teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1303) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1935 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2040 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +798 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1683 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +1011 -0
  31. teradataml/automl/data_transformation.py +789 -0
  32. teradataml/automl/feature_engineering.py +1580 -0
  33. teradataml/automl/feature_exploration.py +554 -0
  34. teradataml/automl/model_evaluation.py +151 -0
  35. teradataml/automl/model_training.py +1026 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/auth_client.py +133 -0
  41. teradataml/clients/pkce_client.py +481 -481
  42. teradataml/common/aed_utils.py +7 -2
  43. teradataml/common/bulk_exposed_utils.py +111 -111
  44. teradataml/common/constants.py +1438 -1441
  45. teradataml/common/deprecations.py +160 -0
  46. teradataml/common/exceptions.py +73 -73
  47. teradataml/common/formula.py +742 -742
  48. teradataml/common/garbagecollector.py +597 -635
  49. teradataml/common/messagecodes.py +424 -431
  50. teradataml/common/messages.py +228 -231
  51. teradataml/common/sqlbundle.py +693 -693
  52. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  53. teradataml/common/utils.py +2424 -2500
  54. teradataml/common/warnings.py +25 -25
  55. teradataml/common/wrapper_utils.py +1 -110
  56. teradataml/config/dummy_file1.cfg +4 -4
  57. teradataml/config/dummy_file2.cfg +2 -2
  58. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  59. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  60. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  61. teradataml/context/aed_context.py +217 -217
  62. teradataml/context/context.py +1091 -999
  63. teradataml/data/A_loan.csv +19 -19
  64. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  65. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  66. teradataml/data/B_loan.csv +49 -49
  67. teradataml/data/BuoyData2.csv +17 -17
  68. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  69. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  70. teradataml/data/Convolve2RealsLeft.csv +5 -5
  71. teradataml/data/Convolve2RealsRight.csv +5 -5
  72. teradataml/data/Convolve2ValidLeft.csv +11 -11
  73. teradataml/data/Convolve2ValidRight.csv +11 -11
  74. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  75. teradataml/data/Orders1_12mf.csv +24 -24
  76. teradataml/data/Pi_loan.csv +7 -7
  77. teradataml/data/SMOOTHED_DATA.csv +7 -7
  78. teradataml/data/TestDFFT8.csv +9 -9
  79. teradataml/data/TestRiver.csv +109 -109
  80. teradataml/data/Traindata.csv +28 -28
  81. teradataml/data/acf.csv +17 -17
  82. teradataml/data/adaboost_example.json +34 -34
  83. teradataml/data/adaboostpredict_example.json +24 -24
  84. teradataml/data/additional_table.csv +10 -10
  85. teradataml/data/admissions_test.csv +21 -21
  86. teradataml/data/admissions_train.csv +41 -41
  87. teradataml/data/admissions_train_nulls.csv +41 -41
  88. teradataml/data/advertising.csv +201 -0
  89. teradataml/data/ageandheight.csv +13 -13
  90. teradataml/data/ageandpressure.csv +31 -31
  91. teradataml/data/antiselect_example.json +36 -36
  92. teradataml/data/antiselect_input.csv +8 -8
  93. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  94. teradataml/data/applicant_external.csv +6 -6
  95. teradataml/data/applicant_reference.csv +6 -6
  96. teradataml/data/arima_example.json +9 -9
  97. teradataml/data/assortedtext_input.csv +8 -8
  98. teradataml/data/attribution_example.json +33 -33
  99. teradataml/data/attribution_sample_table.csv +27 -27
  100. teradataml/data/attribution_sample_table1.csv +6 -6
  101. teradataml/data/attribution_sample_table2.csv +11 -11
  102. teradataml/data/bank_churn.csv +10001 -0
  103. teradataml/data/bank_marketing.csv +11163 -0
  104. teradataml/data/bank_web_clicks1.csv +42 -42
  105. teradataml/data/bank_web_clicks2.csv +91 -91
  106. teradataml/data/bank_web_url.csv +85 -85
  107. teradataml/data/barrier.csv +2 -2
  108. teradataml/data/barrier_new.csv +3 -3
  109. teradataml/data/betweenness_example.json +13 -13
  110. teradataml/data/bike_sharing.csv +732 -0
  111. teradataml/data/bin_breaks.csv +8 -8
  112. teradataml/data/bin_fit_ip.csv +3 -3
  113. teradataml/data/binary_complex_left.csv +11 -11
  114. teradataml/data/binary_complex_right.csv +11 -11
  115. teradataml/data/binary_matrix_complex_left.csv +21 -21
  116. teradataml/data/binary_matrix_complex_right.csv +21 -21
  117. teradataml/data/binary_matrix_real_left.csv +21 -21
  118. teradataml/data/binary_matrix_real_right.csv +21 -21
  119. teradataml/data/blood2ageandweight.csv +26 -26
  120. teradataml/data/bmi.csv +501 -0
  121. teradataml/data/boston.csv +507 -507
  122. teradataml/data/boston2cols.csv +721 -0
  123. teradataml/data/breast_cancer.csv +570 -0
  124. teradataml/data/buoydata_mix.csv +11 -11
  125. teradataml/data/burst_data.csv +5 -5
  126. teradataml/data/burst_example.json +20 -20
  127. teradataml/data/byom_example.json +17 -17
  128. teradataml/data/bytes_table.csv +3 -3
  129. teradataml/data/cal_housing_ex_raw.csv +70 -70
  130. teradataml/data/callers.csv +7 -7
  131. teradataml/data/calls.csv +10 -10
  132. teradataml/data/cars_hist.csv +33 -33
  133. teradataml/data/cat_table.csv +24 -24
  134. teradataml/data/ccm_example.json +31 -31
  135. teradataml/data/ccm_input.csv +91 -91
  136. teradataml/data/ccm_input2.csv +13 -13
  137. teradataml/data/ccmexample.csv +101 -101
  138. teradataml/data/ccmprepare_example.json +8 -8
  139. teradataml/data/ccmprepare_input.csv +91 -91
  140. teradataml/data/cfilter_example.json +12 -12
  141. teradataml/data/changepointdetection_example.json +18 -18
  142. teradataml/data/changepointdetectionrt_example.json +8 -8
  143. teradataml/data/chi_sq.csv +2 -2
  144. teradataml/data/churn_data.csv +14 -14
  145. teradataml/data/churn_emission.csv +35 -35
  146. teradataml/data/churn_initial.csv +3 -3
  147. teradataml/data/churn_state_transition.csv +5 -5
  148. teradataml/data/citedges_2.csv +745 -745
  149. teradataml/data/citvertices_2.csv +1210 -1210
  150. teradataml/data/clicks2.csv +16 -16
  151. teradataml/data/clickstream.csv +12 -12
  152. teradataml/data/clickstream1.csv +11 -11
  153. teradataml/data/closeness_example.json +15 -15
  154. teradataml/data/complaints.csv +21 -21
  155. teradataml/data/complaints_mini.csv +3 -3
  156. teradataml/data/complaints_testtoken.csv +224 -224
  157. teradataml/data/complaints_tokens_test.csv +353 -353
  158. teradataml/data/complaints_traintoken.csv +472 -472
  159. teradataml/data/computers_category.csv +1001 -1001
  160. teradataml/data/computers_test1.csv +1252 -1252
  161. teradataml/data/computers_train1.csv +5009 -5009
  162. teradataml/data/computers_train1_clustered.csv +5009 -5009
  163. teradataml/data/confusionmatrix_example.json +9 -9
  164. teradataml/data/conversion_event_table.csv +3 -3
  165. teradataml/data/corr_input.csv +17 -17
  166. teradataml/data/correlation_example.json +11 -11
  167. teradataml/data/coxhazardratio_example.json +39 -39
  168. teradataml/data/coxph_example.json +15 -15
  169. teradataml/data/coxsurvival_example.json +28 -28
  170. teradataml/data/cpt.csv +41 -41
  171. teradataml/data/credit_ex_merged.csv +45 -45
  172. teradataml/data/customer_loyalty.csv +301 -301
  173. teradataml/data/customer_loyalty_newseq.csv +31 -31
  174. teradataml/data/customer_segmentation_test.csv +2628 -0
  175. teradataml/data/customer_segmentation_train.csv +8069 -0
  176. teradataml/data/dataframe_example.json +146 -146
  177. teradataml/data/decisionforest_example.json +37 -37
  178. teradataml/data/decisionforestpredict_example.json +38 -38
  179. teradataml/data/decisiontree_example.json +21 -21
  180. teradataml/data/decisiontreepredict_example.json +45 -45
  181. teradataml/data/dfft2_size4_real.csv +17 -17
  182. teradataml/data/dfft2_test_matrix16.csv +17 -17
  183. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  184. teradataml/data/diabetes.csv +443 -443
  185. teradataml/data/diabetes_test.csv +89 -89
  186. teradataml/data/dict_table.csv +5 -5
  187. teradataml/data/docperterm_table.csv +4 -4
  188. teradataml/data/docs/__init__.py +1 -1
  189. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  190. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  191. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  192. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  193. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  194. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  195. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  196. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  197. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  198. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  199. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  200. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  201. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  202. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  203. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  204. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  205. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  206. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  207. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  208. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  209. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  210. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  211. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  212. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  213. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  214. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  215. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  216. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  217. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
  218. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
  219. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  220. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
  221. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  222. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  223. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  224. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  225. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  226. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  227. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  228. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  229. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  230. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  231. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  232. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  233. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  234. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  235. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  236. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  237. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  238. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  239. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  240. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  241. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  242. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
  243. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  244. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  245. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  246. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  247. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  248. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  249. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  250. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  251. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
  252. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  253. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  254. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  255. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  256. teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
  257. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  258. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  259. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
  260. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  261. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  262. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  263. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
  264. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  265. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  266. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  267. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
  268. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  269. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  270. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  271. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  272. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  273. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  274. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  275. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  276. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
  277. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  278. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  279. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  280. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  281. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
  282. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
  283. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  284. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  285. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  286. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  287. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  288. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  289. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  290. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  291. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
  292. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  293. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  294. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  295. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  296. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  297. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  298. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  299. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  300. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
  301. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  302. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
  303. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
  304. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  305. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  306. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  307. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  308. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  309. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  310. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  311. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  312. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
  313. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  314. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  315. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  316. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  317. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  318. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  319. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  320. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  321. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  322. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  323. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  324. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
  325. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
  326. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
  327. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  328. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  329. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  330. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  331. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  332. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  333. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  334. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  335. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  336. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  337. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  338. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  339. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  340. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  341. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  342. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  343. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  344. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  345. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  346. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  347. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  348. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  349. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  350. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  351. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  352. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  353. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  354. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  355. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  356. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  357. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  358. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  359. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  360. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  361. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  362. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  363. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  364. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  365. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  366. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  367. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  368. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  369. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  370. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  371. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  372. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  373. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  374. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  375. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  376. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  377. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  378. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  379. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  380. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  381. teradataml/data/dtw_example.json +17 -17
