teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1303) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1935 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2040 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +798 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1683 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +1011 -0
  31. teradataml/automl/data_transformation.py +789 -0
  32. teradataml/automl/feature_engineering.py +1580 -0
  33. teradataml/automl/feature_exploration.py +554 -0
  34. teradataml/automl/model_evaluation.py +151 -0
  35. teradataml/automl/model_training.py +1026 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/auth_client.py +133 -0
  41. teradataml/clients/pkce_client.py +481 -481
  42. teradataml/common/aed_utils.py +7 -2
  43. teradataml/common/bulk_exposed_utils.py +111 -111
  44. teradataml/common/constants.py +1438 -1441
  45. teradataml/common/deprecations.py +160 -0
  46. teradataml/common/exceptions.py +73 -73
  47. teradataml/common/formula.py +742 -742
  48. teradataml/common/garbagecollector.py +597 -635
  49. teradataml/common/messagecodes.py +424 -431
  50. teradataml/common/messages.py +228 -231
  51. teradataml/common/sqlbundle.py +693 -693
  52. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  53. teradataml/common/utils.py +2424 -2500
  54. teradataml/common/warnings.py +25 -25
  55. teradataml/common/wrapper_utils.py +1 -110
  56. teradataml/config/dummy_file1.cfg +4 -4
  57. teradataml/config/dummy_file2.cfg +2 -2
  58. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  59. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  60. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  61. teradataml/context/aed_context.py +217 -217
  62. teradataml/context/context.py +1091 -999
  63. teradataml/data/A_loan.csv +19 -19
  64. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  65. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  66. teradataml/data/B_loan.csv +49 -49
  67. teradataml/data/BuoyData2.csv +17 -17
  68. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  69. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  70. teradataml/data/Convolve2RealsLeft.csv +5 -5
  71. teradataml/data/Convolve2RealsRight.csv +5 -5
  72. teradataml/data/Convolve2ValidLeft.csv +11 -11
  73. teradataml/data/Convolve2ValidRight.csv +11 -11
  74. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  75. teradataml/data/Orders1_12mf.csv +24 -24
  76. teradataml/data/Pi_loan.csv +7 -7
  77. teradataml/data/SMOOTHED_DATA.csv +7 -7
  78. teradataml/data/TestDFFT8.csv +9 -9
  79. teradataml/data/TestRiver.csv +109 -109
  80. teradataml/data/Traindata.csv +28 -28
  81. teradataml/data/acf.csv +17 -17
  82. teradataml/data/adaboost_example.json +34 -34
  83. teradataml/data/adaboostpredict_example.json +24 -24
  84. teradataml/data/additional_table.csv +10 -10
  85. teradataml/data/admissions_test.csv +21 -21
  86. teradataml/data/admissions_train.csv +41 -41
  87. teradataml/data/admissions_train_nulls.csv +41 -41
  88. teradataml/data/advertising.csv +201 -0
  89. teradataml/data/ageandheight.csv +13 -13
  90. teradataml/data/ageandpressure.csv +31 -31
  91. teradataml/data/antiselect_example.json +36 -36
  92. teradataml/data/antiselect_input.csv +8 -8
  93. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  94. teradataml/data/applicant_external.csv +6 -6
  95. teradataml/data/applicant_reference.csv +6 -6
  96. teradataml/data/arima_example.json +9 -9
  97. teradataml/data/assortedtext_input.csv +8 -8
  98. teradataml/data/attribution_example.json +33 -33
  99. teradataml/data/attribution_sample_table.csv +27 -27
  100. teradataml/data/attribution_sample_table1.csv +6 -6
  101. teradataml/data/attribution_sample_table2.csv +11 -11
  102. teradataml/data/bank_churn.csv +10001 -0
  103. teradataml/data/bank_marketing.csv +11163 -0
  104. teradataml/data/bank_web_clicks1.csv +42 -42
  105. teradataml/data/bank_web_clicks2.csv +91 -91
  106. teradataml/data/bank_web_url.csv +85 -85
  107. teradataml/data/barrier.csv +2 -2
  108. teradataml/data/barrier_new.csv +3 -3
  109. teradataml/data/betweenness_example.json +13 -13
  110. teradataml/data/bike_sharing.csv +732 -0
  111. teradataml/data/bin_breaks.csv +8 -8
  112. teradataml/data/bin_fit_ip.csv +3 -3
  113. teradataml/data/binary_complex_left.csv +11 -11
  114. teradataml/data/binary_complex_right.csv +11 -11
  115. teradataml/data/binary_matrix_complex_left.csv +21 -21
  116. teradataml/data/binary_matrix_complex_right.csv +21 -21
  117. teradataml/data/binary_matrix_real_left.csv +21 -21
  118. teradataml/data/binary_matrix_real_right.csv +21 -21
  119. teradataml/data/blood2ageandweight.csv +26 -26
  120. teradataml/data/bmi.csv +501 -0
  121. teradataml/data/boston.csv +507 -507
  122. teradataml/data/boston2cols.csv +721 -0
  123. teradataml/data/breast_cancer.csv +570 -0
  124. teradataml/data/buoydata_mix.csv +11 -11
  125. teradataml/data/burst_data.csv +5 -5
  126. teradataml/data/burst_example.json +20 -20
  127. teradataml/data/byom_example.json +17 -17
  128. teradataml/data/bytes_table.csv +3 -3
  129. teradataml/data/cal_housing_ex_raw.csv +70 -70
  130. teradataml/data/callers.csv +7 -7
  131. teradataml/data/calls.csv +10 -10
  132. teradataml/data/cars_hist.csv +33 -33
  133. teradataml/data/cat_table.csv +24 -24
  134. teradataml/data/ccm_example.json +31 -31
  135. teradataml/data/ccm_input.csv +91 -91
  136. teradataml/data/ccm_input2.csv +13 -13
  137. teradataml/data/ccmexample.csv +101 -101
  138. teradataml/data/ccmprepare_example.json +8 -8
  139. teradataml/data/ccmprepare_input.csv +91 -91
  140. teradataml/data/cfilter_example.json +12 -12
  141. teradataml/data/changepointdetection_example.json +18 -18
  142. teradataml/data/changepointdetectionrt_example.json +8 -8
  143. teradataml/data/chi_sq.csv +2 -2
  144. teradataml/data/churn_data.csv +14 -14
  145. teradataml/data/churn_emission.csv +35 -35
  146. teradataml/data/churn_initial.csv +3 -3
  147. teradataml/data/churn_state_transition.csv +5 -5
  148. teradataml/data/citedges_2.csv +745 -745
  149. teradataml/data/citvertices_2.csv +1210 -1210
  150. teradataml/data/clicks2.csv +16 -16
  151. teradataml/data/clickstream.csv +12 -12
  152. teradataml/data/clickstream1.csv +11 -11
  153. teradataml/data/closeness_example.json +15 -15
  154. teradataml/data/complaints.csv +21 -21
  155. teradataml/data/complaints_mini.csv +3 -3
  156. teradataml/data/complaints_testtoken.csv +224 -224
  157. teradataml/data/complaints_tokens_test.csv +353 -353
  158. teradataml/data/complaints_traintoken.csv +472 -472
  159. teradataml/data/computers_category.csv +1001 -1001
  160. teradataml/data/computers_test1.csv +1252 -1252
  161. teradataml/data/computers_train1.csv +5009 -5009
  162. teradataml/data/computers_train1_clustered.csv +5009 -5009
  163. teradataml/data/confusionmatrix_example.json +9 -9
  164. teradataml/data/conversion_event_table.csv +3 -3
  165. teradataml/data/corr_input.csv +17 -17
  166. teradataml/data/correlation_example.json +11 -11
  167. teradataml/data/coxhazardratio_example.json +39 -39
  168. teradataml/data/coxph_example.json +15 -15
  169. teradataml/data/coxsurvival_example.json +28 -28
  170. teradataml/data/cpt.csv +41 -41
  171. teradataml/data/credit_ex_merged.csv +45 -45
  172. teradataml/data/customer_loyalty.csv +301 -301
  173. teradataml/data/customer_loyalty_newseq.csv +31 -31
  174. teradataml/data/customer_segmentation_test.csv +2628 -0
  175. teradataml/data/customer_segmentation_train.csv +8069 -0
  176. teradataml/data/dataframe_example.json +146 -146
  177. teradataml/data/decisionforest_example.json +37 -37
  178. teradataml/data/decisionforestpredict_example.json +38 -38
  179. teradataml/data/decisiontree_example.json +21 -21
  180. teradataml/data/decisiontreepredict_example.json +45 -45
  181. teradataml/data/dfft2_size4_real.csv +17 -17
  182. teradataml/data/dfft2_test_matrix16.csv +17 -17
  183. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  184. teradataml/data/diabetes.csv +443 -443
  185. teradataml/data/diabetes_test.csv +89 -89
  186. teradataml/data/dict_table.csv +5 -5
  187. teradataml/data/docperterm_table.csv +4 -4
  188. teradataml/data/docs/__init__.py +1 -1
  189. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  190. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  191. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  192. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  193. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  194. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  195. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  196. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  197. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  198. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  199. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  200. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  201. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  202. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  203. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  204. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  205. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  206. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  207. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  208. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  209. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  210. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  211. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  212. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  213. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  214. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  215. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  216. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  217. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
  218. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
  219. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  220. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
  221. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  222. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  223. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  224. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  225. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  226. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  227. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  228. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  229. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  230. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  231. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  232. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  233. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  234. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  235. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  236. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  237. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  238. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  239. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  240. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  241. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  242. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
  243. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  244. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  245. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  246. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  247. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  248. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  249. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  250. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  251. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
  252. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  253. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  254. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  255. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  256. teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
  257. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  258. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  259. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
  260. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  261. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  262. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  263. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
  264. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  265. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  266. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  267. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
  268. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  269. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  270. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  271. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  272. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  273. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  274. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  275. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  276. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
  277. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  278. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  279. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  280. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  281. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
  282. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
  283. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  284. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  285. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  286. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  287. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  288. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  289. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  290. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  291. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
  292. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  293. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  294. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  295. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  296. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  297. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  298. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  299. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  300. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
  301. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  302. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
  303. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
  304. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  305. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  306. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  307. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  308. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  309. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  310. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  311. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  312. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
  313. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  314. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  315. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  316. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  317. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  318. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  319. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  320. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  321. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  322. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  323. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  324. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
  325. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
  326. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
  327. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  328. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  329. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  330. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  331. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  332. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  333. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  334. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  335. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  336. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  337. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  338. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  339. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  340. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  341. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  342. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  343. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  344. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  345. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  346. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  347. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  348. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  349. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  350. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  351. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  352. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  353. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  354. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  355. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  356. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  357. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  358. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  359. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  360. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  361. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  362. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  363. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  364. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  365. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  366. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  367. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  368. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  369. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  370. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  371. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  372. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  373. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  374. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  375. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  376. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  377. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  378. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  379. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  380. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  381. teradataml/data/dtw_example.json +17 -17
  382. teradataml/data/dtw_t1.csv +11 -11
  383. teradataml/data/dtw_t2.csv +4 -4
  384. teradataml/data/dwt2d_example.json +15 -15
  385. teradataml/data/dwt_example.json +14 -14
  386. teradataml/data/dwt_filter_dim.csv +5 -5
  387. teradataml/data/emission.csv +9 -9
  388. teradataml/data/emp_table_by_dept.csv +19 -19
