teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (1303) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +1935 -1640
  4. teradataml/__init__.py +70 -60
  5. teradataml/_version.py +11 -11
  6. teradataml/analytics/Transformations.py +2995 -2995
  7. teradataml/analytics/__init__.py +81 -83
  8. teradataml/analytics/analytic_function_executor.py +2040 -2010
  9. teradataml/analytics/analytic_query_generator.py +958 -958
  10. teradataml/analytics/byom/H2OPredict.py +514 -514
  11. teradataml/analytics/byom/PMMLPredict.py +437 -437
  12. teradataml/analytics/byom/__init__.py +14 -14
  13. teradataml/analytics/json_parser/__init__.py +130 -130
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
  15. teradataml/analytics/json_parser/json_store.py +191 -191
  16. teradataml/analytics/json_parser/metadata.py +1637 -1637
  17. teradataml/analytics/json_parser/utils.py +798 -803
  18. teradataml/analytics/meta_class.py +196 -196
  19. teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
  21. teradataml/analytics/sqle/__init__.py +97 -110
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
  24. teradataml/analytics/table_operator/__init__.py +10 -10
  25. teradataml/analytics/uaf/__init__.py +63 -63
  26. teradataml/analytics/utils.py +693 -692
  27. teradataml/analytics/valib.py +1603 -1600
  28. teradataml/automl/__init__.py +1683 -0
  29. teradataml/automl/custom_json_utils.py +1270 -0
  30. teradataml/automl/data_preparation.py +1011 -0
  31. teradataml/automl/data_transformation.py +789 -0
  32. teradataml/automl/feature_engineering.py +1580 -0
  33. teradataml/automl/feature_exploration.py +554 -0
  34. teradataml/automl/model_evaluation.py +151 -0
  35. teradataml/automl/model_training.py +1026 -0
  36. teradataml/catalog/__init__.py +1 -3
  37. teradataml/catalog/byom.py +1759 -1716
  38. teradataml/catalog/function_argument_mapper.py +859 -861
  39. teradataml/catalog/model_cataloging_utils.py +491 -1510
  40. teradataml/clients/auth_client.py +133 -0
  41. teradataml/clients/pkce_client.py +481 -481
  42. teradataml/common/aed_utils.py +7 -2
  43. teradataml/common/bulk_exposed_utils.py +111 -111
  44. teradataml/common/constants.py +1438 -1441
  45. teradataml/common/deprecations.py +160 -0
  46. teradataml/common/exceptions.py +73 -73
  47. teradataml/common/formula.py +742 -742
  48. teradataml/common/garbagecollector.py +597 -635
  49. teradataml/common/messagecodes.py +424 -431
  50. teradataml/common/messages.py +228 -231
  51. teradataml/common/sqlbundle.py +693 -693
  52. teradataml/common/td_coltype_code_to_tdtype.py +48 -48
  53. teradataml/common/utils.py +2424 -2500
  54. teradataml/common/warnings.py +25 -25
  55. teradataml/common/wrapper_utils.py +1 -110
  56. teradataml/config/dummy_file1.cfg +4 -4
  57. teradataml/config/dummy_file2.cfg +2 -2
  58. teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
  59. teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
  60. teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
  61. teradataml/context/aed_context.py +217 -217
  62. teradataml/context/context.py +1091 -999
  63. teradataml/data/A_loan.csv +19 -19
  64. teradataml/data/BINARY_REALS_LEFT.csv +11 -11
  65. teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
  66. teradataml/data/B_loan.csv +49 -49
  67. teradataml/data/BuoyData2.csv +17 -17
  68. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
  69. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
  70. teradataml/data/Convolve2RealsLeft.csv +5 -5
  71. teradataml/data/Convolve2RealsRight.csv +5 -5
  72. teradataml/data/Convolve2ValidLeft.csv +11 -11
  73. teradataml/data/Convolve2ValidRight.csv +11 -11
  74. teradataml/data/DFFTConv_Real_8_8.csv +65 -65
  75. teradataml/data/Orders1_12mf.csv +24 -24
  76. teradataml/data/Pi_loan.csv +7 -7
  77. teradataml/data/SMOOTHED_DATA.csv +7 -7
  78. teradataml/data/TestDFFT8.csv +9 -9
  79. teradataml/data/TestRiver.csv +109 -109
  80. teradataml/data/Traindata.csv +28 -28
  81. teradataml/data/acf.csv +17 -17
  82. teradataml/data/adaboost_example.json +34 -34
  83. teradataml/data/adaboostpredict_example.json +24 -24
  84. teradataml/data/additional_table.csv +10 -10
  85. teradataml/data/admissions_test.csv +21 -21
  86. teradataml/data/admissions_train.csv +41 -41
  87. teradataml/data/admissions_train_nulls.csv +41 -41
  88. teradataml/data/advertising.csv +201 -0
  89. teradataml/data/ageandheight.csv +13 -13
  90. teradataml/data/ageandpressure.csv +31 -31
  91. teradataml/data/antiselect_example.json +36 -36
  92. teradataml/data/antiselect_input.csv +8 -8
  93. teradataml/data/antiselect_input_mixed_case.csv +8 -8
  94. teradataml/data/applicant_external.csv +6 -6
  95. teradataml/data/applicant_reference.csv +6 -6
  96. teradataml/data/arima_example.json +9 -9
  97. teradataml/data/assortedtext_input.csv +8 -8
  98. teradataml/data/attribution_example.json +33 -33
  99. teradataml/data/attribution_sample_table.csv +27 -27
  100. teradataml/data/attribution_sample_table1.csv +6 -6
  101. teradataml/data/attribution_sample_table2.csv +11 -11
  102. teradataml/data/bank_churn.csv +10001 -0
  103. teradataml/data/bank_marketing.csv +11163 -0
  104. teradataml/data/bank_web_clicks1.csv +42 -42
  105. teradataml/data/bank_web_clicks2.csv +91 -91
  106. teradataml/data/bank_web_url.csv +85 -85
  107. teradataml/data/barrier.csv +2 -2
  108. teradataml/data/barrier_new.csv +3 -3
  109. teradataml/data/betweenness_example.json +13 -13
  110. teradataml/data/bike_sharing.csv +732 -0
  111. teradataml/data/bin_breaks.csv +8 -8
  112. teradataml/data/bin_fit_ip.csv +3 -3
  113. teradataml/data/binary_complex_left.csv +11 -11
  114. teradataml/data/binary_complex_right.csv +11 -11
  115. teradataml/data/binary_matrix_complex_left.csv +21 -21
  116. teradataml/data/binary_matrix_complex_right.csv +21 -21
  117. teradataml/data/binary_matrix_real_left.csv +21 -21
  118. teradataml/data/binary_matrix_real_right.csv +21 -21
  119. teradataml/data/blood2ageandweight.csv +26 -26
  120. teradataml/data/bmi.csv +501 -0
  121. teradataml/data/boston.csv +507 -507
  122. teradataml/data/boston2cols.csv +721 -0
  123. teradataml/data/breast_cancer.csv +570 -0
  124. teradataml/data/buoydata_mix.csv +11 -11
  125. teradataml/data/burst_data.csv +5 -5
  126. teradataml/data/burst_example.json +20 -20
  127. teradataml/data/byom_example.json +17 -17
  128. teradataml/data/bytes_table.csv +3 -3
  129. teradataml/data/cal_housing_ex_raw.csv +70 -70
  130. teradataml/data/callers.csv +7 -7
  131. teradataml/data/calls.csv +10 -10
  132. teradataml/data/cars_hist.csv +33 -33
  133. teradataml/data/cat_table.csv +24 -24
  134. teradataml/data/ccm_example.json +31 -31
  135. teradataml/data/ccm_input.csv +91 -91
  136. teradataml/data/ccm_input2.csv +13 -13
  137. teradataml/data/ccmexample.csv +101 -101
  138. teradataml/data/ccmprepare_example.json +8 -8
  139. teradataml/data/ccmprepare_input.csv +91 -91
  140. teradataml/data/cfilter_example.json +12 -12
  141. teradataml/data/changepointdetection_example.json +18 -18
  142. teradataml/data/changepointdetectionrt_example.json +8 -8
  143. teradataml/data/chi_sq.csv +2 -2
  144. teradataml/data/churn_data.csv +14 -14
  145. teradataml/data/churn_emission.csv +35 -35
  146. teradataml/data/churn_initial.csv +3 -3
  147. teradataml/data/churn_state_transition.csv +5 -5
  148. teradataml/data/citedges_2.csv +745 -745
  149. teradataml/data/citvertices_2.csv +1210 -1210
  150. teradataml/data/clicks2.csv +16 -16
  151. teradataml/data/clickstream.csv +12 -12
  152. teradataml/data/clickstream1.csv +11 -11
  153. teradataml/data/closeness_example.json +15 -15
  154. teradataml/data/complaints.csv +21 -21
  155. teradataml/data/complaints_mini.csv +3 -3
  156. teradataml/data/complaints_testtoken.csv +224 -224
  157. teradataml/data/complaints_tokens_test.csv +353 -353
  158. teradataml/data/complaints_traintoken.csv +472 -472
  159. teradataml/data/computers_category.csv +1001 -1001
  160. teradataml/data/computers_test1.csv +1252 -1252
  161. teradataml/data/computers_train1.csv +5009 -5009
  162. teradataml/data/computers_train1_clustered.csv +5009 -5009
  163. teradataml/data/confusionmatrix_example.json +9 -9
  164. teradataml/data/conversion_event_table.csv +3 -3
  165. teradataml/data/corr_input.csv +17 -17
  166. teradataml/data/correlation_example.json +11 -11
  167. teradataml/data/coxhazardratio_example.json +39 -39
  168. teradataml/data/coxph_example.json +15 -15
  169. teradataml/data/coxsurvival_example.json +28 -28
  170. teradataml/data/cpt.csv +41 -41
  171. teradataml/data/credit_ex_merged.csv +45 -45
  172. teradataml/data/customer_loyalty.csv +301 -301
  173. teradataml/data/customer_loyalty_newseq.csv +31 -31
  174. teradataml/data/customer_segmentation_test.csv +2628 -0
  175. teradataml/data/customer_segmentation_train.csv +8069 -0
  176. teradataml/data/dataframe_example.json +146 -146
  177. teradataml/data/decisionforest_example.json +37 -37
  178. teradataml/data/decisionforestpredict_example.json +38 -38
  179. teradataml/data/decisiontree_example.json +21 -21
  180. teradataml/data/decisiontreepredict_example.json +45 -45
  181. teradataml/data/dfft2_size4_real.csv +17 -17
  182. teradataml/data/dfft2_test_matrix16.csv +17 -17
  183. teradataml/data/dfft2conv_real_4_4.csv +65 -65
  184. teradataml/data/diabetes.csv +443 -443
  185. teradataml/data/diabetes_test.csv +89 -89
  186. teradataml/data/dict_table.csv +5 -5
  187. teradataml/data/docperterm_table.csv +4 -4
  188. teradataml/data/docs/__init__.py +1 -1
  189. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
  190. teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
  191. teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
  192. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
  193. teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
  194. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
  195. teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
  196. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
  197. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
  198. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
  199. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
  200. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
  201. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
  202. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
  203. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
  204. teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
  205. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
  206. teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
  207. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
  208. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
  209. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
  210. teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
  211. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
  212. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
  213. teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
  214. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
  215. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
  216. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
  217. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
  218. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
  219. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
  220. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
  221. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
  222. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
  223. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
  224. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
  225. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
  226. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
  227. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
  228. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
  229. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
  230. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
  231. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
  232. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
  233. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
  234. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
  235. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
  236. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
  237. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
  238. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
  239. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
  240. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
  241. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
  242. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
  243. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
  244. teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
  245. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
  246. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
  247. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
  248. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
  249. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
  250. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
  251. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
  252. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
  253. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
  254. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
  255. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
  256. teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
  257. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
  258. teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
  259. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
  260. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
  261. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
  262. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
  263. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
  264. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
  265. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
  266. teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
  267. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
  268. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
  269. teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
  270. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
  271. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
  272. teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
  273. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
  274. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
  275. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
  276. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
  277. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
  278. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
  279. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
  280. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
  281. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
  282. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
  283. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
  284. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
  285. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
  286. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
  287. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
  288. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
  289. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
  290. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
  291. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
  292. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
  293. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
  294. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
  295. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
  296. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
  297. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
  298. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
  299. teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
  300. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
  301. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
  302. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
  303. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
  304. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
  305. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
  306. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
  307. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
  308. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
  309. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
  310. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
  311. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
  312. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
  313. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
  314. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
  315. teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
  316. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
  317. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
  318. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
  319. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
  320. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
  321. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
  322. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
  323. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
  324. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
  325. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
  326. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
  327. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
  328. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
  329. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
  330. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
  331. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
  332. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
  333. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
  334. teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
  335. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
  336. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
  337. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
  338. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
  339. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
  340. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
  341. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
  342. teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
  343. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