  382. teradataml/data/dtw_t1.csv +11 -11
  383. teradataml/data/dtw_t2.csv +4 -4
  384. teradataml/data/dwt2d_example.json +15 -15
  385. teradataml/data/dwt_example.json +14 -14
  386. teradataml/data/dwt_filter_dim.csv +5 -5
  387. teradataml/data/emission.csv +9 -9
  388. teradataml/data/emp_table_by_dept.csv +19 -19
  389. teradataml/data/employee_info.csv +4 -4
  390. teradataml/data/employee_table.csv +6 -6
  391. teradataml/data/excluding_event_table.csv +2 -2
  392. teradataml/data/finance_data.csv +6 -6
  393. teradataml/data/finance_data2.csv +61 -61
  394. teradataml/data/finance_data3.csv +93 -93
  395. teradataml/data/fish.csv +160 -0
  396. teradataml/data/fm_blood2ageandweight.csv +26 -26
  397. teradataml/data/fmeasure_example.json +11 -11
  398. teradataml/data/followers_leaders.csv +10 -10
  399. teradataml/data/fpgrowth_example.json +12 -12
  400. teradataml/data/frequentpaths_example.json +29 -29
  401. teradataml/data/friends.csv +9 -9
  402. teradataml/data/fs_input.csv +33 -33
  403. teradataml/data/fs_input1.csv +33 -33
  404. teradataml/data/genData.csv +513 -513
  405. teradataml/data/geodataframe_example.json +39 -39
  406. teradataml/data/glass_types.csv +215 -0
  407. teradataml/data/glm_admissions_model.csv +12 -12
  408. teradataml/data/glm_example.json +56 -29
  409. teradataml/data/glml1l2_example.json +28 -28
  410. teradataml/data/glml1l2predict_example.json +54 -54
  411. teradataml/data/glmpredict_example.json +54 -54
  412. teradataml/data/gq_t1.csv +21 -21
  413. teradataml/data/hconvolve_complex_right.csv +5 -5
  414. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  415. teradataml/data/histogram_example.json +11 -11
  416. teradataml/data/hmmdecoder_example.json +78 -78
  417. teradataml/data/hmmevaluator_example.json +24 -24
  418. teradataml/data/hmmsupervised_example.json +10 -10
  419. teradataml/data/hmmunsupervised_example.json +7 -7
  420. teradataml/data/house_values.csv +12 -12
  421. teradataml/data/house_values2.csv +13 -13
  422. teradataml/data/housing_cat.csv +7 -7
  423. teradataml/data/housing_data.csv +9 -9
  424. teradataml/data/housing_test.csv +47 -47
  425. teradataml/data/housing_test_binary.csv +47 -47
  426. teradataml/data/housing_train.csv +493 -493
  427. teradataml/data/housing_train_attribute.csv +4 -4
  428. teradataml/data/housing_train_binary.csv +437 -437
  429. teradataml/data/housing_train_parameter.csv +2 -2
  430. teradataml/data/housing_train_response.csv +493 -493
  431. teradataml/data/housing_train_segment.csv +201 -0
  432. teradataml/data/ibm_stock.csv +370 -370
  433. teradataml/data/ibm_stock1.csv +370 -370
  434. teradataml/data/identitymatch_example.json +21 -21
  435. teradataml/data/idf_table.csv +4 -4
  436. teradataml/data/impressions.csv +101 -101
  437. teradataml/data/inflation.csv +21 -21
  438. teradataml/data/initial.csv +3 -3
  439. teradataml/data/insect2Cols.csv +61 -0
  440. teradataml/data/insect_sprays.csv +12 -12
  441. teradataml/data/insurance.csv +1339 -1339
  442. teradataml/data/interpolator_example.json +12 -12
  443. teradataml/data/iris_altinput.csv +481 -481
  444. teradataml/data/iris_attribute_output.csv +8 -8
  445. teradataml/data/iris_attribute_test.csv +121 -121
  446. teradataml/data/iris_attribute_train.csv +481 -481
  447. teradataml/data/iris_category_expect_predict.csv +31 -31
  448. teradataml/data/iris_data.csv +151 -0
  449. teradataml/data/iris_input.csv +151 -151
  450. teradataml/data/iris_response_train.csv +121 -121
  451. teradataml/data/iris_test.csv +31 -31
  452. teradataml/data/iris_train.csv +121 -121
  453. teradataml/data/join_table1.csv +4 -4
  454. teradataml/data/join_table2.csv +4 -4
  455. teradataml/data/jsons/anly_function_name.json +6 -6
  456. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  457. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  458. teradataml/data/jsons/byom/h2opredict.json +194 -194
  459. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  460. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  461. teradataml/data/jsons/paired_functions.json +435 -435
  462. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  463. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  464. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  465. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  466. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  467. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  468. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  469. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  470. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  471. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  472. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  473. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  474. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  475. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  476. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  477. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  478. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  479. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  480. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  481. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  482. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  483. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  484. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  485. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  486. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  487. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  488. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  489. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  490. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  491. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  492. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  493. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  494. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  495. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  496. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  497. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  498. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  499. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  500. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  501. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  502. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  503. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  504. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  505. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  506. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  507. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  508. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  509. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  510. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  511. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  512. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  513. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  514. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  515. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  516. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  517. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  518. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  519. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  520. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  521. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  522. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  523. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  524. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  525. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  526. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  527. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  528. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  529. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  531. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  532. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  533. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  534. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  535. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  536. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  537. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  539. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  540. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  541. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  542. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  543. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  544. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  545. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  546. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  547. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  548. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  549. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  550. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  551. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  552. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  553. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  554. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  555. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  556. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  557. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  558. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  559. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  560. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  561. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  562. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  563. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  564. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  565. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  566. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  567. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  568. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
  569. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  570. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  571. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  572. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  573. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  574. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  575. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  576. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  577. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  578. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  579. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
  580. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  581. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  582. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  583. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
  584. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
  585. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  586. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  587. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
  588. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  589. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  590. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  591. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
  592. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  593. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  594. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  595. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
  596. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  597. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  598. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  599. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  600. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  601. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  602. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  603. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  604. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  605. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  606. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  607. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  608. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  609. teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
  610. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  611. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  612. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  613. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  614. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  615. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  616. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  617. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  618. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
  619. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
  620. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
  621. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  622. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  623. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  624. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  625. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  626. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  627. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  628. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  629. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  630. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  631. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  632. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  633. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  634. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  635. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
  636. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
  637. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
  638. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  639. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  640. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  641. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  642. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  643. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  644. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  645. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  646. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  647. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  648. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  649. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  650. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  651. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  653. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  654. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  655. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  656. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  657. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  658. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  659. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  660. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  661. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  662. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  663. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  664. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  665. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  666. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  667. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  668. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  669. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  670. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  671. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  672. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  673. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  674. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  675. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  676. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  677. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  678. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  679. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  680. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  681. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  682. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  683. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  684. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  685. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  686. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  687. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  688. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  689. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  690. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  691. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  692. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  693. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  694. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  695. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  696. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  697. teradataml/data/kmeans_example.json +22 -17
  698. teradataml/data/kmeans_table.csv +10 -0
  699. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  700. teradataml/data/knn_example.json +18 -18
  701. teradataml/data/knnrecommender_example.json +6 -6
  702. teradataml/data/knnrecommenderpredict_example.json +12 -12
  703. teradataml/data/lar_example.json +17 -17