  389. teradataml/data/employee_info.csv +4 -4
  390. teradataml/data/employee_table.csv +6 -6
  391. teradataml/data/excluding_event_table.csv +2 -2
  392. teradataml/data/finance_data.csv +6 -6
  393. teradataml/data/finance_data2.csv +61 -61
  394. teradataml/data/finance_data3.csv +93 -93
  395. teradataml/data/fish.csv +160 -0
  396. teradataml/data/fm_blood2ageandweight.csv +26 -26
  397. teradataml/data/fmeasure_example.json +11 -11
  398. teradataml/data/followers_leaders.csv +10 -10
  399. teradataml/data/fpgrowth_example.json +12 -12
  400. teradataml/data/frequentpaths_example.json +29 -29
  401. teradataml/data/friends.csv +9 -9
  402. teradataml/data/fs_input.csv +33 -33
  403. teradataml/data/fs_input1.csv +33 -33
  404. teradataml/data/genData.csv +513 -513
  405. teradataml/data/geodataframe_example.json +39 -39
  406. teradataml/data/glass_types.csv +215 -0
  407. teradataml/data/glm_admissions_model.csv +12 -12
  408. teradataml/data/glm_example.json +56 -29
  409. teradataml/data/glml1l2_example.json +28 -28
  410. teradataml/data/glml1l2predict_example.json +54 -54
  411. teradataml/data/glmpredict_example.json +54 -54
  412. teradataml/data/gq_t1.csv +21 -21
  413. teradataml/data/hconvolve_complex_right.csv +5 -5
  414. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  415. teradataml/data/histogram_example.json +11 -11
  416. teradataml/data/hmmdecoder_example.json +78 -78
  417. teradataml/data/hmmevaluator_example.json +24 -24
  418. teradataml/data/hmmsupervised_example.json +10 -10
  419. teradataml/data/hmmunsupervised_example.json +7 -7
  420. teradataml/data/house_values.csv +12 -12
  421. teradataml/data/house_values2.csv +13 -13
  422. teradataml/data/housing_cat.csv +7 -7
  423. teradataml/data/housing_data.csv +9 -9
  424. teradataml/data/housing_test.csv +47 -47
  425. teradataml/data/housing_test_binary.csv +47 -47
  426. teradataml/data/housing_train.csv +493 -493
  427. teradataml/data/housing_train_attribute.csv +4 -4
  428. teradataml/data/housing_train_binary.csv +437 -437
  429. teradataml/data/housing_train_parameter.csv +2 -2
  430. teradataml/data/housing_train_response.csv +493 -493
  431. teradataml/data/housing_train_segment.csv +201 -0
  432. teradataml/data/ibm_stock.csv +370 -370
  433. teradataml/data/ibm_stock1.csv +370 -370
  434. teradataml/data/identitymatch_example.json +21 -21
  435. teradataml/data/idf_table.csv +4 -4
  436. teradataml/data/impressions.csv +101 -101
  437. teradataml/data/inflation.csv +21 -21
  438. teradataml/data/initial.csv +3 -3
  439. teradataml/data/insect2Cols.csv +61 -0
  440. teradataml/data/insect_sprays.csv +12 -12
  441. teradataml/data/insurance.csv +1339 -1339
  442. teradataml/data/interpolator_example.json +12 -12
  443. teradataml/data/iris_altinput.csv +481 -481
  444. teradataml/data/iris_attribute_output.csv +8 -8
  445. teradataml/data/iris_attribute_test.csv +121 -121
  446. teradataml/data/iris_attribute_train.csv +481 -481
  447. teradataml/data/iris_category_expect_predict.csv +31 -31
  448. teradataml/data/iris_data.csv +151 -0
  449. teradataml/data/iris_input.csv +151 -151
  450. teradataml/data/iris_response_train.csv +121 -121
  451. teradataml/data/iris_test.csv +31 -31
  452. teradataml/data/iris_train.csv +121 -121
  453. teradataml/data/join_table1.csv +4 -4
  454. teradataml/data/join_table2.csv +4 -4
  455. teradataml/data/jsons/anly_function_name.json +6 -6
  456. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  457. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  458. teradataml/data/jsons/byom/h2opredict.json +194 -194
  459. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  460. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  461. teradataml/data/jsons/paired_functions.json +435 -435
  462. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  463. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  464. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  465. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  466. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  467. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  468. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  469. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  470. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  471. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  472. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  473. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  474. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  475. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  476. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  477. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  478. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  479. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  480. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  481. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  482. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  483. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  484. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  485. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  486. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  487. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  488. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  489. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  490. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  491. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  492. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  493. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  494. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  495. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  496. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  497. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  498. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  499. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  500. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  501. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  502. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  503. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  504. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  505. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  506. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  507. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  508. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  509. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  510. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  511. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  512. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  513. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  514. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  515. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  516. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  517. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  518. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  519. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  520. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  521. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  522. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  523. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  524. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  525. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  526. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  527. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  528. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  529. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  531. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  532. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  533. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  534. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  535. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  536. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  537. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  539. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  540. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  541. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  542. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  543. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  544. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  545. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  546. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  547. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  548. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  549. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  550. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  551. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  552. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  553. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  554. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  555. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  556. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  557. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  558. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  559. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  560. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  561. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  562. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  563. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  564. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  565. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  566. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  567. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  568. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
  569. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  570. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  571. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  572. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  573. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  574. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  575. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  576. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  577. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  578. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  579. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
  580. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  581. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  582. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  583. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
  584. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
  585. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  586. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  587. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
  588. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  589. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  590. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  591. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
  592. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  593. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  594. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  595. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
  596. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  597. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  598. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  599. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  600. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  601. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  602. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  603. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  604. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  605. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  606. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  607. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  608. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  609. teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
  610. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  611. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  612. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  613. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  614. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  615. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  616. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  617. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  618. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
  619. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
  620. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
  621. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  622. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  623. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  624. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  625. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  626. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  627. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  628. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  629. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  630. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  631. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  632. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  633. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  634. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  635. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
  636. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
  637. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
  638. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  639. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  640. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  641. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  642. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  643. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  644. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  645. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  646. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  647. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  648. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  649. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  650. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  651. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  653. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  654. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  655. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  656. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  657. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  658. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  659. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  660. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  661. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  662. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  663. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  664. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  665. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  666. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  667. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  668. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  669. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  670. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  671. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  672. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  673. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  674. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  675. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  676. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  677. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  678. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  679. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  680. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  681. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  682. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  683. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  684. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  685. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  686. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  687. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  688. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  689. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  690. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  691. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  692. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  693. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  694. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  695. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  696. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  697. teradataml/data/kmeans_example.json +22 -17
  698. teradataml/data/kmeans_table.csv +10 -0
  699. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  700. teradataml/data/knn_example.json +18 -18
  701. teradataml/data/knnrecommender_example.json +6 -6
  702. teradataml/data/knnrecommenderpredict_example.json +12 -12
  703. teradataml/data/lar_example.json +17 -17
  704. teradataml/data/larpredict_example.json +30 -30
  705. teradataml/data/lc_new_predictors.csv +5 -5
  706. teradataml/data/lc_new_reference.csv +9 -9
  707. teradataml/data/lda_example.json +8 -8
  708. teradataml/data/ldainference_example.json +14 -14
  709. teradataml/data/ldatopicsummary_example.json +8 -8
  710. teradataml/data/levendist_input.csv +13 -13
  711. teradataml/data/levenshteindistance_example.json +10 -10
  712. teradataml/data/linreg_example.json +9 -9
  713. teradataml/data/load_example_data.py +326 -323
  714. teradataml/data/loan_prediction.csv +295 -295
  715. teradataml/data/lungcancer.csv +138 -138
  716. teradataml/data/mappingdata.csv +12 -12
  717. teradataml/data/milk_timeseries.csv +157 -157
  718. teradataml/data/min_max_titanic.csv +4 -4
  719. teradataml/data/minhash_example.json +6 -6
  720. teradataml/data/ml_ratings.csv +7547 -7547
  721. teradataml/data/ml_ratings_10.csv +2445 -2445
  722. teradataml/data/model1_table.csv +5 -5
  723. teradataml/data/model2_table.csv +5 -5
  724. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  725. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  726. teradataml/data/modularity_example.json +12 -12
  727. teradataml/data/movavg_example.json +7 -7
  728. teradataml/data/mtx1.csv +7 -7
  729. teradataml/data/mtx2.csv +13 -13
  730. teradataml/data/multi_model_classification.csv +401 -0
  731. teradataml/data/multi_model_regression.csv +401 -0
  732. teradataml/data/mvdfft8.csv +9 -9
  733. teradataml/data/naivebayes_example.json +9 -9
  734. teradataml/data/naivebayespredict_example.json +19 -19
  735. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  736. teradataml/data/naivebayestextclassifier_example.json +8 -8
  737. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  738. teradataml/data/name_Find_configure.csv +10 -10
  739. teradataml/data/namedentityfinder_example.json +14 -14
  740. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  741. teradataml/data/namedentityfindertrainer_example.json +6 -6
  742. teradataml/data/nb_iris_input_test.csv +31 -31
