teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +1935 -1640
- teradataml/__init__.py +70 -60
- teradataml/_version.py +11 -11
- teradataml/analytics/Transformations.py +2995 -2995
- teradataml/analytics/__init__.py +81 -83
- teradataml/analytics/analytic_function_executor.py +2040 -2010
- teradataml/analytics/analytic_query_generator.py +958 -958
- teradataml/analytics/byom/H2OPredict.py +514 -514
- teradataml/analytics/byom/PMMLPredict.py +437 -437
- teradataml/analytics/byom/__init__.py +14 -14
- teradataml/analytics/json_parser/__init__.py +130 -130
- teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
- teradataml/analytics/json_parser/json_store.py +191 -191
- teradataml/analytics/json_parser/metadata.py +1637 -1637
- teradataml/analytics/json_parser/utils.py +798 -803
- teradataml/analytics/meta_class.py +196 -196
- teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
- teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
- teradataml/analytics/sqle/__init__.py +97 -110
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
- teradataml/analytics/table_operator/__init__.py +10 -10
- teradataml/analytics/uaf/__init__.py +63 -63
- teradataml/analytics/utils.py +693 -692
- teradataml/analytics/valib.py +1603 -1600
- teradataml/automl/__init__.py +1683 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +1011 -0
- teradataml/automl/data_transformation.py +789 -0
- teradataml/automl/feature_engineering.py +1580 -0
- teradataml/automl/feature_exploration.py +554 -0
- teradataml/automl/model_evaluation.py +151 -0
- teradataml/automl/model_training.py +1026 -0
- teradataml/catalog/__init__.py +1 -3
- teradataml/catalog/byom.py +1759 -1716
- teradataml/catalog/function_argument_mapper.py +859 -861
- teradataml/catalog/model_cataloging_utils.py +491 -1510
- teradataml/clients/auth_client.py +133 -0
- teradataml/clients/pkce_client.py +481 -481
- teradataml/common/aed_utils.py +7 -2
- teradataml/common/bulk_exposed_utils.py +111 -111
- teradataml/common/constants.py +1438 -1441
- teradataml/common/deprecations.py +160 -0
- teradataml/common/exceptions.py +73 -73
- teradataml/common/formula.py +742 -742
- teradataml/common/garbagecollector.py +597 -635
- teradataml/common/messagecodes.py +424 -431
- teradataml/common/messages.py +228 -231
- teradataml/common/sqlbundle.py +693 -693
- teradataml/common/td_coltype_code_to_tdtype.py +48 -48
- teradataml/common/utils.py +2424 -2500
- teradataml/common/warnings.py +25 -25
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/config/dummy_file1.cfg +4 -4
- teradataml/config/dummy_file2.cfg +2 -2
- teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
- teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
- teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
- teradataml/context/aed_context.py +217 -217
- teradataml/context/context.py +1091 -999
- teradataml/data/A_loan.csv +19 -19
- teradataml/data/BINARY_REALS_LEFT.csv +11 -11
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
- teradataml/data/B_loan.csv +49 -49
- teradataml/data/BuoyData2.csv +17 -17
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
- teradataml/data/Convolve2RealsLeft.csv +5 -5
- teradataml/data/Convolve2RealsRight.csv +5 -5
- teradataml/data/Convolve2ValidLeft.csv +11 -11
- teradataml/data/Convolve2ValidRight.csv +11 -11
- teradataml/data/DFFTConv_Real_8_8.csv +65 -65
- teradataml/data/Orders1_12mf.csv +24 -24
- teradataml/data/Pi_loan.csv +7 -7
- teradataml/data/SMOOTHED_DATA.csv +7 -7
- teradataml/data/TestDFFT8.csv +9 -9
- teradataml/data/TestRiver.csv +109 -109
- teradataml/data/Traindata.csv +28 -28
- teradataml/data/acf.csv +17 -17
- teradataml/data/adaboost_example.json +34 -34
- teradataml/data/adaboostpredict_example.json +24 -24
- teradataml/data/additional_table.csv +10 -10
- teradataml/data/admissions_test.csv +21 -21
- teradataml/data/admissions_train.csv +41 -41
- teradataml/data/admissions_train_nulls.csv +41 -41
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -13
- teradataml/data/ageandpressure.csv +31 -31
- teradataml/data/antiselect_example.json +36 -36
- teradataml/data/antiselect_input.csv +8 -8
- teradataml/data/antiselect_input_mixed_case.csv +8 -8
- teradataml/data/applicant_external.csv +6 -6
- teradataml/data/applicant_reference.csv +6 -6
- teradataml/data/arima_example.json +9 -9
- teradataml/data/assortedtext_input.csv +8 -8
- teradataml/data/attribution_example.json +33 -33
- teradataml/data/attribution_sample_table.csv +27 -27
- teradataml/data/attribution_sample_table1.csv +6 -6
- teradataml/data/attribution_sample_table2.csv +11 -11
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +42 -42
- teradataml/data/bank_web_clicks2.csv +91 -91
- teradataml/data/bank_web_url.csv +85 -85
- teradataml/data/barrier.csv +2 -2
- teradataml/data/barrier_new.csv +3 -3
- teradataml/data/betweenness_example.json +13 -13
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -8
- teradataml/data/bin_fit_ip.csv +3 -3
- teradataml/data/binary_complex_left.csv +11 -11
- teradataml/data/binary_complex_right.csv +11 -11
- teradataml/data/binary_matrix_complex_left.csv +21 -21
- teradataml/data/binary_matrix_complex_right.csv +21 -21
- teradataml/data/binary_matrix_real_left.csv +21 -21
- teradataml/data/binary_matrix_real_right.csv +21 -21
- teradataml/data/blood2ageandweight.csv +26 -26
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -507
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -11
- teradataml/data/burst_data.csv +5 -5
- teradataml/data/burst_example.json +20 -20
- teradataml/data/byom_example.json +17 -17
- teradataml/data/bytes_table.csv +3 -3
- teradataml/data/cal_housing_ex_raw.csv +70 -70
- teradataml/data/callers.csv +7 -7
- teradataml/data/calls.csv +10 -10
- teradataml/data/cars_hist.csv +33 -33
- teradataml/data/cat_table.csv +24 -24
- teradataml/data/ccm_example.json +31 -31
- teradataml/data/ccm_input.csv +91 -91
- teradataml/data/ccm_input2.csv +13 -13
- teradataml/data/ccmexample.csv +101 -101
- teradataml/data/ccmprepare_example.json +8 -8
- teradataml/data/ccmprepare_input.csv +91 -91
- teradataml/data/cfilter_example.json +12 -12
- teradataml/data/changepointdetection_example.json +18 -18
- teradataml/data/changepointdetectionrt_example.json +8 -8
- teradataml/data/chi_sq.csv +2 -2
- teradataml/data/churn_data.csv +14 -14
- teradataml/data/churn_emission.csv +35 -35
- teradataml/data/churn_initial.csv +3 -3
- teradataml/data/churn_state_transition.csv +5 -5
- teradataml/data/citedges_2.csv +745 -745
- teradataml/data/citvertices_2.csv +1210 -1210
- teradataml/data/clicks2.csv +16 -16
- teradataml/data/clickstream.csv +12 -12
- teradataml/data/clickstream1.csv +11 -11
- teradataml/data/closeness_example.json +15 -15
- teradataml/data/complaints.csv +21 -21
- teradataml/data/complaints_mini.csv +3 -3
- teradataml/data/complaints_testtoken.csv +224 -224
- teradataml/data/complaints_tokens_test.csv +353 -353
- teradataml/data/complaints_traintoken.csv +472 -472
- teradataml/data/computers_category.csv +1001 -1001
- teradataml/data/computers_test1.csv +1252 -1252
- teradataml/data/computers_train1.csv +5009 -5009
- teradataml/data/computers_train1_clustered.csv +5009 -5009
- teradataml/data/confusionmatrix_example.json +9 -9
- teradataml/data/conversion_event_table.csv +3 -3
- teradataml/data/corr_input.csv +17 -17
- teradataml/data/correlation_example.json +11 -11
- teradataml/data/coxhazardratio_example.json +39 -39
- teradataml/data/coxph_example.json +15 -15
- teradataml/data/coxsurvival_example.json +28 -28
- teradataml/data/cpt.csv +41 -41
- teradataml/data/credit_ex_merged.csv +45 -45
- teradataml/data/customer_loyalty.csv +301 -301
- teradataml/data/customer_loyalty_newseq.csv +31 -31
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +146 -146
- teradataml/data/decisionforest_example.json +37 -37
- teradataml/data/decisionforestpredict_example.json +38 -38
- teradataml/data/decisiontree_example.json +21 -21
- teradataml/data/decisiontreepredict_example.json +45 -45
- teradataml/data/dfft2_size4_real.csv +17 -17
- teradataml/data/dfft2_test_matrix16.csv +17 -17
- teradataml/data/dfft2conv_real_4_4.csv +65 -65
- teradataml/data/diabetes.csv +443 -443
- teradataml/data/diabetes_test.csv +89 -89
- teradataml/data/dict_table.csv +5 -5
- teradataml/data/docperterm_table.csv +4 -4
- teradataml/data/docs/__init__.py +1 -1
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
- teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
- teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
- teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
- teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
- teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
- teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
- teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
- teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
- teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
- teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
- teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
- teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
- teradataml/data/dtw_example.json +17 -17
- teradataml/data/dtw_t1.csv +11 -11
- teradataml/data/dtw_t2.csv +4 -4
- teradataml/data/dwt2d_example.json +15 -15