  704. teradataml/data/larpredict_example.json +30 -30
  705. teradataml/data/lc_new_predictors.csv +5 -5
  706. teradataml/data/lc_new_reference.csv +9 -9
  707. teradataml/data/lda_example.json +8 -8
  708. teradataml/data/ldainference_example.json +14 -14
  709. teradataml/data/ldatopicsummary_example.json +8 -8
  710. teradataml/data/levendist_input.csv +13 -13
  711. teradataml/data/levenshteindistance_example.json +10 -10
  712. teradataml/data/linreg_example.json +9 -9
  713. teradataml/data/load_example_data.py +326 -323
  714. teradataml/data/loan_prediction.csv +295 -295
  715. teradataml/data/lungcancer.csv +138 -138
  716. teradataml/data/mappingdata.csv +12 -12
  717. teradataml/data/milk_timeseries.csv +157 -157
  718. teradataml/data/min_max_titanic.csv +4 -4
  719. teradataml/data/minhash_example.json +6 -6
  720. teradataml/data/ml_ratings.csv +7547 -7547
  721. teradataml/data/ml_ratings_10.csv +2445 -2445
  722. teradataml/data/model1_table.csv +5 -5
  723. teradataml/data/model2_table.csv +5 -5
  724. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  725. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  726. teradataml/data/modularity_example.json +12 -12
  727. teradataml/data/movavg_example.json +7 -7
  728. teradataml/data/mtx1.csv +7 -7
  729. teradataml/data/mtx2.csv +13 -13
  730. teradataml/data/multi_model_classification.csv +401 -0
  731. teradataml/data/multi_model_regression.csv +401 -0
  732. teradataml/data/mvdfft8.csv +9 -9
  733. teradataml/data/naivebayes_example.json +9 -9
  734. teradataml/data/naivebayespredict_example.json +19 -19
  735. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  736. teradataml/data/naivebayestextclassifier_example.json +8 -8
  737. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  738. teradataml/data/name_Find_configure.csv +10 -10
  739. teradataml/data/namedentityfinder_example.json +14 -14
  740. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  741. teradataml/data/namedentityfindertrainer_example.json +6 -6
  742. teradataml/data/nb_iris_input_test.csv +31 -31
  743. teradataml/data/nb_iris_input_train.csv +121 -121
  744. teradataml/data/nbp_iris_model.csv +13 -13
  745. teradataml/data/ner_extractor_text.csv +2 -2
  746. teradataml/data/ner_sports_test2.csv +29 -29
  747. teradataml/data/ner_sports_train.csv +501 -501
  748. teradataml/data/nerevaluator_example.json +5 -5
  749. teradataml/data/nerextractor_example.json +18 -18
  750. teradataml/data/nermem_sports_test.csv +17 -17
  751. teradataml/data/nermem_sports_train.csv +50 -50
  752. teradataml/data/nertrainer_example.json +6 -6
  753. teradataml/data/ngrams_example.json +6 -6
  754. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  755. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  756. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  757. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  758. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  759. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  760. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  761. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  762. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  763. teradataml/data/npath_example.json +23 -23
  764. teradataml/data/ntree_example.json +14 -14
  765. teradataml/data/numeric_strings.csv +4 -4
  766. teradataml/data/numerics.csv +4 -4
  767. teradataml/data/ocean_buoy.csv +17 -17
  768. teradataml/data/ocean_buoy2.csv +17 -17
  769. teradataml/data/ocean_buoys.csv +27 -27
  770. teradataml/data/ocean_buoys2.csv +10 -10
  771. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  772. teradataml/data/ocean_buoys_seq.csv +29 -29
  773. teradataml/data/onehot_encoder_train.csv +4 -0
  774. teradataml/data/openml_example.json +92 -0
  775. teradataml/data/optional_event_table.csv +4 -4
  776. teradataml/data/orders1.csv +11 -11
  777. teradataml/data/orders1_12.csv +12 -12
  778. teradataml/data/orders_ex.csv +4 -4
  779. teradataml/data/pack_example.json +8 -8
  780. teradataml/data/package_tracking.csv +19 -19
  781. teradataml/data/package_tracking_pti.csv +18 -18
  782. teradataml/data/pagerank_example.json +13 -13
  783. teradataml/data/paragraphs_input.csv +6 -6
  784. teradataml/data/pathanalyzer_example.json +7 -7
  785. teradataml/data/pathgenerator_example.json +7 -7
  786. teradataml/data/phrases.csv +7 -7
  787. teradataml/data/pivot_example.json +8 -8
  788. teradataml/data/pivot_input.csv +22 -22
  789. teradataml/data/playerRating.csv +31 -31
  790. teradataml/data/postagger_example.json +6 -6
  791. teradataml/data/posttagger_output.csv +44 -44
  792. teradataml/data/production_data.csv +16 -16
  793. teradataml/data/production_data2.csv +7 -7
  794. teradataml/data/randomsample_example.json +31 -31
  795. teradataml/data/randomwalksample_example.json +8 -8
  796. teradataml/data/rank_table.csv +6 -6
  797. teradataml/data/ref_mobile_data.csv +4 -4
  798. teradataml/data/ref_mobile_data_dense.csv +2 -2
  799. teradataml/data/ref_url.csv +17 -17
  800. teradataml/data/restaurant_reviews.csv +7 -7
  801. teradataml/data/river_data.csv +145 -145
  802. teradataml/data/roc_example.json +7 -7
  803. teradataml/data/roc_input.csv +101 -101
  804. teradataml/data/rule_inputs.csv +6 -6
  805. teradataml/data/rule_table.csv +2 -2
  806. teradataml/data/sales.csv +7 -7
  807. teradataml/data/sales_transaction.csv +501 -501
  808. teradataml/data/salesdata.csv +342 -342
  809. teradataml/data/sample_cities.csv +2 -2
  810. teradataml/data/sample_shapes.csv +10 -10
  811. teradataml/data/sample_streets.csv +2 -2
  812. teradataml/data/sampling_example.json +15 -15
  813. teradataml/data/sax_example.json +8 -8
  814. teradataml/data/scale_attributes.csv +3 -0
  815. teradataml/data/scale_example.json +74 -23
  816. teradataml/data/scale_housing.csv +11 -11
  817. teradataml/data/scale_housing_test.csv +6 -6
  818. teradataml/data/scale_input_part_sparse.csv +31 -0
  819. teradataml/data/scale_input_partitioned.csv +16 -0
  820. teradataml/data/scale_input_sparse.csv +11 -0
  821. teradataml/data/scale_parameters.csv +3 -0
  822. teradataml/data/scale_stat.csv +11 -11
  823. teradataml/data/scalebypartition_example.json +13 -13
  824. teradataml/data/scalemap_example.json +13 -13
  825. teradataml/data/scalesummary_example.json +12 -12
  826. teradataml/data/score_category.csv +101 -101
  827. teradataml/data/score_summary.csv +4 -4
  828. teradataml/data/script_example.json +9 -9
  829. teradataml/data/scripts/deploy_script.py +84 -0
  830. teradataml/data/scripts/mapper.R +20 -0
  831. teradataml/data/scripts/mapper.py +15 -15
  832. teradataml/data/scripts/mapper_replace.py +15 -15
  833. teradataml/data/scripts/sklearn/__init__.py +0 -0
  834. teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
  835. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
  836. teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
  837. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
  838. teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
  839. teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
  840. teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
  841. teradataml/data/seeds.csv +10 -10
  842. teradataml/data/sentenceextractor_example.json +6 -6
  843. teradataml/data/sentiment_extract_input.csv +11 -11
  844. teradataml/data/sentiment_train.csv +16 -16
  845. teradataml/data/sentiment_word.csv +20 -20
  846. teradataml/data/sentiment_word_input.csv +19 -19
  847. teradataml/data/sentimentextractor_example.json +24 -24
  848. teradataml/data/sentimenttrainer_example.json +8 -8
  849. teradataml/data/sequence_table.csv +10 -10
  850. teradataml/data/seriessplitter_example.json +7 -7
  851. teradataml/data/sessionize_example.json +17 -17
  852. teradataml/data/sessionize_table.csv +116 -116
  853. teradataml/data/setop_test1.csv +24 -24
  854. teradataml/data/setop_test2.csv +22 -22
  855. teradataml/data/soc_nw_edges.csv +10 -10
  856. teradataml/data/soc_nw_vertices.csv +7 -7
  857. teradataml/data/souvenir_timeseries.csv +167 -167
  858. teradataml/data/sparse_iris_attribute.csv +5 -5
  859. teradataml/data/sparse_iris_test.csv +121 -121
  860. teradataml/data/sparse_iris_train.csv +601 -601
  861. teradataml/data/star1.csv +6 -6
  862. teradataml/data/state_transition.csv +5 -5
  863. teradataml/data/stock_data.csv +53 -53
  864. teradataml/data/stock_movement.csv +11 -11
  865. teradataml/data/stock_vol.csv +76 -76
  866. teradataml/data/stop_words.csv +8 -8
  867. teradataml/data/store_sales.csv +37 -37
  868. teradataml/data/stringsimilarity_example.json +7 -7
  869. teradataml/data/strsimilarity_input.csv +13 -13
  870. teradataml/data/students.csv +101 -101
  871. teradataml/data/svm_iris_input_test.csv +121 -121
  872. teradataml/data/svm_iris_input_train.csv +481 -481
  873. teradataml/data/svm_iris_model.csv +7 -7
  874. teradataml/data/svmdense_example.json +9 -9
  875. teradataml/data/svmdensepredict_example.json +18 -18
  876. teradataml/data/svmsparse_example.json +7 -7
  877. teradataml/data/svmsparsepredict_example.json +13 -13
  878. teradataml/data/svmsparsesummary_example.json +7 -7
  879. teradataml/data/target_mobile_data.csv +13 -13
  880. teradataml/data/target_mobile_data_dense.csv +5 -5
  881. teradataml/data/templatedata.csv +1201 -1201
  882. teradataml/data/templates/open_source_ml.json +9 -0
  883. teradataml/data/teradataml_example.json +150 -1
  884. teradataml/data/test_classification.csv +101 -0
  885. teradataml/data/test_loan_prediction.csv +53 -53
  886. teradataml/data/test_pacf_12.csv +37 -37
  887. teradataml/data/test_prediction.csv +101 -0
  888. teradataml/data/test_regression.csv +101 -0
  889. teradataml/data/test_river2.csv +109 -109
  890. teradataml/data/text_inputs.csv +6 -6
  891. teradataml/data/textchunker_example.json +7 -7
  892. teradataml/data/textclassifier_example.json +6 -6
  893. teradataml/data/textclassifier_input.csv +7 -7
  894. teradataml/data/textclassifiertrainer_example.json +6 -6
  895. teradataml/data/textmorph_example.json +5 -5
  896. teradataml/data/textparser_example.json +15 -15
  897. teradataml/data/texttagger_example.json +11 -11
  898. teradataml/data/texttokenizer_example.json +6 -6
  899. teradataml/data/texttrainer_input.csv +11 -11
  900. teradataml/data/tf_example.json +6 -6
  901. teradataml/data/tfidf_example.json +13 -13
  902. teradataml/data/tfidf_input1.csv +201 -201
  903. teradataml/data/tfidf_train.csv +6 -6
  904. teradataml/data/time_table1.csv +535 -535
  905. teradataml/data/time_table2.csv +14 -14
  906. teradataml/data/timeseriesdata.csv +1601 -1601
  907. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  908. teradataml/data/titanic.csv +892 -892
  909. teradataml/data/token_table.csv +696 -696
  910. teradataml/data/train_multiclass.csv +101 -0
  911. teradataml/data/train_regression.csv +101 -0
  912. teradataml/data/train_regression_multiple_labels.csv +101 -0
  913. teradataml/data/train_tracking.csv +27 -27
  914. teradataml/data/transformation_table.csv +5 -5
  915. teradataml/data/transformation_table_new.csv +1 -1
  916. teradataml/data/tv_spots.csv +16 -16
  917. teradataml/data/twod_climate_data.csv +117 -117
  918. teradataml/data/uaf_example.json +475 -475
  919. teradataml/data/univariatestatistics_example.json +8 -8
  920. teradataml/data/unpack_example.json +9 -9
  921. teradataml/data/unpivot_example.json +9 -9
  922. teradataml/data/unpivot_input.csv +8 -8
  923. teradataml/data/us_air_pass.csv +36 -36
  924. teradataml/data/us_population.csv +624 -624
  925. teradataml/data/us_states_shapes.csv +52 -52
  926. teradataml/data/varmax_example.json +17 -17
  927. teradataml/data/vectordistance_example.json +25 -25
  928. teradataml/data/ville_climatedata.csv +121 -121
  929. teradataml/data/ville_tempdata.csv +12 -12
  930. teradataml/data/ville_tempdata1.csv +12 -12
  931. teradataml/data/ville_temperature.csv +11 -11
  932. teradataml/data/waveletTable.csv +1605 -1605
  933. teradataml/data/waveletTable2.csv +1605 -1605
  934. teradataml/data/weightedmovavg_example.json +8 -8
  935. teradataml/data/wft_testing.csv +5 -5
  936. teradataml/data/wine_data.csv +1600 -0
  937. teradataml/data/word_embed_input_table1.csv +5 -5
  938. teradataml/data/word_embed_input_table2.csv +4 -4
  939. teradataml/data/word_embed_model.csv +22 -22
  940. teradataml/data/words_input.csv +13 -13
  941. teradataml/data/xconvolve_complex_left.csv +6 -6
  942. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  943. teradataml/data/xgboost_example.json +35 -35
  944. teradataml/data/xgboostpredict_example.json +31 -31
  945. teradataml/data/ztest_example.json +16 -0
  946. teradataml/dataframe/copy_to.py +1769 -1698
  947. teradataml/dataframe/data_transfer.py +2812 -2745
  948. teradataml/dataframe/dataframe.py +17630 -16946
  949. teradataml/dataframe/dataframe_utils.py +1875 -1740
  950. teradataml/dataframe/fastload.py +794 -603
  951. teradataml/dataframe/indexer.py +424 -424
  952. teradataml/dataframe/setop.py +1179 -1166
  953. teradataml/dataframe/sql.py +10174 -6432
  954. teradataml/dataframe/sql_function_parameters.py +439 -388
  955. teradataml/dataframe/sql_functions.py +652 -652
  956. teradataml/dataframe/sql_interfaces.py +220 -220
  957. teradataml/dataframe/vantage_function_types.py +674 -630
  958. teradataml/dataframe/window.py +693 -692
  959. teradataml/dbutils/__init__.py +3 -3
  960. teradataml/dbutils/dbutils.py +1167 -1150
  961. teradataml/dbutils/filemgr.py +267 -267
  962. teradataml/gen_ai/__init__.py +2 -2
  963. teradataml/gen_ai/convAI.py +472 -472
  964. teradataml/geospatial/__init__.py +3 -3
  965. teradataml/geospatial/geodataframe.py +1105 -1094
  966. teradataml/geospatial/geodataframecolumn.py +392 -387
  967. teradataml/geospatial/geometry_types.py +925 -925
  968. teradataml/hyperparameter_tuner/__init__.py +1 -1
  969. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  970. teradataml/hyperparameter_tuner/utils.py +281 -187
  971. teradataml/lib/aed_0_1.dll +0 -0
  972. teradataml/lib/libaed_0_1.dylib +0 -0
  973. teradataml/lib/libaed_0_1.so +0 -0
  974. teradataml/libaed_0_1.dylib +0 -0
  975. teradataml/libaed_0_1.so +0 -0
  976. teradataml/opensource/__init__.py +1 -0
  977. teradataml/opensource/sklearn/__init__.py +1 -0
  978. teradataml/opensource/sklearn/_class.py +255 -0
  979. teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
  980. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  981. teradataml/opensource/sklearn/constants.py +54 -0
  982. teradataml/options/__init__.py +130 -124
  983. teradataml/options/configure.py +358 -336
  984. teradataml/options/display.py +176 -176
  985. teradataml/plot/__init__.py +2 -2
  986. teradataml/plot/axis.py +1388 -1388
  987. teradataml/plot/constants.py +15 -15
  988. teradataml/plot/figure.py +398 -398
  989. teradataml/plot/plot.py +760 -760
  990. teradataml/plot/query_generator.py +83 -83
  991. teradataml/plot/subplot.py +216 -216
  992. teradataml/scriptmgmt/UserEnv.py +3791 -3761
  993. teradataml/scriptmgmt/__init__.py +3 -3
  994. teradataml/scriptmgmt/lls_utils.py +1719 -1604
  995. teradataml/series/series.py +532 -532
  996. teradataml/series/series_utils.py +71 -71
  997. teradataml/table_operators/Apply.py +949 -917
  998. teradataml/table_operators/Script.py +1718 -1982
  999. teradataml/table_operators/TableOperator.py +1255 -1616
  1000. teradataml/table_operators/__init__.py +2 -3
  1001. teradataml/table_operators/apply_query_generator.py +262 -262
  1002. teradataml/table_operators/query_generator.py +507 -507
  1003. teradataml/table_operators/table_operator_query_generator.py +460 -460
  1004. teradataml/table_operators/table_operator_util.py +631 -639
  1005. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  1006. teradataml/table_operators/templates/dataframe_map.template +176 -176
  1007. teradataml/table_operators/templates/script_executor.template +170 -170
  1008. teradataml/utils/dtypes.py +684 -684
  1009. teradataml/utils/internal_buffer.py +84 -84
  1010. teradataml/utils/print_versions.py +205 -205
  1011. teradataml/utils/utils.py +410 -410
  1012. teradataml/utils/validators.py +2277 -2115
  1013. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
  1014. teradataml-20.0.0.1.dist-info/RECORD +1056 -0
  1015. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
  1016. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
  1017. teradataml/analytics/mle/AdaBoost.py +0 -651
  1018. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1019. teradataml/analytics/mle/Antiselect.py +0 -342
  1020. teradataml/analytics/mle/Arima.py +0 -641
  1021. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1022. teradataml/analytics/mle/Attribution.py +0 -1070
  1023. teradataml/analytics/mle/Betweenness.py +0 -658
  1024. teradataml/analytics/mle/Burst.py +0 -711
  1025. teradataml/analytics/mle/CCM.py +0 -600
  1026. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1027. teradataml/analytics/mle/CFilter.py +0 -460
  1028. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1029. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1030. teradataml/analytics/mle/Closeness.py +0 -737
  1031. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1032. teradataml/analytics/mle/Correlation.py +0 -477
  1033. teradataml/analytics/mle/Correlation2.py +0 -573
  1034. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1035. teradataml/analytics/mle/CoxPH.py +0 -556
  1036. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1037. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1038. teradataml/analytics/mle/DTW.py +0 -623
  1039. teradataml/analytics/mle/DWT.py +0 -564
  1040. teradataml/analytics/mle/DWT2D.py +0 -599
  1041. teradataml/analytics/mle/DecisionForest.py +0 -716
  1042. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1043. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1044. teradataml/analytics/mle/DecisionTree.py +0 -830
  1045. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1046. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1047. teradataml/analytics/mle/FMeasure.py +0 -402
  1048. teradataml/analytics/mle/FPGrowth.py +0 -734
  1049. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1050. teradataml/analytics/mle/GLM.py +0 -558
  1051. teradataml/analytics/mle/GLML1L2.py +0 -547
  1052. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1053. teradataml/analytics/mle/GLMPredict.py +0 -529
  1054. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1055. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1056. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1057. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1058. teradataml/analytics/mle/Histogram.py +0 -561
  1059. teradataml/analytics/mle/IDWT.py +0 -476
  1060. teradataml/analytics/mle/IDWT2D.py +0 -493
  1061. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1062. teradataml/analytics/mle/Interpolator.py +0 -918