  743. teradataml/data/nb_iris_input_train.csv +121 -121
  744. teradataml/data/nbp_iris_model.csv +13 -13
  745. teradataml/data/ner_extractor_text.csv +2 -2
  746. teradataml/data/ner_sports_test2.csv +29 -29
  747. teradataml/data/ner_sports_train.csv +501 -501
  748. teradataml/data/nerevaluator_example.json +5 -5
  749. teradataml/data/nerextractor_example.json +18 -18
  750. teradataml/data/nermem_sports_test.csv +17 -17
  751. teradataml/data/nermem_sports_train.csv +50 -50
  752. teradataml/data/nertrainer_example.json +6 -6
  753. teradataml/data/ngrams_example.json +6 -6
  754. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  755. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  756. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  757. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  758. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  759. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  760. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  761. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  762. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  763. teradataml/data/npath_example.json +23 -23
  764. teradataml/data/ntree_example.json +14 -14
  765. teradataml/data/numeric_strings.csv +4 -4
  766. teradataml/data/numerics.csv +4 -4
  767. teradataml/data/ocean_buoy.csv +17 -17
  768. teradataml/data/ocean_buoy2.csv +17 -17
  769. teradataml/data/ocean_buoys.csv +27 -27
  770. teradataml/data/ocean_buoys2.csv +10 -10
  771. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  772. teradataml/data/ocean_buoys_seq.csv +29 -29
  773. teradataml/data/onehot_encoder_train.csv +4 -0
  774. teradataml/data/openml_example.json +92 -0
  775. teradataml/data/optional_event_table.csv +4 -4
  776. teradataml/data/orders1.csv +11 -11
  777. teradataml/data/orders1_12.csv +12 -12
  778. teradataml/data/orders_ex.csv +4 -4
  779. teradataml/data/pack_example.json +8 -8
  780. teradataml/data/package_tracking.csv +19 -19
  781. teradataml/data/package_tracking_pti.csv +18 -18
  782. teradataml/data/pagerank_example.json +13 -13
  783. teradataml/data/paragraphs_input.csv +6 -6
  784. teradataml/data/pathanalyzer_example.json +7 -7
  785. teradataml/data/pathgenerator_example.json +7 -7
  786. teradataml/data/phrases.csv +7 -7
  787. teradataml/data/pivot_example.json +8 -8
  788. teradataml/data/pivot_input.csv +22 -22
  789. teradataml/data/playerRating.csv +31 -31
  790. teradataml/data/postagger_example.json +6 -6
  791. teradataml/data/posttagger_output.csv +44 -44
  792. teradataml/data/production_data.csv +16 -16
  793. teradataml/data/production_data2.csv +7 -7
  794. teradataml/data/randomsample_example.json +31 -31
  795. teradataml/data/randomwalksample_example.json +8 -8
  796. teradataml/data/rank_table.csv +6 -6
  797. teradataml/data/ref_mobile_data.csv +4 -4
  798. teradataml/data/ref_mobile_data_dense.csv +2 -2
  799. teradataml/data/ref_url.csv +17 -17
  800. teradataml/data/restaurant_reviews.csv +7 -7
  801. teradataml/data/river_data.csv +145 -145
  802. teradataml/data/roc_example.json +7 -7
  803. teradataml/data/roc_input.csv +101 -101
  804. teradataml/data/rule_inputs.csv +6 -6
  805. teradataml/data/rule_table.csv +2 -2
  806. teradataml/data/sales.csv +7 -7
  807. teradataml/data/sales_transaction.csv +501 -501
  808. teradataml/data/salesdata.csv +342 -342
  809. teradataml/data/sample_cities.csv +2 -2
  810. teradataml/data/sample_shapes.csv +10 -10
  811. teradataml/data/sample_streets.csv +2 -2
  812. teradataml/data/sampling_example.json +15 -15
  813. teradataml/data/sax_example.json +8 -8
  814. teradataml/data/scale_attributes.csv +3 -0
  815. teradataml/data/scale_example.json +74 -23
  816. teradataml/data/scale_housing.csv +11 -11
  817. teradataml/data/scale_housing_test.csv +6 -6
  818. teradataml/data/scale_input_part_sparse.csv +31 -0
  819. teradataml/data/scale_input_partitioned.csv +16 -0
  820. teradataml/data/scale_input_sparse.csv +11 -0
  821. teradataml/data/scale_parameters.csv +3 -0
  822. teradataml/data/scale_stat.csv +11 -11
  823. teradataml/data/scalebypartition_example.json +13 -13
  824. teradataml/data/scalemap_example.json +13 -13
  825. teradataml/data/scalesummary_example.json +12 -12
  826. teradataml/data/score_category.csv +101 -101
  827. teradataml/data/score_summary.csv +4 -4
  828. teradataml/data/script_example.json +9 -9
  829. teradataml/data/scripts/deploy_script.py +84 -0
  830. teradataml/data/scripts/mapper.R +20 -0
  831. teradataml/data/scripts/mapper.py +15 -15
  832. teradataml/data/scripts/mapper_replace.py +15 -15
  833. teradataml/data/scripts/sklearn/__init__.py +0 -0
  834. teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
  835. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
  836. teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
  837. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
  838. teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
  839. teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
  840. teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
  841. teradataml/data/seeds.csv +10 -10
  842. teradataml/data/sentenceextractor_example.json +6 -6
  843. teradataml/data/sentiment_extract_input.csv +11 -11
  844. teradataml/data/sentiment_train.csv +16 -16
  845. teradataml/data/sentiment_word.csv +20 -20
  846. teradataml/data/sentiment_word_input.csv +19 -19
  847. teradataml/data/sentimentextractor_example.json +24 -24
  848. teradataml/data/sentimenttrainer_example.json +8 -8
  849. teradataml/data/sequence_table.csv +10 -10
  850. teradataml/data/seriessplitter_example.json +7 -7
  851. teradataml/data/sessionize_example.json +17 -17
  852. teradataml/data/sessionize_table.csv +116 -116
  853. teradataml/data/setop_test1.csv +24 -24
  854. teradataml/data/setop_test2.csv +22 -22
  855. teradataml/data/soc_nw_edges.csv +10 -10
  856. teradataml/data/soc_nw_vertices.csv +7 -7
  857. teradataml/data/souvenir_timeseries.csv +167 -167
  858. teradataml/data/sparse_iris_attribute.csv +5 -5
  859. teradataml/data/sparse_iris_test.csv +121 -121
  860. teradataml/data/sparse_iris_train.csv +601 -601
  861. teradataml/data/star1.csv +6 -6
  862. teradataml/data/state_transition.csv +5 -5
  863. teradataml/data/stock_data.csv +53 -53
  864. teradataml/data/stock_movement.csv +11 -11
  865. teradataml/data/stock_vol.csv +76 -76
  866. teradataml/data/stop_words.csv +8 -8
  867. teradataml/data/store_sales.csv +37 -37
  868. teradataml/data/stringsimilarity_example.json +7 -7
  869. teradataml/data/strsimilarity_input.csv +13 -13
  870. teradataml/data/students.csv +101 -101
  871. teradataml/data/svm_iris_input_test.csv +121 -121
  872. teradataml/data/svm_iris_input_train.csv +481 -481
  873. teradataml/data/svm_iris_model.csv +7 -7
  874. teradataml/data/svmdense_example.json +9 -9
  875. teradataml/data/svmdensepredict_example.json +18 -18
  876. teradataml/data/svmsparse_example.json +7 -7
  877. teradataml/data/svmsparsepredict_example.json +13 -13
  878. teradataml/data/svmsparsesummary_example.json +7 -7
  879. teradataml/data/target_mobile_data.csv +13 -13
  880. teradataml/data/target_mobile_data_dense.csv +5 -5
  881. teradataml/data/templatedata.csv +1201 -1201
  882. teradataml/data/templates/open_source_ml.json +9 -0
  883. teradataml/data/teradataml_example.json +150 -1
  884. teradataml/data/test_classification.csv +101 -0
  885. teradataml/data/test_loan_prediction.csv +53 -53
  886. teradataml/data/test_pacf_12.csv +37 -37
  887. teradataml/data/test_prediction.csv +101 -0
  888. teradataml/data/test_regression.csv +101 -0
  889. teradataml/data/test_river2.csv +109 -109
  890. teradataml/data/text_inputs.csv +6 -6
  891. teradataml/data/textchunker_example.json +7 -7
  892. teradataml/data/textclassifier_example.json +6 -6
  893. teradataml/data/textclassifier_input.csv +7 -7
  894. teradataml/data/textclassifiertrainer_example.json +6 -6
  895. teradataml/data/textmorph_example.json +5 -5
  896. teradataml/data/textparser_example.json +15 -15
  897. teradataml/data/texttagger_example.json +11 -11
  898. teradataml/data/texttokenizer_example.json +6 -6
  899. teradataml/data/texttrainer_input.csv +11 -11
  900. teradataml/data/tf_example.json +6 -6
  901. teradataml/data/tfidf_example.json +13 -13
  902. teradataml/data/tfidf_input1.csv +201 -201
  903. teradataml/data/tfidf_train.csv +6 -6
  904. teradataml/data/time_table1.csv +535 -535
  905. teradataml/data/time_table2.csv +14 -14
  906. teradataml/data/timeseriesdata.csv +1601 -1601
  907. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  908. teradataml/data/titanic.csv +892 -892
  909. teradataml/data/token_table.csv +696 -696
  910. teradataml/data/train_multiclass.csv +101 -0
  911. teradataml/data/train_regression.csv +101 -0
  912. teradataml/data/train_regression_multiple_labels.csv +101 -0
  913. teradataml/data/train_tracking.csv +27 -27
  914. teradataml/data/transformation_table.csv +5 -5
  915. teradataml/data/transformation_table_new.csv +1 -1
  916. teradataml/data/tv_spots.csv +16 -16
  917. teradataml/data/twod_climate_data.csv +117 -117
  918. teradataml/data/uaf_example.json +475 -475
  919. teradataml/data/univariatestatistics_example.json +8 -8
  920. teradataml/data/unpack_example.json +9 -9
  921. teradataml/data/unpivot_example.json +9 -9
  922. teradataml/data/unpivot_input.csv +8 -8
  923. teradataml/data/us_air_pass.csv +36 -36
  924. teradataml/data/us_population.csv +624 -624
  925. teradataml/data/us_states_shapes.csv +52 -52
  926. teradataml/data/varmax_example.json +17 -17
  927. teradataml/data/vectordistance_example.json +25 -25
  928. teradataml/data/ville_climatedata.csv +121 -121
  929. teradataml/data/ville_tempdata.csv +12 -12
  930. teradataml/data/ville_tempdata1.csv +12 -12
  931. teradataml/data/ville_temperature.csv +11 -11
  932. teradataml/data/waveletTable.csv +1605 -1605
  933. teradataml/data/waveletTable2.csv +1605 -1605
  934. teradataml/data/weightedmovavg_example.json +8 -8
  935. teradataml/data/wft_testing.csv +5 -5
  936. teradataml/data/wine_data.csv +1600 -0
  937. teradataml/data/word_embed_input_table1.csv +5 -5
  938. teradataml/data/word_embed_input_table2.csv +4 -4
  939. teradataml/data/word_embed_model.csv +22 -22
  940. teradataml/data/words_input.csv +13 -13
  941. teradataml/data/xconvolve_complex_left.csv +6 -6
  942. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  943. teradataml/data/xgboost_example.json +35 -35
  944. teradataml/data/xgboostpredict_example.json +31 -31
  945. teradataml/data/ztest_example.json +16 -0
  946. teradataml/dataframe/copy_to.py +1769 -1698
  947. teradataml/dataframe/data_transfer.py +2812 -2745
  948. teradataml/dataframe/dataframe.py +17630 -16946
  949. teradataml/dataframe/dataframe_utils.py +1875 -1740
  950. teradataml/dataframe/fastload.py +794 -603
  951. teradataml/dataframe/indexer.py +424 -424
  952. teradataml/dataframe/setop.py +1179 -1166
  953. teradataml/dataframe/sql.py +10174 -6432
  954. teradataml/dataframe/sql_function_parameters.py +439 -388
  955. teradataml/dataframe/sql_functions.py +652 -652
  956. teradataml/dataframe/sql_interfaces.py +220 -220
  957. teradataml/dataframe/vantage_function_types.py +674 -630
  958. teradataml/dataframe/window.py +693 -692
  959. teradataml/dbutils/__init__.py +3 -3
  960. teradataml/dbutils/dbutils.py +1167 -1150
  961. teradataml/dbutils/filemgr.py +267 -267
  962. teradataml/gen_ai/__init__.py +2 -2
  963. teradataml/gen_ai/convAI.py +472 -472
  964. teradataml/geospatial/__init__.py +3 -3
  965. teradataml/geospatial/geodataframe.py +1105 -1094
  966. teradataml/geospatial/geodataframecolumn.py +392 -387
  967. teradataml/geospatial/geometry_types.py +925 -925
  968. teradataml/hyperparameter_tuner/__init__.py +1 -1
  969. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  970. teradataml/hyperparameter_tuner/utils.py +281 -187
  971. teradataml/lib/aed_0_1.dll +0 -0
  972. teradataml/lib/libaed_0_1.dylib +0 -0
  973. teradataml/lib/libaed_0_1.so +0 -0
  974. teradataml/libaed_0_1.dylib +0 -0
  975. teradataml/libaed_0_1.so +0 -0
  976. teradataml/opensource/__init__.py +1 -0
  977. teradataml/opensource/sklearn/__init__.py +1 -0
  978. teradataml/opensource/sklearn/_class.py +255 -0
  979. teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
  980. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  981. teradataml/opensource/sklearn/constants.py +54 -0
  982. teradataml/options/__init__.py +130 -124
  983. teradataml/options/configure.py +358 -336
  984. teradataml/options/display.py +176 -176
  985. teradataml/plot/__init__.py +2 -2
  986. teradataml/plot/axis.py +1388 -1388
  987. teradataml/plot/constants.py +15 -15
  988. teradataml/plot/figure.py +398 -398
  989. teradataml/plot/plot.py +760 -760
  990. teradataml/plot/query_generator.py +83 -83
  991. teradataml/plot/subplot.py +216 -216
  992. teradataml/scriptmgmt/UserEnv.py +3791 -3761
  993. teradataml/scriptmgmt/__init__.py +3 -3
  994. teradataml/scriptmgmt/lls_utils.py +1719 -1604
  995. teradataml/series/series.py +532 -532
  996. teradataml/series/series_utils.py +71 -71
  997. teradataml/table_operators/Apply.py +949 -917
  998. teradataml/table_operators/Script.py +1718 -1982
  999. teradataml/table_operators/TableOperator.py +1255 -1616
  1000. teradataml/table_operators/__init__.py +2 -3
  1001. teradataml/table_operators/apply_query_generator.py +262 -262
  1002. teradataml/table_operators/query_generator.py +507 -507
  1003. teradataml/table_operators/table_operator_query_generator.py +460 -460
  1004. teradataml/table_operators/table_operator_util.py +631 -639
  1005. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  1006. teradataml/table_operators/templates/dataframe_map.template +176 -176
  1007. teradataml/table_operators/templates/script_executor.template +170 -170
  1008. teradataml/utils/dtypes.py +684 -684
  1009. teradataml/utils/internal_buffer.py +84 -84
  1010. teradataml/utils/print_versions.py +205 -205
  1011. teradataml/utils/utils.py +410 -410
  1012. teradataml/utils/validators.py +2277 -2115
  1013. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
  1014. teradataml-20.0.0.1.dist-info/RECORD +1056 -0
  1015. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
  1016. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
  1017. teradataml/analytics/mle/AdaBoost.py +0 -651
  1018. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1019. teradataml/analytics/mle/Antiselect.py +0 -342
  1020. teradataml/analytics/mle/Arima.py +0 -641
  1021. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1022. teradataml/analytics/mle/Attribution.py +0 -1070
  1023. teradataml/analytics/mle/Betweenness.py +0 -658
  1024. teradataml/analytics/mle/Burst.py +0 -711
  1025. teradataml/analytics/mle/CCM.py +0 -600
  1026. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1027. teradataml/analytics/mle/CFilter.py +0 -460
  1028. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1029. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1030. teradataml/analytics/mle/Closeness.py +0 -737
  1031. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1032. teradataml/analytics/mle/Correlation.py +0 -477
  1033. teradataml/analytics/mle/Correlation2.py +0 -573
  1034. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1035. teradataml/analytics/mle/CoxPH.py +0 -556
  1036. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1037. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1038. teradataml/analytics/mle/DTW.py +0 -623
  1039. teradataml/analytics/mle/DWT.py +0 -564
  1040. teradataml/analytics/mle/DWT2D.py +0 -599
  1041. teradataml/analytics/mle/DecisionForest.py +0 -716
  1042. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1043. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1044. teradataml/analytics/mle/DecisionTree.py +0 -830
  1045. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1046. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1047. teradataml/analytics/mle/FMeasure.py +0 -402
  1048. teradataml/analytics/mle/FPGrowth.py +0 -734
  1049. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1050. teradataml/analytics/mle/GLM.py +0 -558
  1051. teradataml/analytics/mle/GLML1L2.py +0 -547
  1052. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1053. teradataml/analytics/mle/GLMPredict.py +0 -529
  1054. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1055. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1056. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1057. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1058. teradataml/analytics/mle/Histogram.py +0 -561
  1059. teradataml/analytics/mle/IDWT.py +0 -476
  1060. teradataml/analytics/mle/IDWT2D.py +0 -493
  1061. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1062. teradataml/analytics/mle/Interpolator.py +0 -918
  1063. teradataml/analytics/mle/KMeans.py +0 -485
  1064. teradataml/analytics/mle/KNN.py +0 -627
  1065. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1066. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1067. teradataml/analytics/mle/LAR.py +0 -439
  1068. teradataml/analytics/mle/LARPredict.py +0 -478
  1069. teradataml/analytics/mle/LDA.py +0 -548
  1070. teradataml/analytics/mle/LDAInference.py +0 -492
  1071. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1072. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1073. teradataml/analytics/mle/LinReg.py +0 -433
  1074. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1075. teradataml/analytics/mle/MinHash.py +0 -544
  1076. teradataml/analytics/mle/Modularity.py +0 -587
  1077. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1078. teradataml/analytics/mle/NERExtractor.py +0 -595
  1079. teradataml/analytics/mle/NERTrainer.py +0 -458
  1080. teradataml/analytics/mle/NGrams.py +0 -570
  1081. teradataml/analytics/mle/NPath.py +0 -634
  1082. teradataml/analytics/mle/NTree.py +0 -549
  1083. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1084. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1085. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1086. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1087. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1088. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1089. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1090. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1091. teradataml/analytics/mle/POSTagger.py +0 -417
  1092. teradataml/analytics/mle/Pack.py +0 -411
  1093. teradataml/analytics/mle/PageRank.py +0 -535
  1094. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1095. teradataml/analytics/mle/PathGenerator.py +0 -367
  1096. teradataml/analytics/mle/PathStart.py +0 -464
  1097. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1098. teradataml/analytics/mle/Pivot.py +0 -471
  1099. teradataml/analytics/mle/ROC.py +0 -425
  1100. teradataml/analytics/mle/RandomSample.py +0 -637
  1101. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1102. teradataml/analytics/mle/SAX.py +0 -779
  1103. teradataml/analytics/mle/SVMDense.py +0 -677
  1104. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1105. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1106. teradataml/analytics/mle/SVMSparse.py +0 -557
  1107. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1108. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1109. teradataml/analytics/mle/Sampling.py +0 -549
  1110. teradataml/analytics/mle/Scale.py +0 -565
  1111. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1112. teradataml/analytics/mle/ScaleMap.py +0 -378
  1113. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1114. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1115. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1116. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1117. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1118. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1119. teradataml/analytics/mle/Sessionize.py +0 -475
