teradataml 20.0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +2762 -0
- teradataml/__init__.py +78 -0
- teradataml/_version.py +11 -0
- teradataml/analytics/Transformations.py +2996 -0
- teradataml/analytics/__init__.py +82 -0
- teradataml/analytics/analytic_function_executor.py +2416 -0
- teradataml/analytics/analytic_query_generator.py +1050 -0
- teradataml/analytics/byom/H2OPredict.py +514 -0
- teradataml/analytics/byom/PMMLPredict.py +437 -0
- teradataml/analytics/byom/__init__.py +16 -0
- teradataml/analytics/json_parser/__init__.py +133 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
- teradataml/analytics/json_parser/json_store.py +191 -0
- teradataml/analytics/json_parser/metadata.py +1666 -0
- teradataml/analytics/json_parser/utils.py +805 -0
- teradataml/analytics/meta_class.py +236 -0
- teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
- teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
- teradataml/analytics/sqle/__init__.py +128 -0
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
- teradataml/analytics/table_operator/__init__.py +11 -0
- teradataml/analytics/uaf/__init__.py +82 -0
- teradataml/analytics/utils.py +828 -0
- teradataml/analytics/valib.py +1617 -0
- teradataml/automl/__init__.py +5835 -0
- teradataml/automl/autodataprep/__init__.py +493 -0
- teradataml/automl/custom_json_utils.py +1625 -0
- teradataml/automl/data_preparation.py +1384 -0
- teradataml/automl/data_transformation.py +1254 -0
- teradataml/automl/feature_engineering.py +2273 -0
- teradataml/automl/feature_exploration.py +1873 -0
- teradataml/automl/model_evaluation.py +488 -0
- teradataml/automl/model_training.py +1407 -0
- teradataml/catalog/__init__.py +2 -0
- teradataml/catalog/byom.py +1759 -0
- teradataml/catalog/function_argument_mapper.py +859 -0
- teradataml/catalog/model_cataloging_utils.py +491 -0
- teradataml/clients/__init__.py +0 -0
- teradataml/clients/auth_client.py +137 -0
- teradataml/clients/keycloak_client.py +165 -0
- teradataml/clients/pkce_client.py +481 -0
- teradataml/common/__init__.py +1 -0
- teradataml/common/aed_utils.py +2078 -0
- teradataml/common/bulk_exposed_utils.py +113 -0
- teradataml/common/constants.py +1669 -0
- teradataml/common/deprecations.py +166 -0
- teradataml/common/exceptions.py +147 -0
- teradataml/common/formula.py +743 -0
- teradataml/common/garbagecollector.py +666 -0
- teradataml/common/logger.py +1261 -0
- teradataml/common/messagecodes.py +518 -0
- teradataml/common/messages.py +262 -0
- teradataml/common/pylogger.py +67 -0
- teradataml/common/sqlbundle.py +764 -0
- teradataml/common/td_coltype_code_to_tdtype.py +48 -0
- teradataml/common/utils.py +3166 -0
- teradataml/common/warnings.py +36 -0
- teradataml/common/wrapper_utils.py +625 -0
- teradataml/config/__init__.py +0 -0
- teradataml/config/dummy_file1.cfg +5 -0
- teradataml/config/dummy_file2.cfg +3 -0
- teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
- teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
- teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
- teradataml/context/__init__.py +0 -0
- teradataml/context/aed_context.py +223 -0
- teradataml/context/context.py +1462 -0
- teradataml/data/A_loan.csv +19 -0
- teradataml/data/BINARY_REALS_LEFT.csv +11 -0
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
- teradataml/data/B_loan.csv +49 -0
- teradataml/data/BuoyData2.csv +17 -0
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
- teradataml/data/Convolve2RealsLeft.csv +5 -0
- teradataml/data/Convolve2RealsRight.csv +5 -0
- teradataml/data/Convolve2ValidLeft.csv +11 -0
- teradataml/data/Convolve2ValidRight.csv +11 -0
- teradataml/data/DFFTConv_Real_8_8.csv +65 -0
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/Mall_customer_data.csv +201 -0
- teradataml/data/Orders1_12mf.csv +25 -0
- teradataml/data/Pi_loan.csv +7 -0
- teradataml/data/SMOOTHED_DATA.csv +7 -0
- teradataml/data/TestDFFT8.csv +9 -0
- teradataml/data/TestRiver.csv +109 -0
- teradataml/data/Traindata.csv +28 -0
- teradataml/data/__init__.py +0 -0
- teradataml/data/acf.csv +17 -0
- teradataml/data/adaboost_example.json +34 -0
- teradataml/data/adaboostpredict_example.json +24 -0
- teradataml/data/additional_table.csv +11 -0
- teradataml/data/admissions_test.csv +21 -0
- teradataml/data/admissions_train.csv +41 -0
- teradataml/data/admissions_train_nulls.csv +41 -0
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -0
- teradataml/data/ageandpressure.csv +31 -0
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/antiselect_example.json +36 -0
- teradataml/data/antiselect_input.csv +8 -0
- teradataml/data/antiselect_input_mixed_case.csv +8 -0
- teradataml/data/applicant_external.csv +7 -0
- teradataml/data/applicant_reference.csv +7 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/arima_example.json +9 -0
- teradataml/data/assortedtext_input.csv +8 -0
- teradataml/data/attribution_example.json +34 -0
- teradataml/data/attribution_sample_table.csv +27 -0
- teradataml/data/attribution_sample_table1.csv +6 -0
- teradataml/data/attribution_sample_table2.csv +11 -0
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +43 -0
- teradataml/data/bank_web_clicks2.csv +91 -0
- teradataml/data/bank_web_url.csv +85 -0
- teradataml/data/barrier.csv +2 -0
- teradataml/data/barrier_new.csv +3 -0
- teradataml/data/betweenness_example.json +14 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -0
- teradataml/data/bin_fit_ip.csv +4 -0
- teradataml/data/binary_complex_left.csv +11 -0
- teradataml/data/binary_complex_right.csv +11 -0
- teradataml/data/binary_matrix_complex_left.csv +21 -0
- teradataml/data/binary_matrix_complex_right.csv +21 -0
- teradataml/data/binary_matrix_real_left.csv +21 -0
- teradataml/data/binary_matrix_real_right.csv +21 -0
- teradataml/data/blood2ageandweight.csv +26 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -0
- teradataml/data/burst_data.csv +5 -0
- teradataml/data/burst_example.json +21 -0
- teradataml/data/byom_example.json +34 -0
- teradataml/data/bytes_table.csv +4 -0
- teradataml/data/cal_housing_ex_raw.csv +70 -0
- teradataml/data/callers.csv +7 -0
- teradataml/data/calls.csv +10 -0
- teradataml/data/cars_hist.csv +33 -0
- teradataml/data/cat_table.csv +25 -0
- teradataml/data/ccm_example.json +32 -0
- teradataml/data/ccm_input.csv +91 -0
- teradataml/data/ccm_input2.csv +13 -0
- teradataml/data/ccmexample.csv +101 -0
- teradataml/data/ccmprepare_example.json +9 -0
- teradataml/data/ccmprepare_input.csv +91 -0
- teradataml/data/cfilter_example.json +12 -0
- teradataml/data/changepointdetection_example.json +18 -0
- teradataml/data/changepointdetectionrt_example.json +8 -0
- teradataml/data/chi_sq.csv +3 -0
- teradataml/data/churn_data.csv +14 -0
- teradataml/data/churn_emission.csv +35 -0
- teradataml/data/churn_initial.csv +3 -0
- teradataml/data/churn_state_transition.csv +5 -0
- teradataml/data/citedges_2.csv +745 -0
- teradataml/data/citvertices_2.csv +1210 -0
- teradataml/data/clicks2.csv +16 -0
- teradataml/data/clickstream.csv +13 -0
- teradataml/data/clickstream1.csv +11 -0
- teradataml/data/closeness_example.json +16 -0
- teradataml/data/complaints.csv +21 -0
- teradataml/data/complaints_mini.csv +3 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_testtoken.csv +224 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/complaints_tokens_test.csv +353 -0
- teradataml/data/complaints_traintoken.csv +472 -0
- teradataml/data/computers_category.csv +1001 -0
- teradataml/data/computers_test1.csv +1252 -0
- teradataml/data/computers_train1.csv +5009 -0
- teradataml/data/computers_train1_clustered.csv +5009 -0
- teradataml/data/confusionmatrix_example.json +9 -0
- teradataml/data/conversion_event_table.csv +3 -0
- teradataml/data/corr_input.csv +17 -0
- teradataml/data/correlation_example.json +11 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/coxhazardratio_example.json +39 -0
- teradataml/data/coxph_example.json +15 -0
- teradataml/data/coxsurvival_example.json +28 -0
- teradataml/data/cpt.csv +41 -0
- teradataml/data/credit_ex_merged.csv +45 -0
- teradataml/data/creditcard_data.csv +1001 -0
- teradataml/data/customer_loyalty.csv +301 -0
- teradataml/data/customer_loyalty_newseq.csv +31 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +173 -0
- teradataml/data/decisionforest_example.json +37 -0
- teradataml/data/decisionforestpredict_example.json +38 -0
- teradataml/data/decisiontree_example.json +21 -0
- teradataml/data/decisiontreepredict_example.json +45 -0
