teradataml 17.20.0.7__py3-none-any.whl → 20.0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +1935 -1640
- teradataml/__init__.py +70 -60
- teradataml/_version.py +11 -11
- teradataml/analytics/Transformations.py +2995 -2995
- teradataml/analytics/__init__.py +81 -83
- teradataml/analytics/analytic_function_executor.py +2040 -2010
- teradataml/analytics/analytic_query_generator.py +958 -958
- teradataml/analytics/byom/H2OPredict.py +514 -514
- teradataml/analytics/byom/PMMLPredict.py +437 -437
- teradataml/analytics/byom/__init__.py +14 -14
- teradataml/analytics/json_parser/__init__.py +130 -130
- teradataml/analytics/json_parser/analytic_functions_argument.py +1707 -1707
- teradataml/analytics/json_parser/json_store.py +191 -191
- teradataml/analytics/json_parser/metadata.py +1637 -1637
- teradataml/analytics/json_parser/utils.py +798 -803
- teradataml/analytics/meta_class.py +196 -196
- teradataml/analytics/sqle/DecisionTreePredict.py +455 -470
- teradataml/analytics/sqle/NaiveBayesPredict.py +419 -428
- teradataml/analytics/sqle/__init__.py +97 -110
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -78
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -62
- teradataml/analytics/table_operator/__init__.py +10 -10
- teradataml/analytics/uaf/__init__.py +63 -63
- teradataml/analytics/utils.py +693 -692
- teradataml/analytics/valib.py +1603 -1600
- teradataml/automl/__init__.py +1683 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +1011 -0
- teradataml/automl/data_transformation.py +789 -0
- teradataml/automl/feature_engineering.py +1580 -0
- teradataml/automl/feature_exploration.py +554 -0
- teradataml/automl/model_evaluation.py +151 -0
- teradataml/automl/model_training.py +1026 -0
- teradataml/catalog/__init__.py +1 -3
- teradataml/catalog/byom.py +1759 -1716
- teradataml/catalog/function_argument_mapper.py +859 -861
- teradataml/catalog/model_cataloging_utils.py +491 -1510
- teradataml/clients/auth_client.py +133 -0
- teradataml/clients/pkce_client.py +481 -481
- teradataml/common/aed_utils.py +7 -2
- teradataml/common/bulk_exposed_utils.py +111 -111
- teradataml/common/constants.py +1438 -1441
- teradataml/common/deprecations.py +160 -0
- teradataml/common/exceptions.py +73 -73
- teradataml/common/formula.py +742 -742
- teradataml/common/garbagecollector.py +597 -635
- teradataml/common/messagecodes.py +424 -431
- teradataml/common/messages.py +228 -231
- teradataml/common/sqlbundle.py +693 -693
- teradataml/common/td_coltype_code_to_tdtype.py +48 -48
- teradataml/common/utils.py +2424 -2500
- teradataml/common/warnings.py +25 -25
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/config/dummy_file1.cfg +4 -4
- teradataml/config/dummy_file2.cfg +2 -2
- teradataml/config/sqlengine_alias_definitions_v1.0 +13 -13
- teradataml/config/sqlengine_alias_definitions_v1.1 +19 -19
- teradataml/config/sqlengine_alias_definitions_v1.3 +18 -18
- teradataml/context/aed_context.py +217 -217
- teradataml/context/context.py +1091 -999
- teradataml/data/A_loan.csv +19 -19
- teradataml/data/BINARY_REALS_LEFT.csv +11 -11
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -11
- teradataml/data/B_loan.csv +49 -49
- teradataml/data/BuoyData2.csv +17 -17
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -5
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -5
- teradataml/data/Convolve2RealsLeft.csv +5 -5
- teradataml/data/Convolve2RealsRight.csv +5 -5
- teradataml/data/Convolve2ValidLeft.csv +11 -11
- teradataml/data/Convolve2ValidRight.csv +11 -11
- teradataml/data/DFFTConv_Real_8_8.csv +65 -65
- teradataml/data/Orders1_12mf.csv +24 -24
- teradataml/data/Pi_loan.csv +7 -7
- teradataml/data/SMOOTHED_DATA.csv +7 -7
- teradataml/data/TestDFFT8.csv +9 -9
- teradataml/data/TestRiver.csv +109 -109
- teradataml/data/Traindata.csv +28 -28
- teradataml/data/acf.csv +17 -17
- teradataml/data/adaboost_example.json +34 -34
- teradataml/data/adaboostpredict_example.json +24 -24
- teradataml/data/additional_table.csv +10 -10
- teradataml/data/admissions_test.csv +21 -21
- teradataml/data/admissions_train.csv +41 -41
- teradataml/data/admissions_train_nulls.csv +41 -41
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -13
- teradataml/data/ageandpressure.csv +31 -31
- teradataml/data/antiselect_example.json +36 -36
- teradataml/data/antiselect_input.csv +8 -8
- teradataml/data/antiselect_input_mixed_case.csv +8 -8
- teradataml/data/applicant_external.csv +6 -6
- teradataml/data/applicant_reference.csv +6 -6
- teradataml/data/arima_example.json +9 -9
- teradataml/data/assortedtext_input.csv +8 -8
- teradataml/data/attribution_example.json +33 -33
- teradataml/data/attribution_sample_table.csv +27 -27
- teradataml/data/attribution_sample_table1.csv +6 -6
- teradataml/data/attribution_sample_table2.csv +11 -11
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +42 -42
- teradataml/data/bank_web_clicks2.csv +91 -91
- teradataml/data/bank_web_url.csv +85 -85
- teradataml/data/barrier.csv +2 -2
- teradataml/data/barrier_new.csv +3 -3
- teradataml/data/betweenness_example.json +13 -13
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -8
- teradataml/data/bin_fit_ip.csv +3 -3
- teradataml/data/binary_complex_left.csv +11 -11
- teradataml/data/binary_complex_right.csv +11 -11
- teradataml/data/binary_matrix_complex_left.csv +21 -21
- teradataml/data/binary_matrix_complex_right.csv +21 -21
- teradataml/data/binary_matrix_real_left.csv +21 -21
- teradataml/data/binary_matrix_real_right.csv +21 -21
- teradataml/data/blood2ageandweight.csv +26 -26
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -507
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -11
- teradataml/data/burst_data.csv +5 -5
- teradataml/data/burst_example.json +20 -20
- teradataml/data/byom_example.json +17 -17
- teradataml/data/bytes_table.csv +3 -3
- teradataml/data/cal_housing_ex_raw.csv +70 -70
- teradataml/data/callers.csv +7 -7
- teradataml/data/calls.csv +10 -10
- teradataml/data/cars_hist.csv +33 -33
- teradataml/data/cat_table.csv +24 -24
- teradataml/data/ccm_example.json +31 -31
- teradataml/data/ccm_input.csv +91 -91
- teradataml/data/ccm_input2.csv +13 -13
- teradataml/data/ccmexample.csv +101 -101
- teradataml/data/ccmprepare_example.json +8 -8
- teradataml/data/ccmprepare_input.csv +91 -91
- teradataml/data/cfilter_example.json +12 -12
- teradataml/data/changepointdetection_example.json +18 -18
- teradataml/data/changepointdetectionrt_example.json +8 -8
- teradataml/data/chi_sq.csv +2 -2
- teradataml/data/churn_data.csv +14 -14
- teradataml/data/churn_emission.csv +35 -35
- teradataml/data/churn_initial.csv +3 -3
- teradataml/data/churn_state_transition.csv +5 -5
- teradataml/data/citedges_2.csv +745 -745
- teradataml/data/citvertices_2.csv +1210 -1210
- teradataml/data/clicks2.csv +16 -16
- teradataml/data/clickstream.csv +12 -12
- teradataml/data/clickstream1.csv +11 -11
- teradataml/data/closeness_example.json +15 -15
- teradataml/data/complaints.csv +21 -21
- teradataml/data/complaints_mini.csv +3 -3
- teradataml/data/complaints_testtoken.csv +224 -224
- teradataml/data/complaints_tokens_test.csv +353 -353
- teradataml/data/complaints_traintoken.csv +472 -472
- teradataml/data/computers_category.csv +1001 -1001
- teradataml/data/computers_test1.csv +1252 -1252
- teradataml/data/computers_train1.csv +5009 -5009
- teradataml/data/computers_train1_clustered.csv +5009 -5009
- teradataml/data/confusionmatrix_example.json +9 -9
- teradataml/data/conversion_event_table.csv +3 -3
- teradataml/data/corr_input.csv +17 -17
- teradataml/data/correlation_example.json +11 -11
- teradataml/data/coxhazardratio_example.json +39 -39
- teradataml/data/coxph_example.json +15 -15
- teradataml/data/coxsurvival_example.json +28 -28
- teradataml/data/cpt.csv +41 -41
- teradataml/data/credit_ex_merged.csv +45 -45
- teradataml/data/customer_loyalty.csv +301 -301
- teradataml/data/customer_loyalty_newseq.csv +31 -31
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +146 -146
- teradataml/data/decisionforest_example.json +37 -37
- teradataml/data/decisionforestpredict_example.json +38 -38
- teradataml/data/decisiontree_example.json +21 -21
- teradataml/data/decisiontreepredict_example.json +45 -45
- teradataml/data/dfft2_size4_real.csv +17 -17
- teradataml/data/dfft2_test_matrix16.csv +17 -17
- teradataml/data/dfft2conv_real_4_4.csv +65 -65
- teradataml/data/diabetes.csv +443 -443
- teradataml/data/diabetes_test.csv +89 -89
- teradataml/data/dict_table.csv +5 -5
- teradataml/data/docperterm_table.csv +4 -4
- teradataml/data/docs/__init__.py +1 -1
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -180
- teradataml/data/docs/byom/docs/DataikuPredict.py +177 -177
- teradataml/data/docs/byom/docs/H2OPredict.py +324 -324
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -283
- teradataml/data/docs/byom/docs/PMMLPredict.py +277 -277
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +199 -199
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -130
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +95 -95
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -139
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +151 -151
- teradataml/data/docs/sqle/docs_17_10/FTest.py +160 -160
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_10/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +84 -84
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +81 -81
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +164 -164
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_10/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -176
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +134 -132
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -103
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +165 -165
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -101
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -102
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +109 -109
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -197
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -98
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -98
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -104
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -155
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -126
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +200 -200
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +171 -171
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -138
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -86
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -90
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -166
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +85 -85
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +245 -243
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +279 -279
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +135 -135
- teradataml/data/docs/sqle/docs_17_20/FTest.py +239 -160
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +82 -82
- teradataml/data/docs/sqle/docs_17_20/Fit.py +87 -87
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -380
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +414 -414
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -144
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -234
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -123
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +105 -105
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +223 -223
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -204
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -143
- teradataml/data/docs/sqle/docs_17_20/KNN.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -134
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +208 -208
- teradataml/data/docs/sqle/docs_17_20/NPath.py +265 -265
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -176
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +126 -126
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +118 -117
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -112
