teradataml 20.0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +2762 -0
- teradataml/__init__.py +78 -0
- teradataml/_version.py +11 -0
- teradataml/analytics/Transformations.py +2996 -0
- teradataml/analytics/__init__.py +82 -0
- teradataml/analytics/analytic_function_executor.py +2416 -0
- teradataml/analytics/analytic_query_generator.py +1050 -0
- teradataml/analytics/byom/H2OPredict.py +514 -0
- teradataml/analytics/byom/PMMLPredict.py +437 -0
- teradataml/analytics/byom/__init__.py +16 -0
- teradataml/analytics/json_parser/__init__.py +133 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
- teradataml/analytics/json_parser/json_store.py +191 -0
- teradataml/analytics/json_parser/metadata.py +1666 -0
- teradataml/analytics/json_parser/utils.py +805 -0
- teradataml/analytics/meta_class.py +236 -0
- teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
- teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
- teradataml/analytics/sqle/__init__.py +128 -0
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
- teradataml/analytics/table_operator/__init__.py +11 -0
- teradataml/analytics/uaf/__init__.py +82 -0
- teradataml/analytics/utils.py +828 -0
- teradataml/analytics/valib.py +1617 -0
- teradataml/automl/__init__.py +5835 -0
- teradataml/automl/autodataprep/__init__.py +493 -0
- teradataml/automl/custom_json_utils.py +1625 -0
- teradataml/automl/data_preparation.py +1384 -0
- teradataml/automl/data_transformation.py +1254 -0
- teradataml/automl/feature_engineering.py +2273 -0
- teradataml/automl/feature_exploration.py +1873 -0
- teradataml/automl/model_evaluation.py +488 -0
- teradataml/automl/model_training.py +1407 -0
- teradataml/catalog/__init__.py +2 -0
- teradataml/catalog/byom.py +1759 -0
- teradataml/catalog/function_argument_mapper.py +859 -0
- teradataml/catalog/model_cataloging_utils.py +491 -0
- teradataml/clients/__init__.py +0 -0
- teradataml/clients/auth_client.py +137 -0
- teradataml/clients/keycloak_client.py +165 -0
- teradataml/clients/pkce_client.py +481 -0
- teradataml/common/__init__.py +1 -0
- teradataml/common/aed_utils.py +2078 -0
- teradataml/common/bulk_exposed_utils.py +113 -0
- teradataml/common/constants.py +1669 -0
- teradataml/common/deprecations.py +166 -0
- teradataml/common/exceptions.py +147 -0
- teradataml/common/formula.py +743 -0
- teradataml/common/garbagecollector.py +666 -0
- teradataml/common/logger.py +1261 -0
- teradataml/common/messagecodes.py +518 -0
- teradataml/common/messages.py +262 -0
- teradataml/common/pylogger.py +67 -0
- teradataml/common/sqlbundle.py +764 -0
- teradataml/common/td_coltype_code_to_tdtype.py +48 -0
- teradataml/common/utils.py +3166 -0
- teradataml/common/warnings.py +36 -0
- teradataml/common/wrapper_utils.py +625 -0
- teradataml/config/__init__.py +0 -0
- teradataml/config/dummy_file1.cfg +5 -0
- teradataml/config/dummy_file2.cfg +3 -0
- teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
- teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
- teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
- teradataml/context/__init__.py +0 -0
- teradataml/context/aed_context.py +223 -0
- teradataml/context/context.py +1462 -0
- teradataml/data/A_loan.csv +19 -0
- teradataml/data/BINARY_REALS_LEFT.csv +11 -0
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
- teradataml/data/B_loan.csv +49 -0
- teradataml/data/BuoyData2.csv +17 -0
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
- teradataml/data/Convolve2RealsLeft.csv +5 -0
- teradataml/data/Convolve2RealsRight.csv +5 -0
- teradataml/data/Convolve2ValidLeft.csv +11 -0
- teradataml/data/Convolve2ValidRight.csv +11 -0
- teradataml/data/DFFTConv_Real_8_8.csv +65 -0
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/Mall_customer_data.csv +201 -0
- teradataml/data/Orders1_12mf.csv +25 -0
- teradataml/data/Pi_loan.csv +7 -0
- teradataml/data/SMOOTHED_DATA.csv +7 -0
- teradataml/data/TestDFFT8.csv +9 -0
- teradataml/data/TestRiver.csv +109 -0
- teradataml/data/Traindata.csv +28 -0
- teradataml/data/__init__.py +0 -0
- teradataml/data/acf.csv +17 -0
- teradataml/data/adaboost_example.json +34 -0
- teradataml/data/adaboostpredict_example.json +24 -0
- teradataml/data/additional_table.csv +11 -0
- teradataml/data/admissions_test.csv +21 -0
- teradataml/data/admissions_train.csv +41 -0
- teradataml/data/admissions_train_nulls.csv +41 -0
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -0
- teradataml/data/ageandpressure.csv +31 -0
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/antiselect_example.json +36 -0
- teradataml/data/antiselect_input.csv +8 -0
- teradataml/data/antiselect_input_mixed_case.csv +8 -0
- teradataml/data/applicant_external.csv +7 -0
- teradataml/data/applicant_reference.csv +7 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/arima_example.json +9 -0
- teradataml/data/assortedtext_input.csv +8 -0
- teradataml/data/attribution_example.json +34 -0
- teradataml/data/attribution_sample_table.csv +27 -0
- teradataml/data/attribution_sample_table1.csv +6 -0
- teradataml/data/attribution_sample_table2.csv +11 -0
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +43 -0
- teradataml/data/bank_web_clicks2.csv +91 -0
- teradataml/data/bank_web_url.csv +85 -0
- teradataml/data/barrier.csv +2 -0
- teradataml/data/barrier_new.csv +3 -0
- teradataml/data/betweenness_example.json +14 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -0
- teradataml/data/bin_fit_ip.csv +4 -0
- teradataml/data/binary_complex_left.csv +11 -0
- teradataml/data/binary_complex_right.csv +11 -0
- teradataml/data/binary_matrix_complex_left.csv +21 -0
- teradataml/data/binary_matrix_complex_right.csv +21 -0
- teradataml/data/binary_matrix_real_left.csv +21 -0
- teradataml/data/binary_matrix_real_right.csv +21 -0
- teradataml/data/blood2ageandweight.csv +26 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -0
- teradataml/data/burst_data.csv +5 -0
- teradataml/data/burst_example.json +21 -0
- teradataml/data/byom_example.json +34 -0
- teradataml/data/bytes_table.csv +4 -0
- teradataml/data/cal_housing_ex_raw.csv +70 -0
- teradataml/data/callers.csv +7 -0
- teradataml/data/calls.csv +10 -0
- teradataml/data/cars_hist.csv +33 -0
- teradataml/data/cat_table.csv +25 -0
- teradataml/data/ccm_example.json +32 -0
- teradataml/data/ccm_input.csv +91 -0
- teradataml/data/ccm_input2.csv +13 -0
- teradataml/data/ccmexample.csv +101 -0
- teradataml/data/ccmprepare_example.json +9 -0
- teradataml/data/ccmprepare_input.csv +91 -0
- teradataml/data/cfilter_example.json +12 -0
- teradataml/data/changepointdetection_example.json +18 -0
- teradataml/data/changepointdetectionrt_example.json +8 -0
- teradataml/data/chi_sq.csv +3 -0