- teradataml/data/dfft2_size4_real.csv +17 -0
- teradataml/data/dfft2_test_matrix16.csv +17 -0
- teradataml/data/dfft2conv_real_4_4.csv +65 -0
- teradataml/data/diabetes.csv +443 -0
- teradataml/data/diabetes_test.csv +89 -0
- teradataml/data/dict_table.csv +5 -0
- teradataml/data/docperterm_table.csv +4 -0
- teradataml/data/docs/__init__.py +1 -0
- teradataml/data/docs/byom/__init__.py +0 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
- teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
- teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
- teradataml/data/docs/byom/docs/__init__.py +0 -0
- teradataml/data/docs/sqle/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
- teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
- teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/tableoperator/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/uaf/__init__.py +0 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
- teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
- teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
- teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
- teradataml/data/dtw_example.json +18 -0
- teradataml/data/dtw_t1.csv +11 -0
- teradataml/data/dtw_t2.csv +4 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt2d_example.json +16 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_example.json +15 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/dwt_filter_dim.csv +5 -0
- teradataml/data/emission.csv +9 -0
- teradataml/data/emp_table_by_dept.csv +19 -0
- teradataml/data/employee_info.csv +4 -0
- teradataml/data/employee_table.csv +6 -0
- teradataml/data/excluding_event_table.csv +2 -0
- teradataml/data/finance_data.csv +6 -0
- teradataml/data/finance_data2.csv +61 -0
- teradataml/data/finance_data3.csv +93 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -0
- teradataml/data/fmeasure_example.json +12 -0
- teradataml/data/followers_leaders.csv +10 -0
- teradataml/data/fpgrowth_example.json +12 -0
- teradataml/data/frequentpaths_example.json +29 -0
- teradataml/data/friends.csv +9 -0
- teradataml/data/fs_input.csv +33 -0
- teradataml/data/fs_input1.csv +33 -0
- teradataml/data/genData.csv +513 -0
- teradataml/data/geodataframe_example.json +40 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -0
- teradataml/data/glm_example.json +56 -0
- teradataml/data/glml1l2_example.json +28 -0
- teradataml/data/glml1l2predict_example.json +54 -0
- teradataml/data/glmpredict_example.json +54 -0
- teradataml/data/gq_t1.csv +21 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/hconvolve_complex_right.csv +5 -0
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
- teradataml/data/histogram_example.json +12 -0
- teradataml/data/hmmdecoder_example.json +79 -0
- teradataml/data/hmmevaluator_example.json +25 -0
- teradataml/data/hmmsupervised_example.json +10 -0
- teradataml/data/hmmunsupervised_example.json +8 -0
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/house_values.csv +12 -0
- teradataml/data/house_values2.csv +13 -0
- teradataml/data/housing_cat.csv +7 -0
- teradataml/data/housing_data.csv +9 -0
- teradataml/data/housing_test.csv +47 -0
- teradataml/data/housing_test_binary.csv +47 -0
- teradataml/data/housing_train.csv +493 -0
- teradataml/data/housing_train_attribute.csv +5 -0
- teradataml/data/housing_train_binary.csv +437 -0
- teradataml/data/housing_train_parameter.csv +2 -0
- teradataml/data/housing_train_response.csv +493 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -0
- teradataml/data/ibm_stock1.csv +370 -0
- teradataml/data/identitymatch_example.json +22 -0
- teradataml/data/idf_table.csv +4 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/impressions.csv +101 -0
- teradataml/data/inflation.csv +21 -0
- teradataml/data/initial.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +13 -0
- teradataml/data/insurance.csv +1339 -0
- teradataml/data/interpolator_example.json +13 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/iris_altinput.csv +481 -0
- teradataml/data/iris_attribute_output.csv +8 -0
- teradataml/data/iris_attribute_test.csv +121 -0
- teradataml/data/iris_attribute_train.csv +481 -0
- teradataml/data/iris_category_expect_predict.csv +31 -0
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -0
- teradataml/data/iris_response_train.csv +121 -0
- teradataml/data/iris_test.csv +31 -0
- teradataml/data/iris_train.csv +121 -0
- teradataml/data/join_table1.csv +4 -0
- teradataml/data/join_table2.csv +4 -0
- teradataml/data/jsons/anly_function_name.json +7 -0
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/byom/dataikupredict.json +148 -0
- teradataml/data/jsons/byom/datarobotpredict.json +147 -0
- teradataml/data/jsons/byom/h2opredict.json +195 -0
- teradataml/data/jsons/byom/onnxembeddings.json +267 -0
- teradataml/data/jsons/byom/onnxpredict.json +187 -0
- teradataml/data/jsons/byom/pmmlpredict.json +147 -0
- teradataml/data/jsons/paired_functions.json +450 -0
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/kmeans_example.json +23 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +51 -0
- teradataml/data/knn_example.json +19 -0
- teradataml/data/knnrecommender_example.json +7 -0
- teradataml/data/knnrecommenderpredict_example.json +12 -0
- teradataml/data/lar_example.json +17 -0
- teradataml/data/larpredict_example.json +30 -0
- teradataml/data/lc_new_predictors.csv +5 -0
- teradataml/data/lc_new_reference.csv +9 -0
- teradataml/data/lda_example.json +9 -0
- teradataml/data/ldainference_example.json +15 -0
- teradataml/data/ldatopicsummary_example.json +9 -0
- teradataml/data/levendist_input.csv +13 -0
- teradataml/data/levenshteindistance_example.json +10 -0
- teradataml/data/linreg_example.json +10 -0
- teradataml/data/load_example_data.py +350 -0
- teradataml/data/loan_prediction.csv +295 -0
- teradataml/data/lungcancer.csv +138 -0
- teradataml/data/mappingdata.csv +12 -0
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/milk_timeseries.csv +157 -0
- teradataml/data/min_max_titanic.csv +4 -0
- teradataml/data/minhash_example.json +6 -0
- teradataml/data/ml_ratings.csv +7547 -0
- teradataml/data/ml_ratings_10.csv +2445 -0
- teradataml/data/mobile_data.csv +13 -0
- teradataml/data/model1_table.csv +5 -0
- teradataml/data/model2_table.csv +5 -0
- teradataml/data/models/License_file.txt +1 -0
- teradataml/data/models/License_file_empty.txt +0 -0
- teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
- teradataml/data/models/dr_iris_rf +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
- teradataml/data/models/iris_db_glm_model.pmml +57 -0
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
- teradataml/data/models/iris_kmeans_model +0 -0
- teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
- teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
- teradataml/data/modularity_example.json +12 -0
- teradataml/data/movavg_example.json +8 -0
- teradataml/data/mtx1.csv +7 -0
- teradataml/data/mtx2.csv +13 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -0
- teradataml/data/naivebayes_example.json +10 -0
- teradataml/data/naivebayespredict_example.json +19 -0
- teradataml/data/naivebayestextclassifier2_example.json +7 -0
- teradataml/data/naivebayestextclassifier_example.json +8 -0
- teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
- teradataml/data/name_Find_configure.csv +10 -0
- teradataml/data/namedentityfinder_example.json +14 -0
- teradataml/data/namedentityfinderevaluator_example.json +10 -0
- teradataml/data/namedentityfindertrainer_example.json +6 -0
- teradataml/data/nb_iris_input_test.csv +31 -0
- teradataml/data/nb_iris_input_train.csv +121 -0
- teradataml/data/nbp_iris_model.csv +13 -0
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_extractor_text.csv +2 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/ner_sports_test2.csv +29 -0
- teradataml/data/ner_sports_train.csv +501 -0
- teradataml/data/nerevaluator_example.json +6 -0
- teradataml/data/nerextractor_example.json +18 -0
- teradataml/data/nermem_sports_test.csv +18 -0
- teradataml/data/nermem_sports_train.csv +51 -0
- teradataml/data/nertrainer_example.json +7 -0
- teradataml/data/ngrams_example.json +7 -0
- teradataml/data/notebooks/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
- teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
- teradataml/data/npath_example.json +23 -0
- teradataml/data/ntree_example.json +14 -0
- teradataml/data/numeric_strings.csv +5 -0
- teradataml/data/numerics.csv +4 -0
- teradataml/data/ocean_buoy.csv +17 -0
