teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1303) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1935 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2040 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +798 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1683 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +1011 -0
  31. teradataml/automl/data_transformation.py +789 -0
  32. teradataml/automl/feature_engineering.py +1580 -0
  33. teradataml/automl/feature_exploration.py +554 -0
  34. teradataml/automl/model_evaluation.py +151 -0
  35. teradataml/automl/model_training.py +1026 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/auth_client.py +133 -0
  41. teradataml/clients/pkce_client.py +481 -481
  42. teradataml/common/aed_utils.py +7 -2
  43. teradataml/common/bulk_exposed_utils.py +111 -111
  44. teradataml/common/constants.py +1438 -1441
  45. teradataml/common/deprecations.py +160 -0
  46. teradataml/common/exceptions.py +73 -73
  47. teradataml/common/formula.py +742 -742
  48. teradataml/common/garbagecollector.py +597 -635
  49. teradataml/common/messagecodes.py +424 -431
  50. teradataml/common/messages.py +228 -231
  51. teradataml/common/sqlbundle.py +693 -693
  52. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  53. teradataml/common/utils.py +2424 -2500
  54. teradataml/common/warnings.py +25 -25
  55. teradataml/common/wrapper_utils.py +1 -110
  56. teradataml/config/dummy_file1.cfg +4 -4
  57. teradataml/config/dummy_file2.cfg +2 -2
  58. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  59. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  60. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  61. teradataml/context/aed_context.py +217 -217
  62. teradataml/context/context.py +1091 -999
  63. teradataml/data/A_loan.csv +19 -19
  64. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  65. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  66. teradataml/data/B_loan.csv +49 -49
  67. teradataml/data/BuoyData2.csv +17 -17
  68. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  69. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  70. teradataml/data/Convolve2RealsLeft.csv +5 -5
  71. teradataml/data/Convolve2RealsRight.csv +5 -5
  72. teradataml/data/Convolve2ValidLeft.csv +11 -11
  73. teradataml/data/Convolve2ValidRight.csv +11 -11
  74. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  75. teradataml/data/Orders1_12mf.csv +24 -24
  76. teradataml/data/Pi_loan.csv +7 -7
  77. teradataml/data/SMOOTHED_DATA.csv +7 -7
  78. teradataml/data/TestDFFT8.csv +9 -9
  79. teradataml/data/TestRiver.csv +109 -109
  80. teradataml/data/Traindata.csv +28 -28
  81. teradataml/data/acf.csv +17 -17
  82. teradataml/data/adaboost_example.json +34 -34
  83. teradataml/data/adaboostpredict_example.json +24 -24
  84. teradataml/data/additional_table.csv +10 -10
  85. teradataml/data/admissions_test.csv +21 -21
  86. teradataml/data/admissions_train.csv +41 -41
  87. teradataml/data/admissions_train_nulls.csv +41 -41
  88. teradataml/data/advertising.csv +201 -0
  89. teradataml/data/ageandheight.csv +13 -13
  90. teradataml/data/ageandpressure.csv +31 -31
  91. teradataml/data/antiselect_example.json +36 -36
  92. teradataml/data/antiselect_input.csv +8 -8
  93. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  94. teradataml/data/applicant_external.csv +6 -6
  95. teradataml/data/applicant_reference.csv +6 -6
  96. teradataml/data/arima_example.json +9 -9
  97. teradataml/data/assortedtext_input.csv +8 -8
  98. teradataml/data/attribution_example.json +33 -33
  99. teradataml/data/attribution_sample_table.csv +27 -27
  100. teradataml/data/attribution_sample_table1.csv +6 -6
  101. teradataml/data/attribution_sample_table2.csv +11 -11
  102. teradataml/data/bank_churn.csv +10001 -0
  103. teradataml/data/bank_marketing.csv +11163 -0
  104. teradataml/data/bank_web_clicks1.csv +42 -42
  105. teradataml/data/bank_web_clicks2.csv +91 -91
  106. teradataml/data/bank_web_url.csv +85 -85
  107. teradataml/data/barrier.csv +2 -2
  108. teradataml/data/barrier_new.csv +3 -3
  109. teradataml/data/betweenness_example.json +13 -13
  110. teradataml/data/bike_sharing.csv +732 -0
  111. teradataml/data/bin_breaks.csv +8 -8
  112. teradataml/data/bin_fit_ip.csv +3 -3
  113. teradataml/data/binary_complex_left.csv +11 -11
  114. teradataml/data/binary_complex_right.csv +11 -11
  115. teradataml/data/binary_matrix_complex_left.csv +21 -21
  116. teradataml/data/binary_matrix_complex_right.csv +21 -21
  117. teradataml/data/binary_matrix_real_left.csv +21 -21
  118. teradataml/data/binary_matrix_real_right.csv +21 -21
  119. teradataml/data/blood2ageandweight.csv +26 -26
  120. teradataml/data/bmi.csv +501 -0
  121. teradataml/data/boston.csv +507 -507
  122. teradataml/data/boston2cols.csv +721 -0
  123. teradataml/data/breast_cancer.csv +570 -0
  124. teradataml/data/buoydata_mix.csv +11 -11
  125. teradataml/data/burst_data.csv +5 -5
  126. teradataml/data/burst_example.json +20 -20
  127. teradataml/data/byom_example.json +17 -17
  128. teradataml/data/bytes_table.csv +3 -3
  129. teradataml/data/cal_housing_ex_raw.csv +70 -70
  130. teradataml/data/callers.csv +7 -7
  131. teradataml/data/calls.csv +10 -10
  132. teradataml/data/cars_hist.csv +33 -33
  133. teradataml/data/cat_table.csv +24 -24
  134. teradataml/data/ccm_example.json +31 -31
  135. teradataml/data/ccm_input.csv +91 -91
  136. teradataml/data/ccm_input2.csv +13 -13
  137. teradataml/data/ccmexample.csv +101 -101
  138. teradataml/data/ccmprepare_example.json +8 -8
  139. teradataml/data/ccmprepare_input.csv +91 -91
  140. teradataml/data/cfilter_example.json +12 -12
  141. teradataml/data/changepointdetection_example.json +18 -18
  142. teradataml/data/changepointdetectionrt_example.json +8 -8
  143. teradataml/data/chi_sq.csv +2 -2
  144. teradataml/data/churn_data.csv +14 -14
  145. teradataml/data/churn_emission.csv +35 -35
  146. teradataml/data/churn_initial.csv +3 -3
  147. teradataml/data/churn_state_transition.csv +5 -5
  148. teradataml/data/citedges_2.csv +745 -745
  149. teradataml/data/citvertices_2.csv +1210 -1210
  150. teradataml/data/clicks2.csv +16 -16
  151. teradataml/data/clickstream.csv +12 -12
  152. teradataml/data/clickstream1.csv +11 -11
  153. teradataml/data/closeness_example.json +15 -15
  154. teradataml/data/complaints.csv +21 -21
  155. teradataml/data/complaints_mini.csv +3 -3
  156. teradataml/data/complaints_testtoken.csv +224 -224
  157. teradataml/data/complaints_tokens_test.csv +353 -353
  158. teradataml/data/complaints_traintoken.csv +472 -472
  159. teradataml/data/computers_category.csv +1001 -1001
  160. teradataml/data/computers_test1.csv +1252 -1252
  161. teradataml/data/computers_train1.csv +5009 -5009
  162. teradataml/data/computers_train1_clustered.csv +5009 -5009
  163. teradataml/data/confusionmatrix_example.json +9 -9
  164. teradataml/data/conversion_event_table.csv +3 -3
  165. teradataml/data/corr_input.csv +17 -17
  166. teradataml/data/correlation_example.json +11 -11
  167. teradataml/data/coxhazardratio_example.json +39 -39
  168. teradataml/data/coxph_example.json +15 -15
  169. teradataml/data/coxsurvival_example.json +28 -28
  170. teradataml/data/cpt.csv +41 -41
  171. teradataml/data/credit_ex_merged.csv +45 -45
  172. teradataml/data/customer_loyalty.csv +301 -301
  173. teradataml/data/customer_loyalty_newseq.csv +31 -31
  174. teradataml/data/customer_segmentation_test.csv +2628 -0
  175. teradataml/data/customer_segmentation_train.csv +8069 -0
  176. teradataml/data/dataframe_example.json +146 -146
  177. teradataml/data/decisionforest_example.json +37 -37
  178. teradataml/data/decisionforestpredict_example.json +38 -38
  179. teradataml/data/decisiontree_example.json +21 -21
  180. teradataml/data/decisiontreepredict_example.json +45 -45
  181. teradataml/data/dfft2_size4_real.csv +17 -17
  182. teradataml/data/dfft2_test_matrix16.csv +17 -17
  183. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  184. teradataml/data/diabetes.csv +443 -443
  185. teradataml/data/diabetes_test.csv +89 -89
  186. teradataml/data/dict_table.csv +5 -5
  187. teradataml/data/docperterm_table.csv +4 -4
  188. teradataml/data/docs/__init__.py +1 -1
  189. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  190. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  191. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  192. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  193. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  194. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  195. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  196. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  197. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  198. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  199. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  200. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  201. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  202. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  203. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  204. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  205. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  206. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  207. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  208. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  209. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  210. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  211. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  212. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  213. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  214. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  215. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  216. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  217. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
  218. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
  219. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  220. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
  221. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  222. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  223. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  224. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  225. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  226. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  227. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  228. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  229. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  230. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  231. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  232. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  233. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  234. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  235. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  236. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  237. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  238. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  239. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  240. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  241. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  242. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
  243. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  244. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  245. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  246. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  247. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  248. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  249. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  250. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  251. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
  252. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  253. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  254. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  255. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  256. teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
  257. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  258. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  259. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
  260. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  261. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  262. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  263. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
  264. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  265. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  266. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  267. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
  268. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  269. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  270. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  271. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  272. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  273. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  274. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  275. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  276. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
  277. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  278. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  279. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  280. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  281. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
  282. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
  283. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  284. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  285. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  286. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  287. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  288. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  289. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  290. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  291. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
  292. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  293. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  294. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  295. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  296. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  297. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  298. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  299. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  300. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
  301. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  302. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
  303. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
  304. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  305. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  306. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  307. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  308. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  309. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  310. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  311. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  312. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
  313. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  314. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  315. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  316. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  317. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  318. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  319. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  320. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  321. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  322. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  323. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  324. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
  325. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
  326. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
  327. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  328. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  329. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  330. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  331. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  332. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  333. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  334. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  335. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  336. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  337. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  338. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  339. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  340. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  341. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  342. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  343. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  344. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  345. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  346. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  347. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  348. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  349. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  350. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  351. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  352. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  353. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  354. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  355. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  356. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  357. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  358. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  359. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  360. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  361. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  362. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  363. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  364. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  365. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  366. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  367. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  368. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  369. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  370. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  371. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  372. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  373. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  374. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  375. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  376. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  377. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  378. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  379. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  380. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  381. teradataml/data/dtw_example.json +17 -17