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -147
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -307
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -184
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +230 -225
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -115
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +219 -219
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -127
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +189 -189
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -112
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -128
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +111 -111
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -111
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +104 -104
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -163
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +154 -154
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -106
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -120
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -211
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +108 -108
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +117 -117
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -110
- teradataml/data/docs/sqle/docs_17_20/SVM.py +413 -413
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -202
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -197
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -109
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -206
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +113 -113
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +152 -152
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -116
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -108
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -187
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +145 -145
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -207
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -171
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +266 -266
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -140
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +172 -172
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +159 -159
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -123
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +141 -141
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -214
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +168 -168
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -83
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +236 -236
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +361 -353
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -275
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -155
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +429 -429
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +428 -428
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +347 -347
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +439 -439
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +386 -386
- teradataml/data/docs/uaf/docs_17_20/ACF.py +195 -195
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +369 -369
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +159 -159
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +247 -247
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -252
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +177 -177
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +174 -174
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +226 -226
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +203 -203
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +215 -215
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +191 -191
- teradataml/data/docs/uaf/docs_17_20/DTW.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +144 -144
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +183 -183
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +184 -184
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -172
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +205 -205
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +142 -142
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +258 -258
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +164 -164
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +198 -198
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +120 -120
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +155 -155
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +214 -214
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +133 -133
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +135 -135
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +190 -190
- teradataml/data/docs/uaf/docs_17_20/PACF.py +158 -158
- teradataml/data/docs/uaf/docs_17_20/Portman.py +216 -216
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +154 -154
- teradataml/data/docs/uaf/docs_17_20/Resample.py +228 -228
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +122 -122
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +165 -165
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +173 -173
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +170 -170
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +163 -163
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +179 -179
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +207 -207
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +150 -150
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -171
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +201 -201
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +169 -169
- teradataml/data/dtw_example.json +17 -17
- teradataml/data/dtw_t1.csv +11 -11
- teradataml/data/dtw_t2.csv +4 -4
- teradataml/data/dwt2d_example.json +15 -15
- teradataml/data/dwt_example.json +14 -14
- teradataml/data/dwt_filter_dim.csv +5 -5
- teradataml/data/emission.csv +9 -9
- teradataml/data/emp_table_by_dept.csv +19 -19
- teradataml/data/employee_info.csv +4 -4
- teradataml/data/employee_table.csv +6 -6
- teradataml/data/excluding_event_table.csv +2 -2
- teradataml/data/finance_data.csv +6 -6
- teradataml/data/finance_data2.csv +61 -61
- teradataml/data/finance_data3.csv +93 -93
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -26
- teradataml/data/fmeasure_example.json +11 -11
- teradataml/data/followers_leaders.csv +10 -10
- teradataml/data/fpgrowth_example.json +12 -12
- teradataml/data/frequentpaths_example.json +29 -29
- teradataml/data/friends.csv +9 -9
- teradataml/data/fs_input.csv +33 -33
- teradataml/data/fs_input1.csv +33 -33
- teradataml/data/genData.csv +513 -513
- teradataml/data/geodataframe_example.json +39 -39
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -12
- teradataml/data/glm_example.json +56 -29
- teradataml/data/glml1l2_example.json +28 -28
- teradataml/data/glml1l2predict_example.json +54 -54
- teradataml/data/glmpredict_example.json +54 -54
- teradataml/data/gq_t1.csv +21 -21
- teradataml/data/hconvolve_complex_right.csv +5 -5
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -5
- teradataml/data/histogram_example.json +11 -11
- teradataml/data/hmmdecoder_example.json +78 -78
- teradataml/data/hmmevaluator_example.json +24 -24
- teradataml/data/hmmsupervised_example.json +10 -10
- teradataml/data/hmmunsupervised_example.json +7 -7
- teradataml/data/house_values.csv +12 -12
- teradataml/data/house_values2.csv +13 -13
- teradataml/data/housing_cat.csv +7 -7
- teradataml/data/housing_data.csv +9 -9
- teradataml/data/housing_test.csv +47 -47
- teradataml/data/housing_test_binary.csv +47 -47
- teradataml/data/housing_train.csv +493 -493
- teradataml/data/housing_train_attribute.csv +4 -4
- teradataml/data/housing_train_binary.csv +437 -437
- teradataml/data/housing_train_parameter.csv +2 -2
- teradataml/data/housing_train_response.csv +493 -493
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -370
- teradataml/data/ibm_stock1.csv +370 -370
- teradataml/data/identitymatch_example.json +21 -21
- teradataml/data/idf_table.csv +4 -4
- teradataml/data/impressions.csv +101 -101
- teradataml/data/inflation.csv +21 -21
- teradataml/data/initial.csv +3 -3
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +12 -12
- teradataml/data/insurance.csv +1339 -1339
- teradataml/data/interpolator_example.json +12 -12
- teradataml/data/iris_altinput.csv +481 -481
- teradataml/data/iris_attribute_output.csv +8 -8
- teradataml/data/iris_attribute_test.csv +121 -121
- teradataml/data/iris_attribute_train.csv +481 -481
- teradataml/data/iris_category_expect_predict.csv +31 -31
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -151
- teradataml/data/iris_response_train.csv +121 -121
- teradataml/data/iris_test.csv +31 -31
- teradataml/data/iris_train.csv +121 -121
- teradataml/data/join_table1.csv +4 -4
- teradataml/data/join_table2.csv +4 -4
- teradataml/data/jsons/anly_function_name.json +6 -6
- teradataml/data/jsons/byom/dataikupredict.json +147 -147
- teradataml/data/jsons/byom/datarobotpredict.json +146 -146
- teradataml/data/jsons/byom/h2opredict.json +194 -194
- teradataml/data/jsons/byom/onnxpredict.json +186 -186
- teradataml/data/jsons/byom/pmmlpredict.json +146 -146
- teradataml/data/jsons/paired_functions.json +435 -435
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -98
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -166
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -156
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -170
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -122
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -136
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -235
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -98
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -162
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -166
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +171 -171
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -368
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -288
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -193
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +68 -68
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -187
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +51 -51
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +132 -132
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +182 -182
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +65 -64
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +196 -196
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -71
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +156 -156
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +70 -69
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -47
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +118 -118
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -171
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -269
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -56
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -249
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -185
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -172
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -151
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -367
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -239
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -149
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -287
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -133
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -192
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -105
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +148 -76
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -239
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +67 -67
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +145 -145
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -53
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -218