  1120. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1121. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1122. teradataml/analytics/mle/TF.py +0 -389
  1123. teradataml/analytics/mle/TFIDF.py +0 -504
  1124. teradataml/analytics/mle/TextChunker.py +0 -414
  1125. teradataml/analytics/mle/TextClassifier.py +0 -399
  1126. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1127. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1128. teradataml/analytics/mle/TextMorph.py +0 -494
  1129. teradataml/analytics/mle/TextParser.py +0 -623
  1130. teradataml/analytics/mle/TextTagger.py +0 -530
  1131. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1132. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1133. teradataml/analytics/mle/Unpack.py +0 -526
  1134. teradataml/analytics/mle/Unpivot.py +0 -438
  1135. teradataml/analytics/mle/VarMax.py +0 -776
  1136. teradataml/analytics/mle/VectorDistance.py +0 -762
  1137. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1138. teradataml/analytics/mle/XGBoost.py +0 -842
  1139. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1140. teradataml/analytics/mle/__init__.py +0 -123
  1141. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1142. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1143. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1144. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1145. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1146. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1147. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1148. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1149. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1150. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1151. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1152. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1153. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1154. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1155. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1156. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1157. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1158. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1159. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1160. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1161. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1162. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1163. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1164. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1165. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1166. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1167. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1168. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1169. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1170. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1171. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1172. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1173. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1174. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1175. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1176. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1177. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1178. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1179. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1180. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1181. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1182. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1183. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1184. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1185. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1186. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1187. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1188. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1189. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1190. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1191. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1192. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1193. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1194. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1195. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1196. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1197. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1198. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1199. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1200. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1201. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1202. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1203. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1204. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1205. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1206. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1207. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1208. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1209. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1210. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1211. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1212. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1213. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1214. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1215. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1216. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1217. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1218. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1219. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1220. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1221. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1222. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1223. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1224. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1225. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1226. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1227. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1228. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1229. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1230. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1231. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1232. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1233. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1234. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1235. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1236. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1237. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1238. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1239. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1240. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1241. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1242. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1243. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1244. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1245. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1246. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1247. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1248. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1249. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1250. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1251. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1252. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1253. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1254. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1255. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1256. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1257. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1258. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1259. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1260. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1261. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1262. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1263. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1264. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1265. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1266. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1267. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1268. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1269. teradataml/analytics/sqle/Antiselect.py +0 -321
  1270. teradataml/analytics/sqle/Attribution.py +0 -603
  1271. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1272. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1273. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1274. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1275. teradataml/analytics/sqle/NPath.py +0 -632
  1276. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1277. teradataml/analytics/sqle/Pack.py +0 -388
  1278. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1279. teradataml/analytics/sqle/Sessionize.py +0 -390
  1280. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1281. teradataml/analytics/sqle/Unpack.py +0 -503
  1282. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1283. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1284. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1285. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1286. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1287. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1288. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1289. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1290. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1291. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1292. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1293. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1294. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1295. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1296. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1297. teradataml/catalog/model_cataloging.py +0 -980
  1298. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1299. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1300. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1301. teradataml/table_operators/sandbox_container_util.py +0 -643
  1302. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1303. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
@@ -1,803 +1,798 @@
1
- """
2
- Unpublished work.
3
- Copyright (c) 2021 by Teradata Corporation. All rights reserved.
4
- TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
5
-
6
- Primary Owner: pradeep.garre@teradata.com, gouri.patwardhan@teradata.com
7
- Secondary Owner: PankajVinod.Purandare@teradata.com
8
-
9
- This file implements the helper methods and classes which are required to
10
- process In-DB Functions.
11
- """
12
-
13
- from teradataml.options.configure import configure
14
- from teradataml.analytics.json_parser.json_store import _JsonStore
15
- from teradataml.analytics.json_parser.metadata import _AnlyFuncMetadata, _AnlyFuncMetadataUAF
16
- from teradataml.common.constants import TeradataAnalyticFunctionTypes, TeradataAnalyticFunctionInfo
17
- from teradataml.common.exceptions import TeradataMlException
18
- from teradataml.common.messages import Messages
19
- from teradataml.common.messagecodes import MessageCodes
20
- import json, os, importlib
21
- from teradataml import UtilFuncs
22
- from teradataml.common.formula import Formula
23
- from teradataml.utils.validators import _Validators
24
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
25
-
26
- # Map to store IN-DB function type and JSON directory for current database version.
27
- func_type_json_version = {}
28
- module = importlib.import_module("teradataml")
29
-
30
- def _get_json_data_from_tdml_repo():
31
- """
32
- DESCRIPTION:
33
- An internal function to parse the json files stored in teradataml repo. This function,
34
- first checks whether the version of json store is same as database version.
35
- If both versions are same, it then returns an empty list, i.e., the framework
36
- will neither parse the json files nor generate the SQLE functions. Otherwise cleans
37
- the json store and parses the json files in the corresponding directory and adds
38
- the json data to json store.
39
-
40
- PARAMETERS:
41
- None.
42
-
43
- RAISES:
44
- None.
45
-
46
- RETURNS:
47
- An iterator of _AnlyFuncMeta object OR list
48
-
49
- EXAMPLES:
50
- >>> _get_json_data_from_tdml_repo()
51
- """
52
-
53
- # Check if the json store version is matched with Vantage database version. If
54
- # both versions are matched, then the json store has data available so no need
55
- # to parse again.
56
- if configure.database_version != _JsonStore.version:
57
-
58
- # Json store version is different from database version. So, json's should
59
- # be parsed again. Before parsing the json, first clean the json store.
60
- _JsonStore.clean()
61
-
62
- # Set the json store version to current database version.
63
- _JsonStore.version = configure.database_version
64
-
65
- # Clean existing map between IN-DB function type and corresponding JSON directory.
66
- func_type_json_version.clear()
67
-
68
- # Load the mapping information for all analytic functions which are version dependent into _JsonStore.
69
- _load_anlyfuncs_jsons_versions_info()
70
-
71
- json_file_directories = __get_json_files_directory()
72
-
73
- # For the corresponding database version, if teradataml does not have any json
74
- # files, then return an empty list. So framework will not attach any SQLE function
75
- # to teradataml.
76
- if not json_file_directories:
77
- return []
78
-
79
- # Read the directory, parse the json file and add the _AnlyFuncMeta object to json store
80
- # and yield the same.
81
- for json_file_directory_list in json_file_directories:
82
- # Get the function type
83
- func_type = json_file_directory_list[1]
84
- # Get the json directory
85
- json_file_directory = json_file_directory_list[0]
86
-
87
- # Get the appropriate metadata class.
88
- metadata_class = getattr(TeradataAnalyticFunctionInfo, func_type).value.get("metadata_class",
89
- "_AnlyFuncMetadata")
90
- metadata_class = eval(metadata_class)
91
-
92
- for json_file in os.listdir(json_file_directory):
93
- file_path = os.path.join(json_file_directory, json_file)
94
- with open(file_path, encoding="utf-8") as fp:
95
- json_data = json.load(fp)
96
- metadata = metadata_class(json_data, file_path, func_type=func_type)
97
-
98
- # Functions which do not need to participate in IN-DB Framework
99
- # should not be stored in _JsonStore.
100
- if metadata.func_name in _JsonStore._functions_to_exclude:
101
- continue
102
- _JsonStore.add(metadata)
103
- yield metadata
104
-
105
- # If both database version and json store version are same, return an empty list so that
106
- # framework will not attach any SQLE function to teradataml.
107
- else:
108
- return []
109
-
110
-
111
- def _load_anlyfuncs_jsons_versions_info():
112
- """
113
- DESCRIPTION:
114
- Function populates following information for analytic functions:
115
- * Lowest supported version.
116
- * Parent directory containing JSONs.
117
- * Nearest matching JSON directory for a particular database version.
118
-
119
- PARAMETERS:
120
- None
121
-
122
- RETURNS:
123
- None
124
-
125
- RAISES:
126
- None
127
-
128
- EXAMPLES:
129
- >>> _load_anlyfuncs_jsons_versions_info()
130
- """
131
- # Import the required package.
132
- import re
133
- # Get the closest matching JSON directory out of all directories corresponding
134
- # to JSONs of different version.
135
- # First remove any letters present in the version
136
- temp_db_version = re.sub(r'[a-zA-Z]', r'', configure.database_version)
137
- db_version = float(temp_db_version[:5])
138
- for func_info in TeradataAnalyticFunctionInfo:
139
- func_type = func_info.value["func_type"]
140
- func_base_version = func_info.value["lowest_version"]
141
- parent_dir = UtilFuncs._get_data_directory(dir_name="jsons",
142
- func_type=func_info)
143
- if func_base_version:
144
- if db_version >= float(func_base_version):
145
- closest_version = _get_closest_version_json_dir(parent_dir, db_version)
146
- if closest_version:
147
- func_type_json_version[func_type] = closest_version
148
-
149
-
150
- def __get_json_files_directory():
151
- """
152
- DESCRIPTION:
153
- An internal function to get the corresponding directory name, which
154
- contains the json files.
155
-
156
- PARAMETERS:
157
- None.
158
-
159
- RAISES:
160
- None.
161
-
162
- RETURNS:
163
- list
164
-
165
- EXAMPLES:
166
- >>> __get_json_files_directory()
167
- """
168
- # If function has version specific JSON directory, return it by using mapping information in
169
- # _Jsonstore else return common JSON directory.
170
- for func_info in TeradataAnalyticFunctionInfo:
171
- if func_info.value["lowest_version"]:
172
- # Check if current function type is allowed on connected Vantage version or not.
173
- if func_info.value["func_type"] in func_type_json_version.keys():
174
- yield [UtilFuncs._get_data_directory(dir_name="jsons", func_type=func_info,
175
- version=func_type_json_version[func_info.value["func_type"]]),
176
- func_info.name]
177
- else:
178
- yield [UtilFuncs._get_data_directory(dir_name="jsons", func_type=func_info), func_info.name]
179
-
180
-
181
- def _get_closest_version_json_dir(parent_dir, database_version):
182
- """
183
- DESCRIPTION:
184
- Internal function to get the nearest matching JSON directory for a database
185
- version from the available JSON directories for the functions.
186
-
187
- PARAMETERS:
188
- parent_dir:
189
- Required Argument.
190
- Specifies the parent dirctory for JSONs of all teradataml version.
191
- Types: str
192
-
193
- database_version:
194
- Required Argument.
195
- Specifies the database version.
196
- Types: float
197
-
198
- RAISES:
199
- None.
200
-
201
- RETURNS:
202
- str
203
-
204
- EXAMPLES:
205
- >>> _get_closest_version_json_dir("path_to_teradataml/teradataml/analytics/jsons/sqle", 17.10)
206
- """
207
- # Get the exact matching JSON directory name for current database version.
208
- # If matching directory exists, return it.
209
- matching_dir = format(database_version, '.2f')
210
- if matching_dir in os.listdir(parent_dir):
211
- return matching_dir
212
-
213
- # If exact matching JSON directory is not found,
214
- # return the directory corresponding to the closest lower version.
215
- # List all the directories, not the files, and collect lower versions only.
216
- lower_versions = (json_dir for json_dir in os.listdir(parent_dir)
217
- if (os.path.isdir(os.path.join(parent_dir, json_dir))
218
- and float(json_dir) <= database_version))
219
-
220
- # If generator generates non-empty list, return max of all versions from that list,
221
- # else while an empty list is passed to max() it throws ValueError, so return None.
222
- try:
223
- return max(lower_versions)
224
- except ValueError:
225
- return None
226
-
227
- def _process_paired_functions():
228
- """
229
- DESCRIPTION:
230
- Process and reads the paired function json.
231
-
232
- PARAMETERS:
233
- None.
234
-
235
- RETURNS:
236
- None.
237
- """
238
-
239
- json_path = os.path.join(UtilFuncs._get_data_directory(), "jsons", "paired_functions.json")
240
- with open(json_path) as fp:
241
- _json = json.load(fp)
242
-
243
- _available_functions, _ = _JsonStore._get_function_list()
244
- for func_type, funcs in _json.items():
245
- # ToDo: Add support for VAL functions
246
- if func_type == "VAL":
247
- continue
248
- # Set all paired functions for SQLE and UAF.
249
- for func in funcs:
250
- # Check if function is existed in JSonStore or not. If exists, only
251
- # then process it.
