5.9 3.0 4.2 1.5 Iris-versicolor
1595
- 4 6.0 2.9 4.5 1.5 Iris-versicolor
1596
- 5 5.0 3.5 1.3 0.3 Iris-setosa
1597
- 6 5.5 2.4 3.8 1.1 Iris-versicolor
1598
- 7 6.9 3.2 5.7 2.3 Iris-virginica
1599
- 8 4.4 3.0 1.3 0.2 Iris-setosa
1600
- 9 5.8 2.7 5.1 1.9 Iris-virginica
1601
-
1602
- >>> df = df.select(['Name', 'SepalLength', 'PetalLength'])
1603
- >>> df
1604
-
1605
- Name SepalLength PetalLength
1606
- 0 Iris-versicolor 6.0 4.5
1607
- 1 Iris-versicolor 5.5 3.8
1608
- 2 Iris-virginica 6.9 5.7
1609
- 3 Iris-setosa 5.1 1.4
1610
- 4 Iris-setosa 5.1 1.5
1611
- 5 Iris-virginica 5.8 5.1
1612
- 6 Iris-virginica 6.9 5.1
1613
- 7 Iris-setosa 5.1 1.4
1614
- 8 Iris-virginica 7.7 6.7
1615
- 9 Iris-setosa 5.0 1.3
1616
-
1617
- >>> df = df[(df.Name == 'Iris-setosa') & (df.PetalLength > 1.5)]
1618
- >>> df
1619
-
1620
- Name SepalLength PetalLength
1621
- 0 Iris-setosa 4.8 1.9
1622
- 1 Iris-setosa 5.4 1.7
1623
- 2 Iris-setosa 5.7 1.7
1624
- 3 Iris-setosa 5.0 1.6
1625
- 4 Iris-setosa 5.1 1.9
1626
- 5 Iris-setosa 4.8 1.6
1627
- 6 Iris-setosa 4.7 1.6
1628
- 7 Iris-setosa 5.1 1.6
1629
- 8 Iris-setosa 5.1 1.7
1630
- 9 Iris-setosa 4.8 1.6
1631
- ```
1632
-
1633
- ## Documentation
1634
-
1635
- General product information, including installation instructions, is available in the [Teradata Documentation website](https://docs.teradata.com/search/documents?query=package+python+-lake&filters=category~%2522Programming+Reference%2522_%2522User+Guide%2522*prodname~%2522Teradata+Package+for+Python%2522_%2522Teradata+Python+Package%2522&sort=last_update&virtual-field=title_only&content-lang=)
1636
-
1637
- ## License
1638
-
1639
- Use of the Teradata Python Package is governed by the *License Agreement for the Teradata Python Package for Advanced Analytics*.
1640
- After installation, the `LICENSE` and `LICENSE-3RD-PARTY` files are located in the `teradataml` directory of the Python installation directory.
1
+ ## Teradata Python package for Advanced Analytics.
2
+
3
+ teradataml makes available to Python users a collection of analytic functions that reside on Teradata Vantage. This allows users to perform analytics on Teradata Vantage with no SQL coding. In addition, the teradataml library provides functions for scaling data manipulation and transformation, data filtering and sub-setting, and can be used in conjunction with other open-source python libraries.
4
+
5
+ For community support, please visit the [Teradata Community](https://support.teradata.com/community?id=community_forum&sys_id=14fe131e1bf7f304682ca8233a4bcb1d).
6
+
7
+ For Teradata customer support, please visit [Teradata Support](https://support.teradata.com/csm).
8
+
9
+ Copyright 2024, Teradata. All Rights Reserved.
10
+
11
+ ### Table of Contents
12
+ * [Release Notes](#release-notes)
13
+ * [Installation and Requirements](#installation-and-requirements)
14
+ * [Using the Teradata Python Package](#using-the-teradata-python-package)
15
+ * [Documentation](#documentation)
16
+ * [License](#license)
17
+
18
+ ## Release Notes:
19
+ #### teradataml 20.00.00.01
20
+ * teradataml no longer supports Python versions less than 3.8.
21
+
22
+ * ##### New Features/Functionality
23
+ * ##### Personal Access Token (PAT) support in teradataml
24
+ * `set_auth_token()` - teradataml now supports authentication via PAT in addition to
25
+ OAuth 2.0 Device Authorization Grant (formerly known as the Device Flow).
26
+ * It accepts UES URL, Personal AccessToken (PAT) and Private Key file generated from VantageCloud Lake Console
27
+ and optional argument `username` and `expiration_time` in seconds.
28
+
29
+ * ##### Updates
30
+ * ##### teradataml: SQLE Engine Analytic Functions
31
+ * `ANOVA()`
32
+ * New arguments added: `group_name_column`, `group_value_name`, `group_names`, `num_groups` for data containing group values and group names.
33
+ * `FTest()`
34
+ * New arguments added: `sample_name_column`, `sample_name_value`, `first_sample_name`, `second_sample_name`.
35
+ * `GLM()`
36
+ * Supports stepwise regression and accept new arguments `stepwise_direction`, `max_steps_num` and `initial_stepwise_columns`.
37
+ * New arguments added: `attribute_data`, `parameter_data`, `iteration_mode` and `partition_column`.
38
+ * `GetFutileColumns()`
39
+ * Arguments `category_summary_column` and `threshold_value` are now optional.
40
+ * `KMeans()`
41
+ * New argument added: `initialcentroids_method`.
42
+ * `NonLinearCombineFit()`
43
+ * Argument `result_column` is now optional.
44
+ * `ROC()`
45
+ * Argument `positive_class` is now optional.
46
+ * `SVMPredict()`
47
+ * New argument added: `model_type`.
48
+ * `ScaleFit()`
49
+ * New arguments added: `ignoreinvalid_locationscale`, `unused_attributes`, `attribute_name_column`, `attribute_value_column`.
50
+ * Arguments `attribute_name_column`, `attribute_value_column` and `target_attributes` are supported for sparse input.
51
+ * Arguments `attribute_data`, `parameter_data` and `partition_column` are supported for partitioning.
52
+ * `ScaleTransform()`
53
+ * New arguments added: `attribute_name_column` and `attribute_value_column` support for sparse input.
54
+ * `TDGLMPredict()`
55
+ * New arguments added: `family` and `partition_column`.
56
+ * `XGBoost()`
57
+ * New argument `base_score` is added for initial prediction value for all data points.
58
+ * `XGBoostPredict()`
59
+ * New argument `detailed` is added for detailed information of each prediction.
60
+ * `ZTest()`
61
+ * New arguments added: `sample_name_column`, `sample_value_column`, `first_sample_name` and `second_sample_name`.
62
+ * ##### teradataml: AutoML
63
+ * `AutoML()`, `AutoRegressor()` and `AutoClassifier()`
64
+ * New argument `max_models` is added as an early stopping criterion to limit the maximum number of models to be trained.
65
+ * ##### teradataml: DataFrame functions
66
+ * `DataFrame.agg()`
67
+ * Accepts ColumnExpressions and list of ColumnExpressions as arguments.
68
+ * ##### teradataml: General Functions
69
+ * Data Transfer Utility
70
+ * `fastload()` - Improved error and warning table handling with below-mentioned new arguments.
71
+ * `err_staging_db`
72
+ * `err_tbl_name`
73
+ * `warn_tbl_name`
74
+ * `err_tbl_1_suffix`
75
+ * `err_tbl_2_suffix`
76
+ * `fastload()` - Change in behaviour of `save_errors` argument.
77
+ When `save_errors` is set to `True`, error information will be available in two persistent tables `ERR_1` and `ERR_2`.
78
+ When `save_errors` is set to `False`, error information will be available in single pandas dataframe.
79
+ * Garbage collector location is now configurable.
80
+ User can set configure.local_storage to a desired location.
81
+
82
+ * ##### Bug Fixes
83
+ * UAF functions now work if the database name has special characters.
84
+ * OpensourceML can now read and process NULL/nan values.
85
+ * Boolean values output will now be returned as VARBYTE column with 0 or 1 values in OpensourceML.
86
+ * Fixed bug for `Apply`'s `deploy()`.
87
+ * Issue with volatile table creation is fixed where it is created in the right database, i.e., user's spool space, regardless of the temp database specified.
88
+ * `ColumnTransformer` function now processes its arguments in the order they are passed.
89
+
90
+ #### teradataml 20.00.00.00
91
+ * ##### New Features/Functionality
92
+ * ###### teradataml OpenML: Run Opensource packages through Teradata Vantage
93
+ `OpenML` dynamically exposes opensource packages through Teradata Vantage. `OpenML` provides an
94
+ interface object through which exposed classes and functions of opensource packages can be accessed
95
+ with the same syntax and arguments.
96
+ The following functionality is added in the current release:
97
+ * `td_sklearn` - Interface object to run scikit-learn functions and classes through Teradata Vantage.
98
+ Example usage below:
99
+ ```
100
+ from teradataml import td_sklearn, DataFrame
101
+
102
+ df_train = DataFrame("multi_model_classification")
103
+
104
+ feature_columns = ["col1", "col2", "col3", "col4"]
105
+ label_columns = ["label"]
106
+ part_columns = ["partition_column_1", "partition_column_2"]
107
+
108
+ linear_svc = td_sklearn.LinearSVC()
109
+ ```
110
+ * `OpenML` is supported in both Teradata Vantage Enterprise and Teradata Vantage Lake.
111
+ * Argument Support:
112
+ * `Use of X and y arguments` - Scikit-learn users are familiar with using `X` and `y` as argument names
113
+ which take data as pandas DataFrames, numpy arrays or lists etc. However, in OpenML, we pass
114
+ teradataml DataFrames for arguments `X` and `y`.
115
+ ```
116
+ df_x = df_train.select(feature_columns)
117
+ df_y = df_train.select(label_columns)
118
+
119
+ linear_svc = linear_svc.fit(X=df_x, y=df_y)
120
+ ```
121
+ * `Additional support for data, feature_columns, label_columns and group_columns arguments` -
122
+ Apart from traditional arguments, OpenML supports additional arguments - `data`,
123
+ `feature_columns`, `label_columns` and `group_columns`. These are used as alternatives to `X`, `y`
124
+ and `groups`.
125
+ ```
126
+ linear_svc = linear_svc.fit(data=df_train, feature_columns=feature_columns, label_colums=label_columns)
127
+ ```
128
+ * `Support for classification and regression metrics` - Metrics functions for classification and
129
+ regression in `sklearn.metrics` module are supported. Other metrics functions' support will be added
130
+ in future releases.
131
+ * `Distributed Modeling and partition_columns argument support` - Existing scikit-learn supports
132
+ only single model generation. However, OpenML supports both single model use case and distributed
133
+ (multi) model use case. For this, user has to additionally pass `partition_columns` argument to
134
+ existing `fit()`, `predict()` or any other function to be run. This will generate multiple models
135
+ for multiple partitions, using the data in corresponding partition.
136
+ ```
137
+ df_x_1 = df_train.select(feature_columns + part_columns)
138
+ linear_svc = linear_svc.fit(X=df_x_1, y=df_y, partition_columns=part_columns)
139
+ ```
140
+ * `Support for load and deploy models` - OpenML provides additional support for saving (deploying) the
141
+ trained models. These models can be loaded later to perform operations like prediction, score etc. The
142
+ following functions are provided by OpenML:
143
+ * `<obj>.deploy()` - Used to deploy/save the model created and/or trained by OpenML.
144
+ * `td_sklearn.deploy()` - Used to deploy/save the model created and/or trained outside teradataml.
145
+ * `td_sklearn.load()` - Used to load the saved models.
146
+
147
+ <br>Refer Teradata Python Package User Guide for more details of this feature, arguments, usage, examples and supportability in both VantageCloud Enterprise and VantageCloud Lake.
148
+
149
+ * ###### teradataml: AutoML - Automated end to end Machine Learning flow.
150
+ AutoML is an approach to automate the process of building, training, and validating machine learning models.
151
+ It involves automation of various aspects of the machine learning workflow, such as feature exploration,
152
+ feature engineering, data preparation, model training and evaluation for given dataset.
153
+ teradataml AutoML feature offers best model identification, model leaderboard generation, parallel execution,
154
+ early stopping feature, model evaluation, model prediction, live logging, customization on default process.
155
+ * `AutoML`
156
+ AutoML is a generic algorithm that supports all three tasks, i.e. 'Regression',
157
+ 'Binary Classification' and 'Multiclass Classification'.
158
+ * Methods of AutoML
159
+ * `__init__()` - Instantiate an object of AutoML with given parameters.
160
+ * `fit()` - Perform fit on specified data and target column.
161
+ * `leaderboard()` - Get the leaderboard for the AutoML. Presents diverse models, feature
162
+ selection method, and performance metrics.
163
+ * `leader()` - Show best performing model and its details such as feature
164
+ selection method, and performance metrics.
165
+ * `predict()` - Perform prediction on the data using the best model or the model of users
166
+ choice from the leaderboard.
167
+ * `generate_custom_config()` - Generate custom config JSON file required for customized
168
+ run of AutoML.
169
+ * `AutoRegressor`
170
+ AutoRegressor is a special purpose AutoML feature to run regression specific tasks.
171
+ * Methods of AutoRegressor
172
+ * `__init__()` - Instantiate an object of AutoRegressor with given parameters.
173
+ * `fit()` - Perform fit on specified data and target column.
174
+ * `leaderboard()` - Get the leaderboard for the AutoRegressor. Presents diverse models, feature
175
+ selection method, and performance metrics.
176
+ * `leader()` - Show best performing model and its details such as feature
177
+ selection method, and performance metrics.
178
+ * `predict()` - Perform prediction on the data using the best model or the model of users
179
+ choice from the leaderboard.
180
+ * `generate_custom_config()` - Generate custom config JSON file required for customized
181
+ run of AutoRegressor.
182
+ * `AutoClassifier`
183
+ AutoClassifier is a special purpose AutoML feature to run classification specific tasks.
184
+ * Methods of AutoClassifier
185
+ * `__init__()` - Instantiate an object of AutoClassifier with given parameters.
186
+ * `fit()` - Perform fit on specified data and target column.
187
+ * `leaderboard()` - Get the leaderboard for the AutoClassifier. Presents diverse models, feature
188
+ selection method, and performance metrics.