  382. teradataml/data/dtw_t1.csv +11 -11
  383. teradataml/data/dtw_t2.csv +4 -4
  384. teradataml/data/dwt2d_example.json +15 -15
  385. teradataml/data/dwt_example.json +14 -14
  386. teradataml/data/dwt_filter_dim.csv +5 -5
  387. teradataml/data/emission.csv +9 -9
  388. teradataml/data/emp_table_by_dept.csv +19 -19
  389. teradataml/data/employee_info.csv +4 -4
  390. teradataml/data/employee_table.csv +6 -6
  391. teradataml/data/excluding_event_table.csv +2 -2
  392. teradataml/data/finance_data.csv +6 -6
  393. teradataml/data/finance_data2.csv +61 -61
  394. teradataml/data/finance_data3.csv +93 -93
  395. teradataml/data/fish.csv +160 -0
  396. teradataml/data/fm_blood2ageandweight.csv +26 -26
  397. teradataml/data/fmeasure_example.json +11 -11
  398. teradataml/data/followers_leaders.csv +10 -10
  399. teradataml/data/fpgrowth_example.json +12 -12
  400. teradataml/data/frequentpaths_example.json +29 -29
  401. teradataml/data/friends.csv +9 -9
  402. teradataml/data/fs_input.csv +33 -33
  403. teradataml/data/fs_input1.csv +33 -33
  404. teradataml/data/genData.csv +513 -513
  405. teradataml/data/geodataframe_example.json +39 -39
  406. teradataml/data/glass_types.csv +215 -0
  407. teradataml/data/glm_admissions_model.csv +12 -12
  408. teradataml/data/glm_example.json +56 -29
  409. teradataml/data/glml1l2_example.json +28 -28
  410. teradataml/data/glml1l2predict_example.json +54 -54
  411. teradataml/data/glmpredict_example.json +54 -54
  412. teradataml/data/gq_t1.csv +21 -21
  413. teradataml/data/hconvolve_complex_right.csv +5 -5
  414. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  415. teradataml/data/histogram_example.json +11 -11
  416. teradataml/data/hmmdecoder_example.json +78 -78
  417. teradataml/data/hmmevaluator_example.json +24 -24
  418. teradataml/data/hmmsupervised_example.json +10 -10
  419. teradataml/data/hmmunsupervised_example.json +7 -7
  420. teradataml/data/house_values.csv +12 -12
  421. teradataml/data/house_values2.csv +13 -13
  422. teradataml/data/housing_cat.csv +7 -7
  423. teradataml/data/housing_data.csv +9 -9
  424. teradataml/data/housing_test.csv +47 -47
  425. teradataml/data/housing_test_binary.csv +47 -47
  426. teradataml/data/housing_train.csv +493 -493
  427. teradataml/data/housing_train_attribute.csv +4 -4
  428. teradataml/data/housing_train_binary.csv +437 -437
  429. teradataml/data/housing_train_parameter.csv +2 -2
  430. teradataml/data/housing_train_response.csv +493 -493
  431. teradataml/data/housing_train_segment.csv +201 -0
  432. teradataml/data/ibm_stock.csv +370 -370
  433. teradataml/data/ibm_stock1.csv +370 -370
  434. teradataml/data/identitymatch_example.json +21 -21
  435. teradataml/data/idf_table.csv +4 -4
  436. teradataml/data/impressions.csv +101 -101
  437. teradataml/data/inflation.csv +21 -21
  438. teradataml/data/initial.csv +3 -3
  439. teradataml/data/insect2Cols.csv +61 -0
  440. teradataml/data/insect_sprays.csv +12 -12
  441. teradataml/data/insurance.csv +1339 -1339
  442. teradataml/data/interpolator_example.json +12 -12
  443. teradataml/data/iris_altinput.csv +481 -481
  444. teradataml/data/iris_attribute_output.csv +8 -8
  445. teradataml/data/iris_attribute_test.csv +121 -121
  446. teradataml/data/iris_attribute_train.csv +481 -481
  447. teradataml/data/iris_category_expect_predict.csv +31 -31
  448. teradataml/data/iris_data.csv +151 -0
  449. teradataml/data/iris_input.csv +151 -151
  450. teradataml/data/iris_response_train.csv +121 -121
  451. teradataml/data/iris_test.csv +31 -31
  452. teradataml/data/iris_train.csv +121 -121
  453. teradataml/data/join_table1.csv +4 -4
  454. teradataml/data/join_table2.csv +4 -4
  455. teradataml/data/jsons/anly_function_name.json +6 -6
  456. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  457. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  458. teradataml/data/jsons/byom/h2opredict.json +194 -194
  459. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  460. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  461. teradataml/data/jsons/paired_functions.json +435 -435
  462. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  463. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  464. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  465. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  466. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  467. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  468. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  469. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  470. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  471. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  472. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  473. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  474. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  475. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  476. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  477. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  478. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  479. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  480. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  481. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  482. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  483. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  484. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  485. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  486. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  487. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  488. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  489. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  490. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  491. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  492. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  493. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  494. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  495. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  496. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  497. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  498. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  499. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  500. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  501. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  502. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  503. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  504. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  505. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  506. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  507. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  508. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  509. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  510. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  511. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  512. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  513. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  514. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  515. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  516. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  517. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  518. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  519. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  520. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  521. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  522. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  523. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  524. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  525. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  526. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  527. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  528. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  529. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  531. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  532. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  533. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  534. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  535. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  536. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  537. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  539. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  540. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  541. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  542. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  543. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  544. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  545. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  546. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  547. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  548. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  549. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  550. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  551. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  552. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  553. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  554. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  555. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  556. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  557. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  558. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  559. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  560. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  561. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  562. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  563. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  564. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  565. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  566. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  567. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  568. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
  569. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  570. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  571. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  572. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  573. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  574. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  575. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  576. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  577. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  578. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  579. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
  580. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  581. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  582. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  583. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
  584. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
  585. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  586. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  587. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
  588. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  589. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  590. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  591. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
  592. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  593. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  594. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  595. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
  596. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  597. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  598. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  599. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  600. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  601. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  602. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  603. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  604. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  605. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  606. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  607. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  608. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  609. teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
  610. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  611. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  612. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  613. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  614. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  615. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  616. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  617. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  618. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
  619. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
  620. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
  621. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  622. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  623. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  624. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  625. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  626. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  627. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  628. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  629. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  630. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  631. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  632. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  633. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  634. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  635. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
  636. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
  637. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
  638. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  639. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  640. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  641. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  642. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  643. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  644. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  645. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  646. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  647. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  648. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  649. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  650. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  651. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  653. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  654. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  655. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  656. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  657. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  658. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  659. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  660. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  661. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  662. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  663. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  664. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  665. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  666. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  667. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  668. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  669. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  670. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  671. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  672. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  673. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  674. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  675. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  676. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  677. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  678. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  679. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  680. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  681. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  682. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  683. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  684. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  685. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  686. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  687. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  688. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  689. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  690. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  691. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  692. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  693. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  694. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  695. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  696. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  697. teradataml/data/kmeans_example.json +22 -17
  698. teradataml/data/kmeans_table.csv +10 -0
  699. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  700. teradataml/data/knn_example.json +18 -18
  701. teradataml/data/knnrecommender_example.json +6 -6
  702. teradataml/data/knnrecommenderpredict_example.json +12 -12
  703. teradataml/data/lar_example.json +17 -17
  704. teradataml/data/larpredict_example.json +30 -30
  705. teradataml/data/lc_new_predictors.csv +5 -5
  706. teradataml/data/lc_new_reference.csv +9 -9
  707. teradataml/data/lda_example.json +8 -8
  708. teradataml/data/ldainference_example.json +14 -14
  709. teradataml/data/ldatopicsummary_example.json +8 -8
  710. teradataml/data/levendist_input.csv +13 -13
  711. teradataml/data/levenshteindistance_example.json +10 -10
  712. teradataml/data/linreg_example.json +9 -9
  713. teradataml/data/load_example_data.py +326 -323
  714. teradataml/data/loan_prediction.csv +295 -295
  715. teradataml/data/lungcancer.csv +138 -138
  716. teradataml/data/mappingdata.csv +12 -12
  717. teradataml/data/milk_timeseries.csv +157 -157
  718. teradataml/data/min_max_titanic.csv +4 -4
  719. teradataml/data/minhash_example.json +6 -6
  720. teradataml/data/ml_ratings.csv +7547 -7547