252
- if func in _available_functions:
253
- metadata = _JsonStore.get_function_metadata(func)
254
- metadata.set_paired_functions(funcs.get(func))
255
-
256
- class _UAF_paired_function:
257
- """
258
- Parent class for _Inverse, _Convolve, _Forecast and _Validate.
259
- """
260
- def _process_arguments(self, function_relation, **kwargs):
261
- """
262
- DESCRIPTION:
263
- Method instantiate the reference function based on 'function_relation'.
264
-
265
- PARAMETERS:
266
- function_relation:
267
- defines which method to instantiate.
268
-
269
- **kwargs:
270
- Keyword arguments passed based on 'function_relation'.
271
-
272
- RETURNS:
273
- object of the reference function.
274
- """
275
- metadata = _JsonStore.get_function_metadata(self.__class__.__name__)
276
- paired_functions = metadata.get_paired_functions()
277
- paired_function = \
278
- [fun_relation for fun_relation in paired_functions
279
- if fun_relation.function_relation == function_relation][0]
280
- reference_function = paired_function.reference_function
281
- for _inp, _out in paired_function.arguments:
282
- kwargs[_inp] = getattr(self, _out)
283
- input_art_spec = {'data': kwargs[paired_function.input_arguments[0]]}
284
- if self.__class__.__name__ == "SeasonalNormalize":
285
- input_art_spec['layer'] = "ARTMETADATA"
286
- kwargs[paired_function.input_arguments[0]] = \
287
- getattr(module, "TDAnalyticResult")(**input_art_spec)
288
- return getattr(module, reference_function)(**kwargs)
289
-
290
-
291
- class _Convolve(_UAF_paired_function):
292
- """
293
- class to convolve the uaf function.
294
- """
295
- def convolve(self, **kwargs):
296
- """
297
- DESCRIPTION:
298
- Method to convolve the uaf function used by instance created from below functions:
299
- * DFFT
300
- * DFFT2
301
-
302
- PARAMETERS:
303
- **kwargs:
304
- Keyword arguments passed to the convolve method.
305
- Notes:
306
- * Every function can have different arguments.
307
- * This arguments are based on inverse functions.
308
-
309
- RETURNS:
310
- object of the reference function.
311
-
312
- EXAMPLE:
313
- load_example_data("uaf", ["dfft2conv_real_4_4"])
314
- data = DataFrame.from_table("dfft2conv_real_4_4")
315
- td_matrix = TDMatrix(data=data,
316
- id="id",
317
- row_index="row_i",
318
- row_index_style="SEQUENCE",
319
- column_index="column_i",
320
- column_index_style="SEQUENCE",
321
- payload_field="magnitude",
322
- payload_content="REAL")
323
- filter_expr = td_matrix.id==33
324
- dfft2_out = DFFT2(data=td_matrix,
325
- data_filter_expr=filter_expr,
326
- freq_style="K_INTEGRAL",
327
- human_readable=False,
328
- output_fmt_content="COMPLEX")
329
- convolve_output = dfft2_out.convolve(conv="HR_TO_RAW",
330
- output_fmt_content="AMPL_PHASE_RADIANS")
331
- """
332
- return self._process_arguments("convolve", **kwargs)
333
-
334
- class _Inverse(_UAF_paired_function):
335
- """
336
- class to inverse the effects of uaf function.
337
- """
338
- def inverse(self, **kwargs):
339
- """
340
- DESCRIPTION:
341
- Method to inverse the effect of uaf function used by instance created from below functions:
342
- * DIFF
343
- * UNDIFF
344
- * DFFT
345
- * IDFFT
346
- * DFFT2
347
- * IDFFT2
348
- * SeasonalNormalize
349
-
350
- PARAMETERS:
351
- **kwargs:
352
- Keyword arguments passed to the inverse method.
353
- Notes:
354
- * Every function can have different arguments.
355
- * This arguments are based on inverse functions.
356
-
357
- RETURNS:
358
- object of the reference function.
359
-
360
- EXAMPLE:
361
- load_example_data("uaf", "mvdfft8")
362
- data = DataFrame.from_table("mvdfft8")
363
- data_series_df = TDSeries(data=data,
364
- id="sid",
365
- row_index="n_seqno",
366
- row_index_style="SEQUENCE",
367
- payload_field="magnitude1",
368
- payload_content="REAL")
369
- DFFT_result = DFFT(data=data_series_df,
370
- human_readable=True,
371
- output_fmt_content='COMPLEX')
372
- inverse_output = DFFT_result.inverse()
373
- """
374
- return self._process_arguments("inverse", **kwargs)
375
-
376
-
377
- class _Forecast(_UAF_paired_function):
378
- """
379
- Class to forecast the model trainer object
380
- """
381
- def forecast(self, **kwargs):
382
- """
383
- DESCRIPTION:
384
- Method to forecast the model trainer object and instantiate
385
- the reference function.
386
-
387
- PARAMETERS:
388
- **kwargs:
389
- Keyword arguments passed to the forecast method.
390
- Notes:
391
- * Every function can have different arguments.
392
- * This arguments are based on forecast functions.
393
-
394
- RETURNS:
395
- object of the reference function which are:
396
- * result
397
-
398
- EXAMPLE:
399
- load_example_data("uaf", ["timeseriesdatasetsd4"])
400
- data = DataFrame.from_table("timeseriesdatasetsd4")
401
- data_series_df = TDSeries(data=data,
402
- id="dataset_id",
403
- row_index="seqno",
404
- row_index_style="SEQUENCE",
405
- payload_field="magnitude",
406
- payload_content="REAL")
407
- arima_estimate_op = ArimaEstimate(data1=data_series_df,
408
- nonseasonal_model_order=[2,0,0],
409
- constant=False,
410
- algorithm="MLE",
411
- coeff_stats=True,
412
- fit_metrics=True,
413
- residuals=True,
414
- fit_percentage=100)
415
- arima_estimate_op.forecast(forecast_periods=2)
416
- """
417
- return self._process_arguments("forecast", **kwargs)
418
-
419
- class _Validate(_UAF_paired_function):
420
- """
421
- Class to validate the model trainer object
422
- """
423
- def validate(self, **kwargs):
424
- """
425
- DESCRIPTION:
426
- Method to validate the model trainer object and instantiate
427
- the reference function.
428
-
429
- PARAMETERS:
430
- **kwargs:
431
- Keyword arguments passed to the validate method.
432
- Note:
433
- * Every function can have different arguments.
434
- * This arguments are based on validate functions.
435
-
436
- RETURNS:
437
- object of the reference function which are:
438
- * result
439
- * fitmetadata
440
- * fitresiduals
441
- * model
442
-
443
- EXAMPLE:
444
- load_example_data("uaf", ["timeseriesdatasetsd4"])
445
- data = DataFrame.from_table("timeseriesdatasetsd4")
446
- data_series_df = TDSeries(data=data,
447
- id="dataset_id",
448
- row_index="seqno",
449
- row_index_style="SEQUENCE",
450
- payload_field="magnitude",
451
- payload_content="REAL")
452
- arima_estimate_op = ArimaEstimate(data1=data_series_df,
453
- nonseasonal_model_order=[2,0,0],
454
- constant=False,
455
- algorithm="MLE",
456
- coeff_stats=True,
457
- fit_metrics=True,
458
- residuals=True,
459
- fit_percentage=80)
460
- arima_estimate_op.validate(residuals=True)
461
- """
462
- return self._process_arguments("validate", **kwargs)
463
-
464
- class _Transform:
465
- def transform(self, **kwargs):
466
- """
467
- DESCRIPTION:
468
- Method to transform the model trainer object and instantiate
469
- the reference function.
470
-
471
- PARAMETERS:
472
- **kwargs:
473
- Keyword arguments passed to the transform method.
474
-
475
- RETURNS:
476
- object of the reference function.
477
-
478
- EXAMPLES:
479
- fit_df = Fit(data=iris_input,
480
- object=transformation_df,
481
- object_order_column='TargetColumn'
482
- )
483
-
484
- fit_df.transform(data=iris_input)
485
- """
486
- metadata = _JsonStore.get_function_metadata(self.__class__.__name__)
487
- paired_functions = metadata.get_paired_functions()
488
- paired_function = [f for f in paired_functions if f.function_relation == "transform"][0]
489
- reference_function = paired_function.reference_function
490
- for _inp, _out in paired_function.arguments:
491
- kwargs[_inp] = getattr(self, _out)
492
- return getattr(module, reference_function)(**kwargs)
493
-
494
- class _Predict:
495
- def predict(self, **kwargs):
496
- """
497
- DESCRIPTION:
498
- Method to predict the model trainer object and instantiate
499
- the reference function.
500
-
501
- PARAMETERS:
502
- **kwargs:
503
- Keyword arguments passed to the transform method.
504
-
505
- RETURNS:
506
- object of the reference function.
507
-
508
- EXAMPLE:
509
- svm_obj = SVM(data=transform_obj.result,
510
- input_columns=['MedInc', 'HouseAge', 'AveRooms',
511
- 'AveBedrms', 'Population', 'AveOccup',
512
- 'Latitude', 'Longitude'],
513
- response_column="MedHouseVal",
514
- model_type="Regression"
515
- )
516
-
517
- svm_obj.predict(newdata = transform_obj.result,
518
- id_column = "id"
519
- )
520
- """
521
- metadata = _JsonStore.get_function_metadata(self.__class__.__name__)
522
- paired_functions = metadata.get_paired_functions()
523
- paired_function = [f for f in paired_functions if f.function_relation == "predict"][0]
524
- reference_function = paired_function.reference_function
525
- for _inp, _out in paired_function.arguments:
526
- kwargs[_inp] = getattr(self, _out)
527
- return getattr(module, reference_function)(**kwargs)
528
-
529
-
530
- class _KNNPredict:
531
- def predict(self, **kwargs):
532
- """
533
- DESCRIPTION:
534
- Method to predict the KNN model trainer object and instantiate
535
- the reference function.
536
-
537
- PARAMETERS:
538
- **kwargs:
539
- Keyword arguments passed to the transform method.
540
-
541
- RETURNS:
542
- object of the reference function.
543
-
544
- EXAMPLE:
545
- KNN_out = KNN(train_data=computers_train1_encoded.result.iloc[:100],
546
- test_data=computers_train1_encoded.result.iloc[10:],
547
- id_column="id",
548
- input_columns=["screen", "price", "speed", "hd"],
549
- model_type="REGRESSION",
550
- response_column="computer_category_special")
551
-
552
- res = KNN_out.evaluate(test_data=computers_train1_encoded.result.iloc[10:])
553
- """
554
- # response_column is required when the model_type is classification or regression.
555
- # accumulate is optional in case user specifies accumulate then consider the value specified by the user,
556
- # else consider the value specified for response_column.
557
-
558
- params = {"test_data": kwargs.get("test_data"),
559
- "id_column": self.id_column,
560
- "voting_weight": self.voting_weight,
561
- "k": self.k,
562
- "tolerance": self.tolerance,
563
- "output_prob": self.output_prob,
564
- "output_responses": self.output_responses,
565
- "emit_neighbors": self.emit_neighbors,
566
- "emit_distances": self.emit_distances,
567
- "train_data": self.train_data,
568
- "input_columns": self.input_columns,
569
- "model_type": self.model_type,
570
- "response_column": kwargs.get("response_column", self.response_column),
571
- "accumulate": kwargs.get("accumulate", kwargs.get("response_column", self.response_column)
572
- if getattr(self.obj, "accumulate") is None else self.accumulate)}
573
-
574
- return getattr(module, "KNN")(**params)
575
-
576
-
577
- class _Evaluate:
578
- """
579
- DESCRIPTION:
580
- Implements the Classification and Regression evaluator.
581
- """
582
- _accumulate_args = {"NaiveBayesTextClassifierTrainer": "doc_category_column"}
583
-
584
- # Mapper for mapping function names with argument names
585
- _evaluator_function_mapper = {"DecisionForest": "tree_type",
586
- "GLM": "family",
587
- "GLMPerSegment": "family",
588
- "SVM": "model_type",
589
- "XGBoost": "model_type"}
590
-
591
- def is_classification_model(self, **kwargs):
592
- """
593
- DESCRIPTION:
594
- Returns True if the model is classification model or regression model.
595
-
596
- PARAMETERS:
597
- **kwargs:
598
- Keyword arguments to access the model_type.
599
-
600
- RETURNS:
601
- Boolean.
602
- """
603
- is_classification_model = False
604
-
605
- # NaiveBayesTextClassifierTrainer takes Multinomial, Bernoulli as input
606
- # both comes under classification evaluator
607
- if self.get_function_name() == "NaiveBayesTextClassifierTrainer":
608
- return True
609
- # name of argument is model_type for most of the functions but for some it is different
610
- if "model_type" not in kwargs:
611
- arg_name = self.get_arg_name()
612
- model_type = getattr(self.obj, arg_name)
613
- kwargs["model_type"] = model_type
614
-
615
- if kwargs["model_type"].lower() == "binomial" or kwargs["model_type"].lower() == "classification":
616
- is_classification_model = True
617
-
618
- return is_classification_model
619
-
620
- def get_function_name(self):
621
- """
622
- DESCRIPTION:
623
- Function to get the name of the analytic function.
