teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +1935 -1640
- teradataml/__init__.py +70 -60
- teradataml/_version.py +11 -11
- teradataml/analytics/Transformations.py +2995 -2995
- teradataml/analytics/__init__.py +81 -83
- teradataml/analytics/analytic_function_executor.py +2040 -2010
- teradataml/analytics/analytic_query_generator.py +958 -958
- teradataml/analytics/byom/H2OPredict.py +514 -514
- teradataml/analytics/byom/PMMLPredict.py +437 -437
- teradataml/analytics/byom/__init__.py +14 -14
- teradataml/analytics/json_parser/__init__.py +130 -130
- teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
- teradataml/analytics/json_parser/json_store.py +191 -191
- teradataml/analytics/json_parser/metadata.py +1637 -1637
- teradataml/analytics/json_parser/utils.py +798 -803
- teradataml/analytics/meta_class.py +196 -196
- teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
- teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
- teradataml/analytics/sqle/__init__.py +97 -110
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
- teradataml/analytics/table_operator/__init__.py +10 -10
- teradataml/analytics/uaf/__init__.py +63 -63
- teradataml/analytics/utils.py +693 -692
- teradataml/analytics/valib.py +1603 -1600
- teradataml/automl/__init__.py +1683 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +1011 -0
- teradataml/automl/data_transformation.py +789 -0
- teradataml/automl/feature_engineering.py +1580 -0
- teradataml/automl/feature_exploration.py +554 -0
- teradataml/automl/model_evaluation.py +151 -0
- teradataml/automl/model_training.py +1026 -0
- teradataml/catalog/__init__.py +1 -3
- teradataml/catalog/byom.py +1759 -1716
- teradataml/catalog/function_argument_mapper.py +859 -861
- teradataml/catalog/model_cataloging_utils.py +491 -1510
- teradataml/clients/auth_client.py +133 -0
- teradataml/clients/pkce_client.py +481 -481
- teradataml/common/aed_utils.py +7 -2
- teradataml/common/bulk_exposed_utils.py +111 -111
- teradataml/common/constants.py +1438 -1441
- teradataml/common/deprecations.py +160 -0
- teradataml/common/exceptions.py +73 -73
- teradataml/common/formula.py +742 -742
- teradataml/common/garbagecollector.py +597 -635
- teradataml/common/messagecodes.py +424 -431
- teradataml/common/messages.py +228 -231
- teradataml/common/sqlbundle.py +693 -693
- teradataml/common/td_coltype_code_to_tdtype.py +48 -48
- teradataml/common/utils.py +2424 -2500
- teradataml/common/warnings.py +25 -25
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/config/dummy_file1.cfg +4 -4
- teradataml/config/dummy_file2.cfg +2 -2
- teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
- teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
- teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
- teradataml/context/aed_context.py +217 -217
- teradataml/context/context.py +1091 -999
- teradataml/data/A_loan.csv +19 -19
- teradataml/data/BINARY_REALS_LEFT.csv +11 -11
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
- teradataml/data/B_loan.csv +49 -49
- teradataml/data/BuoyData2.csv +17 -17
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
- teradataml/data/Convolve2RealsLeft.csv +5 -5
- teradataml/data/Convolve2RealsRight.csv +5 -5
- teradataml/data/Convolve2ValidLeft.csv +11 -11
- teradataml/data/Convolve2ValidRight.csv +11 -11
- teradataml/data/DFFTConv_Real_8_8.csv +65 -65
- teradataml/data/Orders1_12mf.csv +24 -24
- teradataml/data/Pi_loan.csv +7 -7
- teradataml/data/SMOOTHED_DATA.csv +7 -7
- teradataml/data/TestDFFT8.csv +9 -9
- teradataml/data/TestRiver.csv +109 -109
- teradataml/data/Traindata.csv +28 -28
- teradataml/data/acf.csv +17 -17
- teradataml/data/adaboost_example.json +34 -34
- teradataml/data/adaboostpredict_example.json +24 -24
- teradataml/data/additional_table.csv +10 -10
- teradataml/data/admissions_test.csv +21 -21
- teradataml/data/admissions_train.csv +41 -41
- teradataml/data/admissions_train_nulls.csv +41 -41
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -13
- teradataml/data/ageandpressure.csv +31 -31
- teradataml/data/antiselect_example.json +36 -36
- teradataml/data/antiselect_input.csv +8 -8
- teradataml/data/antiselect_input_mixed_case.csv +8 -8
- teradataml/data/applicant_external.csv +6 -6
- teradataml/data/applicant_reference.csv +6 -6
- teradataml/data/arima_example.json +9 -9
- teradataml/data/assortedtext_input.csv +8 -8
- teradataml/data/attribution_example.json +33 -33
- teradataml/data/attribution_sample_table.csv +27 -27
- teradataml/data/attribution_sample_table1.csv +6 -6
- teradataml/data/attribution_sample_table2.csv +11 -11
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +42 -42
- teradataml/data/bank_web_clicks2.csv +91 -91
- teradataml/data/bank_web_url.csv +85 -85
- teradataml/data/barrier.csv +2 -2
- teradataml/data/barrier_new.csv +3 -3
- teradataml/data/betweenness_example.json +13 -13
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -8
- teradataml/data/bin_fit_ip.csv +3 -3
- teradataml/data/binary_complex_left.csv +11 -11
- teradataml/data/binary_complex_right.csv +11 -11
- teradataml/data/binary_matrix_complex_left.csv +21 -21
- teradataml/data/binary_matrix_complex_right.csv +21 -21
- teradataml/data/binary_matrix_real_left.csv +21 -21
- teradataml/data/binary_matrix_real_right.csv +21 -21
- teradataml/data/blood2ageandweight.csv +26 -26
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -507
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -11
- teradataml/data/burst_data.csv +5 -5
- teradataml/data/burst_example.json +20 -20
- teradataml/data/byom_example.json +17 -17
- teradataml/data/bytes_table.csv +3 -3
- teradataml/data/cal_housing_ex_raw.csv +70 -70
- teradataml/data/callers.csv +7 -7
- teradataml/data/calls.csv +10 -10
- teradataml/data/cars_hist.csv +33 -33
- teradataml/data/cat_table.csv +24 -24
- teradataml/data/ccm_example.json +31 -31
- teradataml/data/ccm_input.csv +91 -91
- teradataml/data/ccm_input2.csv +13 -13
- teradataml/data/ccmexample.csv +101 -101
- teradataml/data/ccmprepare_example.json +8 -8
- teradataml/data/ccmprepare_input.csv +91 -91
- teradataml/data/cfilter_example.json +12 -12
- teradataml/data/changepointdetection_example.json +18 -18
- teradataml/data/changepointdetectionrt_example.json +8 -8
- teradataml/data/chi_sq.csv +2 -2
- teradataml/data/churn_data.csv +14 -14
- teradataml/data/churn_emission.csv +35 -35
- teradataml/data/churn_initial.csv +3 -3
- teradataml/data/churn_state_transition.csv +5 -5
- teradataml/data/citedges_2.csv +745 -745
- teradataml/data/citvertices_2.csv +1210 -1210
- teradataml/data/clicks2.csv +16 -16
- teradataml/data/clickstream.csv +12 -12
- teradataml/data/clickstream1.csv +11 -11
- teradataml/data/closeness_example.json +15 -15
- teradataml/data/complaints.csv +21 -21
- teradataml/data/complaints_mini.csv +3 -3
- teradataml/data/complaints_testtoken.csv +224 -224
- teradataml/data/complaints_tokens_test.csv +353 -353
- teradataml/data/complaints_traintoken.csv +472 -472
- teradataml/data/computers_category.csv +1001 -1001
- teradataml/data/computers_test1.csv +1252 -1252
- teradataml/data/computers_train1.csv +5009 -5009
- teradataml/data/computers_train1_clustered.csv +5009 -5009
- teradataml/data/confusionmatrix_example.json +9 -9
- teradataml/data/conversion_event_table.csv +3 -3
- teradataml/data/corr_input.csv +17 -17
- teradataml/data/correlation_example.json +11 -11
- teradataml/data/coxhazardratio_example.json +39 -39
- teradataml/data/coxph_example.json +15 -15
- teradataml/data/coxsurvival_example.json +28 -28
- teradataml/data/cpt.csv +41 -41
- teradataml/data/credit_ex_merged.csv +45 -45
- teradataml/data/customer_loyalty.csv +301 -301
- teradataml/data/customer_loyalty_newseq.csv +31 -31
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +146 -146
- teradataml/data/decisionforest_example.json +37 -37
- teradataml/data/decisionforestpredict_example.json +38 -38
- teradataml/data/decisiontree_example.json +21 -21
- teradataml/data/decisiontreepredict_example.json +45 -45
- teradataml/data/dfft2_size4_real.csv +17 -17
- teradataml/data/dfft2_test_matrix16.csv +17 -17
- teradataml/data/dfft2conv_real_4_4.csv +65 -65
- teradataml/data/diabetes.csv +443 -443
- teradataml/data/diabetes_test.csv +89 -89
- teradataml/data/dict_table.csv +5 -5
- teradataml/data/docperterm_table.csv +4 -4
- teradataml/data/docs/__init__.py +1 -1
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
- teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
- teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
- teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
- teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
- teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
- teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
- teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
- teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
- teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
- teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
- teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
- teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
- teradataml/data/dtw_example.json +17 -17
- teradataml/data/dtw_t1.csv +11 -11
- teradataml/data/dtw_t2.csv +4 -4
- teradataml/data/dwt2d_example.json +15 -15
- teradataml/data/dwt_example.json +14 -14
- teradataml/data/dwt_filter_dim.csv +5 -5
- teradataml/data/emission.csv +9 -9
- teradataml/data/emp_table_by_dept.csv +19 -19
- teradataml/data/employee_info.csv +4 -4
- teradataml/data/employee_table.csv +6 -6
- teradataml/data/excluding_event_table.csv +2 -2
- teradataml/data/finance_data.csv +6 -6
- teradataml/data/finance_data2.csv +61 -61
- teradataml/data/finance_data3.csv +93 -93
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -26
- teradataml/data/fmeasure_example.json +11 -11
- teradataml/data/followers_leaders.csv +10 -10
- teradataml/data/fpgrowth_example.json +12 -12
- teradataml/data/frequentpaths_example.json +29 -29
- teradataml/data/friends.csv +9 -9
- teradataml/data/fs_input.csv +33 -33
- teradataml/data/fs_input1.csv +33 -33
- teradataml/data/genData.csv +513 -513
- teradataml/data/geodataframe_example.json +39 -39
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -12
- teradataml/data/glm_example.json +56 -29
- teradataml/data/glml1l2_example.json +28 -28
- teradataml/data/glml1l2predict_example.json +54 -54
- teradataml/data/glmpredict_example.json +54 -54
- teradataml/data/gq_t1.csv +21 -21
- teradataml/data/hconvolve_complex_right.csv +5 -5
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
- teradataml/data/histogram_example.json +11 -11
- teradataml/data/hmmdecoder_example.json +78 -78
- teradataml/data/hmmevaluator_example.json +24 -24
- teradataml/data/hmmsupervised_example.json +10 -10
- teradataml/data/hmmunsupervised_example.json +7 -7
- teradataml/data/house_values.csv +12 -12
- teradataml/data/house_values2.csv +13 -13
- teradataml/data/housing_cat.csv +7 -7
- teradataml/data/housing_data.csv +9 -9
- teradataml/data/housing_test.csv +47 -47
- teradataml/data/housing_test_binary.csv +47 -47
- teradataml/data/housing_train.csv +493 -493
- teradataml/data/housing_train_attribute.csv +4 -4
- teradataml/data/housing_train_binary.csv +437 -437
- teradataml/data/housing_train_parameter.csv +2 -2
- teradataml/data/housing_train_response.csv +493 -493
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -370
- teradataml/data/ibm_stock1.csv +370 -370
- teradataml/data/identitymatch_example.json +21 -21
- teradataml/data/idf_table.csv +4 -4
- teradataml/data/impressions.csv +101 -101
- teradataml/data/inflation.csv +21 -21
- teradataml/data/initial.csv +3 -3
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +12 -12
- teradataml/data/insurance.csv +1339 -1339
- teradataml/data/interpolator_example.json +12 -12
- teradataml/data/iris_altinput.csv +481 -481
- teradataml/data/iris_attribute_output.csv +8 -8
- teradataml/data/iris_attribute_test.csv +121 -121
- teradataml/data/iris_attribute_train.csv +481 -481
- teradataml/data/iris_category_expect_predict.csv +31 -31
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -151
- teradataml/data/iris_response_train.csv +121 -121
- teradataml/data/iris_test.csv +31 -31
- teradataml/data/iris_train.csv +121 -121
- teradataml/data/join_table1.csv +4 -4
- teradataml/data/join_table2.csv +4 -4
- teradataml/data/jsons/anly_function_name.json +6 -6
- teradataml/data/jsons/byom/dataikupredict.json +147 -147
- teradataml/data/jsons/byom/datarobotpredict.json +146 -146
- teradataml/data/jsons/byom/h2opredict.json +194 -194
- teradataml/data/jsons/byom/onnxpredict.json +186 -186
- teradataml/data/jsons/byom/pmmlpredict.json +146 -146
- teradataml/data/jsons/paired_functions.json +435 -435
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
- teradataml/data/kmeans_example.json +22 -17
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +0 -0
- teradataml/data/knn_example.json +18 -18
- teradataml/data/knnrecommender_example.json +6 -6
- teradataml/data/knnrecommenderpredict_example.json +12 -12
- teradataml/data/lar_example.json +17 -17
- teradataml/data/larpredict_example.json +30 -30
- teradataml/data/lc_new_predictors.csv +5 -5
- teradataml/data/lc_new_reference.csv +9 -9
- teradataml/data/lda_example.json +8 -8
- teradataml/data/ldainference_example.json +14 -14
- teradataml/data/ldatopicsummary_example.json +8 -8
- teradataml/data/levendist_input.csv +13 -13
- teradataml/data/levenshteindistance_example.json +10 -10
- teradataml/data/linreg_example.json +9 -9
- teradataml/data/load_example_data.py +326 -323
- teradataml/data/loan_prediction.csv +295 -295
- teradataml/data/lungcancer.csv +138 -138
- teradataml/data/mappingdata.csv +12 -12
- teradataml/data/milk_timeseries.csv +157 -157
- teradataml/data/min_max_titanic.csv +4 -4
- teradataml/data/minhash_example.json +6 -6
- teradataml/data/ml_ratings.csv +7547 -7547
- teradataml/data/ml_ratings_10.csv +2445 -2445
- teradataml/data/model1_table.csv +5 -5
- teradataml/data/model2_table.csv +5 -5
- teradataml/data/models/iris_db_glm_model.pmml +56 -56
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
- teradataml/data/modularity_example.json +12 -12
- teradataml/data/movavg_example.json +7 -7
- teradataml/data/mtx1.csv +7 -7
- teradataml/data/mtx2.csv +13 -13
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -9
- teradataml/data/naivebayes_example.json +9 -9
- teradataml/data/naivebayespredict_example.json +19 -19
- teradataml/data/naivebayestextclassifier2_example.json +6 -6
- teradataml/data/naivebayestextclassifier_example.json +8 -8
- teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
- teradataml/data/name_Find_configure.csv +10 -10
- teradataml/data/namedentityfinder_example.json +14 -14
- teradataml/data/namedentityfinderevaluator_example.json +10 -10
- teradataml/data/namedentityfindertrainer_example.json +6 -6
- teradataml/data/nb_iris_input_test.csv +31 -31
- teradataml/data/nb_iris_input_train.csv +121 -121
- teradataml/data/nbp_iris_model.csv +13 -13
- teradataml/data/ner_extractor_text.csv +2 -2
- teradataml/data/ner_sports_test2.csv +29 -29
- teradataml/data/ner_sports_train.csv +501 -501
- teradataml/data/nerevaluator_example.json +5 -5
- teradataml/data/nerextractor_example.json +18 -18
- teradataml/data/nermem_sports_test.csv +17 -17
- teradataml/data/nermem_sports_train.csv +50 -50
- teradataml/data/nertrainer_example.json +6 -6
- teradataml/data/ngrams_example.json +6 -6
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
- teradataml/data/npath_example.json +23 -23
- teradataml/data/ntree_example.json +14 -14
- teradataml/data/numeric_strings.csv +4 -4
- teradataml/data/numerics.csv +4 -4
- teradataml/data/ocean_buoy.csv +17 -17
- teradataml/data/ocean_buoy2.csv +17 -17
- teradataml/data/ocean_buoys.csv +27 -27
- teradataml/data/ocean_buoys2.csv +10 -10
- teradataml/data/ocean_buoys_nonpti.csv +28 -28
- teradataml/data/ocean_buoys_seq.csv +29 -29
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -4
- teradataml/data/orders1.csv +11 -11
- teradataml/data/orders1_12.csv +12 -12
- teradataml/data/orders_ex.csv +4 -4
- teradataml/data/pack_example.json +8 -8
- teradataml/data/package_tracking.csv +19 -19
- teradataml/data/package_tracking_pti.csv +18 -18
- teradataml/data/pagerank_example.json +13 -13
- teradataml/data/paragraphs_input.csv +6 -6
- teradataml/data/pathanalyzer_example.json +7 -7
- teradataml/data/pathgenerator_example.json +7 -7
- teradataml/data/phrases.csv +7 -7
- teradataml/data/pivot_example.json +8 -8
- teradataml/data/pivot_input.csv +22 -22
- teradataml/data/playerRating.csv +31 -31
- teradataml/data/postagger_example.json +6 -6
- teradataml/data/posttagger_output.csv +44 -44
- teradataml/data/production_data.csv +16 -16
- teradataml/data/production_data2.csv +7 -7
- teradataml/data/randomsample_example.json +31 -31
- teradataml/data/randomwalksample_example.json +8 -8
- teradataml/data/rank_table.csv +6 -6
- teradataml/data/ref_mobile_data.csv +4 -4
- teradataml/data/ref_mobile_data_dense.csv +2 -2
- teradataml/data/ref_url.csv +17 -17
- teradataml/data/restaurant_reviews.csv +7 -7
- teradataml/data/river_data.csv +145 -145
- teradataml/data/roc_example.json +7 -7
- teradataml/data/roc_input.csv +101 -101
- teradataml/data/rule_inputs.csv +6 -6
- teradataml/data/rule_table.csv +2 -2
- teradataml/data/sales.csv +7 -7
- teradataml/data/sales_transaction.csv +501 -501
- teradataml/data/salesdata.csv +342 -342
- teradataml/data/sample_cities.csv +2 -2
- teradataml/data/sample_shapes.csv +10 -10
- teradataml/data/sample_streets.csv +2 -2
- teradataml/data/sampling_example.json +15 -15