  721. teradataml/data/ml_ratings_10.csv +2445 -2445
  722. teradataml/data/model1_table.csv +5 -5
  723. teradataml/data/model2_table.csv +5 -5
  724. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  725. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  726. teradataml/data/modularity_example.json +12 -12
  727. teradataml/data/movavg_example.json +7 -7
  728. teradataml/data/mtx1.csv +7 -7
  729. teradataml/data/mtx2.csv +13 -13
  730. teradataml/data/multi_model_classification.csv +401 -0
  731. teradataml/data/multi_model_regression.csv +401 -0
  732. teradataml/data/mvdfft8.csv +9 -9
  733. teradataml/data/naivebayes_example.json +9 -9
  734. teradataml/data/naivebayespredict_example.json +19 -19
  735. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  736. teradataml/data/naivebayestextclassifier_example.json +8 -8
  737. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  738. teradataml/data/name_Find_configure.csv +10 -10
  739. teradataml/data/namedentityfinder_example.json +14 -14
  740. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  741. teradataml/data/namedentityfindertrainer_example.json +6 -6
  742. teradataml/data/nb_iris_input_test.csv +31 -31
  743. teradataml/data/nb_iris_input_train.csv +121 -121
  744. teradataml/data/nbp_iris_model.csv +13 -13
  745. teradataml/data/ner_extractor_text.csv +2 -2
  746. teradataml/data/ner_sports_test2.csv +29 -29
  747. teradataml/data/ner_sports_train.csv +501 -501
  748. teradataml/data/nerevaluator_example.json +5 -5
  749. teradataml/data/nerextractor_example.json +18 -18
  750. teradataml/data/nermem_sports_test.csv +17 -17
  751. teradataml/data/nermem_sports_train.csv +50 -50
  752. teradataml/data/nertrainer_example.json +6 -6
  753. teradataml/data/ngrams_example.json +6 -6
  754. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  755. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  756. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  757. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  758. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  759. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  760. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  761. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  762. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  763. teradataml/data/npath_example.json +23 -23
  764. teradataml/data/ntree_example.json +14 -14
  765. teradataml/data/numeric_strings.csv +4 -4
  766. teradataml/data/numerics.csv +4 -4
  767. teradataml/data/ocean_buoy.csv +17 -17
  768. teradataml/data/ocean_buoy2.csv +17 -17
  769. teradataml/data/ocean_buoys.csv +27 -27
  770. teradataml/data/ocean_buoys2.csv +10 -10
  771. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  772. teradataml/data/ocean_buoys_seq.csv +29 -29
  773. teradataml/data/onehot_encoder_train.csv +4 -0
  774. teradataml/data/openml_example.json +92 -0
  775. teradataml/data/optional_event_table.csv +4 -4
  776. teradataml/data/orders1.csv +11 -11
  777. teradataml/data/orders1_12.csv +12 -12
  778. teradataml/data/orders_ex.csv +4 -4
  779. teradataml/data/pack_example.json +8 -8
  780. teradataml/data/package_tracking.csv +19 -19
  781. teradataml/data/package_tracking_pti.csv +18 -18
  782. teradataml/data/pagerank_example.json +13 -13
  783. teradataml/data/paragraphs_input.csv +6 -6
  784. teradataml/data/pathanalyzer_example.json +7 -7
  785. teradataml/data/pathgenerator_example.json +7 -7
  786. teradataml/data/phrases.csv +7 -7
  787. teradataml/data/pivot_example.json +8 -8
  788. teradataml/data/pivot_input.csv +22 -22
  789. teradataml/data/playerRating.csv +31 -31
  790. teradataml/data/postagger_example.json +6 -6
  791. teradataml/data/posttagger_output.csv +44 -44
  792. teradataml/data/production_data.csv +16 -16
  793. teradataml/data/production_data2.csv +7 -7
  794. teradataml/data/randomsample_example.json +31 -31
  795. teradataml/data/randomwalksample_example.json +8 -8
  796. teradataml/data/rank_table.csv +6 -6
  797. teradataml/data/ref_mobile_data.csv +4 -4
  798. teradataml/data/ref_mobile_data_dense.csv +2 -2
  799. teradataml/data/ref_url.csv +17 -17
  800. teradataml/data/restaurant_reviews.csv +7 -7
  801. teradataml/data/river_data.csv +145 -145
  802. teradataml/data/roc_example.json +7 -7
  803. teradataml/data/roc_input.csv +101 -101
  804. teradataml/data/rule_inputs.csv +6 -6
  805. teradataml/data/rule_table.csv +2 -2
  806. teradataml/data/sales.csv +7 -7
  807. teradataml/data/sales_transaction.csv +501 -501
  808. teradataml/data/salesdata.csv +342 -342
  809. teradataml/data/sample_cities.csv +2 -2
  810. teradataml/data/sample_shapes.csv +10 -10
  811. teradataml/data/sample_streets.csv +2 -2
  812. teradataml/data/sampling_example.json +15 -15
  813. teradataml/data/sax_example.json +8 -8
  814. teradataml/data/scale_attributes.csv +3 -0
  815. teradataml/data/scale_example.json +74 -23
  816. teradataml/data/scale_housing.csv +11 -11
  817. teradataml/data/scale_housing_test.csv +6 -6
  818. teradataml/data/scale_input_part_sparse.csv +31 -0
  819. teradataml/data/scale_input_partitioned.csv +16 -0
  820. teradataml/data/scale_input_sparse.csv +11 -0
  821. teradataml/data/scale_parameters.csv +3 -0
  822. teradataml/data/scale_stat.csv +11 -11
  823. teradataml/data/scalebypartition_example.json +13 -13
  824. teradataml/data/scalemap_example.json +13 -13
  825. teradataml/data/scalesummary_example.json +12 -12
  826. teradataml/data/score_category.csv +101 -101
  827. teradataml/data/score_summary.csv +4 -4
  828. teradataml/data/script_example.json +9 -9
  829. teradataml/data/scripts/deploy_script.py +84 -0
  830. teradataml/data/scripts/mapper.R +20 -0
  831. teradataml/data/scripts/mapper.py +15 -15
  832. teradataml/data/scripts/mapper_replace.py +15 -15
  833. teradataml/data/scripts/sklearn/__init__.py +0 -0
  834. teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
  835. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
  836. teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
  837. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
  838. teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
  839. teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
  840. teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
  841. teradataml/data/seeds.csv +10 -10
  842. teradataml/data/sentenceextractor_example.json +6 -6
  843. teradataml/data/sentiment_extract_input.csv +11 -11
  844. teradataml/data/sentiment_train.csv +16 -16
  845. teradataml/data/sentiment_word.csv +20 -20
  846. teradataml/data/sentiment_word_input.csv +19 -19
  847. teradataml/data/sentimentextractor_example.json +24 -24
  848. teradataml/data/sentimenttrainer_example.json +8 -8
  849. teradataml/data/sequence_table.csv +10 -10
  850. teradataml/data/seriessplitter_example.json +7 -7
  851. teradataml/data/sessionize_example.json +17 -17
  852. teradataml/data/sessionize_table.csv +116 -116
  853. teradataml/data/setop_test1.csv +24 -24
  854. teradataml/data/setop_test2.csv +22 -22
  855. teradataml/data/soc_nw_edges.csv +10 -10
  856. teradataml/data/soc_nw_vertices.csv +7 -7
  857. teradataml/data/souvenir_timeseries.csv +167 -167
  858. teradataml/data/sparse_iris_attribute.csv +5 -5
  859. teradataml/data/sparse_iris_test.csv +121 -121
  860. teradataml/data/sparse_iris_train.csv +601 -601
  861. teradataml/data/star1.csv +6 -6
  862. teradataml/data/state_transition.csv +5 -5
  863. teradataml/data/stock_data.csv +53 -53
  864. teradataml/data/stock_movement.csv +11 -11
  865. teradataml/data/stock_vol.csv +76 -76
  866. teradataml/data/stop_words.csv +8 -8
  867. teradataml/data/store_sales.csv +37 -37
  868. teradataml/data/stringsimilarity_example.json +7 -7
  869. teradataml/data/strsimilarity_input.csv +13 -13
  870. teradataml/data/students.csv +101 -101
  871. teradataml/data/svm_iris_input_test.csv +121 -121
  872. teradataml/data/svm_iris_input_train.csv +481 -481
  873. teradataml/data/svm_iris_model.csv +7 -7
  874. teradataml/data/svmdense_example.json +9 -9
  875. teradataml/data/svmdensepredict_example.json +18 -18
  876. teradataml/data/svmsparse_example.json +7 -7
  877. teradataml/data/svmsparsepredict_example.json +13 -13
  878. teradataml/data/svmsparsesummary_example.json +7 -7
  879. teradataml/data/target_mobile_data.csv +13 -13
  880. teradataml/data/target_mobile_data_dense.csv +5 -5
  881. teradataml/data/templatedata.csv +1201 -1201
  882. teradataml/data/templates/open_source_ml.json +9 -0
  883. teradataml/data/teradataml_example.json +150 -1
  884. teradataml/data/test_classification.csv +101 -0
  885. teradataml/data/test_loan_prediction.csv +53 -53
  886. teradataml/data/test_pacf_12.csv +37 -37
  887. teradataml/data/test_prediction.csv +101 -0
  888. teradataml/data/test_regression.csv +101 -0
  889. teradataml/data/test_river2.csv +109 -109
  890. teradataml/data/text_inputs.csv +6 -6
  891. teradataml/data/textchunker_example.json +7 -7
  892. teradataml/data/textclassifier_example.json +6 -6
  893. teradataml/data/textclassifier_input.csv +7 -7
  894. teradataml/data/textclassifiertrainer_example.json +6 -6
  895. teradataml/data/textmorph_example.json +5 -5
  896. teradataml/data/textparser_example.json +15 -15
  897. teradataml/data/texttagger_example.json +11 -11
  898. teradataml/data/texttokenizer_example.json +6 -6
  899. teradataml/data/texttrainer_input.csv +11 -11
  900. teradataml/data/tf_example.json +6 -6
  901. teradataml/data/tfidf_example.json +13 -13
  902. teradataml/data/tfidf_input1.csv +201 -201
  903. teradataml/data/tfidf_train.csv +6 -6
  904. teradataml/data/time_table1.csv +535 -535
  905. teradataml/data/time_table2.csv +14 -14
  906. teradataml/data/timeseriesdata.csv +1601 -1601
  907. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  908. teradataml/data/titanic.csv +892 -892
  909. teradataml/data/token_table.csv +696 -696
  910. teradataml/data/train_multiclass.csv +101 -0
  911. teradataml/data/train_regression.csv +101 -0
  912. teradataml/data/train_regression_multiple_labels.csv +101 -0
  913. teradataml/data/train_tracking.csv +27 -27
  914. teradataml/data/transformation_table.csv +5 -5
  915. teradataml/data/transformation_table_new.csv +1 -1
  916. teradataml/data/tv_spots.csv +16 -16
  917. teradataml/data/twod_climate_data.csv +117 -117
  918. teradataml/data/uaf_example.json +475 -475
  919. teradataml/data/univariatestatistics_example.json +8 -8
  920. teradataml/data/unpack_example.json +9 -9
  921. teradataml/data/unpivot_example.json +9 -9
  922. teradataml/data/unpivot_input.csv +8 -8
  923. teradataml/data/us_air_pass.csv +36 -36
  924. teradataml/data/us_population.csv +624 -624
  925. teradataml/data/us_states_shapes.csv +52 -52
  926. teradataml/data/varmax_example.json +17 -17
  927. teradataml/data/vectordistance_example.json +25 -25
  928. teradataml/data/ville_climatedata.csv +121 -121
  929. teradataml/data/ville_tempdata.csv +12 -12
  930. teradataml/data/ville_tempdata1.csv +12 -12
  931. teradataml/data/ville_temperature.csv +11 -11
  932. teradataml/data/waveletTable.csv +1605 -1605
  933. teradataml/data/waveletTable2.csv +1605 -1605
  934. teradataml/data/weightedmovavg_example.json +8 -8
  935. teradataml/data/wft_testing.csv +5 -5
  936. teradataml/data/wine_data.csv +1600 -0
  937. teradataml/data/word_embed_input_table1.csv +5 -5
  938. teradataml/data/word_embed_input_table2.csv +4 -4
  939. teradataml/data/word_embed_model.csv +22 -22
  940. teradataml/data/words_input.csv +13 -13
  941. teradataml/data/xconvolve_complex_left.csv +6 -6
  942. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  943. teradataml/data/xgboost_example.json +35 -35
  944. teradataml/data/xgboostpredict_example.json +31 -31
  945. teradataml/data/ztest_example.json +16 -0
  946. teradataml/dataframe/copy_to.py +1769 -1698
  947. teradataml/dataframe/data_transfer.py +2812 -2745
  948. teradataml/dataframe/dataframe.py +17630 -16946
  949. teradataml/dataframe/dataframe_utils.py +1875 -1740
  950. teradataml/dataframe/fastload.py +794 -603
  951. teradataml/dataframe/indexer.py +424 -424
  952. teradataml/dataframe/setop.py +1179 -1166
  953. teradataml/dataframe/sql.py +10174 -6432
  954. teradataml/dataframe/sql_function_parameters.py +439 -388
  955. teradataml/dataframe/sql_functions.py +652 -652
  956. teradataml/dataframe/sql_interfaces.py +220 -220
  957. teradataml/dataframe/vantage_function_types.py +674 -630
  958. teradataml/dataframe/window.py +693 -692
  959. teradataml/dbutils/__init__.py +3 -3
  960. teradataml/dbutils/dbutils.py +1167 -1150
  961. teradataml/dbutils/filemgr.py +267 -267
  962. teradataml/gen_ai/__init__.py +2 -2
  963. teradataml/gen_ai/convAI.py +472 -472
  964. teradataml/geospatial/__init__.py +3 -3
  965. teradataml/geospatial/geodataframe.py +1105 -1094
  966. teradataml/geospatial/geodataframecolumn.py +392 -387
  967. teradataml/geospatial/geometry_types.py +925 -925
  968. teradataml/hyperparameter_tuner/__init__.py +1 -1
  969. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  970. teradataml/hyperparameter_tuner/utils.py +281 -187
  971. teradataml/lib/aed_0_1.dll +0 -0
  972. teradataml/lib/libaed_0_1.dylib +0 -0
  973. teradataml/lib/libaed_0_1.so +0 -0
  974. teradataml/libaed_0_1.dylib +0 -0
  975. teradataml/libaed_0_1.so +0 -0
  976. teradataml/opensource/__init__.py +1 -0
  977. teradataml/opensource/sklearn/__init__.py +1 -0
  978. teradataml/opensource/sklearn/_class.py +255 -0
  979. teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
  980. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  981. teradataml/opensource/sklearn/constants.py +54 -0
  982. teradataml/options/__init__.py +130 -124
  983. teradataml/options/configure.py +358 -336
  984. teradataml/options/display.py +176 -176
  985. teradataml/plot/__init__.py +2 -2
  986. teradataml/plot/axis.py +1388 -1388
  987. teradataml/plot/constants.py +15 -15
  988. teradataml/plot/figure.py +398 -398
  989. teradataml/plot/plot.py +760 -760
  990. teradataml/plot/query_generator.py +83 -83
  991. teradataml/plot/subplot.py +216 -216
  992. teradataml/scriptmgmt/UserEnv.py +3791 -3761
  993. teradataml/scriptmgmt/__init__.py +3 -3
  994. teradataml/scriptmgmt/lls_utils.py +1719 -1604
  995. teradataml/series/series.py +532 -532
  996. teradataml/series/series_utils.py +71 -71
  997. teradataml/table_operators/Apply.py +949 -917
  998. teradataml/table_operators/Script.py +1718 -1982
  999. teradataml/table_operators/TableOperator.py +1255 -1616
  1000. teradataml/table_operators/__init__.py +2 -3
  1001. teradataml/table_operators/apply_query_generator.py +262 -262
  1002. teradataml/table_operators/query_generator.py +507 -507
  1003. teradataml/table_operators/table_operator_query_generator.py +460 -460
  1004. teradataml/table_operators/table_operator_util.py +631 -639
  1005. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  1006. teradataml/table_operators/templates/dataframe_map.template +176 -176
  1007. teradataml/table_operators/templates/script_executor.template +170 -170
  1008. teradataml/utils/dtypes.py +684 -684
  1009. teradataml/utils/internal_buffer.py +84 -84
  1010. teradataml/utils/print_versions.py +205 -205
  1011. teradataml/utils/utils.py +410 -410
  1012. teradataml/utils/validators.py +2277 -2115
  1013. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
  1014. teradataml-20.0.0.1.dist-info/RECORD +1056 -0
  1015. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
  1016. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
  1017. teradataml/analytics/mle/AdaBoost.py +0 -651
  1018. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1019. teradataml/analytics/mle/Antiselect.py +0 -342
  1020. teradataml/analytics/mle/Arima.py +0 -641
  1021. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1022. teradataml/analytics/mle/Attribution.py +0 -1070
  1023. teradataml/analytics/mle/Betweenness.py +0 -658
  1024. teradataml/analytics/mle/Burst.py +0 -711
  1025. teradataml/analytics/mle/CCM.py +0 -600
  1026. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1027. teradataml/analytics/mle/CFilter.py +0 -460
  1028. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1029. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1030. teradataml/analytics/mle/Closeness.py +0 -737
  1031. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1032. teradataml/analytics/mle/Correlation.py +0 -477
  1033. teradataml/analytics/mle/Correlation2.py +0 -573
  1034. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1035. teradataml/analytics/mle/CoxPH.py +0 -556
  1036. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1037. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1038. teradataml/analytics/mle/DTW.py +0 -623
  1039. teradataml/analytics/mle/DWT.py +0 -564
  1040. teradataml/analytics/mle/DWT2D.py +0 -599
  1041. teradataml/analytics/mle/DecisionForest.py +0 -716
  1042. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1043. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1044. teradataml/analytics/mle/DecisionTree.py +0 -830
  1045. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1046. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1047. teradataml/analytics/mle/FMeasure.py +0 -402
  1048. teradataml/analytics/mle/FPGrowth.py +0 -734
  1049. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1050. teradataml/analytics/mle/GLM.py +0 -558
  1051. teradataml/analytics/mle/GLML1L2.py +0 -547
  1052. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1053. teradataml/analytics/mle/GLMPredict.py +0 -529
  1054. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1055. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1056. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1057. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1058. teradataml/analytics/mle/Histogram.py +0 -561
  1059. teradataml/analytics/mle/IDWT.py +0 -476
  1060. teradataml/analytics/mle/IDWT2D.py +0 -493
  1061. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1062. teradataml/analytics/mle/Interpolator.py +0 -918
  1063. teradataml/analytics/mle/KMeans.py +0 -485
  1064. teradataml/analytics/mle/KNN.py +0 -627
  1065. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1066. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1067. teradataml/analytics/mle/LAR.py +0 -439
  1068. teradataml/analytics/mle/LARPredict.py +0 -478
  1069. teradataml/analytics/mle/LDA.py +0 -548
  1070. teradataml/analytics/mle/LDAInference.py +0 -492
  1071. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1072. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1073. teradataml/analytics/mle/LinReg.py +0 -433
  1074. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1075. teradataml/analytics/mle/MinHash.py +0 -544
  1076. teradataml/analytics/mle/Modularity.py +0 -587
  1077. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1078. teradataml/analytics/mle/NERExtractor.py +0 -595
  1079. teradataml/analytics/mle/NERTrainer.py +0 -458
  1080. teradataml/analytics/mle/NGrams.py +0 -570
  1081. teradataml/analytics/mle/NPath.py +0 -634
  1082. teradataml/analytics/mle/NTree.py +0 -549