624
-
625
- PARAMETERS:
626
- None.
627
-
628
- RETURNS:
629
- str.
630
-
631
- """
632
- return self.__class__.__name__
633
-
634
- def get_response_column(self):
635
- """
636
- DESCRIPTION:
637
- Function to get the argument name for response column. For some functions
638
- argument name storing the response column is different, it can
639
- be fetched from the '_accumulate_arg' mapping.
640
-
641
- PARAMETER:
642
- None.
643
-
644
- RETURNS:
645
- str.
646
- """
647
- # By default it is 'response_column' but some functions require different names.
648
- return self._accumulate_args.get(self.get_function_name(), "response_column")
649
-
650
-
651
-
652
- def get_arg_name(self):
653
- """
654
- DESCRIPTION:
655
- Function to get the argument name for model type. For some functions argument
656
- name can be different, and it can be fetched using the '_evaluator_function_mapper'
657
- mapping.
658
-
659
- PARAMETER:
660
- None.
661
-
662
- RETURNS:
663
- String representing the argument name.
664
- """
665
- return self._evaluator_function_mapper.get(self.get_function_name(), "model_type")
666
-
667
- def evaluate(self, **kwargs):
668
- """
669
- DESCRIPTION:
670
- Method to evaluate the model trainer object, using
671
- either the classification or regression evaluator and
672
- instantiate the reference function.
673
-
674
- PARAMETER:
675
- **kwargs:
676
- Keyword arguments for specified for evaluate method.
677
-
678
- RETURNS:
679
- Attribute of Classification Evaluator or Regression Evaluator
680
-
681
- EXAMPLE:
682
- svm_obj = SVM(data=transform_obj.result,
683
- input_columns=['MedInc', 'HouseAge', 'AveRooms',
684
- 'AveBedrms', 'Population', 'AveOccup',
685
- 'Latitude', 'Longitude'],
686
- response_column="MedHouseVal",
687
- model_type="Regression"
688
- )
689
-
690
- svm_obj.evaluate(newdata = transform_obj.result,
691
- id_column = "id"
692
- )
693
- """
694
-
695
- response_column_arg_name = self.get_response_column()
696
- if hasattr(self.obj, response_column_arg_name):
697
- response_column = getattr(self.obj, response_column_arg_name)
698
- else:
699
- # Created formula object to access the response column property of the formula.
700
- formula_object = Formula(kwargs["newdata"]._metaexpr, getattr(self.obj, "formula"), "formula")
701
- response_column = formula_object.response_column
702
-
703
- # Populate 'accumulate' for predict function so that it will be available in output DataFrame.
704
- if "accumulate" not in kwargs:
705
- # In case accumulate is not specified by the user set the accumulate as response column.
706
- kwargs["accumulate"] = response_column
707
- elif response_column not in kwargs["accumulate"]:
708
- # Checking if accumulate is passed, and it is not having response column then append response column
709
- # to the list of values passed to accumulate.
710
- if isinstance(kwargs["accumulate"], str):
711
- kwargs["accumulate"] = [kwargs["accumulate"]]
712
- kwargs["accumulate"].append(response_column)
713
-
714
- predict = self.predict(**kwargs)
715
- is_classification_model = self.is_classification_model(**kwargs)
716
-
717
- if is_classification_model:
718
-
719
- kwargs["observation_column"] = response_column
720
- kwargs["prediction_column"] = "Prediction" if "Prediction" in predict.result.columns else "prediction"
721
-
722
- # get the column_names and types from the metaexpr to check if the datatype of prediction column
723
- # and observation column is same or not.
724
- col_names, col_types = df_utils._get_column_names_and_types_from_metaexpr(predict.result._metaexpr)
725
- res = dict(zip(col_names,col_types))
726
- pre_col_name = kwargs["prediction_column"]
727
- if res[kwargs["observation_column"]] != res[pre_col_name]:
728
- # Converting the prediction column datatype to observation column datatype.
729
- cast_cols_pre = {pre_col_name: getattr(predict.result, pre_col_name).expression.cast(
730
- type_=res[kwargs["observation_column"]])}
731
- # Update the predicted result dataframe.
732
- predict.result = predict.result.assign(**cast_cols_pre)
733
-
734
- # Update the num_labels by the number of unique values.
735
- kwargs["num_labels"] = predict.result.drop_duplicate(kwargs["observation_column"]).shape[0]
736
-
737
- kwargs["data"] = predict.result
738
-
739
- return getattr(module, "ClassificationEvaluator")(**kwargs)
740
- else:
741
-
742
- # Include the two missing metrics FSTAT and AR2, if the user did not pass the freedom_degrees and
743
- # independent_features_num then appropriate error message should be displayed.
744
-
745
- # If metrics is specified as "fstat" and "ar2".
746
- if 'metrics' in kwargs:
747
- metrics_list = [kwargs.get("metrics")] if isinstance(kwargs.get("metrics"), str) else kwargs.get("metrics")
748
- metrics_lower_case = {metric : metric.lower() for metric in metrics_list}
749
-
750
- if "fstat" in metrics_lower_case.values():
751
- _Validators._validate_dependent_argument("FSTAT", kwargs.get("metrics"),
752
- "freedom_degrees", kwargs.get("freedom_degrees"))
753
-
754
- if "ar2" in metrics_lower_case.values():
755
- _Validators._validate_dependent_argument("AR2", kwargs.get("metrics"),
756
- "independent_features_num",
757
- kwargs.get("independent_features_num"))
758
-
759
- if kwargs.get("metrics") is None:
760
- # If metrics is not specified then evaluate for all metrics except "fstat" and "ar2".
761
- metrics_list = ['MAE', 'MSE', 'MSLE', 'MAPE', 'MPE', 'RMSE', 'RMSLE', 'R2', 'EV', 'ME', 'MPD',
762
- 'MGD']
763
- # If the dependent and optional argument "independent_features_num" is specified then evaluate for AR2
764
- # also.
765
- if kwargs.get("independent_features_num") is not None:
766
- metrics_list.append("AR2")
767
- # If the dependent and optional argument "freedom_degrees" is specified then evaluate for FSTAT also.
768
- if kwargs.get("freedom_degrees") is not None:
769
- metrics_list.append("FSTAT")
770
- kwargs["metrics"] = metrics_list
771
-
772
- kwargs["data"] = predict.result
773
- kwargs["observation_column"] = response_column
774
- # The column name for predict result is "Prediction" in some cases and "prediction" in others.
775
- kwargs["prediction_column"] = "Prediction" if "Prediction" in predict.result.columns else "prediction"
776
-
777
- return getattr(module, "RegressionEvaluator")(**kwargs)
778
-
779
-
780
- def _get_associated_parent_classes(func_name):
781
- # By this time, context is established.
782
- json_path = os.path.join(UtilFuncs._get_data_directory(), "jsons", "paired_functions.json")
783
- with open(json_path) as fp:
784
- paired_functions = json.load(fp)
785
- # Get the paired functions for func_name
786
- paired_functions = [funcs.get(func_name) for _, funcs in paired_functions.items() if funcs.get(func_name, False)]
787
- # paired_func_dict uses mapping between class and model trainer object.
788
- paired_func_dict = {"predict": _Predict, "transform": _Transform,
789
- "evaluate": _Evaluate, "forecast": _Forecast,
790
- "validate": _Validate, "convolve": _Convolve,
791
- "inverse": _Inverse}
792
- # If paired_functions is empty return empty list
793
- if not paired_functions:
794
- return []
795
- # As there are multiple model trainer object one function can use running a loop to iterate
796
- for paired_function in paired_functions[0]:
797
-
798
- # KNN needs a special handling for predict. So, returning a specific class for KNN.
799
- if func_name == "KNN" and paired_function == "predict":
800
- yield _KNNPredict
801
- # Here returning class which is used as parent class for func_name.
802
- if paired_function in paired_func_dict:
803
- yield paired_func_dict[paired_function]
1
+ """
2
+ Unpublished work.
3
+ Copyright (c) 2021 by Teradata Corporation. All rights reserved.
4
+ TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
5
+
6
+ Primary Owner: pradeep.garre@teradata.com, gouri.patwardhan@teradata.com
7
+ Secondary Owner: PankajVinod.Purandare@teradata.com
8
+
9
+ This file implements the helper methods and classes which are required to
10
+ process In-DB Functions.
11
+ """
12
+
13
+ from teradataml.options.configure import configure
14
+ from teradataml.analytics.json_parser.json_store import _JsonStore
15
+ from teradataml.analytics.json_parser.metadata import _AnlyFuncMetadata, _AnlyFuncMetadataUAF
16
+ from teradataml.common.constants import TeradataAnalyticFunctionTypes, TeradataAnalyticFunctionInfo
17
+ from teradataml.common.exceptions import TeradataMlException
18
+ from teradataml.common.messages import Messages
19
+ from teradataml.common.messagecodes import MessageCodes
20
+ import json, os, importlib
21
+ from teradataml import UtilFuncs
22
+ from teradataml.common.formula import Formula
23
+ from teradataml.utils.validators import _Validators
24
+ from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
25
+
26
+ # Map to store IN-DB function type and JSON directory for current database version.
27
+ func_type_json_version = {}
28
+ module = importlib.import_module("teradataml")
29
+
30
+ def _get_json_data_from_tdml_repo():
31
+ """
32
+ DESCRIPTION:
33
+ An internal function to parse the json files stored in teradataml repo. This function,
34
+ first checks whether the version of json store is same as database version.
35
+ If both versions are same, it then returns an empty list, i.e., the framework
36
+ will neither parse the json files nor generate the SQLE functions. Otherwise cleans
37
+ the json store and parses the json files in the corresponding directory and adds
38
+ the json data to json store.
39
+
40
+ PARAMETERS:
41
+ None.
42
+
43
+ RAISES:
44
+ None.
45
+
46
+ RETURNS:
47
+ An iterator of _AnlyFuncMeta object OR list
48
+
49
+ EXAMPLES:
50
+ >>> _get_json_data_from_tdml_repo()
51
+ """
52
+
53
+ # Check if the json store version is matched with Vantage database version. If
54
+ # both versions are matched, then the json store has data available so no need
55
+ # to parse again.
56
+ if configure.database_version != _JsonStore.version:
57
+
58
+ # Json store version is different from database version. So, json's should
59
+ # be parsed again. Before parsing the json, first clean the json store.
60
+ _JsonStore.clean()
61
+
62
+ # Set the json store version to current database version.
63
+ _JsonStore.version = configure.database_version
64
+
65
+ # Clean existing map between IN-DB function type and corresponding JSON directory.
66
+ func_type_json_version.clear()
67
+
68
+ # Load the mapping information for all analytic functions which are version dependent into _JsonStore.
69
+ _load_anlyfuncs_jsons_versions_info()
70
+
71
+ json_file_directories = __get_json_files_directory()
72
+
73
+ # For the corresponding database version, if teradataml does not have any json
74
+ # files, then return an empty list. So framework will not attach any SQLE function
75
+ # to teradataml.
76
+ if not json_file_directories:
77
+ return []
78
+
79
+ # Read the directory, parse the json file and add the _AnlyFuncMeta object to json store
80
+ # and yield the same.
81
+ for json_file_directory_list in json_file_directories:
82
+ # Get the function type
83
+ func_type = json_file_directory_list[1]
84
+ # Get the json directory
85
+ json_file_directory = json_file_directory_list[0]
86
+
87
+ # Get the appropriate metadata class.
88
+ metadata_class = getattr(TeradataAnalyticFunctionInfo, func_type).value.get("metadata_class",
89
+ "_AnlyFuncMetadata")
90
+ metadata_class = eval(metadata_class)
91
+
92
+ for json_file in os.listdir(json_file_directory):
93
+ file_path = os.path.join(json_file_directory, json_file)
94
+ with open(file_path, encoding="utf-8") as fp:
95
+ json_data = json.load(fp)
96
+ metadata = metadata_class(json_data, file_path, func_type=func_type)
97
+
98
+ # Functions which do not need to participate in IN-DB Framework
99
+ # should not be stored in _JsonStore.
100
+ if metadata.func_name in _JsonStore._functions_to_exclude:
101
+ continue
102
+ _JsonStore.add(metadata)
103
+ yield metadata
104
+
105
+ # If both database version and json store version are same, return an empty list so that
106
+ # framework will not attach any SQLE function to teradataml.
107
+ else:
108
+ return []
109
+
110
+
111
+ def _load_anlyfuncs_jsons_versions_info():
112
+ """
113
+ DESCRIPTION:
114
+ Function populates following information for analytic functions:
115
+ * Lowest supported version.
116
+ * Parent directory containing JSONs.
117
+ * Nearest matching JSON directory for a particular database version.
118
+
119
+ PARAMETERS:
120
+ None
121
+
122
+ RETURNS:
123
+ None
124
+
125
+ RAISES:
126
+ None
127
+
128
+ EXAMPLES:
129
+ >>> _load_anlyfuncs_jsons_versions_info()
130
+ """
131
+ # Import the required package.
132
+ import re
133
+ # Get the closest matching JSON directory out of all directories corresponding
134
+ # to JSONs of different version.