189
+ * `leader()` - Show best performing model and its details such as feature
190
+ selection method, and performance metrics.
191
+ * `predict()` - Perform prediction on the data using the best model or the model of users
192
+ choice from the leaderboard.
193
+ * `generate_custom_config()` - Generate custom config JSON file required for customized
194
+ run of AutoClassifier.
195
+
196
+ * ###### teradataml: DataFrame
197
+ * `fillna` - Replace the null values in a column with the value specified.
198
+ * Data Manipulation
199
+ * `cube()`- Analyzes data by grouping it into multiple dimensions.
200
+ * `rollup()` - Analyzes a set of data across a single dimension with more than one level of detail.
201
+ * `replace()` - Replaces the values for columns.
202
+
203
+ * ###### teradataml: Script and Apply
204
+ * `deploy()` - Function deploys the model, generated after `execute_script()`, in database or user
205
+ environment in lake. The function is available in both Script and Apply.
206
+
207
+ * ###### teradataml: DataFrameColumn
208
+ * `fillna` - Replaces every occurrence of null value in column with the value specified.
209
+
210
+ * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
211
+ * _Date Time Functions_
212
+ * `DataFrameColumn.week_start()` - Returns the first date or timestamp of the week that begins immediately before the specified date or timestamp value in a column as a literal.
213
+ * `DataFrameColumn.week_begin()` - It is an alias for `DataFrameColumn.week_start()` function.
214
+ * `DataFrameColumn.week_end()` - Returns the last date or timestamp of the week that ends immediately after the specified date or timestamp value in a column as a literal.
215
+ * `DataFrameColumn.month_start()` - Returns the first date or timestamp of the month that begins immediately before the specified date or timestamp value in a column or as a literal.
216
+ * `DataFrameColumn.month_begin()` - It is an alias for `DataFrameColumn.month_start()` function.
217
+ * `DataFrameColumn.month_end()` - Returns the last date or timestamp of the month that ends immediately after the specified date or timestamp value in a column or as a literal.
218
+ * `DataFrameColumn.year_start()` - Returns the first date or timestamp of the year that begins immediately before the specified date or timestamp value in a column or as a literal.
219
+ * `DataFrameColumn.year_begin()` - It is an alias for `DataFrameColumn.year_start()` function.
220
+ * `DataFrameColumn.year_end()` - Returns the last date or timestamp of the year that ends immediately after the specified date or timestamp value in a column or as a literal.
221
+ * `DataFrameColumn.quarter_start()` - Returns the first date or timestamp of the quarter that begins immediately before the specified date or timestamp value in a column as a literal.
222
+ * `DataFrameColumn.quarter_begin()` - It is an alias for `DataFrameColumn.quarter_start()` function.
223
+ * `DataFrameColumn.quarter_end()` - Returns the last date or timestamp of the quarter that ends immediately after the specified date or timestamp value in a column as a literal.
224
+ * `DataFrameColumn.last_sunday()` - Returns the date or timestamp of Sunday that falls immediately before the specified date or timestamp value in a column as a literal.
225
+ * `DataFrameColumn.last_monday()` - Returns the date or timestamp of Monday that falls immediately before the specified date or timestamp value in a column as a literal.
226
+ * `DataFrameColumn.last_tuesday()` - Returns the date or timestamp of Tuesday that falls immediately before the specified date or timestamp value in a column as a literal.
227
+ * `DataFrameColumn.last_wednesday()` - Returns the date or timestamp of Wednesday that falls immediately before specified date or timestamp value in a column as a literal.
228
+ * `DataFrameColumn.last_thursday()`- Returns the date or timestamp of Thursday that falls immediately before specified date or timestamp value in a column as a literal.
229
+ * `DataFrameColumn.last_friday()` - Returns the date or timestamp of Friday that falls immediately before specified date or timestamp value in a column as a literal.
230
+ * `DataFrameColumn.last_saturday()` - Returns the date or timestamp of Saturday that falls immediately before specified date or timestamp value in a column as a literal.
231
+ * `DataFrameColumn.day_of_week()` - Returns the number of days from the beginning of the week to the specified date or timestamp value in a column as a literal.
232
+ * `DataFrameColumn.day_of_month()` - Returns the number of days from the beginning of the month to the specified date or timestamp value in a column as a literal.
233
+ * `DataFrameColumn.day_of_year()` - Returns the number of days from the beginning of the year to the specified date or timestamp value in a column as a literal.
234
+ * `DataFrameColumn.day_of_calendar()` - Returns the number of days from the beginning of the business calendar to the specified date or timestamp value in a column as a literal.
235
+ * `DataFrameColumn.week_of_month()` - Returns the number of weeks from the beginning of the month to the specified date or timestamp value in a column as a literal.
236
+ * `DataFrameColumn.week_of_quarter()` - Returns the number of weeks from the beginning of the quarter to the specified date or timestamp value in a column as a literal.
237
+ * `DataFrameColumn.week_of_year()` - Returns the number of weeks from the beginning of the year to the specified date or timestamp value in a column as a literal.
238
+ * `DataFrameColumn.week_of_calendar()` - Returns the number of weeks from the beginning of the calendar to the specified date or timestamp value in a column as a literal.
239
+ * `DataFrameColumn.month_of_year()` - Returns the number of months from the beginning of the year to the specified date or timestamp value in a column as a literal.
240
+ * `DataFrameColumn.month_of_calendar()` - Returns the number of months from the beginning of the calendar to the specified date or timestamp value in a column as a literal.
241
+ * `DataFrameColumn.month_of_quarter()` - Returns the number of months from the beginning of the quarter to the specified date or timestamp value in a column as a literal.
242
+ * `DataFrameColumn.quarter_of_year()` - Returns the number of quarters from the beginning of the year to the specified date or timestamp value in a column as a literal.
243
+ * `DataFrameColumn.quarter_of_calendar()` - Returns the number of quarters from the beginning of the calendar to the specified date or timestamp value in a column as a literal.
244
+ * `DataFrameColumn.year_of_calendar()` - Returns the year of the specified date or timestamp value in a column as a literal.
245
+ * `DataFrameColumn.day_occurrence_of_month()` - Returns the nth occurrence of the weekday in the month for the date to the specified date or timestamp value in a column as a literal.
246
+ * `DataFrameColumn.year()` - Returns the integer value for year in the specified date or timestamp value in a column as a literal.
247
+ * `DataFrameColumn.month()` - Returns the integer value for month in the specified date or timestamp value in a column as a literal.
248
+ * `DataFrameColumn.hour()` - Returns the integer value for hour in the specified timestamp value in a column as a literal.
249
+ * `DataFrameColumn.minute()` - Returns the integer value for minute in the specified timestamp value in a column as a literal.
250
+ * `DataFrameColumn.second()` - Returns the integer value for seconds in the specified timestamp value in a column as a literal.
251
+ * `DataFrameColumn.week()` - Returns the number of weeks from the beginning of the year to the specified date or timestamp value in a column as a literal.
252
+ * `DataFrameColumn.next_day()` - Returns the date of the first weekday specified as 'day_value' that is later than the specified date or timestamp value in a column as a literal.
253
+ * `DataFrameColumn.months_between()` - Returns the number of months between value in specified date or timestamp value in a column as a literal and date or timestamp value in argument.
254
+ * `DataFrameColumn.add_months()` - Adds an integer number of months to specified date or timestamp value in a column as a literal.
255
+ * `DataFrameColumn.oadd_months()` - Adds an integer number of months, date or timestamp value in specified date or timestamp value in a column as a literal.
256
+ * `DataFrameColumn.to_date()` - Function converts a string-like representation of a DATE or PERIOD type to Date type.
257
+ * _String Functions_
258
+ * `DataFrameColumn.concat()` - Function to concatenate the columns with a separator.
259
+ * `DataFrameColumn.like()` - Function to match the string pattern. String match is case sensitive.
260
+ * `DataFrameColumn.ilike()` - Function to match the string pattern. String match is not case sensitive.
261
+ * `DataFrameColumn.substr()` - Returns the substring from a string column.
262
+ * `DataFrameColumn.startswith()` - Function to check if the column value starts with the specified value or not.
263
+ * `DataFrameColumn.endswith()` - Function to check if the column value ends with the specified value or not.
264
+ * `DataFrameColumn.format()` - Function to format the values in column based on formatter.
265
+ * `DataFrameColumn.to_char()` - Function converts numeric type or datetype to character type.
266
+ * `DataFrameColumn.trim()` - Function trims the string values in the column.
267
+ * _Regular Arithmetic Functions_
268
+ * `DataFrameColumn.cbrt()` - Computes the cube root of values in the column.
269
+ * `DataFrameColumn.hex()` - Computes the Hexadecimal from decimal for the values in the column.
270
+ * `DataframeColumn.hypot()` - Computes the decimal from Hexadecimal for the values in the column.
271
+ * `DataFrameColumn.unhex()` - computes the hypotenuse for the values between two columns.
272
+ * _Bit Byte Manipulation Functions_
273
+ * `DataFrameColumn.from_byte()` - Encodes a sequence of bits into a sequence of characters.
274
+ * _Comparison Functions_
275
+ * `DataFrameColumn.greatest()` - Returns the greatest values from columns.
276
+ * `DataFrameColumn.least()` - Returns the least values from columns.
277
+ * Behaviour of `DataFrameColumn.replace()` is changed.
278
+ * Behaviour of `DataFrameColumn.to_byte()` is changed. It now decodes a sequence of characters in a given encoding into a sequence of bits.
279
+ * Behaviour of `DataFrameColumn.trunc()` is changed. It now accepts Date type columns.
280
+
281
+ * ##### Bug Fixes
282
+ * Argument `url_encode` is no longer used in `create_context()` and is deprecated.
283
+ * **Important notes**
284
+ * Users do not need to encode password even if password contain special characters.
285
+ * Pass the password to the `create_context()` function argument `password` as it is without changing special characters.
286
+ * `fillna()` in VAL transformation allows to replace NULL values with empty string.
287
+
288
+ * ##### Updates
289
+ * Support for following deprecated functionality is removed:
290
+ * ML Engine functions
291
+ * STO and APPLY sandbox feature support for testing the script.
292
+ * sandbox_container_utils is removed. Following methods can no longer be used:
293
+ * `setup_sandbox_env()`
294
+ * `copy_files_from_container()`
295
+ * `cleanup_sandbox_env()`
296
+ * Model Cataloging APIs can no longer be used:
297
+ * `describe_model()`
298
+ * `delete_model()`
299
+ * `list_models()`
300
+ * `publish_model()`
301
+ * `retrieve_model()`
302
+ * `save_model()`
303
+ * `DataFrame.join()`
304
+ * Arguments `lsuffix` and `rsuffix` now add suffixes to new column names for join operation.
305
+ * `DataFrame.describe()`
306
+ * New argument `columns` is added to generate statistics on only those columns instead of all applicable columns.
307
+ * `DataFrame.groupby()`
308
+ * Supports `CUBE` and `ROLLUP` with additional optional argument `option`.
309
+ * `DataFrame.column.window()`
310
+ * Supports ColumnExpressions for `partition_columns` and `order_columns` arguments.
311
+ * `DataFrame.column.contains()` allows ColumnExpressions for `pattern` argument.
312
+ * `DataFrame.window()`
313
+ * Supports ColumnExpressions for `partition_columns` and `order_columns` arguments.
314
+
315
+ #### teradataml 17.20.00.07
316
+ * ##### New Features/Functionality
317
+ * ###### Open Analytics Framework (OpenAF) APIs:
318
+ * Manage all user environments.
319
+ * `create_env()`:
320
+ * new argument `conda_env` is added to create a conda environment.
321
+ * `list_user_envs()`:
322
+ * User can list conda environment(s) by using filter with new argument `conda_env`.
323
+ * Conda environment(s) can be managed using APIs for installing , updating, removing files/libraries.
324
+ * ##### Bug Fixes
325
+ * `columns` argument for `FillNa` function is made optional.
326
+
327
+ #### teradataml 17.20.00.06
328
+ * ##### New Features/Functionality
329
+ * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
330
+ * `ColumnExpression.nulls_first()` - Displays NULL values at first.
331
+ * `ColumnExpression.nulls_last()` - Displays NULL values at last.
332
+ * _Bit Byte Manipulation Functions_
333
+ * `DataFrameColumn.bit_and()` - Returns the logical AND operation on the bits from
334
+ the column and corresponding bits from the argument.
335
+ * `DataFrameColumn.bit_get()` - Returns the bit specified by input argument from the column and
336
+ returns either 0 or 1 to indicate the value of that bit.
337
+ * `DataFrameColumn.bit_or()` - Returns the logical OR operation on the bits from the column and
338
+ corresponding bits from the argument.
339
+ * `DataFrameColumn.bit_xor()` - Returns the bitwise XOR operation on the binary representation of the
340
+ column and corresponding bits from the argument.
341
+ * `DataFrameColumn.bitand()` - It is an alias for `DataFrameColumn.bit_and()` function.
342
+ * `DataFrameColumn.bitnot()` - Returns a bitwise complement on the binary representation of the column.
343
+ * `DataFrameColumn.bitor()` - It is an alias for `DataFrameColumn.bit_or()` function.
344
+ * `DataFrameColumn.bitwise_not()` - It is an alias for `DataFrameColumn.bitnot()` function.
345
+ * `DataFrameColumn.bitwiseNOT()` - It is an alias for `DataFrameColumn.bitnot()` function.
346
+ * `DataFrameColumn.bitxor()` - It is an alias for `DataFrameColumn.bit_xor()` function.
347
+ * `DataFrameColumn.countset()` - Returns the count of the binary bits within the column that are either set to 1
348
+ or set to 0, depending on the input argument value.
349
+ * `DataFrameColumn.getbit()` - It is an alias for `DataFrameColumn.bit_get()` function.
350
+ * `DataFrameColumn.rotateleft()` - Returns an expression rotated to the left by the specified number of bits,
351
+ with the most significant bits wrapping around to the right.
352
+ * `DataFrameColumn.rotateright()` - Returns an expression rotated to the right by the specified number of bits,
353
+ with the least significant bits wrapping around to the left.
354
+ * `DataFrameColumn.setbit()` - Sets the value of the bit specified by input argument to the value
355
+ of column.
356
+ * `DataFrameColumn.shiftleft()` - Returns the expression when value in column is shifted by the specified
357
+ number of bits to the left.