- teradataml/data/dwt_example.json +14 -14
- teradataml/data/dwt_filter_dim.csv +5 -5
- teradataml/data/emission.csv +9 -9
- teradataml/data/emp_table_by_dept.csv +19 -19
- teradataml/data/employee_info.csv +4 -4
- teradataml/data/employee_table.csv +6 -6
- teradataml/data/excluding_event_table.csv +2 -2
- teradataml/data/finance_data.csv +6 -6
- teradataml/data/finance_data2.csv +61 -61
- teradataml/data/finance_data3.csv +93 -93
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -26
- teradataml/data/fmeasure_example.json +11 -11
- teradataml/data/followers_leaders.csv +10 -10
- teradataml/data/fpgrowth_example.json +12 -12
- teradataml/data/frequentpaths_example.json +29 -29
- teradataml/data/friends.csv +9 -9
- teradataml/data/fs_input.csv +33 -33
- teradataml/data/fs_input1.csv +33 -33
- teradataml/data/genData.csv +513 -513
- teradataml/data/geodataframe_example.json +39 -39
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -12
- teradataml/data/glm_example.json +56 -29
- teradataml/data/glml1l2_example.json +28 -28
- teradataml/data/glml1l2predict_example.json +54 -54
- teradataml/data/glmpredict_example.json +54 -54
- teradataml/data/gq_t1.csv +21 -21
- teradataml/data/hconvolve_complex_right.csv +5 -5
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
- teradataml/data/histogram_example.json +11 -11
- teradataml/data/hmmdecoder_example.json +78 -78
- teradataml/data/hmmevaluator_example.json +24 -24
- teradataml/data/hmmsupervised_example.json +10 -10
- teradataml/data/hmmunsupervised_example.json +7 -7
- teradataml/data/house_values.csv +12 -12
- teradataml/data/house_values2.csv +13 -13
- teradataml/data/housing_cat.csv +7 -7
- teradataml/data/housing_data.csv +9 -9
- teradataml/data/housing_test.csv +47 -47
- teradataml/data/housing_test_binary.csv +47 -47
- teradataml/data/housing_train.csv +493 -493
- teradataml/data/housing_train_attribute.csv +4 -4
- teradataml/data/housing_train_binary.csv +437 -437
- teradataml/data/housing_train_parameter.csv +2 -2
- teradataml/data/housing_train_response.csv +493 -493
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -370
- teradataml/data/ibm_stock1.csv +370 -370
- teradataml/data/identitymatch_example.json +21 -21
- teradataml/data/idf_table.csv +4 -4
- teradataml/data/impressions.csv +101 -101
- teradataml/data/inflation.csv +21 -21
- teradataml/data/initial.csv +3 -3
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +12 -12
- teradataml/data/insurance.csv +1339 -1339
- teradataml/data/interpolator_example.json +12 -12
- teradataml/data/iris_altinput.csv +481 -481
- teradataml/data/iris_attribute_output.csv +8 -8
- teradataml/data/iris_attribute_test.csv +121 -121
- teradataml/data/iris_attribute_train.csv +481 -481
- teradataml/data/iris_category_expect_predict.csv +31 -31
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -151
- teradataml/data/iris_response_train.csv +121 -121
- teradataml/data/iris_test.csv +31 -31
- teradataml/data/iris_train.csv +121 -121
- teradataml/data/join_table1.csv +4 -4
- teradataml/data/join_table2.csv +4 -4
- teradataml/data/jsons/anly_function_name.json +6 -6
- teradataml/data/jsons/byom/dataikupredict.json +147 -147
- teradataml/data/jsons/byom/datarobotpredict.json +146 -146
- teradataml/data/jsons/byom/h2opredict.json +194 -194
- teradataml/data/jsons/byom/onnxpredict.json +186 -186
- teradataml/data/jsons/byom/pmmlpredict.json +146 -146
- teradataml/data/jsons/paired_functions.json +435 -435
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
- teradataml/data/kmeans_example.json +22 -17
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +0 -0
- teradataml/data/knn_example.json +18 -18
- teradataml/data/knnrecommender_example.json +6 -6
- teradataml/data/knnrecommenderpredict_example.json +12 -12
- teradataml/data/lar_example.json +17 -17
- teradataml/data/larpredict_example.json +30 -30
- teradataml/data/lc_new_predictors.csv +5 -5
- teradataml/data/lc_new_reference.csv +9 -9
- teradataml/data/lda_example.json +8 -8
- teradataml/data/ldainference_example.json +14 -14
- teradataml/data/ldatopicsummary_example.json +8 -8
- teradataml/data/levendist_input.csv +13 -13
- teradataml/data/levenshteindistance_example.json +10 -10
- teradataml/data/linreg_example.json +9 -9
- teradataml/data/load_example_data.py +326 -323
- teradataml/data/loan_prediction.csv +295 -295
- teradataml/data/lungcancer.csv +138 -138
- teradataml/data/mappingdata.csv +12 -12
- teradataml/data/milk_timeseries.csv +157 -157
- teradataml/data/min_max_titanic.csv +4 -4
- teradataml/data/minhash_example.json +6 -6
- teradataml/data/ml_ratings.csv +7547 -7547
- teradataml/data/ml_ratings_10.csv +2445 -2445
- teradataml/data/model1_table.csv +5 -5
- teradataml/data/model2_table.csv +5 -5
- teradataml/data/models/iris_db_glm_model.pmml +56 -56
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
- teradataml/data/modularity_example.json +12 -12
- teradataml/data/movavg_example.json +7 -7
- teradataml/data/mtx1.csv +7 -7
- teradataml/data/mtx2.csv +13 -13
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -9
- teradataml/data/naivebayes_example.json +9 -9
- teradataml/data/naivebayespredict_example.json +19 -19
- teradataml/data/naivebayestextclassifier2_example.json +6 -6
- teradataml/data/naivebayestextclassifier_example.json +8 -8
- teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
- teradataml/data/name_Find_configure.csv +10 -10
- teradataml/data/namedentityfinder_example.json +14 -14
- teradataml/data/namedentityfinderevaluator_example.json +10 -10
- teradataml/data/namedentityfindertrainer_example.json +6 -6
- teradataml/data/nb_iris_input_test.csv +31 -31
- teradataml/data/nb_iris_input_train.csv +121 -121
- teradataml/data/nbp_iris_model.csv +13 -13
- teradataml/data/ner_extractor_text.csv +2 -2
- teradataml/data/ner_sports_test2.csv +29 -29
- teradataml/data/ner_sports_train.csv +501 -501
- teradataml/data/nerevaluator_example.json +5 -5
- teradataml/data/nerextractor_example.json +18 -18
- teradataml/data/nermem_sports_test.csv +17 -17
- teradataml/data/nermem_sports_train.csv +50 -50
- teradataml/data/nertrainer_example.json +6 -6
- teradataml/data/ngrams_example.json +6 -6
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
- teradataml/data/npath_example.json +23 -23
- teradataml/data/ntree_example.json +14 -14
- teradataml/data/numeric_strings.csv +4 -4
- teradataml/data/numerics.csv +4 -4
- teradataml/data/ocean_buoy.csv +17 -17
- teradataml/data/ocean_buoy2.csv +17 -17
- teradataml/data/ocean_buoys.csv +27 -27
- teradataml/data/ocean_buoys2.csv +10 -10
- teradataml/data/ocean_buoys_nonpti.csv +28 -28
- teradataml/data/ocean_buoys_seq.csv +29 -29
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -4
- teradataml/data/orders1.csv +11 -11
- teradataml/data/orders1_12.csv +12 -12
- teradataml/data/orders_ex.csv +4 -4
- teradataml/data/pack_example.json +8 -8
- teradataml/data/package_tracking.csv +19 -19
- teradataml/data/package_tracking_pti.csv +18 -18
- teradataml/data/pagerank_example.json +13 -13
- teradataml/data/paragraphs_input.csv +6 -6
- teradataml/data/pathanalyzer_example.json +7 -7
- teradataml/data/pathgenerator_example.json +7 -7
- teradataml/data/phrases.csv +7 -7
- teradataml/data/pivot_example.json +8 -8
- teradataml/data/pivot_input.csv +22 -22
- teradataml/data/playerRating.csv +31 -31
- teradataml/data/postagger_example.json +6 -6
- teradataml/data/posttagger_output.csv +44 -44
- teradataml/data/production_data.csv +16 -16
- teradataml/data/production_data2.csv +7 -7
- teradataml/data/randomsample_example.json +31 -31
- teradataml/data/randomwalksample_example.json +8 -8
- teradataml/data/rank_table.csv +6 -6
- teradataml/data/ref_mobile_data.csv +4 -4
- teradataml/data/ref_mobile_data_dense.csv +2 -2
- teradataml/data/ref_url.csv +17 -17
- teradataml/data/restaurant_reviews.csv +7 -7
- teradataml/data/river_data.csv +145 -145
- teradataml/data/roc_example.json +7 -7
- teradataml/data/roc_input.csv +101 -101
- teradataml/data/rule_inputs.csv +6 -6
- teradataml/data/rule_table.csv +2 -2
- teradataml/data/sales.csv +7 -7
- teradataml/data/sales_transaction.csv +501 -501
- teradataml/data/salesdata.csv +342 -342
- teradataml/data/sample_cities.csv +2 -2
- teradataml/data/sample_shapes.csv +10 -10
- teradataml/data/sample_streets.csv +2 -2
- teradataml/data/sampling_example.json +15 -15
- teradataml/data/sax_example.json +8 -8
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -23
- teradataml/data/scale_housing.csv +11 -11
- teradataml/data/scale_housing_test.csv +6 -6
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -11
- teradataml/data/scalebypartition_example.json +13 -13
- teradataml/data/scalemap_example.json +13 -13
- teradataml/data/scalesummary_example.json +12 -12
- teradataml/data/score_category.csv +101 -101
- teradataml/data/score_summary.csv +4 -4
- teradataml/data/script_example.json +9 -9
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +15 -15
- teradataml/data/scripts/mapper_replace.py +15 -15
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
- teradataml/data/seeds.csv +10 -10
- teradataml/data/sentenceextractor_example.json +6 -6
- teradataml/data/sentiment_extract_input.csv +11 -11
- teradataml/data/sentiment_train.csv +16 -16
- teradataml/data/sentiment_word.csv +20 -20