- teradataml/data/sax_example.json +8 -8
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -23
- teradataml/data/scale_housing.csv +11 -11
- teradataml/data/scale_housing_test.csv +6 -6
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -11
- teradataml/data/scalebypartition_example.json +13 -13
- teradataml/data/scalemap_example.json +13 -13
- teradataml/data/scalesummary_example.json +12 -12
- teradataml/data/score_category.csv +101 -101
- teradataml/data/score_summary.csv +4 -4
- teradataml/data/script_example.json +9 -9
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +15 -15
- teradataml/data/scripts/mapper_replace.py +15 -15
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
- teradataml/data/seeds.csv +10 -10
- teradataml/data/sentenceextractor_example.json +6 -6
- teradataml/data/sentiment_extract_input.csv +11 -11
- teradataml/data/sentiment_train.csv +16 -16
- teradataml/data/sentiment_word.csv +20 -20
- teradataml/data/sentiment_word_input.csv +19 -19
- teradataml/data/sentimentextractor_example.json +24 -24
- teradataml/data/sentimenttrainer_example.json +8 -8
- teradataml/data/sequence_table.csv +10 -10
- teradataml/data/seriessplitter_example.json +7 -7
- teradataml/data/sessionize_example.json +17 -17
- teradataml/data/sessionize_table.csv +116 -116
- teradataml/data/setop_test1.csv +24 -24
- teradataml/data/setop_test2.csv +22 -22
- teradataml/data/soc_nw_edges.csv +10 -10
- teradataml/data/soc_nw_vertices.csv +7 -7
- teradataml/data/souvenir_timeseries.csv +167 -167
- teradataml/data/sparse_iris_attribute.csv +5 -5
- teradataml/data/sparse_iris_test.csv +121 -121
- teradataml/data/sparse_iris_train.csv +601 -601
- teradataml/data/star1.csv +6 -6
- teradataml/data/state_transition.csv +5 -5
- teradataml/data/stock_data.csv +53 -53
- teradataml/data/stock_movement.csv +11 -11
- teradataml/data/stock_vol.csv +76 -76
- teradataml/data/stop_words.csv +8 -8
- teradataml/data/store_sales.csv +37 -37
- teradataml/data/stringsimilarity_example.json +7 -7
- teradataml/data/strsimilarity_input.csv +13 -13
- teradataml/data/students.csv +101 -101
- teradataml/data/svm_iris_input_test.csv +121 -121
- teradataml/data/svm_iris_input_train.csv +481 -481
- teradataml/data/svm_iris_model.csv +7 -7
- teradataml/data/svmdense_example.json +9 -9
- teradataml/data/svmdensepredict_example.json +18 -18
- teradataml/data/svmsparse_example.json +7 -7
- teradataml/data/svmsparsepredict_example.json +13 -13
- teradataml/data/svmsparsesummary_example.json +7 -7
- teradataml/data/target_mobile_data.csv +13 -13
- teradataml/data/target_mobile_data_dense.csv +5 -5
- teradataml/data/templatedata.csv +1201 -1201
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +150 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -53
- teradataml/data/test_pacf_12.csv +37 -37
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -109
- teradataml/data/text_inputs.csv +6 -6
- teradataml/data/textchunker_example.json +7 -7
- teradataml/data/textclassifier_example.json +6 -6
- teradataml/data/textclassifier_input.csv +7 -7
- teradataml/data/textclassifiertrainer_example.json +6 -6
- teradataml/data/textmorph_example.json +5 -5
- teradataml/data/textparser_example.json +15 -15
- teradataml/data/texttagger_example.json +11 -11
- teradataml/data/texttokenizer_example.json +6 -6
- teradataml/data/texttrainer_input.csv +11 -11
- teradataml/data/tf_example.json +6 -6
- teradataml/data/tfidf_example.json +13 -13
- teradataml/data/tfidf_input1.csv +201 -201
- teradataml/data/tfidf_train.csv +6 -6
- teradataml/data/time_table1.csv +535 -535
- teradataml/data/time_table2.csv +14 -14
- teradataml/data/timeseriesdata.csv +1601 -1601
- teradataml/data/timeseriesdatasetsd4.csv +105 -105
- teradataml/data/titanic.csv +892 -892
- teradataml/data/token_table.csv +696 -696
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +27 -27
- teradataml/data/transformation_table.csv +5 -5
- teradataml/data/transformation_table_new.csv +1 -1
- teradataml/data/tv_spots.csv +16 -16
- teradataml/data/twod_climate_data.csv +117 -117
- teradataml/data/uaf_example.json +475 -475
- teradataml/data/univariatestatistics_example.json +8 -8
- teradataml/data/unpack_example.json +9 -9
- teradataml/data/unpivot_example.json +9 -9
- teradataml/data/unpivot_input.csv +8 -8
- teradataml/data/us_air_pass.csv +36 -36
- teradataml/data/us_population.csv +624 -624
- teradataml/data/us_states_shapes.csv +52 -52
- teradataml/data/varmax_example.json +17 -17
- teradataml/data/vectordistance_example.json +25 -25
- teradataml/data/ville_climatedata.csv +121 -121
- teradataml/data/ville_tempdata.csv +12 -12
- teradataml/data/ville_tempdata1.csv +12 -12
- teradataml/data/ville_temperature.csv +11 -11
- teradataml/data/waveletTable.csv +1605 -1605
- teradataml/data/waveletTable2.csv +1605 -1605
- teradataml/data/weightedmovavg_example.json +8 -8
- teradataml/data/wft_testing.csv +5 -5
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +5 -5
- teradataml/data/word_embed_input_table2.csv +4 -4
- teradataml/data/word_embed_model.csv +22 -22
- teradataml/data/words_input.csv +13 -13
- teradataml/data/xconvolve_complex_left.csv +6 -6
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
- teradataml/data/xgboost_example.json +35 -35
- teradataml/data/xgboostpredict_example.json +31 -31
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +1769 -1698
- teradataml/dataframe/data_transfer.py +2812 -2745
- teradataml/dataframe/dataframe.py +17630 -16946
- teradataml/dataframe/dataframe_utils.py +1875 -1740
- teradataml/dataframe/fastload.py +794 -603
- teradataml/dataframe/indexer.py +424 -424
- teradataml/dataframe/setop.py +1179 -1166
- teradataml/dataframe/sql.py +10174 -6432
- teradataml/dataframe/sql_function_parameters.py +439 -388
- teradataml/dataframe/sql_functions.py +652 -652
- teradataml/dataframe/sql_interfaces.py +220 -220
- teradataml/dataframe/vantage_function_types.py +674 -630
- teradataml/dataframe/window.py +693 -692
- teradataml/dbutils/__init__.py +3 -3
- teradataml/dbutils/dbutils.py +1167 -1150
- teradataml/dbutils/filemgr.py +267 -267
- teradataml/gen_ai/__init__.py +2 -2
- teradataml/gen_ai/convAI.py +472 -472
- teradataml/geospatial/__init__.py +3 -3
- teradataml/geospatial/geodataframe.py +1105 -1094
- teradataml/geospatial/geodataframecolumn.py +392 -387
- teradataml/geospatial/geometry_types.py +925 -925
- teradataml/hyperparameter_tuner/__init__.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
- teradataml/hyperparameter_tuner/utils.py +281 -187
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +130 -124
- teradataml/options/configure.py +358 -336
- teradataml/options/display.py +176 -176
- teradataml/plot/__init__.py +2 -2
- teradataml/plot/axis.py +1388 -1388
- teradataml/plot/constants.py +15 -15
- teradataml/plot/figure.py +398 -398
- teradataml/plot/plot.py +760 -760
- teradataml/plot/query_generator.py +83 -83
- teradataml/plot/subplot.py +216 -216
- teradataml/scriptmgmt/UserEnv.py +3791 -3761
- teradataml/scriptmgmt/__init__.py +3 -3
- teradataml/scriptmgmt/lls_utils.py +1719 -1604
- teradataml/series/series.py +532 -532
- teradataml/series/series_utils.py +71 -71
- teradataml/table_operators/Apply.py +949 -917
- teradataml/table_operators/Script.py +1718 -1982
- teradataml/table_operators/TableOperator.py +1255 -1616
- teradataml/table_operators/__init__.py +2 -3
- teradataml/table_operators/apply_query_generator.py +262 -262
- teradataml/table_operators/query_generator.py +507 -507
- teradataml/table_operators/table_operator_query_generator.py +460 -460
- teradataml/table_operators/table_operator_util.py +631 -639
- teradataml/table_operators/templates/dataframe_apply.template +184 -184
- teradataml/table_operators/templates/dataframe_map.template +176 -176
- teradataml/table_operators/templates/script_executor.template +170 -170
- teradataml/utils/dtypes.py +684 -684
- teradataml/utils/internal_buffer.py +84 -84
- teradataml/utils/print_versions.py +205 -205
- teradataml/utils/utils.py +410 -410
- teradataml/utils/validators.py +2277 -2115
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
- teradataml-20.0.0.1.dist-info/RECORD +1056 -0
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- teradataml-17.20.0.7.dist-info/RECORD +0 -1280
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: teradataml
|
|
3
|
-
Version:
|
|
3
|
+
Version: 20.0.0.1
|
|
4
4
|
Summary: Teradata Vantage Python package for Advanced Analytics
|
|
5
5
|
Home-page: http://www.teradata.com/
|
|
6
6
|
Author: Teradata Corporation
|
|
@@ -8,21 +8,25 @@ License: Teradata License Agreement
|
|
|
8
8
|
Keywords: Teradata
|
|
9
9
|
Platform: MacOS X, Windows, Linux
|
|
10
10
|
Classifier: Programming Language :: Python :: 3 :: Only
|
|
11
|
-
Classifier: Programming Language :: Python :: 3.