358
+ * `DataFrameColumn.shiftright()` - Returns the expression when column expression is shifted by the specified
359
+ number of bits to the right.
360
+ * `DataFrameColumn.subbitstr()` - Extracts a bit substring from the column expression based on the specified
361
+ bit position.
362
+ * `DataFrameColumn.to_byte()` - Converts a numeric data type to the Vantage byte representation
363
+ (byte value) of the column expression value.
364
+
365
+ * _Regular Expression Functions_
366
+ * `DataFrameColumn.regexp_instr()` - Searches string value in column for a match to value specified in argument.
367
+ * `DataFrameColumn.regexp_replace()` - Replaces the portions of string value in a column that matches the value
368
+ specified regex string and replaces with the replace string.
369
+ * `DataFrameColumn.regexp_similar()` - Compares value in column to value in argument and returns integer value.
370
+ * `DataFrameColumn.regexp_substr()` - Extracts a substring from column that matches a regular expression
371
+ specified in the input argument.
372
+
373
+ * ###### Open Analytics Framework (OpenAF) APIs:
374
+ * Manage all user environments.
375
+ * `create_env()`:
376
+ * User can create one or more user environments using newly added argument `template` by providing specifications in template json file. New feature allows user to create complete user environment, including file and library installation, in just single function call.
377
+ * UserEnv Class – Manage individual user environment.
378
+ * Properties:
379
+ * `models` - Supports listing of models in user environment.
380
+ * Methods:
381
+ * `install_model()` - Install a model in user environment.
382
+ * `uninstall_model()` - Uninstall a model from user environment.
383
+ * `snapshot()`- Take the snapshot of the user environment.
384
+
385
+ * ###### teradataml: Bring Your Own Model
386
+ * _New Functions_
387
+ * `DataRobotPredict()` - Score the data in Vantage using the model trained externally in datarobot and stored
388
+ in Vantage.
389
+
390
+ * ##### Updates
391
+ * `DataFrame.describe()`
392
+ * Method now accepts an argument `statistics`, which specifies the aggregate operation to be performed.
393
+ * `DataFrame.sort()`
394
+ * Method now accepts ColumnExpressions as well.
395
+ * Enables sorting using NULLS FIRST and NULLS LAST.
396
+ * `view_log()` downloads the Apply query logs based on query id.
397
+ * Arguments which accepts floating numbers will accept integers also for `Analytics Database Analytic Functions`.
398
+ * Argument `ignore_nulls` added to `DataFrame.plot()` to ignore the null values while plotting the data.
399
+ * `Dataframe.sample()`
400
+ * Method supports column stratification.
401
+
402
+ * ##### Bug Fixes
403
+ * `DataFrameColumn.cast()` accepts all teradatasqlalchemy types.
404
+ * Minor bug fix related to `DataFrame.merge()`.
405
+
406
+ #### teradataml 17.20.00.05
407
+ * ##### New Features/Functionality
408
+ * ###### teradataml: Hyperparameter-Tuning - Technique to identify best model parameters.
409
+ Hyperparameter tuning is an optimization method to determine the optimal set of
410
+ hyperparameters for the given dataset and learning model. teradataml hyperparameter tuning feature
411
+ offers best model identification, parallel execution, early stopping feature, best data identification,
412
+ model evaluation, model prediction, live logging, input data hyper-parameterization, input data sampling,
413
+ numerous scoring functions, hyper-parameterization for non-model trainer functions.
414
+ * `GridSearch`
415
+ GridSearch is an exhaustive search algorithm that covers all possible
416
+ parameter values to identify optimal hyperparameters.
417
+ * Methods of GridSearch
418
+ * `__init__()` - Instantiate an object of GridSearch for given model function and parameters.
419
+ * `evaluate()` - Function to perform evaluation on the given teradataml DataFrame using default model.
420
+ * `fit()` - Function to perform hyperparameter-tuning for given hyperparameters and model on teradataml DataFrame.
421
+ * `get_error_log()` - Useful to get the error log if model execution failed, using the model identifier.
422
+ * `get_input_data()` - Useful to get the input data using the data identifier, when input data is also parameterized.
423
+ * `get_model()` - Returns the trained model for the given model identifier.
424
+ * `get_parameter_grid()` - Returns the hyperparameter space used for hyperparameter optimization.
425
+ * `is_running()` - Returns the execution status of hyperaparameter tuning.
426
+ * `predict()` - Function to perform prediction on the given teradataml DataFrame using default model.
427
+ * `set_model()` - Function to update the default model.
428
+ * Properties of GridSearch
429
+ * `best_data_id` - Returns the best data identifier used for model training.
430
+ * `best_model` - Returns the best trained model.
431
+ * `best_model_id` - Returns the identifier for best model.
432
+ * `best_params_` - Returns the best set of hyperparameter.
433
+ * `best_sampled_data_` - Returns the best sampled data used to train the best model.
434
+ * `best_score_` - Returns the best trained model score.
435
+ * `model_stats` - Returns the model evaluation reports.
436
+ * `models` - Returns the metadata of all the models.
437
+ * `RandomSearch`
438
+ RandomSearch algorithm performs random sampling on hyperparameter
439
+ space to identify optimal hyperparameters.
440
+ * Methods of RandomSearch
441
+ * `__init__()` - Instantiate an object of RandomSearch for given model function and parameters.
442
+ * `evaluate()` - Function to perform evaluation on the given teradataml DataFrame using default model.
443
+ * `fit()` - Function to perform hyperparameter-tuning for given hyperparameters and model on teradataml DataFrame.
444
+ * `get_error_log()` - Useful to get the error log if model execution failed, using the model identifier.
445
+ * `get_input_data()` - Useful to get the input data using the data identifier, when input data is also parameterized.
446
+ * `get_model()` - Returns the trained model for the given model identifier.
447
+ * `get_parameter_grid()` - Returns the hyperparameter space used for hyperparameter optimization.
448
+ * `is_running()` - Returns the execution status of hyperaparameter tuning.
449
+ * `predict()` - Function to perform prediction on the given teradataml DataFrame using default model.
450
+ * `set_model()` - Function to update the default model.
451
+ * Properties of GridSearch
452
+ * `best_data_id` - Returns the best data identifier used for model training.
453
+ * `best_model` - Returns the best trained model.
454
+ * `best_model_id` - Returns the identifier for best model.
455
+ * `best_params_` - Returns the best set of hyperparameter.
456
+ * `best_sampled_data_` - Returns the best sampled data used to train the best model.
457
+ * `best_score_` - Returns the best trained model score.
458
+ * `model_stats` - Returns the model evaluation reports.
459
+ * `models` - Returns the metadata of all the models.
460
+
461
+ * ###### teradataml: Analytic Functions
462
+ teradataml currently has different functions to generate a model, predict, transform and evaluate. All these functions are needed to be invoked individually, i.e., predict(), evaluate(), transform() cannot be invoked using the model trainer function output. Enhancement done to this feature now enables user to invoke these functions as methods of the model trainer function. Below is the list of functions, updated with this enhancement:
463
+ * Analytics Database Analytic Functions
464
+ * `BincodeFit()` - Supports `transform()` method.
465
+ * `DecisionForest()` - Supports `predict()`, `evaluate()` methods.
466
+ * `Fit()` - Supports `transform()` method.
467
+ * `GLM()` - Supports `predict()`, `evaluate()` methods.
468
+ * `GLMPerSegment()` - Supports `predict()`, `evaluate()` methods.
469
+ * `KMeans()` - Supports `predict()` method.
470
+ * `KNN()` - Supports `predict()`, `evaluate()` methods.
471
+ * `NaiveBayesTextClassifierTrainer()` - Supports `predict()`, `evaluate()` methods.
472
+ * `NonLinearCombineFit()` - Supports `transform()` method.
473
+ * `OneClassSVM()` - Supports `predict()` method.
474
+ * `OneHotEncodingFit()` - Supports `transform()` method.
475
+ * `OrdinalEncodingFit()` - Supports `transform()` method.
476
+ * `OutlierFilterFit()` - Supports `transform()` method.
477
+ * `PolynomialFeaturesFit()` - Supports `transform()` method.
478
+ * `RandomProjectionFit()` - Supports `transform()` method.
479
+ * `RowNormalizeFit()` - Supports `transform()` method.
480
+ * `ScaleFit()` - Supports `transform()` method.
481
+ * `SimpleImputeFit()` - Supports `transform()` method.
482
+ * `SVM()` - Supports `predict()`, `evaluate()` methods.
483
+ * `TargetEncodingFit()` - Supports `transform()` method.
484
+ * `XGBoost()` - Supports `predict()`, `evaluate()` methods.
485
+ * Time Series Analytic (UAF) Functions
486
+ * `ArimaEstimate()` - Supports `forecast()`, `validate()` methods.
487
+ * `DFFT()` - Supports `convolve()`, `inverse()` methods.
488
+ * `IDFFT()` - Supports `inverse()` method.
489
+ * `DFFT2()` - Supports `convolve()`, `inverse()` methods.
490
+ * `IDFFT2()` - Supports `inverse()` method.
491
+ * `DIFF()` - Supports `inverse()` method.
492
+ * `UNDIFF()` - Supports `inverse()` method.
493
+ * `SeasonalNormalize()` - Supports `inverse()` method.
494
+
495
+ * ###### teradataml: DataFrame
496
+ * New Functions
497
+ * `DataFrame.plot()` - Generates the below type of plots on teradataml DataFrame.
498
+ * line - Generates line plot.
499
+ * bar - Generates bar plot.
500
+ * scatter - Generates scatter plot.
501
+ * corr - Generates correlation plot.
502
+ * wiggle - Generates a wiggle plot.
503
+ * mesh - Generates a mesh plot.
504
+ * `DataFrame.itertuples()` - iterate over teradataml DataFrame rows as namedtuples or list.
505
+ * ###### teradataml: GeoDataFrame
506
+ * New Functions
507
+ * `GeoDataFrame.plot()` - Generate the below type of plots on teradataml GeoDataFrame.
508
+ * line - Generates line plot.
509
+ * bar - Generates bar plot.
510
+ * scatter - Generates scatter plot.
511
+ * corr - Generates correlation plot.
512
+ * wiggle - Generates a wiggle plot.
513
+ * mesh - Generates a mesh plot.
514
+ * geometry - Generates plot on geospatial data.
515
+ * Plot:
516
+ * `Axis` - Genertes the axis for plot.
517
+ * `Figure` - Generates the figure for plot.
518
+ * `subplots` - Helps in generating multiple plots on a single `Figure`.
519
+ * Bring Your Own Model (BYOM) Function:
520
+ * `DataikuPredict` - Score the data in Vantage using the model trained externally in Dataiku UI and stored in Vantage.
521
+ * `async_run_status()` - Function to check the status of asynchronous run(s) using unique run id(s).
522
+
523
+ * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
524
+ * _Regular Arithmetic Functions_
525
+ * `DataFrameColumn.abs()` - Computes the absolute value.
526
+ * `DataFrameColumn.ceil()` - Returns the ceiling value of the column.
527
+ * `DataFrameColumn.ceiling()` - It is an alias for `DataFrameColumn.ceil()` function.
528
+ * `DataFrameColumn.degrees()` - Converts radians value from the column to degrees.
529
+ * `DataFrameColumn.exp()` - Raises e (the base of natural logarithms) to the power of the value in the column, where e = 2.71828182845905.
530
+ * `DataFrameColumn.floor()` - Returns the largest integer equal to or less than the value in the column.
531
+ * `DataFrameColumn.ln()` - Computes the natural logarithm of values in column.
532
+ * `DataFrameColumn.log10()` - Computes the base 10 logarithm.
533
+ * `DataFrameColumn.mod()` - Returns the modulus of the column.
534
+ * `DataFrameColumn.pmod()` - It is an alias for `DataFrameColumn.mod()` function.
535
+ * `DataFrameColumn.nullifzero()` - Converts data from zero to null to avoid problems with division by zero.
536
+ * `DataFrameColumn.pow()` - Computes the power of the column raised to expression or constant.
537
+ * `DataFrameColumn.power()` - It is an alias for `DataFrameColumn.pow()` function.
538
+ * `DataFrameColumn.radians()` - Converts degree value from the column to radians.
539
+ * `DataFrameColumn.round()` - Returns the rounded off value.
540
+ * `DataFrameColumn.sign()` - Returns the sign.
541
+ * `DataFrameColumn.signum()` - It is an alias for `DataFrameColumn.sign()` function.
542
+ * `DataFrameColumn.sqrt()` - Computes the square root of values in the column.
543
+ * `DataFrameColumn.trunc()` - Provides the truncated value of columns.
544
+ * `DataFrameColumn.width_bucket()` - Returns the number of the partition to which column is assigned.
545
+ * `DataFrameColumn.zeroifnull()` - Converts data from null to zero to avoid problems with null.
546
+ * _Trigonometric Functions_
547
+ * `DataFrameColumn.acos()` - Returns the arc-cosine value.
548
+ * `DataFrameColumn.asin()` - Returns the arc-sine value.
549
+ * `DataFrameColumn.atan()` - Returns the arc-tangent value.
550
+ * `DataFrameColumn.atan2()` - Returns the arc-tangent value based on x and y coordinates.
551
+ * `DataFrameColumn.cos()` - Returns the cosine value.
552
+ * `DataFrameColumn.sin()` - Returns the sine value.
553
+ * `DataFrameColumn.tan()` - Returns the tangent value.
554
+ * _Hyperbolic Functions_
555
+ * `DataFrameColumn.acosh()` - Returns the inverse hyperbolic cosine value.
556
+ * `DataFrameColumn.asinh()` - Returns the inverse hyperbolic sine value.
557
+ * `DataFrameColumn.atanh()` - Returns the inverse hyperbolic tangent value.
558
+ * `DataFrameColumn.cosh()` - Returns the hyperbolic cosine value.
559
+ * `DataFrameColumn.sinh()` - Returns the hyperbolic sine value
560
+ * `DataFrameColumn.tanh()` - Returns the hyperbolic tangent value.
561
+ * _String Functions_
562
+ * `DataFrameColumn.ascii()` - Returns the decimal representation of the first character in column.
563
+ * `DataFrameColumn.char2hexint()` - Returns the hexadecimal representation for a character string in a column.
564
+ * `DataFrameColumn.chr()` - Returns the Latin ASCII character of a given a numeric code value in column.