- teradataml/data/churn_data.csv +14 -0
- teradataml/data/churn_emission.csv +35 -0
- teradataml/data/churn_initial.csv +3 -0
- teradataml/data/churn_state_transition.csv +5 -0
- teradataml/data/citedges_2.csv +745 -0
- teradataml/data/citvertices_2.csv +1210 -0
- teradataml/data/clicks2.csv +16 -0
- teradataml/data/clickstream.csv +13 -0
- teradataml/data/clickstream1.csv +11 -0
- teradataml/data/closeness_example.json +16 -0
- teradataml/data/complaints.csv +21 -0
- teradataml/data/complaints_mini.csv +3 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_testtoken.csv +224 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/complaints_tokens_test.csv +353 -0
- teradataml/data/complaints_traintoken.csv +472 -0
- teradataml/data/computers_category.csv +1001 -0
- teradataml/data/computers_test1.csv +1252 -0
- teradataml/data/computers_train1.csv +5009 -0
- teradataml/data/computers_train1_clustered.csv +5009 -0
- teradataml/data/confusionmatrix_example.json +9 -0
- teradataml/data/conversion_event_table.csv +3 -0
- teradataml/data/corr_input.csv +17 -0
- teradataml/data/correlation_example.json +11 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/coxhazardratio_example.json +39 -0
- teradataml/data/coxph_example.json +15 -0
- teradataml/data/coxsurvival_example.json +28 -0
- teradataml/data/cpt.csv +41 -0
- teradataml/data/credit_ex_merged.csv +45 -0
- teradataml/data/creditcard_data.csv +1001 -0
- teradataml/data/customer_loyalty.csv +301 -0
- teradataml/data/customer_loyalty_newseq.csv +31 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +173 -0
- teradataml/data/decisionforest_example.json +37 -0
- teradataml/data/decisionforestpredict_example.json +38 -0
- teradataml/data/decisiontree_example.json +21 -0
- teradataml/data/decisiontreepredict_example.json +45 -0
- teradataml/data/dfft2_size4_real.csv +17 -0
- teradataml/data/dfft2_test_matrix16.csv +17 -0
- teradataml/data/dfft2conv_real_4_4.csv +65 -0
- teradataml/data/diabetes.csv +443 -0
- teradataml/data/diabetes_test.csv +89 -0
- teradataml/data/dict_table.csv +5 -0
- teradataml/data/docperterm_table.csv +4 -0
- teradataml/data/docs/__init__.py +1 -0
- teradataml/data/docs/byom/__init__.py +0 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
- teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
- teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
- teradataml/data/docs/byom/docs/__init__.py +0 -0
- teradataml/data/docs/sqle/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
- teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
- teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/tableoperator/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/uaf/__init__.py +0 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
- teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
- teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
- teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
- teradataml/data/dtw_example.json +18 -0
- teradataml/data/dtw_t1.csv +11 -0
- teradataml/data/dtw_t2.csv +4 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt2d_example.json +16 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_example.json +15 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/dwt_filter_dim.csv +5 -0
- teradataml/data/emission.csv +9 -0
- teradataml/data/emp_table_by_dept.csv +19 -0
- teradataml/data/employee_info.csv +4 -0
- teradataml/data/employee_table.csv +6 -0
- teradataml/data/excluding_event_table.csv +2 -0
- teradataml/data/finance_data.csv +6 -0
- teradataml/data/finance_data2.csv +61 -0
- teradataml/data/finance_data3.csv +93 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -0
- teradataml/data/fmeasure_example.json +12 -0
- teradataml/data/followers_leaders.csv +10 -0
- teradataml/data/fpgrowth_example.json +12 -0
- teradataml/data/frequentpaths_example.json +29 -0
- teradataml/data/friends.csv +9 -0
- teradataml/data/fs_input.csv +33 -0
- teradataml/data/fs_input1.csv +33 -0
- teradataml/data/genData.csv +513 -0
- teradataml/data/geodataframe_example.json +40 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -0
- teradataml/data/glm_example.json +56 -0
- teradataml/data/glml1l2_example.json +28 -0
- teradataml/data/glml1l2predict_example.json +54 -0
- teradataml/data/glmpredict_example.json +54 -0
- teradataml/data/gq_t1.csv +21 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/hconvolve_complex_right.csv +5 -0
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
- teradataml/data/histogram_example.json +12 -0
- teradataml/data/hmmdecoder_example.json +79 -0
- teradataml/data/hmmevaluator_example.json +25 -0
- teradataml/data/hmmsupervised_example.json +10 -0
- teradataml/data/hmmunsupervised_example.json +8 -0
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/house_values.csv +12 -0
- teradataml/data/house_values2.csv +13 -0
- teradataml/data/housing_cat.csv +7 -0
- teradataml/data/housing_data.csv +9 -0
- teradataml/data/housing_test.csv +47 -0
- teradataml/data/housing_test_binary.csv +47 -0
- teradataml/data/housing_train.csv +493 -0
- teradataml/data/housing_train_attribute.csv +5 -0
- teradataml/data/housing_train_binary.csv +437 -0
- teradataml/data/housing_train_parameter.csv +2 -0
- teradataml/data/housing_train_response.csv +493 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -0
- teradataml/data/ibm_stock1.csv +370 -0
- teradataml/data/identitymatch_example.json +22 -0
- teradataml/data/idf_table.csv +4 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/impressions.csv +101 -0
- teradataml/data/inflation.csv +21 -0
- teradataml/data/initial.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +13 -0
- teradataml/data/insurance.csv +1339 -0
- teradataml/data/interpolator_example.json +13 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/iris_altinput.csv +481 -0
- teradataml/data/iris_attribute_output.csv +8 -0
- teradataml/data/iris_attribute_test.csv +121 -0
- teradataml/data/iris_attribute_train.csv +481 -0
- teradataml/data/iris_category_expect_predict.csv +31 -0
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -0
- teradataml/data/iris_response_train.csv +121 -0
- teradataml/data/iris_test.csv +31 -0
- teradataml/data/iris_train.csv +121 -0
- teradataml/data/join_table1.csv +4 -0
- teradataml/data/join_table2.csv +4 -0
- teradataml/data/jsons/anly_function_name.json +7 -0
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/byom/dataikupredict.json +148 -0
- teradataml/data/jsons/byom/datarobotpredict.json +147 -0
- teradataml/data/jsons/byom/h2opredict.json +195 -0
- teradataml/data/jsons/byom/onnxembeddings.json +267 -0
- teradataml/data/jsons/byom/onnxpredict.json +187 -0