  1083. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1084. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1085. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1086. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1087. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1088. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1089. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1090. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1091. teradataml/analytics/mle/POSTagger.py +0 -417
  1092. teradataml/analytics/mle/Pack.py +0 -411
  1093. teradataml/analytics/mle/PageRank.py +0 -535
  1094. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1095. teradataml/analytics/mle/PathGenerator.py +0 -367
  1096. teradataml/analytics/mle/PathStart.py +0 -464
  1097. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1098. teradataml/analytics/mle/Pivot.py +0 -471
  1099. teradataml/analytics/mle/ROC.py +0 -425
  1100. teradataml/analytics/mle/RandomSample.py +0 -637
  1101. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1102. teradataml/analytics/mle/SAX.py +0 -779
  1103. teradataml/analytics/mle/SVMDense.py +0 -677
  1104. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1105. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1106. teradataml/analytics/mle/SVMSparse.py +0 -557
  1107. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1108. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1109. teradataml/analytics/mle/Sampling.py +0 -549
  1110. teradataml/analytics/mle/Scale.py +0 -565
  1111. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1112. teradataml/analytics/mle/ScaleMap.py +0 -378
  1113. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1114. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1115. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1116. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1117. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1118. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1119. teradataml/analytics/mle/Sessionize.py +0 -475
  1120. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1121. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1122. teradataml/analytics/mle/TF.py +0 -389
  1123. teradataml/analytics/mle/TFIDF.py +0 -504
  1124. teradataml/analytics/mle/TextChunker.py +0 -414
  1125. teradataml/analytics/mle/TextClassifier.py +0 -399
  1126. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1127. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1128. teradataml/analytics/mle/TextMorph.py +0 -494
  1129. teradataml/analytics/mle/TextParser.py +0 -623
  1130. teradataml/analytics/mle/TextTagger.py +0 -530
  1131. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1132. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1133. teradataml/analytics/mle/Unpack.py +0 -526
  1134. teradataml/analytics/mle/Unpivot.py +0 -438
  1135. teradataml/analytics/mle/VarMax.py +0 -776
  1136. teradataml/analytics/mle/VectorDistance.py +0 -762
  1137. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1138. teradataml/analytics/mle/XGBoost.py +0 -842
  1139. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1140. teradataml/analytics/mle/__init__.py +0 -123
  1141. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1142. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1143. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1144. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1145. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1146. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1147. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1148. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1149. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1150. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1151. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1152. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1153. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1154. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1155. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1156. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1157. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1158. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1159. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1160. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1161. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1162. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1163. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1164. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1165. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1166. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1167. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1168. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1169. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1170. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1171. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1172. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1173. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1174. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1175. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1176. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1177. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1178. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1179. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1180. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1181. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1182. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1183. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1184. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1185. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1186. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1187. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1188. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1189. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1190. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1191. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1192. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1193. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1194. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1195. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1196. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1197. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1198. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1199. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1200. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1201. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1202. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1203. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1204. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1205. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1206. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1207. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1208. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1209. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1210. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1211. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1212. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1213. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1214. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1215. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1216. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1217. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1218. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1219. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1220. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1221. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1222. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1223. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1224. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1225. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1226. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1227. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1228. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1229. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1230. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1231. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1232. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1233. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1234. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1235. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1236. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1237. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1238. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1239. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1240. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1241. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1242. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1243. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1244. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1245. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1246. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1247. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1248. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1249. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1250. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1251. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1252. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1253. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1254. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1255. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1256. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1257. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1258. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1259. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1260. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1261. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1262. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1263. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1264. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1265. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1266. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1267. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1268. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1269. teradataml/analytics/sqle/Antiselect.py +0 -321
  1270. teradataml/analytics/sqle/Attribution.py +0 -603
  1271. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1272. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1273. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1274. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1275. teradataml/analytics/sqle/NPath.py +0 -632
  1276. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1277. teradataml/analytics/sqle/Pack.py +0 -388
  1278. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1279. teradataml/analytics/sqle/Sessionize.py +0 -390
  1280. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1281. teradataml/analytics/sqle/Unpack.py +0 -503
  1282. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1283. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1284. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1285. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1286. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1287. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1288. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1289. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1290. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1291. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1292. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1293. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1294. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1295. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1296. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1297. teradataml/catalog/model_cataloging.py +0 -980
  1298. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1299. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1300. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1301. teradataml/table_operators/sandbox_container_util.py +0 -643
  1302. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1303. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
@@ -1,652 +1,652 @@
1
- from functools import wraps
2
-
3
- from teradataml.common.utils import UtilFuncs
4
-
5
- from teradataml.common.exceptions import TeradataMlException
6
- from teradataml.common.messages import Messages
7
- from teradataml.common.messagecodes import MessageCodes
8
- from sqlalchemy import func, literal
9
- from sqlalchemy.ext.compiler import compiles
10
- from sqlalchemy.sql import expression
11
- from sqlalchemy.sql.elements import BinaryExpression, ColumnClause
12
- from sqlalchemy.sql.expression import case as case_when
13
-
14
- from .sql import _SQLColumnExpression, _resolve_value_to_type
15
- from .sql_interfaces import ColumnExpression
16
-
17
- from teradatasqlalchemy.dialect import preparer, dialect as td_dialect
18
- from teradatasqlalchemy import (BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL, FLOAT)
19
- from teradatasqlalchemy import (CHAR, VARCHAR, CLOB, NUMBER)
20
- from teradatasqlalchemy import (TIMESTAMP, DATE, TIME)
21
-
22
- __all__ = ['translate', 'to_numeric']
23
-
24
- def _as_varchar_literal(arg):
25
- """
26
- return a sqlalchemy literal
27
-
28
- Parameters
29
- ---------
30
- arg: string literal
31
-
32
- """
33
- return literal(arg, type_ = VARCHAR(len(arg)))
34
-
35
- # TODO: refactor this once more functions are created
36
- #def _implementation(fn):
37
- #
38
- # """
39
- # This decorator wraps sql functions that generate expressions
40
- # that can be used in DataFrame and Series methods such as assign.
41
- #
42
- # The wrapper performs error checks as well as implements
43
- # the kind of ColumnExpression instance to return
44
- #
45
- # Parameters
46
- # ----------
47
- # A function or method that generates sql.
48
- # The function is from the sql_functions module.
49
- #
50
- # Examples
51
- # --------
52
- # @implementation
53
- # def unicode_to_latin(x)
54
- #
55
- # """
56
- # @wraps
57
- # def inner(*args, **kw):
58
- #
59
- # res = fn(*args, **kw)
60
- # return _SQLColumnExpression(res)
61
- #
62
- #
63
- #@_implementation
64
-
65
- def translate(x, source = 'UNICODE', target = 'LATIN'):
66
- """
67
- Returns a TRANSLATE(x USING source_TO_target) expression
68
-
69
- PARAMETERS:
70
- x: A ColumnExpression instance coming from the DataFrame
71
- or output of other functions in sql_functions. A python
72
- string literal may also be used.
73
-
74
- source, target: str with values:
75
- - 'UNICODE'
76
- - 'LATIN'
77
-
78
- REFERENCES:
79
- Chapter 28: String Operators and Functions
80
- Teradata® Database SQL Functions, Operators, Expressions, and
81
- Predicates, Release 16.20
82
-
83
- EXAMPLES:
84
- >>> from teradataml.dataframe.sql_functions import translate
85
-
86
- >>> df = DataFrame('df')
87
- >>> tvshow = df['tvshow']
88
-
89
- >>> res = df.assign(tvshow = translate(tvshow))
90
- """
91
-
92
- # error checking
93
- if not isinstance(x, str) and not isinstance(x, ColumnExpression):
94
- msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('x', "a DataFrame column or string")
95
- raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
96
-
97
- if not isinstance(source, str):
98
- msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('source', "a string")
99
- raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
100
-
101
- if not isinstance(target, str):
102
- msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('target', "a string")
103
- raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
104
-
105
- supported = ('UNICODE', 'LATIN')
106
- if (source.upper() not in supported):
107
- msg = Messages.get_message(MessageCodes.INVALID_ARG_VALUE).format(source.upper(), 'source', "in {}".format(supported))
108
- raise TeradataMlException(msg, MessageCodes.INVALID_ARG_VALUE)
109
-
110
- if (target.upper() not in supported):
111
- msg = Messages.get_message(MessageCodes.INVALID_ARG_VALUE).format(target.upper(), 'target', "in {}".format(supported))
112
- raise TeradataMlException(msg, MessageCodes.INVALID_ARG_VALUE)
113
-
114
- # get the sqlalchemy expression
115
- expr = None
116
- if isinstance(x, ColumnExpression):
117
- expr = x.expression
118
-
119
- else:
120
- expr = literal(x, type_ = VARCHAR(length = len(x), charset = 'UNICODE'))
121
-
122
- if not isinstance(expr.type, (CHAR, VARCHAR, CLOB)):
123
- msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('x', "a DataFrame column of type CHAR, VARCHAR, or CLOB")
124
- raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
125
-
126
- # get the result type
127
- length, charset = expr.type.length, target
128
- typ_ = CLOB(length, charset) if isinstance(expr.type, CLOB) else VARCHAR(length, charset)
129
-
130
- # define an inner class to generate the sql expression
131
- class _translate(expression.FunctionElement):
132
- name = '_translate'
133
- type = typ_
134
-
135
- custom = source + '_TO_' + target
136
- @compiles(_translate)
137
- def default__translate(element, compiler, **kw):
138
- column_expression = compiler.process(element.clauses, **kw)
139
- return ('TRANSLATE({x} USING ' + custom + ')').format(x = column_expression)
140
-
141
- return _SQLColumnExpression(_translate(expr.expression))
142
-
143
- def case(whens, value=None, else_=None):
144
- """
145
- Returns a ColumnExpression based on the CASE expression.
146
-
147
- PARAMETERS:
148
- whens:
149
- Required Argument.
150
- Specifies the criteria to be compared against. It accepts two different forms,
151
- based on whether or not the value argument is used.
152
-
153
- In the first form, it accepts a list of 2-tuples; each 2-tuple consists of (<sql expression>, <value>),
154
- where the <sql expression> is a boolean expression and “value” is a resulting value.
155
- For example:
156
-
157
- case([
158
- (df.first_name == 'wendy', 'W'),
159
- (df.first_name == 'jack', 'J')
160
- ])
161
-
162
- In the second form, it accepts a Python dictionary of comparison values mapped to a resulting value;
163
- this form requires 'value' argument to be present, and values will be compared using the '==' operator.
164
- For example:
165
-
166
- case(
167
- {"wendy": "W", "jack": "J"},
168
- value=df.first_name
169
- )
170
-
171
- Types: List of 2-tuples or Dictionary of comparison value mapped to a resulting value.
172
-
173
- value:
174
- Optional Argument. Required when 'whens' is of dictionary type.
175
- Specifies a SQL expression (ColumnExpression or literal) which will be used as a fixed “comparison point”
176
- for candidate values within a dictionary passed to the 'whens' argument.
177
- Types: ColumnExpression or SQL Expression (Python literal)
178
-
179
- else_:
180
- Optional Argument.
181
- Specifies a SQL expression (ColumnExpression or literal) which will be the evaluated result of
182
- the CASE construct if all expressions within 'whens' evaluate to False.
183
- When omitted, will produce a result of NULL if none of the 'when' expressions evaluate to True.