|
|
12
|
-
Classifier: Programming Language :: Python :: 3.
|
|
13
|
-
Classifier: Programming Language :: Python :: 3.7
|
|
11
|
+
Classifier: Programming Language :: Python :: 3.8
|
|
12
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
14
13
|
Classifier: Operating System :: Microsoft :: Windows
|
|
15
14
|
Classifier: Operating System :: MacOS :: MacOS X
|
|
16
15
|
Classifier: Operating System :: POSIX :: Linux
|
|
17
16
|
Classifier: Topic :: Database :: Front-Ends
|
|
18
17
|
Classifier: License :: Other/Proprietary License
|
|
19
|
-
Requires-Python: >=3.
|
|
18
|
+
Requires-Python: >=3.8
|
|
20
19
|
Description-Content-Type: text/markdown
|
|
21
|
-
Requires-Dist: teradatasql >=17.10.0.11
|
|
22
|
-
Requires-Dist: teradatasqlalchemy >=
|
|
23
|
-
Requires-Dist: pandas >=0.22
|
|
20
|
+
Requires-Dist: teradatasql (>=17.10.0.11)
|
|
21
|
+
Requires-Dist: teradatasqlalchemy (>=20.0.0.1)
|
|
22
|
+
Requires-Dist: pandas (>=0.22)
|
|
24
23
|
Requires-Dist: psutil
|
|
25
|
-
Requires-Dist: requests >=2.25.1
|
|
24
|
+
Requires-Dist: requests (>=2.25.1)
|
|
25
|
+
Requires-Dist: scikit-learn (>=0.24.2)
|
|
26
|
+
Requires-Dist: IPython (>=8.10.0)
|
|
27
|
+
Requires-Dist: imbalanced-learn (>=0.8.0)
|
|
28
|
+
Requires-Dist: pyjwt (>=2.8.0)
|
|
29
|
+
Requires-Dist: cryptography (>=42.0.5)
|
|
26
30
|
|
|
27
31
|
## Teradata Python package for Advanced Analytics.
|
|
28
32
|
|
|
@@ -32,7 +36,7 @@ For community support, please visit the [Teradata Community](https://support.ter
|
|
|
32
36
|
|
|
33
37
|
For Teradata customer support, please visit [Teradata Support](https://support.teradata.com/csm).
|
|
34
38
|
|
|
35
|
-
Copyright
|
|
39
|
+
Copyright 2024, Teradata. All Rights Reserved.
|
|
36
40
|
|
|
37
41
|
### Table of Contents
|
|
38
42
|
* [Release Notes](#release-notes)
|
|
@@ -42,19 +46,314 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
42
46
|
* [License](#license)
|
|
43
47
|
|
|
44
48
|
## Release Notes:
|
|
49
|
+
#### teradataml 20.00.00.01
|
|
50
|
+
* teradataml no longer supports Python versions less than 3.8.
|
|
51
|
+
|
|
52
|
+
* ##### New Features/Functionality
|
|
53
|
+
* ##### Personal Access Token (PAT) support in teradataml
|
|
54
|
+
* `set_auth_token()` - teradataml now supports authentication via PAT in addition to
|
|
55
|
+
OAuth 2.0 Device Authorization Grant (formerly known as the Device Flow).
|
|
56
|
+
* It accepts UES URL, Personal AccessToken (PAT) and Private Key file generated from VantageCloud Lake Console
|
|
57
|
+
and optional argument `username` and `expiration_time` in seconds.
|
|
58
|
+
|
|
59
|
+
* ##### Updates
|
|
60
|
+
* ##### teradataml: SQLE Engine Analytic Functions
|
|
61
|
+
* `ANOVA()`
|
|
62
|
+
* New arguments added: `group_name_column`, `group_value_name`, `group_names`, `num_groups` for data containing group values and group names.
|
|
63
|
+
* `FTest()`
|
|
64
|
+
* New arguments added: `sample_name_column`, `sample_name_value`, `first_sample_name`, `second_sample_name`.
|
|
65
|
+
* `GLM()`
|
|
66
|
+
* Supports stepwise regression and accept new arguments `stepwise_direction`, `max_steps_num` and `initial_stepwise_columns`.
|
|
67
|
+
* New arguments added: `attribute_data`, `parameter_data`, `iteration_mode` and `partition_column`.
|
|
68
|
+
* `GetFutileColumns()`
|
|
69
|
+
* Arguments `category_summary_column` and `threshold_value` are now optional.
|
|
70
|
+
* `KMeans()`
|
|
71
|
+
* New argument added: `initialcentroids_method`.
|
|
72
|
+
* `NonLinearCombineFit()`
|
|
73
|
+
* Argument `result_column` is now optional.
|
|
74
|
+
* `ROC()`
|
|
75
|
+
* Argument `positive_class` is now optional.
|
|
76
|
+
* `SVMPredict()`
|
|
77
|
+
* New argument added: `model_type`.
|
|
78
|
+
* `ScaleFit()`
|
|
79
|
+
* New arguments added: `ignoreinvalid_locationscale`, `unused_attributes`, `attribute_name_column`, `attribute_value_column`.
|
|
80
|
+
* Arguments `attribute_name_column`, `attribute_value_column` and `target_attributes` are supported for sparse input.
|
|
81
|
+
* Arguments `attribute_data`, `parameter_data` and `partition_column` are supported for partitioning.
|
|
82
|
+
* `ScaleTransform()`
|
|
83
|
+
* New arguments added: `attribute_name_column` and `attribute_value_column` support for sparse input.
|
|
84
|
+
* `TDGLMPredict()`
|
|
85
|
+
* New arguments added: `family` and `partition_column`.
|
|
86
|
+
* `XGBoost()`
|
|
87
|
+
* New argument `base_score` is added for initial prediction value for all data points.
|
|
88
|
+
* `XGBoostPredict()`
|
|
89
|
+
* New argument `detailed` is added for detailed information of each prediction.
|
|
90
|
+
* `ZTest()`
|
|
91
|
+
* New arguments added: `sample_name_column`, `sample_value_column`, `first_sample_name` and `second_sample_name`.
|
|
92
|
+
* ##### teradataml: AutoML
|
|
93
|
+
* `AutoML()`, `AutoRegressor()` and `AutoClassifier()`
|
|
94
|
+
* New argument `max_models` is added as an early stopping criterion to limit the maximum number of models to be trained.
|
|
95
|
+
* ##### teradataml: DataFrame functions
|
|
96
|
+
* `DataFrame.agg()`
|
|
97
|
+
* Accepts ColumnExpressions and list of ColumnExpressions as arguments.
|
|
98
|
+
* ##### teradataml: General Functions
|
|
99
|
+
* Data Transfer Utility
|
|
100
|
+
* `fastload()` - Improved error and warning table handling with below-mentioned new arguments.
|
|
101
|
+
* `err_staging_db`
|
|
102
|
+
* `err_tbl_name`
|
|
103
|
+
* `warn_tbl_name`
|
|
104
|
+
* `err_tbl_1_suffix`
|
|
105
|
+
* `err_tbl_2_suffix`
|
|
106
|
+
* `fastload()` - Change in behaviour of `save_errors` argument.
|
|
107
|
+
When `save_errors` is set to `True`, error information will be available in two persistent tables `ERR_1` and `ERR_2`.
|
|
108
|
+
When `save_errors` is set to `False`, error information will be available in single pandas dataframe.
|
|
109
|
+
* Garbage collector location is now configurable.
|
|
110
|
+
User can set configure.local_storage to a desired location.