- teradataml/data/sentiment_word_input.csv +19 -19
- teradataml/data/sentimentextractor_example.json +24 -24
- teradataml/data/sentimenttrainer_example.json +8 -8
- teradataml/data/sequence_table.csv +10 -10
- teradataml/data/seriessplitter_example.json +7 -7
- teradataml/data/sessionize_example.json +17 -17
- teradataml/data/sessionize_table.csv +116 -116
- teradataml/data/setop_test1.csv +24 -24
- teradataml/data/setop_test2.csv +22 -22
- teradataml/data/soc_nw_edges.csv +10 -10
- teradataml/data/soc_nw_vertices.csv +7 -7
- teradataml/data/souvenir_timeseries.csv +167 -167
- teradataml/data/sparse_iris_attribute.csv +5 -5
- teradataml/data/sparse_iris_test.csv +121 -121
- teradataml/data/sparse_iris_train.csv +601 -601
- teradataml/data/star1.csv +6 -6
- teradataml/data/state_transition.csv +5 -5
- teradataml/data/stock_data.csv +53 -53
- teradataml/data/stock_movement.csv +11 -11
- teradataml/data/stock_vol.csv +76 -76
- teradataml/data/stop_words.csv +8 -8
- teradataml/data/store_sales.csv +37 -37
- teradataml/data/stringsimilarity_example.json +7 -7
- teradataml/data/strsimilarity_input.csv +13 -13
- teradataml/data/students.csv +101 -101
- teradataml/data/svm_iris_input_test.csv +121 -121
- teradataml/data/svm_iris_input_train.csv +481 -481
- teradataml/data/svm_iris_model.csv +7 -7
- teradataml/data/svmdense_example.json +9 -9
- teradataml/data/svmdensepredict_example.json +18 -18
- teradataml/data/svmsparse_example.json +7 -7
- teradataml/data/svmsparsepredict_example.json +13 -13
- teradataml/data/svmsparsesummary_example.json +7 -7
- teradataml/data/target_mobile_data.csv +13 -13
- teradataml/data/target_mobile_data_dense.csv +5 -5
- teradataml/data/templatedata.csv +1201 -1201
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +150 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -53
- teradataml/data/test_pacf_12.csv +37 -37
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -109
- teradataml/data/text_inputs.csv +6 -6
- teradataml/data/textchunker_example.json +7 -7
- teradataml/data/textclassifier_example.json +6 -6
- teradataml/data/textclassifier_input.csv +7 -7
- teradataml/data/textclassifiertrainer_example.json +6 -6
- teradataml/data/textmorph_example.json +5 -5
- teradataml/data/textparser_example.json +15 -15
- teradataml/data/texttagger_example.json +11 -11
- teradataml/data/texttokenizer_example.json +6 -6
- teradataml/data/texttrainer_input.csv +11 -11
- teradataml/data/tf_example.json +6 -6
- teradataml/data/tfidf_example.json +13 -13
- teradataml/data/tfidf_input1.csv +201 -201
- teradataml/data/tfidf_train.csv +6 -6
- teradataml/data/time_table1.csv +535 -535
- teradataml/data/time_table2.csv +14 -14
- teradataml/data/timeseriesdata.csv +1601 -1601
- teradataml/data/timeseriesdatasetsd4.csv +105 -105
- teradataml/data/titanic.csv +892 -892
- teradataml/data/token_table.csv +696 -696
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +27 -27
- teradataml/data/transformation_table.csv +5 -5
- teradataml/data/transformation_table_new.csv +1 -1
- teradataml/data/tv_spots.csv +16 -16
- teradataml/data/twod_climate_data.csv +117 -117
- teradataml/data/uaf_example.json +475 -475
- teradataml/data/univariatestatistics_example.json +8 -8
- teradataml/data/unpack_example.json +9 -9
- teradataml/data/unpivot_example.json +9 -9
- teradataml/data/unpivot_input.csv +8 -8
- teradataml/data/us_air_pass.csv +36 -36
- teradataml/data/us_population.csv +624 -624
- teradataml/data/us_states_shapes.csv +52 -52
- teradataml/data/varmax_example.json +17 -17
- teradataml/data/vectordistance_example.json +25 -25
- teradataml/data/ville_climatedata.csv +121 -121
- teradataml/data/ville_tempdata.csv +12 -12
- teradataml/data/ville_tempdata1.csv +12 -12
- teradataml/data/ville_temperature.csv +11 -11
- teradataml/data/waveletTable.csv +1605 -1605
- teradataml/data/waveletTable2.csv +1605 -1605
- teradataml/data/weightedmovavg_example.json +8 -8
- teradataml/data/wft_testing.csv +5 -5
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +5 -5
- teradataml/data/word_embed_input_table2.csv +4 -4
- teradataml/data/word_embed_model.csv +22 -22
- teradataml/data/words_input.csv +13 -13
- teradataml/data/xconvolve_complex_left.csv +6 -6
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
- teradataml/data/xgboost_example.json +35 -35
- teradataml/data/xgboostpredict_example.json +31 -31
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +1769 -1698
- teradataml/dataframe/data_transfer.py +2812 -2745
- teradataml/dataframe/dataframe.py +17630 -16946
- teradataml/dataframe/dataframe_utils.py +1875 -1740
- teradataml/dataframe/fastload.py +794 -603
- teradataml/dataframe/indexer.py +424 -424
- teradataml/dataframe/setop.py +1179 -1166
- teradataml/dataframe/sql.py +10174 -6432
- teradataml/dataframe/sql_function_parameters.py +439 -388
- teradataml/dataframe/sql_functions.py +652 -652
- teradataml/dataframe/sql_interfaces.py +220 -220
- teradataml/dataframe/vantage_function_types.py +674 -630
- teradataml/dataframe/window.py +693 -692
- teradataml/dbutils/__init__.py +3 -3
- teradataml/dbutils/dbutils.py +1167 -1150
- teradataml/dbutils/filemgr.py +267 -267
- teradataml/gen_ai/__init__.py +2 -2
- teradataml/gen_ai/convAI.py +472 -472
- teradataml/geospatial/__init__.py +3 -3
- teradataml/geospatial/geodataframe.py +1105 -1094
- teradataml/geospatial/geodataframecolumn.py +392 -387
- teradataml/geospatial/geometry_types.py +925 -925
- teradataml/hyperparameter_tuner/__init__.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
- teradataml/hyperparameter_tuner/utils.py +281 -187
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +130 -124
- teradataml/options/configure.py +358 -336
- teradataml/options/display.py +176 -176
- teradataml/plot/__init__.py +2 -2
- teradataml/plot/axis.py +1388 -1388
- teradataml/plot/constants.py +15 -15
- teradataml/plot/figure.py +398 -398
- teradataml/plot/plot.py +760 -760
- teradataml/plot/query_generator.py +83 -83
- teradataml/plot/subplot.py +216 -216
- teradataml/scriptmgmt/UserEnv.py +3791 -3761
- teradataml/scriptmgmt/__init__.py +3 -3
- teradataml/scriptmgmt/lls_utils.py +1719 -1604
- teradataml/series/series.py +532 -532
- teradataml/series/series_utils.py +71 -71
- teradataml/table_operators/Apply.py +949 -917
- teradataml/table_operators/Script.py +1718 -1982
- teradataml/table_operators/TableOperator.py +1255 -1616
- teradataml/table_operators/__init__.py +2 -3
- teradataml/table_operators/apply_query_generator.py +262 -262
- teradataml/table_operators/query_generator.py +507 -507
- teradataml/table_operators/table_operator_query_generator.py +460 -460
- teradataml/table_operators/table_operator_util.py +631 -639
- teradataml/table_operators/templates/dataframe_apply.template +184 -184
- teradataml/table_operators/templates/dataframe_map.template +176 -176
- teradataml/table_operators/templates/script_executor.template +170 -170
- teradataml/utils/dtypes.py +684 -684
- teradataml/utils/internal_buffer.py +84 -84
- teradataml/utils/print_versions.py +205 -205
- teradataml/utils/utils.py +410 -410
- teradataml/utils/validators.py +2277 -2115
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
- teradataml-20.0.0.1.dist-info/RECORD +1056 -0
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- teradataml-17.20.0.7.dist-info/RECORD +0 -1280
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
|
@@ -1,514 +1,514 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2021 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Gouri Patwardhan (gouri.patwardhan@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.0
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.utils.validators import _Validators
|
|
30
|
-
|
|
31
|
-
class H2OPredict:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
modeldata = None,
|
|
35
|
-
newdata = None,
|
|
36
|
-
accumulate = None,
|
|
37
|
-
model_output_fields = None,
|
|
38
|
-
overwrite_cached_models = None,
|
|
39
|
-
model_type = "OpenSource",
|
|
40
|
-
enable_options = None,
|
|
41
|
-
newdata_partition_column = "ANY",
|
|
42
|
-
newdata_order_column = None,
|
|
43
|
-
modeldata_order_column = None):
|
|
44
|
-
"""
|
|
45
|
-
DESCRIPTION:
|
|
46
|
-
The H2OPredict function performs a prediction on each row of the input table
|
|
47
|
-
using a model previously trained in H2O and then loaded into the database.
|
|
48
|
-
The model uses an interchange format called as MOJO and it is loaded to
|
|
49
|
-
Teradata database in a table by the user as a blob.
|
|
50
|
-
The model table prepared by user should have a model id for each model
|
|
51
|
-
(residing as a MOJO object) created by the user.
|
|
52
|
-
|
|
53
|
-
PARAMETERS:
|
|
54
|
-
modeldata:
|
|
55
|
-
Required Argument.
|
|
56
|
-
Specifies the model teradataml DataFrame to be used for scoring.
|
|
57
|
-
|
|
58
|
-
modeldata_order_column:
|
|
59
|
-
Optional Argument.
|
|
60
|
-
Specifies Order By columns for "modeldata".
|
|
61
|
-
Values to this argument can be provided as a list, if multiple
|
|
62
|
-
columns are used for ordering.
|
|
63
|
-
Types: str OR list of Strings (str)
|
|
64
|
-
|
|
65
|
-
newdata:
|
|
66
|
-
Required Argument.
|
|
67
|
-
Specifies the input teradataml DataFrame that contains the data to be
|
|
68
|
-
scored.