- teradataml/data/ocean_buoy2.csv +17 -0
- teradataml/data/ocean_buoys.csv +28 -0
- teradataml/data/ocean_buoys2.csv +10 -0
- teradataml/data/ocean_buoys_nonpti.csv +28 -0
- teradataml/data/ocean_buoys_seq.csv +29 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -0
- teradataml/data/orders1.csv +11 -0
- teradataml/data/orders1_12.csv +13 -0
- teradataml/data/orders_ex.csv +4 -0
- teradataml/data/pack_example.json +9 -0
- teradataml/data/package_tracking.csv +19 -0
- teradataml/data/package_tracking_pti.csv +19 -0
- teradataml/data/pagerank_example.json +13 -0
- teradataml/data/paragraphs_input.csv +6 -0
- teradataml/data/pathanalyzer_example.json +8 -0
- teradataml/data/pathgenerator_example.json +8 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/pattern_matching_data.csv +11 -0
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/phrases.csv +7 -0
- teradataml/data/pivot_example.json +9 -0
- teradataml/data/pivot_input.csv +22 -0
- teradataml/data/playerRating.csv +31 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/postagger_example.json +7 -0
- teradataml/data/posttagger_output.csv +44 -0
- teradataml/data/production_data.csv +17 -0
- teradataml/data/production_data2.csv +7 -0
- teradataml/data/randomsample_example.json +32 -0
- teradataml/data/randomwalksample_example.json +9 -0
- teradataml/data/rank_table.csv +6 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/ref_mobile_data.csv +4 -0
- teradataml/data/ref_mobile_data_dense.csv +2 -0
- teradataml/data/ref_url.csv +17 -0
- teradataml/data/restaurant_reviews.csv +7 -0
- teradataml/data/retail_churn_table.csv +27772 -0
- teradataml/data/river_data.csv +145 -0
- teradataml/data/roc_example.json +8 -0
- teradataml/data/roc_input.csv +101 -0
- teradataml/data/rule_inputs.csv +6 -0
- teradataml/data/rule_table.csv +2 -0
- teradataml/data/sales.csv +7 -0
- teradataml/data/sales_transaction.csv +501 -0
- teradataml/data/salesdata.csv +342 -0
- teradataml/data/sample_cities.csv +3 -0
- teradataml/data/sample_shapes.csv +11 -0
- teradataml/data/sample_streets.csv +3 -0
- teradataml/data/sampling_example.json +16 -0
- teradataml/data/sax_example.json +17 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -0
- teradataml/data/scale_housing.csv +11 -0
- teradataml/data/scale_housing_test.csv +6 -0
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -0
- teradataml/data/scalebypartition_example.json +13 -0
- teradataml/data/scalemap_example.json +13 -0
- teradataml/data/scalesummary_example.json +12 -0
- teradataml/data/score_category.csv +101 -0
- teradataml/data/score_summary.csv +4 -0
- teradataml/data/script_example.json +10 -0
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/lightgbm/dataset.template +175 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +16 -0
- teradataml/data/scripts/mapper_replace.py +16 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
- teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
- teradataml/data/seeds.csv +10 -0
- teradataml/data/sentenceextractor_example.json +7 -0
- teradataml/data/sentiment_extract_input.csv +11 -0
- teradataml/data/sentiment_train.csv +16 -0
- teradataml/data/sentiment_word.csv +20 -0
- teradataml/data/sentiment_word_input.csv +20 -0
- teradataml/data/sentimentextractor_example.json +24 -0
- teradataml/data/sentimenttrainer_example.json +8 -0
- teradataml/data/sequence_table.csv +10 -0
- teradataml/data/seriessplitter_example.json +8 -0
- teradataml/data/sessionize_example.json +17 -0
- teradataml/data/sessionize_table.csv +116 -0
- teradataml/data/setop_test1.csv +24 -0
- teradataml/data/setop_test2.csv +22 -0
- teradataml/data/soc_nw_edges.csv +11 -0
- teradataml/data/soc_nw_vertices.csv +8 -0
- teradataml/data/souvenir_timeseries.csv +168 -0
- teradataml/data/sparse_iris_attribute.csv +5 -0
- teradataml/data/sparse_iris_test.csv +121 -0
- teradataml/data/sparse_iris_train.csv +601 -0
- teradataml/data/star1.csv +6 -0
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/state_transition.csv +5 -0
- teradataml/data/stock_data.csv +53 -0
- teradataml/data/stock_movement.csv +11 -0
- teradataml/data/stock_vol.csv +76 -0
- teradataml/data/stop_words.csv +8 -0
- teradataml/data/store_sales.csv +37 -0
- teradataml/data/stringsimilarity_example.json +8 -0
- teradataml/data/strsimilarity_input.csv +13 -0
- teradataml/data/students.csv +101 -0
- teradataml/data/svm_iris_input_test.csv +121 -0
- teradataml/data/svm_iris_input_train.csv +481 -0
- teradataml/data/svm_iris_model.csv +7 -0
- teradataml/data/svmdense_example.json +10 -0
- teradataml/data/svmdensepredict_example.json +19 -0
- teradataml/data/svmsparse_example.json +8 -0
- teradataml/data/svmsparsepredict_example.json +14 -0
- teradataml/data/svmsparsesummary_example.json +8 -0
- teradataml/data/target_mobile_data.csv +13 -0
- teradataml/data/target_mobile_data_dense.csv +5 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/templatedata.csv +1201 -0
- teradataml/data/templates/open_source_ml.json +11 -0
- teradataml/data/teradata_icon.ico +0 -0
- teradataml/data/teradataml_example.json +1473 -0
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -0
- teradataml/data/test_pacf_12.csv +37 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -0
- teradataml/data/text_inputs.csv +6 -0
- teradataml/data/textchunker_example.json +8 -0
- teradataml/data/textclassifier_example.json +7 -0
- teradataml/data/textclassifier_input.csv +7 -0
- teradataml/data/textclassifiertrainer_example.json +7 -0
- teradataml/data/textmorph_example.json +11 -0
- teradataml/data/textparser_example.json +15 -0
- teradataml/data/texttagger_example.json +12 -0
- teradataml/data/texttokenizer_example.json +7 -0
- teradataml/data/texttrainer_input.csv +11 -0
- teradataml/data/tf_example.json +7 -0
- teradataml/data/tfidf_example.json +14 -0
- teradataml/data/tfidf_input1.csv +201 -0
- teradataml/data/tfidf_train.csv +6 -0
- teradataml/data/time_table1.csv +535 -0
- teradataml/data/time_table2.csv +14 -0
- teradataml/data/timeseriesdata.csv +1601 -0
- teradataml/data/timeseriesdatasetsd4.csv +105 -0
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic.csv +892 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/token_table.csv +696 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +28 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/transformation_table.csv +6 -0
- teradataml/data/transformation_table_new.csv +2 -0
- teradataml/data/tv_spots.csv +16 -0
- teradataml/data/twod_climate_data.csv +117 -0
- teradataml/data/uaf_example.json +529 -0
- teradataml/data/univariatestatistics_example.json +9 -0
- teradataml/data/unpack_example.json +10 -0
- teradataml/data/unpivot_example.json +25 -0
- teradataml/data/unpivot_input.csv +8 -0
- teradataml/data/url_data.csv +10 -0
- teradataml/data/us_air_pass.csv +37 -0
- teradataml/data/us_population.csv +624 -0
- teradataml/data/us_states_shapes.csv +52 -0
- teradataml/data/varmax_example.json +18 -0
- teradataml/data/vectordistance_example.json +30 -0
- teradataml/data/ville_climatedata.csv +121 -0
- teradataml/data/ville_tempdata.csv +12 -0
- teradataml/data/ville_tempdata1.csv +12 -0
- teradataml/data/ville_temperature.csv +11 -0
- teradataml/data/waveletTable.csv +1605 -0
- teradataml/data/waveletTable2.csv +1605 -0
- teradataml/data/weightedmovavg_example.json +9 -0
- teradataml/data/wft_testing.csv +5 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +6 -0
- teradataml/data/word_embed_input_table2.csv +5 -0
- teradataml/data/word_embed_model.csv +23 -0
- teradataml/data/words_input.csv +13 -0
- teradataml/data/xconvolve_complex_left.csv +6 -0
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
- teradataml/data/xgboost_example.json +36 -0
- teradataml/data/xgboostpredict_example.json +32 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/__init__.py +0 -0
- teradataml/dataframe/copy_to.py +2446 -0
- teradataml/dataframe/data_transfer.py +2840 -0
- teradataml/dataframe/dataframe.py +20908 -0
- teradataml/dataframe/dataframe_utils.py +2114 -0
- teradataml/dataframe/fastload.py +794 -0
- teradataml/dataframe/functions.py +2110 -0
- teradataml/dataframe/indexer.py +424 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +1171 -0
- teradataml/dataframe/sql.py +10904 -0
- teradataml/dataframe/sql_function_parameters.py +440 -0
- teradataml/dataframe/sql_functions.py +652 -0
- teradataml/dataframe/sql_interfaces.py +220 -0
- teradataml/dataframe/vantage_function_types.py +675 -0
- teradataml/dataframe/window.py +694 -0