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -92
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +259 -259
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -139
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -186
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -46
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -431
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -125
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -411
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -146
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -91
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -76
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -152
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +231 -211
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +86 -86
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -262
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -101
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -71
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +315 -315
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +123 -123
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -271
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -65
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -229
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -217
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -114
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -72
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -111
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +178 -177
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +178 -178
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +73 -73
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -74
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +137 -137
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -93
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +127 -127
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +70 -70
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -389
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -124
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +309 -156
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +119 -70
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +193 -193
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -147
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -48
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -240
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -248
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -75
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +192 -192
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -142
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -117
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +182 -182
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +52 -52
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -241
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -312
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -182
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -170
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -188
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -269
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +197 -197
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +183 -183
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +194 -194
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +182 -182
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +223 -223
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +149 -149
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +409 -409
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +151 -151
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +107 -107
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +87 -87
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +106 -106
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +80 -80
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +148 -148
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -108
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +109 -109
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +86 -86
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +91 -91
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +116 -116
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +38 -38
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +84 -84
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +70 -70
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +152 -152
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECAST.json +313 -313
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +94 -94
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +63 -63
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +181 -181
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +102 -102
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +182 -182
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +66 -66
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +178 -178
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -114
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +118 -118
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -175
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +97 -97
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +173 -173
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +136 -136
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +89 -89
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +79 -79
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +67 -67
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -184
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +57 -57
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +162 -162
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +100 -100
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +111 -111
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -95
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +77 -77
- teradataml/data/kmeans_example.json +22 -17
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +0 -0
- teradataml/data/knn_example.json +18 -18
- teradataml/data/knnrecommender_example.json +6 -6
- teradataml/data/knnrecommenderpredict_example.json +12 -12
- teradataml/data/lar_example.json +17 -17
- teradataml/data/larpredict_example.json +30 -30
- teradataml/data/lc_new_predictors.csv +5 -5
- teradataml/data/lc_new_reference.csv +9 -9
- teradataml/data/lda_example.json +8 -8
- teradataml/data/ldainference_example.json +14 -14
- teradataml/data/ldatopicsummary_example.json +8 -8
- teradataml/data/levendist_input.csv +13 -13
- teradataml/data/levenshteindistance_example.json +10 -10
- teradataml/data/linreg_example.json +9 -9
- teradataml/data/load_example_data.py +326 -323
- teradataml/data/loan_prediction.csv +295 -295
- teradataml/data/lungcancer.csv +138 -138
- teradataml/data/mappingdata.csv +12 -12
- teradataml/data/milk_timeseries.csv +157 -157
- teradataml/data/min_max_titanic.csv +4 -4
- teradataml/data/minhash_example.json +6 -6
- teradataml/data/ml_ratings.csv +7547 -7547
- teradataml/data/ml_ratings_10.csv +2445 -2445
- teradataml/data/model1_table.csv +5 -5
- teradataml/data/model2_table.csv +5 -5
- teradataml/data/models/iris_db_glm_model.pmml +56 -56
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -4471
- teradataml/data/modularity_example.json +12 -12
- teradataml/data/movavg_example.json +7 -7
- teradataml/data/mtx1.csv +7 -7
- teradataml/data/mtx2.csv +13 -13
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -9
- teradataml/data/naivebayes_example.json +9 -9
- teradataml/data/naivebayespredict_example.json +19 -19
- teradataml/data/naivebayestextclassifier2_example.json +6 -6
- teradataml/data/naivebayestextclassifier_example.json +8 -8
- teradataml/data/naivebayestextclassifierpredict_example.json +20 -20
- teradataml/data/name_Find_configure.csv +10 -10
- teradataml/data/namedentityfinder_example.json +14 -14
- teradataml/data/namedentityfinderevaluator_example.json +10 -10
- teradataml/data/namedentityfindertrainer_example.json +6 -6
- teradataml/data/nb_iris_input_test.csv +31 -31
- teradataml/data/nb_iris_input_train.csv +121 -121
- teradataml/data/nbp_iris_model.csv +13 -13
- teradataml/data/ner_extractor_text.csv +2 -2
- teradataml/data/ner_sports_test2.csv +29 -29
- teradataml/data/ner_sports_train.csv +501 -501
- teradataml/data/nerevaluator_example.json +5 -5
- teradataml/data/nerextractor_example.json +18 -18
- teradataml/data/nermem_sports_test.csv +17 -17
- teradataml/data/nermem_sports_train.csv +50 -50
- teradataml/data/nertrainer_example.json +6 -6
- teradataml/data/ngrams_example.json +6 -6
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -1455
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -1993
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -1492
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -536
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -570
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -2559
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -2911
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -698
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -784
- teradataml/data/npath_example.json +23 -23
- teradataml/data/ntree_example.json +14 -14
- teradataml/data/numeric_strings.csv +4 -4
- teradataml/data/numerics.csv +4 -4
- teradataml/data/ocean_buoy.csv +17 -17
- teradataml/data/ocean_buoy2.csv +17 -17
- teradataml/data/ocean_buoys.csv +27 -27
- teradataml/data/ocean_buoys2.csv +10 -10
- teradataml/data/ocean_buoys_nonpti.csv +28 -28
- teradataml/data/ocean_buoys_seq.csv +29 -29
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -4
- teradataml/data/orders1.csv +11 -11
- teradataml/data/orders1_12.csv +12 -12
- teradataml/data/orders_ex.csv +4 -4
- teradataml/data/pack_example.json +8 -8
- teradataml/data/package_tracking.csv +19 -19
- teradataml/data/package_tracking_pti.csv +18 -18
- teradataml/data/pagerank_example.json +13 -13
- teradataml/data/paragraphs_input.csv +6 -6
- teradataml/data/pathanalyzer_example.json +7 -7
- teradataml/data/pathgenerator_example.json +7 -7
- teradataml/data/phrases.csv +7 -7
- teradataml/data/pivot_example.json +8 -8
- teradataml/data/pivot_input.csv +22 -22
- teradataml/data/playerRating.csv +31 -31
- teradataml/data/postagger_example.json +6 -6
- teradataml/data/posttagger_output.csv +44 -44
- teradataml/data/production_data.csv +16 -16
- teradataml/data/production_data2.csv +7 -7
- teradataml/data/randomsample_example.json +31 -31
- teradataml/data/randomwalksample_example.json +8 -8
- teradataml/data/rank_table.csv +6 -6
- teradataml/data/ref_mobile_data.csv +4 -4
- teradataml/data/ref_mobile_data_dense.csv +2 -2
- teradataml/data/ref_url.csv +17 -17
- teradataml/data/restaurant_reviews.csv +7 -7
- teradataml/data/river_data.csv +145 -145
- teradataml/data/roc_example.json +7 -7
- teradataml/data/roc_input.csv +101 -101
- teradataml/data/rule_inputs.csv +6 -6
- teradataml/data/rule_table.csv +2 -2
- teradataml/data/sales.csv +7 -7
- teradataml/data/sales_transaction.csv +501 -501
- teradataml/data/salesdata.csv +342 -342
- teradataml/data/sample_cities.csv +2 -2
- teradataml/data/sample_shapes.csv +10 -10
- teradataml/data/sample_streets.csv +2 -2
- teradataml/data/sampling_example.json +15 -15
- teradataml/data/sax_example.json +8 -8
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -23
- teradataml/data/scale_housing.csv +11 -11
- teradataml/data/scale_housing_test.csv +6 -6
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -11
- teradataml/data/scalebypartition_example.json +13 -13
- teradataml/data/scalemap_example.json +13 -13
- teradataml/data/scalesummary_example.json +12 -12
- teradataml/data/score_category.csv +101 -101
- teradataml/data/score_summary.csv +4 -4
- teradataml/data/script_example.json +9 -9
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +15 -15
- teradataml/data/scripts/mapper_replace.py +15 -15