565
+ * `DataFrameColumn.char()` - It is an alias for `DataFrameColumn.chr()` function.
566
+ * `DataFrameColumn.character_length()` - Returns the number of characters in the column.
567
+ * `DataFrameColumn.char_length()` - It is an alias for `DataFrameColumn.character_length()` function.
568
+ * `DataFrameColumn.edit_distance()` - Returns the minimum number of edit operations required to
569
+ transform string in a column into string specified in argument.
570
+ * `DataFrameColumn.index()` - Returns the position of a string in a column where string specified in argument starts.
571
+ * `DataFrameColumn.initcap()` - Modifies a string column and returns the string with the first character
572
+ of each word in uppercase.
573
+ * `DataFrameColumn.instr()` - Searches the string in a column for occurrences of search string passed as argument.
574
+ * `DataFrameColumn.lcase()` - Returns a character string identical to string values in column,
575
+ with all uppercase letters replaced with their lowercase equivalents.
576
+ * `DataFrameColumn.left()` - Truncates string in a column to a specified number of characters desired from
577
+ the left side of the string.
578
+ * `DataFrameColumn.length()` - It is an alias for `DataFrameColumn.character_length()` function.
579
+ * `DataFrameColumn.levenshtein()` - It is an alias for `DataFrameColumn.edit_distance()` function.
580
+ * `DataFrameColumn.locate()` - Returns the position of the first occurrence of a string in a column within
581
+ string in argument.
582
+ * `DataFrameColumn.lower()` - It is an alias for `DataFrameColumn.character_lcase()` function.
583
+ * `DataFrameColumn.lpad()` - Returns the string in a column padded to the left with the characters specified
584
+ in argument so that the resulting string has length specified in argument.
585
+ * `DataFrameColumn.ltrim()` - Returns the string in a column, with its left-most characters removed up
586
+ to the first character that is not in the string specified in argument.
587
+ * `DataFrameColumn.ngram()` - Returns the number of n-gram matches between string in a column,
588
+ and string specified in argument.
589
+ * `DataFrameColumn.nvp()` - Extracts the value of a name-value pair where the name in the pair matches
590
+ the name and the number of the occurrence specified.
591
+ * `DataFrameColumn.oreplace()` - Replaces every occurrence of search string in the column.
592
+ * `DataFrameColumn.otranslate()` - Returns string in a column with every occurrence of each character in
593
+ string in argument replaced with the corresponding character in another argument.
594
+ * `DataFrameColumn.replace()` - It is an alias for `DataFrameColumn.oreplace()` function.
595
+ * `DataFrameColumn.reverse()` - Returns the reverse of string in column.
596
+ * `DataFrameColumn.right()` - Truncates input string to a specified number of characters desired from
597
+ the right side of the string.
598
+ * `DataFrameColumn.rpad()` - Returns the string in a column padded to the right with the characters specified
599
+ in argument so the resulting string has length specified in argument.
600
+ * `DataFrameColumn.rtrim()` - Returns the string in column, with its right-most characters removed up
601
+ to the first character that is not in the string specified in argument.
602
+ * `DataFrameColumn.soundex()` - Returns a character string that represents the Soundex code for
603
+ string in a column.
604
+ * `DataFrameColumn.string_cs()` - Returns a heuristically derived integer value that can be used to determine
605
+ which KANJI1-compatible client character set was used to encode string in a column.
606
+ * `DataFrameColumn.translate()` - It is an alias for `DataFrameColumn.otranslate()` function.
607
+ * `DataFrameColumn.upper()` - Returns a character string with all lowercase letters in a column replaced
608
+ with their uppercase equivalents.
609
+
610
+ * ##### teradataml Options
611
+ * Configuration Options
612
+ * `configure.indb_install_location`
613
+ Specifies the installation location of In-DB Python package.
614
+
615
+ * ##### Updates
616
+ * Open Analytics Framework (OpenAF) APIs:
617
+ * `set_auth_token()`
618
+ * `set_auth_token()` does not accept username and password anymore. Instead, function opens up a browser session and user should authenticate in browser.
619
+ * After token expiry, teradataml will open a browser and user needs to authenticate again.
620
+ * If client machine does not have browser, then user should copy the URL posted by teradataml and authenticate themselves.
621
+ * Security fixes - `auth_token` is not set or retrieved from the `configure` option anymore.
622
+ * Manage all user environments.
623
+ * `create_env()` - supports creation of R environment.
624
+ * `remove_env()` - Supports removal of remote R environment.
625
+ * `remove_all_envs()` - Supports removal of all remote R environments.
626
+ * `remove_env()` and `remove_all_envs()` supports asynchronous call.
627
+ * UserEnv Class Supports managing of R remote environments.
628
+ * Properties:
629
+ * `libs` - Supports listing of libraries in R remote environment.
630
+ * Methods:
631
+ * `install_lib()` - Supports installing of libraries in remote R environment.
632
+ * `uninstall_lib()` - Supports uninstalling of libraries in remote R environment.
633
+ * `update_lib()` - Supports updating of libraries in remote R environment.
634
+ * Unbounded Array Framework (UAF) Functions:
635
+ * `ArimaEstimate()`
636
+ * Added support for `CSS` algorithm via `algorithm` argument.
637
+
638
+ * ##### Bug Fixes
639
+ * Installation location of In-DB 2.0.0 package is changed. Script() will now work with both 2.0.0 and previous version.
640
+
641
+ ## Release Notes:
642
+ #### teradataml 17.20.00.04
643
+ * ##### New Features/Functionality
644
+ * teradataml is now compatible with SQLAlchemy 2.0.X
645
+ * **Important notes** when user has sqlalchemy version >= 2.0:
646
+ * Users will not be able to run the `execute()` method on SQLAlchemy engine object returned by
647
+ `get_context()` and `create_context()` teradataml functions. This is due to the SQLAlchemy has
648
+ removed the support for `execute()` method on the engine object. Thus, user scripts where
649
+ `get_context().execute()` and `create_context().execute()`, is used, Teradata recommends to
650
+ replace those with either `execute_sql()` function exposed by teradataml or `exec_driver_sql()`
651
+ method on the `Connection` object returned by `get_connection()` function in teradataml.
652
+ * Now `get_connection().execute()` accepts only executable sqlalchemy object. Refer to
653
+ `sqlalchemy.engine.base.execute()` for more details.
654
+ * Teradata recommends to use either `execute_sql()` function exposed by teradataml or
655
+ `exec_driver_sql()` method on the `Connection` object returned by `get_connection()`
656
+ function in teradataml, in such cases.
657
+ * New utility function `execute_sql()` is added to execute the SQL.
658
+ * Extending compatibility for MAC with ARM processors.
659
+ * Added support for floor division (//) between two teradataml DataFrame Columns.
660
+ * Analytics Database Analytic Functions:
661
+ * `GLMPerSegment()`
662
+ * `GLMPredictPerSegment()`
663
+ * `OneClassSVM()`
664
+ * `OneClassSVMPredict()`
665
+ * `SVM()`
666
+ * `SVMPredict()`
667
+ * `TargetEncodingFit()`
668
+ * `TargetEncodingTransform()`
669
+ * `TrainTestSplit()`
670
+ * `WordEmbeddings()`
671
+ * `XGBoost()`
672
+ * `XGBoostPredict()`
673
+
674
+ * ###### teradataml Options
675
+ * Display Options
676
+ * `display.geometry_column_length`
677
+ Option to display the default length of geometry column in GeoDataFrame.
678
+
679
+ * ##### Updates
680
+ * `set_auth_token()` function can generate the client id automatically based on org_id when user do not specify it.
681
+ * Analytics Database Analytic Functions:
682
+ * `ColumnTransformer()`
683
+ * Does not allow list values for arguments - `onehotencoding_fit_data` and `ordinalencoding_fit_data`.
684
+ * `OrdidnalEncodingFit()`
685
+ * New arguments added - `category_data`, `target_column_names`, `categories_column`, `ordinal_values_column`.
686
+ * Allows the list of values for arguments - `target_column`, `start_value`, `default_value`.
687
+ * `OneHotEncodingFit()`
688
+ * New arguments added - `category_data`, `approach`, `target_columns`, `categories_column`, `category_counts`.
689
+ * Allows the list of values for arguments - `target_column`, `other_column`.
690
+
691
+ * ##### Bug Fixes
692
+ * `DataFrame.sample()` method output is now deterministic.
693
+ * `copy_to_sql()` now preserves the rows of the table even when the view content is copied to the same table name.
694
+ * `list_user_envs()` does not raise warning when no user environments found.
695
+
696
+ ## Release Notes:
697
+ #### teradataml 17.20.00.03
698
+
699
+ * ##### Updates
700
+ * DataFrame.join
701
+ * New arguments `lprefix` and `rprefix` added.
702
+ * Behavior of arguments `lsuffix` and `rsuffix` will be changed in future, use new arguments instead.
703
+ * New and old affix arguments can now be used independently.
704
+ * Analytic functions can be imported regardless of context creation.
705
+ Import after create context constraint is now removed.
706
+ * `ReadNOS` and `WriteNOS` now accept dictionary value for `authorization` and `row_format` arguments.
707
+ * `WriteNOS` supports writing CSV files to external store.
708
+ * Following model cataloging APIs will be deprecated in future:
709
+ * describe_model
710
+ * delete_model
711
+ * list_models
712
+ * publish_model
713
+ * retrieve_model
714
+ * save_model
715
+
716
+ * ##### Bug Fixes
717
+ * `copy_to_sql()` bug related to NaT value has been fixed.
718
+ * Tooltip on PyCharm IDE now points to SQLE.
719
+ * `value` argument of `FillNa()`, a Vantage Analytic Library function supports special characters.
720
+ * `case` function accepts DataFrame column as value in `whens` argument.
721
+
722
+ ## Release Notes:
723
+ #### teradataml 17.20.00.02
724
+ * ##### New Features/Functionality
725
+ * ###### teradataml: Open Analytics
726
+ * New Functions
727
+ * `set_auth_token()` - Sets the JWT token automatically for using Open AF API's.
728
+
729
+ * ###### teradataml Options
730
+ * Display Options
731
+ * `display.suppress_vantage_runtime_warnings`
732
+ Suppresses the VantageRuntimeWarning raised by teradataml, when set to True.
733
+
734
+ * ##### Updates
735
+ * SimpleImputeFit function arguments `stats_columns` and `stats` are made to be optional.
736
+ * New argument `table_format` is added to ReadNOS().
737
+ * Argument `full_scan` is changed to `scan_pct` in ReadNOS().
738
+
739
+ * ##### Bug Fixes
740
+ * Minor bug fix related to read_csv.
741
+ * APPLY and `DataFrame.apply()` supports hash by and local order by.
742
+ * Output column names are changed for DataFrame.dtypes and DataFrame.tdtypes.
743
+
744
+ ## Release Notes:
745
+ #### teradataml 17.20.00.01
746
+ * ##### New Features/Functionality
747
+ * ###### teradataml: DataFrame
748
+ * New Functions
749
+ * `DataFrame.pivot()` - Rotate data from rows into columns to create easy-to-read DataFrames.
750
+ * `DataFrame.unpivot()` - Rotate data from columns into rows to create easy-to-read DataFrames.
751
+ * `DataFrame.drop_duplicate()` - Drop duplicate rows from teradataml DataFrame.
752
+ * New properties
753
+ * `Dataframe.is_art` - Check whether teradataml DataFrame is created on an Analytic Result Table, i.e., ART table or not.
754
+
755
+ * ###### teradataml: Unbounded Array Framework (UAF) Functions:
756
+ * New Functions
757
+ * New Functions Supported on Database Versions: 17.20.x.x
758
+ * MODEL PREPARATION AND PARAMETER ESTIMATION functions:
759
+ 1. `ACF()`
760
+ 2. `ArimaEstimate()`
761
+ 3. `ArimaValidate()`
762
+ 4. `DIFF()`
763
+ 5. `LinearRegr()`
764
+ 6. `MultivarRegr()`
765
+ 7. `PACF()`
766
+ 8. `PowerTransform()`
767
+ 9. `SeasonalNormalize()`
768
+ 10. `Smoothma()`
769
+ 11. `UNDIFF()`
770
+ 12. `Unnormalize()`
771
+ * SERIES FORECASTING functions:
772
+ 1. `ArimaForecast()`
773
+ 2. `DTW()`
774
+ 3. `HoltWintersForecaster()`
775
+ 4. `MAMean()`
776
+ 5. `SimpleExp()`
777
+ * DATA PREPARATION functions:
778
+ 1. `BinaryMatrixOp()`
779
+ 2. `BinarySeriesOp()`
780
+ 3. `GenseriesFormula()`
781
+ 4. `MatrixMultiply()`
782
+ 5. `Resample()`
783
+ * DIAGNOSTIC STATISTICAL TEST functions:
784
+ 1. `BreuschGodfrey()`
785
+ 2. `BreuschPaganGodfrey()`
786
+ 3. `CumulPeriodogram()`
787
+ 4. `DickeyFuller()`
788
+ 5. `DurbinWatson()`
789
+ 6. `FitMetrics()`
790
+ 7. `GoldfeldQuandt()`
791
+ 8. `Portman()`
792
+ 9. `SelectionCriteria()`
793
+ 10. `SignifPeriodicities()`
794
+ 11. `SignifResidmean()`
795
+ 12. `WhitesGeneral()`
796
+ * TEMPORAL AND SPATIAL functions:
797
+ 1. `Convolve()`
798
+ 2. `Convolve2()`
799
+ 3. `DFFT()`
800
+ 4. `DFFT2()`
801
+ 5. `DFFT2Conv()`
802
+ 6. `DFFTConv()`
803
+ 7. `GenseriesSinusoids()`
804
+ 8. `IDFFT()`
805
+ 9. `IDFFT2()`
806
+ 10. `LineSpec()`
807
+ 11. `PowerSpec()`
808
+ * GENERAL UTILITY functions:
809
+ 1. `ExtractResults()`
810
+ 2. `InputValidator()`
811
+ 3. `MInfo()`
812
+ 4. `SInfo()`
813
+ 5. `TrackingOp()`
814
+
815
+ * New Features: Inputs to Unbounded Array Framework (UAF) functions
816
+ * `TDAnalyticResult()` - Allows to prepare function output generated by UAF functions to be passed.