  1063. teradataml/analytics/mle/KMeans.py +0 -485
  1064. teradataml/analytics/mle/KNN.py +0 -627
  1065. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1066. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1067. teradataml/analytics/mle/LAR.py +0 -439
  1068. teradataml/analytics/mle/LARPredict.py +0 -478
  1069. teradataml/analytics/mle/LDA.py +0 -548
  1070. teradataml/analytics/mle/LDAInference.py +0 -492
  1071. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1072. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1073. teradataml/analytics/mle/LinReg.py +0 -433
  1074. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1075. teradataml/analytics/mle/MinHash.py +0 -544
  1076. teradataml/analytics/mle/Modularity.py +0 -587
  1077. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1078. teradataml/analytics/mle/NERExtractor.py +0 -595
  1079. teradataml/analytics/mle/NERTrainer.py +0 -458
  1080. teradataml/analytics/mle/NGrams.py +0 -570
  1081. teradataml/analytics/mle/NPath.py +0 -634
  1082. teradataml/analytics/mle/NTree.py +0 -549
  1083. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1084. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1085. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1086. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1087. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1088. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1089. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1090. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1091. teradataml/analytics/mle/POSTagger.py +0 -417
  1092. teradataml/analytics/mle/Pack.py +0 -411
  1093. teradataml/analytics/mle/PageRank.py +0 -535
  1094. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1095. teradataml/analytics/mle/PathGenerator.py +0 -367
  1096. teradataml/analytics/mle/PathStart.py +0 -464
  1097. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1098. teradataml/analytics/mle/Pivot.py +0 -471
  1099. teradataml/analytics/mle/ROC.py +0 -425
  1100. teradataml/analytics/mle/RandomSample.py +0 -637
  1101. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1102. teradataml/analytics/mle/SAX.py +0 -779
  1103. teradataml/analytics/mle/SVMDense.py +0 -677
  1104. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1105. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1106. teradataml/analytics/mle/SVMSparse.py +0 -557
  1107. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1108. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1109. teradataml/analytics/mle/Sampling.py +0 -549
  1110. teradataml/analytics/mle/Scale.py +0 -565
  1111. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1112. teradataml/analytics/mle/ScaleMap.py +0 -378
  1113. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1114. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1115. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1116. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1117. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1118. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1119. teradataml/analytics/mle/Sessionize.py +0 -475
  1120. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1121. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1122. teradataml/analytics/mle/TF.py +0 -389
  1123. teradataml/analytics/mle/TFIDF.py +0 -504
  1124. teradataml/analytics/mle/TextChunker.py +0 -414
  1125. teradataml/analytics/mle/TextClassifier.py +0 -399
  1126. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1127. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1128. teradataml/analytics/mle/TextMorph.py +0 -494
  1129. teradataml/analytics/mle/TextParser.py +0 -623
  1130. teradataml/analytics/mle/TextTagger.py +0 -530
  1131. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1132. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1133. teradataml/analytics/mle/Unpack.py +0 -526
  1134. teradataml/analytics/mle/Unpivot.py +0 -438
  1135. teradataml/analytics/mle/VarMax.py +0 -776
  1136. teradataml/analytics/mle/VectorDistance.py +0 -762
  1137. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1138. teradataml/analytics/mle/XGBoost.py +0 -842
  1139. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1140. teradataml/analytics/mle/__init__.py +0 -123
  1141. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1142. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1143. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1144. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1145. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1146. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1147. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1148. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1149. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1150. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1151. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1152. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1153. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1154. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1155. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1156. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1157. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1158. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1159. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1160. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1161. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1162. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1163. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1164. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1165. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1166. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1167. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1168. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1169. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1170. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1171. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1172. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1173. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1174. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1175. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1176. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1177. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1178. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1179. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1180. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1181. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1182. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1183. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1184. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1185. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1186. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1187. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1188. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1189. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1190. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1191. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1192. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1193. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1194. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1195. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1196. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1197. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1198. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1199. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1200. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1201. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1202. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1203. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1204. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1205. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1206. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1207. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1208. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1209. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1210. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1211. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1212. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1213. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1214. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1215. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1216. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1217. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1218. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1219. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1220. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1221. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1222. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1223. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1224. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1225. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1226. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1227. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1228. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1229. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1230. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1231. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1232. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1233. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1234. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1235. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1236. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1237. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1238. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1239. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1240. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1241. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1242. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1243. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1244. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1245. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1246. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1247. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1248. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1249. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1250. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1251. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1252. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1253. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1254. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1255. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1256. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1257. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1258. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1259. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1260. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1261. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1262. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1263. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1264. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1265. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1266. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1267. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1268. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1269. teradataml/analytics/sqle/Antiselect.py +0 -321
  1270. teradataml/analytics/sqle/Attribution.py +0 -603
  1271. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1272. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1273. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1274. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1275. teradataml/analytics/sqle/NPath.py +0 -632
  1276. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1277. teradataml/analytics/sqle/Pack.py +0 -388
  1278. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1279. teradataml/analytics/sqle/Sessionize.py +0 -390
  1280. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1281. teradataml/analytics/sqle/Unpack.py +0 -503
  1282. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1283. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1284. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1285. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1286. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1287. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1288. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1289. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1290. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1291. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1292. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1293. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1294. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1295. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1296. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1297. teradataml/catalog/model_cataloging.py +0 -980
  1298. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1299. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1300. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1301. teradataml/table_operators/sandbox_container_util.py +0 -643
  1302. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1303. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
teradataml/plot/plot.py CHANGED
@@ -1,760 +1,760 @@
1
- # ##################################################################
2
- #
3
- # Copyright 2023 Teradata. All rights reserved.
4
- # TERADATA CONFIDENTIAL AND TRADE SECRET
5
- #
6
- # Primary Owner: Pradeep Garre (pradeep.garre@teradata.com)
7
- # Secondary Owner:
8
- #
9
- # This file implements _Plot, which is used to generate plot's on
10
- # teradataml DataFrames.
11
- #
12
- # ##################################################################
13
- import os
14
- from sqlalchemy import text
15
- from teradataml.common.exceptions import TeradataMlException
16
- from teradataml.common.messages import Messages
17
- from teradataml.common.messagecodes import MessageCodes
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import get_connection
20
- from teradataml.dataframe.sql import ColumnExpression
21
- from teradataml.options.configure import configure
22
- from teradataml.utils.validators import _Validators
23
- from teradataml.options.display import display
24
- from teradataml.plot.axis import Axis
25
- from teradataml.plot.figure import Figure
26
-
27
-
28
- class _Plot:
29
- def __init__(self, x, y, scale=None, kind='line', **kwargs):
30
- """
31
- DESCRIPTION:
32
- Generate plots on teradataml DataFrame. Following type of plots
33
- are supported, which can be specified using argument "kind":
34
- * bar plot
35
- * corr plot
36
- * line plot
37
- * mesh plot
38
- * scatter plot
39
- * wiggle plot
40
-
41
- PARAMETERS:
42
- x:
43
- Required Argument.
44
- Specifies a DataFrame column to use for the x-axis data.
45
- Types: teradataml DataFrame Column
46
-
47
- y:
48
- Required Argument.
49
- Specifies DataFrame column(s) to use for the y-axis data.
50
- Types: teradataml DataFrame Column OR list of teradataml DataFrame Columns.
51
-
52
- scale:
53
- Optional Argument.
54
- Specifies DataFrame column(s) to use for scale data to
55
- wiggle and mesh plots.
56
- Note:
57
- "scale" is significant for wiggle and mesh plots. Ignored for other
58
- type of plots.
59
- Types: teradataml DataFrame Column OR list of teradataml DataFrame Columns.
60
-
61
- kind:
62
- Optional Argument.
63
- Specifies the kind of plot.
64
- Permitted Values:
65
- * 'line'
66
- * 'bar'
67
- * 'scatter'
68
- * 'corr'
69
- * 'wiggle'
70
- * 'mesh'
71
- Default Value: line
72
- Types: str
73
-
74
- ax:
75
- Optional Argument.
76
- Specifies the axis for the plot.
77
- Types: Axis
78
-
79
- cmap:
80
- Optional Argument.
81
- Specifies the name of the colormap to be used for plotting.
82
- Note:
83
- * Significant only when corresponding type of plot is mesh or geometry.
84
- * Ignored for other type of plots.
85
- Permitted Values:
86
- * All the colormaps mentioned in below URLs are supported.
87
- * https://matplotlib.org/stable/tutorials/colors/colormaps.html
88
- * https://matplotlib.org/cmocean/
89
- Types: str
90
-
91
- color:
92
- Optional Argument.
93
- Specifies the color for the plot.
94
- Note:
95
- Hexadecimal color codes are not supported.
96
- Permitted Values:
97
- * 'blue'
98
- * 'orange'
99
- * 'green'
100
- * 'red'
101
- * 'purple'
102
- * 'brown'
103
- * 'pink'
104
- * 'gray'
105
- * 'olive'
106
- * 'cyan'
107
- * Apart from above mentioned colors, the colors mentioned in
108
- https://xkcd.com/color/rgb are also supported.
109
- Types: str
110
-
111
- figure:
112
- Optional Argument.
113
- Specifies the figure for the plot.
114
- Types: Figure
115
-
116
- figsize:
117
- Optional Argument.
118
- Specifies the size of the figure in a tuple of 2 elements. First
119
- element represents width of plot image in pixels and second
120
- element represents height of plot image in pixels.
121
- Default Value: (640, 480)
122
- Types: tuple
123
-
124
- figtype:
125
- Optional Argument.
126
- Specifies the type of the image to generate.
127
- Permitted Values:
128
- * 'png'
129
- * 'jpg'
130
- * 'svg'
131
- Default Value: 'png'
132
- Types: str
133
-
134
- figdpi:
135
- Optional Argument.
136
- Specifies the dots per inch for the plot image.
137
- Note:
138
- * Valid range for "dpi" is: 72 <= dpi <= 300.
139
- * This argument is not applicable for SVG Type image.
140
- Default Value: 100 for PNG and JPG Type image.
141
- Types: int
142
-
143
- grid_color:
144
- Optional Argument.
145
- Specifies the color of the grid. By default, grid is generated with
146
- Gray color.
147
- Note:
148
- Hexadecimal color codes are not supported.
149
- Permitted Values:
150
- * 'blue'
151
- * 'orange'
152
- * 'green'
153
- * 'red'
154
- * 'purple'
155
- * 'brown'
156
- * 'pink'
157
- * 'gray'
158
- * 'olive'
159
- * 'cyan'
160
- * Apart from above mentioned colors, the colors mentioned in
161
- https://xkcd.com/color/rgb are also supported.
162
- Types: str
163
-
164
- grid_format:
165
- Optional Argument.
166
- Specifies the format for the grid.
167
- Types: str
168
-
169
- grid_linestyle:
170
- Optional Argument.
171
- Specifies the line style of the grid.
172
- Permitted Values:
173
- * -
174
- * --
175
- * -.
176
- Default Value: -
177
- Types: str
178
-
179
- grid_linewidth:
180
- Optional Argument.
181
- Specifies the line width of the grid.