  344. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
  345. teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
  346. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
  347. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
  348. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
  349. teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
  350. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
  351. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
  352. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
  353. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
  354. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
  355. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
  356. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
  357. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
  358. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
  359. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
  360. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
  361. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
  362. teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
  363. teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
  364. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
  365. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
  366. teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
  367. teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
  368. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
  369. teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
  370. teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
  371. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
  372. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
  373. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
  374. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
  375. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
  376. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
  377. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
  378. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
  379. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
  380. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
  381. teradataml/data/dtw_example.json +17 -17
  382. teradataml/data/dtw_t1.csv +11 -11
  383. teradataml/data/dtw_t2.csv +4 -4
  384. teradataml/data/dwt2d_example.json +15 -15
  385. teradataml/data/dwt_example.json +14 -14
  386. teradataml/data/dwt_filter_dim.csv +5 -5
  387. teradataml/data/emission.csv +9 -9
  388. teradataml/data/emp_table_by_dept.csv +19 -19
  389. teradataml/data/employee_info.csv +4 -4
  390. teradataml/data/employee_table.csv +6 -6
  391. teradataml/data/excluding_event_table.csv +2 -2
  392. teradataml/data/finance_data.csv +6 -6
  393. teradataml/data/finance_data2.csv +61 -61
  394. teradataml/data/finance_data3.csv +93 -93
  395. teradataml/data/fish.csv +160 -0
  396. teradataml/data/fm_blood2ageandweight.csv +26 -26
  397. teradataml/data/fmeasure_example.json +11 -11
  398. teradataml/data/followers_leaders.csv +10 -10
  399. teradataml/data/fpgrowth_example.json +12 -12
  400. teradataml/data/frequentpaths_example.json +29 -29
  401. teradataml/data/friends.csv +9 -9
  402. teradataml/data/fs_input.csv +33 -33
  403. teradataml/data/fs_input1.csv +33 -33
  404. teradataml/data/genData.csv +513 -513
  405. teradataml/data/geodataframe_example.json +39 -39
  406. teradataml/data/glass_types.csv +215 -0
  407. teradataml/data/glm_admissions_model.csv +12 -12
  408. teradataml/data/glm_example.json +56 -29
  409. teradataml/data/glml1l2_example.json +28 -28
  410. teradataml/data/glml1l2predict_example.json +54 -54
  411. teradataml/data/glmpredict_example.json +54 -54
  412. teradataml/data/gq_t1.csv +21 -21
  413. teradataml/data/hconvolve_complex_right.csv +5 -5
  414. teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
  415. teradataml/data/histogram_example.json +11 -11
  416. teradataml/data/hmmdecoder_example.json +78 -78
  417. teradataml/data/hmmevaluator_example.json +24 -24
  418. teradataml/data/hmmsupervised_example.json +10 -10
  419. teradataml/data/hmmunsupervised_example.json +7 -7
  420. teradataml/data/house_values.csv +12 -12
  421. teradataml/data/house_values2.csv +13 -13
  422. teradataml/data/housing_cat.csv +7 -7
  423. teradataml/data/housing_data.csv +9 -9
  424. teradataml/data/housing_test.csv +47 -47
  425. teradataml/data/housing_test_binary.csv +47 -47
  426. teradataml/data/housing_train.csv +493 -493
  427. teradataml/data/housing_train_attribute.csv +4 -4
  428. teradataml/data/housing_train_binary.csv +437 -437
  429. teradataml/data/housing_train_parameter.csv +2 -2
  430. teradataml/data/housing_train_response.csv +493 -493
  431. teradataml/data/housing_train_segment.csv +201 -0
  432. teradataml/data/ibm_stock.csv +370 -370
  433. teradataml/data/ibm_stock1.csv +370 -370
  434. teradataml/data/identitymatch_example.json +21 -21
  435. teradataml/data/idf_table.csv +4 -4
  436. teradataml/data/impressions.csv +101 -101
  437. teradataml/data/inflation.csv +21 -21
  438. teradataml/data/initial.csv +3 -3
  439. teradataml/data/insect2Cols.csv +61 -0
  440. teradataml/data/insect_sprays.csv +12 -12
  441. teradataml/data/insurance.csv +1339 -1339
  442. teradataml/data/interpolator_example.json +12 -12
  443. teradataml/data/iris_altinput.csv +481 -481
  444. teradataml/data/iris_attribute_output.csv +8 -8
  445. teradataml/data/iris_attribute_test.csv +121 -121
  446. teradataml/data/iris_attribute_train.csv +481 -481
  447. teradataml/data/iris_category_expect_predict.csv +31 -31
  448. teradataml/data/iris_data.csv +151 -0
  449. teradataml/data/iris_input.csv +151 -151
  450. teradataml/data/iris_response_train.csv +121 -121
  451. teradataml/data/iris_test.csv +31 -31
  452. teradataml/data/iris_train.csv +121 -121
  453. teradataml/data/join_table1.csv +4 -4
  454. teradataml/data/join_table2.csv +4 -4
  455. teradataml/data/jsons/anly_function_name.json +6 -6
  456. teradataml/data/jsons/byom/dataikupredict.json +147 -147
  457. teradataml/data/jsons/byom/datarobotpredict.json +146 -146
  458. teradataml/data/jsons/byom/h2opredict.json +194 -194
  459. teradataml/data/jsons/byom/onnxpredict.json +186 -186
  460. teradataml/data/jsons/byom/pmmlpredict.json +146 -146
  461. teradataml/data/jsons/paired_functions.json +435 -435
  462. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
  463. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
  464. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
  465. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
  466. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
  467. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
  468. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
  469. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
  470. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
  471. teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
  472. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
  473. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
  474. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
  475. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
  476. teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
  477. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
  478. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
  479. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
  480. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
  481. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
  482. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
  483. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
  484. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
  485. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
  486. teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
  487. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
  488. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
  489. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
  490. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
  491. teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
  492. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
  493. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
  494. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
  495. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
  496. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
  497. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
  498. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
  499. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
  500. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
  501. teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
  502. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
  503. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
  504. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
  505. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
  506. teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
  507. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
  508. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
  509. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
  510. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
  511. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
  512. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
  513. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
  514. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
  515. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
  516. teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
  517. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
  518. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
  519. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
  520. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
  521. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
  522. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
  523. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
  524. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
  525. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
  526. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
  527. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
  528. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
  529. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
  530. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
  531. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
  532. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
  533. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
  534. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
  535. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
  536. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
  537. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
  538. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
  539. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
  540. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
  541. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
  542. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
  543. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
  544. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
  545. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
  546. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
  547. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
  548. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
  549. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
  550. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
  551. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
  552. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
  553. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
  554. teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
  555. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
  556. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
  557. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
  558. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
  559. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
  560. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
  561. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
  562. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
  563. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
  564. teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
  565. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
  566. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
  567. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
  568. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
  569. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
  570. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
  571. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
  572. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
  573. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
  574. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
  575. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
  576. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
  577. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
  578. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
  579. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
  580. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
  581. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
  582. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
  583. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
  584. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
  585. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
  586. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
  587. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
  588. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
  589. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
  590. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
  591. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
  592. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
  593. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
  594. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
  595. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
  596. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
  597. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
  598. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
  599. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
  600. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
  601. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
  602. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
  603. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
  604. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
  605. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
  606. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
  607. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
  608. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
  609. teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
  610. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
  611. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
  612. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
  613. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
  614. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
  615. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
  616. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
  617. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
  618. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
  619. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
  620. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
  621. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
  622. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
  623. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
  624. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
  625. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
  626. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
  627. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
  628. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
  629. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
  630. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
  631. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
  632. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
  633. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
  634. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
  635. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
  636. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
  637. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
  638. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
  639. teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
  640. teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
  641. teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
  642. teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
  643. teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
  644. teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
  645. teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
  646. teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
  647. teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
  648. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
  649. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
  650. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
  651. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
  652. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
  653. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
  654. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
  655. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
  656. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
  657. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
  658. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
  659. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
  660. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
  661. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
  662. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
  663. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
  664. teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
  665. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
  666. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
  667. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
  668. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
  669. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