- teradataml/dbutils/__init__.py +3 -0
- teradataml/dbutils/dbutils.py +2871 -0
- teradataml/dbutils/filemgr.py +318 -0
- teradataml/gen_ai/__init__.py +2 -0
- teradataml/gen_ai/convAI.py +473 -0
- teradataml/geospatial/__init__.py +4 -0
- teradataml/geospatial/geodataframe.py +1105 -0
- teradataml/geospatial/geodataframecolumn.py +392 -0
- teradataml/geospatial/geometry_types.py +926 -0
- teradataml/hyperparameter_tuner/__init__.py +1 -0
- teradataml/hyperparameter_tuner/optimizer.py +4115 -0
- teradataml/hyperparameter_tuner/utils.py +303 -0
- teradataml/lib/__init__.py +0 -0
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/lib/libaed_0_1_ppc64le.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/_base.py +1321 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/_constants.py +61 -0
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +267 -0
- teradataml/options/__init__.py +148 -0
- teradataml/options/configure.py +489 -0
- teradataml/options/display.py +187 -0
- teradataml/plot/__init__.py +3 -0
- teradataml/plot/axis.py +1427 -0
- teradataml/plot/constants.py +15 -0
- teradataml/plot/figure.py +431 -0
- teradataml/plot/plot.py +810 -0
- teradataml/plot/query_generator.py +83 -0
- teradataml/plot/subplot.py +216 -0
- teradataml/scriptmgmt/UserEnv.py +4273 -0
- teradataml/scriptmgmt/__init__.py +3 -0
- teradataml/scriptmgmt/lls_utils.py +2157 -0
- teradataml/sdk/README.md +79 -0
- teradataml/sdk/__init__.py +4 -0
- teradataml/sdk/_auth_modes.py +422 -0
- teradataml/sdk/_func_params.py +487 -0
- teradataml/sdk/_json_parser.py +453 -0
- teradataml/sdk/_openapi_spec_constants.py +249 -0
- teradataml/sdk/_utils.py +236 -0
- teradataml/sdk/api_client.py +900 -0
- teradataml/sdk/constants.py +62 -0
- teradataml/sdk/modelops/__init__.py +98 -0
- teradataml/sdk/modelops/_client.py +409 -0
- teradataml/sdk/modelops/_constants.py +304 -0
- teradataml/sdk/modelops/models.py +2308 -0
- teradataml/sdk/spinner.py +107 -0
- teradataml/series/__init__.py +0 -0
- teradataml/series/series.py +537 -0
- teradataml/series/series_utils.py +71 -0
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +658 -0
- teradataml/store/feature_store/feature_store.py +4814 -0
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +7330 -0
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/Apply.py +979 -0
- teradataml/table_operators/Script.py +1739 -0
- teradataml/table_operators/TableOperator.py +1343 -0
- teradataml/table_operators/__init__.py +2 -0
- teradataml/table_operators/apply_query_generator.py +262 -0
- teradataml/table_operators/query_generator.py +493 -0
- teradataml/table_operators/table_operator_query_generator.py +462 -0
- teradataml/table_operators/table_operator_util.py +726 -0
- teradataml/table_operators/templates/dataframe_apply.template +184 -0
- teradataml/table_operators/templates/dataframe_map.template +176 -0
- teradataml/table_operators/templates/dataframe_register.template +73 -0
- teradataml/table_operators/templates/dataframe_udf.template +67 -0
- teradataml/table_operators/templates/script_executor.template +170 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +53 -0
- teradataml/utils/__init__.py +0 -0
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +943 -0
- teradataml/utils/internal_buffer.py +122 -0
- teradataml/utils/print_versions.py +206 -0
- teradataml/utils/utils.py +451 -0
- teradataml/utils/validators.py +3305 -0
- teradataml-20.0.0.8.dist-info/METADATA +2804 -0
- teradataml-20.0.0.8.dist-info/RECORD +1208 -0
- teradataml-20.0.0.8.dist-info/WHEEL +5 -0
- teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
- teradataml-20.0.0.8.dist-info/zip-safe +1 -0
|
@@ -0,0 +1,89 @@
|
|
|
1
|
+
"id","age","sex","bmi","map1","tc","ldl","hdl","tch","ltg","glu","y"
|
|
2
|
+
202,-0.034574862586967,0.0506801187398187,-0.0557853095343297,-0.015999222636143,-0.00982467696941811,-0.00788999512379879,0.0375951860378887,-0.0394933828740919,-0.0529587932392004,0.0279170509033766,39
|
|
3
|
+
17,-0.00551455497881059,-0.044641636506989,0.0422955891888323,0.0494153205448459,0.0245741444856101,-0.0238605666750649,0.0744115640787594,-0.0394933828740919,0.0522799997967812,0.0279170509033766,166
|
|
4
|
+
162,-0.0454724779400257,0.0506801187398187,0.0638518306664503,0.0700725447072635,0.133274420283499,0.131461070372543,-0.0397192078479398,0.108111100629544,0.0757375884575476,0.0859065477110625,217
|
|
5
|
+
99,0.00175052192322852,0.0506801187398187,-0.00512814206192736,-0.0125563519424068,-0.0153284884022226,-0.0138398158977999,0.00814208360519211,-0.0394933828740919,-0.00608024819631442,-0.0673514081378217,92
|
|
6
|
+
78,-0.0963280162542995,-0.044641636506989,-0.0363846922044735,-0.0745280244296595,-0.0387196869916418,-0.0276183482165393,0.0155053592133662,-0.0394933828740919,-0.0740888714915354,-0.00107769750046639,200
|
|
7
|
+
282,-0.0926954778032799,0.0506801187398187,-0.0902752958985185,-0.0573136709609782,-0.0249601584096305,-0.0304366843726451,-0.00658446761115617,-0.00259226199818282,0.024052583226893,0.00306440941436832,94
|
|
8
|
+
345,-0.107225631607358,-0.044641636506989,-0.0115950145052127,-0.0400993174922969,0.0493412959332305,0.0644472995495832,-0.0139477432193303,0.0343088588777263,0.00702686254915195,-0.0300724459043093,200
|
|
9
|
+
362,0.0417084448844436,-0.044641636506989,-0.00728376620968916,0.0287580963824284,-0.0428475455662452,-0.0482861466946485,0.052321737254237,-0.076394503750001,-0.0721284546019561,0.0237749439885419,182
|
|
10
|
+
116,-0.0309423241359475,0.0506801187398187,0.00133873038135806,-0.00567061055493425,0.0644767773734429,0.0494161733836856,-0.0470824834561139,0.108111100629544,0.0837967663655224,0.00306440941436832,229
|
|
11
|
+
179,0.0417084448844436,-0.044641636506989,-0.00836157828357004,-0.0263278347173518,0.0245741444856101,0.0162224364339952,0.0707299262746723,-0.0394933828740919,-0.0483617248028919,-0.0300724459043093,81
|
|
12
|
+
383,0.0489735217864827,-0.044641636506989,0.0606183944448076,-0.0228849640236156,-0.0235842055514294,-0.072711726714232,-0.0434008456520269,-0.00259226199818282,0.104137611358979,0.036201264733046,132
|
|
13
|
+
442,-0.0454724779400257,-0.044641636506989,-0.0730303027164241,-0.081413765817132,0.0837401173882587,0.0278089295202079,0.17381578478911,-0.0394933828740919,-0.00421985970694603,0.00306440941436832,57
|
|
14
|
+
257,-0.0491050163910452,-0.044641636506989,0.160854917315731,-0.0469850588797694,-0.0290880169842339,-0.019789636671801,-0.0470824834561139,0.0343088588777263,0.028016506523264,0.0113486232440377,346
|
|
15
|
+
301,0.0162806757273067,-0.044641636506989,0.0735521393313785,-0.0412469410453994,-0.00432086553661359,-0.0135266674360104,-0.0139477432193303,-0.00111621716314646,0.0428956878925287,0.0444854785627154,275
|
|
16
|
+
135,-0.0745327855481821,-0.044641636506989,0.0433734012627132,-0.0332135761048244,0.0121905687618,0.000251864882729031,0.0633666506664982,-0.0394933828740919,-0.0271286455543265,-0.0466408735636482,103
|
|
17
|
+
440,0.0417084448844436,0.0506801187398187,-0.0159062628007364,0.0172818607481171,-0.0373437341334407,-0.0138398158977999,-0.0249926566315915,-0.0110795197996419,-0.0468794828442166,0.0154907301588724,132
|
|
18
|
+
293,0.00901559882526763,-0.044641636506989,-0.0223731352440218,-0.0320659525517218,-0.0497273098572509,-0.0686407967109681,0.0780932018828464,-0.0708593356186146,-0.0629129499162512,-0.0383566597339788,84
|
|
19
|
+
320,0.0199132141783263,-0.044641636506989,0.00457216660300077,0.0459724498511097,-0.0180803941186249,-0.0545491159304391,0.0633666506664982,-0.0394933828740919,0.0286607203138089,0.0610539062220542,191
|
|
20
|
+
438,0.0417084448844436,0.0506801187398187,0.0196615356373334,0.0597439326260547,-0.00569681839481472,-0.00256647127337676,-0.0286742944356786,-0.00259226199818282,0.0311929907028023,0.00720651632920303,178
|
|
21
|
+
30,0.0671362140415805,0.0506801187398187,-0.00620595413580824,0.063186803319791,-0.0428475455662452,-0.0958847128866574,0.052321737254237,-0.076394503750001,0.0594238004447941,0.0527696923923848,283
|
|
22
|
+
26,-0.067267708646143,0.0506801187398187,-0.0126728265790937,-0.0400993174922969,-0.0153284884022226,0.0046359433477825,-0.0581273968683752,0.0343088588777263,0.0191990330785671,-0.0342145528191441,202
|
|
23
|
+
156,-0.0273097856849279,0.0506801187398187,0.0606183944448076,0.0494153205448459,0.0851160702464598,0.0863676918748504,-0.0029028298070691,0.0343088588777263,0.0378144788263439,0.0486275854775501,186
|
|
24
|
+