182
- Note:
183
- Valid range for "grid_linewidth" is: 0.5 <= grid_linewidth <= 10.
184
- Default Value: 0.8
185
- Types: int OR float
186
-
187
- heading:
188
- Optional Argument.
189
- Specifies the heading for the plot.
190
- Types: str
191
-
192
- legend:
193
- Optional Argument.
194
- Specifies the legend(s) for the Plot.
195
- Types: str OR list of str
196
-
197
- legend_style:
198
- Optional Argument.
199
- Specifies the location for legend to display on Plot image.
200
- Permitted Values:
201
- * 'upper right'
202
- * 'upper left'
203
- * 'lower right'
204
- * 'lower left'
205
- * 'right'
206
- * 'center left'
207
- * 'center right'
208
- * 'lower center'
209
- * 'upper center'
210
- * 'center'
211
- Default Value: 'upper right'
212
- Types: str
213
-
214
- linestyle:
215
- Optional Argument.
216
- Specifies the line style for the plot.
217
- Permitted Values:
218
- * -
219
- * --
220
- * -.
221
- * :
222
- Default Value: -
223
- Types: str
224
-
225
- linewidth:
226
- Optional Argument.
227
- Specifies the line width for the plot.
228
- Note:
229
- Valid range for "linewidth" is: 0.5 <= linewidth <= 10.
230
- Default Value: 0.8
231
- Types: int OR float
232
-
233
- marker:
234
- Optional Argument.
235
- Specifies the type of the marker to be used.
236
- Permitted Values:
237
- All the markers mentioned in https://matplotlib.org/stable/api/markers_api.html
238
- are supported.
239
- Types: str
240
-
241
- markersize:
242
- Optional Argument.
243
- Specifies the size of the marker.
244
- Note:
245
- Valid range for "markersize" is: 1 <= markersize <= 20.
246
- Default Value: 6
247
- Types: int OR float
248
-
249
- position:
250
- Optional Argument.
251
- Specifies the position of the axis in the figure. Accepts a tuple
252
- of two elements where first element represents the row and second
253
- element represents column.
254
- Default Value: (1, 1)
255
- Types: tuple
256
-
257
- span:
258
- Optional Argument.
259
- Specifies the span of the axis in the figure. Accepts a tuple
260
- of two elements where first element represents the row and second
261
- element represents column.
262
- For Example,
263
- Span of (2, 1) specifies the Axis occupies 2 rows and 1 column
264
- in Figure.
265
- Default Value: (1, 1)
266
- Types: tuple
267
-
268
- reverse_xaxis:
269
- Optional Argument.
270
- Specifies whether to reverse tick values on x-axis or not.
271
- Default Value: False
272
- Types: bool
273
-
274
- reverse_yaxis:
275
- Optional Argument.
276
- Specifies whether to reverse tick values on y-axis or not.
277
- Default Value: False
278
- Types: bool
279
-
280
- series_identifier:
281
- Optional Argument.
282
- Specifies the teradataml DataFrame Column which represents the
283
- identifier for the data. As many plots as distinct "series_identifier"
284
- are generated in a single Axis.
285
- For example:
286
- consider the below data in teradataml DataFrame.
287
- ID x y
288
- 0 1 1 1
289
- 1 1 2 2
290
- 2 2 10 10
291
- 3 2 20 20
292
- If "series_identifier" is not specified, simple plot is
293
- generated where every 'y' is plotted against 'x' in a
294
- single plot. However, specifying "series_identifier" as 'ID'
295
- generates two plots in a single axis. One plot is for ID 1
296
- and another plot is for ID 2.
297
- Types: teradataml DataFrame Column.
298
-
299
- title:
300
- Optional Argument.
301
- Specifies the title for the Axis.
302
- Types: str
303
-
304
- xlabel:
305
- Optional Argument.
306
- Specifies the label for x-axis.
307
- Notes:
308
- * When set to empty string, label is not displayed for x-axis.
309
- * When set to None, name of the x-axis column is displayed as
310
- label.
311
- Types: str
312
-
313
- xlim:
314
- Optional Argument.
315
- Specifies the range for xtick values.
316
- Types: tuple
317
-
318
- xtick_format:
319
- Optional Argument.
320
- Specifies how to format tick values for x-axis.
321
- Types: str
322
-
323
- ylabel:
324
- Optional Argument.
325
- Specifies the label for y-axis.
326
- Notes:
327
- * When set to empty string, label is not displayed for y-axis.
328
- * When set to None, name of the y-axis column(s) is displayed as
329
- label.
330
- Types: str
331
-
332
- ylim:
333
- Optional Argument.
334
- Specifies the range for ytick values.
335
- Types: tuple
336
-
337
- ytick_format:
338
- Optional Argument.
339
- Specifies how to format tick values for y-axis.
340
- Types: str
341
-
342
- vmin:
343
- Optional Argument.
344
- Specifies the lower range of the color map. By default, the range
345
- is derived from data and color codes are assigned accordingly.
346
- Note:
347
- "vmin" Significant only for Mesh and Geometry Plot.
348
- Types: int OR float
349
-
350
- vmax:
351
- Optional Argument.
352
- Specifies the upper range of the color map. By default, the range is
353
- derived from data and color codes are assigned accordingly.
354
- Note:
355
- "vmax" Significant only for Mesh and Geometry Plot.
356
- For example:
357
- Assuming user wants to use colormap 'matter' and derive the colors for
358
- values which are in between 1 and 100.
359
- Note: colormap 'matter' starts with Pale Yellow and ends with Violet.
360
- * If "colormap_range" is not specified, then range is derived from
361
- existing values. Thus, colors are represented as below in the whole range:
362
- * 1 as Pale Yellow.
363
- * 100 as Violet.
364
- * If "colormap_range" is specified as -100 and 100, the value 1 is at middle of
365
- the specified range. Thus, colors are represented as below in the whole range:
366
- * -100 as Pale Yellow.
367
- * 1 as Orange.
368
- * 100 as Violet.
369
- Types: int OR float
370
-
371
- wiggle_fill:
372
- Optional Argument.
373
- Specifies whether to fill the wiggle area or not. By default, the right
374
- positive half of the wiggle is not filled. If specified as True, wiggle
375
- area is filled.
376
- Note:
377
- Applicable only for the wiggle plot.
378
- Default Value: False
379
- Types: bool
380
-
381
- wiggle_scale:
382
- Optional Argument.
383
- Specifies the scale of the wiggle. By default, the amplitude of wiggle is scaled
384
- relative to RMS of the first payload. In certain cases, it can lead to excessively
385
- large wiggles. Use SCALE to adjust the relative size of the wiggle.
386
- Note:
387
- Applicable only for the wiggle and mesh plots.
388
- Types: int OR float
389
-
390
- ignore_nulls:
391
- Optional Argument.
392
- Specifies whether to delete rows with null values or not present in 'x', 'y' and
393
- 'scale' params.
394
- Default Value: False
395
- Types: bool
396
-
397
-
398
- RAISES:
399
- TeradataMlException
400
-
401
- EXAMPLES:
402
- # Examples added in DataFrame.plot().
403
- """
404
- self.x = x
405
- self.y = y
406
- self.scale = scale
407
- self.kind = kind
408
-
409
- arg_info_matrix = []
410
-
411
- if self.kind != "geometry":
412
- arg_info_matrix.append(["x", self.x, False, (ColumnExpression), True])
413
-
414
- arg_info_matrix.append(["y", self.y, False, (ColumnExpression, list, tuple), True])
415
- arg_info_matrix.append(["scale", self.scale, True, ColumnExpression, True])
416
-
417
- # Permitted values for kind.
418
- kind_permitted_values = ["bar", "corr", "line", "mesh", "scatter", "wiggle",
419
- "geometry"]
420
-
421
- arg_info_matrix.append(["kind", self.kind, True, (str),
422
- True, kind_permitted_values])
423
-
424
- # Extract figure and figure related arguments from kwargs.
425
- self.figure = kwargs.get("figure")
426
- self.figsize = kwargs.get("figsize", (640, 480))
427
- self.figtype = kwargs.get("figtype", "png")
428
- self.figdpi = kwargs.get("figdpi", None)
429
-
430
- # Default value for 'figdpi' is 100 for figtype='png' and figtype='jpg'.
431
- if self.figtype in ["png", "jpg"] and self.figdpi is None:
432
- self.figdpi = 100
433
-
434
- arg_info_matrix.append(["figure", self.figure, True, (Figure), False])
435
-
436
- figtype_permitted_values = ["png", "jpg", "svg"]
437
- arg_info_matrix.append(["figtype", self.figtype, True,
438
- (str), True, figtype_permitted_values])
439
- arg_info_matrix.append(["figsize", self.figsize, True, (tuple), True])
440
- arg_info_matrix.append(["figdpi", self.figdpi, True, (int), True])
441
-
442
- # Extract wiggle_fill and wiggle_scale from parameters.
443
- self.wiggle_fill = kwargs.pop("wiggle_fill", None)
444
- self.wiggle_scale = kwargs.pop("wiggle_scale", None)
445
-
446
- arg_info_matrix.append((["wiggle_fill", self.wiggle_fill, True, (bool)]))
447
- arg_info_matrix.append((["wiggle_scale", self.wiggle_scale, True, (int, float)]))
448
-
449
- # 'wiggle_scale' is applicable only for Mesh and Wiggle plot.
450
- _Validators._validate_dependent_argument("wiggle_scale", self.wiggle_scale,
451
- "kind", None if self.kind not in ['wiggle', 'mesh'] else self.kind, "kind='wiggle' or kind='mesh'")
452
-
453
- # 'wiggle_fill' is applicable only for wiggle plot.
454
- _Validators._validate_dependent_argument("wiggle_fill", self.wiggle_fill,
455
- "kind", None if self.kind != "wiggle" else self.kind, "kind='wiggle'")
456
-
457
- # Argument validations.
458
- _Validators._validate_function_arguments(arg_info_matrix)
459
-
460
- # 'figdpi' is applicable only for "png" and "jpg" type only.
461
- _Validators._validate_dependent_argument("figdpi", self.figdpi,
462
- "figtype", None if self.figtype not in ["png", "jpg"] else self.figtype, "figtype='png' or figtype='jpg'")
463
-
464
- # Argument range check.
465
- _Validators._validate_argument_range(self.figdpi, "figdpi",
466
- lbound=72, lbound_inclusive=True,
467
- ubound=300, ubound_inclusive=True)
468
-
469
- # Get figure. If user did not pass, create a default one.
470
- # self.figure = kwargs.get("figure")
471
- if self.figure is None:
472
- self.figure = Figure()
473
- self._figure = self.figure
474
-
475
- axis = kwargs.get("ax")
476
- # If axis is not passed, generate a default one.
477
- if axis is None:
478
- axis = Axis(kind=kind, **kwargs)
479
- else:
480
- # If user passes axes, i.e., for subplot, add additional params
481
- # which is passed as kwargs.
482
- axis.set_params(kind=kind, **kwargs)
483
-
484
- # Set the axis data.
485
- axis._set_data(x, y, scale=scale)
486
-
487
- # Add the axis to figure.
488
- self._figure._add_axis(axis)
489
- self._query = None
490
- self._plot_image_data = None
491
- self.__heading = kwargs.get("heading")
492
- _Validators._validate_input_columns_not_empty(self.__heading, "heading")
493
- self.__params = kwargs
494
-
495
- def _execute_query(self):
496
- """
497
- DESCRIPTION:
498
- Internal function to execute the Plot Query.
499
-
500
- EXAMPLES:
501
- >>> _plot._execute_query()
502
- """
503
- if self._plot_image_data is None:
504
- query = self._get_query()
505
-
506
- res = get_connection().execute(text(query))
507
-
508
- self._plot_image_data = res.fetchone().IMAGE
509
-
510
- def show_query(self):
511
- """
512
- DESCRIPTION:
513
- Function to display the query used to generate Plot.
514
-
515
- EXAMPLES:
516
- # Example - Create a DataFrame and plot the data using DataFrame.plot.
517
- # And, display the query.
518
- # Load the data.
519
- >>> load_example_data("movavg", "ibm_stock")
520
- # Create DataFrame.
521
- >>> ibm_stock = DataFrame("ibm_stock")
522
- # Display the query.