|
|
111
|
+
|
|
112
|
+
* ##### Bug Fixes
|
|
113
|
+
* UAF functions now work if the database name has special characters.
|
|
114
|
+
* OpensourceML can now read and process NULL/nan values.
|
|
115
|
+
* Boolean values output will now be returned as VARBYTE column with 0 or 1 values in OpensourceML.
|
|
116
|
+
* Fixed bug for `Apply`'s `deploy()`.
|
|
117
|
+
* Issue with volatile table creation is fixed where it is created in the right database, i.e., user's spool space, regardless of the temp database specified.
|
|
118
|
+
* `ColumnTransformer` function now processes its arguments in the order they are passed.
|
|
119
|
+
|
|
120
|
+
#### teradataml 20.00.00.00
|
|
121
|
+
* ##### New Features/Functionality
|
|
122
|
+
* ###### teradataml OpenML: Run Opensource packages through Teradata Vantage
|
|
123
|
+
`OpenML` dynamically exposes opensource packages through Teradata Vantage. `OpenML` provides an
|
|
124
|
+
interface object through which exposed classes and functions of opensource packages can be accessed
|
|
125
|
+
with the same syntax and arguments.
|
|
126
|
+
The following functionality is added in the current release:
|
|
127
|
+
* `td_sklearn` - Interface object to run scikit-learn functions and classes through Teradata Vantage.
|
|
128
|
+
Example usage below:
|
|
129
|
+
```
|
|
130
|
+
from teradataml import td_sklearn, DataFrame
|
|
131
|
+
|
|
132
|
+
df_train = DataFrame("multi_model_classification")
|
|
133
|
+
|
|
134
|
+
feature_columns = ["col1", "col2", "col3", "col4"]
|
|
135
|
+
label_columns = ["label"]
|
|
136
|
+
part_columns = ["partition_column_1", "partition_column_2"]
|
|
137
|
+
|
|
138
|
+
linear_svc = td_sklearn.LinearSVC()
|
|
139
|
+
```
|
|
140
|
+
* `OpenML` is supported in both Teradata Vantage Enterprise and Teradata Vantage Lake.
|
|
141
|
+
* Argument Support:
|
|
142
|
+
* `Use of X and y arguments` - Scikit-learn users are familiar with using `X` and `y` as argument names
|
|
143
|
+
which take data as pandas DataFrames, numpy arrays or lists etc. However, in OpenML, we pass
|
|
144
|
+
teradataml DataFrames for arguments `X` and `y`.
|
|
145
|
+
```
|
|
146
|
+
df_x = df_train.select(feature_columns)
|
|
147
|
+
df_y = df_train.select(label_columns)
|
|
148
|
+
|
|
149
|
+
linear_svc = linear_svc.fit(X=df_x, y=df_y)
|
|
150
|
+
```
|
|
151
|
+
* `Additional support for data, feature_columns, label_columns and group_columns arguments` -
|
|
152
|
+
Apart from traditional arguments, OpenML supports additional arguments - `data`,
|
|
153
|
+
`feature_columns`, `label_columns` and `group_columns`. These are used as alternatives to `X`, `y`
|
|
154
|
+
and `groups`.
|
|
155
|
+
```
|
|
156
|
+
linear_svc = linear_svc.fit(data=df_train, feature_columns=feature_columns, label_colums=label_columns)
|
|
157
|
+
```
|
|
158
|
+
* `Support for classification and regression metrics` - Metrics functions for classification and
|
|
159
|
+
regression in `sklearn.metrics` module are supported. Other metrics functions' support will be added
|
|
160
|
+
in future releases.
|
|
161
|
+
* `Distributed Modeling and partition_columns argument support` - Existing scikit-learn supports
|
|
162
|
+
only single model generation. However, OpenML supports both single model use case and distributed
|
|
163
|
+
(multi) model use case. For this, user has to additionally pass `partition_columns` argument to
|
|
164
|
+
existing `fit()`, `predict()` or any other function to be run. This will generate multiple models
|
|
165
|
+
for multiple partitions, using the data in corresponding partition.
|
|
166
|
+
```
|
|
167
|
+
df_x_1 = df_train.select(feature_columns + part_columns)
|
|
168
|
+
linear_svc = linear_svc.fit(X=df_x_1, y=df_y, partition_columns=part_columns)
|
|
169
|
+
```
|
|
170
|
+
* `Support for load and deploy models` - OpenML provides additional support for saving (deploying) the
|
|
171
|
+
trained models. These models can be loaded later to perform operations like prediction, score etc. The
|
|
172
|
+
following functions are provided by OpenML:
|
|
173
|
+
* `<obj>.deploy()` - Used to deploy/save the model created and/or trained by OpenML.
|
|
174
|
+
* `td_sklearn.deploy()` - Used to deploy/save the model created and/or trained outside teradataml.
|
|
175
|
+
* `td_sklearn.load()` - Used to load the saved models.
|
|
176
|
+
|
|
177
|
+
<br>Refer Teradata Python Package User Guide for more details of this feature, arguments, usage, examples and supportability in both VantageCloud Enterprise and VantageCloud Lake.
|
|
178
|
+
|
|
179
|
+
* ###### teradataml: AutoML - Automated end to end Machine Learning flow.
|
|
180
|
+
AutoML is an approach to automate the process of building, training, and validating machine learning models.
|
|
181
|
+
It involves automation of various aspects of the machine learning workflow, such as feature exploration,
|
|
182
|
+
feature engineering, data preparation, model training and evaluation for given dataset.
|
|
183
|
+
teradataml AutoML feature offers best model identification, model leaderboard generation, parallel execution,
|
|
184
|
+
early stopping feature, model evaluation, model prediction, live logging, customization on default process.
|
|
185
|
+
* `AutoML`
|
|
186
|
+
AutoML is a generic algorithm that supports all three tasks, i.e. 'Regression',
|
|
187
|
+
'Binary Classification' and 'Multiclass Classification'.
|
|
188
|
+
* Methods of AutoML
|
|
189
|
+
* `__init__()` - Instantiate an object of AutoML with given parameters.
|
|
190
|
+
* `fit()` - Perform fit on specified data and target column.
|
|
191
|
+
* `leaderboard()` - Get the leaderboard for the AutoML. Presents diverse models, feature
|
|
192
|
+
selection method, and performance metrics.
|
|
193
|
+
* `leader()` - Show best performing model and its details such as feature
|
|
194
|
+
selection method, and performance metrics.
|
|
195
|
+
* `predict()` - Perform prediction on the data using the best model or the model of users
|
|
196
|
+
choice from the leaderboard.
|
|
197
|
+
* `generate_custom_config()` - Generate custom config JSON file required for customized
|
|
198
|
+
run of AutoML.
|
|
199
|
+
* `AutoRegressor`
|
|
200
|
+
AutoRegressor is a special purpose AutoML feature to run regression specific tasks.
|
|
201
|
+
* Methods of AutoRegressor
|
|
202
|
+
* `__init__()` - Instantiate an object of AutoRegressor with given parameters.
|
|
203
|
+
* `fit()` - Perform fit on specified data and target column.
|
|
204
|
+
* `leaderboard()` - Get the leaderboard for the AutoRegressor. Presents diverse models, feature
|
|
205
|
+
selection method, and performance metrics.
|
|
206
|
+
* `leader()` - Show best performing model and its details such as feature
|
|
207
|
+
selection method, and performance metrics.
|
|
208
|
+
* `predict()` - Perform prediction on the data using the best model or the model of users
|
|
209
|
+
choice from the leaderboard.
|
|
210
|
+
* `generate_custom_config()` - Generate custom config JSON file required for customized
|
|
211
|
+
run of AutoRegressor.
|
|
212
|
+
* `AutoClassifier`
|
|
213
|
+
AutoClassifier is a special purpose AutoML feature to run classification specific tasks.
|
|
214
|
+
* Methods of AutoClassifier
|
|
215
|
+
* `__init__()` - Instantiate an object of AutoClassifier with given parameters.
|
|
216
|
+
* `fit()` - Perform fit on specified data and target column.
|
|
217
|
+
* `leaderboard()` - Get the leaderboard for the AutoClassifier. Presents diverse models, feature
|
|
218
|
+
selection method, and performance metrics.
|
|
219
|
+
* `leader()` - Show best performing model and its details such as feature
|
|
220
|
+
selection method, and performance metrics.
|
|
221
|
+
* `predict()` - Perform prediction on the data using the best model or the model of users
|
|
222
|
+
choice from the leaderboard.
|
|
223
|
+
* `generate_custom_config()` - Generate custom config JSON file required for customized
|
|
224
|
+
run of AutoClassifier.
|
|
225
|
+
|
|
226
|
+
* ###### teradataml: DataFrame
|
|
227
|
+
* `fillna` - Replace the null values in a column with the value specified.
|
|
228
|
+
* Data Manipulation
|
|
229
|
+
* `cube()`- Analyzes data by grouping it into multiple dimensions.
|
|
230
|
+
* `rollup()` - Analyzes a set of data across a single dimension with more than one level of detail.
|
|
231
|
+
* `replace()` - Replaces the values for columns.