817
+ * `TDGenSeries()` - Allows to generate a series, that can be passed to a UAF function.
818
+ * `TDMatrix()` - Represents a Matrix in time series, that can be created from a teradataml DataFrame.
819
+ * `TDSeries()` - Represents a Series in time series, that can be created from a teradataml DataFrame.
820
+
821
+ * ##### Updates
822
+ * Native Object Store (NOS) functions support authorization by specifying authorization object.
823
+ * `display_analytic_functions()` categorizes the analytic functions based on function type.
824
+ * ColumnTransformer accepts multiple values for arguments nonlinearcombine_fit_data,
825
+ onehotencoding_fit_data, ordinalencoding_fit_data.
826
+
827
+ * ##### Bug Fixes
828
+ * Redundant warnings thrown by teradataml are suppressed.
829
+ * OpenAF supports when context is created with JWT Token.
830
+ * New argument "match_column_order" added to copy_to_sql, that allows DataFrame loading with any column order.
831
+ * `copy_to_sql` updated to map data type timezone(tzinfo) to TIMESTAMP(timezone=True), instead of VARCHAR.
832
+ * Improved performance for DataFrame.sum and DataFrameColumn.sum functions.
833
+
834
+ ## Release Notes:
835
+ #### teradataml 17.20.00.00
836
+ * ##### New Features/Functionality
837
+ * ###### teradataml: Analytics Database Analytic Functions
838
+ * _New Functions_
839
+ * ###### New Functions Supported on Database Versions: 17.20.x.x
840
+ * `ANOVA()`​
841
+ * `ClassificationEvaluator()`​
842
+ * `ColumnTransformer()`​
843
+ * `DecisionForest()`
844
+ * `GLM​()`
845
+ * `GetFutileColumns()`
846
+ * `KMeans()`​
847
+ * `KMeansPredict()`​​
848
+ * `NaiveBayesTextClassifierTrainer()`​
849
+ * `NonLinearCombineFit()`​
850
+ * `NonLinearCombineTransform()`​
851
+ * `OrdinalEncodingFit​()`
852
+ * `OrdinalEncodingTransform()`​
853
+ * `RandomProjectionComponents​()`
854
+ * `RandomProjectionFit​()`
855
+ * `RandomProjectionTransform()`​
856
+ * `RegressionEvaluator​()`
857
+ * `ROC​()`
858
+ * `SentimentExtractor()`​
859
+ * `Silhouette​()`
860
+ * `TDGLMPredict​()`
861
+ * `TextParser​()`
862
+ * `VectorDistance()`
863
+ * _Updates_
864
+ * `display_analytic_functions()` categorizes the analytic functions based on function type.
865
+ * Users can provide range value for columns argument.
866
+
867
+ * ###### teradataml: Open Analytics
868
+ * Manage all user environments.
869
+ * `list_base_envs()` - list the available python base versions.​
870
+ * `create_env()` - create a new user environment. ​
871
+ * `get_env()` - get existing user environment.
872
+ * `list_user_envs()` - list the available user environments.​
873
+ * `remove_env()` - delete user environment.​
874
+ * `remove_all_envs()` - delete all the user environments.
875
+ * UserEnv Class – Manage individual user environment.
876
+ * Properties
877
+ * `files` - Get files in user environment.
878
+ * `libs` - Get libraries in user environment.
879
+ * Methods
880
+ * `install_file()` - Install a file in user environment.​
881
+ * `remove_file()` - Remove a file in user environment.​
882
+ * `install_lib()` - Install a library in user environment.​
883
+ * `update_lib()` - Update a library in user environment.​
884
+ * `uninstall_lib()` - Uninstall a library in user environment.​
885
+ * `status()` - Check the status of​
886
+ * file installation​
887
+ * library installation​
888
+ * library update​
889
+ * library uninstallation​
890
+ * `refresh()` - Refresh the environment details in local client.
891
+ * Apply Class – Execute a user script on VantageCloud Lake.​
892
+ * `__init__()` - Instantiate an object of apply for script execution.​
893
+ * `install_file()` - Install a file in user environment.​
894
+ * `remove_file()` - Remove a file in user environment.​
895
+ * `set_data()` Reset data and related arguments.​
896
+ * `execute_script()` – Executes Python script.
897
+
898
+ * ###### teradataml: DataFrame
899
+ * _New Functions_
900
+ * `DataFrame.apply()` - Execute a user defined Python function on VantageLake Cloud.
901
+
902
+ * ###### teradataml: Bring Your Own Model
903
+ * _New Functions_
904
+ * `ONNXPredict()` - Score using model trained externally on ONNX and stored in Vantage.
905
+
906
+ * ###### teradataml: Options
907
+ * _New Functions_
908
+ * set_config_params() New API to set all config params in one go.
909
+ * _New Configuration Options_
910
+ * For Open Analytics support.​
911
+ * ues_url – User Environment Service URL for VantageCloud Lake.​
912
+ * auth_token – Authentication token to connect to VantageCloud Lake.
913
+ * certificate_file – Path to a CA_BUNDLE file or directory with certificates of trusted CAs.
914
+
915
+ * ##### Updates
916
+ * `accumulate` argument is working for `ScaleTransform()`.
917
+ * Following functions have `accumulate` argument added on Database Versions: 17.20.x.x
918
+ * `ConvertTo()`
919
+ * `GetRowsWithoutMissingValues()`
920
+ * `GetRowsWithoutMissingValues()`
921
+ * `OutlierFilterFit()` supports multiple output.
922
+ * For `OutlierFilterFit()` function below arguments are optional in teradataml 17.20.x.x
923
+ * `lower_percentile`
924
+ * `upper_percentile`
925
+ * `outlier_method`
926
+ * `replacement_value`
927
+ * `percentile_method`
928
+ * Analytics Database analytic functions – In line help, i.e., help() for the functions
929
+ is available.​
930
+
931
+ * ##### Bug Fixes
932
+ * Vantage Analytic Library FillNa() function: Now `columns` argument is required.
933
+ * `output_responses` argument in MLE function `DecisionTreePredict()`, does not allow empty string.
934
+ * teradataml closes docker sandbox environment properly.
935
+ * Users can create context using JWT token.
936
+
937
+ #### teradataml 17.10.00.02
938
+ * ##### New Features/Functionality
939
+ * ###### Database Utility
940
+ * `list_td_reserved_keywords()` - Validates if the specified string is Teradata reserved
941
+ keyword or not, else lists down all the Teradata reserved keywords.
942
+
943
+ * ##### Updates
944
+ * ###### DataFrame
945
+ * _Updates_
946
+ * Multiple columns can be selected using slice operator ([]).
947
+
948
+ * ###### Script
949
+ * _Updates_
950
+ * A warning will be raised, when Teradata reserved keyword is used in Script local mode.
951
+
952
+ * ##### Bug Fixes
953
+ * Numeric overflow issue observed for describe(), sum(), csum(), and mean() has been fixed.
954
+ * Error messages are updated for SQLE function arguments accepting multiple datatypes.
955
+ * Error messages are updated for SQLE function arguments volatile and persist arguments when
956
+ non-boolean value is provided.
957
+ * DataFrame sample() method can handle column names with special characters like space, hyphen,
958
+ period etc.
959
+ * In-DB SQLE functions can be loaded for any locale setting.
960
+ * `create_context()` - Password containing special characters requires URL encoding as per
961
+ https://docs.microfocus.com/OMi/10.62/Content/OMi/ExtGuide/ExtApps/URL_encoding.html.
962
+ teradataml has added a fix to take care of the URL encoding of the password while creating a context.
963
+ Also, a new argument is added to give a more control over the URL encoding to be done at the time of context creation.
964
+
965
+ #### teradataml 17.10.00.01
966
+ * ##### New Features/Functionality
967
+ * ###### Geospatial
968
+ The Geospatial feature in teradataml enables data manipulation, exploration and analysis on tables, views, and queries on Teradata Vantage that contains Geospatial data.
969
+ * ###### Geomtery Types
970
+ * Point
971
+ * LineString
972
+ * Polygon
973
+ * MultiPoint
974
+ * MultiLineString
975
+ * MultiPolygon
976
+ * GeometryCollection
977
+ * GeoSequence
978
+ * ###### teradataml GeoDataFrame
979
+ * Properties
980
+ * columns
981
+ * dtypes
982
+ * geometry
983
+ * iloc
984
+ * index
985
+ * loc
986
+ * shape
987
+ * size
988
+ * tdtypes
989
+ * Geospatial Specific Properties
990
+ * ###### Properties for all Types of Geometries
991
+ * boundary
992
+ * centroid
993
+ * convex_hell
994
+ * coord_dim
995
+ * dimension
996
+ * geom_type
997
+ * is_3D
998
+ * is_empty
999
+ * is_simple
1000
+ * is_valid
1001
+ * max_x
1002
+ * max_y
1003
+ * max_z
1004
+ * min_x
1005
+ * min_y
1006
+ * min_z
1007
+ * srid
1008
+ * ###### Properties for Point Geometry
1009
+ * x
1010
+ * y
1011
+ * z
1012
+ * ###### Properties for LineString Geometry
1013
+ * is_closed_3D
1014
+ * is_closed
1015
+ * is_ring
1016
+ * ###### Properties for Polygon Geometry
1017
+ * area
1018
+ * exterior
1019
+ * perimeter
1020
+ * Methods
1021
+ * `__getattr__()`
1022
+ * `__getitem__()`
1023
+ * `__init__()`
1024
+ * `__repr__()`
1025
+ * `assign()`
1026
+ * `concat()`
1027
+ * `count()`
1028
+ * `drop()`
1029
+ * `dropna()`
1030
+ * `filter()`
1031
+ * `from_query()`
1032
+ * `from_table()`
1033
+ * `get()`
1034
+ * `get_values()`
1035
+ * `groupby()`
1036
+ * `head()`
1037
+ * `info()`
1038
+ * `join()`
1039
+ * `keys()`
1040
+ * `merge()`
1041
+ * `sample()`
1042
+ * `select()`
1043
+ * `set_index()`
1044
+ * `show_query()`
1045
+ * `sort()`
1046
+ * `sort_index()`
1047
+ * `squeeze()`
1048
+ * `tail()`
1049
+ * `to_csv()`
1050
+ * `to_pandas()`
1051
+ * `to_sql()`
1052
+ * Geospatial Specific Methods
1053
+ * ###### Methods for All Type of Geometry
1054
+ * `buffer()`
1055
+ * `contains()`
1056
+ * `crosses()`
1057
+ * `difference()`
1058
+ * `disjoint()`
1059
+ * `distance()`
1060
+ * `distance_3D()`
1061
+ * `envelope()`
1062
+ * `geom_equals()`
1063
+ * `intersection()`
1064
+ * `intersects()`
1065
+ * `make_2D()`
1066
+ * `mbb()`
1067
+ * `mbr()`
1068
+ * `overlaps()`
1069
+ * `relates()`
1070
+ * `set_exterior()`
1071
+ * `set_srid()`
1072
+ * `simplify()`
1073
+ * `sym_difference()`
1074
+ * `to_binary()`
1075
+ * `to_text()`
1076
+ * `touches()`
1077
+ * `transform()`
1078
+ * `union()`
1079
+ * `within()`
1080
+ * `wkb_geom_to_sql()`
1081
+ * `wkt_geom_to_sql()`
1082
+ * ###### Methods for Point Geometry
1083
+ * `spherical_buffer()`
1084
+ * `spherical_distance()`
1085
+ * `spheriodal_buffer()`
1086
+ * `spheriodal_distance()`
1087
+ * `set_x()`
1088
+ * `set_y()`
1089
+ * `set_z()`
1090
+ * ###### Methods for LineString Geometry
1091
+ * `end_point()`
1092
+ * `length()`
1093
+ * `length_3D()`
1094
+ * `line_interpolate_point()`
1095
+ * `num_points()`
1096
+ * `point()`
1097
+ * `start_point()`
1098
+ * ###### Methods for Polygon Geometry
1099
+ * `interiors()`
1100
+ * `num_interior_ring()`
1101
+ * `point_on_surface()`
1102
+ * ###### Methods for GeometryCollection Geometry
1103
+ * `geom_component()`
1104
+ * `num_geometry()`
1105
+ * ###### Methods for GeoSequence Geometry
1106
+ * `clip()`
1107
+ * `get_final_timestamp()`
1108
+ * `get_init_timestamp()`
1109
+ * `get_link()`
1110
+ * `get_user_field()`
1111
+ * `get_user_field_count()`
1112
+ * `point_heading()`
1113
+ * `set_link()`
1114
+ * `speed()`
1115
+ * ###### Filtering Functions and Methods
1116
+ * `intersects_mbb()`
1117
+ * `mbb_filter()`
1118
+ * `mbr_filter()`
1119
+ * `within_mbb()`
1120
+ * ###### teradataml GeoDataFrameColumn
1121
+ * Geospatial Specific Properties
1122
+ * ###### Properties for all Types of Geometries
1123
+ * boundary
1124
+ * centroid
1125
+ * convex_hell
1126
+ * coord_dim
1127
+ * dimension
1128
+ * geom_type
1129
+ * is_3D
1130
+ * is_empty
1131
+ * is_simple
1132
+ * is_valid
1133
+ * max_x
1134
+ * max_y
1135
+ * max_z
1136
+ * min_x
1137
+ * min_y
1138
+ * min_z
1139
+ * srid
1140
+ * ###### Properties for Point Geometry
1141
+ * x
1142
+ * y
1143
+ * z
1144
+ * ###### Properties for LineString Geometry
1145
+ * is_closed_3D
1146
+ * is_closed
1147
+ * is_ring
1148
+ * ###### Properties for Polygon Geometry
1149
+ * area
1150
+ * exterior
1151
+ * perimeter
1152
+ * Geospatial Specific Methods
1153
+ * ###### Methods for All Type of Geometry
1154
+ * `buffer()`
1155
+ * `contains()`
1156
+ * `crosses()`
1157
+ * `difference()`
1158
+ * `disjoint()`
1159
+ * `distance()`
1160
+ * `distance_3D()`
1161
+ * `envelope()`
1162
+ * `geom_equals()`
1163
+ * `intersection()`
1164
+ * `intersects()`
1165
+ * `make_2D()`
1166
+ * `mbb()`
1167
+ * `mbr()`
1168
+ * `overlaps()`
1169
+ * `relates()`
1170
+ * `set_exterior()`
1171
+ * `set_srid()`
1172
+ * `simplify()`
1173
+ * `sym_difference()`
1174
+ * `to_binary()`
1175
+ * `to_text()`
1176
+ * `touches()`
1177
+ * `transform()`
1178
+ * `union()`
1179
+ * `within()`
1180
+ * `wkb_geom_to_sql()`
1181
+ * `wkt_geom_to_sql()`
1182
+ * ###### Methods for Point Geometry
1183
+ * `spherical_buffer()`
1184
+ * `spherical_distance()`
1185
+ * `spheriodal_buffer()`
1186
+ * `spheriodal_distance()`
1187
+ * `set_x()`
1188
+ * `set_y()`
1189
+ * `set_z()`
1190
+ * ###### Methods for LineString Geometry
1191
+ * `endpoint()`
1192
+ * `length()`
1193
+ * `length_3D()`
1194
+ * `line_interpolate_point()`
1195
+ * `num_points()`
1196
+ * `point()`
1197
+ * `start_point()`
1198
+ * ###### Methods for Polygon Geometry
1199
+ * `interiors()`
1200
+ * `num_interior_ring()`
1201
+ * `point_on_surface()`
1202
+ * ###### Methods for GeometryCollection Geometry
1203
+ * `geom_component()`
1204
+ * `num_geometry()`
1205
+ * ###### Methods for GeoSequence Geometry
1206
+ * `clip()`
1207
+ * `get_final_timestamp()`
1208
+ * `get_init_timestamp()`
1209
+ * `get_link()`
1210
+ * `get_user_field()`
1211
+ * `get_user_field_count()`
1212
+ * `point_heading()`
1213
+ * `set_link()`
1214
+ * `speed()`
1215
+ * ###### Filtering Functions and Methods
1216
+ * `intersects_mbb()`
1217
+ * `mbb_filter()`
1218
+ * `mbr_filter()`
1219
+ * `within_mbb()`
1220
+
1221
+ * ###### teradataml DataFrame
1222
+ * _New Functions_
1223
+ * `to_csv()`
1224
+
1225
+ * ###### teradataml: SQLE Engine Analytic Functions
1226
+ * _New Functions_
1227
+ * Newly added SQLE functions are accessible only after establishing the connection to Vantage.