  670. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
  671. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
  672. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
  673. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
  674. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
  675. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
  676. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
  677. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
  678. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
  679. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
  680. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
  681. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
  682. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
  683. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
  684. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
  685. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
  686. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
  687. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
  688. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
  689. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
  690. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
  691. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
  692. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
  693. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
  694. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
  695. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
  696. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
  697. teradataml/data/kmeans_example.json +22 -17
  698. teradataml/data/kmeans_table.csv +10 -0
  699. teradataml/data/kmeans_us_arrests_data.csv +0 -0
  700. teradataml/data/knn_example.json +18 -18
  701. teradataml/data/knnrecommender_example.json +6 -6
  702. teradataml/data/knnrecommenderpredict_example.json +12 -12
  703. teradataml/data/lar_example.json +17 -17
  704. teradataml/data/larpredict_example.json +30 -30
  705. teradataml/data/lc_new_predictors.csv +5 -5
  706. teradataml/data/lc_new_reference.csv +9 -9
  707. teradataml/data/lda_example.json +8 -8
  708. teradataml/data/ldainference_example.json +14 -14
  709. teradataml/data/ldatopicsummary_example.json +8 -8
  710. teradataml/data/levendist_input.csv +13 -13
  711. teradataml/data/levenshteindistance_example.json +10 -10
  712. teradataml/data/linreg_example.json +9 -9
  713. teradataml/data/load_example_data.py +326 -323
  714. teradataml/data/loan_prediction.csv +295 -295
  715. teradataml/data/lungcancer.csv +138 -138
  716. teradataml/data/mappingdata.csv +12 -12
  717. teradataml/data/milk_timeseries.csv +157 -157
  718. teradataml/data/min_max_titanic.csv +4 -4
  719. teradataml/data/minhash_example.json +6 -6
  720. teradataml/data/ml_ratings.csv +7547 -7547
  721. teradataml/data/ml_ratings_10.csv +2445 -2445
  722. teradataml/data/model1_table.csv +5 -5
  723. teradataml/data/model2_table.csv +5 -5
  724. teradataml/data/models/iris_db_glm_model.pmml +56 -56
  725. teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
  726. teradataml/data/modularity_example.json +12 -12
  727. teradataml/data/movavg_example.json +7 -7
  728. teradataml/data/mtx1.csv +7 -7
  729. teradataml/data/mtx2.csv +13 -13
  730. teradataml/data/multi_model_classification.csv +401 -0
  731. teradataml/data/multi_model_regression.csv +401 -0
  732. teradataml/data/mvdfft8.csv +9 -9
  733. teradataml/data/naivebayes_example.json +9 -9
  734. teradataml/data/naivebayespredict_example.json +19 -19
  735. teradataml/data/naivebayestextclassifier2_example.json +6 -6
  736. teradataml/data/naivebayestextclassifier_example.json +8 -8
  737. teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
  738. teradataml/data/name_Find_configure.csv +10 -10
  739. teradataml/data/namedentityfinder_example.json +14 -14
  740. teradataml/data/namedentityfinderevaluator_example.json +10 -10
  741. teradataml/data/namedentityfindertrainer_example.json +6 -6
  742. teradataml/data/nb_iris_input_test.csv +31 -31
  743. teradataml/data/nb_iris_input_train.csv +121 -121
  744. teradataml/data/nbp_iris_model.csv +13 -13
  745. teradataml/data/ner_extractor_text.csv +2 -2
  746. teradataml/data/ner_sports_test2.csv +29 -29
  747. teradataml/data/ner_sports_train.csv +501 -501
  748. teradataml/data/nerevaluator_example.json +5 -5
  749. teradataml/data/nerextractor_example.json +18 -18
  750. teradataml/data/nermem_sports_test.csv +17 -17
  751. teradataml/data/nermem_sports_train.csv +50 -50
  752. teradataml/data/nertrainer_example.json +6 -6
  753. teradataml/data/ngrams_example.json +6 -6
  754. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
  755. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
  756. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
  757. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
  758. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
  759. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
  760. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
  761. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
  762. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
  763. teradataml/data/npath_example.json +23 -23
  764. teradataml/data/ntree_example.json +14 -14
  765. teradataml/data/numeric_strings.csv +4 -4
  766. teradataml/data/numerics.csv +4 -4
  767. teradataml/data/ocean_buoy.csv +17 -17
  768. teradataml/data/ocean_buoy2.csv +17 -17
  769. teradataml/data/ocean_buoys.csv +27 -27
  770. teradataml/data/ocean_buoys2.csv +10 -10
  771. teradataml/data/ocean_buoys_nonpti.csv +28 -28
  772. teradataml/data/ocean_buoys_seq.csv +29 -29
  773. teradataml/data/onehot_encoder_train.csv +4 -0
  774. teradataml/data/openml_example.json +92 -0
  775. teradataml/data/optional_event_table.csv +4 -4
  776. teradataml/data/orders1.csv +11 -11
  777. teradataml/data/orders1_12.csv +12 -12
  778. teradataml/data/orders_ex.csv +4 -4
  779. teradataml/data/pack_example.json +8 -8
  780. teradataml/data/package_tracking.csv +19 -19
  781. teradataml/data/package_tracking_pti.csv +18 -18
  782. teradataml/data/pagerank_example.json +13 -13
  783. teradataml/data/paragraphs_input.csv +6 -6
  784. teradataml/data/pathanalyzer_example.json +7 -7
  785. teradataml/data/pathgenerator_example.json +7 -7
  786. teradataml/data/phrases.csv +7 -7
  787. teradataml/data/pivot_example.json +8 -8
  788. teradataml/data/pivot_input.csv +22 -22
  789. teradataml/data/playerRating.csv +31 -31
  790. teradataml/data/postagger_example.json +6 -6
  791. teradataml/data/posttagger_output.csv +44 -44
  792. teradataml/data/production_data.csv +16 -16
  793. teradataml/data/production_data2.csv +7 -7
  794. teradataml/data/randomsample_example.json +31 -31
  795. teradataml/data/randomwalksample_example.json +8 -8
  796. teradataml/data/rank_table.csv +6 -6
  797. teradataml/data/ref_mobile_data.csv +4 -4
  798. teradataml/data/ref_mobile_data_dense.csv +2 -2
  799. teradataml/data/ref_url.csv +17 -17
  800. teradataml/data/restaurant_reviews.csv +7 -7
  801. teradataml/data/river_data.csv +145 -145
  802. teradataml/data/roc_example.json +7 -7
  803. teradataml/data/roc_input.csv +101 -101
  804. teradataml/data/rule_inputs.csv +6 -6
  805. teradataml/data/rule_table.csv +2 -2
  806. teradataml/data/sales.csv +7 -7
  807. teradataml/data/sales_transaction.csv +501 -501
  808. teradataml/data/salesdata.csv +342 -342
  809. teradataml/data/sample_cities.csv +2 -2
  810. teradataml/data/sample_shapes.csv +10 -10
  811. teradataml/data/sample_streets.csv +2 -2
  812. teradataml/data/sampling_example.json +15 -15
  813. teradataml/data/sax_example.json +8 -8
  814. teradataml/data/scale_attributes.csv +3 -0
  815. teradataml/data/scale_example.json +74 -23
  816. teradataml/data/scale_housing.csv +11 -11
  817. teradataml/data/scale_housing_test.csv +6 -6
  818. teradataml/data/scale_input_part_sparse.csv +31 -0
  819. teradataml/data/scale_input_partitioned.csv +16 -0
  820. teradataml/data/scale_input_sparse.csv +11 -0
  821. teradataml/data/scale_parameters.csv +3 -0
  822. teradataml/data/scale_stat.csv +11 -11
  823. teradataml/data/scalebypartition_example.json +13 -13
  824. teradataml/data/scalemap_example.json +13 -13
  825. teradataml/data/scalesummary_example.json +12 -12
  826. teradataml/data/score_category.csv +101 -101
  827. teradataml/data/score_summary.csv +4 -4
  828. teradataml/data/script_example.json +9 -9
  829. teradataml/data/scripts/deploy_script.py +84 -0
  830. teradataml/data/scripts/mapper.R +20 -0
  831. teradataml/data/scripts/mapper.py +15 -15
  832. teradataml/data/scripts/mapper_replace.py +15 -15
  833. teradataml/data/scripts/sklearn/__init__.py +0 -0
  834. teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
  835. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
  836. teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
  837. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
  838. teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
  839. teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
  840. teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
  841. teradataml/data/seeds.csv +10 -10
  842. teradataml/data/sentenceextractor_example.json +6 -6
  843. teradataml/data/sentiment_extract_input.csv +11 -11
  844. teradataml/data/sentiment_train.csv +16 -16
  845. teradataml/data/sentiment_word.csv +20 -20
  846. teradataml/data/sentiment_word_input.csv +19 -19
  847. teradataml/data/sentimentextractor_example.json +24 -24
  848. teradataml/data/sentimenttrainer_example.json +8 -8
  849. teradataml/data/sequence_table.csv +10 -10
  850. teradataml/data/seriessplitter_example.json +7 -7
  851. teradataml/data/sessionize_example.json +17 -17
  852. teradataml/data/sessionize_table.csv +116 -116
  853. teradataml/data/setop_test1.csv +24 -24
  854. teradataml/data/setop_test2.csv +22 -22
  855. teradataml/data/soc_nw_edges.csv +10 -10
  856. teradataml/data/soc_nw_vertices.csv +7 -7
  857. teradataml/data/souvenir_timeseries.csv +167 -167
  858. teradataml/data/sparse_iris_attribute.csv +5 -5
  859. teradataml/data/sparse_iris_test.csv +121 -121
  860. teradataml/data/sparse_iris_train.csv +601 -601
  861. teradataml/data/star1.csv +6 -6
  862. teradataml/data/state_transition.csv +5 -5
  863. teradataml/data/stock_data.csv +53 -53
  864. teradataml/data/stock_movement.csv +11 -11
  865. teradataml/data/stock_vol.csv +76 -76
  866. teradataml/data/stop_words.csv +8 -8
  867. teradataml/data/store_sales.csv +37 -37
  868. teradataml/data/stringsimilarity_example.json +7 -7
  869. teradataml/data/strsimilarity_input.csv +13 -13
  870. teradataml/data/students.csv +101 -101
  871. teradataml/data/svm_iris_input_test.csv +121 -121
  872. teradataml/data/svm_iris_input_train.csv +481 -481
  873. teradataml/data/svm_iris_model.csv +7 -7
  874. teradataml/data/svmdense_example.json +9 -9
  875. teradataml/data/svmdensepredict_example.json +18 -18
  876. teradataml/data/svmsparse_example.json +7 -7
  877. teradataml/data/svmsparsepredict_example.json +13 -13
  878. teradataml/data/svmsparsesummary_example.json +7 -7
  879. teradataml/data/target_mobile_data.csv +13 -13
  880. teradataml/data/target_mobile_data_dense.csv +5 -5
  881. teradataml/data/templatedata.csv +1201 -1201
  882. teradataml/data/templates/open_source_ml.json +9 -0
  883. teradataml/data/teradataml_example.json +150 -1
  884. teradataml/data/test_classification.csv +101 -0
  885. teradataml/data/test_loan_prediction.csv +53 -53
  886. teradataml/data/test_pacf_12.csv +37 -37
  887. teradataml/data/test_prediction.csv +101 -0
  888. teradataml/data/test_regression.csv +101 -0
  889. teradataml/data/test_river2.csv +109 -109
  890. teradataml/data/text_inputs.csv +6 -6
  891. teradataml/data/textchunker_example.json +7 -7
  892. teradataml/data/textclassifier_example.json +6 -6
  893. teradataml/data/textclassifier_input.csv +7 -7
  894. teradataml/data/textclassifiertrainer_example.json +6 -6
  895. teradataml/data/textmorph_example.json +5 -5
  896. teradataml/data/textparser_example.json +15 -15
  897. teradataml/data/texttagger_example.json +11 -11
  898. teradataml/data/texttokenizer_example.json +6 -6
  899. teradataml/data/texttrainer_input.csv +11 -11
  900. teradataml/data/tf_example.json +6 -6
  901. teradataml/data/tfidf_example.json +13 -13
  902. teradataml/data/tfidf_input1.csv +201 -201
  903. teradataml/data/tfidf_train.csv +6 -6
  904. teradataml/data/time_table1.csv +535 -535
  905. teradataml/data/time_table2.csv +14 -14
  906. teradataml/data/timeseriesdata.csv +1601 -1601
  907. teradataml/data/timeseriesdatasetsd4.csv +105 -105
  908. teradataml/data/titanic.csv +892 -892
  909. teradataml/data/token_table.csv +696 -696
  910. teradataml/data/train_multiclass.csv +101 -0
  911. teradataml/data/train_regression.csv +101 -0
  912. teradataml/data/train_regression_multiple_labels.csv +101 -0
  913. teradataml/data/train_tracking.csv +27 -27
  914. teradataml/data/transformation_table.csv +5 -5
  915. teradataml/data/transformation_table_new.csv +1 -1
  916. teradataml/data/tv_spots.csv +16 -16
  917. teradataml/data/twod_climate_data.csv +117 -117
  918. teradataml/data/uaf_example.json +475 -475
  919. teradataml/data/univariatestatistics_example.json +8 -8
  920. teradataml/data/unpack_example.json +9 -9
  921. teradataml/data/unpivot_example.json +9 -9
  922. teradataml/data/unpivot_input.csv +8 -8
  923. teradataml/data/us_air_pass.csv +36 -36
  924. teradataml/data/us_population.csv +624 -624
  925. teradataml/data/us_states_shapes.csv +52 -52
  926. teradataml/data/varmax_example.json +17 -17
  927. teradataml/data/vectordistance_example.json +25 -25
  928. teradataml/data/ville_climatedata.csv +121 -121
  929. teradataml/data/ville_tempdata.csv +12 -12
  930. teradataml/data/ville_tempdata1.csv +12 -12
  931. teradataml/data/ville_temperature.csv +11 -11
  932. teradataml/data/waveletTable.csv +1605 -1605
  933. teradataml/data/waveletTable2.csv +1605 -1605
  934. teradataml/data/weightedmovavg_example.json +8 -8
  935. teradataml/data/wft_testing.csv +5 -5
  936. teradataml/data/wine_data.csv +1600 -0
  937. teradataml/data/word_embed_input_table1.csv +5 -5
  938. teradataml/data/word_embed_input_table2.csv +4 -4
  939. teradataml/data/word_embed_model.csv +22 -22
  940. teradataml/data/words_input.csv +13 -13
  941. teradataml/data/xconvolve_complex_left.csv +6 -6
  942. teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
  943. teradataml/data/xgboost_example.json +35 -35
  944. teradataml/data/xgboostpredict_example.json +31 -31
  945. teradataml/data/ztest_example.json +16 -0
  946. teradataml/dataframe/copy_to.py +1769 -1698
  947. teradataml/dataframe/data_transfer.py +2812 -2745
  948. teradataml/dataframe/dataframe.py +17630 -16946
  949. teradataml/dataframe/dataframe_utils.py +1875 -1740
  950. teradataml/dataframe/fastload.py +794 -603
  951. teradataml/dataframe/indexer.py +424 -424
  952. teradataml/dataframe/setop.py +1179 -1166
  953. teradataml/dataframe/sql.py +10174 -6432
  954. teradataml/dataframe/sql_function_parameters.py +439 -388
  955. teradataml/dataframe/sql_functions.py +652 -652
  956. teradataml/dataframe/sql_interfaces.py +220 -220
  957. teradataml/dataframe/vantage_function_types.py +674 -630
  958. teradataml/dataframe/window.py +693 -692
  959. teradataml/dbutils/__init__.py +3 -3
  960. teradataml/dbutils/dbutils.py +1167 -1150
  961. teradataml/dbutils/filemgr.py +267 -267
  962. teradataml/gen_ai/__init__.py +2 -2
  963. teradataml/gen_ai/convAI.py +472 -472
  964. teradataml/geospatial/__init__.py +3 -3
  965. teradataml/geospatial/geodataframe.py +1105 -1094
  966. teradataml/geospatial/geodataframecolumn.py +392 -387
  967. teradataml/geospatial/geometry_types.py +925 -925
  968. teradataml/hyperparameter_tuner/__init__.py +1 -1
  969. teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
  970. teradataml/hyperparameter_tuner/utils.py +281 -187
  971. teradataml/lib/aed_0_1.dll +0 -0
  972. teradataml/lib/libaed_0_1.dylib +0 -0
  973. teradataml/lib/libaed_0_1.so +0 -0
  974. teradataml/libaed_0_1.dylib +0 -0
  975. teradataml/libaed_0_1.so +0 -0
  976. teradataml/opensource/__init__.py +1 -0
  977. teradataml/opensource/sklearn/__init__.py +1 -0
  978. teradataml/opensource/sklearn/_class.py +255 -0
  979. teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
  980. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  981. teradataml/opensource/sklearn/constants.py +54 -0
  982. teradataml/options/__init__.py +130 -124
  983. teradataml/options/configure.py +358 -336
  984. teradataml/options/display.py +176 -176
  985. teradataml/plot/__init__.py +2 -2
  986. teradataml/plot/axis.py +1388 -1388
  987. teradataml/plot/constants.py +15 -15
  988. teradataml/plot/figure.py +398 -398
  989. teradataml/plot/plot.py +760 -760
  990. teradataml/plot/query_generator.py +83 -83
  991. teradataml/plot/subplot.py +216 -216
  992. teradataml/scriptmgmt/UserEnv.py +3791 -3761
  993. teradataml/scriptmgmt/__init__.py +3 -3
  994. teradataml/scriptmgmt/lls_utils.py +1719 -1604
  995. teradataml/series/series.py +532 -532
  996. teradataml/series/series_utils.py +71 -71
  997. teradataml/table_operators/Apply.py +949 -917
  998. teradataml/table_operators/Script.py +1718 -1982
  999. teradataml/table_operators/TableOperator.py +1255 -1616
  1000. teradataml/table_operators/__init__.py +2 -3
  1001. teradataml/table_operators/apply_query_generator.py +262 -262
  1002. teradataml/table_operators/query_generator.py +507 -507
  1003. teradataml/table_operators/table_operator_query_generator.py +460 -460
  1004. teradataml/table_operators/table_operator_util.py +631 -639
  1005. teradataml/table_operators/templates/dataframe_apply.template +184 -184
  1006. teradataml/table_operators/templates/dataframe_map.template +176 -176
  1007. teradataml/table_operators/templates/script_executor.template +170 -170
  1008. teradataml/utils/dtypes.py +684 -684
  1009. teradataml/utils/internal_buffer.py +84 -84
  1010. teradataml/utils/print_versions.py +205 -205
  1011. teradataml/utils/utils.py +410 -410
  1012. teradataml/utils/validators.py +2277 -2115
  1013. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
  1014. teradataml-20.0.0.1.dist-info/RECORD +1056 -0
  1015. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
  1016. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
  1017. teradataml/analytics/mle/AdaBoost.py +0 -651
  1018. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  1019. teradataml/analytics/mle/Antiselect.py +0 -342
  1020. teradataml/analytics/mle/Arima.py +0 -641
  1021. teradataml/analytics/mle/ArimaPredict.py +0 -477
  1022. teradataml/analytics/mle/Attribution.py +0 -1070
  1023. teradataml/analytics/mle/Betweenness.py +0 -658
  1024. teradataml/analytics/mle/Burst.py +0 -711