|
|
69
|
-
|
|
70
|
-
newdata_partition_column:
|
|
71
|
-
Optional Argument
|
|
72
|
-
Specifies Partition By columns for "newdata".
|
|
73
|
-
Values to this argument can be provided as a list, if multiple
|
|
74
|
-
columns are used for partition.
|
|
75
|
-
Default Value: ANY
|
|
76
|
-
Types: str OR list of Strings (str)
|
|
77
|
-
|
|
78
|
-
newdata_order_column:
|
|
79
|
-
Optional Argument.
|
|
80
|
-
Specifies Order By columns for "newdata".
|
|
81
|
-
Values to this argument can be provided as a list, if multiple
|
|
82
|
-
columns are used for ordering.
|
|
83
|
-
Types: str OR list of Strings (str)
|
|
84
|
-
|
|
85
|
-
accumulate:
|
|
86
|
-
Required Argument.
|
|
87
|
-
Specifies the names of the input columns from "newdata" DataFrame
|
|
88
|
-
to copy to the output DataFrame.
|
|
89
|
-
Types: str OR list of Strings (str)
|
|
90
|
-
|
|
91
|
-
model_output_fields:
|
|
92
|
-
Optional Argument.
|
|
93
|
-
Specifies the columns of the json output that the user wants to
|
|
94
|
-
specify as individual columns instead of the entire json report.
|
|
95
|
-
Types: str OR list of Strings (str)
|
|
96
|
-
|
|
97
|
-
overwrite_cached_models:
|
|
98
|
-
Optional Argument.
|
|
99
|
-
Specifies the model name that needs to be removed from the cache.
|
|
100
|
-
Use * to remove all cached models.
|
|
101
|
-
Types: str OR list of Strings (str)
|
|
102
|
-
|
|
103
|
-
model_type:
|
|
104
|
-
Optional Argument.
|
|
105
|
-
Specifies the model type for H2O model prediction.
|
|
106
|
-
Default Value: "OpenSource"
|
|
107
|
-
Permitted Values: DAI, OpenSource
|
|
108
|
-
Types: str OR list of Strings (str)
|
|
109
|
-
|
|
110
|
-
enable_options:
|
|
111
|
-
Optional Argument.
|
|
112
|
-
Specifies the options to be enabled for H2O model prediction.
|
|
113
|
-
Permitted Values: contributions, stageProbabilities, leafNodeAssignments
|
|
114
|
-
Types: str OR list of Strings (str)
|
|
115
|
-
|
|
116
|
-
RETURNS:
|
|
117
|
-
Instance of H2OPredict.
|
|
118
|
-
Output teradataml DataFrame can be accessed using attribute
|
|
119
|
-
references, such as H2OPredictObj.<attribute_name>.
|
|
120
|
-
Output teradataml DataFrame attribute name is:
|
|
121
|
-
result
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
RAISES:
|
|
125
|
-
TeradataMlException, TypeError, ValueError
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
EXAMPLES:
|
|
129
|
-
# Note:
|
|
130
|
-
# To execute BYOM functions, set 'configure.byom_install_location' to the
|
|
131
|
-
# database name where BYOM functions are installed.
|
|
132
|
-
|
|
133
|
-
# Import required libraries / functions.
|
|
134
|
-
import os
|
|
135
|
-
from teradataml import save_byom, retrieve_byom
|
|
136
|
-
|
|
137
|
-
# Load example data.
|
|
138
|
-
load_example_data("byom", "iris_test")
|
|
139
|
-
|
|
140
|
-
# Create teradataml DataFrame objects.
|
|
141
|
-
iris_test = DataFrame.from_table("iris_test")
|
|
142
|
-
|
|
143
|
-
# Set install location of BYOM functions.
|
|
144
|
-
configure.byom_install_location = "mldb"
|
|
145
|
-
|
|
146
|
-
# Example 1: This example runs a query with GLM model, "model_type",
|
|
147
|
-
# "enable_options", "model_output_fields" and "overwrite.cached.models".
|
|
148
|
-
# This will erase entire cache.
|
|
149
|
-
|
|
150
|
-
# Load model file into Vantage.
|
|
151
|
-
model_file = os.path.join(os.path.dirname(teradataml.__file__), "data", "models", "iris_mojo_glm_h2o_model")
|
|
152
|
-
save_byom("iris_mojo_glm_h2o_model", model_file, "byom_models")
|
|
153
|
-
|
|
154
|
-
# Retrieve model.
|
|
155
|
-
modeldata = retrieve_byom("iris_mojo_glm_h2o_model", table_name="byom_models")
|
|
156
|
-
|
|
157
|
-
result = H2OPredict(newdata=iris_test,
|
|
158
|
-
newdata_partition_column='id',
|
|
159
|
-
newdata_order_column='id',
|
|
160
|
-
modeldata=modeldata,
|
|
161
|
-
modeldata_order_column='model_id',
|
|
162
|
-
model_output_fields=['label', 'classProbabilities'],
|
|
163
|
-
accumulate=['id', 'sepal_length', 'petal_length'],
|
|
164
|
-
overwrite_cached_models='*',
|
|
165
|
-
enable_options='stageProbabilities',
|
|
166
|
-
model_type='OpenSource'
|
|
167
|
-
)
|
|
168
|
-
|
|
169
|
-
# Print the results.
|
|
170
|
-
print(result.result)
|
|
171
|
-
|
|
172
|
-
# Example 2: This example runs a query with XGBoost model, "model_type",
|
|
173
|
-
# "enable_options", "model_output_fields" and "overwrite.cached.models".
|
|
174
|
-
# This will erase entire cache.
|
|
175
|
-
|
|
176
|
-
# Load model file into Vantage.
|
|
177
|
-
model_file = os.path.join(os.path.dirname(teradataml.__file__), "data", "models", "iris_mojo_xgb_h2o_model")
|
|
178
|
-
save_byom("iris_mojo_xgb_h2o_model", model_file, "byom_models")
|
|
179
|
-
|
|
180
|
-
# Retrieve model.
|
|
181
|
-
modeldata = retrieve_byom("iris_mojo_xgb_h2o_model", table_name="byom_models")
|
|
182
|
-
|
|
183
|
-
result = H2OPredict(newdata=iris_test,
|
|
184
|
-
newdata_partition_column='id',
|
|
185
|
-
newdata_order_column='id',
|
|
186
|
-
modeldata=modeldata,
|
|
187
|
-
modeldata_order_column='model_id',
|
|
188
|
-
model_output_fields=['label', 'classProbabilities'],
|
|
189
|
-
accumulate=['id', 'sepal_length', 'petal_length'],
|
|
190
|
-
overwrite_cached_models='*',
|
|
191
|
-
enable_options='stageProbabilities',
|
|
192
|
-
model_type='OpenSource'
|
|
193
|
-
)
|
|
194
|
-
|
|
195
|
-
# Print the results.
|
|
196
|
-
print(result.result)
|
|
197
|
-
|
|
198
|
-
# Example 3: This example runs a query with a licensed model with id 'licensed_model1'
|
|
199
|
-
# from the table 'byom_licensed_models' and associated license key stored in column
|
|
200
|
-
# 'license_key' of the table 'license' present in the schema 'mldb'.
|
|
201
|
-
|
|
202
|
-
# Retrieve model.
|
|
203
|
-
modeldata = retrieve_byom('licensed_model1',
|
|
204
|
-
table_name='byom_licensed_models',
|
|
205
|
-
license='license_key',
|
|
206
|
-
is_license_column=True,
|
|
207
|
-
license_table_name='license',
|
|
208
|
-
license_schema_name='mldb')
|
|
209
|
-
result = H2OPredict(newdata=iris_test,
|
|
210
|
-
newdata_partition_column='id',
|
|
211
|
-
newdata_order_column='id',
|
|
212
|
-
modeldata=modeldata,
|
|
213
|
-
modeldata_order_column='model_id',
|
|
214
|
-
model_output_fields=['label', 'classProbabilities'],
|
|
215
|
-
accumulate=['id', 'sepal_length', 'petal_length'],
|
|
216
|
-
overwrite_cached_models='*',
|
|
217
|
-
enable_options='stageProbabilities',
|
|
218
|
-
model_type='OpenSource'
|
|
219
|
-
)
|
|
220
|
-
# Print the results.
|
|
221
|
-
print(result.result)
|
|
222
|
-
|
|
223
|
-
"""
|
|
224
|
-
|
|
225
|
-
# Start the timer to get the build time.
|
|
226
|
-
_start_time = time.time()
|
|
227
|
-
|
|
228
|
-
self.modeldata = modeldata
|
|
229
|
-
self.newdata = newdata
|
|
230
|
-
self.accumulate = accumulate
|
|
231
|
-
self.model_output_fields = model_output_fields
|
|
232
|
-
self.overwrite_cached_models = overwrite_cached_models
|
|
233
|
-
self.model_type = model_type
|
|
234
|
-
self.enable_options = enable_options
|
|
235
|
-
self.newdata_partition_column = newdata_partition_column
|
|
236
|
-
self.newdata_order_column = newdata_order_column
|
|
237
|
-
self.modeldata_order_column = modeldata_order_column
|
|
238
|
-
|
|
239
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
240
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
241
|
-
self.__aed_utils = AedUtils()
|
|
242
|
-
|
|
243
|
-
# Create argument information matrix to do parameter checking.
|
|
244
|
-
self.__arg_info_matrix = []
|
|
245
|
-
self.__arg_info_matrix.append(["modeldata", self.modeldata, False, (DataFrame)])
|
|
246
|
-
self.__arg_info_matrix.append(["modeldata_order_column", self.modeldata_order_column, True, (str,list)])
|
|
247
|
-
self.__arg_info_matrix.append(["newdata", self.newdata, False, (DataFrame)])
|
|
248
|
-
self.__arg_info_matrix.append(["newdata_partition_column", self.newdata_partition_column, True, (str,list)])
|
|
249
|
-
self.__arg_info_matrix.append(["newdata_order_column", self.newdata_order_column, True, (str,list)])
|
|
250
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, False, (str,list)])
|
|
251
|
-
self.__arg_info_matrix.append(["model_output_fields", self.model_output_fields, True, (str,list)])
|
|
252
|
-
self.__arg_info_matrix.append(["overwrite_cached_models", self.overwrite_cached_models, True, (str,list)])
|
|
253
|
-
self.__arg_info_matrix.append(["model_type", self.model_type, True, (str)])
|
|
254
|
-
self.__arg_info_matrix.append(["enable_options", self.enable_options, True, (str,list)])
|
|
255
|
-
|
|
256
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
257
|
-
# Perform the function validations.
|
|
258
|
-
self.__validate()
|
|
259
|
-
# Generate the ML query.
|
|
260
|
-
self.__form_tdml_query()
|
|
261
|
-
# Execute ML query.
|
|
262
|
-
self.__execute()
|
|
263
|
-
# Get the prediction type.
|
|
264
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
265
|
-
|
|
266
|
-
# End the timer to get the build time.
|
|
267
|
-
_end_time = time.time()
|
|
268
|
-
|
|
269
|
-
# Calculate the build time.
|
|
270
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
271
|
-
|
|
272
|
-
def __validate(self):
|
|
273
|
-
"""
|
|
274
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
275
|
-
arguments, input argument and table types. Also processes the
|
|
276
|
-
argument values.