523
- >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
524
- >>> plot.show_query()
525
- """
526
- return self._get_query()
527
-
528
- def show(self):
529
- """
530
- DESCRIPTION:
531
- Function to show the plot in the console. The function displays plot
532
- in either on the console or in a new window based on the option 'inline_plot'.
533
- * If the console is IPython console, the plot is displayed on the console
534
- when the option 'inline_plot' is set to True. If the option 'inline_plot'
535
- is set to False, plot is displayed on new window.
536
- * If the console is regular Python console and not an IPython console,
537
- then plot is displayed on a new window irrespective of option 'inline_plot'.
538
- Note:
539
- Displaying the plot in a new window requires an additional Python module
540
- tkinter. One needs to install it manually since teradataml does not install
541
- it by default.
542
-
543
- EXAMPLES:
544
- # Example 1 - Generate a line plot and display it in the console.
545
- >>> load_example_data("movavg", "ibm_stock")
546
- # Set the option to display the plot in the console.
547
- >>> from teradataml import configure
548
- >>> configure.inline_plot = True
549
- # Create DataFrame.
550
- >>> ibm_stock = DataFrame("ibm_stock")
551
- # Generate the plot
552
- >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
553
- >>> plot.show()
554
-
555
- # Example 2 - Generate a bar plot and display it in a new window.
556
- >>> load_example_data("movavg", "ibm_stock")
557
- # Set the option to display the plot in a new window.
558
- >>> from teradataml import configure
559
- >>> configure.inline_plot = False
560
- # Create DataFrame.
561
- >>> ibm_stock = DataFrame("ibm_stock")
562
- # Generate the plot
563
- >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice, kind="bar")
564
- >>> plot.show()
565
- """
566
- query = self._get_query()
567
-
568
- self._execute_query()
569
-
570
- # If user choose for inline plot, then check if Python console supports
571
- # inline plotting or not. If not supports, then go for outline plot.
572
- if configure.inline_plot is None:
573
- try:
574
- if __IPYTHON__:
575
- self._show_inline_plot()
576
- except NameError:
577
- self._show_outline_plot()
578
- else:
579
- self._show_inline_plot() if configure.inline_plot else self._show_outline_plot()
580
-
581
- def _repr_html_(self):
582
- """
583
- DESCRIPTION:
584
- Function to display the Plot in for iPython rich display.
585
- """
586
- self.show()
587
-
588
- def _show_inline_plot(self):
589
- """
590
- DESCRIPTION:
591
- Internal function to display the plot in the console.
592
-
593
- EXAMPLES:
594
- # Example - Create a DataFrame and plot the data using DataFrame.plot.
595
- # And, display it in same console.
596
- # Load the data.
597
- >>> load_example_data("movavg", "ibm_stock")
598
- # Create DataFrame.
599
- >>> ibm_stock = DataFrame("ibm_stock")
600
- # Generate plot and display it in console.
601
- >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
602
- >>> plot._show_inline_plot()
603
- """
604
- from IPython.display import display as dsp, Image
605
- dsp(Image(data=self._plot_image_data))
606
-
607
- def _show_outline_plot(self):
608
- """
609
- DESCRIPTION:
610
- Internal function to display the plot in a new window.
611
-
612
- EXAMPLES:
613
- # Example - Create a DataFrame and plot the data using DataFrame.plot.
614
- # And, display it in a new window.
615
- # Load the data.
616
- >>> load_example_data("movavg", "ibm_stock")
617
- # Create DataFrame.
618
- >>> ibm_stock = DataFrame("ibm_stock")
619
- # Generate plot and display it in console.
620
- >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
621
- >>> plot._show_outline_plot()
622
- """
623
- try:
624
- import tkinter as tk
625
- root = tk.Tk()
626
- file_format = self._figure.image_type
627
- canvas = tk.Canvas(width=self._figure.width, height=self._figure.height)
628
- canvas.pack()
629
- img = tk.PhotoImage(data=self._plot_image_data, format=file_format)
630
- canvas.create_image(0, 0, anchor=tk.NW, image=img)
631
- root.wm_iconbitmap(os.path.join(UtilFuncs._get_tdml_directory(), "data", "teradata_icon.ico"))
632
- root.wm_title('teradataml plot')
633
- root.mainloop()
634
- except ModuleNotFoundError:
635
- print("Install module 'tkinter' to display the plot.")
636
-
637
- def _get_query(self):
638
- """
639
- DESCRIPTION:
640
- Internal function to get the query.
641
-
642
- EXAMPLES:
643
- >>> plot._get_query()
644
- """
645
-
646
- if not self._query:
647
-
648
- from teradataml.plot.query_generator import PlotQueryGenerator
649
- _series_spec = []
650
- _plot_params = []
651
- func_other_args = {}
652
-
653
- _id = 1
654
- # Every figure has one or more axis. And, every axis contains
655
- # plot data and axis parameters.
656
- for axis in self._figure.get_axes():
657
-
658
- if axis._has_data():
659
- _virtual_table, _spec, _plot_param = axis._get_plot_data()
660
- _plot_param["ID"] = _id
661
- _series_spec.append(_spec)
662
-
663
- # Update the wiggle parameters.
664
- if self.kind.lower() == "wiggle":
665
- _wiggle_params = {}
666
- if self.wiggle_fill is not None:
667
- _wiggle_params["FILL"] = 1 if self.wiggle_fill else 0
668
-
669
- if self.wiggle_scale is not None:
670
- _wiggle_params["SCALE"] = self.wiggle_scale
671
-
672
- if _wiggle_params:
673
- _plot_param["WIGGLE"] = _wiggle_params
674
-
675
- _plot_params.append(_plot_param)
676
- _id = _id + 1
677
-
678
- dpi = self.__params.get("figdpi") if self.__params.get("figdpi") else self._figure.dpi
679
- height = self.__params.get("figsize")[1] if self.__params.get("figsize") else self._figure.height
680
- width = self.__params.get("figsize")[0] if self.__params.get("figsize") else self._figure.width
681
- type_ = self.__params.get("figtype") if self.__params.get("figtype") else self._figure.image_type
682
-
683
- # teradataml maintains layout as rows and columns. However,
684
- # SQL maintains it as columns and rows. Hence, reverse the layout.
685
- layout = self._figure.layout[::-1]
686
- func_other_args.update({"LAYOUT": layout,
687
- "PLOTS": _plot_params,
688
- "DPI": dpi,
689
- "IMAGE": "'{}'".format(type_),
690
- "WIDTH": width,
691
- "HEIGHT": height
692
- })
693
-
694
- heading = self.__heading if self.__heading is not None else self._figure.heading
695
- if heading:
696
- func_other_args["TITLE"] = "'{}'".format(heading)
697
-
698
- query_generator = PlotQueryGenerator(function_name="TD_PLOT",
699
- func_input_args=", \n".join(_series_spec),
700
- func_input_filter_expr_args=None,
701
- func_output_args=None,
702
- func_other_args=func_other_args)
703
-
704
- self._query = query_generator._get_display_uaf()
705
-
706
- return self._query
707
-
708
- def save(self, file_name, dir=None):
709
- """
710
- Function to save the plot to an image.
711
-
712
- PARAMETERS:
713
- file_name:
714
- Required Argument.
715
- Specifies the name of the image file.
716
- Note:
717
- Do not mention the extension for the filename.
718
- Types: str
719
-
720
- dir:
721
- Optional Argument.
722
- Specifies the absolute path of the directory to store the plot image.
723
- Types: str
724
-
725
- RAISES:
726
- TeradataMlException
727
-
728
- EXAMPLES:
729
- # Example 1: Generate a scatter plot and store it in current directory.
730
- # Load the data.
731
- >>> load_example_data("movavg", "ibm_stock")
732
- # Create DataFrame.
733
- >>> ibm_stock = DataFrame("ibm_stock")
734
- # Generate plot.
735
- >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
736
- >>> plot.save("example1")
737
-
738
- # Example 2: Generate a scatter plot and store it in temp directory.
739
- # Load the data.
740
- >>> load_example_data("movavg", "ibm_stock")
741
- # Create DataFrame.
742
- >>> ibm_stock = DataFrame("ibm_stock")
743
- # Generate plot.
744
- >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
745
- >>> # Store in temp directory.
746
- >>> from tempfile import gettempdir
747
- >>> plot.save("example2", dir=gettempdir())
748
- """
749
- # TODO: Check for the existance of 'dir'.
750
- type_ = self.__params.get("figtype") if self.__params.get("figtype") else self._figure.image_type
751
- file_name = "{}.{}".format(file_name, type_)
752
- if dir:
753
- file_name = os.path.join(dir, file_name)
754
-
755
- # Execute the query if it is not executed already.
756
- self._execute_query()
757
-
758
- # Store the image.
759
- with open(file_name, "wb") as fp:
760
- fp.write(self._plot_image_data)
1
+ # ##################################################################
2
+ #
3
+ # Copyright 2023 Teradata. All rights reserved.
4
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
5
+ #
6
+ # Primary Owner: Pradeep Garre (pradeep.garre@teradata.com)
7
+ # Secondary Owner:
8
+ #
9
+ # This file implements _Plot, which is used to generate plot's on
10
+ # teradataml DataFrames.
11
+ #
12
+ # ##################################################################
13
+ import os
14
+ from sqlalchemy import text
15
+ from teradataml.common.exceptions import TeradataMlException
16
+ from teradataml.common.messages import Messages
17
+ from teradataml.common.messagecodes import MessageCodes
18
+ from teradataml.common.utils import UtilFuncs
19
+ from teradataml.context.context import get_connection
20
+ from teradataml.dataframe.sql import ColumnExpression
21
+ from teradataml.options.configure import configure
22
+ from teradataml.utils.validators import _Validators
23
+ from teradataml.options.display import display
24
+ from teradataml.plot.axis import Axis
25
+ from teradataml.plot.figure import Figure
26
+
27
+
28
+ class _Plot:
29
+ def __init__(self, x, y, scale=None, kind='line', **kwargs):
30
+ """
31
+ DESCRIPTION:
32
+ Generate plots on teradataml DataFrame. Following type of plots
33
+ are supported, which can be specified using argument "kind":
34
+ * bar plot
35
+ * corr plot
36
+ * line plot
37
+ * mesh plot
38
+ * scatter plot
39
+ * wiggle plot
40
+
41
+ PARAMETERS:
42
+ x:
43
+ Required Argument.
44
+ Specifies a DataFrame column to use for the x-axis data.
45
+ Types: teradataml DataFrame Column
46
+
47
+ y:
48
+ Required Argument.
49
+ Specifies DataFrame column(s) to use for the y-axis data.
50
+ Types: teradataml DataFrame Column OR list of teradataml DataFrame Columns.
51
+
52
+ scale:
53
+ Optional Argument.
54
+ Specifies DataFrame column(s) to use for scale data to
55
+ wiggle and mesh plots.
56
+ Note:
57
+ "scale" is significant for wiggle and mesh plots. Ignored for other
58
+ type of plots.
59
+ Types: teradataml DataFrame Column OR list of teradataml DataFrame Columns.
60
+
61
+ kind:
62
+ Optional Argument.
63
+ Specifies the kind of plot.
64
+ Permitted Values:
65
+ * 'line'
66
+ * 'bar'
67
+ * 'scatter'
68
+ * 'corr'
69
+ * 'wiggle'
70
+ * 'mesh'
71
+ Default Value: line
72
+ Types: str
73
+
74
+ ax:
75
+ Optional Argument.
76
+ Specifies the axis for the plot.
77
+ Types: Axis
78
+
79
+ cmap:
80
+ Optional Argument.
81
+ Specifies the name of the colormap to be used for plotting.
82
+ Note:
83
+ * Significant only when corresponding type of plot is mesh or geometry.
84
+ * Ignored for other type of plots.
85
+ Permitted Values:
86
+ * All the colormaps mentioned in below URLs are supported.
87
+ * https://matplotlib.org/stable/tutorials/colors/colormaps.html
88
+ * https://matplotlib.org/cmocean/
89
+ Types: str
90
+
91
+ color:
92
+ Optional Argument.
93
+ Specifies the color for the plot.
94
+ Note:
95
+ Hexadecimal color codes are not supported.
96
+ Permitted Values:
97
+ * 'blue'
98
+ * 'orange'
99
+ * 'green'
100
+ * 'red'
101
+ * 'purple'
102
+ * 'brown'
103
+ * 'pink'
104
+ * 'gray'
105
+ * 'olive'
106
+ * 'cyan'
107
+ * Apart from above mentioned colors, the colors mentioned in
108
+ https://xkcd.com/color/rgb are also supported.