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +171 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +127 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +108 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +143 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +119 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +171 -0
- teradataml/data/seeds.csv +10 -10
- teradataml/data/sentenceextractor_example.json +6 -6
- teradataml/data/sentiment_extract_input.csv +11 -11
- teradataml/data/sentiment_train.csv +16 -16
- teradataml/data/sentiment_word.csv +20 -20
- teradataml/data/sentiment_word_input.csv +19 -19
- teradataml/data/sentimentextractor_example.json +24 -24
- teradataml/data/sentimenttrainer_example.json +8 -8
- teradataml/data/sequence_table.csv +10 -10
- teradataml/data/seriessplitter_example.json +7 -7
- teradataml/data/sessionize_example.json +17 -17
- teradataml/data/sessionize_table.csv +116 -116
- teradataml/data/setop_test1.csv +24 -24
- teradataml/data/setop_test2.csv +22 -22
- teradataml/data/soc_nw_edges.csv +10 -10
- teradataml/data/soc_nw_vertices.csv +7 -7
- teradataml/data/souvenir_timeseries.csv +167 -167
- teradataml/data/sparse_iris_attribute.csv +5 -5
- teradataml/data/sparse_iris_test.csv +121 -121
- teradataml/data/sparse_iris_train.csv +601 -601
- teradataml/data/star1.csv +6 -6
- teradataml/data/state_transition.csv +5 -5
- teradataml/data/stock_data.csv +53 -53
- teradataml/data/stock_movement.csv +11 -11
- teradataml/data/stock_vol.csv +76 -76
- teradataml/data/stop_words.csv +8 -8
- teradataml/data/store_sales.csv +37 -37
- teradataml/data/stringsimilarity_example.json +7 -7
- teradataml/data/strsimilarity_input.csv +13 -13
- teradataml/data/students.csv +101 -101
- teradataml/data/svm_iris_input_test.csv +121 -121
- teradataml/data/svm_iris_input_train.csv +481 -481
- teradataml/data/svm_iris_model.csv +7 -7
- teradataml/data/svmdense_example.json +9 -9
- teradataml/data/svmdensepredict_example.json +18 -18
- teradataml/data/svmsparse_example.json +7 -7
- teradataml/data/svmsparsepredict_example.json +13 -13
- teradataml/data/svmsparsesummary_example.json +7 -7
- teradataml/data/target_mobile_data.csv +13 -13
- teradataml/data/target_mobile_data_dense.csv +5 -5
- teradataml/data/templatedata.csv +1201 -1201
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +150 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -53
- teradataml/data/test_pacf_12.csv +37 -37
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -109
- teradataml/data/text_inputs.csv +6 -6
- teradataml/data/textchunker_example.json +7 -7
- teradataml/data/textclassifier_example.json +6 -6
- teradataml/data/textclassifier_input.csv +7 -7
- teradataml/data/textclassifiertrainer_example.json +6 -6
- teradataml/data/textmorph_example.json +5 -5
- teradataml/data/textparser_example.json +15 -15
- teradataml/data/texttagger_example.json +11 -11
- teradataml/data/texttokenizer_example.json +6 -6
- teradataml/data/texttrainer_input.csv +11 -11
- teradataml/data/tf_example.json +6 -6
- teradataml/data/tfidf_example.json +13 -13
- teradataml/data/tfidf_input1.csv +201 -201
- teradataml/data/tfidf_train.csv +6 -6
- teradataml/data/time_table1.csv +535 -535
- teradataml/data/time_table2.csv +14 -14
- teradataml/data/timeseriesdata.csv +1601 -1601
- teradataml/data/timeseriesdatasetsd4.csv +105 -105
- teradataml/data/titanic.csv +892 -892
- teradataml/data/token_table.csv +696 -696
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +27 -27
- teradataml/data/transformation_table.csv +5 -5
- teradataml/data/transformation_table_new.csv +1 -1
- teradataml/data/tv_spots.csv +16 -16
- teradataml/data/twod_climate_data.csv +117 -117
- teradataml/data/uaf_example.json +475 -475
- teradataml/data/univariatestatistics_example.json +8 -8
- teradataml/data/unpack_example.json +9 -9
- teradataml/data/unpivot_example.json +9 -9
- teradataml/data/unpivot_input.csv +8 -8
- teradataml/data/us_air_pass.csv +36 -36
- teradataml/data/us_population.csv +624 -624
- teradataml/data/us_states_shapes.csv +52 -52
- teradataml/data/varmax_example.json +17 -17
- teradataml/data/vectordistance_example.json +25 -25
- teradataml/data/ville_climatedata.csv +121 -121
- teradataml/data/ville_tempdata.csv +12 -12
- teradataml/data/ville_tempdata1.csv +12 -12
- teradataml/data/ville_temperature.csv +11 -11
- teradataml/data/waveletTable.csv +1605 -1605
- teradataml/data/waveletTable2.csv +1605 -1605
- teradataml/data/weightedmovavg_example.json +8 -8
- teradataml/data/wft_testing.csv +5 -5
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +5 -5
- teradataml/data/word_embed_input_table2.csv +4 -4
- teradataml/data/word_embed_model.csv +22 -22
- teradataml/data/words_input.csv +13 -13
- teradataml/data/xconvolve_complex_left.csv +6 -6
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -6
- teradataml/data/xgboost_example.json +35 -35
- teradataml/data/xgboostpredict_example.json +31 -31
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +1769 -1698
- teradataml/dataframe/data_transfer.py +2812 -2745
- teradataml/dataframe/dataframe.py +17630 -16946
- teradataml/dataframe/dataframe_utils.py +1875 -1740
- teradataml/dataframe/fastload.py +794 -603
- teradataml/dataframe/indexer.py +424 -424
- teradataml/dataframe/setop.py +1179 -1166
- teradataml/dataframe/sql.py +10174 -6432
- teradataml/dataframe/sql_function_parameters.py +439 -388
- teradataml/dataframe/sql_functions.py +652 -652
- teradataml/dataframe/sql_interfaces.py +220 -220
- teradataml/dataframe/vantage_function_types.py +674 -630
- teradataml/dataframe/window.py +693 -692
- teradataml/dbutils/__init__.py +3 -3
- teradataml/dbutils/dbutils.py +1167 -1150
- teradataml/dbutils/filemgr.py +267 -267
- teradataml/gen_ai/__init__.py +2 -2
- teradataml/gen_ai/convAI.py +472 -472
- teradataml/geospatial/__init__.py +3 -3
- teradataml/geospatial/geodataframe.py +1105 -1094
- teradataml/geospatial/geodataframecolumn.py +392 -387
- teradataml/geospatial/geometry_types.py +925 -925
- teradataml/hyperparameter_tuner/__init__.py +1 -1
- teradataml/hyperparameter_tuner/optimizer.py +3783 -2993
- teradataml/hyperparameter_tuner/utils.py +281 -187
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1715 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +130 -124
- teradataml/options/configure.py +358 -336
- teradataml/options/display.py +176 -176
- teradataml/plot/__init__.py +2 -2
- teradataml/plot/axis.py +1388 -1388
- teradataml/plot/constants.py +15 -15
- teradataml/plot/figure.py +398 -398
- teradataml/plot/plot.py +760 -760
- teradataml/plot/query_generator.py +83 -83
- teradataml/plot/subplot.py +216 -216
- teradataml/scriptmgmt/UserEnv.py +3791 -3761
- teradataml/scriptmgmt/__init__.py +3 -3
- teradataml/scriptmgmt/lls_utils.py +1719 -1604
- teradataml/series/series.py +532 -532
- teradataml/series/series_utils.py +71 -71
- teradataml/table_operators/Apply.py +949 -917
- teradataml/table_operators/Script.py +1718 -1982
- teradataml/table_operators/TableOperator.py +1255 -1616
- teradataml/table_operators/__init__.py +2 -3
- teradataml/table_operators/apply_query_generator.py +262 -262
- teradataml/table_operators/query_generator.py +507 -507
- teradataml/table_operators/table_operator_query_generator.py +460 -460
- teradataml/table_operators/table_operator_util.py +631 -639
- teradataml/table_operators/templates/dataframe_apply.template +184 -184
- teradataml/table_operators/templates/dataframe_map.template +176 -176
- teradataml/table_operators/templates/script_executor.template +170 -170
- teradataml/utils/dtypes.py +684 -684
- teradataml/utils/internal_buffer.py +84 -84
- teradataml/utils/print_versions.py +205 -205
- teradataml/utils/utils.py +410 -410
- teradataml/utils/validators.py +2277 -2115
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +346 -45
- teradataml-20.0.0.1.dist-info/RECORD +1056 -0
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +1 -1
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +1 -1
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- teradataml-17.20.0.7.dist-info/RECORD +0 -1280
- {teradataml-17.20.0.7.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
|
@@ -1,842 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: PavansaiKumar Alladi (pavansaikumar.alladi@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 2.26
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.common.formula import Formula
|
|
30
|
-
|
|
31
|
-
class XGBoost:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
formula = None,
|
|
35
|
-
data = None,
|
|
36
|
-
id_column = None,
|
|
37
|
-
loss_function = "SOFTMAX",
|
|
38
|
-
prediction_type = "CLASSIFICATION",
|
|
39
|
-
reg_lambda = 1.0,
|
|
40
|
-
shrinkage_factor = 0.1,
|
|
41
|
-
iter_num = 10,
|
|
42
|
-
min_node_size = 1,
|
|
43
|
-
max_depth = 5,
|
|
44
|
-
variance = 0.0,
|
|
45
|
-
seed = None,
|
|
46
|
-
attribute_name_column = None,
|
|
47
|
-
num_boosted_trees = None,
|
|
48
|
-
attribute_table = None,
|
|
49
|
-
attribute_value_column = None,
|
|
50
|
-
column_subsampling = 1.0,
|
|
51
|
-
response_column = None,
|
|
52
|
-
data_sequence_column = None,
|
|
53
|
-
attribute_table_sequence_column = None,
|
|
54
|
-
output_accuracy = False):
|
|
55
|
-
"""
|
|
56
|
-
DESCRIPTION:
|
|
57
|
-
The XGBoost function takes a training data set and uses gradient
|
|
58
|
-
boosting to create a strong classifying model that can be input to
|
|
59
|
-
the function XGBoostPredict. The function supports input tables in
|
|
60
|
-
both dense and sparse format.
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
PARAMETERS:
|
|
64
|
-
formula:
|
|
65
|
-
Required Argument when input data is in dense format.
|
|
66
|
-
A string consisting of "formula". Specifies the model to be fitted.
|
|
67
|
-
Only basic formula of the "col1 ~ col2 + col3 +..." form are
|
|
68
|
-
supported and all variables must be from the same teradataml
|
|
69
|
-
DataFrame object. The response should be column of type float, int or
|
|
70
|
-
bool. This argument is not supported for sparse format. For sparse data
|
|
71
|
-
format, provide this information using "attribute_table" argument.
|
|
72
|
-
|
|
73
|
-
data:
|
|
74
|
-
Required Argument.
|
|
75
|
-
Specifies the teradataml DataFrame containing the input data set.
|
|
76
|
-
If the input data set is in dense format, the XGBoost function requires only "data".
|
|
77
|
-
|
|
78
|
-
id_column:
|
|
79
|
-
Optional Argument.
|
|
80
|
-
Specifies the name of the partitioning column of input table. This
|
|
81
|
-
column is used as a row identifier to distribute data among different
|
|
82
|
-
vworkers for parallel boosted trees.
|
|
83
|
-
Types: str OR list of Strings (str)
|
|
84
|
-
|
|
85
|
-
loss_function:
|
|
86
|
-
Optional Argument.
|
|
87
|
-
Specifies the learning task and corresponding learning objective.
|
|
88
|
-
Default Value: "SOFTMAX"
|
|
89
|
-
Permitted Values: BINOMIAL, SOFTMAX, MSE
|
|
90
|
-
Note:
|
|
91
|
-
Permitted value 'MSE' is supported when teradataml is connected to Vantage1.3
|
|
92
|
-
or later versions.
|
|
93
|
-
Types: str
|
|
94
|
-
|
|
95
|
-
prediction_type:
|
|
96
|
-
Optional Argument.
|
|
97
|
-
Specifies whether the function predicts the result from the number of classes
|
|
98
|
-
('classification') or from a continuous response variable ('regression').
|
|
99
|
-
The function supports only 'classification'.
|
|
100
|
-
Default Value: "CLASSIFICATION"
|
|
101
|
-
Permitted Values: CLASSIFICATION, REGRESSION
|
|
102
|
-
Note:
|
|
103
|
-
Permitted value 'REGRESSION' is supported when teradataml is connected to Vantage1.3
|
|
104
|
-
or later versions.
|
|
105
|
-
Types: str
|
|
106
|
-
|
|
107
|
-
reg_lambda:
|
|
108
|
-
Optional Argument.
|
|
109
|
-
Specifies the L2 regularization that the loss function uses
|
|
110
|
-
while boosting trees. The higher the lambda, the stronger the
|
|
111
|
-
regularization effect.
|
|
112
|
-
Default Value: 1.0
|
|
113
|
-
Types: float
|
|
114
|
-
|
|
115
|
-
shrinkage_factor:
|
|
116
|
-
Optional Argument.