|
|
277
|
-
"""
|
|
278
|
-
|
|
279
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments.
|
|
280
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
281
|
-
|
|
282
|
-
# Make sure that a non-NULL value has been supplied correct type of argument.
|
|
283
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
284
|
-
|
|
285
|
-
# Check to make sure input table types are strings or data frame objects or
|
|
286
|
-
# of valid type.
|
|
287
|
-
self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
|
|
288
|
-
self.__awu._validate_input_table_datatype(self.modeldata, "modeldata", None)
|
|
289
|
-
|
|
290
|
-
# Check for permitted values.
|
|
291
|
-
model_type_permitted_values = ["DAI", "OPENSOURCE"]
|
|
292
|
-
self.__awu._validate_permitted_values(self.model_type, model_type_permitted_values, "model_type")
|
|
293
|
-
|
|
294
|
-
enable_options_permitted_values = ["CONTRIBUTIONS", "STAGEPROBABILITIES", "LEAFNODEASSIGNMENTS"]
|
|
295
|
-
self.__awu._validate_permitted_values(self.enable_options, enable_options_permitted_values, "enable_options")
|
|
296
|
-
|
|
297
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
298
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
299
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
300
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.newdata, "newdata", False)
|
|
301
|
-
|
|
302
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_partition_column, "newdata_partition_column")
|
|
303
|
-
if self.__awu._is_default_or_not(self.newdata_partition_column, "ANY"):
|
|
304
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_partition_column, "newdata_partition_column", self.newdata, "newdata", True)
|
|
305
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_order_column, "newdata_order_column")
|
|
306
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_order_column, "newdata_order_column", self.newdata, "newdata", False)
|
|
307
|
-
|
|
308
|
-
self.__awu._validate_input_columns_not_empty(self.modeldata_order_column, "modeldata_order_column")
|
|
309
|
-
self.__awu._validate_dataframe_has_argument_columns(self.modeldata_order_column, "modeldata_order_column", self.modeldata, "modeldata", False)
|
|
310
|
-
|
|
311
|
-
# Check whether configure.byom_install_location is set.
|
|
312
|
-
_Validators()._validate_function_install_location_is_set(configure.byom_install_location, "Bring Your Own Model", "configure.byom_install_location")
|
|
313
|
-
|
|
314
|
-
def __form_tdml_query(self):
|
|
315
|
-
"""
|
|
316
|
-
Function to generate the analytical function queries. The function defines
|
|
317
|
-
variables and list of arguments required to form the query.
|
|
318
|
-
"""
|
|
319
|
-
|
|
320
|
-
# Output table arguments list.
|
|
321
|
-
self.__func_output_args_sql_names = []
|
|
322
|
-
self.__func_output_args = []
|
|
323
|
-
|
|
324
|
-
# Model Cataloging related attributes.
|
|
325
|
-
self._sql_specific_attributes = {}
|
|
326
|
-
self._sql_formula_attribute_mapper = {}
|
|
327
|
-
self._target_column = None
|
|
328
|
-
self._algorithm_name = None
|
|
329
|
-
|
|
330
|
-
# Generate lists for rest of the function arguments.
|
|
331
|
-
self.__func_other_arg_sql_names = []
|
|
332
|
-
self.__func_other_args = []
|
|
333
|
-
self.__func_other_arg_json_datatypes = []
|
|
334
|
-
|
|
335
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
336
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
337
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
338
|
-
|
|
339
|
-
if self.model_output_fields is not None:
|
|
340
|
-
self.__func_other_arg_sql_names.append("ModelOutputFields")
|
|
341
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.model_output_fields, "'"))
|
|
342
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
343
|
-
|
|
344
|
-
if self.overwrite_cached_models is not None:
|
|
345
|
-
self.__func_other_arg_sql_names.append("OverwriteCachedModel")
|
|
346
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.overwrite_cached_models, "'"))
|
|
347
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
348
|
-
|
|
349
|
-
if self.model_type is not None and self.model_type != "OpenSource":
|
|
350
|
-
self.__func_other_arg_sql_names.append("ModelType")
|
|
351
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.model_type, "'"))
|
|
352
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
353
|
-
|
|
354
|
-
if self.enable_options is not None:
|
|
355
|
-
self.__func_other_arg_sql_names.append("EnableOptions")
|
|
356
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.enable_options, "'"))
|
|
357
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
358
|
-
|
|
359
|
-
|
|
360
|
-
# Declare empty lists to hold input table information.
|
|
361
|
-
self.__func_input_arg_sql_names = []
|
|
362
|
-
self.__func_input_table_view_query = []
|
|
363
|
-
self.__func_input_dataframe_type = []
|
|
364
|
-
self.__func_input_distribution = []
|
|
365
|
-
self.__func_input_partition_by_cols = []
|
|
366
|
-
self.__func_input_order_by_cols = []
|
|
367
|
-
|
|
368
|
-
# Process newdata.
|
|
369
|
-
if self.__awu._is_default_or_not(self.newdata_partition_column, "ANY"):
|
|
370
|
-
self.newdata_partition_column = UtilFuncs._teradata_collapse_arglist(self.newdata_partition_column, "\"")
|
|
371
|
-
|
|
372
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.newdata, False)
|
|
373
|
-
self.__func_input_distribution.append("FACT")
|
|
374
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
375
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
376
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
377
|
-
self.__func_input_partition_by_cols.append(self.newdata_partition_column)
|
|
378
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.newdata_order_column, "\""))
|
|
379
|
-
|
|
380
|
-
# Process modeldata.
|
|
381
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.modeldata, False)
|
|
382
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
383
|
-
self.__func_input_arg_sql_names.append("ModelTable")
|
|
384
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
385
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
386
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
387
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.modeldata_order_column, "\""))
|
|
388
|
-
|
|
389
|
-
function_name = "H2OPredict"
|
|
390
|
-
|
|
391
|
-
# Create instance to generate SQLMR.
|
|
392
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
393
|
-
self.__func_input_arg_sql_names,
|
|
394
|
-
self.__func_input_table_view_query,
|
|
395
|
-
self.__func_input_dataframe_type,
|
|
396
|
-
self.__func_input_distribution,
|
|
397
|
-
self.__func_input_partition_by_cols,
|
|
398
|
-
self.__func_input_order_by_cols,
|
|
399
|
-
self.__func_other_arg_sql_names,
|
|
400
|
-
self.__func_other_args,
|
|
401
|
-
self.__func_other_arg_json_datatypes,
|
|
402
|
-
self.__func_output_args_sql_names,
|
|
403
|
-
self.__func_output_args,
|
|
404
|
-
engine="ENGINE_SQL", db_name=configure.byom_install_location)
|
|
405
|
-
# Invoke call to SQL-MR generation.
|
|
406
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
407
|
-
|
|
408
|
-
# Print SQL-MR query if requested to do so.
|
|
409
|
-
if display.print_sqlmr_query:
|
|
410
|
-
print(self.sqlmr_query)
|
|
411
|
-
|
|
412
|
-
# Set the algorithm name for Model Cataloging.
|
|
413
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
414
|
-
|
|
415
|
-
def __execute(self):
|
|
416
|
-
"""
|
|
417
|
-
Function to execute SQL-MR queries.
|
|
418
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
419
|
-
"""
|
|
420
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
421
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
422
|
-
try:
|
|
423
|
-
# Generate the output.
|
|
424
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
425
|
-
except Exception as emsg:
|
|
426
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
427
|
-
|
|
428
|
-
# Update output table data frames.
|
|
429
|
-
self._mlresults = []
|
|
430
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
431
|
-
self._mlresults.append(self.result)
|
|
432
|
-
|
|
433
|
-
def show_query(self):
|
|
434
|
-
"""
|
|
435
|
-
Function to return the underlying SQL query.
|
|
436
|
-
When model object is created using retrieve_model(), the value returned will be None.
|
|
437
|
-
"""
|
|
438
|
-
return self.sqlmr_query
|
|
439
|
-
|
|
440
|
-
def get_prediction_type(self):
|
|
441
|
-
"""
|
|
442
|
-
Function to return the Prediction type of the algorithm.
|
|
443
|
-
When model object is created using retrieve_model(), the value returned may be None.
|
|
444
|
-
"""
|
|
445
|
-
return self._prediction_type
|
|
446
|
-
|
|
447
|
-
def get_target_column(self):
|
|
448
|
-
"""
|
|
449
|
-
Function to return the Target Column of the algorithm.
|
|
450
|
-
When model object is created using retrieve_model(), the value returned may be None.
|
|
451
|
-
"""
|
|
452
|
-
return self._target_column
|
|
453
|
-
|
|
454
|
-
def get_build_time(self):
|
|
455
|
-
"""
|
|
456
|
-
Function to return the build time of the algorithm in seconds.
|
|
457
|
-
When model object is created using retrieve_model(), the value returned may be None.