  1025. teradataml/analytics/mle/CCM.py +0 -600
  1026. teradataml/analytics/mle/CCMPrepare.py +0 -324
  1027. teradataml/analytics/mle/CFilter.py +0 -460
  1028. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  1029. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  1030. teradataml/analytics/mle/Closeness.py +0 -737
  1031. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  1032. teradataml/analytics/mle/Correlation.py +0 -477
  1033. teradataml/analytics/mle/Correlation2.py +0 -573
  1034. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  1035. teradataml/analytics/mle/CoxPH.py +0 -556
  1036. teradataml/analytics/mle/CoxSurvival.py +0 -478
  1037. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  1038. teradataml/analytics/mle/DTW.py +0 -623
  1039. teradataml/analytics/mle/DWT.py +0 -564
  1040. teradataml/analytics/mle/DWT2D.py +0 -599
  1041. teradataml/analytics/mle/DecisionForest.py +0 -716
  1042. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  1043. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  1044. teradataml/analytics/mle/DecisionTree.py +0 -830
  1045. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  1046. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  1047. teradataml/analytics/mle/FMeasure.py +0 -402
  1048. teradataml/analytics/mle/FPGrowth.py +0 -734
  1049. teradataml/analytics/mle/FrequentPaths.py +0 -695
  1050. teradataml/analytics/mle/GLM.py +0 -558
  1051. teradataml/analytics/mle/GLML1L2.py +0 -547
  1052. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  1053. teradataml/analytics/mle/GLMPredict.py +0 -529
  1054. teradataml/analytics/mle/HMMDecoder.py +0 -945
  1055. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  1056. teradataml/analytics/mle/HMMSupervised.py +0 -521
  1057. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  1058. teradataml/analytics/mle/Histogram.py +0 -561
  1059. teradataml/analytics/mle/IDWT.py +0 -476
  1060. teradataml/analytics/mle/IDWT2D.py +0 -493
  1061. teradataml/analytics/mle/IdentityMatch.py +0 -763
  1062. teradataml/analytics/mle/Interpolator.py +0 -918
  1063. teradataml/analytics/mle/KMeans.py +0 -485
  1064. teradataml/analytics/mle/KNN.py +0 -627
  1065. teradataml/analytics/mle/KNNRecommender.py +0 -488
  1066. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  1067. teradataml/analytics/mle/LAR.py +0 -439
  1068. teradataml/analytics/mle/LARPredict.py +0 -478
  1069. teradataml/analytics/mle/LDA.py +0 -548
  1070. teradataml/analytics/mle/LDAInference.py +0 -492
  1071. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  1072. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  1073. teradataml/analytics/mle/LinReg.py +0 -433
  1074. teradataml/analytics/mle/LinRegPredict.py +0 -438
  1075. teradataml/analytics/mle/MinHash.py +0 -544
  1076. teradataml/analytics/mle/Modularity.py +0 -587
  1077. teradataml/analytics/mle/NEREvaluator.py +0 -410
  1078. teradataml/analytics/mle/NERExtractor.py +0 -595
  1079. teradataml/analytics/mle/NERTrainer.py +0 -458
  1080. teradataml/analytics/mle/NGrams.py +0 -570
  1081. teradataml/analytics/mle/NPath.py +0 -634
  1082. teradataml/analytics/mle/NTree.py +0 -549
  1083. teradataml/analytics/mle/NaiveBayes.py +0 -462
  1084. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  1085. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  1086. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  1087. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  1088. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  1089. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  1090. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  1091. teradataml/analytics/mle/POSTagger.py +0 -417
  1092. teradataml/analytics/mle/Pack.py +0 -411
  1093. teradataml/analytics/mle/PageRank.py +0 -535
  1094. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  1095. teradataml/analytics/mle/PathGenerator.py +0 -367
  1096. teradataml/analytics/mle/PathStart.py +0 -464
  1097. teradataml/analytics/mle/PathSummarizer.py +0 -470
  1098. teradataml/analytics/mle/Pivot.py +0 -471
  1099. teradataml/analytics/mle/ROC.py +0 -425
  1100. teradataml/analytics/mle/RandomSample.py +0 -637
  1101. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  1102. teradataml/analytics/mle/SAX.py +0 -779
  1103. teradataml/analytics/mle/SVMDense.py +0 -677
  1104. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  1105. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  1106. teradataml/analytics/mle/SVMSparse.py +0 -557
  1107. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  1108. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  1109. teradataml/analytics/mle/Sampling.py +0 -549
  1110. teradataml/analytics/mle/Scale.py +0 -565
  1111. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  1112. teradataml/analytics/mle/ScaleMap.py +0 -378
  1113. teradataml/analytics/mle/ScaleSummary.py +0 -320
  1114. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  1115. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  1116. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  1117. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  1118. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  1119. teradataml/analytics/mle/Sessionize.py +0 -475
  1120. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  1121. teradataml/analytics/mle/StringSimilarity.py +0 -425
  1122. teradataml/analytics/mle/TF.py +0 -389
  1123. teradataml/analytics/mle/TFIDF.py +0 -504
  1124. teradataml/analytics/mle/TextChunker.py +0 -414
  1125. teradataml/analytics/mle/TextClassifier.py +0 -399
  1126. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  1127. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  1128. teradataml/analytics/mle/TextMorph.py +0 -494
  1129. teradataml/analytics/mle/TextParser.py +0 -623
  1130. teradataml/analytics/mle/TextTagger.py +0 -530
  1131. teradataml/analytics/mle/TextTokenizer.py +0 -502
  1132. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  1133. teradataml/analytics/mle/Unpack.py +0 -526
  1134. teradataml/analytics/mle/Unpivot.py +0 -438
  1135. teradataml/analytics/mle/VarMax.py +0 -776
  1136. teradataml/analytics/mle/VectorDistance.py +0 -762
  1137. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  1138. teradataml/analytics/mle/XGBoost.py +0 -842
  1139. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  1140. teradataml/analytics/mle/__init__.py +0 -123
  1141. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  1142. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  1143. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  1144. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  1145. teradataml/analytics/mle/json/arima_mle.json +0 -172
  1146. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  1147. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  1148. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  1149. teradataml/analytics/mle/json/burst_mle.json +0 -140
  1150. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  1151. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  1152. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  1153. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  1154. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  1155. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  1156. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  1157. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  1158. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  1159. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  1160. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  1161. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  1162. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  1163. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  1164. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  1165. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  1166. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  1167. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  1168. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  1169. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  1170. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  1171. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  1172. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  1173. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  1174. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  1175. teradataml/analytics/mle/json/glm_mle.json +0 -111
  1176. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  1177. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  1178. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  1179. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  1180. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  1181. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  1182. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  1183. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  1184. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  1185. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  1186. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  1187. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  1188. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  1189. teradataml/analytics/mle/json/knn_mle.json +0 -141
  1190. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  1191. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  1192. teradataml/analytics/mle/json/lar_mle.json +0 -78
  1193. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  1194. teradataml/analytics/mle/json/lda_mle.json +0 -130
  1195. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  1196. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  1197. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  1198. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  1199. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  1200. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  1201. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  1202. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  1203. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  1204. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  1205. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  1206. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  1207. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  1208. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  1209. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  1210. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  1211. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  1212. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  1213. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  1214. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  1215. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  1216. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  1217. teradataml/analytics/mle/json/pack_mle.json +0 -58
  1218. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  1219. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  1220. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  1221. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  1222. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  1223. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  1224. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  1225. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  1226. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  1227. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  1228. teradataml/analytics/mle/json/roc_mle.json +0 -73
  1229. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  1230. teradataml/analytics/mle/json/sax_mle.json +0 -154
  1231. teradataml/analytics/mle/json/scale_mle.json +0 -93
  1232. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  1233. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  1234. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  1235. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  1236. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  1237. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  1238. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  1239. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  1240. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  1241. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  1242. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  1243. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  1244. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  1245. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  1246. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  1247. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  1248. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  1249. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  1250. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  1251. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  1252. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  1253. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  1254. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  1255. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  1256. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  1257. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  1258. teradataml/analytics/mle/json/tf_mle.json +0 -33
  1259. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  1260. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  1261. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  1262. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  1263. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  1264. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  1265. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  1266. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  1267. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  1268. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  1269. teradataml/analytics/sqle/Antiselect.py +0 -321
  1270. teradataml/analytics/sqle/Attribution.py +0 -603
  1271. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  1272. teradataml/analytics/sqle/GLMPredict.py +0 -430
  1273. teradataml/analytics/sqle/MovingAverage.py +0 -543
  1274. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  1275. teradataml/analytics/sqle/NPath.py +0 -632
  1276. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  1277. teradataml/analytics/sqle/Pack.py +0 -388
  1278. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  1279. teradataml/analytics/sqle/Sessionize.py +0 -390
  1280. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  1281. teradataml/analytics/sqle/Unpack.py +0 -503
  1282. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  1283. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  1284. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  1285. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  1286. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  1287. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  1288. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  1289. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  1290. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  1291. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  1292. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  1293. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  1294. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  1295. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  1296. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  1297. teradataml/catalog/model_cataloging.py +0 -980
  1298. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  1299. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  1300. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  1301. teradataml/table_operators/sandbox_container_util.py +0 -643
  1302. teradataml-17.20.0.7.dist-info/RECORD +0 -1280
  1303. {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1270 @@
1
+ # ##################################################################
2
+ #
3
+ # Copyright 2024 Teradata. All rights reserved.
4
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
5
+ #
6
+ # Primary Owner: Sweta Shaw
7
+ # Email Id: Sweta.Shaw@Teradata.com
8
+ #
9
+ # Secondary Owner: Akhil Bisht
10
+ # Email Id: AKHIL.BISHT@Teradata.com
11
+ #
12
+ # Version: 1.1
13
+ # Function Version: 1.0
14
+ # ##################################################################
15
+
16
+ import json
17
+
18
+
19
+ class _GenerateCustomJson:
20
+
21
+ def __init__(self):
22
+ """
23
+ DESCRIPTION:
24
+ Function initializes the data and flags for custom JSON file generation.
25
+
26
+ """
27
+ # Initializing data dictionary for storing custom parameters
28
+ self.data = {}
29
+ # Initializing first time execution flag variables for each phase
30
+ self.fe_flag = {index : False for index in range(1, 8)}
31
+ self.de_flag = {index : False for index in range(1, 5)}
32
+ self.mt_flag = {index : False for index in range(1, 2)}
33
+
34
+ def _process_list_input(self,
35
+ input_data,
36
+ value_type='str',
37
+ allowed_values=None):
38
+ """
39
+ DESCRIPTION:
40
+ Function processes input data contaning one or more than one, expected
41
+ to be comma separated and converts them into list of specified type.
42
+
43
+ PARAMETERS:
44
+ input_data:
45
+ Required Argument.
46
+ Specifies the input data to be processed.
47
+ Types: str
48
+
49
+ value_type:
50
+ Optional Argument.
51
+ Specifies the type of value present in input data.
52
+ Default Value: "str"
53
+ Types: str
54
+
55
+ allowed_values:
56
+ Optional Argument.
57
+ Specifies the list of allowed values for input data.
58
+ Default Value: None
59
+ Types: list
60
+
61
+ RETURNS:
62
+ List containing values of specified type.
63
+
64
+ RAISES:
65
+ ValueError: If input data is empty or not valid.
66
+ """
67
+ while True:
68
+ try:
69
+ # Checking if input is empty
70
+ if not input_data.strip():
71
+ raise ValueError("\nInput data cannot be empty. "
72
+ "Please provide a valid comma separated input.")
73
+ # Processing multi-valued input data
74
+ if value_type == 'int':
75
+ result = [int(value.strip()) for value in input_data.split(',')]
76
+ elif value_type == 'float':
77
+ result = [float(value.strip()) for value in input_data.split(',')]
78
+ elif value_type == 'bool':
79
+ result = [True if value.strip().lower() == 'true' else False for value in input_data.split(',')]
80
+ else:
81
+ result = [value.strip() for value in input_data.split(',')]
82
+
83
+ if allowed_values:
84
+ for value in result:
85
+ if value not in allowed_values:
86
+ raise ValueError(f"\nInvalid input {value}. "
87
+ f"Please provide a valid input from {allowed_values}.")