190,-0.00188201652779104,-0.044641636506989,-0.0665634302731387,0.00121513083253827,-0.00294491267841247,0.00307020103883484,0.0118237214092792,-0.00259226199818282,-0.0202887477516296,-0.0259303389894746,79
|
|
25
|
+
152,0.00175052192322852,-0.044641636506989,-0.00405032998804645,-0.00567061055493425,-0.00844872411121698,-0.0238605666750649,0.052321737254237,-0.0394933828740919,-0.0089440189577978,-0.0135040182449705,88
|
|
26
|
+
413,0.0744012909436196,-0.044641636506989,0.0854080721440683,0.063186803319791,0.0149424744782022,0.0130909518160999,0.0155053592133662,-0.00259226199818282,0.00620931561650541,0.0859065477110625,261
|
|
27
|
+
13,0.0162806757273067,-0.044641636506989,-0.0288400076873072,-0.00911348124867051,-0.00432086553661359,-0.00976888589453599,0.0449584616460628,-0.0394933828740919,-0.0307512098645563,-0.0424987666488135,179
|
|
28
|
+
310,-0.00914709342983014,0.0506801187398187,0.00133873038135806,-0.00222773986119799,0.0796122588136553,0.0700839718617947,0.0339135482338016,-0.00259226199818282,0.0267142576335128,0.0817644407962278,142
|
|
29
|
+
192,-0.00551455497881059,0.0506801187398187,-0.041773752573878,-0.0435421881860331,-0.0799982727376757,-0.0761563597939169,-0.0323559322397657,-0.0394933828740919,0.0102256424049578,-0.0093619113301358,178
|
|
30
|
+
188,-0.067267708646143,-0.044641636506989,-0.0547074974604488,-0.0263278347173518,-0.0758704141630723,-0.082106180567918,0.0486400994501499,-0.076394503750001,-0.0868289932162924,-0.104630370371334,143
|
|
31
|
+
337,-0.0200447087828888,-0.044641636506989,0.0854080721440683,-0.0366564467985606,0.0919958345374655,0.0894991764927457,-0.0618090346724622,0.145012221505454,0.0809479135112756,0.0527696923923848,306
|
|
32
|
+
167,-0.0563700932930843,0.0506801187398187,-0.0600965578298533,-0.0366564467985606,-0.0882539898868825,-0.0708328359434948,-0.0139477432193303,-0.0394933828740919,-0.0781409106690696,-0.104630370371334,70
|
|
33
|
+
232,0.00901559882526763,-0.044641636506989,-0.030995631835069,0.0218723549949558,0.00806271018719657,0.00870687335104641,0.00446044580110504,-0.00259226199818282,0.00943640914607987,0.0113486232440377,154
|
|
34
|
+
289,0.0707687524926,0.0506801187398187,-0.0169840748746173,0.0218723549949558,0.0438374845004259,0.0563054395430553,0.0375951860378887,-0.00259226199818282,-0.0702093127286876,-0.0176461251598052,80
|
|
35
|
+
171,0.0235457526293458,0.0506801187398187,-0.02021751109626,-0.0366564467985606,-0.0139525355440215,-0.015092409744958,0.0596850128624111,-0.0394933828740919,-0.0964332228917841,-0.0176461251598052,47
|
|
36
|
+
205,0.110726675453815,0.0506801187398187,0.00672779075076256,0.0287580963824284,-0.0277120641260328,-0.00726369820021974,-0.0470824834561139,0.0343088588777263,0.00200784054982379,0.0776223338813931,277
|
|
37
|
+
333,0.030810829531385,-0.044641636506989,0.104808689473925,0.076958286094736,-0.0112006298276192,-0.0113346282034837,-0.0581273968683752,0.0343088588777263,0.0571041874478439,0.036201264733046,270
|
|
38
|
+
3,0.0852989062966783,0.0506801187398187,0.0444512133365941,-0.00567061055493425,-0.0455994512826475,-0.0341944659141195,-0.0323559322397657,-0.00259226199818282,0.00286377051894013,-0.0259303389894746,141
|
|
39
|
+
28,-0.0236772472339084,-0.044641636506989,0.0595405823709267,-0.0400993174922969,-0.0428475455662452,-0.0435889197678055,0.0118237214092792,-0.0394933828740919,-0.0159982677581387,0.0403433716478807,85
|
|
40
|
+
222,-0.0454724779400257,-0.044641636506989,-0.0385403163522353,-0.0263278347173518,-0.0153284884022226,0.000878161806308105,-0.0323559322397657,-0.00259226199818282,0.00114379737951254,-0.0383566597339788,93
|
|
41
|
+
373,-0.0273097856849279,0.0506801187398187,-0.0234509473179027,-0.015999222636143,0.0135665216200011,0.0127778033543103,0.0265502726256275,-0.00259226199818282,-0.0109044358473771,-0.0217882320746399,71
|
|
42
|
+
308,0.0671362140415805,0.0506801187398187,-0.030995631835069,0.00465800152627453,0.0245741444856101,0.0356376410649462,-0.0286742944356786,0.0343088588777263,0.0233748412798208,0.0817644407962278,172
|
|
43
|
+
68,0.0417084448844436,0.0506801187398187,-0.0148284507268555,-0.0171468461892456,-0.00569681839481472,0.00839372488925688,-0.0139477432193303,-0.00185423958066465,-0.0119006848015081,0.00306440941436832,97
|
|
44
|
+
35,0.0162806757273067,-0.044641636506989,-0.063329994051496,-0.0573136709609782,-0.0579830270064577,-0.0489124436182275,0.00814208360519211,-0.0394933828740919,-0.0594726974107223,-0.0673514081378217,65
|
|
45
|
+
100,-0.00188201652779104,-0.044641636506989,-0.0644078061253769,0.0115437429137471,0.0273260502020124,0.0375165318356834,-0.0139477432193303,0.0343088588777263,0.0117839003835759,-0.0549250873933176,83
|
|
46
|
+
163,-0.0527375548420648,-0.044641636506989,0.0304396563761424,-0.0745280244296595,-0.0235842055514294,-0.0113346282034837,-0.0029028298070691,-0.00259226199818282,-0.0307512098645563,-0.00107769750046639,172
|
|
47
|
+
394,-0.0745327855481821,-0.044641636506989,-0.0460850008694016,-0.0435421881860331,-0.0290880169842339,-0.0232342697514859,0.0155053592133662,-0.0394933828740919,-0.0398095943643375,-0.0217882320746399,69
|
|
48
|
+
340,0.0271782910803654,-0.044641636506989,-0.00728376620968916,-0.0504279295735057,0.0754844002390519,0.0566185880048449,0.0339135482338016,-0.00259226199818282,0.0434431722527813,0.0154907301588724,95
|
|
49
|
+
199,-0.0527375548420648,-0.044641636506989,0.0541515220015222,-0.0263278347173518,-0.0552311212900554,-0.03388131745233,-0.0139477432193303,-0.0394933828740919,-0.0740888714915354,-0.0590671943081523,142
|
|
50
|
+
79,0.00538306037424807,-0.044641636506989,-0.0579409336820915,-0.0228849640236156,-0.0676146970138656,-0.0683276482491785,-0.0544457590642881,-0.00259226199818282,0.0428956878925287,-0.0839198357971606,252
|
|
51
|
+
352,-0.0854304009012408,0.0506801187398187,-0.0406959404999971,-0.0332135761048244,-0.0813742255958769,-0.0695802420963367,-0.00658446761115617,-0.0394933828740919,-0.0578000656756125,-0.0424987666488135,71
|
|
52
|
+
277,0.0126481372762872,-0.044641636506989,0.0261284080806188,0.063186803319791,0.125018703134293,0.0916912157252725,0.0633666506664982,-0.00259226199818282,0.0575728562024259,-0.0217882320746399,283
|
|
53
|
+
14,0.00538306037424807,0.0506801187398187,-0.00189470584028465,0.0081008722200108,-0.00432086553661359,-0.0157187066685371,-0.0029028298070691,-0.00259226199818282,0.0383932482116977,-0.0135040182449705,185
|
|
54
|
+
323,0.0235457526293458,0.0506801187398187,0.0616962065186885,0.0620391798699746,0.0245741444856101,-0.0360733566848567,-0.0912621371051588,0.155344535350708,0.133395733837469,0.0817644407962278,242
|
|
55
|
+
66,-0.0454724779400257,0.0506801187398187,-0.0245287593917836,0.0597439326260547,0.00531080447079431,0.0149698425868371,-0.0544457590642881,0.0712099797536354,0.0423448954496075,0.0154907301588724,163
|
|
56
|
+
338,0.0199132141783263,0.0506801187398187,-0.0126728265790937,0.0700725447072635,-0.0112006298276192,0.00714113104209875,-0.0397192078479398,0.0343088588777263,0.00538436996854573,0.00306440941436832,91
|
|
57
|
+
256,0.00175052192322852,-0.044641636506989,-0.0654856181992578,-0.00567061055493425,-0.00707277125301585,-0.0194764882100115,0.0412768238419757,-0.0394933828740919,-0.003303712578677,0.00720651632920303,153
|
|
58
|
+
180,-0.0236772472339084,-0.044641636506989,-0.0159062628007364,-0.0125563519424068,0.0204462859110067,0.0412743133771578,-0.0434008456520269,0.0343088588777263,0.0140724525157685,-0.0093619113301358,151
|
|
59
|
+
64,-0.034574862586967,-0.044641636506989,-0.0374625042783544,-0.0607565416547144,0.0204462859110067,0.0434663526096845,-0.0139477432193303,-0.00259226199818282,-0.0307512098645563,-0.0714935150526564,128
|
|
60
|
+
397,-0.0854304009012408,0.0506801187398187,-0.030995631835069,-0.0228849640236156,-0.0634868384392622,-0.0542359674686496,0.0191869970174533,-0.0394933828740919,-0.0964332228917841,-0.0342145528191441,43
|
|
61
|
+
317,0.0162806757273067,0.0506801187398187,0.0142724752679289,0.00121513083253827,0.00118294589619092,-0.0213553789807487,-0.0323559322397657,0.0343088588777263,0.0749683360277342,0.0403433716478807,220
|
|
62
|
+
98,-0.0273097856849279,-0.044641636506989,0.0886415083657111,-0.0251802111642493,0.0218222387692079,0.0425269072243159,-0.0323559322397657,0.0343088588777263,0.00286377051894013,0.0776223338813931,279
|
|
63
|
+
159,-0.0127796318808497,-0.044641636506989,-0.0654856181992578,-0.0699375301828207,0.00118294589619092,0.0168487333575743,-0.0029028298070691,-0.00702039650329191,-0.0307512098645563,-0.0507829804784829,96
|
|
64
|
+