184
- Types: ColumnExpression or SQL Expression (Python literal)
185
-
186
-
187
- RETURNS:
188
- ColumnExpression
189
-
190
-
191
- EXAMPLES:
192
- >>> from teradataml.dataframe.sql_functions import case
193
- >>> load_example_data("GLM", ["admissions_train"])
194
- >>> df = DataFrame("admissions_train")
195
- >>> print(df)
196
- masters gpa stats programming admitted
197
- id
198
- 5 no 3.44 Novice Novice 0
199
- 3 no 3.70 Novice Beginner 1
200
- 1 yes 3.95 Beginner Beginner 0
201
- 20 yes 3.90 Advanced Advanced 1
202
- 8 no 3.60 Beginner Advanced 1
203
- 25 no 3.96 Advanced Advanced 1
204
- 18 yes 3.81 Advanced Advanced 1
205
- 24 no 1.87 Advanced Novice 1
206
- 26 yes 3.57 Advanced Advanced 1
207
- 38 yes 2.65 Advanced Beginner 1
208
- >>> print(df.shape)
209
- (40, 6)
210
-
211
- >>> # Example showing 'whens' passed a 2-tuple - assign rating based on GPA
212
- >>> # gpa > 3.0 = 'good'
213
- >>> # 2.0 < gpa <= 3.0 = 'average'
214
- >>> # gpa <= 2.0 = 'bad'
215
- >>> # Filtering all the 'good' scores only.
216
- >>> good_df = df[case([(df.gpa > 3.0, 'good'),
217
- (df.gpa > 2.0, 'average')],
218
- else_='bad') == 'good']
219
- >>> print(good_df)
220
- masters gpa stats programming admitted
221
- id
222
- 13 no 4.00 Advanced Novice 1
223
- 11 no 3.13 Advanced Advanced 1
224
- 9 no 3.82 Advanced Advanced 1
225
- 26 yes 3.57 Advanced Advanced 1
226
- 3 no 3.70 Novice Beginner 1
227
- 1 yes 3.95 Beginner Beginner 0
228
- 20 yes 3.90 Advanced Advanced 1
229
- 18 yes 3.81 Advanced Advanced 1
230
- 5 no 3.44 Novice Novice 0
231
- 32 yes 3.46 Advanced Beginner 0
232
- >>> print(good_df.shape)
233
- (35, 6)
234
-
235
- >>> # Use DataFrame.assign() to create a new column with the rating
236
- >>> whens_df = df.assign(rating = case([(df.gpa > 3.0, 'good'),
237
- (df.gpa > 2.0, 'average')],
238
- else_='bad'))
239
- >>> print(whens_df)
240
- masters gpa stats programming admitted rating
241
- id
242
- 5 no 3.44 Novice Novice 0 good
243
- 3 no 3.70 Novice Beginner 1 good
244
- 1 yes 3.95 Beginner Beginner 0 good
245
- 20 yes 3.90 Advanced Advanced 1 good
246
- 8 no 3.60 Beginner Advanced 1 good
247
- 25 no 3.96 Advanced Advanced 1 good
248
- 18 yes 3.81 Advanced Advanced 1 good
249
- 24 no 1.87 Advanced Novice 1 bad
250
- 26 yes 3.57 Advanced Advanced 1 good
251
- 38 yes 2.65 Advanced Beginner 1 average
252
- >>> print(whens_df.shape)
253
- (40, 7)
254
-
255
- >>> # Example not specifying 'else_'
256
- >>> no_else = df.assign(rating = case([(df.gpa > 3.0, 'good')]))
257
- >>> print(no_else)
258
- masters gpa stats programming admitted rating
259
- id
260
- 5 no 3.44 Novice Novice 0 good
261
- 3 no 3.70 Novice Beginner 1 good
262
- 1 yes 3.95 Beginner Beginner 0 good
263
- 20 yes 3.90 Advanced Advanced 1 good
264
- 8 no 3.60 Beginner Advanced 1 good
265
- 25 no 3.96 Advanced Advanced 1 good
266
- 18 yes 3.81 Advanced Advanced 1 good
267
- 24 no 1.87 Advanced Novice 1 None
268
- 26 yes 3.57 Advanced Advanced 1 good
269
- 38 yes 2.65 Advanced Beginner 1 None
270
- >>> print(no_else.shape)
271
- (40, 7)
272
-
273
- >>> # Example showing 'whens' passed a dictionary along with 'value'
274
- >>> whens_value_df = df.assign(admitted_text = case({ 1 : "admitted", 0 : "not admitted"},
275
- value=df.admitted,
276
- else_="don't know"))
277
-
278
- >>> print(whens_value_df)
279
- masters gpa stats programming admitted admitted_text
280
- id
281
- 13 no 4.00 Advanced Novice 1 admitted
282
- 11 no 3.13 Advanced Advanced 1 admitted
283
- 9 no 3.82 Advanced Advanced 1 admitted
284
- 28 no 3.93 Advanced Advanced 1 admitted
285
- 33 no 3.55 Novice Novice 1 admitted
286
- 10 no 3.71 Advanced Advanced 1 admitted
287
- 16 no 3.70 Advanced Advanced 1 admitted
288
- 32 yes 3.46 Advanced Beginner 0 not admitted
289
- 34 yes 3.85 Advanced Beginner 0 not admitted
290
- 17 no 3.83 Advanced Advanced 1 admitted
291
- >>> print(whens_value_df.shape)
292
- (40, 7)
293
-
294
- >>> # Example showing how you can decide on projecting a column based on the value of expression.
295
- >>> # In this example, you end up projecting values from column 'average_rating' if 2.0 < gpa <= 3.0,
296
- >>> # and the values from column 'good_rating' when gpa > 3.0, naming the column 'ga_rating'.
297
-
298
- >>> from sqlalchemy.sql import literal_column
299
- >>> whens_new_df = df.assign(good_rating = case([(df.gpa > 3.0, 'good')]))
300
- >>> whens_new_df = whens_new_df.assign(avg_rating = case([((whens_new_df.gpa > 2.0) & (whens_new_df.gpa <= 3.0),
301
- 'average')]))
302
- >>> literal_df = whens_new_df.assign(ga_rating = case([(whens_new_df.gpa > 3.0, literal_column('good_rating')),
303
- (whens_new_df.gpa > 2.0, literal_column('avg_rating'))]))
304
- >>> print(literal_df)
305
- masters gpa stats programming admitted good_rating avg_rating ga_rating
306
- id
307
- 5 no 3.44 Novice Novice 0 good None good
308
- 3 no 3.70 Novice Beginner 1 good None good
309
- 1 yes 3.95 Beginner Beginner 0 good None good
310
- 20 yes 3.90 Advanced Advanced 1 good None good
311
- 8 no 3.60 Beginner Advanced 1 good None good
312
- 25 no 3.96 Advanced Advanced 1 good None good
313
- 18 yes 3.81 Advanced Advanced 1 good None good
314
- 24 no 1.87 Advanced Novice 1 None None None
315
- 26 yes 3.57 Advanced Advanced 1 good None good
316
- 38 yes 2.65 Advanced Beginner 1 None average average
317
-
318
- """
319
-
320
- # Variable contains_type stores the tdtypes
321
- contains_type = set()
322
- # Validations
323
- new_whens = whens
324
- # whens can be a dictionary, but requires values to be specified
325
- if isinstance(whens, dict):
326
- # Make sure values is passed and is of required type
327
- if not value:
328
- raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING, "value",
329
- "whens of dictionary type"),
330
- MessageCodes.DEPENDENT_ARG_MISSING)
331
- # as whens can take value only as Python type, so first mapping the value of
332
- # Python type to tdtypes and storing the tdtypes in contains_type
333
- for _, values in whens.items():
334
- contains_type.add(type(_resolve_value_to_type(values)))
335
- # If it is a teradataml ColumnExpression, we need to pass the SQLAlchemy Column Expression
336
- if isinstance(value, ColumnExpression):
337
- value = value.expression
338
-
339
- # whens can be a list of 2-tuples
340
- elif isinstance(whens, list):
341
- new_whens = []
342
- # Make sure the list of tuples has _SQLColumnExpression as first element
343
- for when in whens:
344
- raise_err = True if (not isinstance(when, tuple) or len(when) != 2) else False
345
- if raise_err or (not isinstance(when[0], ColumnExpression) and not isinstance(when[0], BinaryExpression)):
346
- raise TeradataMlException(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE, 'whens',
347
- "a list of 2-tuples with each tuple having a"
348
- " boolean expression as the first element"),
349
- MessageCodes.UNSUPPORTED_DATATYPE)
350
-
351
- # If it is a teradataml ColumnExpression, we need to use the SQLAlchemy Column Expression
352
- new_whens.append((when[0].expression if isinstance(when[0], ColumnExpression) else when[0],
353
- when[1].expression if isinstance(when[1], ColumnExpression) else when[1]))
354
- # If when[1] is a teradataml ColumnExpression type or when[1] is a literal_column then store
355
- # the tdtypes in contains_type.
356
- if isinstance(when[1], (ColumnExpression, ColumnClause)):
357
- contains_type.add(type(when[1].type))
358
- # If when[1] is of Python data type, so first mapping the value of
359
- # Python type to tdtypes and storing the tdtypes in contains_type
360
- else:
361
- contains_type.add(type(_resolve_value_to_type(when[1])))
362
-
363
- # values will be ignored by SQLAlchemy when 'whens' is a 2-tuple list.
364
- # However, an issue was noticed with it when it was actually passed a value, which resulted in an
365
- # incorrectly formed CASE statement. We forcefully set it to NULL.
366
- if value is not None:
367
- value = None
368
- else:
369
- raise TeradataMlException(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE, 'whens',
370
- "a list of 2-tuples with each tuple having a"
371
- " boolean expression as the first element"),
372
- MessageCodes.UNSUPPORTED_DATATYPE)
373
-
374
- # If it is a teradataml ColumnExpression, we need to use the SQLAlchemy Column Expression
375
- # and storing the tdtypes of ColumnExpression in contains_type
376
- if isinstance(else_, ColumnExpression):
377
- else_ = else_.expression
378
- contains_type.add(type(else_.type))
379
- # If else_ is literal_column then store the tdtypes of literal_column used
380
- elif isinstance(else_, ColumnClause):
381
- contains_type.add(type(else_.type))
382
- # if else_ is of python data type so first mapping the value of
383
- # Python type to tdtypes and storing the tdtypes in contains_type
384
- else:
385
- contains_type.add(type(_resolve_value_to_type(else_)))
386
-
387
- if isinstance(new_whens, dict):
388
- output_case_when = case_when(new_whens, value=value, else_=else_)
389
- else:
390
- output_case_when = case_when(*new_whens, value=value, else_=else_)
391
-
392
- # Here assigning the correct tdypes if there are multiple tdtypes present in case function
393
- # according to below conditions and if contains_type doesnot contain any below condition
394
- # we kept the type of output_case_when as it is(means type provided by case_when)
395
- # If VARCHAR tdtypes present in case function assign column type to VARCHAR tdtypes
396
- if VARCHAR in contains_type:
397
- output_case_when.type = VARCHAR()
398
- # If FLOAT tdypes present in case function assign column type to FLOAT tdtypes
399
- elif FLOAT in contains_type:
400
- output_case_when.type = FLOAT()
401
- # If NUMBER tdypes present in case function assign column type to NUMBER tdtypes
402
- elif NUMBER in contains_type:
403
- output_case_when.type = NUMBER()
404
- # If DECIMAL tdypes present in case function assign column type to DECIMAL tdtypes
405
- elif DECIMAL in contains_type:
406
- output_case_when.type = DECIMAL()
407
- # If BIGINT tdypes present in case function assign column type to BIGINT tdtypes
408
- elif BIGINT in contains_type:
409
- output_case_when.type = BIGINT()
410
- # If INTEGER tdypes present in case function assign column type to INTEGER tdtypes
411
- elif INTEGER in contains_type:
412
- output_case_when.type = INTEGER()
413
- # If SMALLINT tdypes present in case function assign column type to SMALLINT tdtypes
414
- elif SMALLINT in contains_type:
415
- output_case_when.type = SMALLINT()
416
- # If BYTEINT tdypes present in case function assign column type to BYTINT tdtypes
417
- elif BYTEINT in contains_type:
418
- output_case_when.type = BYTEINT()
419
-
420
- return _SQLColumnExpression(output_case_when)
421
-
422
- def to_numeric(arg, **kw):
423
-
424
- """
425
- Convert a string-like representation of a number to a Numeric type.
426
-
427
- PARAMETERS:
428
- arg: DataFrame column
429
- kw: optional keyword arguments
430
- format_: string. Specifies the format of a string-like number to convert to numeric
431
- nls: dict where 'param' and 'value' are keys:
432
-
433
- - param specifies one of the following string values:
434
- -'CURRENCY', 'NUMERIC_CHARACTERS', 'DUAL_CURRENCY', 'ISO_CURRENCY'
435
-
436
- - value: specifies characters that are returned by number format elements.