88
+ return result
89
+ # Handling exceptions for invalid input
90
+ except ValueError as msg:
91
+ print(f"\n**ERROR:** {msg}")
92
+ # Ask the user to try again
93
+ input_data = input("\nEnter the correct input: ")
94
+
95
+ def _process_single_input(self,
96
+ input_data,
97
+ value_type='str',
98
+ allowed_values=None):
99
+ """
100
+ DESCRIPTION:
101
+ Function processes the input data containing only single value and
102
+ converts it into specified type.
103
+
104
+ PARAMETERS:
105
+ input_data:
106
+ Required Argument.
107
+ Specifies the input data to be processed.
108
+ Types: str
109
+
110
+ value_type:
111
+ Optional Argument.
112
+ Specifies the type of value present in input data.
113
+ Default Value: "str"
114
+ Types: str
115
+
116
+ RETURNS:
117
+ Value of specified type.
118
+
119
+ RAISES:
120
+ ValueError: If input data is empty or not valid.
121
+ """
122
+ while True:
123
+ try:
124
+ # Checking if input is empty
125
+ if not input_data.strip():
126
+ raise ValueError("\nInput data cannot be empty. "
127
+ "Please provide a valid input.")
128
+ # Processing single value input data
129
+ if value_type == 'int':
130
+ result = int(input_data)
131
+ elif value_type == 'float':
132
+ result = float(input_data)
133
+ elif value_type == 'bool':
134
+ result = True if input_data.lower() == 'true' else False
135
+ else:
136
+ result = input_data
137
+
138
+ if allowed_values:
139
+ if result not in allowed_values:
140
+ raise ValueError(f"\nInvalid input {result}. "
141
+ f"Please provide a valid input from {allowed_values}.")
142
+ return result
143
+ # Handling exceptions for invalid input
144
+ except ValueError as msg:
145
+ print(f"\n**ERROR:** {msg}")
146
+ # Ask the user to try again
147
+ input_data = input("\nEnter the correct input: ")
148
+
149
+ def _generate_custom_json(self):
150
+ """
151
+ DESCRIPTION:
152
+ Function collects customized user input using prompt for feature enginnering,
153
+ data preparation and model training phases.
154
+
155
+ RETURNS:
156
+ Dictionary containing custom parameters to generate custom JSON file for AutoML.
157
+ """
158
+
159
+ print("\nGenerating custom config JSON for AutoML ...")
160
+
161
+ customize_options = {
162
+ 1: 'Customize Feature Engineering Phase',
163
+ 2: 'Customize Data Preparation Phase',
164
+ 3: 'Customize Model Training Phase',
165
+ 4: 'Generate custom json and exit'
166
+ }
167
+
168
+ while True:
169
+
170
+ print(f"\nAvailable main options for customization with corresponding indices: ")
171
+ print("-"*80)
172
+ for index, options in customize_options.items():
173
+ print(f"\nIndex {index}: {options}")
174
+ print("-"*80)
175
+ # Mapping each index to corresponding functionality
176
+ custom_method_map = {
177
+ 1: self._get_customize_input_feature_engineering,
178
+ 2: self._get_customize_input_data_preparation,
179
+ 3: self._get_customize_input_model_training
180
+ }
181
+
182
+ # Taking required input for customizing feature engineering, data preparation and model training phases
183
+ phase_idx = self._process_single_input(
184
+ input("\nEnter the index you want to customize: "),
185
+ 'int', list(customize_options.keys()))
186
+ # Checking if user wants to exit
187
+ if phase_idx == 4:
188
+ print("\nGenerating custom json and exiting ...")
189
+ break
190
+ else:
191
+ # Processing each functionality for customization
192
+ # Getting exit flag to exit from main menu
193
+ exit_flag = custom_method_map[phase_idx]()
194
+ if exit_flag:
195
+ break
196
+
197
+ print("\nProcess of generating custom config file for AutoML has been completed successfully.")
198
+ # Returning custom parameters
199
+ return self.data
200
+
201
+ def _get_customize_input_feature_engineering(self):
202
+ """
203
+ DESCRIPTION:
204
+ Function takes user input for different functionalities to customize
205
+ feature engineering phase.
206
+ """
207
+
208
+ print("\nCustomizing Feature Engineering Phase ...")
209
+ # Available options for customization of feature engineering phase
210
+ fe_customize_options = {
211
+ 1: 'Customize Missing Value Handling',
212
+ 2: 'Customize Bincode Encoding',
213
+ 3: 'Customize String Manipulation',
214
+ 4: 'Customize Categorical Encoding',
215
+ 5: 'Customize Mathematical Transformation',
216
+ 6: 'Customize Nonlinear Transformation',
217
+ 7: 'Customize Antiselect Features',
218
+ 8: 'Back to main menu',
219
+ 9: 'Generate custom json and exit'
220
+ }
221
+
222
+ while True:
223
+
224
+ print(f"\nAvailable options for customization of feature engineering phase with corresponding indices: ")
225
+ print("-"*80)
226
+ for index, options in fe_customize_options.items():
227
+ print(f"\nIndex {index}: {options}")
228
+ print("-"*80)
229
+ # Mapping each index to corresponding functionality
230
+ fe_method_map = {
231
+ 1: self._get_customize_input_missing_value_handling,
232
+ 2: self._get_customize_input_bin_code_encoding,
233
+ 3: self._get_customize_input_string_manipulation,
234
+ 4: self._get_customize_input_categorical_encoding,
235
+ 5: self._get_customize_input_mathematical_transformation,
236
+ 6: self._get_customize_input_nonlinear_transformation,
237
+ 7: self._get_customize_input_antiselect
238
+ }
239
+
240
+ # Taking required input for customizing feature engineering
241
+ fe_phase_idx = self._process_list_input(
242
+ input("\nEnter the list of indices you want to customize in feature engineering phase: "),
243
+ 'int', list(fe_customize_options.keys()))
244
+
245
+ # Flag variable to back to main menu
246
+ fe_exit_to_main_flag = False
247
+ # Flag variable to exit from main menu
248
+ # Handling the scenario when input contains both index 8 and 9
249
+ fe_exit_from_main_flag = 9 in fe_phase_idx
250
+
251
+ # Processing each functionality for customization in sorted order
252
+ for index in sorted(fe_phase_idx):
253
+ if index == 8 or index == 9:
254
+ fe_exit_to_main_flag = True
255
+ if index == 9:
256
+ fe_exit_from_main_flag = True
257
+ break
258
+ fe_method_map[index](self.fe_flag[index])
259
+ self.fe_flag[index] = True
260
+ # Checking if user wants to return to main menu
261
+ if fe_exit_to_main_flag:
262
+ print("\nCustomization of feature engineering phase has been completed successfully.")
263
+ break
264
+ # Returning flag to exit from main menu
265
+ return fe_exit_from_main_flag
266
+
267
+ def _get_customize_input_data_preparation(self):
268
+ """
269
+ DESCRIPTION:
270
+ Function takes user input for different functionalities to customize
271
+ data preparation phase.
272
+ """
273
+ print("\nCustomizing Data Preparation Phase ...")
274
+ # Available options for customization of data preparation phase
275
+ dp_customize_options = {
276
+ 1: 'Customize Train Test Split',
277
+ 2: 'Customize Data Imbalance Handling',
278
+ 3: 'Customize Outlier Handling',
279
+ 4: 'Customize Feature Scaling',
280
+ 5: 'Back to main menu',
281
+ 6: 'Generate custom json and exit'
282
+ }
283
+
284
+ while True:
285
+
286
+ print(f"\nAvailable options for customization of data preparation phase with corresponding indices: ")
287
+ print("-"*80)
288
+ for index, options in dp_customize_options.items():
289
+ print(f"\nIndex {index}: {options}")
290
+ print("-"*80)
291
+ # Mapping each index to corresponding functionality
292
+ de_method_map = {
293
+ 1: self._get_customize_input_train_test_split,
294
+ 2: self._get_customize_input_data_imbalance_handling,
295
+ 3: self._get_customize_input_outlier_handling,
296
+ 4: self._get_customize_input_feature_scaling
297
+ }
298
+
299
+ # Taking required input for customizing data preparation.
300
+ dp_phase_idx = self._process_list_input(
301
+ input("\nEnter the list of indices you want to customize in data preparation phase: "),
302
+ 'int', list(dp_customize_options.keys()))
303
+
304
+ # Flag variable to back to main menu
305
+ de_exit_to_main_flag = False
306
+ # Flag variable to exit from main menu
307
+ # Handling the scenario when input contains both index 5 and 6
308
+ de_exit_from_main_flag = 6 in dp_phase_idx
309
+
310
+ # Processing each functionality for customization in sorted order
311
+ for index in sorted(dp_phase_idx):
312
+ if index == 5 or index == 6:
313
+ de_exit_to_main_flag = True
314
+ if index == 6:
315
+ de_exit_from_main_flag = True
316
+ break
317
+ de_method_map[index](self.de_flag[index])
318
+ self.de_flag[index] = True
319
+ # Checking if user wants to return to main menu
320
+ if de_exit_to_main_flag:
321
+ print("\nCustomization of data preparation phase has been completed successfully.")
322
+ break
323
+ # Returning flag to exit from main menu
324
+ return de_exit_from_main_flag
325
+
326
+ def _get_customize_input_model_training(self):
327
+ """
328
+ DESCRIPTION:
329
+ Function takes user input for different functionalities to customize
330
+ model training phase.
331
+ """
332
+ print("\nCustomizing Model Training Phase ...")
333
+ # Available options for customization of model training phase
334
+ mt_customize_options = {
335
+ 1: 'Customize Model Hyperparameter',
336
+ 2: 'Back to main menu',
337
+ 3: 'Generate custom json and exit'
338
+ }
339
+
340
+ while True:
341
+
342
+ print(f"\nAvailable options for customization of model training phase with corresponding indices: ")
343
+ print("-"*80)
344
+ for index, options in mt_customize_options.items():
345
+ print(f"\nIndex {index}: {options}")
346
+ print("-"*80)
347
+
348
+ # Taking required input for customizing model training.
349
+ mt_phase_idx = self._process_list_input(
350
+ input("\nEnter the list of indices you want to customize in model training phase: "),
351
+ 'int', list(mt_customize_options.keys()))
352
+
353
+ # Flag variable to back to main menu
354
+ mt_exit_to_main_flag = False
355
+ # Flag variable to exit from main menu
356
+ # Handling the scenario when input contains both index 2 and 3
357
+ mt_exit_from_main_flag = 3 in mt_phase_idx
358
+
359
+ # Processing each functionality for customization in sorted order
360
+ for index in sorted(mt_phase_idx):
361
+ if index == 1:
362
+ self._get_customize_input_model_hyperparameter(self.mt_flag[index])
363
+ elif index == 2 or index == 3:
364
+ mt_exit_to_main_flag = True
365
+ if index == 3:
366
+ mt_exit_from_main_flag = True
367
+ break
368
+ self.mt_flag[index] = True
369
+ # Checking if user wants to return to main menu
370
+ if mt_exit_to_main_flag:
371
+ print("\nCustomization of model training phase has been completed successfully.")
372
+ break
373
+ # Returning flag to exit from main menu
374
+ return mt_exit_from_main_flag
375
+
376
+ def _get_customize_input_missing_value_handling(self,
377
+ first_execution_flag=False):
378
+ """
379
+ DESCRIPTION:
380
+ Function takes user input to generate custom json paramaters for missing value handling.
381
+
382
+ PARAMETERS:
383
+ first_execution_flag:
384
+ Optional Argument.
385
+ Specifies the flag to check if the function is called for the first time.
386
+ Default Value: False
387
+ Types: bool
388
+ """
389
+ if first_execution_flag:
390
+ print("\nWARNING : Reinitiated missing value handling customization. "
391
+ "Overwriting the previous input.")
392
+
393
+ print("\nCustomizing Missing Value Handling ...")