- teradataml/data/jsons/byom/pmmlpredict.json +147 -0
- teradataml/data/jsons/paired_functions.json +450 -0
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/kmeans_example.json +23 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +51 -0
- teradataml/data/knn_example.json +19 -0
- teradataml/data/knnrecommender_example.json +7 -0
- teradataml/data/knnrecommenderpredict_example.json +12 -0
- teradataml/data/lar_example.json +17 -0
- teradataml/data/larpredict_example.json +30 -0
- teradataml/data/lc_new_predictors.csv +5 -0
- teradataml/data/lc_new_reference.csv +9 -0
- teradataml/data/lda_example.json +9 -0
- teradataml/data/ldainference_example.json +15 -0
- teradataml/data/ldatopicsummary_example.json +9 -0
- teradataml/data/levendist_input.csv +13 -0
- teradataml/data/levenshteindistance_example.json +10 -0
- teradataml/data/linreg_example.json +10 -0
- teradataml/data/load_example_data.py +350 -0
- teradataml/data/loan_prediction.csv +295 -0
- teradataml/data/lungcancer.csv +138 -0
- teradataml/data/mappingdata.csv +12 -0
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/milk_timeseries.csv +157 -0
- teradataml/data/min_max_titanic.csv +4 -0
- teradataml/data/minhash_example.json +6 -0
- teradataml/data/ml_ratings.csv +7547 -0
- teradataml/data/ml_ratings_10.csv +2445 -0
- teradataml/data/mobile_data.csv +13 -0
- teradataml/data/model1_table.csv +5 -0
- teradataml/data/model2_table.csv +5 -0
- teradataml/data/models/License_file.txt +1 -0
- teradataml/data/models/License_file_empty.txt +0 -0
- teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
- teradataml/data/models/dr_iris_rf +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
- teradataml/data/models/iris_db_glm_model.pmml +57 -0
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
- teradataml/data/models/iris_kmeans_model +0 -0
- teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
- teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
- teradataml/data/modularity_example.json +12 -0
- teradataml/data/movavg_example.json +8 -0
- teradataml/data/mtx1.csv +7 -0
- teradataml/data/mtx2.csv +13 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -0
- teradataml/data/naivebayes_example.json +10 -0
- teradataml/data/naivebayespredict_example.json +19 -0
- teradataml/data/naivebayestextclassifier2_example.json +7 -0
- teradataml/data/naivebayestextclassifier_example.json +8 -0
- teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
- teradataml/data/name_Find_configure.csv +10 -0
- teradataml/data/namedentityfinder_example.json +14 -0
- teradataml/data/namedentityfinderevaluator_example.json +10 -0
- teradataml/data/namedentityfindertrainer_example.json +6 -0
- teradataml/data/nb_iris_input_test.csv +31 -0
- teradataml/data/nb_iris_input_train.csv +121 -0
- teradataml/data/nbp_iris_model.csv +13 -0
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_extractor_text.csv +2 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/ner_sports_test2.csv +29 -0
- teradataml/data/ner_sports_train.csv +501 -0
- teradataml/data/nerevaluator_example.json +6 -0
- teradataml/data/nerextractor_example.json +18 -0
- teradataml/data/nermem_sports_test.csv +18 -0
- teradataml/data/nermem_sports_train.csv +51 -0
- teradataml/data/nertrainer_example.json +7 -0
- teradataml/data/ngrams_example.json +7 -0
- teradataml/data/notebooks/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
- teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
- teradataml/data/npath_example.json +23 -0
- teradataml/data/ntree_example.json +14 -0
- teradataml/data/numeric_strings.csv +5 -0
- teradataml/data/numerics.csv +4 -0
- teradataml/data/ocean_buoy.csv +17 -0
- teradataml/data/ocean_buoy2.csv +17 -0
- teradataml/data/ocean_buoys.csv +28 -0
- teradataml/data/ocean_buoys2.csv +10 -0
- teradataml/data/ocean_buoys_nonpti.csv +28 -0
- teradataml/data/ocean_buoys_seq.csv +29 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -0
- teradataml/data/orders1.csv +11 -0
- teradataml/data/orders1_12.csv +13 -0
- teradataml/data/orders_ex.csv +4 -0
- teradataml/data/pack_example.json +9 -0
- teradataml/data/package_tracking.csv +19 -0
- teradataml/data/package_tracking_pti.csv +19 -0
- teradataml/data/pagerank_example.json +13 -0
- teradataml/data/paragraphs_input.csv +6 -0
- teradataml/data/pathanalyzer_example.json +8 -0
- teradataml/data/pathgenerator_example.json +8 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/pattern_matching_data.csv +11 -0
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/phrases.csv +7 -0
- teradataml/data/pivot_example.json +9 -0
- teradataml/data/pivot_input.csv +22 -0
- teradataml/data/playerRating.csv +31 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/postagger_example.json +7 -0
- teradataml/data/posttagger_output.csv +44 -0
- teradataml/data/production_data.csv +17 -0
- teradataml/data/production_data2.csv +7 -0
- teradataml/data/randomsample_example.json +32 -0
- teradataml/data/randomwalksample_example.json +9 -0
- teradataml/data/rank_table.csv +6 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/ref_mobile_data.csv +4 -0
- teradataml/data/ref_mobile_data_dense.csv +2 -0
- teradataml/data/ref_url.csv +17 -0
- teradataml/data/restaurant_reviews.csv +7 -0
- teradataml/data/retail_churn_table.csv +27772 -0
- teradataml/data/river_data.csv +145 -0
- teradataml/data/roc_example.json +8 -0
- teradataml/data/roc_input.csv +101 -0
- teradataml/data/rule_inputs.csv +6 -0
- teradataml/data/rule_table.csv +2 -0
- teradataml/data/sales.csv +7 -0
- teradataml/data/sales_transaction.csv +501 -0
- teradataml/data/salesdata.csv +342 -0
- teradataml/data/sample_cities.csv +3 -0
- teradataml/data/sample_shapes.csv +11 -0
- teradataml/data/sample_streets.csv +3 -0
- teradataml/data/sampling_example.json +16 -0
- teradataml/data/sax_example.json +17 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -0
- teradataml/data/scale_housing.csv +11 -0
- teradataml/data/scale_housing_test.csv +6 -0
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -0
- teradataml/data/scalebypartition_example.json +13 -0
- teradataml/data/scalemap_example.json +13 -0
- teradataml/data/scalesummary_example.json +12 -0
- teradataml/data/score_category.csv +101 -0
- teradataml/data/score_summary.csv +4 -0
- teradataml/data/script_example.json +10 -0
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/lightgbm/dataset.template +175 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +16 -0
- teradataml/data/scripts/mapper_replace.py +16 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
- teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
- teradataml/data/seeds.csv +10 -0