50,-0.0418399394890061,0.0506801187398187,0.0142724752679289,-0.00567061055493425,-0.0125765826858204,0.00620168565673016,-0.0728539480847234,0.0712099797536354,0.0354619386607697,-0.0135040182449705,142
|
|
65
|
+
334,0.0271782910803654,0.0506801187398187,-0.00620595413580824,0.0287580963824284,-0.0167044412604238,-0.00162702588800815,-0.0581273968683752,0.0343088588777263,0.0293004132685869,0.0320591578182113,164
|
|
66
|
+
218,0.0744012909436196,-0.044641636506989,0.0315174684500233,0.10105838095089,0.0465893902168282,0.0368902349121043,0.0155053592133662,-0.00259226199818282,0.0336568129023847,0.0444854785627154,296
|
|
67
|
+
136,-0.00551455497881059,-0.044641636506989,0.056307146149284,-0.0366564467985606,-0.0483513569990498,-0.0429626228442264,-0.0728539480847234,0.0379989709653172,0.0507815133629732,0.0569117993072195,272
|
|
68
|
+
437,-0.0563700932930843,-0.044641636506989,-0.074108114790305,-0.0504279295735057,-0.0249601584096305,-0.0470335528474903,0.0928197530991947,-0.076394503750001,-0.0611765950943345,-0.0466408735636482,48
|
|
69
|
+
6,-0.0926954778032799,-0.044641636506989,-0.0406959404999971,-0.0194420933298793,-0.0689906498720667,-0.0792878444118122,0.0412768238419757,-0.076394503750001,-0.0411803851880079,-0.0963461565416647,97
|
|
70
|
+
258,-0.0273097856849279,0.0506801187398187,-0.0557853095343297,0.0253152256886921,-0.00707277125301585,-0.0235474182132754,0.052321737254237,-0.0394933828740919,-0.00514530798026311,-0.0507829804784829,63
|
|
71
|
+
197,-0.0236772472339084,-0.044641636506989,-0.0460850008694016,-0.0332135761048244,0.0328298616348169,0.0362639379885253,0.0375951860378887,-0.00259226199818282,-0.0332487872476258,0.0113486232440377,72
|
|
72
|
+
107,-0.0963280162542995,-0.044641636506989,-0.0762637389380668,-0.0435421881860331,-0.0455994512826475,-0.0348207628376986,0.00814208360519211,-0.0394933828740919,-0.0594726974107223,-0.0839198357971606,134
|
|
73
|
+
250,-0.0127796318808497,-0.044641636506989,0.0606183944448076,0.0528581912385822,0.0479653430750293,0.0293746718291555,-0.0176293810234174,0.0343088588777263,0.0702112981933102,0.00720651632920303,215
|
|
74
|
+
296,-0.0527375548420648,0.0506801187398187,0.0390621529671896,-0.0400993174922969,-0.00569681839481472,-0.0129003705124313,0.0118237214092792,-0.0394933828740919,0.0163049527999418,0.00306440941436832,85
|
|
75
|
+
33,0.0344433679824045,0.0506801187398187,0.125287118877662,0.0287580963824284,-0.0538551684318543,-0.0129003705124313,-0.10230705051742,0.108111100629544,0.000271485727907132,0.0279170509033766,341
|
|
76
|
+
330,-0.0127796318808497,0.0506801187398187,-0.0557853095343297,-0.00222773986119799,-0.0277120641260328,-0.029184090525487,0.0191869970174533,-0.0394933828740919,-0.0170521046047435,0.0444854785627154,135
|
|
77
|
+
372,0.0526060602375023,0.0506801187398187,-0.00943939035745095,0.0494153205448459,0.0507172487914316,-0.019163339748222,-0.0139477432193303,0.0343088588777263,0.119343994203787,-0.0176461251598052,197
|
|
78
|
+
8,0.0635036755905609,0.0506801187398187,-0.00189470584028465,0.0666296740135272,0.0906198816792644,0.108914381123697,0.0228686348215404,0.0177033544835672,-0.0358167281015492,0.00306440941436832,63
|
|
79
|
+
174,-0.0636351701951234,0.0506801187398187,-0.0794971751597095,-0.00567061055493425,-0.071742555588469,-0.0664487574784414,-0.0102661054152432,-0.0394933828740919,-0.0181182673078967,-0.0549250873933176,101
|
|
80
|
+
105,-0.0273097856849279,-0.044641636506989,0.0649296427403312,-0.00222773986119799,-0.0249601584096305,-0.0172844489774848,0.0228686348215404,-0.0394933828740919,-0.0611765950943345,-0.063209301222987,95
|
|
81
|
+
84,-0.0382074010379866,-0.044641636506989,0.00996122697240527,-0.0469850588797694,-0.0593589798646588,-0.0529833736214915,-0.0102661054152432,-0.0394933828740919,-0.0159982677581387,-0.0424987666488135,210
|
|
82
|
+
166,-0.0418399394890061,-0.044641636506989,-0.0665634302731387,-0.0469850588797694,-0.0373437341334407,-0.043275771306016,0.0486400994501499,-0.0394933828740919,-0.0561575730950062,-0.0135040182449705,59
|
|
83
|
+
48,-0.0781653239992017,-0.044641636506989,-0.0730303027164241,-0.0573136709609782,-0.0841261313122791,-0.0742774690231797,-0.0249926566315915,-0.0394933828740919,-0.0181182673078967,-0.0839198357971606,142
|
|
84
|
+
307,0.00901559882526763,0.0506801187398187,-0.00189470584028465,0.0218723549949558,-0.0387196869916418,-0.0248000120604336,-0.00658446761115617,-0.0394933828740919,-0.0398095943643375,-0.0135040182449705,44
|
|
85
|
+
349,0.030810829531385,-0.044641636506989,-0.02021751109626,-0.00567061055493425,-0.00432086553661359,-0.0294972389872765,0.0780932018828464,-0.0394933828740919,-0.0109044358473771,-0.00107769750046639,148
|
|
86
|
+
431,-0.00914709342983014,-0.044641636506989,-0.0568631216082106,-0.0504279295735057,0.0218222387692079,0.0453452433804217,-0.0286742944356786,0.0343088588777263,-0.00991895736315477,-0.0176461251598052,183
|
|
87
|
+
353,0.0126481372762872,0.0506801187398187,-0.0719524906425432,-0.0469850588797694,-0.051103262715452,-0.0971373067338155,0.118591217727804,-0.076394503750001,-0.0202887477516296,-0.0383566597339788,77
|
|
88
|
+
246,-0.0273097856849279,-0.044641636506989,-0.0353068801305926,-0.0297707054110881,-0.0566070741482565,-0.058620045933703,0.0302319104297145,-0.0394933828740919,-0.0498684677352306,-0.129483011860342,125
|
|
89
|
+
286,0.0126481372762872,-0.044641636506989,-0.02021751109626,-0.015999222636143,0.0121905687618,0.0212328118226277,-0.0765355858888105,0.108111100629544,0.0598807230654812,-0.0217882320746399,233
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
from teradataml.data.docs import *
|
|
File without changes
|
|
@@ -0,0 +1,180 @@
|
|
|
1
|
+
def DataRobotPredict(modeldata=None, newdata=None, accumulate=None, model_output_fields=None,
|
|
2
|
+
overwrite_cached_models=False, is_debug=False, **generic_arguments):
|
|
3
|
+
"""
|
|
4
|
+
DESCRIPTION:
|
|
5
|
+
The DataRobotPredict() function is used to score data in Vantage with a model that has been
|
|
6
|
+
created outside Vantage and exported to Vantage using DataRobot format.
|
|
7
|
+
|
|
8
|
+
PARAMETERS:
|
|
9
|
+
modeldata:
|
|
10
|
+
Required Argument.
|
|
11
|
+
Specifies the model teradataml DataFrame to be used for scoring.
|
|
12
|
+
Types: teradataml DataFrame
|
|
13
|
+
|
|
14
|
+
newdata:
|
|
15
|
+
Required Argument.
|
|
16
|
+
Specifies the input teradataml DataFrame that contains the data to be scored.
|
|
17
|
+
Types: teradataml DataFrame
|
|
18
|
+
Note:
|
|
19
|
+
The input columns containing Date or Timestamp types should be converted to character type before
|
|
20
|
+
running DatRobotPredict().
|
|
21
|
+
|
|
22
|
+
accumulate:
|
|
23
|
+
Required Argument.
|
|
24
|
+
Specifies the name(s) of input teradataml DataFrame column(s) to
|
|
25
|
+
copy to the output.
|
|
26
|
+
Types: str OR list of Strings (str) OR Feature OR list of Features
|
|
27
|
+
|
|
28
|
+
model_output_fields:
|
|
29
|
+
Optional Argument.
|
|
30
|
+
Specifies the columns of the json output that the user wants to
|
|
31
|
+
specify as individual columns instead of the entire json report.
|
|
32
|
+
Types: str OR list of Strings (str)
|
|
33
|
+
|
|
34
|
+
overwrite_cached_models:
|
|
35
|
+
Optional Argument.
|
|
36
|
+
Specifies the model name that needs to be removed from the cache.
|
|
37
|
+
When a model loaded into the memory of the node fits in the cache,
|
|
38
|
+
it stays in the cache until being evicted to make space for another
|
|
39
|
+
model that needs to be loaded. Therefore, a model can remain in the
|
|
40
|
+
cache even after the completion of function execution. Other functions
|
|
41
|
+
that use the same model can use it, saving the cost of reloading it
|
|
42
|
+
into memory. User should overwrite a cached model only when it is updated,
|
|
43
|
+
to make sure that the Predict function uses the updated model instead
|
|
44
|
+
of the cached model.
|
|
45
|
+
Note:
|
|
46
|
+
Do not use the "overwrite_cached_models" argument except when user
|
|
47
|
+
is trying to replace a previously cached model. Using the argument
|
|
48
|
+
in other cases, including in concurrent queries or multiple times
|
|
49
|
+
within a short period of time lead to an OOM error.
|
|
50
|
+
Default behavior: The function does not overwrite cached models.
|
|
51
|
+
Permitted Values: true, t, yes, y, 1, false, f, no, n, 0, *,
|
|
52
|
+
current_cached_model
|
|
53
|
+
Types: str OR list of Strings (str)
|
|
54
|
+
|
|
55
|
+
is_debug:
|
|
56
|
+
Optional Argument.