109
+ Types: str
110
+
111
+ figure:
112
+ Optional Argument.
113
+ Specifies the figure for the plot.
114
+ Types: Figure
115
+
116
+ figsize:
117
+ Optional Argument.
118
+ Specifies the size of the figure in a tuple of 2 elements. First
119
+ element represents width of plot image in pixels and second
120
+ element represents height of plot image in pixels.
121
+ Default Value: (640, 480)
122
+ Types: tuple
123
+
124
+ figtype:
125
+ Optional Argument.
126
+ Specifies the type of the image to generate.
127
+ Permitted Values:
128
+ * 'png'
129
+ * 'jpg'
130
+ * 'svg'
131
+ Default Value: 'png'
132
+ Types: str
133
+
134
+ figdpi:
135
+ Optional Argument.
136
+ Specifies the dots per inch for the plot image.
137
+ Note:
138
+ * Valid range for "dpi" is: 72 <= dpi <= 300.
139
+ * This argument is not applicable for SVG Type image.
140
+ Default Value: 100 for PNG and JPG Type image.
141
+ Types: int
142
+
143
+ grid_color:
144
+ Optional Argument.
145
+ Specifies the color of the grid. By default, grid is generated with
146
+ Gray color.
147
+ Note:
148
+ Hexadecimal color codes are not supported.
149
+ Permitted Values:
150
+ * 'blue'
151
+ * 'orange'
152
+ * 'green'
153
+ * 'red'
154
+ * 'purple'
155
+ * 'brown'
156
+ * 'pink'
157
+ * 'gray'
158
+ * 'olive'
159
+ * 'cyan'
160
+ * Apart from above mentioned colors, the colors mentioned in
161
+ https://xkcd.com/color/rgb are also supported.
162
+ Types: str
163
+
164
+ grid_format:
165
+ Optional Argument.
166
+ Specifies the format for the grid.
167
+ Types: str
168
+
169
+ grid_linestyle:
170
+ Optional Argument.
171
+ Specifies the line style of the grid.
172
+ Permitted Values:
173
+ * -
174
+ * --
175
+ * -.
176
+ Default Value: -
177
+ Types: str
178
+
179
+ grid_linewidth:
180
+ Optional Argument.
181
+ Specifies the line width of the grid.
182
+ Note:
183
+ Valid range for "grid_linewidth" is: 0.5 <= grid_linewidth <= 10.
184
+ Default Value: 0.8
185
+ Types: int OR float
186
+
187
+ heading:
188
+ Optional Argument.
189
+ Specifies the heading for the plot.
190
+ Types: str
191
+
192
+ legend:
193
+ Optional Argument.
194
+ Specifies the legend(s) for the Plot.
195
+ Types: str OR list of str
196
+
197
+ legend_style:
198
+ Optional Argument.
199
+ Specifies the location for legend to display on Plot image.
200
+ Permitted Values:
201
+ * 'upper right'
202
+ * 'upper left'
203
+ * 'lower right'
204
+ * 'lower left'
205
+ * 'right'
206
+ * 'center left'
207
+ * 'center right'
208
+ * 'lower center'
209
+ * 'upper center'
210
+ * 'center'
211
+ Default Value: 'upper right'
212
+ Types: str
213
+
214
+ linestyle:
215
+ Optional Argument.
216
+ Specifies the line style for the plot.
217
+ Permitted Values:
218
+ * -
219
+ * --
220
+ * -.
221
+ * :
222
+ Default Value: -
223
+ Types: str
224
+
225
+ linewidth:
226
+ Optional Argument.
227
+ Specifies the line width for the plot.
228
+ Note:
229
+ Valid range for "linewidth" is: 0.5 <= linewidth <= 10.
230
+ Default Value: 0.8
231
+ Types: int OR float
232
+
233
+ marker:
234
+ Optional Argument.
235
+ Specifies the type of the marker to be used.
236
+ Permitted Values:
237
+ All the markers mentioned in https://matplotlib.org/stable/api/markers_api.html
238
+ are supported.
239
+ Types: str
240
+
241
+ markersize:
242
+ Optional Argument.
243
+ Specifies the size of the marker.
244
+ Note:
245
+ Valid range for "markersize" is: 1 <= markersize <= 20.
246
+ Default Value: 6
247
+ Types: int OR float
248
+
249
+ position:
250
+ Optional Argument.
251
+ Specifies the position of the axis in the figure. Accepts a tuple
252
+ of two elements where first element represents the row and second
253
+ element represents column.
254
+ Default Value: (1, 1)
255
+ Types: tuple
256
+
257
+ span:
258
+ Optional Argument.
259
+ Specifies the span of the axis in the figure. Accepts a tuple
260
+ of two elements where first element represents the row and second
261
+ element represents column.
262
+ For Example,
263
+ Span of (2, 1) specifies the Axis occupies 2 rows and 1 column
264
+ in Figure.
265
+ Default Value: (1, 1)
266
+ Types: tuple
267
+
268
+ reverse_xaxis:
269
+ Optional Argument.
270
+ Specifies whether to reverse tick values on x-axis or not.
271
+ Default Value: False
272
+ Types: bool
273
+
274
+ reverse_yaxis:
275
+ Optional Argument.
276
+ Specifies whether to reverse tick values on y-axis or not.
277
+ Default Value: False
278
+ Types: bool
279
+
280
+ series_identifier:
281
+ Optional Argument.
282
+ Specifies the teradataml DataFrame Column which represents the
283
+ identifier for the data. As many plots as distinct "series_identifier"
284
+ are generated in a single Axis.
285
+ For example:
286
+ consider the below data in teradataml DataFrame.
287
+ ID x y
288
+ 0 1 1 1
289
+ 1 1 2 2
290
+ 2 2 10 10
291
+ 3 2 20 20
292
+ If "series_identifier" is not specified, simple plot is
293
+ generated where every 'y' is plotted against 'x' in a
294
+ single plot. However, specifying "series_identifier" as 'ID'
295
+ generates two plots in a single axis. One plot is for ID 1
296
+ and another plot is for ID 2.
297
+ Types: teradataml DataFrame Column.
298
+
299
+ title:
300
+ Optional Argument.
301
+ Specifies the title for the Axis.
302
+ Types: str
303
+
304
+ xlabel:
305
+ Optional Argument.
306
+ Specifies the label for x-axis.
307
+ Notes:
308
+ * When set to empty string, label is not displayed for x-axis.
309
+ * When set to None, name of the x-axis column is displayed as
310
+ label.
311
+ Types: str
312
+
313
+ xlim:
314
+ Optional Argument.
315
+ Specifies the range for xtick values.
316
+ Types: tuple
317
+
318
+ xtick_format:
319
+ Optional Argument.
320
+ Specifies how to format tick values for x-axis.
321
+ Types: str
322
+
323
+ ylabel:
324
+ Optional Argument.
325
+ Specifies the label for y-axis.
326
+ Notes:
327
+ * When set to empty string, label is not displayed for y-axis.
328
+ * When set to None, name of the y-axis column(s) is displayed as
329
+ label.
330
+ Types: str
331
+
332
+ ylim:
333
+ Optional Argument.
334
+ Specifies the range for ytick values.
335
+ Types: tuple
336
+
337
+ ytick_format:
338
+ Optional Argument.
339
+ Specifies how to format tick values for y-axis.
340
+ Types: str
341
+
342
+ vmin:
343
+ Optional Argument.
344
+ Specifies the lower range of the color map. By default, the range
345
+ is derived from data and color codes are assigned accordingly.
346
+ Note:
347
+ "vmin" Significant only for Mesh and Geometry Plot.
348
+ Types: int OR float
349
+
350
+ vmax:
351
+ Optional Argument.
352
+ Specifies the upper range of the color map. By default, the range is
353
+ derived from data and color codes are assigned accordingly.
354
+ Note:
355
+ "vmax" Significant only for Mesh and Geometry Plot.
356
+ For example:
357
+ Assuming user wants to use colormap 'matter' and derive the colors for
358
+ values which are in between 1 and 100.
359
+ Note: colormap 'matter' starts with Pale Yellow and ends with Violet.
360
+ * If "colormap_range" is not specified, then range is derived from
361
+ existing values. Thus, colors are represented as below in the whole range:
362
+ * 1 as Pale Yellow.
363
+ * 100 as Violet.
364
+ * If "colormap_range" is specified as -100 and 100, the value 1 is at middle of
365
+ the specified range. Thus, colors are represented as below in the whole range:
366
+ * -100 as Pale Yellow.
367
+ * 1 as Orange.
368
+ * 100 as Violet.
369
+ Types: int OR float
370
+
371
+ wiggle_fill:
372
+ Optional Argument.
373
+ Specifies whether to fill the wiggle area or not. By default, the right
374
+ positive half of the wiggle is not filled. If specified as True, wiggle
375
+ area is filled.
376
+ Note:
377
+ Applicable only for the wiggle plot.
378
+ Default Value: False
379
+ Types: bool
380
+
381
+ wiggle_scale:
382
+ Optional Argument.
383
+ Specifies the scale of the wiggle. By default, the amplitude of wiggle is scaled
384
+ relative to RMS of the first payload. In certain cases, it can lead to excessively
385
+ large wiggles. Use SCALE to adjust the relative size of the wiggle.
386
+ Note:
387
+ Applicable only for the wiggle and mesh plots.
388
+ Types: int OR float
389
+
390
+ ignore_nulls:
391
+ Optional Argument.
392
+ Specifies whether to delete rows with null values or not present in 'x', 'y' and
393
+ 'scale' params.
394
+ Default Value: False
395
+ Types: bool
396
+
397
+
398
+ RAISES:
399
+ TeradataMlException
400
+
401
+ EXAMPLES:
402
+ # Examples added in DataFrame.plot().
403
+ """
404
+ self.x = x
405
+ self.y = y
406
+ self.scale = scale
407
+ self.kind = kind
408
+
409
+ arg_info_matrix = []
410
+
411
+ if self.kind != "geometry":
412
+ arg_info_matrix.append(["x", self.x, False, (ColumnExpression), True])
413
+
414
+ arg_info_matrix.append(["y", self.y, False, (ColumnExpression, list, tuple), True])
415
+ arg_info_matrix.append(["scale", self.scale, True, ColumnExpression, True])
416
+
417
+ # Permitted values for kind.
418
+ kind_permitted_values = ["bar", "corr", "line", "mesh", "scatter", "wiggle",
419
+ "geometry"]
420
+
421
+ arg_info_matrix.append(["kind", self.kind, True, (str),
422
+ True, kind_permitted_values])
423
+
424
+ # Extract figure and figure related arguments from kwargs.
425
+ self.figure = kwargs.get("figure")
426
+ self.figsize = kwargs.get("figsize", (640, 480))
427
+ self.figtype = kwargs.get("figtype", "png")
428
+ self.figdpi = kwargs.get("figdpi", None)
429
+
430
+ # Default value for 'figdpi' is 100 for figtype='png' and figtype='jpg'.
431
+ if self.figtype in ["png", "jpg"] and self.figdpi is None:
432
+ self.figdpi = 100
433
+
434
+ arg_info_matrix.append(["figure", self.figure, True, (Figure), False])
435
+
436
+ figtype_permitted_values = ["png", "jpg", "svg"]
437
+ arg_info_matrix.append(["figtype", self.figtype, True,
438
+ (str), True, figtype_permitted_values])
439
+ arg_info_matrix.append(["figsize", self.figsize, True, (tuple), True])
440
+ arg_info_matrix.append(["figdpi", self.figdpi, True, (int), True])
441
+
442
+ # Extract wiggle_fill and wiggle_scale from parameters.
443
+ self.wiggle_fill = kwargs.pop("wiggle_fill", None)
444
+ self.wiggle_scale = kwargs.pop("wiggle_scale", None)
445
+
446
+ arg_info_matrix.append((["wiggle_fill", self.wiggle_fill, True, (bool)]))
447
+ arg_info_matrix.append((["wiggle_scale", self.wiggle_scale, True, (int, float)]))
448
+
449
+ # 'wiggle_scale' is applicable only for Mesh and Wiggle plot.