135
+ # First remove any letters present in the version
136
+ temp_db_version = re.sub(r'[a-zA-Z]', r'', configure.database_version)
137
+ db_version = float(temp_db_version[:5])
138
+ for func_info in TeradataAnalyticFunctionInfo:
139
+ func_type = func_info.value["func_type"]
140
+ func_base_version = func_info.value["lowest_version"]
141
+ parent_dir = UtilFuncs._get_data_directory(dir_name="jsons",
142
+ func_type=func_info)
143
+ if func_base_version:
144
+ if db_version >= float(func_base_version):
145
+ closest_version = _get_closest_version_json_dir(parent_dir, db_version)
146
+ if closest_version:
147
+ func_type_json_version[func_type] = closest_version
148
+
149
+
150
+ def __get_json_files_directory():
151
+ """
152
+ DESCRIPTION:
153
+ An internal function to get the corresponding directory name, which
154
+ contains the json files.
155
+
156
+ PARAMETERS:
157
+ None.
158
+
159
+ RAISES:
160
+ None.
161
+
162
+ RETURNS:
163
+ list
164
+
165
+ EXAMPLES:
166
+ >>> __get_json_files_directory()
167
+ """
168
+ # If function has version specific JSON directory, return it by using mapping information in
169
+ # _Jsonstore else return common JSON directory.
170
+ for func_info in TeradataAnalyticFunctionInfo:
171
+ if func_info.value["lowest_version"]:
172
+ # Check if current function type is allowed on connected Vantage version or not.
173
+ if func_info.value["func_type"] in func_type_json_version.keys():
174
+ yield [UtilFuncs._get_data_directory(dir_name="jsons", func_type=func_info,
175
+ version=func_type_json_version[func_info.value["func_type"]]),
176
+ func_info.name]
177
+ else:
178
+ yield [UtilFuncs._get_data_directory(dir_name="jsons", func_type=func_info), func_info.name]
179
+
180
+
181
+ def _get_closest_version_json_dir(parent_dir, database_version):
182
+ """
183
+ DESCRIPTION:
184
+ Internal function to get the nearest matching JSON directory for a database
185
+ version from the available JSON directories for the functions.
186
+
187
+ PARAMETERS:
188
+ parent_dir:
189
+ Required Argument.
190
+ Specifies the parent dirctory for JSONs of all teradataml version.
191
+ Types: str
192
+
193
+ database_version:
194
+ Required Argument.
195
+ Specifies the database version.
196
+ Types: float
197
+
198
+ RAISES:
199
+ None.
200
+
201
+ RETURNS:
202
+ str
203
+
204
+ EXAMPLES:
205
+ >>> _get_closest_version_json_dir("path_to_teradataml/teradataml/analytics/jsons/sqle", 17.10)
206
+ """
207
+ # Get the exact matching JSON directory name for current database version.
208
+ # If matching directory exists, return it.
209
+ matching_dir = format(database_version, '.2f')
210
+ if matching_dir in os.listdir(parent_dir):
211
+ return matching_dir
212
+
213
+ # If exact matching JSON directory is not found,
214
+ # return the directory corresponding to the closest lower version.
215
+ # List all the directories, not the files, and collect lower versions only.
216
+ lower_versions = (json_dir for json_dir in os.listdir(parent_dir)
217
+ if (os.path.isdir(os.path.join(parent_dir, json_dir))
218
+ and float(json_dir) <= database_version))
219
+
220
+ # If generator generates non-empty list, return max of all versions from that list,
221
+ # else while an empty list is passed to max() it throws ValueError, so return None.
222
+ try:
223
+ return max(lower_versions)
224
+ except ValueError:
225
+ return None
226
+
227
+ def _process_paired_functions():
228
+ """
229
+ DESCRIPTION:
230
+ Process and reads the paired function json.
231
+
232
+ PARAMETERS:
233
+ None.
234
+
235
+ RETURNS:
236
+ None.
237
+ """
238
+
239
+ json_path = os.path.join(UtilFuncs._get_data_directory(), "jsons", "paired_functions.json")
240
+ with open(json_path) as fp:
241
+ _json = json.load(fp)
242
+
243
+ _available_functions, _ = _JsonStore._get_function_list()
244
+ for func_type, funcs in _json.items():
245
+ # ToDo: Add support for VAL functions
246
+ if func_type == "VAL":
247
+ continue
248
+ # Set all paired functions for SQLE and UAF.
249
+ for func in funcs:
250
+ # Check if function is existed in JSonStore or not. If exists, only
251
+ # then process it.
252
+ if func in _available_functions:
253
+ metadata = _JsonStore.get_function_metadata(func)
254
+ metadata.set_paired_functions(funcs.get(func))
255
+
256
+ class _UAF_paired_function:
257
+ """
258
+ Parent class for _Inverse, _Convolve, _Forecast and _Validate.
259
+ """
260
+ def _process_arguments(self, function_relation, **kwargs):
261
+ """
262
+ DESCRIPTION:
263
+ Method instantiate the reference function based on 'function_relation'.
264
+
265
+ PARAMETERS:
266
+ function_relation:
267
+ defines which method to instantiate.
268
+
269
+ **kwargs:
270
+ Keyword arguments passed based on 'function_relation'.
271
+
272
+ RETURNS:
273
+ object of the reference function.
274
+ """
275
+ metadata = _JsonStore.get_function_metadata(self.__class__.__name__)
276
+ paired_functions = metadata.get_paired_functions()
277
+ paired_function = \
278
+ [fun_relation for fun_relation in paired_functions
279
+ if fun_relation.function_relation == function_relation][0]
280
+ reference_function = paired_function.reference_function
281
+ for _inp, _out in paired_function.arguments:
282
+ kwargs[_inp] = getattr(self, _out)
283
+ input_art_spec = {'data': kwargs[paired_function.input_arguments[0]]}
284
+ if self.__class__.__name__ == "SeasonalNormalize":
285
+ input_art_spec['layer'] = "ARTMETADATA"
286
+ kwargs[paired_function.input_arguments[0]] = \
287
+ getattr(module, "TDAnalyticResult")(**input_art_spec)
288
+ return getattr(module, reference_function)(**kwargs)
289
+
290
+
291
+ class _Convolve(_UAF_paired_function):
292
+ """
293
+ class to convolve the uaf function.
294
+ """
295
+ def convolve(self, **kwargs):
296
+ """
297
+ DESCRIPTION:
298
+ Method to convolve the uaf function used by instance created from below functions:
299
+ * DFFT
300
+ * DFFT2
301
+
302
+ PARAMETERS:
303
+ **kwargs:
304
+ Keyword arguments passed to the convolve method.
305
+ Notes:
306
+ * Every function can have different arguments.
307
+ * This arguments are based on inverse functions.
308
+
309
+ RETURNS:
310
+ object of the reference function.
311
+
312
+ EXAMPLE:
313
+ load_example_data("uaf", ["dfft2conv_real_4_4"])
314
+ data = DataFrame.from_table("dfft2conv_real_4_4")
315
+ td_matrix = TDMatrix(data=data,
316
+ id="id",
317
+ row_index="row_i",
318
+ row_index_style="SEQUENCE",
319
+ column_index="column_i",
320
+ column_index_style="SEQUENCE",
321
+ payload_field="magnitude",
322
+ payload_content="REAL")
323
+ filter_expr = td_matrix.id==33
324
+ dfft2_out = DFFT2(data=td_matrix,
325
+ data_filter_expr=filter_expr,
326
+ freq_style="K_INTEGRAL",
327
+ human_readable=False,
328
+ output_fmt_content="COMPLEX")
329
+ convolve_output = dfft2_out.convolve(conv="HR_TO_RAW",
330
+ output_fmt_content="AMPL_PHASE_RADIANS")
331
+ """
332
+ return self._process_arguments("convolve", **kwargs)
333
+
334
+ class _Inverse(_UAF_paired_function):
335
+ """
336
+ class to inverse the effects of uaf function.
337
+ """
338
+ def inverse(self, **kwargs):
339
+ """
340
+ DESCRIPTION:
341
+ Method to inverse the effect of uaf function used by instance created from below functions:
342
+ * DIFF
343
+ * UNDIFF
344
+ * DFFT
345
+ * IDFFT
346
+ * DFFT2
347
+ * IDFFT2
348
+ * SeasonalNormalize
349
+
350
+ PARAMETERS:
351
+ **kwargs:
352
+ Keyword arguments passed to the inverse method.
353
+ Notes:
354
+ * Every function can have different arguments.
355
+ * This arguments are based on inverse functions.
356
+
357
+ RETURNS:
358
+ object of the reference function.
359
+
360
+ EXAMPLE:
361
+ load_example_data("uaf", "mvdfft8")
362
+ data = DataFrame.from_table("mvdfft8")
363
+ data_series_df = TDSeries(data=data,
364
+ id="sid",
365
+ row_index="n_seqno",
366
+ row_index_style="SEQUENCE",
367
+ payload_field="magnitude1",
368
+ payload_content="REAL")
369
+ DFFT_result = DFFT(data=data_series_df,
370
+ human_readable=True,
371
+ output_fmt_content='COMPLEX')
372
+ inverse_output = DFFT_result.inverse()
373
+ """
374
+ return self._process_arguments("inverse", **kwargs)
375
+
376
+
377
+ class _Forecast(_UAF_paired_function):
378
+ """
379
+ Class to forecast the model trainer object
380
+ """
381
+ def forecast(self, **kwargs):
382
+ """
383
+ DESCRIPTION:
384
+ Method to forecast the model trainer object and instantiate
385
+ the reference function.
386
+
387
+ PARAMETERS:
388
+ **kwargs:
389
+ Keyword arguments passed to the forecast method.
390
+ Notes:
391
+ * Every function can have different arguments.
392
+ * This arguments are based on forecast functions.
393
+
394
+ RETURNS:
395
+ object of the reference function which are:
396
+ * result
397
+
398
+ EXAMPLE:
399
+ load_example_data("uaf", ["timeseriesdatasetsd4"])
400
+ data = DataFrame.from_table("timeseriesdatasetsd4")
401
+ data_series_df = TDSeries(data=data,
402
+ id="dataset_id",
403
+ row_index="seqno",
404
+ row_index_style="SEQUENCE",
405
+ payload_field="magnitude",
406
+ payload_content="REAL")
407
+ arima_estimate_op = ArimaEstimate(data1=data_series_df,
408
+ nonseasonal_model_order=[2,0,0],
409
+ constant=False,
410
+ algorithm="MLE",
411
+ coeff_stats=True,
412
+ fit_metrics=True,
413
+ residuals=True,
414
+ fit_percentage=100)
415
+ arima_estimate_op.forecast(forecast_periods=2)
416
+ """
417
+ return self._process_arguments("forecast", **kwargs)
418
+
419
+ class _Validate(_UAF_paired_function):
420
+ """
421
+ Class to validate the model trainer object
422
+ """
423
+ def validate(self, **kwargs):
424
+ """
425
+ DESCRIPTION:
426
+ Method to validate the model trainer object and instantiate
427
+ the reference function.
428
+
429
+ PARAMETERS:
430
+ **kwargs:
431
+ Keyword arguments passed to the validate method.
432
+ Note:
433
+ * Every function can have different arguments.
434
+ * This arguments are based on validate functions.
435
+
436
+ RETURNS:
437
+ object of the reference function which are:
438
+ * result
439
+ * fitmetadata
440
+ * fitresiduals
441
+ * model
442
+
443
+ EXAMPLE:
444
+ load_example_data("uaf", ["timeseriesdatasetsd4"])
445
+ data = DataFrame.from_table("timeseriesdatasetsd4")
446
+ data_series_df = TDSeries(data=data,
447
+ id="dataset_id",
448
+ row_index="seqno",
449
+ row_index_style="SEQUENCE",
450
+ payload_field="magnitude",
451
+ payload_content="REAL")
452
+ arima_estimate_op = ArimaEstimate(data1=data_series_df,
453
+ nonseasonal_model_order=[2,0,0],
454
+ constant=False,
455
+ algorithm="MLE",
456
+ coeff_stats=True,
457
+ fit_metrics=True,
458
+ residuals=True,
459
+ fit_percentage=80)
460
+ arima_estimate_op.validate(residuals=True)
461
+ """
462
+ return self._process_arguments("validate", **kwargs)
463
+
464
+ class _Transform:
465
+ def transform(self, **kwargs):
466
+ """
467
+ DESCRIPTION:
468
+ Method to transform the model trainer object and instantiate
469
+ the reference function.
470
+
471
+ PARAMETERS:
472
+ **kwargs:
473
+ Keyword arguments passed to the transform method.
474
+
475
+ RETURNS:
476
+ object of the reference function.
477
+
478
+ EXAMPLES:
479
+ fit_df = Fit(data=iris_input,
480
+ object=transformation_df,
481
+ object_order_column='TargetColumn'
482
+ )
483
+
484
+ fit_df.transform(data=iris_input)
485
+ """
486
+ metadata = _JsonStore.get_function_metadata(self.__class__.__name__)
487
+ paired_functions = metadata.get_paired_functions()
488
+ paired_function = [f for f in paired_functions if f.function_relation == "transform"][0]
489
+ reference_function = paired_function.reference_function
490
+ for _inp, _out in paired_function.arguments:
491
+ kwargs[_inp] = getattr(self, _out)
492
+ return getattr(module, reference_function)(**kwargs)
493
+
494
+ class _Predict:
495
+ def predict(self, **kwargs):
496
+ """
497
+ DESCRIPTION:
498
+ Method to predict the model trainer object and instantiate
499
+ the reference function.