- teradataml/data/sentenceextractor_example.json +7 -0
- teradataml/data/sentiment_extract_input.csv +11 -0
- teradataml/data/sentiment_train.csv +16 -0
- teradataml/data/sentiment_word.csv +20 -0
- teradataml/data/sentiment_word_input.csv +20 -0
- teradataml/data/sentimentextractor_example.json +24 -0
- teradataml/data/sentimenttrainer_example.json +8 -0
- teradataml/data/sequence_table.csv +10 -0
- teradataml/data/seriessplitter_example.json +8 -0
- teradataml/data/sessionize_example.json +17 -0
- teradataml/data/sessionize_table.csv +116 -0
- teradataml/data/setop_test1.csv +24 -0
- teradataml/data/setop_test2.csv +22 -0
- teradataml/data/soc_nw_edges.csv +11 -0
- teradataml/data/soc_nw_vertices.csv +8 -0
- teradataml/data/souvenir_timeseries.csv +168 -0
- teradataml/data/sparse_iris_attribute.csv +5 -0
- teradataml/data/sparse_iris_test.csv +121 -0
- teradataml/data/sparse_iris_train.csv +601 -0
- teradataml/data/star1.csv +6 -0
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/state_transition.csv +5 -0
- teradataml/data/stock_data.csv +53 -0
- teradataml/data/stock_movement.csv +11 -0
- teradataml/data/stock_vol.csv +76 -0
- teradataml/data/stop_words.csv +8 -0
- teradataml/data/store_sales.csv +37 -0
- teradataml/data/stringsimilarity_example.json +8 -0
- teradataml/data/strsimilarity_input.csv +13 -0
- teradataml/data/students.csv +101 -0
- teradataml/data/svm_iris_input_test.csv +121 -0
- teradataml/data/svm_iris_input_train.csv +481 -0
- teradataml/data/svm_iris_model.csv +7 -0
- teradataml/data/svmdense_example.json +10 -0
- teradataml/data/svmdensepredict_example.json +19 -0
- teradataml/data/svmsparse_example.json +8 -0
- teradataml/data/svmsparsepredict_example.json +14 -0
- teradataml/data/svmsparsesummary_example.json +8 -0
- teradataml/data/target_mobile_data.csv +13 -0
- teradataml/data/target_mobile_data_dense.csv +5 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/templatedata.csv +1201 -0
- teradataml/data/templates/open_source_ml.json +11 -0
- teradataml/data/teradata_icon.ico +0 -0
- teradataml/data/teradataml_example.json +1473 -0
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -0
- teradataml/data/test_pacf_12.csv +37 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -0
- teradataml/data/text_inputs.csv +6 -0
- teradataml/data/textchunker_example.json +8 -0
- teradataml/data/textclassifier_example.json +7 -0
- teradataml/data/textclassifier_input.csv +7 -0
- teradataml/data/textclassifiertrainer_example.json +7 -0
- teradataml/data/textmorph_example.json +11 -0
- teradataml/data/textparser_example.json +15 -0
- teradataml/data/texttagger_example.json +12 -0
- teradataml/data/texttokenizer_example.json +7 -0
- teradataml/data/texttrainer_input.csv +11 -0
- teradataml/data/tf_example.json +7 -0
- teradataml/data/tfidf_example.json +14 -0
- teradataml/data/tfidf_input1.csv +201 -0
- teradataml/data/tfidf_train.csv +6 -0
- teradataml/data/time_table1.csv +535 -0
- teradataml/data/time_table2.csv +14 -0
- teradataml/data/timeseriesdata.csv +1601 -0
- teradataml/data/timeseriesdatasetsd4.csv +105 -0
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic.csv +892 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/token_table.csv +696 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +28 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/transformation_table.csv +6 -0
- teradataml/data/transformation_table_new.csv +2 -0
- teradataml/data/tv_spots.csv +16 -0
- teradataml/data/twod_climate_data.csv +117 -0
- teradataml/data/uaf_example.json +529 -0
- teradataml/data/univariatestatistics_example.json +9 -0
- teradataml/data/unpack_example.json +10 -0
- teradataml/data/unpivot_example.json +25 -0
- teradataml/data/unpivot_input.csv +8 -0
- teradataml/data/url_data.csv +10 -0
- teradataml/data/us_air_pass.csv +37 -0
- teradataml/data/us_population.csv +624 -0
- teradataml/data/us_states_shapes.csv +52 -0
- teradataml/data/varmax_example.json +18 -0
- teradataml/data/vectordistance_example.json +30 -0
- teradataml/data/ville_climatedata.csv +121 -0
- teradataml/data/ville_tempdata.csv +12 -0
- teradataml/data/ville_tempdata1.csv +12 -0
- teradataml/data/ville_temperature.csv +11 -0
- teradataml/data/waveletTable.csv +1605 -0
- teradataml/data/waveletTable2.csv +1605 -0
- teradataml/data/weightedmovavg_example.json +9 -0
- teradataml/data/wft_testing.csv +5 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +6 -0
- teradataml/data/word_embed_input_table2.csv +5 -0
- teradataml/data/word_embed_model.csv +23 -0
- teradataml/data/words_input.csv +13 -0
- teradataml/data/xconvolve_complex_left.csv +6 -0
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
- teradataml/data/xgboost_example.json +36 -0
- teradataml/data/xgboostpredict_example.json +32 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/__init__.py +0 -0
- teradataml/dataframe/copy_to.py +2446 -0
- teradataml/dataframe/data_transfer.py +2840 -0
- teradataml/dataframe/dataframe.py +20908 -0
- teradataml/dataframe/dataframe_utils.py +2114 -0
- teradataml/dataframe/fastload.py +794 -0
- teradataml/dataframe/functions.py +2110 -0
- teradataml/dataframe/indexer.py +424 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +1171 -0
- teradataml/dataframe/sql.py +10904 -0
- teradataml/dataframe/sql_function_parameters.py +440 -0
- teradataml/dataframe/sql_functions.py +652 -0
- teradataml/dataframe/sql_interfaces.py +220 -0
- teradataml/dataframe/vantage_function_types.py +675 -0
- teradataml/dataframe/window.py +694 -0
- teradataml/dbutils/__init__.py +3 -0
- teradataml/dbutils/dbutils.py +2871 -0
- teradataml/dbutils/filemgr.py +318 -0
- teradataml/gen_ai/__init__.py +2 -0
- teradataml/gen_ai/convAI.py +473 -0
- teradataml/geospatial/__init__.py +4 -0
- teradataml/geospatial/geodataframe.py +1105 -0
- teradataml/geospatial/geodataframecolumn.py +392 -0
- teradataml/geospatial/geometry_types.py +926 -0
- teradataml/hyperparameter_tuner/__init__.py +1 -0
- teradataml/hyperparameter_tuner/optimizer.py +4115 -0
- teradataml/hyperparameter_tuner/utils.py +303 -0
- teradataml/lib/__init__.py +0 -0
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/lib/libaed_0_1_ppc64le.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/_base.py +1321 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/_constants.py +61 -0
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +267 -0
- teradataml/options/__init__.py +148 -0
- teradataml/options/configure.py +489 -0
- teradataml/options/display.py +187 -0
- teradataml/plot/__init__.py +3 -0
- teradataml/plot/axis.py +1427 -0
- teradataml/plot/constants.py +15 -0
- teradataml/plot/figure.py +431 -0
- teradataml/plot/plot.py +810 -0