|
|
117
|
-
Specifies the learning rate (weight) of a learned tree in each boosting step.
|
|
118
|
-
After each boosting step, the algorithm multiplies the learner by shrinkage
|
|
119
|
-
to make the boosting process more conservative. The shrinkage is a
|
|
120
|
-
float value in the range [0.0, 1.0].
|
|
121
|
-
The value 1.0 specifies no shrinkage.
|
|
122
|
-
Default Value: 0.1
|
|
123
|
-
Types: float
|
|
124
|
-
|
|
125
|
-
iter_num:
|
|
126
|
-
Optional Argument.
|
|
127
|
-
Specifies the number of iterations to boost the weak classifiers,
|
|
128
|
-
which is also the number of weak classifiers in the ensemble (T). The
|
|
129
|
-
number must an int in the range [1, 100000].
|
|
130
|
-
Default Value: 10
|
|
131
|
-
Types: int
|
|
132
|
-
|
|
133
|
-
min_node_size:
|
|
134
|
-
Optional Argument.
|
|
135
|
-
Specifies the minimum size of any particular node within each
|
|
136
|
-
decision tree. The min_node_size must an int.
|
|
137
|
-
Default Value: 1
|
|
138
|
-
Types: int
|
|
139
|
-
|
|
140
|
-
max_depth:
|
|
141
|
-
Optional Argument.
|
|
142
|
-
Specifies the maximum depth of the tree. The max_depth must be an int in
|
|
143
|
-
the range [1, 100000].
|
|
144
|
-
Default Value: 5
|
|
145
|
-
Types: int
|
|
146
|
-
|
|
147
|
-
variance:
|
|
148
|
-
Optional Argument.
|
|
149
|
-
Specifies a decision tree stopping criterion. If the variance within
|
|
150
|
-
any node dips below this value, the algorithm stops looking for splits
|
|
151
|
-
in the branch.
|
|
152
|
-
Default Value: 0.0
|
|
153
|
-
Types: float
|
|
154
|
-
|
|
155
|
-
seed:
|
|
156
|
-
Optional Argument.
|
|
157
|
-
Specifies the seed to use to create a random number.
|
|
158
|
-
If you omit this argument or specify its default value 1, the function
|
|
159
|
-
uses a faster algorithm but does not ensure repeatability.
|
|
160
|
-
This argument must have a int value greater than or equal to 1. To ensure
|
|
161
|
-
repeatability, specify a value greater than 1.
|
|
162
|
-
Types: int
|
|
163
|
-
|
|
164
|
-
attribute_name_column:
|
|
165
|
-
Optional Argument.
|
|
166
|
-
Required for sparse data format. If the data set is in sparse format,
|
|
167
|
-
this argument indicates the column containing the attributes in the
|
|
168
|
-
input data set.
|
|
169
|
-
Types: str OR list of Strings (str)
|
|
170
|
-
|
|
171
|
-
num_boosted_trees:
|
|
172
|
-
Optional Argument.
|
|
173
|
-
Specifies the number of boosted trees to be trained. By default, the
|
|
174
|
-
number of boosted trees equals the number of vworkers available for
|
|
175
|
-
the functions.
|
|
176
|
-
Types: int
|
|
177
|
-
|
|
178
|
-
attribute_table:
|
|
179
|
-
Optional Argument.
|
|
180
|
-
Required if the input data set is in sparse format.
|
|
181
|
-
Specifies the name of the teradataml DataFrame containing the features in the input
|
|
182
|
-
data.
|
|
183
|
-
|
|
184
|
-
attribute_value_column:
|
|
185
|
-
Optional Argument.
|
|
186
|
-
Required if the input data set is in sparse format.
|
|
187
|
-
If the data is in the sparse format, this argument indicates the
|
|
188
|
-
column containing the attribute values in the input table.
|
|
189
|
-
Types: str OR list of Strings (str)
|
|
190
|
-
|
|
191
|
-
column_subsampling:
|
|
192
|
-
Optional Argument.
|
|
193
|
-
Specifies the fraction of features to subsample during boosting.
|
|
194
|
-
Default Value: 1.0 (no subsampling)
|
|
195
|
-
Types: float
|
|
196
|
-
|
|
197
|
-
response_column:
|
|
198
|
-
Optional Argument.
|
|
199
|
-
Specifies the name of the response teradataml DataFrame column that
|
|
200
|
-
contains the responses (labels) of the data.
|
|
201
|
-
Types: str OR list of Strings (str)
|
|
202
|
-
|
|
203
|
-
data_sequence_column:
|
|
204
|
-
Optional Argument.
|
|
205
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
206
|
-
the input argument "data". The argument is used to ensure
|
|
207
|
-
deterministic results for functions which produce results that vary
|
|
208
|
-
from run to run.
|
|
209
|
-
Types: str OR list of Strings (str)
|
|
210
|
-
|
|
211
|
-
attribute_table_sequence_column:
|
|
212
|
-
Optional Argument.
|
|
213
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
214
|
-
the input argument "attribute_table". The argument is used to ensure
|
|
215
|
-
deterministic results for functions which produce results that vary
|
|
216
|
-
from run to run.
|
|
217
|
-
Types: str OR list of Strings (str)
|
|
218
|
-
|
|
219
|
-
output_accuracy:
|
|
220
|
-
Optional Argument.
|
|
221
|
-
Specifies whether to show training accuracy over iterations in the
|
|
222
|
-
output model_table DataFrame.
|
|
223
|
-
Note:
|
|
224
|
-
The argument 'output_accuracy' is available when teradataml is connected to Vantage 1.3
|
|
225
|
-
or later versions.
|
|
226
|
-
Default Value: False
|
|
227
|
-
Types: bool
|
|
228
|
-
|
|
229
|
-
RETURNS:
|
|
230
|
-
Instance of XGBoost.
|
|
231
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
232
|
-
references, such as XGBoostObj.<attribute_name>.
|
|
233
|
-
Output teradataml DataFrame attribute name is:
|
|
234
|
-
1. model_table
|
|
235
|
-
2. output
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
RAISES:
|
|
239
|
-
TeradataMlException
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
EXAMPLES:
|
|
243
|
-
# Load example data.
|
|
244
|
-
load_example_data("xgboost", ["housing_train_binary","iris_train","sparse_iris_train","sparse_iris_attribute"])
|
|
245
|
-
|
|
246
|
-
# Example 1: Binary Classification on the housing data to build a model using training data
|
|
247
|
-
# that contains couple of labels (Responses) - classic and eclectic, specifying the style of a house,
|
|
248
|
-
# based on the 12 other attributes of the house, such as bedrooms, stories, price etc.
|
|
249
|
-
# Create teradataml DataFrame objects.
|
|
250
|
-
housing_train_binary = DataFrame.from_table("housing_train_binary")
|
|
251
|
-
XGBoost_out1 = XGBoost(data=housing_train_binary,
|
|
252
|
-
id_column='sn',
|
|
253
|
-
formula = "homestyle ~ driveway + recroom + fullbase + gashw + airco + prefarea + price + lotsize + bedrooms + bathrms + stories + garagepl",
|
|
254
|
-
num_boosted_trees=2,
|
|
255
|
-
loss_function='binomial',
|
|
256
|
-
prediction_type='classification',
|
|
257
|
-
reg_lambda=1.0,
|
|
258
|
-
shrinkage_factor=0.1,
|
|
259
|
-
iter_num=10,
|
|
260
|
-
min_node_size=1,
|
|
261
|
-
max_depth=10
|
|
262
|
-
)
|
|
263
|
-
|
|
264
|
-
# Print the results.
|
|
265
|
-
print(XGBoost_out1)
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
# Example 2: Multiple-Class Classification
|
|
269
|
-
# Let's use the XGBoost classification algorithm, on one of the famous dataset Iris Data set.
|
|
270
|
-
# Dataset contains 50 samples from three species of Iris flower setosa, virginica and versicolor.
|
|
271
|
-
# Each data point contains measurements of length and width of sepals and petals.
|
|
272
|
-
iris_train = DataFrame.from_table("iris_train")
|
|
273
|
-
|
|
274
|
-
XGBoost_out2 = XGBoost(data=iris_train,
|
|
275
|
-
id_column='id',
|
|
276
|
-
formula = "species ~ sepal_length + petal_length + petal_width + species",
|
|
277
|
-
num_boosted_trees=2,
|
|
278
|
-
loss_function='softmax',
|
|
279
|
-
reg_lambda=1.0,
|
|
280
|
-
shrinkage_factor=0.1,
|
|
281
|
-
iter_num=10,
|
|
282
|
-
min_node_size=1,
|
|
283
|
-
max_depth=10)
|
|
284
|
-
|
|
285
|
-
# Print the results.
|
|
286
|
-
print(XGBoost_out2)
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
# Example 3: Sparse Input Format. response_column argument is specified instead of formula.
|
|
290
|
-
sparse_iris_train = DataFrame.from_table("sparse_iris_train")
|
|
291
|
-
sparse_iris_attribute = DataFrame.from_table("sparse_iris_attribute")
|
|
292
|
-
|
|
293
|
-
XGBoost_out3 = XGBoost(data=sparse_iris_train,
|
|
294
|
-
attribute_table=sparse_iris_attribute,
|
|
295
|
-
id_column='id',
|
|
296
|
-
attribute_name_column='attribute',
|
|
297
|
-
attribute_value_column='value_col',
|
|
298
|
-
response_column="species",
|
|
299
|
-
loss_function='SOFTMAX',
|
|
300
|
-
reg_lambda=1.0,
|
|
301
|
-
num_boosted_trees=2,
|
|
302
|
-
shrinkage_factor=0.1,
|
|
303
|
-
column_subsampling=1.0,
|
|
304
|
-
iter_num=10,
|
|
305
|
-
min_node_size=1,
|
|
306
|
-
max_depth=10,
|
|
307
|
-
variance=0.0,
|
|
308
|
-
seed=1
|
|
309
|
-
)
|
|
310
|
-
|
|
311
|
-
# Print the results.
|
|
312
|
-
print(XGBoost_out3)
|
|
313
|
-
|
|
314
|
-
|
|
315
|
-
# Example 4: Use optional argument 'output_accuracy'.
|
|
316
|
-
# We will use the teradataml DataFrames, created in the Example 3.
|
|
317
|
-
Note:
|
|
318
|
-
This Example will work only when teradataml is connected to Vantage 1.3
|
|
319
|
-
or later versions.