500
+
501
+ PARAMETERS:
502
+ **kwargs:
503
+ Keyword arguments passed to the transform method.
504
+
505
+ RETURNS:
506
+ object of the reference function.
507
+
508
+ EXAMPLE:
509
+ svm_obj = SVM(data=transform_obj.result,
510
+ input_columns=['MedInc', 'HouseAge', 'AveRooms',
511
+ 'AveBedrms', 'Population', 'AveOccup',
512
+ 'Latitude', 'Longitude'],
513
+ response_column="MedHouseVal",
514
+ model_type="Regression"
515
+ )
516
+
517
+ svm_obj.predict(newdata = transform_obj.result,
518
+ id_column = "id"
519
+ )
520
+ """
521
+ metadata = _JsonStore.get_function_metadata(self.__class__.__name__)
522
+ paired_functions = metadata.get_paired_functions()
523
+ paired_function = [f for f in paired_functions if f.function_relation == "predict"][0]
524
+ reference_function = paired_function.reference_function
525
+ for _inp, _out in paired_function.arguments:
526
+ kwargs[_inp] = getattr(self, _out)
527
+ return getattr(module, reference_function)(**kwargs)
528
+
529
+
530
+ class _KNNPredict:
531
+ def predict(self, **kwargs):
532
+ """
533
+ DESCRIPTION:
534
+ Method to predict the KNN model trainer object and instantiate
535
+ the reference function.
536
+
537
+ PARAMETERS:
538
+ **kwargs:
539
+ Keyword arguments passed to the transform method.
540
+
541
+ RETURNS:
542
+ object of the reference function.
543
+
544
+ EXAMPLE:
545
+ KNN_out = KNN(train_data=computers_train1_encoded.result.iloc[:100],
546
+ test_data=computers_train1_encoded.result.iloc[10:],
547
+ id_column="id",
548
+ input_columns=["screen", "price", "speed", "hd"],
549
+ model_type="REGRESSION",
550
+ response_column="computer_category_special")
551
+
552
+ res = KNN_out.evaluate(test_data=computers_train1_encoded.result.iloc[10:])
553
+ """
554
+ params = {"test_data": kwargs.get("test_data"),
555
+ "id_column": self.id_column,
556
+ "train_data": self.train_data,
557
+ "input_columns": self.input_columns,
558
+ "response_column": kwargs.get("response_column", self.response_column),
559
+ "accumulate": kwargs.get("accumulate", kwargs.get("response_column", self.response_column)
560
+ if getattr(self.obj, "accumulate") is None else self.accumulate)}
561
+
562
+ # KNN works in a different way. predict calls the same function with test data along with
563
+ # the arguments passed to the actual function. The above parameters are required
564
+ # arguments so we expect them to be available in output of KNN. However, the below
565
+ # ones are optional arguments. They can be available or not based on user input. So, before
566
+ # passing those to KNN again, check whether that argument is passed or not.
567
+ optional_args = ["model_type", "k", "voting_weight",
568
+ "tolerance", "output_prob", "output_responses",
569
+ "emit_neighbors", "emit_distances"]
570
+
571
+ for optional_arg in optional_args:
572
+ if hasattr(self, optional_arg):
573
+ params[optional_arg] = getattr(self, optional_arg)
574
+
575
+ return getattr(module, "KNN")(**params)
576
+
577
+
578
+ class _Evaluate:
579
+ """
580
+ DESCRIPTION:
581
+ Implements the Classification and Regression evaluator.
582
+ """
583
+ _accumulate_args = {"NaiveBayesTextClassifierTrainer": "doc_category_column"}
584
+
585
+ # Mapper for mapping function names with argument names
586
+ _evaluator_function_mapper = {"DecisionForest": "tree_type",
587
+ "GLM": "family",
588
+ "GLMPerSegment": "family",
589
+ "SVM": "model_type",
590
+ "XGBoost": "model_type"}
591
+
592
+ def is_classification_model(self, **kwargs):
593
+ """
594
+ DESCRIPTION:
595
+ Returns True if the model is classification model or regression model.
596
+
597
+ PARAMETERS:
598
+ **kwargs:
599
+ Keyword arguments to access the model_type.
600
+
601
+ RETURNS:
602
+ Boolean.
603
+ """
604
+ is_classification_model = False
605
+
606
+ # NaiveBayesTextClassifierTrainer takes Multinomial, Bernoulli as input
607
+ # both comes under classification evaluator
608
+ if self.get_function_name() == "NaiveBayesTextClassifierTrainer":
609
+ return True
610
+ # name of argument is model_type for most of the functions but for some it is different
611
+ if "model_type" not in kwargs and "tree_type" not in kwargs:
612
+ arg_name = self.get_arg_name()
613
+ model_type = getattr(self.obj, arg_name)
614
+ if self.get_function_name() == "DecisionForest":
615
+ kwargs["tree_type"] = model_type
616
+ else:
617
+ kwargs["model_type"] = model_type
618
+
619
+ if ("model_type" in kwargs and (kwargs["model_type"].lower() == "binomial" or kwargs["model_type"].lower() == "classification")) \
620
+ or ( "tree_type" in kwargs and kwargs["tree_type"].lower() == "classification"):
621
+ is_classification_model = True
622
+
623
+ return is_classification_model
624
+
625
+ def get_function_name(self):
626
+ """
627
+ DESCRIPTION:
628
+ Function to get the name of the analytic function.
629
+
630
+ PARAMETERS:
631
+ None.
632
+
633
+ RETURNS:
634
+ str.
635
+
636
+ """
637
+ return self.__class__.__name__
638
+
639
+ def get_response_column(self):
640
+ """
641
+ DESCRIPTION:
642
+ Function to get the argument name for response column. For some functions
643
+ argument name storing the response column is different, it can
644
+ be fetched from the '_accumulate_arg' mapping.
645
+
646
+ PARAMETER:
647
+ None.
648
+
649
+ RETURNS:
650
+ str.
651
+ """
652
+ # By default it is 'response_column' but some functions require different names.
653
+ return self._accumulate_args.get(self.get_function_name(), "response_column")
654
+
655
+
656
+
657
+ def get_arg_name(self):
658
+ """
659
+ DESCRIPTION:
660
+ Function to get the argument name for model type. For some functions argument
661
+ name can be different, and it can be fetched using the '_evaluator_function_mapper'
662
+ mapping.
663
+
664
+ PARAMETER:
665
+ None.
666
+
667
+ RETURNS:
668
+ String representing the argument name.
669
+ """
670
+ return self._evaluator_function_mapper.get(self.get_function_name(), "model_type")
671
+
672
+ def evaluate(self, **kwargs):
673
+ """
674
+ DESCRIPTION:
675
+ Method to evaluate the model trainer object, using
676
+ either the classification or regression evaluator and
677
+ instantiate the reference function.
678
+
679
+ PARAMETER:
680
+ **kwargs:
681
+ Keyword arguments for specified for evaluate method.
682
+
683
+ RETURNS:
684
+ Attribute of Classification Evaluator or Regression Evaluator
685
+
686
+ EXAMPLE:
687
+ svm_obj = SVM(data=transform_obj.result,
688
+ input_columns=['MedInc', 'HouseAge', 'AveRooms',
689
+ 'AveBedrms', 'Population', 'AveOccup',
690
+ 'Latitude', 'Longitude'],
691
+ response_column="MedHouseVal",
692
+ model_type="Regression"
693
+ )
694
+
695
+ svm_obj.evaluate(newdata = transform_obj.result,
696
+ id_column = "id"
697
+ )
698
+ """
699
+
700
+ response_column_arg_name = self.get_response_column()
701
+ if hasattr(self.obj, response_column_arg_name):
702
+ response_column = getattr(self.obj, response_column_arg_name)
703
+ else:
704
+ # Created formula object to access the response column property of the formula.
705
+ formula_object = Formula(kwargs["newdata"]._metaexpr, getattr(self.obj, "formula"), "formula")
706
+ response_column = formula_object.response_column
707
+
708
+ # Populate 'accumulate' for predict function so that it will be available in output DataFrame.
709
+ if "accumulate" not in kwargs:
710
+ # In case accumulate is not specified by the user set the accumulate as response column.
711
+ kwargs["accumulate"] = response_column
712
+ elif response_column not in kwargs["accumulate"]:
713
+ # Checking if accumulate is passed, and it is not having response column then append response column
714
+ # to the list of values passed to accumulate.
715
+ if isinstance(kwargs["accumulate"], str):
716
+ kwargs["accumulate"] = [kwargs["accumulate"]]
717
+ kwargs["accumulate"].append(response_column)
718
+
719
+ predict = self.predict(**kwargs)
720
+ is_classification_model = self.is_classification_model(**kwargs)
721
+
722
+ if is_classification_model:
723
+
724
+ kwargs["observation_column"] = response_column
725
+ kwargs["prediction_column"] = "Prediction" if "Prediction" in predict.result.columns else "prediction"
726
+
727
+ # Update the num_labels by the number of unique values if
728
+ # Labels are not passed.
729
+ if "labels" not in kwargs:
730
+ kwargs["num_labels"] = predict.result.drop_duplicate(kwargs["observation_column"]).shape[0]
731
+
732
+ kwargs["data"] = predict.result
733
+
734
+ return getattr(module, "ClassificationEvaluator")(**kwargs)
735
+ else:
736
+
737
+ # Include the two missing metrics FSTAT and AR2, if the user did not pass the freedom_degrees and
738
+ # independent_features_num then appropriate error message should be displayed.
739
+
740
+ # If metrics is specified as "fstat" and "ar2".
741
+ if 'metrics' in kwargs:
742
+ metrics_list = [kwargs.get("metrics")] if isinstance(kwargs.get("metrics"), str) else kwargs.get("metrics")
743
+ metrics_lower_case = {metric : metric.lower() for metric in metrics_list}
744
+
745
+ if "fstat" in metrics_lower_case.values():
746
+ _Validators._validate_dependent_argument("FSTAT", kwargs.get("metrics"),
747
+ "freedom_degrees", kwargs.get("freedom_degrees"))
748
+
749
+ if "ar2" in metrics_lower_case.values():
750
+ _Validators._validate_dependent_argument("AR2", kwargs.get("metrics"),
751
+ "independent_features_num",
752
+ kwargs.get("independent_features_num"))
753
+
754
+ if kwargs.get("metrics") is None:
755
+ # If metrics is not specified then evaluate for all metrics except "fstat" and "ar2".
756
+ metrics_list = ['MAE', 'MSE', 'MSLE', 'MAPE', 'MPE', 'RMSE', 'RMSLE', 'R2', 'EV', 'ME', 'MPD',
757
+ 'MGD']
758
+ # If the dependent and optional argument "independent_features_num" is specified then evaluate for AR2
759
+ # also.
760
+ if kwargs.get("independent_features_num") is not None:
761
+ metrics_list.append("AR2")
762
+ # If the dependent and optional argument "freedom_degrees" is specified then evaluate for FSTAT also.
763
+ if kwargs.get("freedom_degrees") is not None:
764
+ metrics_list.append("FSTAT")
765
+ kwargs["metrics"] = metrics_list
766
+
767
+ kwargs["data"] = predict.result
768
+ kwargs["observation_column"] = response_column
769
+ # The column name for predict result is "Prediction" in some cases and "prediction" in others.
770
+ kwargs["prediction_column"] = "Prediction" if "Prediction" in predict.result.columns else "prediction"
771
+
772
+ return getattr(module, "RegressionEvaluator")(**kwargs)
773
+
774
+
775
+ def _get_associated_parent_classes(func_name):
776
+ # By this time, context is established.
777
+ json_path = os.path.join(UtilFuncs._get_data_directory(), "jsons", "paired_functions.json")
778
+ with open(json_path) as fp:
779
+ paired_functions = json.load(fp)
780
+ # Get the paired functions for func_name
781
+ paired_functions = [funcs.get(func_name) for _, funcs in paired_functions.items() if funcs.get(func_name, False)]
782
+ # paired_func_dict uses mapping between class and model trainer object.
783
+ paired_func_dict = {"predict": _Predict, "transform": _Transform,
784
+ "evaluate": _Evaluate, "forecast": _Forecast,
785
+ "validate": _Validate, "convolve": _Convolve,
786
+ "inverse": _Inverse}
787
+ # If paired_functions is empty return empty list
788
+ if not paired_functions:
789
+ return []
790
+ # As there are multiple model trainer object one function can use running a loop to iterate
791
+ for paired_function in paired_functions[0]:
792
+
793
+ # KNN needs a special handling for predict. So, returning a specific class for KNN.
794
+ if func_name == "KNN" and paired_function == "predict":
795
+ yield _KNNPredict
796
+ # Here returning class which is used as parent class for func_name.
797
+ if paired_function in paired_func_dict:
798
+ yield paired_func_dict[paired_function]