- teradataml/plot/query_generator.py +83 -0
- teradataml/plot/subplot.py +216 -0
- teradataml/scriptmgmt/UserEnv.py +4273 -0
- teradataml/scriptmgmt/__init__.py +3 -0
- teradataml/scriptmgmt/lls_utils.py +2157 -0
- teradataml/sdk/README.md +79 -0
- teradataml/sdk/__init__.py +4 -0
- teradataml/sdk/_auth_modes.py +422 -0
- teradataml/sdk/_func_params.py +487 -0
- teradataml/sdk/_json_parser.py +453 -0
- teradataml/sdk/_openapi_spec_constants.py +249 -0
- teradataml/sdk/_utils.py +236 -0
- teradataml/sdk/api_client.py +900 -0
- teradataml/sdk/constants.py +62 -0
- teradataml/sdk/modelops/__init__.py +98 -0
- teradataml/sdk/modelops/_client.py +409 -0
- teradataml/sdk/modelops/_constants.py +304 -0
- teradataml/sdk/modelops/models.py +2308 -0
- teradataml/sdk/spinner.py +107 -0
- teradataml/series/__init__.py +0 -0
- teradataml/series/series.py +537 -0
- teradataml/series/series_utils.py +71 -0
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +658 -0
- teradataml/store/feature_store/feature_store.py +4814 -0
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +7330 -0
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/Apply.py +979 -0
- teradataml/table_operators/Script.py +1739 -0
- teradataml/table_operators/TableOperator.py +1343 -0
- teradataml/table_operators/__init__.py +2 -0
- teradataml/table_operators/apply_query_generator.py +262 -0
- teradataml/table_operators/query_generator.py +493 -0
- teradataml/table_operators/table_operator_query_generator.py +462 -0
- teradataml/table_operators/table_operator_util.py +726 -0
- teradataml/table_operators/templates/dataframe_apply.template +184 -0
- teradataml/table_operators/templates/dataframe_map.template +176 -0
- teradataml/table_operators/templates/dataframe_register.template +73 -0
- teradataml/table_operators/templates/dataframe_udf.template +67 -0
- teradataml/table_operators/templates/script_executor.template +170 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +53 -0
- teradataml/utils/__init__.py +0 -0
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +943 -0
- teradataml/utils/internal_buffer.py +122 -0
- teradataml/utils/print_versions.py +206 -0
- teradataml/utils/utils.py +451 -0
- teradataml/utils/validators.py +3305 -0
- teradataml-20.0.0.8.dist-info/METADATA +2804 -0
- teradataml-20.0.0.8.dist-info/RECORD +1208 -0
- teradataml-20.0.0.8.dist-info/WHEEL +5 -0
- teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
- teradataml-20.0.0.8.dist-info/zip-safe +1 -0
|
@@ -0,0 +1,201 @@
|
|
|
1
|
+
TV,Radio,Newspaper,Sales
|
|
2
|
+
230.1,37.8,69.2,22.1
|
|
3
|
+
44.5,39.3,45.1,10.4
|
|
4
|
+
17.2,45.9,69.3,12
|
|
5
|
+
151.5,41.3,58.5,16.5
|
|
6
|
+
180.8,10.8,58.4,17.9
|
|
7
|
+
8.7,48.9,75,7.2
|
|
8
|
+
57.5,32.8,23.5,11.8
|
|
9
|
+
120.2,19.6,11.6,13.2
|
|
10
|
+
8.6,2.1,1,4.8
|
|
11
|
+
199.8,2.6,21.2,15.6
|
|
12
|
+
66.1,5.8,24.2,12.6
|
|
13
|
+
214.7,24,4,17.4
|
|
14
|
+
23.8,35.1,65.9,9.2
|
|
15
|
+
97.5,7.6,7.2,13.7
|
|
16
|
+
204.1,32.9,46,19
|
|
17
|
+
195.4,47.7,52.9,22.4
|
|
18
|
+
67.8,36.6,114,12.5
|
|
19
|
+
281.4,39.6,55.8,24.4
|
|
20
|
+
69.2,20.5,18.3,11.3
|
|
21
|
+
147.3,23.9,19.1,14.6
|
|
22
|
+
218.4,27.7,53.4,18
|
|
23
|
+
237.4,5.1,23.5,17.5
|
|
24
|
+
13.2,15.9,49.6,5.6
|
|
25
|
+
228.3,16.9,26.2,20.5
|
|
26
|
+
62.3,12.6,18.3,9.7
|
|
27
|
+
262.9,3.5,19.5,17
|
|
28
|
+
142.9,29.3,12.6,15
|
|
29
|
+
240.1,16.7,22.9,20.9
|
|
30
|
+
248.8,27.1,22.9,18.9
|
|
31
|
+
70.6,16,40.8,10.5
|
|
32
|
+
292.9,28.3,43.2,21.4
|
|
33
|
+
112.9,17.4,38.6,11.9
|
|
34
|
+
97.2,1.5,30,13.2
|
|
35
|
+
265.6,20,0.3,17.4
|
|
36
|
+
95.7,1.4,7.4,11.9
|
|
37
|
+
290.7,4.1,8.5,17.8
|
|
38
|
+
266.9,43.8,5,25.4
|
|
39
|
+
74.7,49.4,45.7,14.7
|
|
40
|
+
43.1,26.7,35.1,10.1
|
|
41
|
+
228,37.7,32,21.5
|
|
42
|
+
202.5,22.3,31.6,16.6
|
|
43
|
+
177,33.4,38.7,17.1
|
|
44
|
+
293.6,27.7,1.8,20.7
|
|
45
|
+
206.9,8.4,26.4,17.9
|
|
46
|
+
25.1,25.7,43.3,8.5
|
|
47
|
+
175.1,22.5,31.5,16.1
|
|
48
|
+
89.7,9.9,35.7,10.6
|
|
49
|
+
239.9,41.5,18.5,23.2
|
|
50
|
+
227.2,15.8,49.9,19.8
|
|
51
|
+
66.9,11.7,36.8,9.7
|
|
52
|
+
199.8,3.1,34.6,16.4
|
|
53
|
+
100.4,9.6,3.6,10.7
|
|
54
|
+
216.4,41.7,39.6,22.6
|
|
55
|
+
182.6,46.2,58.7,21.2
|
|
56
|
+
262.7,28.8,15.9,20.2
|
|
57
|
+
198.9,49.4,60,23.7
|
|
58
|
+
7.3,28.1,41.4,5.5
|
|
59
|
+
136.2,19.2,16.6,13.2
|
|
60
|
+
210.8,49.6,37.7,23.8
|
|
61
|
+
210.7,29.5,9.3,18.4
|
|
62
|
+
53.5,2,21.4,8.1
|
|
63
|
+
261.3,42.7,54.7,24.2
|
|
64
|
+
239.3,15.5,27.3,20.7
|
|
65
|
+
102.7,29.6,8.4,14
|
|
66
|
+
131.1,42.8,28.9,16
|
|
67
|
+
69,9.3,0.9,11.3
|
|
68
|
+
31.5,24.6,2.2,11
|
|
69
|
+
139.3,14.5,10.2,13.4
|
|
70
|
+
237.4,27.5,11,18.9
|
|
71
|
+
216.8,43.9,27.2,22.3
|
|
72
|
+
199.1,30.6,38.7,18.3
|
|
73
|
+
109.8,14.3,31.7,12.4
|
|
74
|
+
26.8,33,19.3,8.8
|
|
75
|
+
129.4,5.7,31.3,11
|
|
76
|
+
213.4,24.6,13.1,17
|
|
77
|
+
16.9,43.7,89.4,8.7
|
|
78
|
+
27.5,1.6,20.7,6.9
|
|
79
|
+
120.5,28.5,14.2,14.2
|
|
80
|
+
5.4,29.9,9.4,5.3
|
|
81
|
+
116,7.7,23.1,11
|
|
82
|
+
76.4,26.7,22.3,11.8
|
|
83
|
+
239.8,4.1,36.9,17.3
|
|
84
|
+
75.3,20.3,32.5,11.3
|
|
85
|
+
68.4,44.5,35.6,13.6
|
|
86
|
+
213.5,43,33.8,21.7
|
|
87
|
+
193.2,18.4,65.7,20.2
|
|
88
|
+
76.3,27.5,16,12
|
|
89
|
+
110.7,40.6,63.2,16
|
|
90
|
+
88.3,25.5,73.4,12.9
|
|
91
|
+
109.8,47.8,51.4,16.7
|
|
92
|
+
134.3,4.9,9.3,14
|
|
93
|
+
28.6,1.5,33,7.3
|
|
94
|
+
217.7,33.5,59,19.4
|
|
95
|
+
250.9,36.5,72.3,22.2
|
|
96
|
+
107.4,14,10.9,11.5
|
|
97
|
+
163.3,31.6,52.9,16.9
|
|
98
|
+
197.6,3.5,5.9,16.7
|
|
99
|
+
184.9,21,22,20.5
|
|
100
|
+
289.7,42.3,51.2,25.4
|
|
101
|
+
135.2,41.7,45.9,17.2
|
|
102
|
+
222.4,4.3,49.8,16.7
|
|
103
|
+
296.4,36.3,100.9,23.8
|
|
104
|
+
280.2,10.1,21.4,19.8
|
|
105
|
+
187.9,17.2,17.9,19.7
|
|
106
|
+
238.2,34.3,5.3,20.7
|
|
107
|
+
137.9,46.4,59,15
|
|
108
|
+
25,11,29.7,7.2
|
|
109
|
+
90.4,0.3,23.2,12
|
|
110
|
+
13.1,0.4,25.6,5.3
|
|
111
|
+
255.4,26.9,5.5,19.8
|
|
112
|
+
225.8,8.2,56.5,18.4
|
|
113
|
+
241.7,38,23.2,21.8
|
|
114
|
+
175.7,15.4,2.4,17.1
|
|
115
|
+
209.6,20.6,10.7,20.9
|
|
116
|
+
78.2,46.8,34.5,14.6
|
|
117
|
+
75.1,35,52.7,12.6
|
|
118
|
+
139.2,14.3,25.6,12.2
|
|
119
|
+
76.4,0.8,14.8,9.4
|
|
120
|
+
125.7,36.9,79.2,15.9
|
|
121
|
+
19.4,16,22.3,6.6
|
|
122
|
+
141.3,26.8,46.2,15.5
|
|
123
|
+
18.8,21.7,50.4,7
|
|
124
|
+
224,2.4,15.6,16.6
|
|
125
|
+
123.1,34.6,12.4,15.2
|
|
126
|
+
229.5,32.3,74.2,19.7
|
|
127
|
+
87.2,11.8,25.9,10.6
|
|
128
|
+
7.8,38.9,50.6,6.6
|
|
129
|
+
80.2,0,9.2,11.9
|
|
130
|
+
220.3,49,3.2,24.7
|
|
131
|
+
59.6,12,43.1,9.7
|
|
132
|
+
0.7,39.6,8.7,1.6
|
|
133
|
+
265.2,2.9,43,17.7
|
|
134
|
+
8.4,27.2,2.1,5.7
|
|
135
|
+
219.8,33.5,45.1,19.6
|
|
136
|
+
36.9,38.6,65.6,10.8
|
|
137
|
+
48.3,47,8.5,11.6