394
+ # Setting indicator for missing value handling
395
+ self.data['MissingValueHandlingIndicator'] = True
396
+ print("\nProvide the following details to customize missing value handling:")
397
+ # Setting parameters for missing value handling
398
+ self.data['MissingValueHandlingParam'] = {}
399
+
400
+ missing_handling_methods = {1: 'Drop Columns',
401
+ 2: 'Drop Rows',
402
+ 3: 'Impute Missing values'}
403
+
404
+ print("\nAvailable missing value handling methods with corresponding indices: ")
405
+ for index, method in missing_handling_methods.items():
406
+ print(f"Index {index}: {method}")
407
+
408
+ missing_handling_methods_idx = self._process_list_input(
409
+ input("\nEnter the list of indices for missing value handling methods : "),
410
+ 'int', list(missing_handling_methods.keys()))
411
+
412
+ for index in missing_handling_methods_idx:
413
+ if index == 1:
414
+ # Setting indicator for dropping columns with missing values
415
+ self.data['MissingValueHandlingParam']['DroppingColumnIndicator'] = True
416
+ drop_col_list = self._process_list_input(
417
+ input("\nEnter the feature or list of features for dropping columns with missing values: "))
418
+ self.data['MissingValueHandlingParam']['DroppingColumnList'] = drop_col_list
419
+ elif index == 2:
420
+ self.data['MissingValueHandlingParam']['DroppingRowIndicator'] = True
421
+ drop_row_list = self._process_list_input(
422
+ input("\nEnter the feature or list of features for dropping rows with missing values: "))
423
+ self.data['MissingValueHandlingParam']['DroppingRowList'] = drop_row_list
424
+ elif index == 3:
425
+ self.data['MissingValueHandlingParam']['ImputeMissingIndicator'] = True
426
+
427
+ impute_methods = {1: 'Statistical Imputation',
428
+ 2: 'Literal Imputation'}
429
+ print("\nAvailable missing value imputation methods with corresponding indices: ")
430
+ for index, method in impute_methods.items():
431
+ print(f"Index {index}: {method}")
432
+
433
+ impute_methods_idx = self._process_list_input(
434
+ input("\nEnter the list of corresponding index missing value imputation methods you want to use: "),
435
+ 'int', list(impute_methods.keys()))
436
+
437
+ for index in impute_methods_idx:
438
+ if index == 1:
439
+ stat_imp_list = self._process_list_input(
440
+ input("\nEnter the feature or list of features for imputing missing values using statistic values: "))
441
+ self.data['MissingValueHandlingParam']['StatImputeList'] = stat_imp_list
442
+
443
+ # Displaying available statistical imputation methods
444
+ stat_methods = {1: 'min',
445
+ 2: 'max',
446
+ 3: 'mean',
447
+ 4: 'median',
448
+ 5: 'mode'}
449
+ print("\nAvailable statistical methods with corresponding indices:")
450
+ for index, method in stat_methods.items():
451
+ print(f"Index {index}: {method}")
452
+
453
+ self.data['MissingValueHandlingParam']['StatImputeMethod'] = []
454
+ # Setting statistical imputation methods for features
455
+ for feature in stat_imp_list:
456
+ method_idx = self._process_single_input(
457
+ input(f"\nEnter the index of corresponding statistic imputation "
458
+ f"method for feature {feature}: "),
459
+ 'int', list(stat_methods.keys()))
460
+ self.data['MissingValueHandlingParam']['StatImputeMethod'].append(stat_methods[method_idx])
461
+ elif index == 2:
462
+ literal_imp_list = self._process_list_input(
463
+ input("\nEnter the feature or list of features for imputing missing values "
464
+ "using a specific value(Literal): "))
465
+ # Setting list of features for imputing missing values using specific literal value
466
+ self.data['MissingValueHandlingParam']['LiteralImputeList'] = literal_imp_list
467
+ self.data['MissingValueHandlingParam']['LiteralImputeValue'] = []
468
+ for feature in literal_imp_list:
469
+ # Setting specific literal value for imputing missing values for each feature
470
+ literal_value = self._process_single_input(
471
+ input(f"\nEnter the specific literal value for imputing missing "
472
+ f"values for feature {feature}: "))
473
+ self.data['MissingValueHandlingParam']['LiteralImputeValue'].append(literal_value)
474
+
475
+ print("\nCustomization of missing value handling has been completed successfully.")
476
+
477
+ def _get_customize_input_bin_code_encoding(self,
478
+ first_execution_flag=False):
479
+ """
480
+ DESCRIPTION:
481
+ Function takes user input to generate custom json paramaters for performing binning on features.
482
+
483
+ PARAMETERS:
484
+ first_execution_flag:
485
+ Optional Argument.
486
+ Specifies the flag to check if the function is called for the first time.
487
+ Default Value: False
488
+ Types: bool
489
+
490
+ """
491
+ if first_execution_flag:
492
+ print("\nWARNING : Reinitiated bincode encoding customization. "
493
+ "Overwriting the previous input.")
494
+
495
+ print("\nCustomizing Bincode Encoding ...")
496
+ # Setting indicator for binning
497
+ self.data['BincodeIndicator'] = True
498
+ print("\nProvide the following details to customize binning and coding encoding:")
499
+ self.data['BincodeParam'] = {}
500
+
501
+ # Displaying available binning methods
502
+ binning_methods = {1: 'Equal-Width',
503
+ 2: 'Variable-Width'}
504
+ print("\nAvailable binning methods with corresponding indices:")
505
+ for index, method in binning_methods.items():
506
+ print(f"Index {index}: {method}")
507
+
508
+ # Setting parameters for binning
509
+ binning_list = self._process_list_input(input("\nEnter the feature or list of features for binning: "))
510
+ if binning_list:
511
+ for feature in binning_list:
512
+ # Setting parameters for binning each feature
513
+ self.data['BincodeParam'][feature] = {}
514
+ bin_method_idx = self._process_single_input(
515
+ input(f"\nEnter the index of corresponding binning method for feature {feature}: "),
516
+ 'int', list(binning_methods.keys()))
517
+
518
+ # Setting binning method and number of bins for each feature
519
+ self.data['BincodeParam'][feature]["Type"] = binning_methods[bin_method_idx]
520
+ num_of_bin = self._process_single_input(
521
+ input(f"\nEnter the number of bins for feature {feature}: "), 'int')
522
+ self.data['BincodeParam'][feature]["NumOfBins"] = num_of_bin
523
+
524
+ # Setting parameters for each bin of feature in case of variable width binning
525
+ if bin_method_idx == 2:
526
+ value_type = {
527
+ 1: 'int',
528
+ 2: 'float'
529
+ }
530
+ print("\nAvailable value type of feature for variable binning with corresponding indices:")
531
+ for index, v_type in value_type.items():
532
+ print(f"Index {index}: {v_type}")
533
+ # Setting parameters for each bin of feature
534
+ for num in range(1, num_of_bin+1):
535
+ print(f"\nProvide the range for bin {num} of feature {feature}: ")
536
+ bin_num="Bin_"+str(num)
537
+ self.data['BincodeParam'][feature][bin_num] = {}
538
+
539
+ # Setting bin value type for corresponding bin
540
+ bin_value_type_idx = self._process_single_input(
541
+ input(f"\nEnter the index of corresponding value type of feature {feature}: "),
542
+ 'int', list(value_type.keys()))
543
+
544
+ bin_value_type = value_type[bin_value_type_idx]
545
+
546
+ # Setting minimum value for corresponding bin
547
+ self.data['BincodeParam'][feature][bin_num]['min_value'] = self._process_single_input(
548
+ input(f"\nEnter the minimum value for bin {num} of feature {feature}: "),
549
+ bin_value_type)
550
+ # Setting maximum value for corresponding bin
551
+ self.data['BincodeParam'][feature][bin_num]['max_value'] = self._process_single_input(
552
+ input(f"\nEnter the maximum value for bin {num} of feature {feature}: "),
553
+ bin_value_type)
554
+ # Setting label for corresponding bin
555
+ self.data['BincodeParam'][feature][bin_num]['label'] = self._process_single_input(
556
+ input(f"\nEnter the label for bin {num} of feature {feature}: "))
557
+
558
+ print("\nCustomization of bincode encoding has been completed successfully.")
559
+
560
+ def _get_customize_input_string_manipulation(self,
561
+ first_execution_flag=False):
562
+ """
563
+ DESCRIPTION:
564
+ Function takes user input to generate custom json paramaters for string manipulation.
565
+
566
+ PARAMETERS:
567
+ first_execution_flag:
568
+ Optional Argument.
569
+ Specifies the flag to check if the function is called for the first time.
570
+ Default Value: False
571
+ Types: bool
572
+
573
+ """
574
+ if first_execution_flag:
575
+ print("\nWARNING : Reinitiated string manipulation customization. "
576
+ "Overwriting the previous input.")
577
+
578
+ print("\nCustomizing String Manipulation ...")
579
+ # Setting indicator for string manipulation
580
+ self.data['StringManipulationIndicator'] = True
581
+ print("\nProvide the following details to customize string manipulation:")
582
+ self.data['StringManipulationParam'] = {}
583
+ # Displaying available string manipulation methods
584
+ string_methods = {1: 'ToLower',
585
+ 2: 'ToUpper',
586
+ 3: 'StringCon',
587
+ 4: 'StringPad',
588
+ 5: 'Substring'}
589
+ print("\nAvailable string manipulation methods with corresponding indices:")
590
+ for index, method in string_methods.items():
591
+ print(f"Index {index}: {method}")
592
+
593
+ # Setting parameters for string manipulation
594
+ str_mnpl_list = self._process_list_input(
595
+ input("\nEnter the feature or list of features for string manipulation: "))
596
+ # Processing each feature
597
+ if str_mnpl_list:
598
+ for feature in str_mnpl_list:
599
+ # Setting parameters for string manipulation each feature
600
+ self.data['StringManipulationParam'][feature] = {}
601
+ str_mnpl_method_idx = self._process_single_input(
602
+ input(f"\nEnter the index of corresponding string manipulation "
603
+ f"method for feature {feature}: "), 'int', list(string_methods.keys()))
604
+ self.data['StringManipulationParam'][feature]["StringOperation"] = \
605
+ string_methods[str_mnpl_method_idx]
606
+ # Setting required parameters specific to each string manipulation method
607
+ if str_mnpl_method_idx in [3, 4]:
608
+ str_mnpl_string = self._process_single_input(
609
+ input(f"\nEnter the string value required for string manipulation "
610
+ f"operation for feature {feature}: "))
611
+ self.data['StringManipulationParam'][feature]["String"] = str_mnpl_string
612
+
613
+ if str_mnpl_method_idx in [4, 5]:
614
+ str_mnpl_length = self._process_single_input(
615
+ input(f"\nEnter the length value required for string manipulation "
616
+ f"operation for feature {feature}: "), 'int')
617
+ self.data['StringManipulationParam'][feature]["StringLength"] = str_mnpl_length
618
+
619
+ if str_mnpl_method_idx == 5:
620
+ str_mnpl_start = self._process_single_input(
621
+ input(f"\nEnter the start value required for string manipulation "
622
+ f"operation for feature {feature}: "), 'int')
623
+ self.data['StringManipulationParam'][feature]["StartIndex"] = str_mnpl_start
624
+
625
+ print("\nCustomization of string manipulation has been completed successfully.")
626
+
627
+
628
+ def _get_customize_input_categorical_encoding(self,
629
+ first_execution_flag=False):
630
+ """
631
+ DESCRIPTION:
632
+ Function takes user input to generate custom json paramaters for categorical encoding.
633
+
634
+ PARAMETERS:
635
+ first_execution_flag:
636
+ Optional Argument.
637
+ Specifies the flag to check if the function is called for the first time.
638
+ Default Value: False
639
+ Types: bool
640
+
641
+ """
642
+ if first_execution_flag:
643
+ print("\nWARNING : Reinitiated categorical encoding customization. "
644
+ "Overwriting the previous input.")
645
+
646
+ print("\nCustomizing Categorical Encoding ...")
647
+ # Setting indicator for categorical encoding
648
+ self.data['CategoricalEncodingIndicator'] = True
649
+ print("\nProvide the following details to customize categorical encoding:")
650
+ # Setting parameters for categorical encoding
651
+ self.data['CategoricalEncodingParam'] = {}
652
+
653
+ encoding_methods = {1: 'OneHotEncoding',
654
+ 2: 'OrdinalEncoding',
655
+ 3: 'TargetEncoding'}
656
+
657
+ print("\nAvailable categorical encoding methods with corresponding indices:")
658
+ for index, method in encoding_methods.items():
659
+ print(f"Index {index}: {method}")
660
+
661
+ encoding_methods_idx = self._process_list_input(
662
+ input("\nEnter the list of corresponding index categorical encoding methods you want to use: "),
663
+ 'int', list(encoding_methods.keys()))
664
+
665
+ for index in encoding_methods_idx:
666
+ if index == 1:
667
+ # Setting indicator for OneHotEncoding
668
+ self.data['CategoricalEncodingParam']['OneHotEncodingIndicator'] = True
669
+ # Setting parameters for OneHotEncoding
670
+ one_hot_list = self._process_list_input(
671
+ input("\nEnter the feature or list of features for OneHotEncoding: "))
672
+ self.data['CategoricalEncodingParam']['OneHotEncodingList'] = one_hot_list
673
+ elif index == 2:
674
+ # Setting indicator for OrdinalEncoding
675
+ self.data['CategoricalEncodingParam']['OrdinalEncodingIndicator'] = True
676
+ # Setting parameters for OrdinalEncoding
677
+ ordinal_list = self._process_list_input(
678
+ input("\nEnter the feature or list of features for OrdinalEncoding: "))
679
+ self.data['CategoricalEncodingParam']['OrdinalEncodingList'] = ordinal_list
680
+ elif index == 3:
681
+ # Setting indicator for TargetEncoding
682
+ self.data['CategoricalEncodingParam']['TargetEncodingIndicator'] = True
683
+ target_end_list = self._process_list_input(input("\nEnter the feature or list of features for TargetEncoding: "))
684
+ # Setting parameters for TargetEncoding
685
+ self.data['CategoricalEncodingParam']['TargetEncodingList'] = {}
686
+ target_end_methods = {1: 'CBM_BETA',
687
+ 2: 'CBM_DIRICHLET',
688
+ 3: 'CBM_GAUSSIAN_INVERSE_GAMMA'}
689
+ print("\nAvailable target encoding methods with corresponding indices:")
690
+ for index, method in target_end_methods.items():
691
+ print(f"Index {index}: {method}")
692
+
693
+ # Setting parameters specific to each feature and corresponding method
694
+ for feature in target_end_list:
695
+ self.data['CategoricalEncodingParam']['TargetEncodingList'][feature] = {}
696
+ end_method_idx = self._process_single_input(
697
+ input(f"\nEnter the index of target encoding method for feature {feature}: "),
698
+ 'int', list(target_end_methods.keys()))
699
+ # Setting target encoding method for each feature
700
+ self.data['CategoricalEncodingParam']['TargetEncodingList'][feature]["encoder_method"] = \
701
+ target_end_methods[end_method_idx]
702
+
703
+ # Setting response column for target encoding method
704
+ response_column = self._process_single_input(
705
+ input(f"\nEnter the response column for target encoding method for feature {feature}: "))
706
+ self.data['CategoricalEncodingParam']['TargetEncodingList'][feature]["response_column"] = \
707
+ response_column
708
+
709
+ # Getting specific parameter in case of CBM_DIRICHLET method
710
+ if end_method_idx == 2:
711
+ num_distinct_responses = self._process_single_input(
712
+ input(f"\nEnter the distinct count of response column "
713
+ f"for target encoding method for feature {feature}: "), 'int')
714
+ self.data['CategoricalEncodingParam']['TargetEncodingList'][feature]["num_distinct_responses"] = \
715
+ num_distinct_responses
716
+
717
+ print("\nCustomization of categorical encoding has been completed successfully.")