|
|
320
|
-
|
|
321
|
-
XGBoost_out4 = XGBoost(data=sparse_iris_train,
|
|
322
|
-
attribute_table=sparse_iris_attribute,
|
|
323
|
-
id_column='id',
|
|
324
|
-
attribute_name_column='attribute',
|
|
325
|
-
attribute_value_column='value_col',
|
|
326
|
-
response_column="species",
|
|
327
|
-
loss_function='SOFTMAX',
|
|
328
|
-
reg_lambda=1.0,
|
|
329
|
-
num_boosted_trees=2,
|
|
330
|
-
shrinkage_factor=0.1,
|
|
331
|
-
column_subsampling=1.0,
|
|
332
|
-
iter_num=10,
|
|
333
|
-
min_node_size=1,
|
|
334
|
-
max_depth=10,
|
|
335
|
-
variance=0.0,
|
|
336
|
-
seed=1,
|
|
337
|
-
output_accuracy=True
|
|
338
|
-
)
|
|
339
|
-
|
|
340
|
-
# Print the results.
|
|
341
|
-
print(XGBoost_out3)
|
|
342
|
-
|
|
343
|
-
"""
|
|
344
|
-
|
|
345
|
-
# Start the timer to get the build time
|
|
346
|
-
_start_time = time.time()
|
|
347
|
-
|
|
348
|
-
self.formula = formula
|
|
349
|
-
self.data = data
|
|
350
|
-
self.id_column = id_column
|
|
351
|
-
self.loss_function = loss_function
|
|
352
|
-
self.prediction_type = prediction_type
|
|
353
|
-
self.reg_lambda = reg_lambda
|
|
354
|
-
self.shrinkage_factor = shrinkage_factor
|
|
355
|
-
self.iter_num = iter_num
|
|
356
|
-
self.min_node_size = min_node_size
|
|
357
|
-
self.max_depth = max_depth
|
|
358
|
-
self.variance = variance
|
|
359
|
-
self.seed = seed
|
|
360
|
-
self.attribute_name_column = attribute_name_column
|
|
361
|
-
self.num_boosted_trees = num_boosted_trees
|
|
362
|
-
self.attribute_table = attribute_table
|
|
363
|
-
self.attribute_value_column = attribute_value_column
|
|
364
|
-
self.column_subsampling = column_subsampling
|
|
365
|
-
self.response_column = response_column
|
|
366
|
-
self.data_sequence_column = data_sequence_column
|
|
367
|
-
self.attribute_table_sequence_column = attribute_table_sequence_column
|
|
368
|
-
self.output_accuracy = output_accuracy
|
|
369
|
-
|
|
370
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
371
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
372
|
-
self.__aed_utils = AedUtils()
|
|
373
|
-
|
|
374
|
-
# Create argument information matrix to do parameter checking
|
|
375
|
-
self.__arg_info_matrix = []
|
|
376
|
-
self.__arg_info_matrix.append(["formula", self.formula, True, "formula"])
|
|
377
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
378
|
-
self.__arg_info_matrix.append(["id_column", self.id_column, True, (str)])
|
|
379
|
-
self.__arg_info_matrix.append(["loss_function", self.loss_function, True, (str)])
|
|
380
|
-
self.__arg_info_matrix.append(["prediction_type", self.prediction_type, True, (str)])
|
|
381
|
-
self.__arg_info_matrix.append(["reg_lambda", self.reg_lambda, True, (float)])
|
|
382
|
-
self.__arg_info_matrix.append(["shrinkage_factor", self.shrinkage_factor, True, (float)])
|
|
383
|
-
self.__arg_info_matrix.append(["iter_num", self.iter_num, True, (int)])
|
|
384
|
-
self.__arg_info_matrix.append(["min_node_size", self.min_node_size, True, (int)])
|
|
385
|
-
self.__arg_info_matrix.append(["max_depth", self.max_depth, True, (int)])
|
|
386
|
-
self.__arg_info_matrix.append(["variance", self.variance, True, (float)])
|
|
387
|
-
self.__arg_info_matrix.append(["seed", self.seed, True, (int)])
|
|
388
|
-
self.__arg_info_matrix.append(["attribute_name_column", self.attribute_name_column, True, (str)])
|
|
389
|
-
self.__arg_info_matrix.append(["num_boosted_trees", self.num_boosted_trees, True, (int)])
|
|
390
|
-
self.__arg_info_matrix.append(["attribute_table", self.attribute_table, True, (DataFrame)])
|
|
391
|
-
self.__arg_info_matrix.append(["attribute_value_column", self.attribute_value_column, True, (str)])
|
|
392
|
-
self.__arg_info_matrix.append(["column_subsampling", self.column_subsampling, True, (float)])
|
|
393
|
-
self.__arg_info_matrix.append(["response_column", self.response_column, True, (str)])
|
|
394
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
395
|
-
self.__arg_info_matrix.append(["attribute_table_sequence_column", self.attribute_table_sequence_column, True, (str,list)])
|
|
396
|
-
self.__arg_info_matrix.append(["output_accuracy", self.output_accuracy, True, (bool)])
|
|
397
|
-
|
|
398
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
399
|
-
# Perform the function validations
|
|
400
|
-
self.__validate()
|
|
401
|
-
# Generate the ML query
|
|
402
|
-
self.__form_tdml_query()
|
|
403
|
-
# Process output table schema
|
|
404
|
-
self.__process_output_column_info()
|
|
405
|
-
# Execute ML query
|
|
406
|
-
self.__execute()
|
|
407
|
-
# Get the prediction type
|
|
408
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
409
|
-
|
|
410
|
-
# End the timer to get the build time
|
|
411
|
-
_end_time = time.time()
|
|
412
|
-
|
|
413
|
-
# Calculate the build time
|
|
414
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
415
|
-
|
|
416
|
-
def __validate(self):
|
|
417
|
-
"""
|
|
418
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
419
|
-
arguments, input argument and table types. Also processes the
|
|
420
|
-
argument values.
|
|
421
|
-
"""
|
|
422
|
-
|
|
423
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
424
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
425
|
-
|
|
426
|
-
# Either formula or response_column is required
|
|
427
|
-
if (self.formula is None and self.response_column is None) or \
|
|
428
|
-
(self.formula is not None and self.response_column is not None):
|
|
429
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT,
|
|
430
|
-
"formula", "response_column"), MessageCodes.MISSING_ARGS)
|
|
431
|
-
|
|
432
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
433
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
434
|
-
|
|
435
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
436
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
437
|
-
self.__awu._validate_input_table_datatype(self.attribute_table, "attribute_table", None)
|
|
438
|
-
|
|
439
|
-
# Check for permitted values
|
|
440
|
-
if configure._vantage_version in ["vanatge1.3"]:
|
|
441
|
-
loss_function_permitted_values = ["BINOMIAL", "SOFTMAX", "MSE"]
|
|
442
|
-
prediction_type_permitted_values = ["CLASSIFICATION", "REGRESSION"]
|
|
443
|
-
else:
|
|
444
|
-
loss_function_permitted_values = ["BINOMIAL", "SOFTMAX"]
|
|
445
|
-
prediction_type_permitted_values = ["CLASSIFICATION"]
|
|
446
|
-
|
|
447
|
-
self.__awu._validate_permitted_values(self.loss_function, loss_function_permitted_values, "loss_function")
|
|
448
|
-
self.__awu._validate_permitted_values(self.prediction_type, prediction_type_permitted_values, "prediction_type")
|
|
449
|
-
|
|
450
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
451
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
452
|
-
self.__awu._validate_input_columns_not_empty(self.response_column, "response_column")
|
|
453
|
-
self.__awu._validate_dataframe_has_argument_columns(self.response_column, "response_column", self.data, "data", False)
|
|
454
|
-
|
|
455
|
-
self.__awu._validate_input_columns_not_empty(self.id_column, "id_column")
|
|
456
|
-
self.__awu._validate_dataframe_has_argument_columns(self.id_column, "id_column", self.data, "data", False)
|
|
457
|
-
|
|
458
|
-
self.__awu._validate_input_columns_not_empty(self.attribute_name_column, "attribute_name_column")
|
|
459
|
-
self.__awu._validate_dataframe_has_argument_columns(self.attribute_name_column, "attribute_name_column", self.data, "data", False)
|
|
460
|
-
|
|
461
|
-
self.__awu._validate_input_columns_not_empty(self.attribute_value_column, "attribute_value_column")
|
|
462
|
-
self.__awu._validate_dataframe_has_argument_columns(self.attribute_value_column, "attribute_value_column", self.data, "data", False)
|
|
463
|
-
|
|
464
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
465
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
466
|
-
|
|
467
|
-
self.__awu._validate_input_columns_not_empty(self.attribute_table_sequence_column, "attribute_table_sequence_column")
|
|
468
|
-
self.__awu._validate_dataframe_has_argument_columns(self.attribute_table_sequence_column, "attribute_table_sequence_column", self.attribute_table, "attribute_table", False)
|
|
469
|
-
|
|
470
|
-
|
|
471
|
-
def __form_tdml_query(self):
|
|
472
|
-
"""
|
|
473
|
-
Function to generate the analytical function queries. The function defines
|
|
474
|
-
variables and list of arguments required to form the query.