|
|
232
|
+
|
|
233
|
+
* ###### teradataml: Script and Apply
|
|
234
|
+
* `deploy()` - Function deploys the model, generated after `execute_script()`, in database or user
|
|
235
|
+
environment in lake. The function is available in both Script and Apply.
|
|
236
|
+
|
|
237
|
+
* ###### teradataml: DataFrameColumn
|
|
238
|
+
* `fillna` - Replaces every occurrence of null value in column with the value specified.
|
|
239
|
+
|
|
240
|
+
* ###### teradataml DataFrameColumn a.k.a. ColumnExpression
|
|
241
|
+
* _Date Time Functions_
|
|
242
|
+
* `DataFrameColumn.week_start()` - Returns the first date or timestamp of the week that begins immediately before the specified date or timestamp value in a column as a literal.
|
|
243
|
+
* `DataFrameColumn.week_begin()` - It is an alias for `DataFrameColumn.week_start()` function.
|
|
244
|
+
* `DataFrameColumn.week_end()` - Returns the last date or timestamp of the week that ends immediately after the specified date or timestamp value in a column as a literal.
|
|
245
|
+
* `DataFrameColumn.month_start()` - Returns the first date or timestamp of the month that begins immediately before the specified date or timestamp value in a column or as a literal.
|
|
246
|
+
* `DataFrameColumn.month_begin()` - It is an alias for `DataFrameColumn.month_start()` function.
|
|
247
|
+
* `DataFrameColumn.month_end()` - Returns the last date or timestamp of the month that ends immediately after the specified date or timestamp value in a column or as a literal.
|
|
248
|
+
* `DataFrameColumn.year_start()` - Returns the first date or timestamp of the year that begins immediately before the specified date or timestamp value in a column or as a literal.
|
|
249
|
+
* `DataFrameColumn.year_begin()` - It is an alias for `DataFrameColumn.year_start()` function.
|
|
250
|
+
* `DataFrameColumn.year_end()` - Returns the last date or timestamp of the year that ends immediately after the specified date or timestamp value in a column or as a literal.
|
|
251
|
+
* `DataFrameColumn.quarter_start()` - Returns the first date or timestamp of the quarter that begins immediately before the specified date or timestamp value in a column as a literal.
|
|
252
|
+
* `DataFrameColumn.quarter_begin()` - It is an alias for `DataFrameColumn.quarter_start()` function.
|
|
253
|
+
* `DataFrameColumn.quarter_end()` - Returns the last date or timestamp of the quarter that ends immediately after the specified date or timestamp value in a column as a literal.
|
|
254
|
+
* `DataFrameColumn.last_sunday()` - Returns the date or timestamp of Sunday that falls immediately before the specified date or timestamp value in a column as a literal.
|
|
255
|
+
* `DataFrameColumn.last_monday()` - Returns the date or timestamp of Monday that falls immediately before the specified date or timestamp value in a column as a literal.
|
|
256
|
+
* `DataFrameColumn.last_tuesday()` - Returns the date or timestamp of Tuesday that falls immediately before the specified date or timestamp value in a column as a literal.
|
|
257
|
+
* `DataFrameColumn.last_wednesday()` - Returns the date or timestamp of Wednesday that falls immediately before specified date or timestamp value in a column as a literal.
|
|
258
|
+
* `DataFrameColumn.last_thursday()`- Returns the date or timestamp of Thursday that falls immediately before specified date or timestamp value in a column as a literal.
|
|
259
|
+
* `DataFrameColumn.last_friday()` - Returns the date or timestamp of Friday that falls immediately before specified date or timestamp value in a column as a literal.
|
|
260
|
+
* `DataFrameColumn.last_saturday()` - Returns the date or timestamp of Saturday that falls immediately before specified date or timestamp value in a column as a literal.
|
|
261
|
+
* `DataFrameColumn.day_of_week()` - Returns the number of days from the beginning of the week to the specified date or timestamp value in a column as a literal.
|
|
262
|
+
* `DataFrameColumn.day_of_month()` - Returns the number of days from the beginning of the month to the specified date or timestamp value in a column as a literal.
|
|
263
|
+
* `DataFrameColumn.day_of_year()` - Returns the number of days from the beginning of the year to the specified date or timestamp value in a column as a literal.
|
|
264
|
+
* `DataFrameColumn.day_of_calendar()` - Returns the number of days from the beginning of the business calendar to the specified date or timestamp value in a column as a literal.
|
|
265
|
+
* `DataFrameColumn.week_of_month()` - Returns the number of weeks from the beginning of the month to the specified date or timestamp value in a column as a literal.
|
|
266
|
+
* `DataFrameColumn.week_of_quarter()` - Returns the number of weeks from the beginning of the quarter to the specified date or timestamp value in a column as a literal.
|
|
267
|
+
* `DataFrameColumn.week_of_year()` - Returns the number of weeks from the beginning of the year to the specified date or timestamp value in a column as a literal.
|
|
268
|
+
* `DataFrameColumn.week_of_calendar()` - Returns the number of weeks from the beginning of the calendar to the specified date or timestamp value in a column as a literal.
|
|
269
|
+
* `DataFrameColumn.month_of_year()` - Returns the number of months from the beginning of the year to the specified date or timestamp value in a column as a literal.
|
|
270
|
+
* `DataFrameColumn.month_of_calendar()` - Returns the number of months from the beginning of the calendar to the specified date or timestamp value in a column as a literal.
|
|
271
|
+
* `DataFrameColumn.month_of_quarter()` - Returns the number of months from the beginning of the quarter to the specified date or timestamp value in a column as a literal.
|
|
272
|
+
* `DataFrameColumn.quarter_of_year()` - Returns the number of quarters from the beginning of the year to the specified date or timestamp value in a column as a literal.
|
|
273
|
+
* `DataFrameColumn.quarter_of_calendar()` - Returns the number of quarters from the beginning of the calendar to the specified date or timestamp value in a column as a literal.
|
|
274
|
+
* `DataFrameColumn.year_of_calendar()` - Returns the year of the specified date or timestamp value in a column as a literal.
|
|
275
|
+
* `DataFrameColumn.day_occurrence_of_month()` - Returns the nth occurrence of the weekday in the month for the date to the specified date or timestamp value in a column as a literal.
|
|
276
|
+
* `DataFrameColumn.year()` - Returns the integer value for year in the specified date or timestamp value in a column as a literal.
|
|
277
|
+
* `DataFrameColumn.month()` - Returns the integer value for month in the specified date or timestamp value in a column as a literal.
|
|
278
|
+
* `DataFrameColumn.hour()` - Returns the integer value for hour in the specified timestamp value in a column as a literal.
|
|
279
|
+
* `DataFrameColumn.minute()` - Returns the integer value for minute in the specified timestamp value in a column as a literal.
|
|
280
|
+
* `DataFrameColumn.second()` - Returns the integer value for seconds in the specified timestamp value in a column as a literal.
|
|
281
|
+
* `DataFrameColumn.week()` - Returns the number of weeks from the beginning of the year to the specified date or timestamp value in a column as a literal.
|
|
282
|
+
* `DataFrameColumn.next_day()` - Returns the date of the first weekday specified as 'day_value' that is later than the specified date or timestamp value in a column as a literal.
|
|
283
|
+
* `DataFrameColumn.months_between()` - Returns the number of months between value in specified date or timestamp value in a column as a literal and date or timestamp value in argument.
|
|
284
|
+
* `DataFrameColumn.add_months()` - Adds an integer number of months to specified date or timestamp value in a column as a literal.
|
|
285
|
+
* `DataFrameColumn.oadd_months()` - Adds an integer number of months, date or timestamp value in specified date or timestamp value in a column as a literal.
|
|
286
|
+
* `DataFrameColumn.to_date()` - Function converts a string-like representation of a DATE or PERIOD type to Date type.
|
|
287
|
+
* _String Functions_
|
|
288
|
+
* `DataFrameColumn.concat()` - Function to concatenate the columns with a separator.
|
|
289
|
+
* `DataFrameColumn.like()` - Function to match the string pattern. String match is case sensitive.
|
|
290
|
+
* `DataFrameColumn.ilike()` - Function to match the string pattern. String match is not case sensitive.
|
|
291
|
+
* `DataFrameColumn.substr()` - Returns the substring from a string column.
|
|
292
|
+
* `DataFrameColumn.startswith()` - Function to check if the column value starts with the specified value or not.
|
|
293
|
+
* `DataFrameColumn.endswith()` - Function to check if the column value ends with the specified value or not.
|
|
294
|
+
* `DataFrameColumn.format()` - Function to format the values in column based on formatter.
|
|
295
|
+
* `DataFrameColumn.to_char()` - Function converts numeric type or datetype to character type.
|
|
296
|
+
* `DataFrameColumn.trim()` - Function trims the string values in the column.
|
|
297
|
+
* _Regular Arithmetic Functions_
|
|
298
|
+
* `DataFrameColumn.cbrt()` - Computes the cube root of values in the column.
|
|
299
|
+
* `DataFrameColumn.hex()` - Computes the Hexadecimal from decimal for the values in the column.