718
+
719
+ def _get_customize_input_mathematical_transformation(self,
720
+ first_execution_flag=False):
721
+ """
722
+ DESCRIPTION:
723
+ Function takes user input to generate custom json paramaters for mathematical transformation.
724
+
725
+ PARAMETERS:
726
+ first_execution_flag:
727
+ Optional Argument.
728
+ Specifies the flag to check if the function is called for the first time.
729
+ Default Value: False
730
+ Types: bool
731
+
732
+ """
733
+ if first_execution_flag:
734
+ print("\nWARNING : Reinitiated mathematical transformation customization. "
735
+ "Overwriting the previous input.")
736
+
737
+ print("\nCustomizing Mathematical Transformation ...")
738
+ # Setting indicator for mathematical transformation
739
+ self.data['MathameticalTransformationIndicator'] = True
740
+ print("\nProvide the following details to customize mathematical transformation:")
741
+ # Setting parameters for mathematical transformation
742
+ self.data['MathameticalTransformationParam'] = {}
743
+ mat_trans_methods = {1: 'sigmoid',
744
+ 2: 'sininv',
745
+ 3: 'log',
746
+ 4: 'pow',
747
+ 5: 'exp'}
748
+ print("\nAvailable mathematical transformation methods with corresponding indices:")
749
+ for index, method in mat_trans_methods.items():
750
+ print(f"Index {index}: {method}")
751
+
752
+ mat_trans_list = self._process_list_input(
753
+ input("\nEnter the feature or list of features for mathematical transformation: "))
754
+ if mat_trans_list:
755
+ for feature in mat_trans_list:
756
+ # Setting parameters for mathematical transformation specific to each feature
757
+ self.data['MathameticalTransformationParam'][feature] = {}
758
+ mat_trans_method_idx = self._process_single_input(
759
+ input(f"\nEnter the index of corresponding mathematical "
760
+ f"transformation method for feature {feature}: "),
761
+ 'int', list(mat_trans_methods.keys()))
762
+
763
+ self.data['MathameticalTransformationParam'][feature]["apply_method"] = \
764
+ mat_trans_methods[mat_trans_method_idx]
765
+ # Setting required parameters specific to each mathematical transformation method
766
+ if mat_trans_method_idx == 1 :
767
+ sigmoid_style = self._process_single_input(
768
+ input(f"\nEnter the sigmoid style required for mathematical "
769
+ f"transformation for feature {feature}: "))
770
+ self.data['MathameticalTransformationParam'][feature]["sigmoid_style"] = \
771
+ sigmoid_style
772
+
773
+ if mat_trans_method_idx == 3:
774
+ base = self._process_single_input(
775
+ input(f"\nEnter the base value required for mathematical "
776
+ f"transformation for feature {feature}: "), 'int')
777
+ self.data['MathameticalTransformationParam'][feature]["base"] = base
778
+
779
+ if mat_trans_method_idx == 4:
780
+ exponent = self._process_single_input(
781
+ input(f"\nEnter the exponent value required for mathematical "
782
+ f"transformation for feature {feature}: "), 'int')
783
+ self.data['MathameticalTransformationParam'][feature]["exponent"] = exponent
784
+
785
+ print("\nCustomization of mathematical transformation has been completed successfully.")
786
+
787
+ def _get_customize_input_nonlinear_transformation(self,
788
+ first_execution_flag=False):
789
+ """
790
+ DESCRIPTION:
791
+ Function takes user input to generate custom json paramaters for nonlinear transformation.
792
+
793
+ PARAMETERS:
794
+ first_execution_flag:
795
+ Optional Argument.
796
+ Specifies the flag to check if the function is called for the first time.
797
+ Default Value: False
798
+ Types: bool
799
+ """
800
+ if first_execution_flag:
801
+ print("\nWARNING : Reinitiated nonlinear transformation customization. "
802
+ "Overwriting the previous input.")
803
+
804
+ print("\nCustomizing Nonlinear Transformation ...")
805
+ # Setting indicator for nonlinear transformation
806
+ self.data['NonLinearTransformationIndicator'] = True
807
+ print("\nProvide the following details to customize nonlinear transformation:")
808
+ # Setting parameters for nonlinear transformation
809
+ self.data['NonLinearTransformationParam'] = {}
810
+
811
+ # Getting total number of non-linear combinations
812
+ total_combinations = self._process_single_input(
813
+ input("\nEnter number of non-linear combination you want to make: "), 'int')
814
+ for num in range(1, total_combinations+1):
815
+ print(f"\nProvide the details for non-linear combination {num}:")
816
+ # Creating combination name and setting parameters for each combination
817
+ combination = "Combination_"+str(num)
818
+ self.data['NonLinearTransformationParam'][combination] = {}
819
+ target_columns = self._process_list_input(
820
+ input(f"\nEnter the list of target feature/s for non-linear combination {num}: "))
821
+ self.data['NonLinearTransformationParam'][combination]["target_columns"] = target_columns
822
+
823
+ formula = self._process_single_input(
824
+ input(f"\nEnter the formula for non-linear combination {num}: "))
825
+ self.data['NonLinearTransformationParam'][combination]["formula"] = formula
826
+
827
+ result_column = self._process_single_input(
828
+ input(f"\nEnter the resultant feature for non-linear combination {num}: "))
829
+ self.data['NonLinearTransformationParam'][combination]["result_column"] = result_column
830
+
831
+ print("\nCustomization of nonlinear transformation has been completed successfully.")
832
+
833
+ def _get_customize_input_antiselect(self,
834
+ first_execution_flag=False):
835
+ """
836
+ DESCRIPTION:
837
+ Function takes user input to generate custom json paramaters for antiselect features.
838
+
839
+ PARAMETERS:
840
+ first_execution_flag:
841
+ Optional Argument.
842
+ Specifies the flag to check if the function is called for the first time.
843
+ Default Value: False
844
+ Types: bool
845
+ """
846
+ if first_execution_flag:
847
+ print("\nWARNING : Reinitiated nonlinear antiselect customization. "
848
+ "Overwriting the previous input.")
849
+
850
+ print("\nCustomizing Antiselect Features ...")
851
+ # Setting indicator and parameter for antiselect
852
+ self.data['AntiselectIndicator'] = True
853
+ self.data['AntiselectParam'] = self._process_list_input(
854
+ input("\nEnter the feature or list of features for antiselect: "))
855
+
856
+ print("\nCustomization of antiselect features has been completed successfully.")
857
+
858
+ def _get_customize_input_train_test_split(self,
859
+ first_execution_flag=False):
860
+ """
861
+ DESCRIPTION:
862
+ Function takes user input to generate custom json paramaters for train test split.
863
+
864
+ PARAMETERS:
865
+ first_execution_flag:
866
+ Optional Argument.
867
+ Specifies the flag to check if the function is called for the first time.
868
+ Default Value: False
869
+ Types: bool
870
+ """
871
+ if first_execution_flag:
872
+ print("\nWARNING : Reinitiated train test split customization. "
873
+ "Overwriting the previous input.")
874
+
875
+ print("\nCustomizing Train Test Split ...")
876
+ # Setting indicator and parameter for customizing train test split
877
+ self.data['TrainTestSplitIndicator'] = True
878
+ self.data['TrainingSize']= self._process_single_input(
879
+ input("\nEnter the train size for train test split: "), 'float')
880
+
881
+ print("\nCustomization of train test split has been completed successfully.")
882
+
883
+ def _get_customize_input_data_imbalance_handling(self,
884
+ first_execution_flag):
885
+ """
886
+ DESCRIPTION:
887
+ Function takes user input to generate custom json paramaters for data imbalance handling.
888
+
889
+ """
890
+ if first_execution_flag:
891
+ print("\nWARNING : Reinitiated data imbalance handling customization. "
892
+ "Overwriting the previous input.")
893
+
894
+ print("\nCustomizing Data Imbalance Handling ...")
895
+ # Setting indicator for data imbalance handling
896
+ self.data['DataImbalanceIndicator'] = True
897
+ sampling_methods = {1: 'SMOTE',
898
+ 2: 'NearMiss'}
899
+ print("\nAvailable data sampling methods with corresponding indices:")
900
+ for index, method in sampling_methods.items():
901
+ print(f"Index {index}: {method}")
902
+
903
+ sampling_mthd_idx = self._process_single_input(
904
+ input("\nEnter the corresponding index data imbalance handling method: "),
905
+ 'int', list(sampling_methods.keys()))
906
+ # Setting parameters for data imbalance handling
907
+ self.data['DataImbalanceMethod'] = sampling_methods[sampling_mthd_idx]
908
+
909
+ print("\nCustomization of data imbalance handling has been completed successfully.")
910
+
911
+
912
+ def _get_customize_input_outlier_handling(self,
913
+ first_execution_flag=False):
914
+ """
915
+ DESCRIPTION:
916
+ Function takes user input to generate custom json paramaters for outlier handling.
917
+
918
+ PARAMETERS:
919
+ first_execution_flag:
920
+ Optional Argument.
921
+ Specifies the flag to check if the function is called for the first time.
922
+ Default Value: False
923
+ Types: bool
924
+
925
+ """
926
+ if first_execution_flag:
927
+ print("\nWARNING : Reinitiated outlier handling customization. "
928
+ "Overwriting the previous input.")
929
+ keys_to_remove = ['OutlierLowerPercentile', 'OutlierUpperPercentile']
930
+ for key in keys_to_remove:
931
+ if key in self.data:
932
+ del self.data[key]
933
+
934
+
935
+ print("\nCustomizing Outlier Handling ...")
936
+ # Setting indicator for outlier handling
937
+ self.data['OutlierFilterIndicator'] = True
938
+ outlier_methods = {1: 'percentile',
939
+ 2: 'tukey',
940
+ 3: 'carling'}
941
+ print("\nAvailable outlier detection methods with corresponding indices:")
942
+ for index, method in outlier_methods.items():
943
+ print(f"Index {index}: {method}")
944
+
945
+ # Setting parameters for outlier handling
946
+ outlier_mthd_idx = self._process_single_input(
947
+ input("\nEnter the corresponding index oulier handling method: "),
948
+ 'int', list(outlier_methods.keys()))
949
+
950
+ self.data['OutlierFilterMethod'] = outlier_methods[outlier_mthd_idx]
951
+ # Setting parameters specific to method 'percentile'
952
+ if outlier_mthd_idx == 1:
953
+ self.data['OutlierLowerPercentile'] = self._process_single_input(
954
+ input("\nEnter the lower percentile value for outlier handling: "), 'float')
955
+ self.data['OutlierUpperPercentile'] = self._process_single_input(
956
+ input("\nEnter the upper percentile value for outlier handling: "), 'float')
957
+
958
+ # Setting parameters for outlier filteration
959
+ self.data['OutlierFilterParam'] = {}
960
+ outlier_list = self._process_list_input(
961
+ input("\nEnter the feature or list of features for outlier handling: "))
962
+
963
+ replacement_method = {
964
+ 1: 'delete',
965
+ 2: 'median',
966
+ 3: 'Any Numeric Value'
967
+ }
968
+
969
+ print("\nAvailable outlier replacement methods with corresponding indices:")
970
+ for index, value in replacement_method.items():
971
+ print(f"Index {index}: {value}")
972
+
973
+ # Setting parameters specific to each feature
974
+ for feature in outlier_list:
975
+ self.data['OutlierFilterParam'][feature] = {}
976
+ replacement_method_idx = self._process_single_input(
977
+ input(f"\nEnter the index of corresponding replacement method for feature {feature}: "),
978
+ 'int', list(replacement_method.keys()))
979
+
980
+ if replacement_method_idx != 3:
981
+ # Setting replacement method specific to each feature
982
+ self.data['OutlierFilterParam'][feature]["replacement_value"] = replacement_method[replacement_method_idx]
983
+ else:
984
+ replacement_value_types = {1: 'int',
985
+ 2: 'float'}
986
+ print("\nAvailable outlier replacement value types with corresponding indices:")
987
+ for index, value in replacement_value_types.items():
988
+ print(f"Index {index}: {value}")
989
+
990
+ replacement_value = input(f"\nEnter the replacement value for handling outlier for feature {feature}: ")
991
+
992
+ value_type_idx = self._process_single_input(
993
+ input(f"\nEnter the index of corresponding replacement value type for feature {feature}: "),
994
+ 'int', list(replacement_value_types.keys()))
995
+
996
+ # Setting replacement_value specific to each feature
997
+ self.data['OutlierFilterParam'][feature]["replacement_value"] = \
998
+ self._process_single_input(replacement_value, replacement_value_types[value_type_idx])
999
+
1000
+ print("\nCustomization of outlier handling has been completed successfully.")