437
- See References for more information
438
-
439
- REFERENCES:
440
- Chapter 14: Data Type Conversion Functions
441
- Teradata® Database SQL Functions, Operators, Expressions, and
442
- Predicates, Release 16.20
443
-
444
-
445
- RETURNS:
446
- A DataFrame column of numeric type
447
-
448
- NOTES:
449
- - If the arg column input is a numeric type, it is returned as is
450
- - Nulls may be introduced in the result if the parsing fails
451
- - You may need to strip() columns that have leading or trailing spaces
452
- in order for to_numeric to parse correctly
453
-
454
- EXAMPLES:
455
-
456
- >>> df = DataFrame('numeric_strings')
457
-
458
- hex decimal commas numbers
459
- 0 19FF 00.77 08,8 1
460
- 1 abcd 0.77 0,88 1
461
- 2 ABCDEFABCD 0.7.7 ,088 999
462
- 3 2018 .077 088, 0
463
-
464
- >>> df.dtypes
465
-
466
- hex str
467
- decimal str
468
- commas str
469
- numbers str
470
-
471
- # converting string numbers to numeric
472
- >>> df.assign(drop_columns = True,
473
- numbers = df.numbers,
474
- numeric = to_numeric(df.numbers))
475
-
476
- numbers numeric
477
- 0 1 1
478
- 1 1 1
479
- 2 999 999
480
- 3 0 0
481
-
482
-
483
- # converting decimal-like strings to numeric
484
- # Note that strings not following the format return None
485
- >>> df.assign(drop_columns = True,
486
- decimal = df.decimal,
487
- numeric_dec = to_numeric(df.decimal))
488
-
489
- decimal numeric_dec
490
- 0 00.77 .77
491
- 1 0.77 .77
492
- 2 0.7.7 None
493
- 3 .077 .077
494
-
495
- # converting comma (group separated) strings to numeric
496
- # Note that strings not following the format return None
497
- >>> df.assign(drop_columns = True,
498
- commas = df.commas,
499
- numeric_commas = to_numeric(df.commas, format_ = '9G99'))
500
-
501
- commas numeric_commas
502
- 0 08,8 None
503
- 1 0,88 88
504
- 2 ,088 None
505
- 3 088, None
506
-
507
- # converting hex strings to numeric
508
- >>> df.assign(drop_columns = True,
509
- hex = df.hex,
510
- numeric_hex = to_numeric(df.hex, format_ = 'XXXXXXXXXX'))
511
-
512
- hex numeric_hex
513
- 0 19FF 6655
514
- 1 abcd 43981
515
- 2 ABCDEFABCD 737894443981
516
- 3 2018 8216
517
-
518
- # converting literals to numeric
519
- >>> df.assign(drop_columns = True,
520
- a = to_numeric('123,456',format_ = '999,999'),
521
- b = to_numeric('1,333.555', format_ = '9,999D999'),
522
- c = to_numeric('2,333,2',format_ = '9G999G9'),
523
- d = to_numeric('3E20'),
524
- e = to_numeric('$41.99', format_ = 'L99.99'),
525
- f = to_numeric('$.12', format_ = 'L.99'),
526
- g = to_numeric('dollar123,456.00',
527
- format_ = 'L999G999D99',
528
- nls = {'param': 'currency', 'value': 'dollar'})).head(1)
529
-
530
- a b c d e f g
531
- 0 123456 1333.555 23332 300000000000000000000 41.99 .12 123456
532
-
533
- # For more information on format elements and parameters, see the Reference.
534
- """
535
-
536
- # validation
537
- if not isinstance(arg, str) and not isinstance(arg, ColumnExpression):
538
- msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('arg', "a string or DataFrame column of type CHAR or VARCHAR")
539
- raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
540
-
541
- expr = None
542
- if isinstance(arg, ColumnExpression):
543
- expr = arg.expression
544
- else:
545
- expr = literal(arg, type_ = VARCHAR(length = len(arg), charset = 'UNICODE'))
546
-
547
- # The only reason to use to_numeric with a numerically typed column is if downcast is used,
548
- # but those downcasted types are not supported (uint8, int8, float32)
549
- # TODO: Look into supporting downcasting if we implement the three downcasted types above
550
- if isinstance(expr.type, tuple(UtilFuncs()._get_numeric_datatypes())):
551
- return arg
552
-
553
- if not isinstance(expr.type, (VARCHAR, CHAR)):
554
- msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('arg', "a string or DataFrame column of type CHAR or VARCHAR")
555
- raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
556
-
557
- fmt = kw.get('format_', None)
558
- nls = kw.get('nls', None)
559
-
560
- if fmt is not None and not isinstance(fmt, str):
561
- msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('format_', "a string")
562
- raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
563
-
564
- if nls is not None and not isinstance(nls, dict):
565
- msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('nls', "a dict")
566
- raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
567
-
568
- # prepare for _to_number
569
- if fmt is not None:
570
- fmt = _as_varchar_literal(fmt)
571
-
572
- if nls is not None:
573
- if not (('param' in nls) and ('value' in nls)):
574
- msg = Messages.get_message(MessageCodes.INVALID_ARG_VALUE).format(nls, 'nls', 'dict with "param" and "value" keys')
575
- raise TeradataMlException(msg, MessageCodes.INVALID_ARG_VALUE)
576
-
577
- if not isinstance(nls['param'], str) and not isinstance(nls['value'], str):
578
- msg = Messages.get_message(MessageCodes.INVALID_ARG_VALUE).format(nls, 'nls', 'dict with "param" and "value" keys mapping to string values')
579
- raise TeradataMlException(msg, MessageCodes.INVALID_ARG_VALUE)
580
-
581
- nls_params = ('NUMERIC_CHARACTERS', 'CURRENCY', 'DUAL_CURRENCY', 'ISO_CURRENCY')
582
-
583
- if not nls['param'].upper() in nls_params:
584
- msg = Messages.get_message(MessageCodes.INVALID_ARG_VALUE).format(nls['param'].upper(), "nls['param']", 'in {}'.format(nls_params))
585
- raise TeradataMlException(msg, MessageCodes.INVALID_ARG_VALUE)
586
-
587
- nls_param = nls['param'].upper()
588
- nls_value = _as_varchar_literal(nls['value'])
589
- nls = {'param': nls_param, 'value': nls_value}
590
-
591
- elif nls is not None:
592
- msg = Messages.get_message(MessageCodes.MISSING_ARGS).format('format_. format_ keyword must be specfied if the nls keyword is used')
593
- raise TeradataMlException(msg, MessageCodes.MISSING_ARGS)
594
-
595
- label = arg.name if isinstance(arg, ColumnExpression) else arg
596
- stmt = _to_number(expr, format_=fmt, nls=nls).label(label)
597
-
598
- return _SQLColumnExpression(stmt)
599
-
600
-
601
- class _to_number(expression.FunctionElement):
602
- """
603
- Internal class used for representing the TO_NUMBER function in the SQL Engine.
604
-
605
- """
606
- name = '_to_number'
607
- type = NUMBER()
608
-
609
- def __init__(self, arg, format_=None, nls=None, **kw):
610
- """
611
- See docstring for_to_numeric.
612
-
613
- Reference
614
- ---------
615
- Chapter 14: Data Type Conversion Functions
616
- Teradata® Database SQL Functions, Operators, Expressions, and
617
- Predicates, Release 16.20
618
-
619
- """
620
- args = [arg, format_]
621
- if nls is not None:
622
- args.append(nls['value'])
623
- self.nls_param = 'NLS_' + nls['param']
624
-
625
- args = (x for x in args if x is not None)
626
- super().__init__(*args)
627
-
628
- @compiles(_to_number)
629
- def _visit_to_number(element, compiler, **kw):
630
- """
631
- Compilation method for the _to_number function element class
632
-
633
- Parameters
634
- ----------
635
- element: A sqlalchemy ClauseElement instance
636
- compiler: A sqlalchemy.engine.interfaces.Compiled instance
637
-
638
- """
639
- col_exps = [compiler.process(exp, **kw) for exp in element.clauses]
640
-
641
- optional = ''
642
-
643
- # handle format
644
- if len(col_exps) >= 2:
645
- optional += ', {}'.format(col_exps[1])
646
-
647
- # handle nls
648
- if len(col_exps) >= 3:
649
- optional += ", '{} = '{}''".format(element.nls_param, col_exps[2])
650
-
651
- res = ('TO_NUMBER({x}{optional})').format(x = col_exps[0], optional = optional)
652
- return res
1
+ from functools import wraps
2
+
3
+ from teradataml.common.utils import UtilFuncs
4
+
5
+ from teradataml.common.exceptions import TeradataMlException
6
+ from teradataml.common.messages import Messages
7
+ from teradataml.common.messagecodes import MessageCodes
8
+ from sqlalchemy import func, literal
9
+ from sqlalchemy.ext.compiler import compiles
10
+ from sqlalchemy.sql import expression
11
+ from sqlalchemy.sql.elements import BinaryExpression, ColumnClause
12
+ from sqlalchemy.sql.expression import case as case_when
13
+
14
+ from .sql import _SQLColumnExpression, _resolve_value_to_type
15
+ from .sql_interfaces import ColumnExpression
16
+
17
+ from teradatasqlalchemy.dialect import preparer, dialect as td_dialect
18
+ from teradatasqlalchemy import (BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL, FLOAT)
19
+ from teradatasqlalchemy import (CHAR, VARCHAR, CLOB, NUMBER)
20
+ from teradatasqlalchemy import (TIMESTAMP, DATE, TIME)
21
+
22
+ __all__ = ['translate', 'to_numeric']
23
+
24
+ def _as_varchar_literal(arg):
25
+ """
26
+ return a sqlalchemy literal
27
+
28
+ Parameters
29
+ ---------
30
+ arg: string literal
31
+
32
+ """
33
+ return literal(arg, type_ = VARCHAR(len(arg)))
34
+
35
+ # TODO: refactor this once more functions are created
36
+ #def _implementation(fn):
37
+ #
38
+ # """
39
+ # This decorator wraps sql functions that generate expressions
40
+ # that can be used in DataFrame and Series methods such as assign.
41
+ #
42
+ # The wrapper performs error checks as well as implements
43
+ # the kind of ColumnExpression instance to return
44
+ #
45
+ # Parameters
46
+ # ----------
47
+ # A function or method that generates sql.
48
+ # The function is from the sql_functions module.
49
+ #
50
+ # Examples
51
+ # --------
52
+ # @implementation
53
+ # def unicode_to_latin(x)
54
+ #
55
+ # """
56
+ # @wraps
57
+ # def inner(*args, **kw):
58
+ #
59
+ # res = fn(*args, **kw)
60
+ # return _SQLColumnExpression(res)
61
+ #
62
+ #
63
+ #@_implementation
64
+
65
+ def translate(x, source = 'UNICODE', target = 'LATIN'):
66
+ """
67
+ Returns a TRANSLATE(x USING source_TO_target) expression
68
+
69
+ PARAMETERS:
70
+ x: A ColumnExpression instance coming from the DataFrame
71
+ or output of other functions in sql_functions. A python
72
+ string literal may also be used.
73
+
74
+ source, target: str with values:
75
+ - 'UNICODE'
76
+ - 'LATIN'
77
+
78
+ REFERENCES:
79
+ Chapter 28: String Operators and Functions
80
+ Teradata® Database SQL Functions, Operators, Expressions, and
81
+ Predicates, Release 16.20
82
+
83
+ EXAMPLES:
84
+ >>> from teradataml.dataframe.sql_functions import translate
85
+
86
+ >>> df = DataFrame('df')
87
+ >>> tvshow = df['tvshow']
88
+
89
+ >>> res = df.assign(tvshow = translate(tvshow))
90
+ """
91
+
92
+ # error checking
93
+ if not isinstance(x, str) and not isinstance(x, ColumnExpression):
94
+ msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('x', "a DataFrame column or string")
95
+ raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
96
+
97
+ if not isinstance(source, str):
98
+ msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('source', "a string")
99
+ raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
100
+
101
+ if not isinstance(target, str):
102
+ msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('target', "a string")
103
+ raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
104
+
105
+ supported = ('UNICODE', 'LATIN')
106
+ if (source.upper() not in supported):
107
+ msg = Messages.get_message(MessageCodes.INVALID_ARG_VALUE).format(source.upper(), 'source', "in {}".format(supported))
108
+ raise TeradataMlException(msg, MessageCodes.INVALID_ARG_VALUE)
109
+
110
+ if (target.upper() not in supported):
111
+ msg = Messages.get_message(MessageCodes.INVALID_ARG_VALUE).format(target.upper(), 'target', "in {}".format(supported))
112
+ raise TeradataMlException(msg, MessageCodes.INVALID_ARG_VALUE)
113
+
114
+ # get the sqlalchemy expression
115
+ expr = None
116
+ if isinstance(x, ColumnExpression):
117
+ expr = x.expression
118
+
119
+ else:
120
+ expr = literal(x, type_ = VARCHAR(length = len(x), charset = 'UNICODE'))
121
+
122
+ if not isinstance(expr.type, (CHAR, VARCHAR, CLOB)):
123
+ msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('x', "a DataFrame column of type CHAR, VARCHAR, or CLOB")
124
+ raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
125
+
126
+ # get the result type
127
+ length, charset = expr.type.length, target
128
+ typ_ = CLOB(length, charset) if isinstance(expr.type, CLOB) else VARCHAR(length, charset)
129
+
130
+ # define an inner class to generate the sql expression
131
+ class _translate(expression.FunctionElement):
132
+ name = '_translate'
133
+ type = typ_
134
+
135
+ custom = source + '_TO_' + target
136
+ @compiles(_translate)
137
+ def default__translate(element, compiler, **kw):
138
+ column_expression = compiler.process(element.clauses, **kw)
139
+ return ('TRANSLATE({x} USING ' + custom + ')').format(x = column_expression)
140
+
141
+ return _SQLColumnExpression(_translate(expr.expression))
142
+
143
+ def case(whens, value=None, else_=None):
144
+ """
145
+ Returns a ColumnExpression based on the CASE expression.