|
|
138
|
+
25.6,39,9.3,9.5
|
|
139
|
+
273.7,28.9,59.7,20.8
|
|
140
|
+
43,25.9,20.5,9.6
|
|
141
|
+
184.9,43.9,1.7,20.7
|
|
142
|
+
73.4,17,12.9,10.9
|
|
143
|
+
193.7,35.4,75.6,19.2
|
|
144
|
+
220.5,33.2,37.9,20.1
|
|
145
|
+
104.6,5.7,34.4,10.4
|
|
146
|
+
96.2,14.8,38.9,12.3
|
|
147
|
+
140.3,1.9,9,10.3
|
|
148
|
+
240.1,7.3,8.7,18.2
|
|
149
|
+
243.2,49,44.3,25.4
|
|
150
|
+
38,40.3,11.9,10.9
|
|
151
|
+
44.7,25.8,20.6,10.1
|
|
152
|
+
280.7,13.9,37,16.1
|
|
153
|
+
121,8.4,48.7,11.6
|
|
154
|
+
197.6,23.3,14.2,16.6
|
|
155
|
+
171.3,39.7,37.7,16
|
|
156
|
+
187.8,21.1,9.5,20.6
|
|
157
|
+
4.1,11.6,5.7,3.2
|
|
158
|
+
93.9,43.5,50.5,15.3
|
|
159
|
+
149.8,1.3,24.3,10.1
|
|
160
|
+
11.7,36.9,45.2,7.3
|
|
161
|
+
131.7,18.4,34.6,12.9
|
|
162
|
+
172.5,18.1,30.7,16.4
|
|
163
|
+
85.7,35.8,49.3,13.3
|
|
164
|
+
188.4,18.1,25.6,19.9
|
|
165
|
+
163.5,36.8,7.4,18
|
|
166
|
+
117.2,14.7,5.4,11.9
|
|
167
|
+
234.5,3.4,84.8,16.9
|
|
168
|
+
17.9,37.6,21.6,8
|
|
169
|
+
206.8,5.2,19.4,17.2
|
|
170
|
+
215.4,23.6,57.6,17.1
|
|
171
|
+
284.3,10.6,6.4,20
|
|
172
|
+
50,11.6,18.4,8.4
|
|
173
|
+
164.5,20.9,47.4,17.5
|
|
174
|
+
19.6,20.1,17,7.6
|
|
175
|
+
168.4,7.1,12.8,16.7
|
|
176
|
+
222.4,3.4,13.1,16.5
|
|
177
|
+
276.9,48.9,41.8,27
|
|
178
|
+
248.4,30.2,20.3,20.2
|
|
179
|
+
170.2,7.8,35.2,16.7
|
|
180
|
+
276.7,2.3,23.7,16.8
|
|
181
|
+
165.6,10,17.6,17.6
|
|
182
|
+
156.6,2.6,8.3,15.5
|
|
183
|
+
218.5,5.4,27.4,17.2
|
|
184
|
+
56.2,5.7,29.7,8.7
|
|
185
|
+
287.6,43,71.8,26.2
|
|
186
|
+
253.8,21.3,30,17.6
|
|
187
|
+
205,45.1,19.6,22.6
|
|
188
|
+
139.5,2.1,26.6,10.3
|
|
189
|
+
191.1,28.7,18.2,17.3
|
|
190
|
+
286,13.9,3.7,20.9
|
|
191
|
+
18.7,12.1,23.4,6.7
|
|
192
|
+
39.5,41.1,5.8,10.8
|
|
193
|
+
75.5,10.8,6,11.9
|
|
194
|
+
17.2,4.1,31.6,5.9
|
|
195
|
+
166.8,42,3.6,19.6
|
|
196
|
+
149.7,35.6,6,17.3
|
|
197
|
+
38.2,3.7,13.8,7.6
|
|
198
|
+
94.2,4.9,8.1,14
|
|
199
|
+
177,9.3,6.4,14.8
|
|
200
|
+
283.6,42,66.2,25.5
|
|
201
|
+
232.1,8.6,8.7,18.4
|
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
N_SeqNo,BuoyID,AGE,HEIGHT
|
|
2
|
+
5,33,23,7.97e+01
|
|
3
|
+
3,33,21,7.82e+01
|
|
4
|
+
1,33,19,7.7e+01
|
|
5
|
+
8,33,26,8.12e+01
|
|
6
|
+
2,33,20,7.81e+01
|
|
7
|
+
11,33,29,8.35e+01
|
|
8
|
+
9,33,27,8.18e+01
|
|
9
|
+
10,33,28,8.28e+01
|
|
10
|
+
7,33,25,8.11e+01
|
|
11
|
+
4,33,22,7.88e+01
|
|
12
|
+
0,33,18,7.61e+01
|
|
13
|
+
6,33,24,7.99e+01
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
I,A0,A1,B
|
|
2
|
+
26,1,53,158
|
|
3
|
+
5,1,65,162
|
|
4
|
+
24,1,21,120
|
|
5
|
+
3,1,45,138
|
|
6
|
+
1,1,39,144
|
|
7
|
+
20,1,19,124
|
|
8
|
+
18,1,17,114
|
|
9
|
+
8,1,42,124
|
|
10
|
+
25,1,44,160
|
|
11
|
+
2,1,47,220
|
|
12
|
+
17,1,45,135
|
|
13
|
+
13,1,59,140
|
|
14
|
+
11,1,64,162
|
|
15
|
+
9,1,67,158
|
|
16
|
+
28,1,29,130
|
|
17
|
+
16,1,48,130
|
|
18
|
+
10,1,56,154
|
|
19
|
+
7,1,67,170
|
|
20
|
+
22,1,50,142
|
|
21
|
+
12,1,56,150
|
|
22
|
+
27,1,63,144
|
|
23
|
+
4,1,47,145
|
|
24
|
+
19,1,20,116
|
|
25
|
+
15,1,42,128
|
|
26
|
+
30,1,69,175
|
|
27
|
+
14,1,34,110
|
|
28
|
+
29,1,25,125
|
|
29
|
+
6,1,46,142
|
|
30
|
+
23,1,39,120
|
|
31
|
+
21,1,36,136
|
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
"rev_id","aid","rev_name","helpful","rev_text","rating","prodsummary","unixrevtime","revtime"
|
|
2
|
+
A10000012B7CGYKOMPQ4L,"000100039X",Adam,"[0, 0]",Spiritually and mentally inspiring! A book that allows you to question your morals and will help you discover who you really are!,5.00,Wonderful!,1355616000,"12 16, 2012"
|
|
3
|
+
A2KU9IU07LOJS1,"000100039X",Amazon Customer,"[0, 0]",This book has been a classic for many years. It has so much wisdom in it that it can be read numerous times and new things will come out each time. My favorite chapter is the one on children.,5.00,Great classic that everyone should read,1384905600,"11 20, 2013"
|
|
4
|
+
A19N3FCQCLJYUA,"000100039X",Amazon Customer,"[1, 1]","I discovered The Prophet fifty years ago in college and have read it dozens of times since then. Now, in addition to my beat up hard copy, I have a portable e-copy. If you were looking for an example of an intelligently designed (pun intended) book of spiritual guidance, this would be it. It doesn""t care how you picture, name or define "God" or whether you give him a gender and a personality. It just cuts to the heart of how to live and how to relate to others. If Jesus and the Buddha teamed up to write a book, it might come out like this.When I first read it, I found some passages difficult to grasp. Looking back, I now think that it was not because they were hard to understand, but because I did not want to hear gently spoken, intelligently phrased ideas that contradicted my own. Now, if I could have only one book, this would probably be it.",5.00,A book everyone "should" read,1358899200,"01 23, 2013"
|
|
5
|
+
A5E9TSD20U9PR,"000100039X",April,"[0, 0]","For those who don""t know Gibran, get to know his work. The Prophet is a must read. His outlook on life is truly an inspiring guide on how to approach major life decisions. This is a relationship with a man""s work you won""t regret having.",5.00,Just beautiful.,1377475200,"08 26, 2013"
|
|
6
|
+
A1BM81XB4QHOA3,"000100039X","""Ahoro Blethends """"Seriously""""""","[0, 0]","This book provides a reflection that you can apply to your own life.And, a way for you to try and assess whether you are truly doing the right thing and making the most of your short time on this plane.",5.00,Must Read for Life Afficianados,1390003200,"01 18, 2014"
|
|
7
|
+
A26GKZPS079GFF,"000100039X",Areej,"[2, 3]","I would have to say that this is the best book I""ve ever read.. I could feel every word deep in my heart everytime, of the many times I""ve read it! I would never get enough of it! its a treasure..",5.00,Touches my heart.. again and.. again...,982972800,"02 24, 2001"
|
|
8
|
+
A1MOSTXNIO5MPJ,"000100039X",Alan Krug,"[0, 0]","I first read THE PROPHET in college back in the 60""s. The book had a revival as did anything metaphysical in the turbulent 60""s. It had a profound effect on me and became a book I always took with me. After graduation I joined the Peace Corps and during stressful training in country (Liberia) at times of illness and the night before I left, this book gave me great comfort. I read it before I married, just before and again after my children were born and again after two near fatal illnesses. I am always amazed that there is a chapter that reaches out to you, grabs you and offers both comfort and hope for the future.Gibran offers timeless insights and love with each word. I think that we as a nation should read AND learn the lessons here. It is definitely a time for thought and reflection this book could guide us through.",5.00,Timeless for every good and bad time in your life.,1317081600,"09 27, 2011"