|
|
458
|
-
"""
|
|
459
|
-
return self._build_time
|
|
460
|
-
|
|
461
|
-
def _get_algorithm_name(self):
|
|
462
|
-
"""
|
|
463
|
-
Function to return the name of the algorithm.
|
|
464
|
-
"""
|
|
465
|
-
return self._algorithm_name
|
|
466
|
-
|
|
467
|
-
def _get_sql_specific_attributes(self):
|
|
468
|
-
"""
|
|
469
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
470
|
-
"""
|
|
471
|
-
return self._sql_specific_attributes
|
|
472
|
-
|
|
473
|
-
@classmethod
|
|
474
|
-
def _from_model_catalog(cls,
|
|
475
|
-
result = None,
|
|
476
|
-
**kwargs):
|
|
477
|
-
"""
|
|
478
|
-
Classmethod which will be used by Model Cataloging, to instantiate this wrapper class.
|
|
479
|
-
"""
|
|
480
|
-
kwargs.pop("result", None)
|
|
481
|
-
|
|
482
|
-
# Model Cataloging related attributes.
|
|
483
|
-
target_column = kwargs.pop("__target_column", None)
|
|
484
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
485
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
486
|
-
build_time = kwargs.pop("__build_time", None)
|
|
487
|
-
|
|
488
|
-
# Let's create an object of this class.
|
|
489
|
-
obj = cls(**kwargs)
|
|
490
|
-
obj.result = result
|
|
491
|
-
|
|
492
|
-
# Initialize the sqlmr_query class attribute.
|
|
493
|
-
obj.sqlmr_query = None
|
|
494
|
-
|
|
495
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
496
|
-
obj._sql_specific_attributes = None
|
|
497
|
-
obj._target_column = target_column
|
|
498
|
-
obj._prediction_type = prediction_type
|
|
499
|
-
obj._algorithm_name = algorithm_name
|
|
500
|
-
obj._build_time = build_time
|
|
501
|
-
|
|
502
|
-
# Update output table data frames.
|
|
503
|
-
obj._mlresults = []
|
|
504
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
505
|
-
obj._mlresults.append(obj.result)
|
|
506
|
-
return obj
|
|
507
|
-
|
|
508
|
-
def __repr__(self):
|
|
509
|
-
"""
|
|
510
|
-
Returns the string representation for a H2OPredict class instance.
|
|
511
|
-
"""
|
|
512
|
-
repr_string="############ STDOUT Output ############"
|
|
513
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
514
|
-
return repr_string
|
|
1
|
+
#!/usr/bin/python
|
|
2
|
+
# ##################################################################
|
|
3
|
+
#
|
|
4
|
+
# Copyright 2021 Teradata. All rights reserved.
|
|
5
|
+
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
+
#
|
|
7
|
+
# Primary Owner: Gouri Patwardhan (gouri.patwardhan@teradata.com)
|
|
8
|
+
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
+
#
|
|
10
|
+
# Version: 1.2
|
|
11
|
+
# Function Version: 1.0
|
|
12
|
+
#
|
|
13
|
+
# ##################################################################
|
|
14
|
+
|
|
15
|
+
import inspect
|
|
16
|
+
import time
|
|
17
|
+
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
+
from teradataml.common.utils import UtilFuncs
|
|
19
|
+
from teradataml.context.context import *
|
|
20
|
+
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
+
from teradataml.common.aed_utils import AedUtils
|
|
22
|
+
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
+
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
+
from teradataml.common.messages import Messages
|
|
25
|
+
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
+
from teradataml.common.constants import TeradataConstants
|
|
27
|
+
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
+
from teradataml.options.display import display
|
|
29
|
+
from teradataml.utils.validators import _Validators
|
|
30
|
+
|
|
31
|
+
class H2OPredict:
|
|
32
|
+
|
|
33
|
+
def __init__(self,
|
|
34
|
+
modeldata = None,
|
|
35
|
+
newdata = None,
|
|
36
|
+
accumulate = None,
|
|
37
|
+
model_output_fields = None,
|
|
38
|
+
overwrite_cached_models = None,
|
|
39
|
+
model_type = "OpenSource",
|
|
40
|
+
enable_options = None,
|
|
41
|
+
newdata_partition_column = "ANY",
|
|
42
|
+
newdata_order_column = None,
|
|
43
|
+
modeldata_order_column = None):
|
|
44
|
+
"""
|
|
45
|
+
DESCRIPTION:
|
|
46
|
+
The H2OPredict function performs a prediction on each row of the input table
|
|
47
|
+
using a model previously trained in H2O and then loaded into the database.
|
|
48
|
+
The model uses an interchange format called as MOJO and it is loaded to
|
|
49
|
+
Teradata database in a table by the user as a blob.
|
|
50
|
+
The model table prepared by user should have a model id for each model
|
|
51
|
+
(residing as a MOJO object) created by the user.
|
|
52
|
+
|
|
53
|
+
PARAMETERS:
|
|
54
|
+
modeldata:
|
|
55
|
+
Required Argument.
|
|
56
|
+
Specifies the model teradataml DataFrame to be used for scoring.
|
|
57
|
+
|
|
58
|
+
modeldata_order_column:
|
|
59
|
+
Optional Argument.
|
|
60
|
+
Specifies Order By columns for "modeldata".
|
|
61
|
+
Values to this argument can be provided as a list, if multiple
|
|
62
|
+
columns are used for ordering.
|
|
63
|
+
Types: str OR list of Strings (str)
|
|
64
|
+
|
|
65
|
+
newdata:
|
|
66
|
+
Required Argument.
|
|
67
|
+
Specifies the input teradataml DataFrame that contains the data to be
|
|
68
|
+
scored.
|
|
69
|
+
|
|
70
|
+
newdata_partition_column:
|
|
71
|
+
Optional Argument
|
|
72
|
+
Specifies Partition By columns for "newdata".
|
|
73
|
+
Values to this argument can be provided as a list, if multiple
|
|
74
|
+
columns are used for partition.
|
|
75
|
+
Default Value: ANY
|
|
76
|
+
Types: str OR list of Strings (str)
|
|
77
|
+
|
|
78
|
+
newdata_order_column:
|
|
79
|
+
Optional Argument.
|
|
80
|
+
Specifies Order By columns for "newdata".
|
|
81
|
+
Values to this argument can be provided as a list, if multiple
|
|
82
|
+
columns are used for ordering.
|
|
83
|
+
Types: str OR list of Strings (str)
|
|
84
|
+
|
|
85
|
+
accumulate:
|
|
86
|
+
Required Argument.
|
|
87
|
+
Specifies the names of the input columns from "newdata" DataFrame
|
|
88
|
+
to copy to the output DataFrame.
|
|
89
|
+
Types: str OR list of Strings (str)
|
|
90
|
+
|
|
91
|
+
model_output_fields:
|
|
92
|
+
Optional Argument.
|
|
93
|
+
Specifies the columns of the json output that the user wants to
|
|
94
|
+
specify as individual columns instead of the entire json report.
|
|
95
|
+
Types: str OR list of Strings (str)
|
|
96
|
+
|
|
97
|
+
overwrite_cached_models:
|
|
98
|
+
Optional Argument.
|
|
99
|
+
Specifies the model name that needs to be removed from the cache.
|
|
100
|
+
Use * to remove all cached models.
|
|
101
|
+
Types: str OR list of Strings (str)
|
|
102
|
+
|
|
103
|
+
model_type:
|
|
104
|
+
Optional Argument.
|
|
105
|
+
Specifies the model type for H2O model prediction.
|
|
106
|
+
Default Value: "OpenSource"
|
|
107
|
+
Permitted Values: DAI, OpenSource
|
|
108
|
+
Types: str OR list of Strings (str)
|
|
109
|
+
|
|
110
|
+
enable_options:
|
|
111
|
+
Optional Argument.
|
|
112
|
+
Specifies the options to be enabled for H2O model prediction.
|
|
113
|
+
Permitted Values: contributions, stageProbabilities, leafNodeAssignments
|
|
114
|
+
Types: str OR list of Strings (str)
|
|
115
|
+
|
|
116
|
+
RETURNS:
|
|
117
|
+
Instance of H2OPredict.
|
|
118
|
+
Output teradataml DataFrame can be accessed using attribute
|
|
119
|
+
references, such as H2OPredictObj.<attribute_name>.
|
|
120
|
+
Output teradataml DataFrame attribute name is:
|
|
121
|
+
result
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
RAISES:
|
|
125
|
+
TeradataMlException, TypeError, ValueError
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
EXAMPLES:
|
|
129
|
+
# Note:
|
|
130
|
+
# To execute BYOM functions, set 'configure.byom_install_location' to the
|
|
131
|
+
# database name where BYOM functions are installed.
|
|
132
|
+
|
|
133
|
+
# Import required libraries / functions.
|
|
134
|
+
import os
|
|
135
|
+
from teradataml import save_byom, retrieve_byom
|
|
136
|
+
|
|
137
|
+
# Load example data.
|
|
138
|
+
load_example_data("byom", "iris_test")
|
|
139
|
+
|
|
140
|
+
# Create teradataml DataFrame objects.
|
|
141
|
+
iris_test = DataFrame.from_table("iris_test")
|
|
142
|
+
|
|
143
|
+
# Set install location of BYOM functions.
|
|
144
|
+
configure.byom_install_location = "mldb"
|
|
145
|
+
|
|
146
|
+
# Example 1: This example runs a query with GLM model, "model_type",
|
|
147
|
+
# "enable_options", "model_output_fields" and "overwrite.cached.models".
|
|
148
|
+
# This will erase entire cache.
|
|
149
|
+
|
|
150
|
+
# Load model file into Vantage.
|
|
151
|
+
model_file = os.path.join(os.path.dirname(teradataml.__file__), "data", "models", "iris_mojo_glm_h2o_model")
|
|
152
|
+
save_byom("iris_mojo_glm_h2o_model", model_file, "byom_models")