|
|
475
|
-
"""
|
|
476
|
-
# Generate temp table names for output table parameters if any.
|
|
477
|
-
self.__model_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_xgboost0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
478
|
-
|
|
479
|
-
# Output table arguments list
|
|
480
|
-
self.__func_output_args_sql_names = ["OutputTable"]
|
|
481
|
-
self.__func_output_args = [self.__model_table_temp_tablename]
|
|
482
|
-
|
|
483
|
-
# Model Cataloging related attributes.
|
|
484
|
-
self._sql_specific_attributes = {}
|
|
485
|
-
self._sql_formula_attribute_mapper = {}
|
|
486
|
-
self._target_column = None
|
|
487
|
-
self._algorithm_name = None
|
|
488
|
-
|
|
489
|
-
# Generate lists for rest of the function arguments
|
|
490
|
-
self.__func_other_arg_sql_names = []
|
|
491
|
-
self.__func_other_args = []
|
|
492
|
-
self.__func_other_arg_json_datatypes = []
|
|
493
|
-
|
|
494
|
-
if self.response_column is not None:
|
|
495
|
-
self.__func_other_arg_sql_names.append("ResponseColumn")
|
|
496
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.response_column, "\""), "'"))
|
|
497
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
498
|
-
|
|
499
|
-
if self.id_column is not None:
|
|
500
|
-
self.__func_other_arg_sql_names.append("IdColumn")
|
|
501
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.id_column, "\""), "'"))
|
|
502
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
503
|
-
|
|
504
|
-
if self.attribute_name_column is not None:
|
|
505
|
-
self.__func_other_arg_sql_names.append("AttributeNameColumn")
|
|
506
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attribute_name_column, "\""), "'"))
|
|
507
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
508
|
-
|
|
509
|
-
if self.attribute_value_column is not None:
|
|
510
|
-
self.__func_other_arg_sql_names.append("AttributeValueColumn")
|
|
511
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attribute_value_column, "\""), "'"))
|
|
512
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
513
|
-
|
|
514
|
-
if self.num_boosted_trees is not None:
|
|
515
|
-
self.__func_other_arg_sql_names.append("NumBoostedTrees")
|
|
516
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.num_boosted_trees, "'"))
|
|
517
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
518
|
-
|
|
519
|
-
if self.output_accuracy is not None and self.output_accuracy != False:
|
|
520
|
-
self.__func_other_arg_sql_names.append("OutputAccuracy")
|
|
521
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_accuracy, "'"))
|
|
522
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
523
|
-
|
|
524
|
-
if self.loss_function is not None and self.loss_function != "SOFTMAX":
|
|
525
|
-
self.__func_other_arg_sql_names.append("LossFunction")
|
|
526
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.loss_function, "'"))
|
|
527
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
528
|
-
|
|
529
|
-
if self.prediction_type is not None and self.prediction_type != "CLASSIFICATION":
|
|
530
|
-
self.__func_other_arg_sql_names.append("PredictionType")
|
|
531
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.prediction_type, "'"))
|
|
532
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
533
|
-
|
|
534
|
-
if self.reg_lambda is not None and self.reg_lambda != 1:
|
|
535
|
-
self.__func_other_arg_sql_names.append("RegularizationLambda")
|
|
536
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.reg_lambda, "'"))
|
|
537
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
538
|
-
|
|
539
|
-
if self.shrinkage_factor is not None and self.shrinkage_factor != 0.1:
|
|
540
|
-
self.__func_other_arg_sql_names.append("ShrinkageFactor")
|
|
541
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.shrinkage_factor, "'"))
|
|
542
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
543
|
-
|
|
544
|
-
if self.column_subsampling is not None and self.column_subsampling != 1.0:
|
|
545
|
-
self.__func_other_arg_sql_names.append("ColumnSubSampling")
|
|
546
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.column_subsampling, "'"))
|
|
547
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
548
|
-
|
|
549
|
-
if self.iter_num is not None and self.iter_num != 10:
|
|
550
|
-
self.__func_other_arg_sql_names.append("IterNum")
|
|
551
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.iter_num, "'"))
|
|
552
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
553
|
-
|
|
554
|
-
if self.min_node_size is not None and self.min_node_size != 1:
|
|
555
|
-
self.__func_other_arg_sql_names.append("MinNodeSize")
|
|
556
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.min_node_size, "'"))
|
|
557
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
558
|
-
|
|
559
|
-
if self.max_depth is not None and self.max_depth != 5:
|
|
560
|
-
self.__func_other_arg_sql_names.append("MaxDepth")
|
|
561
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_depth, "'"))
|
|
562
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
563
|
-
|
|
564
|
-
if self.variance is not None and self.variance != 0:
|
|
565
|
-
self.__func_other_arg_sql_names.append("Variance")
|
|
566
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.variance, "'"))
|
|
567
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
568
|
-
|
|
569
|
-
if self.seed is not None:
|
|
570
|
-
self.__func_other_arg_sql_names.append("Seed")
|
|
571
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seed, "'"))
|
|
572
|
-
self.__func_other_arg_json_datatypes.append("LONG")
|
|
573
|
-
|
|
574
|
-
# Generate lists for rest of the function arguments
|
|
575
|
-
sequence_input_by_list = []
|
|
576
|
-
if self.data_sequence_column is not None:
|
|
577
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
578
|
-
|
|
579
|
-
if self.attribute_table_sequence_column is not None:
|
|
580
|
-
sequence_input_by_list.append("AttributeTable:" + UtilFuncs._teradata_collapse_arglist(self.attribute_table_sequence_column, ""))
|
|
581
|
-
|
|
582
|
-
if len(sequence_input_by_list) > 0:
|
|
583
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
584
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
585
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
586
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
587
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
588
|
-
|
|
589
|
-
# Let's process formula argument
|
|
590
|
-
if self.formula is not None:
|
|
591
|
-
self.formula = self.__awu._validate_formula_notation(self.formula, self.data, "formula")
|
|
592
|
-
# response variable
|
|
593
|
-
__response_column = self.formula._get_dependent_vars()
|
|
594
|
-
self._target_column = __response_column
|
|
595
|
-
self.__func_other_arg_sql_names.append("ResponseColumn")
|
|
596
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(__response_column, "\""), "'"))
|
|
597
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
598
|
-
self._sql_specific_attributes["ResponseColumn"] = __response_column
|
|
599
|
-
self._sql_formula_attribute_mapper["ResponseColumn"] = "__response_column"
|
|
600
|
-
|
|
601
|
-
# numerical input columns
|
|
602
|
-
__numeric_columns = self.__awu._get_columns_by_type(self.formula, self.data, "numerical")
|
|
603
|
-
if len(__numeric_columns) > 0:
|
|
604
|
-
self.__func_other_arg_sql_names.append("NumericInputs")
|
|
605
|
-
numerical_columns_list = UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(__numeric_columns, "\""), "'")
|
|
606
|
-
self.__func_other_args.append(numerical_columns_list)
|
|
607
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
608
|
-
self._sql_specific_attributes["NumericInputs"] = numerical_columns_list
|
|
609
|
-
self._sql_formula_attribute_mapper["NumericInputs"] = "__numeric_columns"
|
|
610
|
-
|
|
611
|
-
# categorical input columns
|
|
612
|
-
__categorical_columns = self.__awu._get_columns_by_type(self.formula, self.data, "categorical")
|
|
613
|
-
if len(__categorical_columns) > 0:
|
|
614
|
-
self.__func_other_arg_sql_names.append("CategoricalInputs")
|
|
615
|
-
categorical_columns_list = UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(__categorical_columns, "\""), "'")
|
|
616
|
-
self.__func_other_args.append(categorical_columns_list)
|
|
617
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
618
|
-
self._sql_specific_attributes["CategoricalInputs"] = categorical_columns_list
|
|
619
|
-
self._sql_formula_attribute_mapper["CategoricalInputs"] = "__categorical_columns"
|
|
620
|
-
|
|
621
|
-
|
|
622
|
-
# Declare empty lists to hold input table information.
|
|
623
|
-
self.__func_input_arg_sql_names = []
|
|
624
|
-
self.__func_input_table_view_query = []
|
|
625
|
-
self.__func_input_dataframe_type = []
|
|
626
|
-
self.__func_input_distribution = []
|
|
627
|
-
self.__func_input_partition_by_cols = []
|
|
628
|
-
self.__func_input_order_by_cols = []
|
|
629
|
-
|
|
630
|
-
# Process data
|
|
631
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data)
|
|
632
|
-
self.__func_input_distribution.append("NONE")
|
|
633
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
634
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
635
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
636
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
637
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
638
|
-
|
|
639
|
-
# Process attribute_table
|
|
640
|
-
if self.attribute_table is not None:
|
|
641
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.attribute_table)
|
|
642
|
-
self.__func_input_distribution.append("NONE")
|
|
643
|
-
self.__func_input_arg_sql_names.append("AttributeTable")
|
|
644
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
645
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
646
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
647
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
648
|
-
|
|
649
|
-
function_name = "XGBoost"
|
|
650
|
-
# Create instance to generate SQLMR.
|
|
651
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
652
|
-
self.__func_input_arg_sql_names,
|
|
653
|
-
self.__func_input_table_view_query,
|
|
654
|
-
self.__func_input_dataframe_type,
|
|
655
|
-
self.__func_input_distribution,
|
|
656
|
-
self.__func_input_partition_by_cols,
|
|
657
|
-
self.__func_input_order_by_cols,
|
|
658
|
-
self.__func_other_arg_sql_names,
|
|
659
|
-
self.__func_other_args,
|
|
660
|
-
self.__func_other_arg_json_datatypes,
|
|
661
|
-
self.__func_output_args_sql_names,
|
|
662
|
-
self.__func_output_args,
|
|
663
|
-
engine="ENGINE_ML")
|
|
664
|
-
# Invoke call to SQL-MR generation.
|
|
665
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
666
|
-
|
|
667
|
-
# Print SQL-MR query if requested to do so.
|
|
668
|
-
if display.print_sqlmr_query:
|
|
669
|
-
print(self.sqlmr_query)
|
|
670
|
-
|
|
671
|
-
# Set the algorithm name for Model Cataloging.
|
|
672
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
673
|
-
|
|
674
|
-
def __execute(self):
|
|
675
|
-
"""
|
|
676
|
-
Function to generate AED nodes for output tables.