|
|
9
|
+
A1TT4CY55WLHAR,"000100039X",anonymous,"[0, 0]","I have the 1972 version, bought in 1974. The 1972 version originally had a dust jacket but my dust jacket is long gone. This particular rendition has had many re-printings, for a reason: it""s very popular. The textured paper, old-style typography, and leather cover are better than a plain-old paperback. The size is diminutive, which is perfect for this book.",5.00,"textured paper, old-style typography, and leather cover",1342396800,"07 16, 2012"
|
|
10
|
+
A3FFNE1DR5SI1W,"000100039X",A. Morelli,"[1, 1]","Can""t say enough about Kahlil Gibran""s work among this piece. Everybody in the whole world should read this! There is almost too much to take in, really appreciate and put towards our daily lives. In my opinion, it is just one of the most beautiful literature pieces ever written. Would recommend to as a gift for anyone spiritual/poetic/philosophy/educational piece or just something to enjoy here and there. 5 stars for sure!",5.00,phenomenal piece of literature!,1340755200,"06 27, 2012"
|
|
11
|
+
A1340OFLZBW5NG,"000100039X",Amazon Customer,"[0, 0]",I LOVE this book... his writing seems to just flow from page to page. I get something different from this book each time I read it..,5.00,Perhaps the greatest book that I have ever read,1231977600,"01 15, 2009"
|
|
12
|
+
A29TRDMK51GKZR,"000100039X",Alpine Plume,"[0, 0]","Deep, moving dramatic verses of the heart and soul.Truths of ancient wisdom from a true and romantic poet.Relevant for all eternity.",5.00,Such Beauty,1383436800,"11 3, 2013"
|
|
13
|
+
A3FI0744PG1WYG,"000100039X","""Always Reading """"tkm""""""","[0, 0]","This is a timeless classic. Over the years I""ve given it as a gift more times than I can count, and will continue to do so. Addresses real life issues in a beautiful way and makes us reexamine our own attitude about how we see what happens in our lives. So easy to read over and over.",5.00,The Prophet,1390953600,"01 29, 2014"
|
|
14
|
+
A2XQ5LZHTD4AFT,"000100039X",Alaturka,"[7, 9]","A timeless classic. It is a very demanding and assuming title, but Gibran backs it up with some excellent style and content. If he had the means to publish it a century or two earlier, he could have inspired a new religion.From the mouth of an old man about to sail away to a far away destination, we hear the wisdom of life and all important aspects of it. It is a messege. A guide book. A Sufi sermon. Much is put in perspective without any hint of a dogma. There is much that hints at his birth place, Lebanon where many of the old prophets walked the Earth and where this book project first germinated most likely.Probably becuase it was written in English originally, the writing flows, it is pleasant to read, and the charcoal drawings of the author decorating the pages is a plus. I loved the cover.",5.00,A Modern Rumi,1033948800,"10 7, 2002"
|
|
15
|
+
A2LBBQHYLEHM7P,"000100039X","""Amazon Customer """"Full Frontal Nerdity""""""","[0, 0]","An amazing work. Realizing extensive use of Biblical imagery and sentence structure, "The Prophet" by Khalil Gibran is a literary classic. Influencing the Free Love movement of the 1960""s, Gibran""s master work explores themes of love, longing and loss.",5.00,A Modern Classic,1379808000,"09 22, 2013"
|
|
16
|
+
AENNW2G826191,"000100039X",Ashish A,"[1, 4]","Its a thin book, very readable and has interesting 1-2 page thoughts on various entities like anger, children, religion, speech, silence and its COOL.........reading. Ofcourse if one needs to imbibe the thoughts of the author, it has to be consumed slowly and perhaps revisited but leaves you pretty heady and clear about certain things.",3.00,Good Read,963446400,"07 13, 2000"
|
|
17
|
+
A2X4HE21JTAL98,"000100039X",Antiquarian,"[3, 5]","Anything I""ve read by Gibran is, in my mind, flawless. This, the most famous of his works, is no exception. It is simple, yet deep; honest and profound; moving and inspirational. Gibran""s work is one of a kind, and can be far more encouraging and moving than any self-help program or therapy or anything like that. The poetic style, the aphorisms, the parables, the almost biblical feel, are all just what over-worked, over-stressed, modern and spiritually starved worldly people need.",5.00,Flawless,1132099200,"11 16, 2005"
|
|
18
|
+
A3V1MKC2BVWY48,"000100039X",Alex Dawson,"[0, 0]","Reading this made my mind feel like a still pool of water, cool and quiet in a mossy grotto. It""s direct and simple wisdom has a depth of complexity that takes a quiet day to sink in, leaving you at peace. It is best to set time aside for it, relax, absorb, and let it softly clear your mind.",5.00,This book will bring you peace,1390780800,"01 27, 2014"
|
|
19
|
+
A1KQ80Y692CDOI,"000100039X",Atown,"[2, 9]","I read this about a year ago and can""t recall a great deal of the book. From what I do recall it was like a poem all the way through. While the writing was beautiful, I found it ambiguous and befuddled with meaning that I could not identify with. When Gibran speaks of God, I cannot identify because I have since abandoned those philosophies. It is thus difficult to revisit them in this book. I have the feeling a may have missed something great about this book. Indeed, I pulled wisdom from parts, but rather than go back and read it again, for now, perhaps I will move on to another of the many books out there that are enlightening and worth reading. Someday, I would like to read this again and dig deeper.",2.00,Eloquent,1206057600,"03 21, 2008"
|
|
20
|
+
AUTNO7VDY4H4A,"000100039X",Austin guy,"[0, 0]","Loved this book since first I read it, years gone by. Purchased this copy for a friend who has not ever read Gibran.",5.00,"A great book, buying it for a friend.",1371427200,"06 17, 2013"
|
|
21
|
+
A2WVHIRDMLM82E,"000100039X",Amazon Customer,"[0, 0]","This book has so much you can take out of it to use in your real life. Amazing, and one of my favorite reads of all time.",5.00,Amazing,1394928000,"03 16, 2014"
|
|
22
|
+