|
|
57
|
+
Specifies whether debug statements are added to a trace table or not.
|
|
58
|
+
When set to True, debug statements are added to a trace table that must
|
|
59
|
+
be created beforehand.
|
|
60
|
+
Notes:
|
|
61
|
+
* Only available with BYOM version 3.00.00.02 and later.
|
|
62
|
+
* To save logs for debugging, user can create an error log by using
|
|
63
|
+
the is_debug=True parameter in the predict functions.
|
|
64
|
+
A database trace table is used to collect this information which
|
|
65
|
+
does impact performance of the function, so using small data input
|
|
66
|
+
sizes is recommended.
|
|
67
|
+
* To generate this log, user must do the following:
|
|
68
|
+
1. Create a global trace table with columns vproc_ID BYTE(2),
|
|
69
|
+
Sequence INTEGER, Trace_Output VARCHAR(31000)
|
|
70
|
+
2. Turn on session function tracing:
|
|
71
|
+
SET SESSION FUNCTION TRACE USING '' FOR TABLE <trace_table_name_created_in_step_1>;
|
|
72
|
+
3. Execute function with "is_debug" set to True.
|
|
73
|
+
4. Debug information is logged to the table created in step 1.
|
|
74
|
+
5. To turn off the logging, either disconnect from the session or
|
|
75
|
+
run following SQL:
|
|
76
|
+
SET SESSION FUNCTION TRACE OFF;
|
|
77
|
+
The trace table is temporary and the information is deleted if user
|
|
78
|
+
logs off from the session. If long term persistence is necessary,
|
|
79
|
+
user can copy the table to a permanent table before leaving the
|
|
80
|
+
session.
|
|
81
|
+
Default Value: False
|
|
82
|
+
Types: bool
|
|
83
|
+
|
|
84
|
+
**generic_arguments:
|
|
85
|
+
Specifies the generic keyword arguments SQLE functions accept. Below
|
|
86
|
+
are the generic keyword arguments:
|
|
87
|
+
persist:
|
|
88
|
+
Optional Argument.
|
|
89
|
+
Specifies whether to persist the results of the
|
|
90
|
+
function in a table or not. When set to True,
|
|
91
|
+
results are persisted in a table; otherwise,
|
|
92
|
+
results are garbage collected at the end of the
|
|
93
|
+
session.
|
|
94
|
+
Default Value: False
|
|
95
|
+
Types: bool
|
|
96
|
+
|
|
97
|
+
volatile:
|
|
98
|
+
Optional Argument.
|
|
99
|
+
Specifies whether to put the results of the
|
|
100
|
+
function in a volatile table or not. When set to
|
|
101
|
+
True, results are stored in a volatile table,
|
|
102
|
+
otherwise not.
|
|
103
|
+
Default Value: False
|
|
104
|
+
Types: bool
|
|
105
|
+
|
|
106
|
+
Function allows the user to partition, hash, order or local
|
|
107
|
+
order the input data. These generic arguments are available
|
|
108
|
+
for each argument that accepts teradataml DataFrame as
|
|
109
|
+
input and can be accessed as:
|
|
110
|
+
* "<input_data_arg_name>_partition_column" accepts str or
|
|
111
|
+
list of str (Strings) or PartitionKind
|
|
112
|
+
* "<input_data_arg_name>_hash_column" accepts str or list
|
|
113
|
+
of str (Strings)
|
|
114
|
+
* "<input_data_arg_name>_order_column" accepts str or list
|
|
115
|
+
of str (Strings)
|
|
116
|
+
* "local_order_<input_data_arg_name>" accepts boolean
|
|
117
|
+
Note:
|
|
118
|
+
These generic arguments are supported by teradataml if
|
|
119
|
+
the underlying SQL Engine function supports, else an
|
|
120
|
+
exception is raised.
|
|
121
|
+
|
|
122
|
+
RETURNS:
|
|
123
|
+
Instance of DataRobotPredict.
|
|
124
|
+
Output teradataml DataFrames can be accessed using attribute
|
|
125
|
+
references, such as DataRobotPredictObj.<attribute_name>.
|
|
126
|
+
Output teradataml DataFrame attribute name is:
|
|
127
|
+
result
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
RAISES:
|
|
131
|
+
TeradataMlException, TypeError, ValueError
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
EXAMPLES:
|
|
135
|
+
# Notes:
|
|
136
|
+
# 1. Get the connection to Vantage to execute the function.
|
|
137
|
+
# 2. One must import the required functions mentioned in
|
|
138
|
+
# the example from teradataml.
|
|
139
|
+
# 3. Function will raise error if not supported on the Vantage
|
|
140
|
+
# user is connected to.
|
|
141
|
+
# 4. To execute BYOM functions, set 'configure.byom_install_location' to the
|
|
142
|
+
# database name where BYOM functions are installed.
|
|
143
|
+
|
|
144
|
+
# Import required libraries / functions.
|
|
145
|
+
import os, teradataml
|
|
146
|
+
from teradataml import get_connection, DataFrame
|
|
147
|
+
from teradataml import save_byom, retrieve_byom, load_example_data
|
|
148
|
+
from teradataml import configure, display_analytic_functions, execute_sql
|
|
149
|
+
|
|
150
|
+
# Load example data.
|
|
151
|
+
load_example_data("byom", "iris_test")
|
|
152
|
+
|
|
153
|
+
# Create teradataml DataFrame objects.
|
|
154
|
+
iris_test = DataFrame.from_table("iris_test")
|
|
155
|
+
|
|
156
|
+
# Set install location of BYOM functions.
|
|
157
|
+
configure.byom_install_location = "mldb"
|
|
158
|
+
|
|
159
|
+
# Check the list of available analytic functions.
|
|
160
|
+
display_analytic_functions(type="BYOM")
|
|
161
|
+
|
|
162
|
+
# Load model file into Vantage.
|
|
163
|
+
model_file = os.path.join(os.path.dirname(teradataml.__file__), "data",
|
|
164
|
+
"models", "dr_iris_rf")
|
|
165
|
+
save_byom("dr_iris_rf", model_file, "byom_models")
|
|
166
|
+
|
|
167
|
+
# Retrieve model.
|
|
168
|
+
modeldata = retrieve_byom("dr_iris_rf", table_name="byom_models")
|
|
169
|
+
|
|
170
|
+
# Example 1: Score data in Vantage with a model that has
|
|
171
|
+
# been created outside the Vantage by removing all the
|
|
172
|
+
# all cached models.
|
|
173
|
+
Datarobotpredict_1 = DataRobotPredict(newdata=iris_test,
|
|
174
|
+
modeldata=modeldata,
|
|
175
|
+
accumulate=['id', 'sepal_length', 'petal_length'],
|
|
176
|
+
overwrite_cached_models="*")
|
|
177
|
+
|
|
178
|
+
# Print the results.
|
|
179
|
+
print(Datarobotpredict_1.result)
|
|
180
|
+
"""
|
|
@@ -0,0 +1,217 @@
|
|
|
1
|
+
def DataikuPredict(modeldata=None, newdata=None, accumulate=None, model_output_fields=None,
|
|
2
|
+
overwrite_cached_models=False, is_debug=False, **generic_arguments):
|
|
3
|
+
"""
|
|
4
|
+
DESCRIPTION:
|
|
5
|
+
The DataikuPredict() function is used to score data in Vantage
|
|
6
|
+
with a model that has been created outside Vantage and exported
|
|
7
|
+
to Vantage using Dataiku format.
|
|
8
|
+
|
|
9
|
+
PARAMETERS:
|
|
10
|
+
modeldata:
|
|
11
|
+
Required Argument.
|
|
12
|
+
Specifies the model teradataml DataFrame to be used for
|
|
13
|
+
scoring.
|
|
14
|
+
Types: teradataml DataFrame
|
|
15
|
+
|
|
16
|
+
newdata:
|
|
17
|
+
Required Argument.
|
|
18
|
+
Specifies the input teradataml DataFrame that contains
|
|
19
|
+
the data to be scored.
|
|
20
|
+
Types: teradataml DataFrame
|
|
21
|
+
|
|
22
|
+
accumulate:
|
|
23
|
+
Required Argument.
|
|
24
|
+
Specifies the name(s) of input teradataml DataFrame column(s) to
|
|
25
|
+
copy to the output. By default, the function copies all input
|
|
26
|
+
teradataml DataFrame columns to the output.
|
|
27
|
+
Types: str OR list of Strings (str) OR Feature OR list of Features
|
|
28
|
+
|
|
29
|
+
model_output_fields:
|
|
30
|
+
Optional Argument.
|
|
31
|
+
Specifies the columns of the json output that the user wants
|
|
32
|
+
to specify as individual columns instead of the entire json
|
|
33
|
+
report.
|
|
34
|
+
Types: str OR list of Strings (str)
|
|
35
|
+
|
|
36
|
+
overwrite_cached_models:
|
|
37
|
+
Optional Argument.
|
|
38
|
+
Specifies the model name that needs to be removed from the cache.
|
|
39
|
+
If a model is loaded into the memory of the node fits in the cache,
|
|
40
|
+
it stays in the cache until being evicted to make space for another
|
|
41
|
+
model that needs to be loaded. Therefore, a model can remain in the
|
|
42
|
+
cache even after completion of function call. Other queries that
|
|
43
|
+
use the same model can use it, saving the cost of reloading it
|
|
44
|
+
into memory. User may overwrite a cached model only when it has been
|
|
45
|
+
updated, to make sure that the Predict function uses the updated
|
|
46
|
+
model instead of the cached model.