|
|
153
|
+
|
|
154
|
+
# Retrieve model.
|
|
155
|
+
modeldata = retrieve_byom("iris_mojo_glm_h2o_model", table_name="byom_models")
|
|
156
|
+
|
|
157
|
+
result = H2OPredict(newdata=iris_test,
|
|
158
|
+
newdata_partition_column='id',
|
|
159
|
+
newdata_order_column='id',
|
|
160
|
+
modeldata=modeldata,
|
|
161
|
+
modeldata_order_column='model_id',
|
|
162
|
+
model_output_fields=['label', 'classProbabilities'],
|
|
163
|
+
accumulate=['id', 'sepal_length', 'petal_length'],
|
|
164
|
+
overwrite_cached_models='*',
|
|
165
|
+
enable_options='stageProbabilities',
|
|
166
|
+
model_type='OpenSource'
|
|
167
|
+
)
|
|
168
|
+
|
|
169
|
+
# Print the results.
|
|
170
|
+
print(result.result)
|
|
171
|
+
|
|
172
|
+
# Example 2: This example runs a query with XGBoost model, "model_type",
|
|
173
|
+
# "enable_options", "model_output_fields" and "overwrite.cached.models".
|
|
174
|
+
# This will erase entire cache.
|
|
175
|
+
|
|
176
|
+
# Load model file into Vantage.
|
|
177
|
+
model_file = os.path.join(os.path.dirname(teradataml.__file__), "data", "models", "iris_mojo_xgb_h2o_model")
|
|
178
|
+
save_byom("iris_mojo_xgb_h2o_model", model_file, "byom_models")
|
|
179
|
+
|
|
180
|
+
# Retrieve model.
|
|
181
|
+
modeldata = retrieve_byom("iris_mojo_xgb_h2o_model", table_name="byom_models")
|
|
182
|
+
|
|
183
|
+
result = H2OPredict(newdata=iris_test,
|
|
184
|
+
newdata_partition_column='id',
|
|
185
|
+
newdata_order_column='id',
|
|
186
|
+
modeldata=modeldata,
|
|
187
|
+
modeldata_order_column='model_id',
|
|
188
|
+
model_output_fields=['label', 'classProbabilities'],
|
|
189
|
+
accumulate=['id', 'sepal_length', 'petal_length'],
|
|
190
|
+
overwrite_cached_models='*',
|
|
191
|
+
enable_options='stageProbabilities',
|
|
192
|
+
model_type='OpenSource'
|
|
193
|
+
)
|
|
194
|
+
|
|
195
|
+
# Print the results.
|
|
196
|
+
print(result.result)
|
|
197
|
+
|
|
198
|
+
# Example 3: This example runs a query with a licensed model with id 'licensed_model1'
|
|
199
|
+
# from the table 'byom_licensed_models' and associated license key stored in column
|
|
200
|
+
# 'license_key' of the table 'license' present in the schema 'mldb'.
|
|
201
|
+
|
|
202
|
+
# Retrieve model.
|
|
203
|
+
modeldata = retrieve_byom('licensed_model1',
|
|
204
|
+
table_name='byom_licensed_models',
|
|
205
|
+
license='license_key',
|
|
206
|
+
is_license_column=True,
|
|
207
|
+
license_table_name='license',
|
|
208
|
+
license_schema_name='mldb')
|
|
209
|
+
result = H2OPredict(newdata=iris_test,
|
|
210
|
+
newdata_partition_column='id',
|
|
211
|
+
newdata_order_column='id',
|
|
212
|
+
modeldata=modeldata,
|
|
213
|
+
modeldata_order_column='model_id',
|
|
214
|
+
model_output_fields=['label', 'classProbabilities'],
|
|
215
|
+
accumulate=['id', 'sepal_length', 'petal_length'],
|
|
216
|
+
overwrite_cached_models='*',
|
|
217
|
+
enable_options='stageProbabilities',
|
|
218
|
+
model_type='OpenSource'
|
|
219
|
+
)
|
|
220
|
+
# Print the results.
|
|
221
|
+
print(result.result)
|
|
222
|
+
|
|
223
|
+
"""
|
|
224
|
+
|
|
225
|
+
# Start the timer to get the build time.
|
|
226
|
+
_start_time = time.time()
|
|
227
|
+
|
|
228
|
+
self.modeldata = modeldata
|
|
229
|
+
self.newdata = newdata
|
|
230
|
+
self.accumulate = accumulate
|
|
231
|
+
self.model_output_fields = model_output_fields
|
|
232
|
+
self.overwrite_cached_models = overwrite_cached_models
|
|
233
|
+
self.model_type = model_type
|
|
234
|
+
self.enable_options = enable_options
|
|
235
|
+
self.newdata_partition_column = newdata_partition_column
|
|
236
|
+
self.newdata_order_column = newdata_order_column
|
|
237
|
+
self.modeldata_order_column = modeldata_order_column
|
|
238
|
+
|
|
239
|
+
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
240
|
+
self.__awu = AnalyticsWrapperUtils()
|
|
241
|
+
self.__aed_utils = AedUtils()
|
|
242
|
+
|
|
243
|
+
# Create argument information matrix to do parameter checking.
|
|
244
|
+
self.__arg_info_matrix = []
|
|
245
|
+
self.__arg_info_matrix.append(["modeldata", self.modeldata, False, (DataFrame)])
|
|
246
|
+
self.__arg_info_matrix.append(["modeldata_order_column", self.modeldata_order_column, True, (str,list)])
|
|
247
|
+
self.__arg_info_matrix.append(["newdata", self.newdata, False, (DataFrame)])
|
|
248
|
+
self.__arg_info_matrix.append(["newdata_partition_column", self.newdata_partition_column, True, (str,list)])
|
|
249
|
+
self.__arg_info_matrix.append(["newdata_order_column", self.newdata_order_column, True, (str,list)])
|
|
250
|
+
self.__arg_info_matrix.append(["accumulate", self.accumulate, False, (str,list)])
|
|
251
|
+
self.__arg_info_matrix.append(["model_output_fields", self.model_output_fields, True, (str,list)])
|
|
252
|
+
self.__arg_info_matrix.append(["overwrite_cached_models", self.overwrite_cached_models, True, (str,list)])
|
|
253
|
+
self.__arg_info_matrix.append(["model_type", self.model_type, True, (str)])
|
|
254
|
+
self.__arg_info_matrix.append(["enable_options", self.enable_options, True, (str,list)])
|
|
255
|
+
|
|
256
|
+
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
257
|
+
# Perform the function validations.
|
|
258
|
+
self.__validate()
|
|
259
|
+
# Generate the ML query.
|
|
260
|
+
self.__form_tdml_query()
|
|
261
|
+
# Execute ML query.
|
|
262
|
+
self.__execute()
|
|
263
|
+
# Get the prediction type.
|
|
264
|
+
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
265
|
+
|
|
266
|
+
# End the timer to get the build time.
|
|
267
|
+
_end_time = time.time()
|
|
268
|
+
|
|
269
|
+
# Calculate the build time.
|
|
270
|
+
self._build_time = (int)(_end_time - _start_time)
|
|
271
|
+
|
|
272
|
+
def __validate(self):
|
|
273
|
+
"""
|
|
274
|
+
Function to validate sqlmr function arguments, which verifies missing
|
|
275
|
+
arguments, input argument and table types. Also processes the
|
|
276
|
+
argument values.
|
|
277
|
+
"""
|
|
278
|
+
|
|
279
|
+
# Make sure that a non-NULL value has been supplied for all mandatory arguments.
|
|
280
|
+
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
281
|
+
|
|
282
|
+
# Make sure that a non-NULL value has been supplied correct type of argument.
|
|
283
|
+
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
284
|
+
|
|
285
|
+
# Check to make sure input table types are strings or data frame objects or
|
|
286
|
+
# of valid type.
|
|
287
|
+
self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
|
|
288
|
+
self.__awu._validate_input_table_datatype(self.modeldata, "modeldata", None)
|
|
289
|
+
|
|
290
|
+
# Check for permitted values.
|
|
291
|
+
model_type_permitted_values = ["DAI", "OPENSOURCE"]
|
|
292
|
+
self.__awu._validate_permitted_values(self.model_type, model_type_permitted_values, "model_type")
|
|
293
|
+
|
|
294
|
+
enable_options_permitted_values = ["CONTRIBUTIONS", "STAGEPROBABILITIES", "LEAFNODEASSIGNMENTS"]
|
|
295
|
+
self.__awu._validate_permitted_values(self.enable_options, enable_options_permitted_values, "enable_options")
|
|
296
|
+
|
|
297
|
+
# Check whether the input columns passed to the argument are not empty.
|
|
298
|
+
# Also check whether the input columns passed to the argument valid or not.
|
|
299
|
+
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
300
|
+
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.newdata, "newdata", False)
|
|
301
|
+
|
|
302
|
+
self.__awu._validate_input_columns_not_empty(self.newdata_partition_column, "newdata_partition_column")
|
|
303
|
+
if self.__awu._is_default_or_not(self.newdata_partition_column, "ANY"):
|
|
304
|
+
self.__awu._validate_dataframe_has_argument_columns(self.newdata_partition_column, "newdata_partition_column", self.newdata, "newdata", True)
|
|
305
|
+
self.__awu._validate_input_columns_not_empty(self.newdata_order_column, "newdata_order_column")
|
|
306
|
+
self.__awu._validate_dataframe_has_argument_columns(self.newdata_order_column, "newdata_order_column", self.newdata, "newdata", False)
|
|
307
|
+
|
|
308
|
+
self.__awu._validate_input_columns_not_empty(self.modeldata_order_column, "modeldata_order_column")
|
|
309
|
+
self.__awu._validate_dataframe_has_argument_columns(self.modeldata_order_column, "modeldata_order_column", self.modeldata, "modeldata", False)
|
|
310
|
+
|
|
311
|
+
# Check whether configure.byom_install_location is set.
|
|
312
|
+
_Validators()._validate_function_install_location_is_set(configure.byom_install_location, "Bring Your Own Model", "configure.byom_install_location")
|
|
313
|
+
|
|
314
|
+
def __form_tdml_query(self):
|
|
315
|
+
"""
|
|
316
|
+
Function to generate the analytical function queries. The function defines
|
|
317
|
+
variables and list of arguments required to form the query.