146
+
147
+ PARAMETERS:
148
+ whens:
149
+ Required Argument.
150
+ Specifies the criteria to be compared against. It accepts two different forms,
151
+ based on whether or not the value argument is used.
152
+
153
+ In the first form, it accepts a list of 2-tuples; each 2-tuple consists of (<sql expression>, <value>),
154
+ where the <sql expression> is a boolean expression and “value” is a resulting value.
155
+ For example:
156
+
157
+ case([
158
+ (df.first_name == 'wendy', 'W'),
159
+ (df.first_name == 'jack', 'J')
160
+ ])
161
+
162
+ In the second form, it accepts a Python dictionary of comparison values mapped to a resulting value;
163
+ this form requires 'value' argument to be present, and values will be compared using the '==' operator.
164
+ For example:
165
+
166
+ case(
167
+ {"wendy": "W", "jack": "J"},
168
+ value=df.first_name
169
+ )
170
+
171
+ Types: List of 2-tuples or Dictionary of comparison value mapped to a resulting value.
172
+
173
+ value:
174
+ Optional Argument. Required when 'whens' is of dictionary type.
175
+ Specifies a SQL expression (ColumnExpression or literal) which will be used as a fixed “comparison point”
176
+ for candidate values within a dictionary passed to the 'whens' argument.
177
+ Types: ColumnExpression or SQL Expression (Python literal)
178
+
179
+ else_:
180
+ Optional Argument.
181
+ Specifies a SQL expression (ColumnExpression or literal) which will be the evaluated result of
182
+ the CASE construct if all expressions within 'whens' evaluate to False.
183
+ When omitted, will produce a result of NULL if none of the 'when' expressions evaluate to True.
184
+ Types: ColumnExpression or SQL Expression (Python literal)
185
+
186
+
187
+ RETURNS:
188
+ ColumnExpression
189
+
190
+
191
+ EXAMPLES:
192
+ >>> from teradataml.dataframe.sql_functions import case
193
+ >>> load_example_data("GLM", ["admissions_train"])
194
+ >>> df = DataFrame("admissions_train")
195
+ >>> print(df)
196
+ masters gpa stats programming admitted
197
+ id
198
+ 5 no 3.44 Novice Novice 0
199
+ 3 no 3.70 Novice Beginner 1
200
+ 1 yes 3.95 Beginner Beginner 0
201
+ 20 yes 3.90 Advanced Advanced 1
202
+ 8 no 3.60 Beginner Advanced 1
203
+ 25 no 3.96 Advanced Advanced 1
204
+ 18 yes 3.81 Advanced Advanced 1
205
+ 24 no 1.87 Advanced Novice 1
206
+ 26 yes 3.57 Advanced Advanced 1
207
+ 38 yes 2.65 Advanced Beginner 1
208
+ >>> print(df.shape)
209
+ (40, 6)
210
+
211
+ >>> # Example showing 'whens' passed a 2-tuple - assign rating based on GPA
212
+ >>> # gpa > 3.0 = 'good'
213
+ >>> # 2.0 < gpa <= 3.0 = 'average'
214
+ >>> # gpa <= 2.0 = 'bad'
215
+ >>> # Filtering all the 'good' scores only.
216
+ >>> good_df = df[case([(df.gpa > 3.0, 'good'),
217
+ (df.gpa > 2.0, 'average')],
218
+ else_='bad') == 'good']
219
+ >>> print(good_df)
220
+ masters gpa stats programming admitted
221
+ id
222
+ 13 no 4.00 Advanced Novice 1
223
+ 11 no 3.13 Advanced Advanced 1
224
+ 9 no 3.82 Advanced Advanced 1
225
+ 26 yes 3.57 Advanced Advanced 1
226
+ 3 no 3.70 Novice Beginner 1
227
+ 1 yes 3.95 Beginner Beginner 0
228
+ 20 yes 3.90 Advanced Advanced 1
229
+ 18 yes 3.81 Advanced Advanced 1
230
+ 5 no 3.44 Novice Novice 0
231
+ 32 yes 3.46 Advanced Beginner 0
232
+ >>> print(good_df.shape)
233
+ (35, 6)
234
+
235
+ >>> # Use DataFrame.assign() to create a new column with the rating
236
+ >>> whens_df = df.assign(rating = case([(df.gpa > 3.0, 'good'),
237
+ (df.gpa > 2.0, 'average')],
238
+ else_='bad'))
239
+ >>> print(whens_df)
240
+ masters gpa stats programming admitted rating
241
+ id
242
+ 5 no 3.44 Novice Novice 0 good
243
+ 3 no 3.70 Novice Beginner 1 good
244
+ 1 yes 3.95 Beginner Beginner 0 good
245
+ 20 yes 3.90 Advanced Advanced 1 good
246
+ 8 no 3.60 Beginner Advanced 1 good
247
+ 25 no 3.96 Advanced Advanced 1 good
248
+ 18 yes 3.81 Advanced Advanced 1 good
249
+ 24 no 1.87 Advanced Novice 1 bad
250
+ 26 yes 3.57 Advanced Advanced 1 good
251
+ 38 yes 2.65 Advanced Beginner 1 average
252
+ >>> print(whens_df.shape)
253
+ (40, 7)
254
+
255
+ >>> # Example not specifying 'else_'
256
+ >>> no_else = df.assign(rating = case([(df.gpa > 3.0, 'good')]))
257
+ >>> print(no_else)
258
+ masters gpa stats programming admitted rating
259
+ id
260
+ 5 no 3.44 Novice Novice 0 good
261
+ 3 no 3.70 Novice Beginner 1 good
262
+ 1 yes 3.95 Beginner Beginner 0 good
263
+ 20 yes 3.90 Advanced Advanced 1 good
264
+ 8 no 3.60 Beginner Advanced 1 good
265
+ 25 no 3.96 Advanced Advanced 1 good
266
+ 18 yes 3.81 Advanced Advanced 1 good
267
+ 24 no 1.87 Advanced Novice 1 None
268
+ 26 yes 3.57 Advanced Advanced 1 good
269
+ 38 yes 2.65 Advanced Beginner 1 None
270
+ >>> print(no_else.shape)
271
+ (40, 7)
272
+
273
+ >>> # Example showing 'whens' passed a dictionary along with 'value'
274
+ >>> whens_value_df = df.assign(admitted_text = case({ 1 : "admitted", 0 : "not admitted"},
275
+ value=df.admitted,
276
+ else_="don't know"))
277
+
278
+ >>> print(whens_value_df)
279
+ masters gpa stats programming admitted admitted_text
280
+ id
281
+ 13 no 4.00 Advanced Novice 1 admitted
282
+ 11 no 3.13 Advanced Advanced 1 admitted
283
+ 9 no 3.82 Advanced Advanced 1 admitted
284
+ 28 no 3.93 Advanced Advanced 1 admitted
285
+ 33 no 3.55 Novice Novice 1 admitted
286
+ 10 no 3.71 Advanced Advanced 1 admitted
287
+ 16 no 3.70 Advanced Advanced 1 admitted
288
+ 32 yes 3.46 Advanced Beginner 0 not admitted
289
+ 34 yes 3.85 Advanced Beginner 0 not admitted
290
+ 17 no 3.83 Advanced Advanced 1 admitted
291
+ >>> print(whens_value_df.shape)
292
+ (40, 7)
293
+
294
+ >>> # Example showing how you can decide on projecting a column based on the value of expression.
295
+ >>> # In this example, you end up projecting values from column 'average_rating' if 2.0 < gpa <= 3.0,
296
+ >>> # and the values from column 'good_rating' when gpa > 3.0, naming the column 'ga_rating'.
297
+
298
+ >>> from sqlalchemy.sql import literal_column
299
+ >>> whens_new_df = df.assign(good_rating = case([(df.gpa > 3.0, 'good')]))
300
+ >>> whens_new_df = whens_new_df.assign(avg_rating = case([((whens_new_df.gpa > 2.0) & (whens_new_df.gpa <= 3.0),
301
+ 'average')]))
302
+ >>> literal_df = whens_new_df.assign(ga_rating = case([(whens_new_df.gpa > 3.0, literal_column('good_rating')),
303
+ (whens_new_df.gpa > 2.0, literal_column('avg_rating'))]))
304
+ >>> print(literal_df)
305
+ masters gpa stats programming admitted good_rating avg_rating ga_rating
306
+ id
307
+ 5 no 3.44 Novice Novice 0 good None good
308
+ 3 no 3.70 Novice Beginner 1 good None good
309
+ 1 yes 3.95 Beginner Beginner 0 good None good
310
+ 20 yes 3.90 Advanced Advanced 1 good None good
311
+ 8 no 3.60 Beginner Advanced 1 good None good
312
+ 25 no 3.96 Advanced Advanced 1 good None good
313
+ 18 yes 3.81 Advanced Advanced 1 good None good
314
+ 24 no 1.87 Advanced Novice 1 None None None
315
+ 26 yes 3.57 Advanced Advanced 1 good None good
316
+ 38 yes 2.65 Advanced Beginner 1 None average average
317
+
318
+ """
319
+
320
+ # Variable contains_type stores the tdtypes
321
+ contains_type = set()
322
+ # Validations
323
+ new_whens = whens
324
+ # whens can be a dictionary, but requires values to be specified
325
+ if isinstance(whens, dict):
326
+ # Make sure values is passed and is of required type
327
+ if not value:
328
+ raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING, "value",
329
+ "whens of dictionary type"),
330
+ MessageCodes.DEPENDENT_ARG_MISSING)
331
+ # as whens can take value only as Python type, so first mapping the value of
332
+ # Python type to tdtypes and storing the tdtypes in contains_type
333
+ for _, values in whens.items():
334
+ contains_type.add(type(_resolve_value_to_type(values)))
335
+ # If it is a teradataml ColumnExpression, we need to pass the SQLAlchemy Column Expression
336
+ if isinstance(value, ColumnExpression):
337
+ value = value.expression
338
+
339
+ # whens can be a list of 2-tuples
340
+ elif isinstance(whens, list):
341
+ new_whens = []
342
+ # Make sure the list of tuples has _SQLColumnExpression as first element
343
+ for when in whens:
344
+ raise_err = True if (not isinstance(when, tuple) or len(when) != 2) else False
345
+ if raise_err or (not isinstance(when[0], ColumnExpression) and not isinstance(when[0], BinaryExpression)):
346
+ raise TeradataMlException(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE, 'whens',
347
+ "a list of 2-tuples with each tuple having a"
348
+ " boolean expression as the first element"),
349
+ MessageCodes.UNSUPPORTED_DATATYPE)
350
+
351
+ # If it is a teradataml ColumnExpression, we need to use the SQLAlchemy Column Expression
352
+ new_whens.append((when[0].expression if isinstance(when[0], ColumnExpression) else when[0],
353
+ when[1].expression if isinstance(when[1], ColumnExpression) else when[1]))
354
+ # If when[1] is a teradataml ColumnExpression type or when[1] is a literal_column then store
355
+ # the tdtypes in contains_type.
356
+ if isinstance(when[1], (ColumnExpression, ColumnClause)):
357
+ contains_type.add(type(when[1].type))
358
+ # If when[1] is of Python data type, so first mapping the value of
359
+ # Python type to tdtypes and storing the tdtypes in contains_type
360
+ else:
361
+ contains_type.add(type(_resolve_value_to_type(when[1])))
362
+
363
+ # values will be ignored by SQLAlchemy when 'whens' is a 2-tuple list.