|
|
47
|
+
Note:
|
|
48
|
+
Do not use the "overwrite_cached_models" argument except when trying
|
|
49
|
+
to replace a previously cached model. This applies to any model type
|
|
50
|
+
(PMML, H2O Open Source, DAI, ONNX, and Dataiku). Using this argument
|
|
51
|
+
in other cases, including in concurrent queries or multiple times
|
|
52
|
+
within a short period of time, may lead to an OOM error from garbage
|
|
53
|
+
collection not being fast enough.
|
|
54
|
+
Permitted Values:
|
|
55
|
+
'current_cached_model', '*', 'true', 't', 'yes', '1', 'false', 'f', 'no',
|
|
56
|
+
'n', or '0'.
|
|
57
|
+
Default Values: "false"
|
|
58
|
+
Types: bool
|
|
59
|
+
|
|
60
|
+
is_debug:
|
|
61
|
+
Optional Argument.
|
|
62
|
+
Specifies whether debug statements are added to a trace table or not.
|
|
63
|
+
When set to True, debug statements are added to a trace table that must
|
|
64
|
+
be created beforehand.
|
|
65
|
+
Notes:
|
|
66
|
+
* Only available with BYOM version 3.00.00.02 and later.
|
|
67
|
+
* To save logs for debugging, user can create an error log by using
|
|
68
|
+
the is_debug=True parameter in the predict functions.
|
|
69
|
+
A database trace table is used to collect this information which
|
|
70
|
+
does impact performance of the function, so using small data input
|
|
71
|
+
sizes is recommended.
|
|
72
|
+
* To generate this log, user must do the following:
|
|
73
|
+
1. Create a global trace table with columns vproc_ID BYTE(2),
|
|
74
|
+
Sequence INTEGER, Trace_Output VARCHAR(31000)
|
|
75
|
+
2. Turn on session function tracing:
|
|
76
|
+
SET SESSION FUNCTION TRACE USING '' FOR TABLE <trace_table_name_created_in_step_1>;
|
|
77
|
+
3. Execute function with "is_debug" set to True.
|
|
78
|
+
4. Debug information is logged to the table created in step 1.
|
|
79
|
+
5. To turn off the logging, either disconnect from the session or
|
|
80
|
+
run following SQL:
|
|
81
|
+
SET SESSION FUNCTION TRACE OFF;
|
|
82
|
+
The trace table is temporary and the information is deleted if user
|
|
83
|
+
logs off from the session. If long term persistence is necessary,
|
|
84
|
+
user can copy the table to a permanent table before leaving the
|
|
85
|
+
session.
|
|
86
|
+
Default Value: False
|
|
87
|
+
Types: bool
|
|
88
|
+
|
|
89
|
+
**generic_arguments:
|
|
90
|
+
Specifies the generic keyword arguments SQLE functions accept. Below
|
|
91
|
+
are the generic keyword arguments:
|
|
92
|
+
persist:
|
|
93
|
+
Optional Argument.
|
|
94
|
+
Specifies whether to persist the results of the
|
|
95
|
+
function in a table or not. When set to True,
|
|
96
|
+
results are persisted in a table; otherwise,
|
|
97
|
+
results are garbage collected at the end of the
|
|
98
|
+
session.
|
|
99
|
+
Default Value: False
|
|
100
|
+
Types: bool
|
|
101
|
+
|
|
102
|
+
volatile:
|
|
103
|
+
Optional Argument.
|
|
104
|
+
Specifies whether to put the results of the
|
|
105
|
+
function in a volatile table or not. When set to
|
|
106
|
+
True, results are stored in a volatile table,
|
|
107
|
+
otherwise not.
|
|
108
|
+
Default Value: False
|
|
109
|
+
Types: bool
|
|
110
|
+
|
|
111
|
+
Function allows the user to partition, hash, order or local
|
|
112
|
+
order the input data. These generic arguments are available
|
|
113
|
+
for each argument that accepts teradataml DataFrame as
|
|
114
|
+
input and can be accessed as:
|
|
115
|
+
* "<input_data_arg_name>_partition_column" accepts str or
|
|
116
|
+
list of str (Strings) or PartitionKind
|
|
117
|
+
* "<input_data_arg_name>_hash_column" accepts str or list
|
|
118
|
+
of str (Strings)
|
|
119
|
+
* "<input_data_arg_name>_order_column" accepts str or list
|
|
120
|
+
of str (Strings)
|
|
121
|
+
* "local_order_<input_data_arg_name>" accepts boolean
|
|
122
|
+
Note:
|
|
123
|
+
These generic arguments are supported by teradataml if
|
|
124
|
+
the underlying SQL Engine function supports, else an
|
|
125
|
+
exception is raised.
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
RETURNS:
|
|
129
|
+
Instance of DataikuPredict.
|
|
130
|
+
Output teradataml DataFrame can be accessed using attribute
|
|
131
|
+
references, such as DataikuPredictObj.<attribute_name>.
|
|
132
|
+
Output teradataml DataFrame attribute name is:
|
|
133
|
+
result
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
RAISES:
|
|
137
|
+
TeradataMlException, TypeError, ValueError
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
EXAMPLES:
|
|
141
|
+
# Notes:
|
|
142
|
+
# 1. Get the connection to Vantage to execute the function.
|
|
143
|
+
# 2. One must import the required functions mentioned in
|
|
144
|
+
# the example from teradataml.
|
|
145
|
+
# 3. Function will raise error if not supported on the Vantage
|
|
146
|
+
# user is connected to.
|
|
147
|
+
# 4. To execute BYOM functions, set 'configure.byom_install_location' to the
|
|
148
|
+
# database name where BYOM functions are installed.
|
|
149
|
+
|
|
150
|
+
# Import required libraries / functions.
|
|
151
|
+
import os, teradataml
|
|
152
|
+
from teradataml import get_connection, DataFrame
|
|
153
|
+
from teradataml import save_byom, retrieve_byom, load_example_data
|
|
154
|
+
from teradataml import configure, display_analytic_functions, execute_sql
|
|
155
|
+
|
|
156
|
+
# Load example data.
|
|
157
|
+
load_example_data("byom", "iris_test")
|
|
158
|
+
|
|
159
|
+
# Create teradataml DataFrame objects.
|
|
160
|
+
iris_test = DataFrame.from_table("iris_test")
|
|
161
|
+
|
|
162
|
+
# Set install location of BYOM functions.
|
|
163
|
+
configure.byom_install_location = "mldb"
|
|
164
|
+
|
|
165
|
+
# Check the list of available analytic functions.
|
|
166
|
+
display_analytic_functions(type="BYOM")
|
|
167
|
+
|
|
168
|
+
# Load model file into Vantage.
|
|
169
|
+
model_file = os.path.join(os.path.dirname(teradataml.__file__), "data",
|
|
170
|
+
"models", "dataiku_iris_data_ann_thin")
|
|
171
|
+
save_byom("dataiku_iris_data_ann_thin", model_file, "byom_models")
|
|
172
|
+
|
|
173
|
+
# Retrieve model.
|
|
174
|
+
modeldata = retrieve_byom("dataiku_iris_data_ann_thin", table_name="byom_models")
|
|
175
|
+
|
|
176
|
+
# Example 1: Score data in Vantage with a model that has
|
|
177
|
+
# been created outside the Vantage by removing all the
|
|
178
|
+
# all cached models.
|
|
179
|
+
DataikuPredict_out_1 = DataikuPredict(newdata=iris_test,
|
|
180
|
+
modeldata=modeldata,
|
|
181
|
+
accumulate=['id', 'sepal_length', 'petal_length'],
|
|
182
|
+
overwrite_cached_models="*")
|
|
183
|
+
|
|
184
|
+
# Print the results.
|
|
185
|
+
print(DataikuPredict_out_1.result)
|
|
186
|
+
|
|
187
|
+
# Example 2: Example to show case the trace table usage using
|
|
188
|
+
# is_debug=True.
|
|
189
|
+
|
|
190
|
+
# Create the trace table.
|
|
191
|
+
crt_tbl_query = 'CREATE GLOBAL TEMPORARY TRACE TABLE BYOM_Trace \
|
|
192
|
+
(vproc_ID BYTE(2) \
|
|
193
|
+
,Sequence INTEGER \
|
|
194
|
+
,Trace_Output VARCHAR(31000) CHARACTER SET LATIN NOT CASESPECIFIC) \
|
|
195
|
+
ON COMMIT PRESERVE ROWS;'
|
|
196
|
+
execute_sql(crt_tbl_query)
|
|
197
|
+
|
|
198
|
+
# Turn on the session function.
|
|
199
|
+
execute_sql("SET SESSION FUNCTION TRACE USING '' FOR TABLE BYOM_Trace;")
|
|
200
|
+
|
|
201
|
+
# Execute the DataikuPredict() function using is_debug=True.
|
|
202
|
+
DataikuPredict_out_2 = DataikuPredict(newdata=iris_test,
|
|
203
|
+
modeldata=modeldata,
|
|
204
|
+
accumulate=['id', 'sepal_length', 'petal_length'],
|
|
205
|
+
overwrite_cached_models="*",
|
|
206
|
+
is_debug=True)
|
|
207
|
+
|
|
208
|
+
# Print the results.
|
|
209
|
+
print(DataikuPredict_out_2.result)
|
|
210
|
+
|
|
211
|
+
# View the trace table information.
|
|
212
|
+
trace_df = DataFrame.from_table("BYOM_Trace")
|
|
213
|
+
print(trace_df)
|
|
214
|
+
|
|
215
|
+
# Turn off the session function
|
|
216
|
+
execute_sql("SET SESSION FUNCTION TRACE OFF;")
|
|
217
|
+
"""
|