450
+ _Validators._validate_dependent_argument("wiggle_scale", self.wiggle_scale,
451
+ "kind", None if self.kind not in ['wiggle', 'mesh'] else self.kind, "kind='wiggle' or kind='mesh'")
452
+
453
+ # 'wiggle_fill' is applicable only for wiggle plot.
454
+ _Validators._validate_dependent_argument("wiggle_fill", self.wiggle_fill,
455
+ "kind", None if self.kind != "wiggle" else self.kind, "kind='wiggle'")
456
+
457
+ # Argument validations.
458
+ _Validators._validate_function_arguments(arg_info_matrix)
459
+
460
+ # 'figdpi' is applicable only for "png" and "jpg" type only.
461
+ _Validators._validate_dependent_argument("figdpi", self.figdpi,
462
+ "figtype", None if self.figtype not in ["png", "jpg"] else self.figtype, "figtype='png' or figtype='jpg'")
463
+
464
+ # Argument range check.
465
+ _Validators._validate_argument_range(self.figdpi, "figdpi",
466
+ lbound=72, lbound_inclusive=True,
467
+ ubound=300, ubound_inclusive=True)
468
+
469
+ # Get figure. If user did not pass, create a default one.
470
+ # self.figure = kwargs.get("figure")
471
+ if self.figure is None:
472
+ self.figure = Figure()
473
+ self._figure = self.figure
474
+
475
+ axis = kwargs.get("ax")
476
+ # If axis is not passed, generate a default one.
477
+ if axis is None:
478
+ axis = Axis(kind=kind, **kwargs)
479
+ else:
480
+ # If user passes axes, i.e., for subplot, add additional params
481
+ # which is passed as kwargs.
482
+ axis.set_params(kind=kind, **kwargs)
483
+
484
+ # Set the axis data.
485
+ axis._set_data(x, y, scale=scale)
486
+
487
+ # Add the axis to figure.
488
+ self._figure._add_axis(axis)
489
+ self._query = None
490
+ self._plot_image_data = None
491
+ self.__heading = kwargs.get("heading")
492
+ _Validators._validate_input_columns_not_empty(self.__heading, "heading")
493
+ self.__params = kwargs
494
+
495
+ def _execute_query(self):
496
+ """
497
+ DESCRIPTION:
498
+ Internal function to execute the Plot Query.
499
+
500
+ EXAMPLES:
501
+ >>> _plot._execute_query()
502
+ """
503
+ if self._plot_image_data is None:
504
+ query = self._get_query()
505
+
506
+ res = get_connection().execute(text(query))
507
+
508
+ self._plot_image_data = res.fetchone().IMAGE
509
+
510
+ def show_query(self):
511
+ """
512
+ DESCRIPTION:
513
+ Function to display the query used to generate Plot.
514
+
515
+ EXAMPLES:
516
+ # Example - Create a DataFrame and plot the data using DataFrame.plot.
517
+ # And, display the query.
518
+ # Load the data.
519
+ >>> load_example_data("movavg", "ibm_stock")
520
+ # Create DataFrame.
521
+ >>> ibm_stock = DataFrame("ibm_stock")
522
+ # Display the query.
523
+ >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
524
+ >>> plot.show_query()
525
+ """
526
+ return self._get_query()
527
+
528
+ def show(self):
529
+ """
530
+ DESCRIPTION:
531
+ Function to show the plot in the console. The function displays plot
532
+ in either on the console or in a new window based on the option 'inline_plot'.
533
+ * If the console is IPython console, the plot is displayed on the console
534
+ when the option 'inline_plot' is set to True. If the option 'inline_plot'
535
+ is set to False, plot is displayed on new window.
536
+ * If the console is regular Python console and not an IPython console,
537
+ then plot is displayed on a new window irrespective of option 'inline_plot'.
538
+ Note:
539
+ Displaying the plot in a new window requires an additional Python module
540
+ tkinter. One needs to install it manually since teradataml does not install
541
+ it by default.
542
+
543
+ EXAMPLES:
544
+ # Example 1 - Generate a line plot and display it in the console.
545
+ >>> load_example_data("movavg", "ibm_stock")
546
+ # Set the option to display the plot in the console.
547
+ >>> from teradataml import configure
548
+ >>> configure.inline_plot = True
549
+ # Create DataFrame.
550
+ >>> ibm_stock = DataFrame("ibm_stock")
551
+ # Generate the plot
552
+ >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
553
+ >>> plot.show()
554
+
555
+ # Example 2 - Generate a bar plot and display it in a new window.
556
+ >>> load_example_data("movavg", "ibm_stock")
557
+ # Set the option to display the plot in a new window.
558
+ >>> from teradataml import configure
559
+ >>> configure.inline_plot = False
560
+ # Create DataFrame.
561
+ >>> ibm_stock = DataFrame("ibm_stock")
562
+ # Generate the plot
563
+ >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice, kind="bar")
564
+ >>> plot.show()
565
+ """
566
+ query = self._get_query()
567
+
568
+ self._execute_query()
569
+
570
+ # If user choose for inline plot, then check if Python console supports
571
+ # inline plotting or not. If not supports, then go for outline plot.
572
+ if configure.inline_plot is None:
573
+ try:
574
+ if __IPYTHON__:
575
+ self._show_inline_plot()
576
+ except NameError:
577
+ self._show_outline_plot()
578
+ else:
579
+ self._show_inline_plot() if configure.inline_plot else self._show_outline_plot()
580
+
581
+ def _repr_html_(self):
582
+ """
583
+ DESCRIPTION:
584
+ Function to display the Plot in for iPython rich display.
585
+ """
586
+ self.show()
587
+
588
+ def _show_inline_plot(self):
589
+ """
590
+ DESCRIPTION:
591
+ Internal function to display the plot in the console.
592
+
593
+ EXAMPLES:
594
+ # Example - Create a DataFrame and plot the data using DataFrame.plot.
595
+ # And, display it in same console.
596
+ # Load the data.
597
+ >>> load_example_data("movavg", "ibm_stock")
598
+ # Create DataFrame.
599
+ >>> ibm_stock = DataFrame("ibm_stock")
600
+ # Generate plot and display it in console.
601
+ >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
602
+ >>> plot._show_inline_plot()
603
+ """
604
+ from IPython.display import display as dsp, Image
605
+ dsp(Image(data=self._plot_image_data))
606
+
607
+ def _show_outline_plot(self):
608
+ """
609
+ DESCRIPTION:
610
+ Internal function to display the plot in a new window.
611
+
612
+ EXAMPLES:
613
+ # Example - Create a DataFrame and plot the data using DataFrame.plot.
614
+ # And, display it in a new window.
615
+ # Load the data.
616
+ >>> load_example_data("movavg", "ibm_stock")
617
+ # Create DataFrame.
618
+ >>> ibm_stock = DataFrame("ibm_stock")
619
+ # Generate plot and display it in console.
620
+ >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
621
+ >>> plot._show_outline_plot()
622
+ """
623
+ try:
624
+ import tkinter as tk
625
+ root = tk.Tk()
626
+ file_format = self._figure.image_type
627
+ canvas = tk.Canvas(width=self._figure.width, height=self._figure.height)
628
+ canvas.pack()
629
+ img = tk.PhotoImage(data=self._plot_image_data, format=file_format)
630
+ canvas.create_image(0, 0, anchor=tk.NW, image=img)
631
+ root.wm_iconbitmap(os.path.join(UtilFuncs._get_tdml_directory(), "data", "teradata_icon.ico"))
632
+ root.wm_title('teradataml plot')
633
+ root.mainloop()
634
+ except ModuleNotFoundError:
635
+ print("Install module 'tkinter' to display the plot.")
636
+
637
+ def _get_query(self):
638
+ """
639
+ DESCRIPTION:
640
+ Internal function to get the query.
641
+
642
+ EXAMPLES:
643
+ >>> plot._get_query()
644
+ """
645
+
646
+ if not self._query:
647
+
648
+ from teradataml.plot.query_generator import PlotQueryGenerator
649
+ _series_spec = []
650
+ _plot_params = []
651
+ func_other_args = {}
652
+
653
+ _id = 1
654
+ # Every figure has one or more axis. And, every axis contains
655
+ # plot data and axis parameters.
656
+ for axis in self._figure.get_axes():
657
+
658
+ if axis._has_data():
659
+ _virtual_table, _spec, _plot_param = axis._get_plot_data()
660
+ _plot_param["ID"] = _id
661
+ _series_spec.append(_spec)
662
+
663
+ # Update the wiggle parameters.
664
+ if self.kind.lower() == "wiggle":
665
+ _wiggle_params = {}
666
+ if self.wiggle_fill is not None:
667
+ _wiggle_params["FILL"] = 1 if self.wiggle_fill else 0
668
+
669
+ if self.wiggle_scale is not None:
670
+ _wiggle_params["SCALE"] = self.wiggle_scale
671
+
672
+ if _wiggle_params:
673
+ _plot_param["WIGGLE"] = _wiggle_params
674
+
675
+ _plot_params.append(_plot_param)
676
+ _id = _id + 1
677
+
678
+ dpi = self.__params.get("figdpi") if self.__params.get("figdpi") else self._figure.dpi
679
+ height = self.__params.get("figsize")[1] if self.__params.get("figsize") else self._figure.height
680
+ width = self.__params.get("figsize")[0] if self.__params.get("figsize") else self._figure.width
681
+ type_ = self.__params.get("figtype") if self.__params.get("figtype") else self._figure.image_type
682
+
683
+ # teradataml maintains layout as rows and columns. However,
684
+ # SQL maintains it as columns and rows. Hence, reverse the layout.
685
+ layout = self._figure.layout[::-1]
686
+ func_other_args.update({"LAYOUT": layout,
687
+ "PLOTS": _plot_params,
688
+ "DPI": dpi,
689
+ "IMAGE": "'{}'".format(type_),
690
+ "WIDTH": width,
691
+ "HEIGHT": height
692
+ })
693
+
694
+ heading = self.__heading if self.__heading is not None else self._figure.heading
695
+ if heading:
696
+ func_other_args["TITLE"] = "'{}'".format(heading)
697
+
698
+ query_generator = PlotQueryGenerator(function_name="TD_PLOT",
699
+ func_input_args=", \n".join(_series_spec),
700
+ func_input_filter_expr_args=None,
701
+ func_output_args=None,
702
+ func_other_args=func_other_args)
703
+
704
+ self._query = query_generator._get_display_uaf()
705
+
706
+ return self._query
707
+
708
+ def save(self, file_name, dir=None):
709
+ """
710
+ Function to save the plot to an image.
711
+
712
+ PARAMETERS:
713
+ file_name:
714
+ Required Argument.
715
+ Specifies the name of the image file.
716
+ Note:
717
+ Do not mention the extension for the filename.
718
+ Types: str
719
+
720
+ dir:
721
+ Optional Argument.
722
+ Specifies the absolute path of the directory to store the plot image.
723
+ Types: str
724
+
725
+ RAISES:
726
+ TeradataMlException
727
+
728
+ EXAMPLES:
729
+ # Example 1: Generate a scatter plot and store it in current directory.
730
+ # Load the data.
731
+ >>> load_example_data("movavg", "ibm_stock")
732
+ # Create DataFrame.
733
+ >>> ibm_stock = DataFrame("ibm_stock")
734
+ # Generate plot.
735
+ >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
736
+ >>> plot.save("example1")
737
+
738
+ # Example 2: Generate a scatter plot and store it in temp directory.
739
+ # Load the data.
740
+ >>> load_example_data("movavg", "ibm_stock")
741
+ # Create DataFrame.
742
+ >>> ibm_stock = DataFrame("ibm_stock")
743
+ # Generate plot.
744
+ >>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
745
+ >>> # Store in temp directory.
746
+ >>> from tempfile import gettempdir
747
+ >>> plot.save("example2", dir=gettempdir())
748
+ """
749
+ # TODO: Check for the existance of 'dir'.
750
+ type_ = self.__params.get("figtype") if self.__params.get("figtype") else self._figure.image_type
751
+ file_name = "{}.{}".format(file_name, type_)
752
+ if dir:
753
+ file_name = os.path.join(dir, file_name)
754
+
755
+ # Execute the query if it is not executed already.
756
+ self._execute_query()
757
+
758
+ # Store the image.
759
+ with open(file_name, "wb") as fp:
760
+ fp.write(self._plot_image_data)