1228
+ * `display_analytic_functions()` API displays all the available SQLE Analytic functions based on database version.
1229
+ * ###### Functions Supported on DatabaseVersions: 16.20.x.x, 17.10.x.x, 17.05.x.x
1230
+ * `Antiselect()`
1231
+ * `Attribution()`
1232
+ * `DecisionForestPredict()`
1233
+ * `DecisionTreePredict()`
1234
+ * `GLMPredict()`
1235
+ * `MovingAverage()`
1236
+ * `NaiveBayesPredict()`
1237
+ * `NaiveBayesTextClassifierPredict()`
1238
+ * `NGramSplitter()`
1239
+ * `NPath()`
1240
+ * `Pack()`
1241
+ * `Sessionize()`
1242
+ * `StringSimilarity()`
1243
+ * `SVMParsePredict()`
1244
+ * `Unpack()`
1245
+ * ###### Functions Supported on DatabaseVersions: 17.10.x.x
1246
+ * `Antiselect()`
1247
+ * `Attribution()`
1248
+ * `BincoodeFit()`
1249
+ * `BncodeTransform()`
1250
+ * `CategoricalSummary()`
1251
+ * `ChiSq()`
1252
+ * `ColumnSummary()`
1253
+ * `ConvertTo()`
1254
+ * `DecisionForestPredict()`
1255
+ * `DecisionTreePredict()`
1256
+ * `GLMPredict()`
1257
+ * `FillRowId()`
1258
+ * `FTest()`
1259
+ * `Fit()`
1260
+ * `Transform()`
1261
+ * `GetRowsWithMissingValues()`
1262
+ * `GetRowsWithoutMissingValues()`
1263
+ * `MovingAverage()`
1264
+ * `Histogram()`
1265
+ * `NaiveBayesPredict()`
1266
+ * `NaiveBayesTextClassifierPredict()`
1267
+ * `NGramSplitter()`
1268
+ * `NPath()`
1269
+ * `NumApply()`
1270
+ * `OneHotEncodingFit()`
1271
+ * `OneHotEncodingTransform()`
1272
+ * `OutlierFilterFit()`
1273
+ * `OutlierFilterTransform()`
1274
+ * `Pack()`
1275
+ * `PolynomialFeatuesFit()`
1276
+ * `PolynomialFeatuesTransform()`
1277
+ * `QQNorm()`
1278
+ * `RoundColumns()`
1279
+ * `RowNormalizeFit()`
1280
+ * `RowNormalizeTransform()`
1281
+ * `ScaleFit()`
1282
+ * `ScaleTransform()`
1283
+ * `Sessionize()`
1284
+ * `SimpleImputeFit()`
1285
+ * `SimpleImputeTransform()`
1286
+ * `StrApply()`
1287
+ * `StringSimilarity()`
1288
+ * `SVMParsePredict()`
1289
+ * `UniVariateStatistics()`
1290
+ * `Unpack()`
1291
+ * `WhichMax()`
1292
+ * `WhichMin()`
1293
+ * `ZTest()`
1294
+
1295
+ * ###### teradataml: General Functions
1296
+ * _New Functions_
1297
+ * Data Transfer Utility
1298
+ * `read_csv()`
1299
+
1300
+ * ###### Operators
1301
+ * _New Functions_
1302
+ * Table Operators
1303
+ * `read_nos()`
1304
+ * `write_nos()`
1305
+
1306
+ * ###### teradataml: Bring Your Own Model
1307
+ * _New Functions_
1308
+ * Model Cataloging
1309
+ * `get_license()`
1310
+ * `set_byom_catalog()`
1311
+ * `set_license()`
1312
+
1313
+ * ##### Updates
1314
+ * ###### teradataml: General Functions
1315
+ * Data Transfer Utility
1316
+ * `copy_to_sql()` - New argument "chunksize" added to load data in chunks.
1317
+ * Following Data Transfer Utility Functions updated to specify the number of Teradata sessions to open for data transfer using "open_session" argument:
1318
+ * `fastexport()`
1319
+ * `fastload()`
1320
+ * `to_pandas()`
1321
+
1322
+ * ###### Operators
1323
+ * Following Set Operator Functions updated to work with Geospatial data:
1324
+ * `concat()`
1325
+ * `td_intersect()`
1326
+ * `td_expect()`
1327
+ * `td_minus()`
1328
+
1329
+ * ###### teradataml: Bring Your Own Model
1330
+ * Model cataloging APIs mentioned below are updated to use session level parameters set by `set_byom_catalog()` and `set_license()` such as table name, schema name and license details respectively.
1331
+ * `delete_byom()`
1332
+ * `list_byom()`
1333
+ * `retrieve_byom()`
1334
+ * `save_byom()`
1335
+ * `view_log()` - Allows user to view BYOM logs.
1336
+
1337
+ * ##### Bug Fixes
1338
+ * CS0733758 - `db_python_package_details()` function is fixed to support latest STO release for pip and Python aliases used.
1339
+ * DataFrame `print()` issue related to `Response Row size is greater than the 1MB allowed maximum.` has been fixed to print the data with lot of columns.
1340
+ * New parameter "chunksize" is added to `DataFrame.to_sql()` and `copy_to_sql()` to fix the issue where the function was failing with error - "Request requires too many SPOOL files.". Reducing the chunksize than the default one will result in successful operation.
1341
+ * `remove_context()` is fixed to remove the active connection from database.
1342
+ * Support added to specify the number of Teradata data transfer sessions to open for data transfer using `fastexport()` and `fastload()` functions.
1343
+ * `DataFrame.to_sql()` is fixed to support temporary table when default database differs from the username.
1344
+ * `DataFrame.to_pandas()` now by default support data transfer using regular method. Change is carried out for user to allow the data transfer if utility throttles are configured, i.e., TASM configuration does not support data export using FastExport.
1345
+ * `save_byom()` now notifies if VARCHAR column is trimmed out if data passed to the API is greater than the length of the VARCHAR column.
1346
+ * Standard error can now be captured for `DataFrame.map_row()` and `DataFrame.map_parition()` when executed in LOCAL mode.
1347
+ * Vantage Analytic Library - Underlying SQL can be retrieved using newly added arguments "gen_sql"/"gen_sql_only" for the functions. Query can be viewed with the help `show_query()`.
1348
+ * Documentation example has been fixed for `fastexport()` to show the correct import statement.
1349
+
1350
+
1351
+ #### teradataml 17.00.00.05
1352
+ Fixed [CS0733758] db_python_package_details() fails on recent STO release due to changes in pip and python aliases.
1353
+
1354
+
1355
+ #### teradataml 17.00.00.04
1356
+ * ##### New Features/Functionality
1357
+ * ###### Analytic Functions
1358
+ * Bring Your Own Analytics Functions
1359
+ The BYOM feature in Vantage provides flexibility to score the data in Vantage using external models using following BYOM functions:
1360
+ * `H2OPredict()` - Score using model trained externally in H2O and stored in Vantage.
1361
+ * `PMMLPredict()` - Score using model trained externally in PMML and stored in Vantage.
1362
+ * BYOM Model Catalog APIs
1363
+ * `save_byom()` - Save externally trained models in Teradata Vantage.
1364
+ * `delete_byom()` - Delete a model from the user specified table in Teradata Vantage.
1365
+ * `list_byom()` - List models.
1366
+ * `retrieve_byom()` - Function to retrieve a saved model.
1367
+ * Vantage Analytic Library Functions
1368
+ * _New Functions_
1369
+ * `XmlToHtmlReport()` - Transforms XML output of VAL functions to HTML.
1370
+ * ###### teradataml DataFrame
1371
+ * `DataFrame.window()` - Generates Window object on a teradataml DataFrame to run window aggregate functions.
1372
+ * `DataFrame.csum()` - Returns column-wise cumulative sum for rows in the partition of the dataframe.
1373
+ * `DataFrame.mavg()` - Returns moving average for the current row and the preceding rows.
1374
+ * `DataFrame.mdiff()` - Returns moving difference for the current row and the preceding rows.
1375
+ * `DataFrame.mlinreg()` - Returns moving linear regression for the current row and the preceding rows.
1376
+ * `DataFrame.msum()` - Returns moving sum for the current row and the preceding rows.
1377
+ * _Regular Aggregate Functions_
1378
+ * `DataFrame.corr()` - Returns the Sample Pearson product moment correlation coefficient.
1379
+ * `DataFrame.covar_pop()` - Returns the population covariance.
1380
+ * `DataFrame.covar_samp()` - Returns the sample covariance.
1381
+ * `DataFrame.regr_avgx()` - Returns the mean of the independent variable.
1382
+ * `DataFrame.regr_avgy()` - Returns the mean of the dependent variable.
1383
+ * `DataFrame.regr_count()` - Returns the count of the dependent and independent variable arguments.
1384
+ * `DataFrame.rege_intercept()` - Returns the intercept of the univariate linear regression line.
1385
+ * `DataFrame.regr_r2()` - Returns the coefficient of determination.
1386
+ * `DataFrame.regr_slope()` - Returns the slope of the univariate linear regression line through.
1387
+ * `DataFrame.regr_sxx()` - Returns the sum of the squares of the independent variable expression.
1388
+ * `DataFrame.regr_sxy()` - Returns the sum of the products of the independent variable and the dependent variable.
1389
+ * `DataFrame.regr_syy()` - Returns the sum of the squares of the dependent variable expression.
1390
+ * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
1391
+ * `ColumnExpression.window()` - Generates Window object on a teradataml DataFrameColumn to run window aggregate functions.
1392
+ * `ColumnExpression.desc()` - Sorts ColumnExpression in descending order.
1393
+ * `ColumnExpression.asc()` - Sorts ColumnExpression in ascending order.
1394
+ * `ColumnExpression.distinct()` - Removes duplicate value from ColumnExpression.
1395
+ * _Regular Aggregate Functions_
1396
+ * `ColumnExpression.corr()` - Returns the Sample Pearson product moment correlation coefficient.
1397
+ * `ColumnExpression.count()` - Returns the column-wise count.
1398
+ * `ColumnExpression.covar_pop()` - Returns the population covariance.
1399
+ * `ColumnExpression.covar_samp()` - Returns the sample covariance.
1400
+ * `ColumnExpression.kurtosis()` - Returns kurtosis value for a column.
1401
+ * `ColumnExpression.median()` - Returns column-wise median value.
1402
+ * `ColumnExpression.max()` - Returns the column-wise max value.
1403
+ * `ColumnExpression.mean()` - Returns the column-wise average value.
1404
+ * `ColumnExpression.min()` - Returns the column-wise min value.
1405
+ * `ColumnExpression.regr_avgx()` - Returns the mean of the independent variable.
1406
+ * `ColumnExpression.regr_avgy()` - Returns the mean of the dependent variable.
1407
+ * `ColumnExpression.regr_count()` - Returns the count of the dependent and independent variable arguments.
1408
+ * `ColumnExpression.rege_intercept()` - Returns the intercept of the univariate linear regression line.
1409
+ * `ColumnExpression.regr_r2()` - Returns the coefficient of determination arguments.
1410
+ * `ColumnExpression.regr_slope()` - Returns the slope of the univariate linear regression line.
1411
+ * `ColumnExpression.regr_sxx()` - Returns the sum of the squares of the independent variable expression.
1412
+ * `ColumnExpression.regr_sxy()` - Returns the sum of the products of the independent variable and the dependent variable.
1413
+ * `ColumnExpression.regr_syy()` - Returns the sum of the squares of the dependent variable expression.
1414
+ * `ColumnExpression.skew()` - Returns skew value for a column.
1415
+ * `ColumnExpression.std()` - Returns the column-wise population/sample standard deviation.
1416
+ * `ColumnExpression.sum()` - Returns the column-wise sum.
1417
+ * `ColumnExpression.var()` - Returns the column-wise population/sample variance.
1418
+ * `ColumnExpression.percentile()` - Returns the column-wise percentile.