|
|
318
|
+
"""
|
|
319
|
+
|
|
320
|
+
# Output table arguments list.
|
|
321
|
+
self.__func_output_args_sql_names = []
|
|
322
|
+
self.__func_output_args = []
|
|
323
|
+
|
|
324
|
+
# Model Cataloging related attributes.
|
|
325
|
+
self._sql_specific_attributes = {}
|
|
326
|
+
self._sql_formula_attribute_mapper = {}
|
|
327
|
+
self._target_column = None
|
|
328
|
+
self._algorithm_name = None
|
|
329
|
+
|
|
330
|
+
# Generate lists for rest of the function arguments.
|
|
331
|
+
self.__func_other_arg_sql_names = []
|
|
332
|
+
self.__func_other_args = []
|
|
333
|
+
self.__func_other_arg_json_datatypes = []
|
|
334
|
+
|
|
335
|
+
self.__func_other_arg_sql_names.append("Accumulate")
|
|
336
|
+
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
337
|
+
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
338
|
+
|
|
339
|
+
if self.model_output_fields is not None:
|
|
340
|
+
self.__func_other_arg_sql_names.append("ModelOutputFields")
|
|
341
|
+
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.model_output_fields, "'"))
|
|
342
|
+
self.__func_other_arg_json_datatypes.append("STRING")
|
|
343
|
+
|
|
344
|
+
if self.overwrite_cached_models is not None:
|
|
345
|
+
self.__func_other_arg_sql_names.append("OverwriteCachedModel")
|
|
346
|
+
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.overwrite_cached_models, "'"))
|
|
347
|
+
self.__func_other_arg_json_datatypes.append("STRING")
|
|
348
|
+
|
|
349
|
+
if self.model_type is not None and self.model_type != "OpenSource":
|
|
350
|
+
self.__func_other_arg_sql_names.append("ModelType")
|
|
351
|
+
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.model_type, "'"))
|
|
352
|
+
self.__func_other_arg_json_datatypes.append("STRING")
|
|
353
|
+
|
|
354
|
+
if self.enable_options is not None:
|
|
355
|
+
self.__func_other_arg_sql_names.append("EnableOptions")
|
|
356
|
+
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.enable_options, "'"))
|
|
357
|
+
self.__func_other_arg_json_datatypes.append("STRING")
|
|
358
|
+
|
|
359
|
+
|
|
360
|
+
# Declare empty lists to hold input table information.
|
|
361
|
+
self.__func_input_arg_sql_names = []
|
|
362
|
+
self.__func_input_table_view_query = []
|
|
363
|
+
self.__func_input_dataframe_type = []
|
|
364
|
+
self.__func_input_distribution = []
|
|
365
|
+
self.__func_input_partition_by_cols = []
|
|
366
|
+
self.__func_input_order_by_cols = []
|
|
367
|
+
|
|
368
|
+
# Process newdata.
|
|
369
|
+
if self.__awu._is_default_or_not(self.newdata_partition_column, "ANY"):
|
|
370
|
+
self.newdata_partition_column = UtilFuncs._teradata_collapse_arglist(self.newdata_partition_column, "\"")
|
|
371
|
+
|
|
372
|
+
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.newdata, False)
|
|
373
|
+
self.__func_input_distribution.append("FACT")
|
|
374
|
+
self.__func_input_arg_sql_names.append("InputTable")
|
|
375
|
+
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
376
|
+
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
377
|
+
self.__func_input_partition_by_cols.append(self.newdata_partition_column)
|
|
378
|
+
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.newdata_order_column, "\""))
|
|
379
|
+
|
|
380
|
+
# Process modeldata.
|
|
381
|
+
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.modeldata, False)
|
|
382
|
+
self.__func_input_distribution.append("DIMENSION")
|
|
383
|
+
self.__func_input_arg_sql_names.append("ModelTable")
|
|
384
|
+
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
385
|
+
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
386
|
+
self.__func_input_partition_by_cols.append("NA_character_")
|
|
387
|
+
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.modeldata_order_column, "\""))
|
|
388
|
+
|
|
389
|
+
function_name = "H2OPredict"
|
|
390
|
+
|
|
391
|
+
# Create instance to generate SQLMR.
|
|
392
|
+
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
393
|
+
self.__func_input_arg_sql_names,
|
|
394
|
+
self.__func_input_table_view_query,
|
|
395
|
+
self.__func_input_dataframe_type,
|
|
396
|
+
self.__func_input_distribution,
|
|
397
|
+
self.__func_input_partition_by_cols,
|
|
398
|
+
self.__func_input_order_by_cols,
|
|
399
|
+
self.__func_other_arg_sql_names,
|
|
400
|
+
self.__func_other_args,
|
|
401
|
+
self.__func_other_arg_json_datatypes,
|
|
402
|
+
self.__func_output_args_sql_names,
|
|
403
|
+
self.__func_output_args,
|
|
404
|
+
engine="ENGINE_SQL", db_name=configure.byom_install_location)
|
|
405
|
+
# Invoke call to SQL-MR generation.
|
|
406
|
+
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
407
|
+
|
|
408
|
+
# Print SQL-MR query if requested to do so.
|
|
409
|
+
if display.print_sqlmr_query:
|
|
410
|
+
print(self.sqlmr_query)
|
|
411
|
+
|
|
412
|
+
# Set the algorithm name for Model Cataloging.
|
|
413
|
+
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
414
|
+
|
|
415
|
+
def __execute(self):
|
|
416
|
+
"""
|
|
417
|
+
Function to execute SQL-MR queries.
|
|
418
|
+
Create DataFrames for the required SQL-MR outputs.
|
|
419
|
+
"""
|
|
420
|
+
# Generate STDOUT table name and add it to the output table list.
|
|
421
|
+
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
422
|
+
try:
|
|
423
|
+
# Generate the output.
|
|
424
|
+
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
425
|
+
except Exception as emsg:
|
|
426
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
427
|
+
|
|
428
|
+
# Update output table data frames.
|
|
429
|
+
self._mlresults = []
|
|
430
|
+
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
431
|
+
self._mlresults.append(self.result)
|
|
432
|
+
|
|
433
|
+
def show_query(self):
|
|
434
|
+
"""
|
|
435
|
+
Function to return the underlying SQL query.
|
|
436
|
+
When model object is created using retrieve_model(), the value returned will be None.
|
|
437
|
+
"""
|
|
438
|
+
return self.sqlmr_query
|
|
439
|
+
|
|
440
|
+
def get_prediction_type(self):
|
|
441
|
+
"""
|
|
442
|
+
Function to return the Prediction type of the algorithm.
|
|
443
|
+
When model object is created using retrieve_model(), the value returned may be None.
|
|
444
|
+
"""
|
|
445
|
+
return self._prediction_type
|
|
446
|
+
|
|
447
|
+
def get_target_column(self):
|
|
448
|
+
"""
|
|
449
|
+
Function to return the Target Column of the algorithm.
|
|
450
|
+
When model object is created using retrieve_model(), the value returned may be None.
|
|
451
|
+
"""
|
|
452
|
+
return self._target_column
|
|
453
|
+
|
|
454
|
+
def get_build_time(self):
|
|
455
|
+
"""
|
|
456
|
+
Function to return the build time of the algorithm in seconds.
|
|
457
|
+
When model object is created using retrieve_model(), the value returned may be None.
|
|
458
|
+
"""
|
|
459
|
+
return self._build_time
|
|
460
|
+
|
|
461
|
+
def _get_algorithm_name(self):
|
|
462
|
+
"""
|
|
463
|
+
Function to return the name of the algorithm.
|
|
464
|
+
"""
|
|
465
|
+
return self._algorithm_name
|
|
466
|
+
|
|
467
|
+
def _get_sql_specific_attributes(self):
|
|
468
|
+
"""
|
|
469
|
+
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
470
|
+
"""
|
|
471
|
+
return self._sql_specific_attributes
|
|
472
|
+
|
|
473
|
+
@classmethod
|
|
474
|
+
def _from_model_catalog(cls,
|
|
475
|
+
result = None,
|
|
476
|
+
**kwargs):
|
|
477
|
+
"""
|
|
478
|
+
Classmethod which will be used by Model Cataloging, to instantiate this wrapper class.
|
|
479
|
+
"""
|
|
480
|
+
kwargs.pop("result", None)
|
|
481
|
+
|
|
482
|
+
# Model Cataloging related attributes.
|
|
483
|
+
target_column = kwargs.pop("__target_column", None)
|
|
484
|
+
prediction_type = kwargs.pop("__prediction_type", None)
|
|
485
|
+
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
486
|
+
build_time = kwargs.pop("__build_time", None)
|
|
487
|
+
|
|
488
|
+
# Let's create an object of this class.
|
|
489
|
+
obj = cls(**kwargs)
|
|
490
|
+
obj.result = result
|
|
491
|
+
|
|
492
|
+
# Initialize the sqlmr_query class attribute.
|
|
493
|
+
obj.sqlmr_query = None
|
|
494
|
+
|
|
495
|
+
# Initialize the SQL specific Model Cataloging attributes.
|
|
496
|
+
obj._sql_specific_attributes = None
|
|
497
|
+
obj._target_column = target_column
|
|
498
|
+
obj._prediction_type = prediction_type
|
|
499
|
+
obj._algorithm_name = algorithm_name
|
|
500
|
+
obj._build_time = build_time
|
|
501
|
+
|
|
502
|
+
# Update output table data frames.
|
|
503
|
+
obj._mlresults = []
|
|
504
|
+
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
505
|
+
obj._mlresults.append(obj.result)
|
|
506
|
+
return obj
|
|
507
|
+
|
|
508
|
+
def __repr__(self):
|
|
509
|
+
"""
|
|
510
|
+
Returns the string representation for a H2OPredict class instance.
|
|
511
|
+
"""
|
|
512
|
+
repr_string="############ STDOUT Output ############"
|
|
513
|
+
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
514
|
+
return repr_string
|