1001
+
1002
+ def _get_customize_input_feature_scaling(self,
1003
+ first_execution_flag=False):
1004
+ """
1005
+ DESCRIPTION:
1006
+ Function takes user input to generate custom json paramaters for feature scaling.
1007
+
1008
+ PARAMETERS:
1009
+ first_execution_flag:
1010
+ Optional Argument.
1011
+ Specifies the flag to check if the function is called for the first time.
1012
+ Default Value: False
1013
+ Types: bool
1014
+
1015
+ """
1016
+ if first_execution_flag:
1017
+ print("\nWARNING : Reinitiated feature scaling customization. "
1018
+ "Overwriting the previous input.")
1019
+
1020
+ # Setting indicator for feature scaling
1021
+ self.data['FeatureScalingIndicator'] = True
1022
+ scaling_methods = {1: 'maxabs',
1023
+ 2: 'mean',
1024
+ 3: 'midrange',
1025
+ 4: 'range',
1026
+ 5: 'rescale',
1027
+ 6: 'std',
1028
+ 7: 'sum',
1029
+ 8: 'ustd'}
1030
+ # Displaying available methods for scaling
1031
+ print("\nAvailable feature scaling methods with corresponding indices:")
1032
+ for index, value in scaling_methods.items():
1033
+ print(f"Index {index}: {value}")
1034
+
1035
+ # Setting parameters for feature scaling
1036
+ scaling_methods_idx = self._process_single_input(
1037
+ input("\nEnter the corresponding index feature scaling method: "),
1038
+ 'int', list(scaling_methods.keys()))
1039
+
1040
+ # Handling for 'rescale' method
1041
+ if scaling_methods_idx != 5:
1042
+ self.data['FeatureScalingMethod'] = scaling_methods[scaling_methods_idx]
1043
+ else:
1044
+ rescaling_params = {
1045
+ 1: 'lower-bound',
1046
+ 2: 'upper-bound'
1047
+ }
1048
+ # Displaying available params for rescaling
1049
+ print("\nAvailable parameters required for rescaling with corresponding indices :")
1050
+ for index, value in rescaling_params.items():
1051
+ print(f"Index {index}: {value}")
1052
+
1053
+ rescaling_params_type = {1: 'int',
1054
+ 2: 'float'}
1055
+ # Displaying available params types for rescaling
1056
+ print("\nAvailable value types for rescaling params with corresponding indices:")
1057
+ for index, param_type in rescaling_params_type.items():
1058
+ print(f"Index {index}: {param_type}")
1059
+ scaling_param_idx_list = self._process_list_input(
1060
+ input("\nEnter the list of parameter indices for performing rescaling : "),
1061
+ 'int', list(rescaling_params.keys()))
1062
+ # Setting parameters for lower bound and upper bound
1063
+ lb = 0
1064
+ ub = 0
1065
+ for param_idx in scaling_param_idx_list:
1066
+ # Taking required input for lower bound
1067
+ if param_idx == 1:
1068
+ lower_bound = input("\nEnter value for lower bound :")
1069
+ value_type_idx = self._process_single_input(
1070
+ input("\nEnter the index of corresponding value type of lower bound :"),
1071
+ 'int', list(rescaling_params_type.keys()))
1072
+ lb = self._process_single_input(lower_bound, rescaling_params_type[value_type_idx])
1073
+ # Taking required input for upper bound
1074
+ elif param_idx == 2:
1075
+ upper_bound = input("\nEnter value for upper bound :")
1076
+ value_type_idx = self._process_single_input(
1077
+ input("\nEnter the index of corresponding value type of upper bound :"),
1078
+ 'int', list(rescaling_params_type.keys()))
1079
+ ub = self._process_single_input(upper_bound, rescaling_params_type[value_type_idx])
1080
+ # Creating string structure of 'rescale' method as per user input
1081
+ if lb and ub:
1082
+ scale_method = f'rescale(lb={lb}, ub={ub})'
1083
+ elif lb:
1084
+ scale_method = f'rescale(lb={lb})'
1085
+ elif ub:
1086
+ scale_method = f'rescale(ub={ub})'
1087
+ # Setting parameters for feature scaling
1088
+ self.data['FeatureScalingMethod'] = scale_method
1089
+
1090
+ print("\nCustomization of feature scaling has been completed successfully.")
1091
+
1092
+ def _get_allowed_hyperparameters(self, model_name):
1093
+ """
1094
+ DESCRIPTION:
1095
+ Function to get allowed hyperparameters for different models.
1096
+
1097
+ PARAMETERS:
1098
+ model_name:
1099
+ Required Argument.
1100
+ Specifies the model for which allowed hyperparameters are required.
1101
+ Types: str.
1102
+
1103
+ RETURNS:
1104
+ Allowed hyperparameters for model.
1105
+ """
1106
+ # Setting allowed common hyperparameters for tree like model
1107
+ allowed_common_hyperparameters_tree_model ={
1108
+ 1 : 'min_impurity',
1109
+ 2 : 'max_depth',
1110
+ 3 : 'min_node_size',
1111
+ }
1112
+ # Setting allowed hyperparameters for xgbooost model
1113
+ allowed_hyperparameters_xgboost = {
1114
+ **allowed_common_hyperparameters_tree_model,
1115
+ 4 : 'shrinkage_factor',
1116
+ 5 : 'iter_num'
1117
+ }
1118
+ # Setting allowed hyperparameters for decision forest model
1119
+ allowed_hyperparameters_decision_forest = {
1120
+ **allowed_common_hyperparameters_tree_model,
1121
+ 4 : 'num_trees'
1122
+ }
1123
+ # Setting allowed hyperparameters for knn model
1124
+ allowed_hyperparameters_knn = {
1125
+ 0 : 'k'
1126
+ }
1127
+ # Setting allowed hyperparameters for svm model
1128
+ allowed_hyperparameters_svm = {
1129
+ 1 : 'alpha',
1130
+ 2 : 'learning_rate',
1131
+ 3 : 'initial_eta',
1132
+ 4 : 'momentum',
1133
+ 5 : 'iter_num_no_change',
1134
+ 6 : 'iter_max',
1135
+ 7 : 'batch_size'
1136
+ }
1137
+ # Setting allowed hyperparameters for glm model
1138
+ allowed_hyperparameters_glm = {
1139
+ **allowed_hyperparameters_svm,
1140
+ 8 : 'tolerance',
1141
+ 9 : 'nesterov',
1142
+ 10 : 'intercept',
1143
+ 11 : 'local_sgd_iterations'
1144
+ }
1145
+ # Setting allowed hyperparameters for different models
1146
+ allowed_hyperparameters = {
1147
+ 'xgboost' : allowed_hyperparameters_xgboost,
1148
+ 'decision_forest' : allowed_hyperparameters_decision_forest,
1149
+ 'knn' : allowed_hyperparameters_knn,
1150
+ 'svm' : allowed_hyperparameters_svm,
1151
+ 'glm' : allowed_hyperparameters_glm
1152
+ }
1153
+ return allowed_hyperparameters[model_name]
1154
+
1155
+ def _get_allowed_hyperparameters_types(self, hyperparameter):
1156
+ """
1157
+ DESCRIPTION:
1158
+ Function to map allowed hyperparameter types for different hyperparameters.
1159
+
1160
+ PARAMETERS:
1161
+ hyperparameter:
1162
+ Required Argument.
1163
+ Specifies the hyperparamter for which allowed types are required.
1164
+ Types: str.
1165
+
1166
+ RETURNS:
1167
+ Allowed hyperparameters types for hyperparameter.
1168
+ """
1169
+ # Setting allowed hyperparameters types for different hyperparameters
1170
+ allowed_hyperparameters_types = {
1171
+ 'min_impurity' : 'float',
1172
+ 'max_depth' : 'int',
1173
+ 'min_node_size' : 'int',
1174
+ 'shrinkage_factor' : 'float',
1175
+ 'iter_num' : 'int',
1176
+ 'num_trees' : 'int',
1177
+ 'k' : 'int',
1178
+ 'alpha' : 'float',
1179
+ 'learning_rate' : 'str',
1180
+ 'initial_eta' : 'float',
1181
+ 'momentum' : 'float',
1182
+ 'iter_num_no_change' : 'int',
1183
+ 'iter_max' : 'int',
1184
+ 'batch_size' : 'int',
1185
+ 'tolerance' : 'float',
1186
+ 'nesterov' : 'bool',
1187
+ 'intercept' : 'bool',
1188
+ 'local_sgd_iterations' : 'int'
1189
+ }
1190
+ return allowed_hyperparameters_types[hyperparameter]
1191
+
1192
+ def _get_customize_input_model_hyperparameter(self,
1193
+ first_execution_flag):
1194
+ """
1195
+ DESCRIPTION:
1196
+ Function takes user input to generate custom json paramaters for model hyperparameter.
1197
+
1198
+ PARAMETERS:
1199
+ first_execution_flag:
1200
+ Required Argument.
1201
+ Specifies the flag to check if the function is called for the first time.
1202
+ Types: bool.
1203
+
1204
+ """
1205
+ if first_execution_flag:
1206
+ print("\nWARNING : Reinitiated model hyperparameter customization. "
1207
+ "Overwriting the previous input.")
1208
+
1209
+ print("\nCustomizing Model Hyperparameter ...")
1210
+ # Setting indicator for model hyperparameter tuning
1211
+ self.data['HyperparameterTuningIndicator'] = True
1212
+ self.data['HyperparameterTuningParam'] = {}
1213
+ all_models = {1: 'decision_forest',
1214
+ 2: 'xgboost',
1215
+ 3: 'knn',
1216
+ 4: 'glm',
1217
+ 5: 'svm'}
1218
+ # Displaying available models for hyperparameter tuning
1219
+ print("\nAvailable models for hyperparameter tuning with corresponding indices:")
1220
+ for index, model in all_models.items():
1221
+ print(f"Index {index}: {model}")
1222
+
1223
+ update_methods = {1: 'ADD',
1224
+ 2: 'REPLACE'}
1225
+ # Displaying available update methods for hyperparameter tuning
1226
+ print("\nAvailable hyperparamters update methods with corresponding indices:")
1227
+ for index, method in update_methods.items():
1228
+ print(f"Index {index}: {method}")
1229
+
1230
+ # Getting list of models for hyperparameter tuning
1231
+ model_idx_list = self._process_list_input(
1232
+ input("\nEnter the list of model indices for performing hyperparameter tuning: "),
1233
+ 'int', list(all_models.keys()))
1234
+
1235
+ for model_index in model_idx_list:
1236
+ # Setting parameters for hyperparameter tuning specific to each model
1237
+ model_name = all_models[model_index]
1238
+ self.data['HyperparameterTuningParam'][model_name] = {}
1239
+
1240
+ # Getting list of hyperparameters for each model
1241
+ allowed_hyperparameters = self._get_allowed_hyperparameters(model_name)
1242
+ print(f"\nAvailable hyperparameters for model '{model_name}' with corresponding indices:")
1243
+ for index, hyperparameter in allowed_hyperparameters.items():
1244
+ print(f"Index {index}: {hyperparameter}")
1245
+
1246
+ model_hyperparameter_list_idx = self._process_list_input(
1247
+ input(f"\nEnter the list of hyperparameter indices for model '{model_name}': "),
1248
+ 'int', list(allowed_hyperparameters.keys()))
1249
+
1250
+ # Setting parameters for each hyperparameter of model
1251
+ for hyperparameter in model_hyperparameter_list_idx:
1252
+ hyperparameter_name = allowed_hyperparameters[hyperparameter]
1253
+ self.data['HyperparameterTuningParam'][model_name][hyperparameter_name] = {}
1254
+ method_idx = self._process_single_input(
1255
+ input(f"\nEnter the index of corresponding update method for hyperparameters "
1256
+ f"'{hyperparameter_name}' for model '{model_name}': "), 'int', list(update_methods.keys()))
1257
+ # Setting update method for hyperparameter
1258
+ self.data['HyperparameterTuningParam'][model_name][hyperparameter_name]["Method"] = \
1259
+ update_methods[method_idx]
1260
+
1261
+ hyperparameter_value = input(f"\nEnter the list of value for hyperparameter "
1262
+ f"'{hyperparameter_name}' for model '{model_name}': ")
1263
+
1264
+ hyperparameter_type = self._get_allowed_hyperparameters_types(hyperparameter_name)
1265
+
1266
+ # Setting hyperparameter value specific to each hyperparameter
1267
+ self.data['HyperparameterTuningParam'][model_name][hyperparameter_name]["Value"] = \
1268
+ self._process_list_input(hyperparameter_value, hyperparameter_type)
1269
+
1270
+ print("\nCustomization of model hyperparameter has been completed successfully.")