1419
+ * ###### teradataml Window - Window Aggregate Functions
1420
+ Following set of _Window Aggregate Functions_ return the results over a specified window which can be of any type:
1421
+ * Cumulative/Expanding window
1422
+ * Moving/Rolling window
1423
+ * Contracting/Remaining window
1424
+ * Grouping window
1425
+ _Window Aggregate Functions_
1426
+ * `Window.corr()` - Returns the Sample Pearson product moment correlation coefficient.
1427
+ * `Window.count()` - Returns the count.
1428
+ * `Window.covar_pop()` - Returns the population covariance.
1429
+ * `Window.covar_samp()` - Returns the sample covariance.
1430
+ * `Window.cume_dist()` - Returns the cumulative distribution of values.
1431
+ * `Window.dense_Rank()` - Returns the ordered ranking of all the rows.
1432
+ * `Window.first_value()` - Returns the first value of an ordered set of values.
1433
+ * `Window.lag()` - Returns data from the row preceding the current row at a specified offset value.
1434
+ * `Window.last_value()` - Returns the last value of an ordered set of values.
1435
+ * `Window.lead()` - Returns data from the row following the current row at a specified offset value.
1436
+ * `Window.max()` - Returns the column-wise max value.
1437
+ * `Window.mean()` - Returns the column-wise average value.
1438
+ * `Window.min()` - Returns the column-wise min value.
1439
+ * `Window.percent_rank()` - Returns the relative rank of all the rows.
1440
+ * `Window.rank()` - Returns the rank (1 … n) of all the rows.
1441
+ * `Window.regr_avgx()` - Returns the mean of the independent variable arguments.
1442
+ * `Window.regr_avgy()` - Returns the mean of the dependent variable arguments.
1443
+ * `Window.regr_count()` - Returns the count of the dependent and independent variable arguments.
1444
+ * `Window.rege_intercept()` - Returns the intercept of the univariate linear regression line arguments.
1445
+ * `Window.regr_r2()` - Returns the coefficient of determination arguments.
1446
+ * `Window.regr_slope()` - Returns the slope of the univariate linear regression line.
1447
+ * `Window.regr_sxx()` - Returns the sum of the squares of the independent variable expression.
1448
+ * `Window.regr_sxy()` - Returns the sum of the products of the independent variable and the dependent variable.
1449
+ * `Window.regr_syy()` - Returns the sum of the squares of the dependent variable expression.
1450
+ * `Window.row_number()` - Returns the sequential row number.
1451
+ * `Window.std()` - Returns the column-wise population/sample standard deviation.
1452
+ * `Window.sum()` - Returns the column-wise sum.
1453
+ * `Window.var()` - Returns the column-wise population/sample variance.
1454
+ * ###### General functions
1455
+ * _New functions_
1456
+ * `fastexport()` - Exports teradataml DataFrame to Pandas DataFrame using FastExport data transfer protocol.
1457
+ * ###### teradataml Options
1458
+ * Display Options
1459
+ * `display.blob_length`
1460
+ Specifies default display length of BLOB column in teradataml DataFrame.
1461
+ * Configuration Options
1462
+ * `configure.temp_table_database`
1463
+ Specifies database name for storing the tables created internally.
1464
+ * `configure.temp_view_database`
1465
+ Specifies database name for storing the views created internally.
1466
+ * `configure.byom_install_location`
1467
+ Specifies the install location for the BYOM functions.
1468
+ * `configure.val_install_location`
1469
+ Specifies the install location for the Vantage Analytic Library functions.
1470
+ * ##### Updates
1471
+ * ###### teradataml DataFrame
1472
+ * `to_pandas()` -
1473
+ * Support added to transfer data to Pandas DataFrame using fastexport protocol improving the performance.
1474
+ * Support added for other arguments similar to Pandas `read_sql()`:
1475
+ * `coerce_float`
1476
+ * `parse_dates`
1477
+ * ###### Analytic functions
1478
+ * Vantage Analytic Library Functions
1479
+ * Support added to accept datetime.date object for literals/values in
1480
+ following transformation functions:
1481
+ * `FillNa()`
1482
+ * `Binning()`
1483
+ * `OneHotEncoder()`
1484
+ * `LabelEncoder()`
1485
+ * All transformation functions now supports accepting
1486
+ teradatasqlalchemy datatypes as input to "datatype" argument for
1487
+ casting the result.
1488
+ * ##### Bug Fixes.
1489
+ * CS0249633 - Support added for teradataml to work with user/database/tablename
1490
+ containing period (.).
1491
+ * CS0086594 - Use of dbc.tablesvx versus dbc.tablesvx in teradatasqlalchemy.
1492
+ * IPython integration to print the teradataml DataFrames in pretty format.
1493
+ * teradataml DataFrame APIs now support column names same as that of Teradata
1494
+ reserved keywords.
1495
+ * Issue has been fixed for duplicate rows being loaded via teradataml
1496
+ fastload() API.
1497
+ * VAL - Empty string now can be passed as input for recoding values using
1498
+ LabelEncoder.
1499
+ * teradataml extension with SQLAlchemy functions:
1500
+ * mod() function is fixed to return correct datatype.
1501
+ * sum() function is fixed to return correct datatype.
1502
+
1503
+
1504
+ #### teradataml 17.00.00.03
1505
+ - New release of SQLAlchemy1.4.x introduced backward compatibility issue. A fix has been carried out so that teradataml can support latest SQLAlchemy changes.
1506
+ - Other minor bug fixes.
1507
+
1508
+ #### teradataml 17.00.00.02
1509
+ Fixed the internal library load issue related to the GCC version discrepancies on CentOS platform.
1510
+
1511
+ #### teradataml 17.00.00.01
1512
+ * ##### New Features/Functionality
1513
+ * ###### Analytic Functions
1514
+ * Vantage Analytic Library
1515
+ teradataml now supports executing analytic functions offered by Vantage Analytic Library.
1516
+ These functions are available via new 'valib' sub-package of teradataml.
1517
+ Following functions are added as part of this:
1518
+ * Association Rules:
1519
+ * `Association()`
1520
+ * Descriptive Statistics:
1521
+ * `AdaptiveHistogram()`
1522
+ * `Explore()`
1523
+ * `Frequency()`
1524
+ * `Histogram()`
1525
+ * `Overlaps()`
1526
+ * `Statistics()`
1527
+ * `TextAnalyzer()`
1528
+ * `Values()`
1529
+ * Decision Tree:
1530
+ * `DecisionTree()`
1531
+ * `DecisionTreePredict()`
1532
+ * `DecisionTreeEvaluator()`
1533
+ * Fast K-Means Clustering:
1534
+ * `KMeans()`
1535
+ * `KMeansPredict()`
1536
+ * Linear Regression:
1537
+ * `LinReg()`
1538
+ * `LinRegPredict()`
1539
+ * Logistic Regression:
1540
+ * `LogReg()`
1541
+ * `LogRegPredict()`
1542
+ * `LogRegEvaluator()`
1543
+ * Factor Analysis:
1544
+ * `PCA()`
1545
+ * `PCAPredict()`
1546
+ * `PCAEvaluator()`
1547
+ * Matrix Building:
1548
+ * `Matrix()`
1549
+ * Statistical Tests:
1550
+ * `BinomialTest()`
1551
+ * `ChiSquareTest()`
1552
+ * `KSTest()`
1553
+ * `ParametricTest()`
1554
+ * `RankTest()`
1555
+ * Variable Transformation:
1556
+ * `Transform()`
1557
+ * Transformation Techniques supported for variable transformation:
1558
+ * `Binning()` - Perform bin coding to replaces continuous numeric column with a
1559
+ categorical one to produce ordinal values.
1560
+ * `Derive()` - Perform free-form transformation done using arithmetic formula.
1561
+ * `FillNa()` - Perform missing value/null replacement transformations.
1562
+ * `LabelEncoder()` - Re-express categorical column values into a new coding scheme.
1563
+ * `MinMaxScalar()` - Rescale data limiting the upper and lower boundaries.
1564
+ * `OneHotEncoder()` - Re-express a categorical data element as one or more
1565
+ numeric data elements, creating a binary numeric field for each
1566
+ categorical data value.
1567
+ * `Retain()` - Copy one or more columns into the final analytic data set.
1568
+ * `Sigmoid()` - Rescale data using sigmoid or s-shaped functions.
1569
+ * `ZScore()` - Rescale data using Z-Score values.
1570
+ * ML Engine Functions (mle)
1571
+ * Correlation2
1572
+ * NaiveBayesTextClassifier2
1573
+ * ###### DataFrame
1574
+ * _New Functions_
1575
+ * `DataFrame.map_row()` - Function to apply a user defined function to each row in the
1576
+ teradataml DataFrame.
1577
+ * `DataFrame.map_partition()` - Function to apply a user defined function to a group or
1578
+ partition of rows in the teradataml DataFrame.
1579
+ * _New Property_
1580
+ * `DataFrame.tdtypes` - Get the teradataml DataFrame metadata containing column names and
1581
+ corresponding teradatasqlalchemy types.
1582
+ * ###### General functions
1583
+ * _New functions_
1584
+ * Database Utility Functions
1585
+ * `db_python_package_details()` - Lists the details of Python packages installed on Vantage.
1586
+ * General Utility Functions
1587
+ * `print_options()`
1588
+ * `view_log()`
1589
+ * `setup_sandbox_env()`
1590
+ * `copy_files_from_container()`
1591
+ * `cleanup_sandbox_env()`
1592
+ * ##### Updates
1593
+ * ###### `create_context()`
1594
+ * Supports all connection parameters supported by teradatasql.connect().
1595
+ * ###### Script
1596
+ * `test_script()` can now be executed in 'local' mode, i.e., outside of the sandbox.
1597
+ * `Script.setup_sto_env()` is deprecated. Use `setup_sandbox_env()` function instead.
1598
+ * Added support for using "quotechar" argument.
1599
+ * ###### Analytic functions
1600
+ * _Updates_
1601
+ * Visit teradataml User Guide to know more about the updates done to ML Engine analytic
1602
+ functions. Following type of updates are done to several functions:
1603
+ * New arguments are added, which are supported only on Vantage Version 1.3.
1604
+ * Default value has been updated for few function arguments.
1605
+ * Few arguments were required, but now they are optional.
1606
+ * ##### Minor Bug Fixes.
1607
+
1608
+ #### teradataml 17.00.00.00
1609
+ * ##### New Features/Functionality
1610
+ * ###### Model Cataloging - Functionality to catalog model metadata and related information in the Model Catalog.
1611
+ * `save_model()` - Save a teradataml Analytic Function model.
1612
+ * `retrieve_model()` - Retrieve a saved model.
1613
+ * `list_model()` - List accessible models.
1614
+ * `describe_model()` - List the details of a model.
1615
+ * `delete_model()` - Remove a model from Model Catalog.
1616
+ * `publish_model()` - Share a model.
1617
+ * ###### Script - An interface to the SCRIPT table operator object in the Advanced SQL Engine.
1618
+ Interface offers execution in two modes:
1619
+ * Test/Debug - to test user scripts locally in a containerized environment.
1620
+ Supporting methods:
1621
+ * `setup_sto_env()` - Set up test environment.
1622
+ * `test_script()` - Test user script in containerized environment.
1623
+ * `set_data()` - Set test data parameters.
1624
+ * In-Database Script Execution - to execute user scripts in database.
1625
+ Supporting methods:
1626
+ * `execute_script()` - Execute user script in Vantage.
1627
+ * `install_file()` - Install or replace file in Database.
1628
+ * `remove_file()` - Remove installed file from Database.
1629
+ * `set_data()` - Set test data parameters.
1630
+ * ###### DataFrame
1631
+ * `DataFrame.show_query()` - Show underlying query for DataFrame.
1632
+ * Regular Aggregates
1633
+ * _New functions_
1634
+ * `kurtosis()` - Calculate the kurtosis value.
1635
+ * `skew()` - Calculate the skewness of the distribution.
1636
+ * _Updates_\
1637
+ New argument `distinct` is added to following aggregates to exclude duplicate values.
1638
+ * `count()`
1639
+ * `max()`
1640
+ * `mean()`
1641
+ * `min()`
1642
+ * `sum()`
1643
+ * `std()`
1644
+ * New argument `population` is added to calculate the population standard deviation.
1645
+ * `var()`
1646
+ * New argument `population` is added to calculate the population variance.
1647
+ * Time Series Aggregates
1648
+ * _New functions_
1649
+ * `kurtosis()` - Calculate the kurtosis value.
1650
+ * `count()` - Get the total number of values.
1651
+ * `max()` - Calculate the maximum value.
1652
+ * `mean()` - Calculate the average value.
1653
+ * `min()` - Calculate the minimum value.
1654
+ * `percentile()` - Calculate the desired percentile.
1655
+ * `skew()` - Calculate the skewness of the distribution.
1656
+ * `sum()` - Calculate the column-wise sum value.
1657
+ * `std()` - Calculate the sample and population standard deviation.
1658
+ * `var()` - Calculate the sample and population standard variance.
1659
+ * ###### General functions
1660
+ * _New functions_
1661
+ * Database Utility Functions
1662
+ * `db_drop_table()`
1663
+ * `db_drop_view()`
1664
+ * `db_list_tables()`
1665
+ * Vantage File Management Functions
1666
+ * `install_file()` - Install a file in Database.
1667
+ * `remove_file()` - Remove an installed file from Database.
1668
+ * _Updates_
1669
+ * `create_context()`
1670
+ * Support added for Stored Password Protection feature.
1671
+ * Kerberos authentication bug fix.
1672
+ * New argument `database` added to `create_context()` API, that allows user to specify connecting database.
1673
+ * ###### Analytic functions
1674
+ * _New functions_
1675
+ * `Betweenness`
1676
+ * `Closeness`
1677
+ * `FMeasure`
1678
+ * `FrequentPaths`
1679
+ * `IdentityMatch`
1680
+ * `Interpolator`
1681
+ * `ROC`
1682
+ * _Updates_
1683
+ * New methods are added to all analytic functions
1684
+ * `show_query()`
1685
+ * `get_build_time()`
1686
+ * `get_prediction_type()`
1687
+ * `get_target_column()`
1688
+ * New properties are added to analytic function's Formula argument
1689
+ * `response_column`
1690
+ * `numeric_columns`
1691
+ * `categorical_columns`
1692
+ * `all_columns`
1693
+
1694
+ #### teradataml 16.20.00.06
1695
+ Fixed the DataFrame data display corruption issue observed with certain analytic functions.