|
|
300
|
+
* `DataframeColumn.hypot()` - Computes the decimal from Hexadecimal for the values in the column.
|
|
301
|
+
* `DataFrameColumn.unhex()` - computes the hypotenuse for the values between two columns.
|
|
302
|
+
* _Bit Byte Manipulation Functions_
|
|
303
|
+
* `DataFrameColumn.from_byte()` - Encodes a sequence of bits into a sequence of characters.
|
|
304
|
+
* _Comparison Functions_
|
|
305
|
+
* `DataFrameColumn.greatest()` - Returns the greatest values from columns.
|
|
306
|
+
* `DataFrameColumn.least()` - Returns the least values from columns.
|
|
307
|
+
* Behaviour of `DataFrameColumn.replace()` is changed.
|
|
308
|
+
* Behaviour of `DataFrameColumn.to_byte()` is changed. It now decodes a sequence of characters in a given encoding into a sequence of bits.
|
|
309
|
+
* Behaviour of `DataFrameColumn.trunc()` is changed. It now accepts Date type columns.
|
|
310
|
+
|
|
311
|
+
* ##### Bug Fixes
|
|
312
|
+
* Argument `url_encode` is no longer used in `create_context()` and is deprecated.
|
|
313
|
+
* **Important notes**
|
|
314
|
+
* Users do not need to encode password even if password contain special characters.
|
|
315
|
+
* Pass the password to the `create_context()` function argument `password` as it is without changing special characters.
|
|
316
|
+
* `fillna()` in VAL transformation allows to replace NULL values with empty string.
|
|
317
|
+
|
|
318
|
+
* ##### Updates
|
|
319
|
+
* Support for following deprecated functionality is removed:
|
|
320
|
+
* ML Engine functions
|
|
321
|
+
* STO and APPLY sandbox feature support for testing the script.
|
|
322
|
+
* sandbox_container_utils is removed. Following methods can no longer be used:
|
|
323
|
+
* `setup_sandbox_env()`
|
|
324
|
+
* `copy_files_from_container()`
|
|
325
|
+
* `cleanup_sandbox_env()`
|
|
326
|
+
* Model Cataloging APIs can no longer be used:
|
|
327
|
+
* `describe_model()`
|
|
328
|
+
* `delete_model()`
|
|
329
|
+
* `list_models()`
|
|
330
|
+
* `publish_model()`
|
|
331
|
+
* `retrieve_model()`
|
|
332
|
+
* `save_model()`
|
|
333
|
+
* `DataFrame.join()`
|
|
334
|
+
* Arguments `lsuffix` and `rsuffix` now add suffixes to new column names for join operation.
|
|
335
|
+
* `DataFrame.describe()`
|
|
336
|
+
* New argument `columns` is added to generate statistics on only those columns instead of all applicable columns.
|
|
337
|
+
* `DataFrame.groupby()`
|
|
338
|
+
* Supports `CUBE` and `ROLLUP` with additional optional argument `option`.
|
|
339
|
+
* `DataFrame.column.window()`
|
|
340
|
+
* Supports ColumnExpressions for `partition_columns` and `order_columns` arguments.
|
|
341
|
+
* `DataFrame.column.contains()` allows ColumnExpressions for `pattern` argument.
|
|
342
|
+
* `DataFrame.window()`
|
|
343
|
+
* Supports ColumnExpressions for `partition_columns` and `order_columns` arguments.
|
|
344
|
+
|
|
45
345
|
#### teradataml 17.20.00.07
|
|
46
346
|
* ##### New Features/Functionality
|
|
47
|
-
* ###### Open Analytics Framework (OpenAF) APIs:
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
347
|
+
* ###### Open Analytics Framework (OpenAF) APIs:
|
|
348
|
+
* Manage all user environments.
|
|
349
|
+
* `create_env()`:
|
|
350
|
+
* new argument `conda_env` is added to create a conda environment.
|
|
351
|
+
* `list_user_envs()`:
|
|
352
|
+
* User can list conda environment(s) by using filter with new argument `conda_env`.
|
|
353
|
+
* Conda environment(s) can be managed using APIs for installing , updating, removing files/libraries.
|
|
54
354
|
* ##### Bug Fixes
|
|
55
355
|
* `columns` argument for `FillNa` function is made optional.
|
|
56
|
-
|
|
57
|
-
## Release Notes:
|
|
356
|
+
|
|
58
357
|
#### teradataml 17.20.00.06
|
|
59
358
|
* ##### New Features/Functionality
|
|
60
359
|
* ###### teradataml DataFrameColumn a.k.a. ColumnExpression
|
|
@@ -92,7 +391,7 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
92
391
|
bit position.
|
|
93
392
|
* `DataFrameColumn.to_byte()` - Converts a numeric data type to the Vantage byte representation
|
|
94
393
|
(byte value) of the column expression value.
|
|
95
|
-
|
|
394
|
+
|
|
96
395
|
* _Regular Expression Functions_
|
|
97
396
|
* `DataFrameColumn.regexp_instr()` - Searches string value in column for a match to value specified in argument.
|
|
98
397
|
* `DataFrameColumn.regexp_replace()` - Replaces the portions of string value in a column that matches the value
|
|
@@ -129,7 +428,7 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
129
428
|
* Argument `ignore_nulls` added to `DataFrame.plot()` to ignore the null values while plotting the data.
|
|
130
429
|
* `Dataframe.sample()`
|
|
131
430
|
* Method supports column stratification.
|
|
132
|
-
|
|
431
|
+
|
|
133
432
|
* ##### Bug Fixes
|
|
134
433
|
* `DataFrameColumn.cast()` accepts all teradatasqlalchemy types.
|
|
135
434
|
* Minor bug fix related to `DataFrame.merge()`.
|
|
@@ -188,7 +487,7 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
188
487
|
* `best_score_` - Returns the best trained model score.
|
|
189
488
|
* `model_stats` - Returns the model evaluation reports.
|
|
190
489
|
* `models` - Returns the metadata of all the models.
|
|
191
|
-
|
|
490
|
+
|
|
192
491
|
* ###### teradataml: Analytic Functions
|
|
193
492
|
teradataml currently has different functions to generate a model, predict, transform and evaluate. All these functions are needed to be invoked individually, i.e., predict(), evaluate(), transform() cannot be invoked using the model trainer function output. Enhancement done to this feature now enables user to invoke these functions as methods of the model trainer function. Below is the list of functions, updated with this enhancement:
|
|
194
493
|
* Analytics Database Analytic Functions
|
|
@@ -250,7 +549,7 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
250
549
|
* Bring Your Own Model (BYOM) Function:
|
|
251
550
|
* `DataikuPredict` - Score the data in Vantage using the model trained externally in Dataiku UI and stored in Vantage.
|
|
252
551
|
* `async_run_status()` - Function to check the status of asynchronous run(s) using unique run id(s).
|
|
253
|
-
|
|
552
|
+
|
|
254
553
|
* ###### teradataml DataFrameColumn a.k.a. ColumnExpression
|
|
255
554
|
* _Regular Arithmetic Functions_
|
|
256
555
|
* `DataFrameColumn.abs()` - Computes the absolute value.
|
|
@@ -342,7 +641,7 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
342
641
|
* Configuration Options
|
|
343
642
|
* `configure.indb_install_location`
|
|
344
643
|
Specifies the installation location of In-DB Python package.
|
|
345
|
-
|
|
644
|
+
|
|
346
645
|
* ##### Updates
|
|
347
646
|
* Open Analytics Framework (OpenAF) APIs:
|
|
348
647
|
* `set_auth_token()`
|
|
@@ -401,12 +700,12 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
401
700
|
* `WordEmbeddings()`
|
|
402
701
|
* `XGBoost()`
|
|
403
702
|
* `XGBoostPredict()`
|
|
404
|
-
|
|
703
|
+
|
|
405
704
|
* ###### teradataml Options
|
|
406
705
|
* Display Options
|
|
407
706
|
* `display.geometry_column_length`
|
|
408
707
|
Option to display the default length of geometry column in GeoDataFrame.
|
|
409
|
-
|
|
708
|
+
|
|
410
709
|
* ##### Updates
|
|
411
710
|
* `set_auth_token()` function can generate the client id automatically based on org_id when user do not specify it.
|
|
412
711
|
* Analytics Database Analytic Functions:
|
|
@@ -443,7 +742,7 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
443
742
|
* publish_model
|
|
444
743
|
* retrieve_model
|
|
445
744
|
* save_model
|
|
446
|
-
|
|
745
|
+
|
|
447
746
|
* ##### Bug Fixes
|
|
448
747
|
* `copy_to_sql()` bug related to NaT value has been fixed.
|
|
449
748
|
* Tooltip on PyCharm IDE now points to SQLE.
|
|
@@ -456,7 +755,7 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
456
755
|
* ###### teradataml: Open Analytics
|
|
457
756
|
* New Functions
|
|
458
757
|
* `set_auth_token()` - Sets the JWT token automatically for using Open AF API's.