|
|
677
|
-
This makes a call aed_ml_query() and then output table dataframes are created.
|
|
678
|
-
"""
|
|
679
|
-
# Create a list of input node ids contributing to a query.
|
|
680
|
-
self.__input_nodeids = []
|
|
681
|
-
self.__input_nodeids.append(self.data._nodeid)
|
|
682
|
-
if self.attribute_table is not None:
|
|
683
|
-
self.__input_nodeids.append(self.attribute_table._nodeid)
|
|
684
|
-
|
|
685
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
686
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
687
|
-
self.__func_output_args.insert(0, sqlmr_stdout_temp_tablename)
|
|
688
|
-
try:
|
|
689
|
-
# Call aed_ml_query and generate AED nodes.
|
|
690
|
-
node_id_list = self.__aed_utils._aed_ml_query(self.__input_nodeids, self.sqlmr_query, self.__func_output_args, "XGBoost", self.__aqg_obj._multi_query_input_nodes)
|
|
691
|
-
except Exception as emsg:
|
|
692
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.AED_EXEC_FAILED, str(emsg)), MessageCodes.AED_EXEC_FAILED)
|
|
693
|
-
|
|
694
|
-
|
|
695
|
-
# Update output table data frames.
|
|
696
|
-
self._mlresults = []
|
|
697
|
-
self.model_table = self.__awu._create_data_set_object(df_input=node_id_list[1], metaexpr=UtilFuncs._get_metaexpr_using_columns(node_id_list[1], self.__model_table_column_info))
|
|
698
|
-
self.output = self.__awu._create_data_set_object(df_input=node_id_list[0], metaexpr=UtilFuncs._get_metaexpr_using_columns(node_id_list[0], self.__stdout_column_info))
|
|
699
|
-
self._mlresults.append(self.model_table)
|
|
700
|
-
self._mlresults.append(self.output)
|
|
701
|
-
|
|
702
|
-
def __process_output_column_info(self):
|
|
703
|
-
"""
|
|
704
|
-
Function to process the output schema for all the ouptut tables.
|
|
705
|
-
This function generates list of column names and column types
|
|
706
|
-
for each generated output tables, which can be used to create metaexpr.
|
|
707
|
-
"""
|
|
708
|
-
# Collecting STDOUT output column information.
|
|
709
|
-
stdout_column_info_name = []
|
|
710
|
-
stdout_column_info_type = []
|
|
711
|
-
stdout_column_info_name.append("message")
|
|
712
|
-
stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("varchar"))
|
|
713
|
-
|
|
714
|
-
self.__stdout_column_info = zip(stdout_column_info_name, stdout_column_info_type)
|
|
715
|
-
|
|
716
|
-
# Collecting model_table output column information.
|
|
717
|
-
model_table_column_info_name = []
|
|
718
|
-
model_table_column_info_type = []
|
|
719
|
-
model_table_column_info_name.append("tree_id")
|
|
720
|
-
model_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("integer"))
|
|
721
|
-
|
|
722
|
-
model_table_column_info_name.append("iter")
|
|
723
|
-
model_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("integer"))
|
|
724
|
-
|
|
725
|
-
model_table_column_info_name.append("class_num")
|
|
726
|
-
model_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("integer"))
|
|
727
|
-
|
|
728
|
-
model_table_column_info_name.append("tree")
|
|
729
|
-
model_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("clob"))
|
|
730
|
-
|
|
731
|
-
model_table_column_info_name.append("region_prediction")
|
|
732
|
-
model_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("clob"))
|
|
733
|
-
|
|
734
|
-
self.__model_table_column_info = zip(model_table_column_info_name, model_table_column_info_type)
|
|
735
|
-
|
|
736
|
-
def show_query(self):
|
|
737
|
-
"""
|
|
738
|
-
Function to return the underlying SQL query.
|
|
739
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
740
|
-
"""
|
|
741
|
-
return self.sqlmr_query
|
|
742
|
-
|
|
743
|
-
def get_prediction_type(self):
|
|
744
|
-
"""
|
|
745
|
-
Function to return the Prediction type of the algorithm.
|
|
746
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
747
|
-
as saved in the Model Catalog.
|
|
748
|
-
"""
|
|
749
|
-
return self._prediction_type
|
|
750
|
-
|
|
751
|
-
def get_target_column(self):
|
|
752
|
-
"""
|
|
753
|
-
Function to return the Target Column of the algorithm.
|
|
754
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
755
|
-
as saved in the Model Catalog.
|
|
756
|
-
"""
|
|
757
|
-
return self._target_column
|
|
758
|
-
|
|
759
|
-
def get_build_time(self):
|
|
760
|
-
"""
|
|
761
|
-
Function to return the build time of the algorithm in seconds.
|
|
762
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
763
|
-
as saved in the Model Catalog.
|
|
764
|
-
"""
|
|
765
|
-
return self._build_time
|
|
766
|
-
|
|
767
|
-
def _get_algorithm_name(self):
|
|
768
|
-
"""
|
|
769
|
-
Function to return the name of the algorithm.
|
|
770
|
-
"""
|
|
771
|
-
return self._algorithm_name
|
|
772
|
-
|
|
773
|
-
def _get_sql_specific_attributes(self):
|
|
774
|
-
"""
|
|
775
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
776
|
-
"""
|
|
777
|
-
return self._sql_specific_attributes
|
|
778
|
-
|
|
779
|
-
@classmethod
|
|
780
|
-
def _from_model_catalog(cls,
|
|
781
|
-
model_table = None,
|
|
782
|
-
output = None,
|
|
783
|
-
**kwargs):
|
|
784
|
-
"""
|
|
785
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
786
|
-
"""
|
|
787
|
-
kwargs.pop("model_table", None)
|
|
788
|
-
kwargs.pop("output", None)
|
|
789
|
-
|
|
790
|
-
# Model Cataloging related attributes.
|
|
791
|
-
target_column = kwargs.pop("__target_column", None)
|
|
792
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
793
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
794
|
-
build_time = kwargs.pop("__build_time", None)
|
|
795
|
-
|
|
796
|
-
# Initialize the formula attributes.
|
|
797
|
-
__response_column = kwargs.pop("__response_column", None)
|
|
798
|
-
__all_columns = kwargs.pop("__all_columns", None)
|
|
799
|
-
__numeric_columns = kwargs.pop("__numeric_columns", None)
|
|
800
|
-
__categorical_columns = kwargs.pop("__categorical_columns", None)
|
|
801
|
-
|
|
802
|
-
# Let's create an object of this class.
|
|
803
|
-
obj = cls(**kwargs)
|
|
804
|
-
obj.model_table = model_table
|
|
805
|
-
obj.output = output
|
|
806
|
-
|
|
807
|
-
# Initialize the sqlmr_query class attribute.
|
|
808
|
-
obj.sqlmr_query = None
|
|
809
|
-
|
|
810
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
811
|
-
obj._sql_specific_attributes = None
|
|
812
|
-
obj._target_column = target_column
|
|
813
|
-
obj._prediction_type = prediction_type
|
|
814
|
-
obj._algorithm_name = algorithm_name
|
|
815
|
-
obj._build_time = build_time
|
|
816
|
-
|
|
817
|
-
# Initialize the formula.
|
|
818
|
-
if obj.formula is not None:
|
|
819
|
-
obj.formula = Formula._from_formula_attr(obj.formula,
|
|
820
|
-
__response_column,
|
|
821
|
-
__all_columns,
|
|
822
|
-
__categorical_columns,
|
|
823
|
-
__numeric_columns)
|
|
824
|
-
|
|
825
|
-
# Update output table data frames.
|
|
826
|
-
obj._mlresults = []
|
|
827
|
-
obj.model_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.model_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.model_table))
|
|
828
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
829
|
-
obj._mlresults.append(obj.model_table)
|
|
830
|
-
obj._mlresults.append(obj.output)
|
|
831
|
-
return obj
|
|
832
|
-
|
|
833
|
-
def __repr__(self):
|
|
834
|
-
"""
|
|
835
|
-
Returns the string representation for a XGBoost class instance.
|
|
836
|
-
"""
|
|
837
|
-
repr_string="############ STDOUT Output ############"
|
|
838
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
839
|
-
repr_string="{}\n\n\n############ model_table Output ############".format(repr_string)
|
|
840
|
-
repr_string = "{}\n\n{}".format(repr_string,self.model_table)
|
|
841
|
-
return repr_string
|
|
842
|
-
|