364
+ # However, an issue was noticed with it when it was actually passed a value, which resulted in an
365
+ # incorrectly formed CASE statement. We forcefully set it to NULL.
366
+ if value is not None:
367
+ value = None
368
+ else:
369
+ raise TeradataMlException(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE, 'whens',
370
+ "a list of 2-tuples with each tuple having a"
371
+ " boolean expression as the first element"),
372
+ MessageCodes.UNSUPPORTED_DATATYPE)
373
+
374
+ # If it is a teradataml ColumnExpression, we need to use the SQLAlchemy Column Expression
375
+ # and storing the tdtypes of ColumnExpression in contains_type
376
+ if isinstance(else_, ColumnExpression):
377
+ else_ = else_.expression
378
+ contains_type.add(type(else_.type))
379
+ # If else_ is literal_column then store the tdtypes of literal_column used
380
+ elif isinstance(else_, ColumnClause):
381
+ contains_type.add(type(else_.type))
382
+ # if else_ is of python data type so first mapping the value of
383
+ # Python type to tdtypes and storing the tdtypes in contains_type
384
+ else:
385
+ contains_type.add(type(_resolve_value_to_type(else_)))
386
+
387
+ if isinstance(new_whens, dict):
388
+ output_case_when = case_when(new_whens, value=value, else_=else_)
389
+ else:
390
+ output_case_when = case_when(*new_whens, value=value, else_=else_)
391
+
392
+ # Here assigning the correct tdypes if there are multiple tdtypes present in case function
393
+ # according to below conditions and if contains_type doesnot contain any below condition
394
+ # we kept the type of output_case_when as it is(means type provided by case_when)
395
+ # If VARCHAR tdtypes present in case function assign column type to VARCHAR tdtypes
396
+ if VARCHAR in contains_type:
397
+ output_case_when.type = VARCHAR()
398
+ # If FLOAT tdypes present in case function assign column type to FLOAT tdtypes
399
+ elif FLOAT in contains_type:
400
+ output_case_when.type = FLOAT()
401
+ # If NUMBER tdypes present in case function assign column type to NUMBER tdtypes
402
+ elif NUMBER in contains_type:
403
+ output_case_when.type = NUMBER()
404
+ # If DECIMAL tdypes present in case function assign column type to DECIMAL tdtypes
405
+ elif DECIMAL in contains_type:
406
+ output_case_when.type = DECIMAL()
407
+ # If BIGINT tdypes present in case function assign column type to BIGINT tdtypes
408
+ elif BIGINT in contains_type:
409
+ output_case_when.type = BIGINT()
410
+ # If INTEGER tdypes present in case function assign column type to INTEGER tdtypes
411
+ elif INTEGER in contains_type:
412
+ output_case_when.type = INTEGER()
413
+ # If SMALLINT tdypes present in case function assign column type to SMALLINT tdtypes
414
+ elif SMALLINT in contains_type:
415
+ output_case_when.type = SMALLINT()
416
+ # If BYTEINT tdypes present in case function assign column type to BYTINT tdtypes
417
+ elif BYTEINT in contains_type:
418
+ output_case_when.type = BYTEINT()
419
+
420
+ return _SQLColumnExpression(output_case_when)
421
+
422
+ def to_numeric(arg, **kw):
423
+
424
+ """
425
+ Convert a string-like representation of a number to a Numeric type.
426
+
427
+ PARAMETERS:
428
+ arg: DataFrame column
429
+ kw: optional keyword arguments
430
+ format_: string. Specifies the format of a string-like number to convert to numeric
431
+ nls: dict where 'param' and 'value' are keys:
432
+
433
+ - param specifies one of the following string values:
434
+ -'CURRENCY', 'NUMERIC_CHARACTERS', 'DUAL_CURRENCY', 'ISO_CURRENCY'
435
+
436
+ - value: specifies characters that are returned by number format elements.
437
+ See References for more information
438
+
439
+ REFERENCES:
440
+ Chapter 14: Data Type Conversion Functions
441
+ Teradata® Database SQL Functions, Operators, Expressions, and
442
+ Predicates, Release 16.20
443
+
444
+
445
+ RETURNS:
446
+ A DataFrame column of numeric type
447
+
448
+ NOTES:
449
+ - If the arg column input is a numeric type, it is returned as is
450
+ - Nulls may be introduced in the result if the parsing fails
451
+ - You may need to strip() columns that have leading or trailing spaces
452
+ in order for to_numeric to parse correctly
453
+
454
+ EXAMPLES:
455
+
456
+ >>> df = DataFrame('numeric_strings')
457
+
458
+ hex decimal commas numbers
459
+ 0 19FF 00.77 08,8 1
460
+ 1 abcd 0.77 0,88 1
461
+ 2 ABCDEFABCD 0.7.7 ,088 999
462
+ 3 2018 .077 088, 0
463
+
464
+ >>> df.dtypes
465
+
466
+ hex str
467
+ decimal str
468
+ commas str
469
+ numbers str
470
+
471
+ # converting string numbers to numeric
472
+ >>> df.assign(drop_columns = True,
473
+ numbers = df.numbers,
474
+ numeric = to_numeric(df.numbers))
475
+
476
+ numbers numeric
477
+ 0 1 1
478
+ 1 1 1
479
+ 2 999 999
480
+ 3 0 0
481
+
482
+
483
+ # converting decimal-like strings to numeric
484
+ # Note that strings not following the format return None
485
+ >>> df.assign(drop_columns = True,
486
+ decimal = df.decimal,
487
+ numeric_dec = to_numeric(df.decimal))
488
+
489
+ decimal numeric_dec
490
+ 0 00.77 .77
491
+ 1 0.77 .77
492
+ 2 0.7.7 None
493
+ 3 .077 .077
494
+
495
+ # converting comma (group separated) strings to numeric
496
+ # Note that strings not following the format return None
497
+ >>> df.assign(drop_columns = True,
498
+ commas = df.commas,
499
+ numeric_commas = to_numeric(df.commas, format_ = '9G99'))
500
+
501
+ commas numeric_commas
502
+ 0 08,8 None
503
+ 1 0,88 88
504
+ 2 ,088 None
505
+ 3 088, None
506
+
507
+ # converting hex strings to numeric
508
+ >>> df.assign(drop_columns = True,
509
+ hex = df.hex,
510
+ numeric_hex = to_numeric(df.hex, format_ = 'XXXXXXXXXX'))
511
+
512
+ hex numeric_hex
513
+ 0 19FF 6655
514
+ 1 abcd 43981
515
+ 2 ABCDEFABCD 737894443981
516
+ 3 2018 8216
517
+
518
+ # converting literals to numeric
519
+ >>> df.assign(drop_columns = True,
520
+ a = to_numeric('123,456',format_ = '999,999'),
521
+ b = to_numeric('1,333.555', format_ = '9,999D999'),
522
+ c = to_numeric('2,333,2',format_ = '9G999G9'),
523
+ d = to_numeric('3E20'),
524
+ e = to_numeric('$41.99', format_ = 'L99.99'),
525
+ f = to_numeric('$.12', format_ = 'L.99'),
526
+ g = to_numeric('dollar123,456.00',
527
+ format_ = 'L999G999D99',
528
+ nls = {'param': 'currency', 'value': 'dollar'})).head(1)
529
+
530
+ a b c d e f g
531
+ 0 123456 1333.555 23332 300000000000000000000 41.99 .12 123456
532
+
533
+ # For more information on format elements and parameters, see the Reference.
534
+ """
535
+
536
+ # validation
537
+ if not isinstance(arg, str) and not isinstance(arg, ColumnExpression):
538
+ msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('arg', "a string or DataFrame column of type CHAR or VARCHAR")
539
+ raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
540
+
541
+ expr = None
542
+ if isinstance(arg, ColumnExpression):
543
+ expr = arg.expression
544
+ else:
545
+ expr = literal(arg, type_ = VARCHAR(length = len(arg), charset = 'UNICODE'))
546
+
547
+ # The only reason to use to_numeric with a numerically typed column is if downcast is used,
548
+ # but those downcasted types are not supported (uint8, int8, float32)
549
+ # TODO: Look into supporting downcasting if we implement the three downcasted types above
550
+ if isinstance(expr.type, tuple(UtilFuncs()._get_numeric_datatypes())):
551
+ return arg
552
+
553
+ if not isinstance(expr.type, (VARCHAR, CHAR)):
554
+ msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('arg', "a string or DataFrame column of type CHAR or VARCHAR")
555
+ raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
556
+
557
+ fmt = kw.get('format_', None)
558
+ nls = kw.get('nls', None)
559
+
560
+ if fmt is not None and not isinstance(fmt, str):
561
+ msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('format_', "a string")
562
+ raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
563
+
564
+ if nls is not None and not isinstance(nls, dict):
565
+ msg = Messages.get_message(MessageCodes.TDMLDF_UNKNOWN_TYPE).format('nls', "a dict")
566
+ raise TeradataMlException(msg, MessageCodes.TDMLDF_UNKNOWN_TYPE)
567
+
568
+ # prepare for _to_number
569
+ if fmt is not None:
570
+ fmt = _as_varchar_literal(fmt)
571
+
572
+ if nls is not None:
573
+ if not (('param' in nls) and ('value' in nls)):
574
+ msg = Messages.get_message(MessageCodes.INVALID_ARG_VALUE).format(nls, 'nls', 'dict with "param" and "value" keys')
575
+ raise TeradataMlException(msg, MessageCodes.INVALID_ARG_VALUE)
576
+
577
+ if not isinstance(nls['param'], str) and not isinstance(nls['value'], str):
578
+ msg = Messages.get_message(MessageCodes.INVALID_ARG_VALUE).format(nls, 'nls', 'dict with "param" and "value" keys mapping to string values')
579
+ raise TeradataMlException(msg, MessageCodes.INVALID_ARG_VALUE)
580
+
581
+ nls_params = ('NUMERIC_CHARACTERS', 'CURRENCY', 'DUAL_CURRENCY', 'ISO_CURRENCY')
582
+
583
+ if not nls['param'].upper() in nls_params:
584
+ msg = Messages.get_message(MessageCodes.INVALID_ARG_VALUE).format(nls['param'].upper(), "nls['param']", 'in {}'.format(nls_params))
585
+ raise TeradataMlException(msg, MessageCodes.INVALID_ARG_VALUE)
586
+
587
+ nls_param = nls['param'].upper()
588
+ nls_value = _as_varchar_literal(nls['value'])
589
+ nls = {'param': nls_param, 'value': nls_value}
590
+
591
+ elif nls is not None:
592
+ msg = Messages.get_message(MessageCodes.MISSING_ARGS).format('format_. format_ keyword must be specfied if the nls keyword is used')
593
+ raise TeradataMlException(msg, MessageCodes.MISSING_ARGS)
594
+
595
+ label = arg.name if isinstance(arg, ColumnExpression) else arg
596
+ stmt = _to_number(expr, format_=fmt, nls=nls).label(label)
597
+
598
+ return _SQLColumnExpression(stmt)
599
+
600
+
601
+ class _to_number(expression.FunctionElement):
602
+ """
603
+ Internal class used for representing the TO_NUMBER function in the SQL Engine.
604
+
605
+ """
606
+ name = '_to_number'
607
+ type = NUMBER()
608
+
609
+ def __init__(self, arg, format_=None, nls=None, **kw):
610
+ """
611
+ See docstring for_to_numeric.
612
+
613
+ Reference
614
+ ---------
615
+ Chapter 14: Data Type Conversion Functions
616
+ Teradata® Database SQL Functions, Operators, Expressions, and
617
+ Predicates, Release 16.20
618
+
619
+ """
620
+ args = [arg, format_]
621
+ if nls is not None:
622
+ args.append(nls['value'])
623
+ self.nls_param = 'NLS_' + nls['param']
624
+
625
+ args = (x for x in args if x is not None)
626
+ super().__init__(*args)
627
+
628
+ @compiles(_to_number)
629
+ def _visit_to_number(element, compiler, **kw):
630
+ """
631
+ Compilation method for the _to_number function element class
632
+
633
+ Parameters
634
+ ----------
635
+ element: A sqlalchemy ClauseElement instance
636
+ compiler: A sqlalchemy.engine.interfaces.Compiled instance
637
+
638
+ """
639
+ col_exps = [compiler.process(exp, **kw) for exp in element.clauses]
640
+
641
+ optional = ''
642
+
643
+ # handle format
644
+ if len(col_exps) >= 2:
645
+ optional += ', {}'.format(col_exps[1])
646
+
647
+ # handle nls
648
+ if len(col_exps) >= 3:
649
+ optional += ", '{} = '{}''".format(element.nls_param, col_exps[2])
650
+
651
+ res = ('TO_NUMBER({x}{optional})').format(x = col_exps[0], optional = optional)
652
+ return res