|
|
459
|
-
|
|
758
|
+
|
|
460
759
|
* ###### teradataml Options
|
|
461
760
|
* Display Options
|
|
462
761
|
* `display.suppress_vantage_runtime_warnings`
|
|
@@ -466,7 +765,7 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
466
765
|
* SimpleImputeFit function arguments `stats_columns` and `stats` are made to be optional.
|
|
467
766
|
* New argument `table_format` is added to ReadNOS().
|
|
468
767
|
* Argument `full_scan` is changed to `scan_pct` in ReadNOS().
|
|
469
|
-
|
|
768
|
+
|
|
470
769
|
* ##### Bug Fixes
|
|
471
770
|
* Minor bug fix related to read_csv.
|
|
472
771
|
* APPLY and `DataFrame.apply()` supports hash by and local order by.
|
|
@@ -542,7 +841,7 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
542
841
|
3. `MInfo()`
|
|
543
842
|
4. `SInfo()`
|
|
544
843
|
5. `TrackingOp()`
|
|
545
|
-
|
|
844
|
+
|
|
546
845
|
* New Features: Inputs to Unbounded Array Framework (UAF) functions
|
|
547
846
|
* `TDAnalyticResult()` - Allows to prepare function output generated by UAF functions to be passed.
|
|
548
847
|
* `TDGenSeries()` - Allows to generate a series, that can be passed to a UAF function.
|
|
@@ -554,7 +853,7 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
554
853
|
* `display_analytic_functions()` categorizes the analytic functions based on function type.
|
|
555
854
|
* ColumnTransformer accepts multiple values for arguments nonlinearcombine_fit_data,
|
|
556
855
|
onehotencoding_fit_data, ordinalencoding_fit_data.
|
|
557
|
-
|
|
856
|
+
|
|
558
857
|
* ##### Bug Fixes
|
|
559
858
|
* Redundant warnings thrown by teradataml are suppressed.
|
|
560
859
|
* OpenAF supports when context is created with JWT Token.
|
|
@@ -594,7 +893,7 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
594
893
|
* _Updates_
|
|
595
894
|
* `display_analytic_functions()` categorizes the analytic functions based on function type.
|
|
596
895
|
* Users can provide range value for columns argument.
|
|
597
|
-
|
|
896
|
+
|
|
598
897
|
* ###### teradataml: Open Analytics
|
|
599
898
|
* Manage all user environments.
|
|
600
899
|
* `list_base_envs()` - list the available python base versions.
|
|
@@ -625,7 +924,7 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
625
924
|
* `remove_file()` - Remove a file in user environment.
|
|
626
925
|
* `set_data()` – Reset data and related arguments.
|
|
627
926
|
* `execute_script()` – Executes Python script.
|
|
628
|
-
|
|
927
|
+
|
|
629
928
|
* ###### teradataml: DataFrame
|
|
630
929
|
* _New Functions_
|
|
631
930
|
* `DataFrame.apply()` - Execute a user defined Python function on VantageLake Cloud.
|
|
@@ -658,7 +957,7 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
658
957
|
* `percentile_method`
|
|
659
958
|
* Analytics Database analytic functions – In line help, i.e., help() for the functions
|
|
660
959
|
is available.
|
|
661
|
-
|
|
960
|
+
|
|
662
961
|
* ##### Bug Fixes
|
|
663
962
|
* Vantage Analytic Library FillNa() function: Now `columns` argument is required.
|
|
664
963
|
* `output_responses` argument in MLE function `DecisionTreePredict()`, does not allow empty string.
|
|
@@ -679,7 +978,7 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
679
978
|
* ###### Script
|
|
680
979
|
* _Updates_
|
|
681
980
|
* A warning will be raised, when Teradata reserved keyword is used in Script local mode.
|
|
682
|
-
|
|
981
|
+
|
|
683
982
|
* ##### Bug Fixes
|
|
684
983
|
* Numeric overflow issue observed for describe(), sum(), csum(), and mean() has been fixed.
|
|
685
984
|
* Error messages are updated for SQLE function arguments accepting multiple datatypes.
|
|
@@ -948,11 +1247,11 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
948
1247
|
* `mbb_filter()`
|
|
949
1248
|
* `mbr_filter()`
|
|
950
1249
|
* `within_mbb()`
|
|
951
|
-
|
|
1250
|
+
|
|
952
1251
|
* ###### teradataml DataFrame
|
|
953
1252
|
* _New Functions_
|
|
954
1253
|
* `to_csv()`
|
|
955
|
-
|
|
1254
|
+
|
|
956
1255
|
* ###### teradataml: SQLE Engine Analytic Functions
|
|
957
1256
|
* _New Functions_
|
|
958
1257
|
* Newly added SQLE functions are accessible only after establishing the connection to Vantage.
|
|
@@ -1022,25 +1321,25 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
1022
1321
|
* `WhichMax()`
|
|
1023
1322
|
* `WhichMin()`
|
|
1024
1323
|
* `ZTest()`
|
|
1025
|
-
|
|
1324
|
+
|
|
1026
1325
|
* ###### teradataml: General Functions
|
|
1027
1326
|
* _New Functions_
|
|
1028
1327
|
* Data Transfer Utility
|
|
1029
1328
|
* `read_csv()`
|
|
1030
|
-
|
|
1329
|
+
|
|
1031
1330
|
* ###### Operators
|
|
1032
1331
|
* _New Functions_
|
|
1033
1332
|
* Table Operators
|
|
1034
1333
|
* `read_nos()`
|
|
1035
1334
|
* `write_nos()`
|
|
1036
|
-
|
|
1335
|
+
|
|
1037
1336
|
* ###### teradataml: Bring Your Own Model
|
|
1038
1337
|
* _New Functions_
|
|
1039
1338
|
* Model Cataloging
|
|
1040
1339
|
* `get_license()`
|
|
1041
1340
|
* `set_byom_catalog()`
|
|
1042
1341
|
* `set_license()`
|
|
1043
|
-
|
|
1342
|
+
|
|
1044
1343
|
* ##### Updates
|
|
1045
1344
|
* ###### teradataml: General Functions
|
|
1046
1345
|
* Data Transfer Utility
|
|
@@ -1049,7 +1348,7 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
1049
1348
|
* `fastexport()`
|
|
1050
1349
|
* `fastload()`
|
|
1051
1350
|
* `to_pandas()`
|
|
1052
|
-
|
|
1351
|
+
|
|
1053
1352
|
* ###### Operators
|
|
1054
1353
|
* Following Set Operator Functions updated to work with Geospatial data:
|
|
1055
1354
|
* `concat()`
|
|
@@ -1064,7 +1363,7 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
1064
1363
|
* `retrieve_byom()`
|
|
1065
1364
|
* `save_byom()`
|
|
1066
1365
|
* `view_log()` - Allows user to view BYOM logs.
|
|
1067
|
-
|
|
1366
|
+
|
|
1068
1367
|
* ##### Bug Fixes
|
|
1069
1368
|
* CS0733758 - `db_python_package_details()` function is fixed to support latest STO release for pip and Python aliases used.
|
|
1070
1369
|
* DataFrame `print()` issue related to `Response Row size is greater than the 1MB allowed maximum.` has been fixed to print the data with lot of columns.
|
|
@@ -1077,7 +1376,7 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
1077
1376
|
* Standard error can now be captured for `DataFrame.map_row()` and `DataFrame.map_parition()` when executed in LOCAL mode.
|
|
1078
1377
|
* Vantage Analytic Library - Underlying SQL can be retrieved using newly added arguments "gen_sql"/"gen_sql_only" for the functions. Query can be viewed with the help `show_query()`.
|
|
1079
1378
|
* Documentation example has been fixed for `fastexport()` to show the correct import statement.
|
|
1080
|
-
|
|
1379
|
+
|
|
1081
1380
|
|
|
1082
1381
|
#### teradataml 17.00.00.05
|
|
1083
1382
|
Fixed [CS0733758] db_python_package_details() fails on recent STO release due to changes in pip and python aliases.
|
|
@@ -1230,7 +1529,7 @@ Fixed [CS0733758] db_python_package_details() fails on recent STO release due to
|
|
|
1230
1529
|
* teradataml extension with SQLAlchemy functions:
|
|
1231
1530
|
* mod() function is fixed to return correct datatype.
|
|
1232
1531
|
* sum() function is fixed to return correct datatype.
|
|
1233
|
-
|
|
1532
|
+
|
|
1234
1533
|
|
|
1235
1534
|
#### teradataml 17.00.00.03
|
|
1236
1535
|
- New release of SQLAlchemy1.4.x introduced backward compatibility issue. A fix has been carried out so that teradataml can support latest SQLAlchemy changes.
|
|
@@ -1664,3 +1963,5 @@ General product information, including installation instructions, is available i
|
|
|
1664
1963
|
|
|
1665
1964
|
Use of the Teradata Python Package is governed by the *License Agreement for the Teradata Python Package for Advanced Analytics*.
|
|
1666
1965
|
After installation, the `LICENSE` and `LICENSE-3RD-PARTY` files are located in the `teradataml` directory of the Python installation directory.
|
|
1966
|
+
|
|
1967
|
+
|