1696
+
1697
+ #### teradataml 16.20.00.05
1698
+ Compatible with Vantage 1.1.1.\
1699
+ The following ML Engine (`teradataml.analytics.mle`) functions have new and/or updated arguments to support the Vantage version:
1700
+ * `AdaBoostPredict`
1701
+ * `DecisionForestPredict`
1702
+ * `DecisionTreePredict`
1703
+ * `GLMPredict`
1704
+ * `LDA`
1705
+ * `NaiveBayesPredict`
1706
+ * `NaiveBayesTextClassifierPredict`
1707
+ * `SVMDensePredict`
1708
+ * `SVMSparse`
1709
+ * `SVMSparsePredict`
1710
+ * `XGBoostPredict`
1711
+
1712
+ #### teradataml 16.20.00.04
1713
+ * ##### Improvements
1714
+ * DataFrame creation is now quicker, impacting many APIs and Analytic functions.
1715
+ * Improved performance by reducing the number of intermediate queries issued to Teradata Vantage when not required.
1716
+ * The number of queries reduced by combining multiple operations into a single step whenever possible and unless the user expects or demands to see the intermediate results.
1717
+ * The performance improvement is almost proportional to the number of chained and unexecuted operations on a teradataml DataFrame.
1718
+ * Reduced number of intermediate internal objects created on Vantage.
1719
+ * ##### New Features/Functionality
1720
+ * ###### General functions
1721
+ * _New functions_
1722
+ * `show_versions()` - to list the version of teradataml and dependencies installed.
1723
+ * `fastload()` - for high performance data loading of large amounts of data into a table on Vantage. Requires `teradatasql` version `16.20.0.48` or above.
1724
+ * Set operators:
1725
+ * `concat`
1726
+ * `td_intersect`
1727
+ * `td_except`
1728
+ * `td_minus`
1729
+ * `case()` - to help construct SQL CASE based expressions.
1730
+ * _Updates_
1731
+ * `copy_to_sql`
1732
+ * Added support to `copy_to_sql` to save multi-level index.
1733
+ * Corrected the type mapping for index when being saved.
1734
+ * `create_context()` updated to support 'JWT' logon mechanism.
1735
+ * ###### Analytic functions
1736
+ * _New functions_
1737
+ * `NERTrainer`
1738
+ * `NERExtractor`
1739
+ * `NEREvaluator`
1740
+ * `GLML1L2`
1741
+ * `GLML1L2Predict`
1742
+ * _Updates_
1743
+ * Added support to categorize numeric columns as categorical while using formula - `as_categorical()` in the `teradataml.common.formula` module.
1744
+ * ###### DataFrame
1745
+ * Added support to create DataFrame from Volatile and Primary Time Index tables.
1746
+ * `DataFrame.sample()` - to sample data.
1747
+ * `DataFrame.index` - Property to access `index_label` of DataFrame.
1748
+ * Functionality to process Time Series Data
1749
+ * Grouping/Resampling time series data:
1750
+ * `groupby_time()`
1751
+ * `resample()`
1752
+ * Time Series Aggregates:
1753
+ * `bottom()`
1754
+ * `count()`
1755
+ * `describe()`
1756
+ * `delta_t()`
1757
+ * `mad()`
1758
+ * `median()`
1759
+ * `mode()`
1760
+ * `first()`
1761
+ * `last()`
1762
+ * `top()`
1763
+ * DataFrame API and method argument validation added.
1764
+ * `DataFrame.info()` - Default value for `null_counts` argument updated from `None` to `False`.
1765
+ * `Dataframe.merge()` updated to accept columns expressions along with column names to `on`, `left_on`, `right_on` arguments.
1766
+ * ###### DataFrame Column/ColumnExpression methods
1767
+ * `cast()` - to help cast the column to a specified type.
1768
+ * `isin()` and `~isin()` - to check the presence of values in a column.
1769
+ * ##### Removed deprecated Analytic functions
1770
+ * All the deprecated Analytic functions under the `teradataml.analytics module` have been removed.
1771
+ Newer versions of the functions are available under the `teradataml.analytics.mle` and the `teradataml.analytics.sqle` modules.
1772
+ The modules removed are:
1773
+ * `teradataml.analytics.Antiselect`
1774
+ * `teradataml.analytics.Arima`
1775
+ * `teradataml.analytics.ArimaPredictor`
1776
+ * `teradataml.analytics.Attribution`
1777
+ * `teradataml.analytics.ConfusionMatrix`
1778
+ * `teradataml.analytics.CoxHazardRatio`
1779
+ * `teradataml.analytics.CoxPH`
1780
+ * `teradataml.analytics.CoxSurvival`
1781
+ * `teradataml.analytics.DecisionForest`
1782
+ * `teradataml.analytics.DecisionForestEvaluator`
1783
+ * `teradataml.analytics.DecisionForestPredict`
1784
+ * `teradataml.analytics.DecisionTree`
1785
+ * `teradataml.analytics.DecisionTreePredict`
1786
+ * `teradataml.analytics.GLM`
1787
+ * `teradataml.analytics.GLMPredict`
1788
+ * `teradataml.analytics.KMeans`
1789
+ * `teradataml.analytics.NGrams`
1790
+ * `teradataml.analytics.NPath`
1791
+ * `teradataml.analytics.NaiveBayes`
1792
+ * `teradataml.analytics.NaiveBayesPredict`
1793
+ * `teradataml.analytics.NaiveBayesTextClassifier`
1794
+ * `teradataml.analytics.NaiveBayesTextClassifierPredict`
1795
+ * `teradataml.analytics.Pack`
1796
+ * `teradataml.analytics.SVMSparse`
1797
+ * `teradataml.analytics.SVMSparsePredict`
1798
+ * `teradataml.analytics.SentenceExtractor`
1799
+ * `teradataml.analytics.Sessionize`
1800
+ * `teradataml.analytics.TF`
1801
+ * `teradataml.analytics.TFIDF`
1802
+ * `teradataml.analytics.TextTagger`
1803
+ * `teradataml.analytics.TextTokenizer`
1804
+ * `teradataml.analytics.Unpack`
1805
+ * `teradataml.analytics.VarMax`
1806
+
1807
+ #### teradataml 16.20.00.03
1808
+ * Fixed the garbage collection issue observed with `remove_context()` when context is created using a SQLAlchemy engine.
1809
+ * Added 4 new Advanced SQL Engine (was NewSQL Engine) analytic functions supported only on Vantage 1.1:
1810
+ * `Antiselect`, `Pack`, `StringSimilarity`, and `Unpack`.
1811
+ * Updated the Machine Learning Engine `NGrams` function to work with Vantage 1.1.
1812
+
1813
+ #### teradataml 16.20.00.02
1814
+ * Python version 3.4.x will no longer be supported. The Python versions supported are 3.5.x, 3.6.x, and 3.7.x.
1815
+ * Major issue with the usage of formula argument in analytic functions with Python3.7 has been fixed, allowing this package to be used with Python3.7 or later.
1816
+ * Configurable alias name support for analytic functions has been added.
1817
+ * Support added to create_context (connect to Teradata Vantage) with different logon mechanisms.
1818
+ Logon mechanisms supported are: 'TD2', 'TDNEGO', 'LDAP' & 'KRB5'.
1819
+ * copy_to_sql function and DataFrame 'to_sql' methods now provide following additional functionality:
1820
+ * Create Primary Time Index tables.
1821
+ * Create set/multiset tables.
1822
+ * New DataFrame methods are added: 'median', 'var', 'squeeze', 'sort_index', 'concat'.
1823
+ * DataFrame method 'join' is now updated to make use of ColumnExpressions (df.column_name) for the 'on' clause as opposed to strings.
1824
+ * Series is supported as a first class object by calling squeeze on DataFrame.
1825
+ * Methods supported by teradataml Series are: 'head', 'unique', 'name', '\_\_repr__'.
1826
+ * Binary operations with teradataml Series is not yet supported. Try using Columns from teradataml.DataFrames.
1827
+ * Sample datasets and commands to load the same have been provided in the function examples.
1828
+ * New configuration property has been added 'column_casesenitive_handler'. Useful when one needs to play with case sensitive columns.
1829
+
1830
+ #### teradataml 16.20.00.01
1831
+ * New support has been added for Linux distributions: Red Hat 7+, Ubuntu 16.04+, CentOS 7+, SLES12+.
1832
+ * 16.20.00.01 now has over 100 analytic functions. These functions have been organized into their own packages for better control over which engine to execute the analytic function on. Due to these namespace changes, the old analytic functions have been deprecated and will be removed in a future release. See the Deprecations section in the Teradata Python Package User Guide for more information.
1833
+ * New DataFrame methods `shape`, `iloc`, `describe`, `get_values`, `merge`, and `tail`.
1834
+ * New Series methods for NA checking (`isnull`, `notnull`) and string processing (`lower`, `strip`, `contains`).
1835
+
1836
+ #### teradataml 16.20.00.00
1837
+ * `teradataml 16.20.00.00` is the first release version. Please refer to the _Teradata Python Package User Guide_ for a list of Limitations and Usage Considerations.
1838
+
1839
+ ## Installation and Requirements
1840
+
1841
+ ### Package Requirements:
1842
+ * Python 3.5 or later
1843
+
1844
+ Note: 32-bit Python is not supported.
1845
+
1846
+ ### Minimum System Requirements:
1847
+ * Windows 7 (64Bit) or later
1848
+ * macOS 10.9 (64Bit) or later
1849
+ * Red Hat 7 or later versions
1850
+ * Ubuntu 16.04 or later versions
1851
+ * CentOS 7 or later versions
1852
+ * SLES 12 or later versions
1853
+ * Teradata Vantage Advanced SQL Engine:
1854
+ * Advanced SQL Engine 16.20 Feature Update 1 or later
1855
+ * For a Teradata Vantage system with the ML Engine:
1856
+ * Teradata Machine Learning Engine 08.00.03.01 or later
1857
+
1858
+ ### Installation
1859
+
1860
+ Use pip to install the Teradata Python Package for Advanced Analytics.
1861
+
1862
+ Platform | Command
1863
+ -------------- | ---
1864
+ macOS/Linux | `pip install teradataml`
1865
+ Windows | `py -3 -m pip install teradataml`
1866
+
1867
+ When upgrading to a new version of the Teradata Python Package, you may need to use pip install's `--no-cache-dir` option to force the download of the new version.
1868
+
1869
+ Platform | Command
1870
+ -------------- | ---
1871
+ macOS/Linux | `pip install --no-cache-dir -U teradataml`
1872
+ Windows | `py -3 -m pip install --no-cache-dir -U teradataml`
1873
+
1874
+ ## Using the Teradata Python Package
1875
+
1876
+ Your Python script must import the `teradataml` package in order to use the Teradata Python Package:
1877
+
1878
+ ```
1879
+ >>> import teradataml as tdml
1880
+ >>> from teradataml import create_context, remove_context
1881
+ >>> create_context(host = 'hostname', username = 'user', password = 'password')
1882
+ >>> df = tdml.DataFrame('iris')
1883
+ >>> df
1884
+
1885
+ SepalLength SepalWidth PetalLength PetalWidth Name
1886
+ 0 5.1 3.8 1.5 0.3 Iris-setosa
1887
+ 1 6.9 3.1 5.1 2.3 Iris-virginica
1888
+ 2 5.1 3.5 1.4 0.3 Iris-setosa
1889
+ 3 5.9 3.0 4.2 1.5 Iris-versicolor
1890
+ 4 6.0 2.9 4.5 1.5 Iris-versicolor
1891
+ 5 5.0 3.5 1.3 0.3 Iris-setosa
1892
+ 6 5.5 2.4 3.8 1.1 Iris-versicolor
1893
+ 7 6.9 3.2 5.7 2.3 Iris-virginica
1894
+ 8 4.4 3.0 1.3 0.2 Iris-setosa
1895
+ 9 5.8 2.7 5.1 1.9 Iris-virginica
1896
+
1897
+ >>> df = df.select(['Name', 'SepalLength', 'PetalLength'])
1898
+ >>> df
1899
+
1900
+ Name SepalLength PetalLength
1901
+ 0 Iris-versicolor 6.0 4.5
1902
+ 1 Iris-versicolor 5.5 3.8
1903
+ 2 Iris-virginica 6.9 5.7
1904
+ 3 Iris-setosa 5.1 1.4
1905
+ 4 Iris-setosa 5.1 1.5
1906
+ 5 Iris-virginica 5.8 5.1
1907
+ 6 Iris-virginica 6.9 5.1
1908
+ 7 Iris-setosa 5.1 1.4
1909
+ 8 Iris-virginica 7.7 6.7
1910
+ 9 Iris-setosa 5.0 1.3
1911
+
1912
+ >>> df = df[(df.Name == 'Iris-setosa') & (df.PetalLength > 1.5)]
1913
+ >>> df
1914
+
1915
+ Name SepalLength PetalLength
1916
+ 0 Iris-setosa 4.8 1.9
1917
+ 1 Iris-setosa 5.4 1.7
1918
+ 2 Iris-setosa 5.7 1.7
1919
+ 3 Iris-setosa 5.0 1.6
1920
+ 4 Iris-setosa 5.1 1.9
1921
+ 5 Iris-setosa 4.8 1.6
1922
+ 6 Iris-setosa 4.7 1.6
1923
+ 7 Iris-setosa 5.1 1.6
1924
+ 8 Iris-setosa 5.1 1.7
1925
+ 9 Iris-setosa 4.8 1.6
1926
+ ```
1927
+
1928
+ ## Documentation
1929
+
1930
+ General product information, including installation instructions, is available in the [Teradata Documentation website](https://docs.teradata.com/search/documents?query=package+python+-lake&filters=category~%2522Programming+Reference%2522_%2522User+Guide%2522*prodname~%2522Teradata+Package+for+Python%2522_%2522Teradata+Python+Package%2522&sort=last_update&virtual-field=title_only&content-lang=)
1931
+
1932
+ ## License
1933
+
1934
+ Use of the Teradata Python Package is governed by the *License Agreement for the Teradata Python Package for Advanced Analytics*.
1935
+ After installation, the `LICENSE` and `LICENSE-3RD-PARTY` files are located in the `teradataml` directory of the Python installation directory.