A2I35JB67U20C0,"000100039X",Amazon Customer,"[0, 0]","When I was in college in the 70""s this book had a revival and I did not read it then. Recently a friend (who is 90) and I were talking about work and she said: "work is love made visible," and told me it was from the Prophet. I though that was so beautiful I got the book and was not disappointed.You see, if you have ideas and you do not realize them, then they are nothing, and if your ideas do not come from love and joy, then they are bitter and what they produce will be bitter, but if they flow from love and joy, then their realization will be love and joy, thus work is love made visible.He says it WAY better that I do and says much more in just a few paragraphs. But as you can see from the example, what he says is not religious, but positive ways of looking at things. Since I rediscoverd the book I have given away many copies and everyone I have given it to sincerly thanked me.",5.00,Everyone should have this book,983318400,"02 28, 2001"
|
|
23
|
+
A12387207U8U24,"000100039X",Alex,"[0, 0]","As you read, Gibran""s poetry brings spiritual and visual beauty to life within you. Gibran is justly famous for rich metaphors that brilliantly highlight the pursuit of Truth and Goodness amidst all the darkness and light of human nature.",5.00,Graet Work,1206662400,"03 28, 2008"
|
|
24
|
+
A2S166WSCFIFP5,"000100039X","""adead_poet@hotmail.com """"adead_poet@hotmail.com""""""","[0, 2]","This is one my must have books. It is a masterpiece of spirituality. I""ll be the first to admit, its literary quality isn""t much. It is rather simplistically written, but the message behind it is so powerful that you have to read it. It will take you to enlightenment.",5.00,close to god,1071100800,"12 11, 2003"
|
|
25
|
+
A27ZH1AQORJ1L,"000100039X","""anybody else or """"amanuet""""""","[3, 3]","This book is everything that is simple, delicate, true, and beautiful.I have read few books so touching and enlightening; "The Prophet" is a true masterpiece that has that feeling of ancient wisdom in it. The wisdom of the text is gentle, yet insistent, it lets you understand things you""ve always known.My feelings defy description.",5.00,Enchanting,1066003200,"10 13, 2003"
|
|
26
|
+
ARDQ9KNB8K22N,"000100039X",Anwar,"[1, 1]","Cool book, I really like the quality of the production. Black clothbound with gold embossing and nice paper, looks to be cotton rag. I am proud to include it in my collection. Intrigueing story full of the sort of passion that does not cloud the mind or divert truth but instead is revealing and living. Very readable, the stories are short and highly economic so that one is likely to read for only a minute or two until something insightful is revealed. It is full of timeless truths which are of lasting value to the reader and inform life. The language and delivery is familiar yet of a quality that is penetrating in a similar way as it might be listening to a surmon by Jesus. I give it 5 stars. I considered giving only 4 stars because the format is fairly predictable but I have decided that this quality is actually a strength as one can pick up the book at any point and continue until the end...and then start over for that matter. Excellent for busy people or commuters!",5.00,"""""""The Prophet"""" is cool""",1329264000,"02 15, 2012"
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
{
|
|
2
|
+
"antiselect_input" : {
|
|
3
|
+
|
|
4
|
+
"rowids" : "integer",
|
|
5
|
+
"orderid" : "integer",
|
|
6
|
+
"orderdate" : "date",
|
|
7
|
+
"priority" : "varchar(15)",
|
|
8
|
+
"quantity" : "integer",
|
|
9
|
+
"sales" : "real",
|
|
10
|
+
"discount" : "real",
|
|
11
|
+
"shipmode" : "varchar(20)",
|
|
12
|
+
"custname" : "varchar(30)",
|
|
13
|
+
"province" : "varchar(30)",
|
|
14
|
+
"region" : "varchar(30)",
|
|
15
|
+
"custsegment" : "varchar(30)",
|
|
16
|
+
"prodcat" : "varchar(30)"
|
|
17
|
+
|
|
18
|
+
},
|
|
19
|
+
"antiselect_input_mixed_case" : {
|
|
20
|
+
|
|
21
|
+
"rowids" : "integer",
|
|
22
|
+
"OrderId" : "integer",
|
|
23
|
+
"ORDERDATE" : "date",
|
|
24
|
+
"PRIORITY" : "varchar(15)",
|
|
25
|
+
"quantity" : "integer",
|
|
26
|
+
"sales" : "real",
|
|
27
|
+
"Discount" : "real",
|
|
28
|
+
"shipmode" : "varchar(20)",
|
|
29
|
+
"custname" : "varchar(30)",
|
|
30
|
+
"province" : "varchar(30)",
|
|
31
|
+
"region" : "varchar(30)",
|
|
32
|
+
"custsegment" : "varchar(30)",
|
|
33
|
+
"prodcat" : "varchar(30)"
|
|
34
|
+
|
|
35
|
+
}
|
|
36
|
+
}
|
|
@@ -0,0 +1,8 @@
|
|
|
1
|
+
"rowids","orderid","orderdate","priority","quantity","sales","discount","shipmode","custname","province","region","custsegment","prodcat"
|
|
2
|
+
1,3,2010-10-13,"low",6,261.54,0.04,"regular air","muhammed macintyre","nunavut","nunavut","small business","office supplies"
|
|
3
|
+
49,293,2012-10-01,"high",49,10123.02,0.07,"delivery truck","barry french","nunavut","nunavut","consumer","office supplies"
|
|
4
|
+
80,483,2011-07-10,"high",30,4965.7595,0.08,"regular air","clay rozendal","nunavut","nunavut","corporate","technology"
|
|
5
|
+
97,613,2011-06-17,"high",12,93.54,0.03,"regular air","carl jackson","nunavut","nunavut","corporate","office supplies"
|
|
6
|
+
50,293,2012-10-01,"high",27,244.57,0.01,"regular air","barry french","nunavut","nunavut","consumer","office supplies"
|
|
7
|
+
85,515,2010-08-28,"not specified",19,394.27,0.08,"regular air","carlos soltero","nunavut","nunavut","consumer","office supplies"
|
|
8
|
+
86,515,2010-08-28,"not specified",21,146.69,0.05,"regular air","carlos soltero","nunavut","nunavut","consumer","furniture"
|
|
@@ -0,0 +1,8 @@
|
|
|
1
|
+
"rowids","OrderId","ORDERDATE","PRIORITY","quantity","sales","Discount","shipmode","custname","province","region","custsegment","prodcat"
|
|
2
|
+
1,3,2010-10-13,"low",6,261.54,0.04,"regular air","muhammed macintyre","nunavut","nunavut","small business","office supplies"
|
|
3
|
+
49,293,2012-10-01,"high",49,10123.02,0.07,"delivery truck","barry french","nunavut","nunavut","consumer","office supplies"
|
|
4
|
+
80,483,2011-07-10,"high",30,4965.7595,0.08,"regular air","clay rozendal","nunavut","nunavut","corporate","technology"
|
|
5
|
+
97,613,2011-06-17,"high",12,93.54,0.03,"regular air","carl jackson","nunavut","nunavut","corporate","office supplies"
|
|
6
|
+
50,293,2012-10-01,"high",27,244.57,0.01,"regular air","barry french","nunavut","nunavut","consumer","office supplies"
|
|
7
|
+
85,515,2010-08-28,"not specified",19,394.27,0.08,"regular air","carlos soltero","nunavut","nunavut","consumer","office supplies"
|
|
8
|
+
86,515,2010-08-28,"not specified",21,146.69,0.05,"regular air","carlos soltero","nunavut","nunavut","consumer","furniture"
|
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
"id","firstname","lastname","email","city","zipcode","department","creditscore"
|
|
2
|
+
"5","james","nickson",,"pasadena","7750","it","620.0"
|
|
3
|
+
"4","jessica","right",,"sugar land","77459","marketing","690.0"
|
|
4
|
+
"6","kim",,,,"77058","system","570.0"
|
|
5
|
+
"3","sarah","anders","sarah.anders@corp-sales.com","pear","77584","sales","650.0"
|
|
6
|
+
"1","john","dewey","john.dewey@corp-mark.com","sugar land","7774","market","700.0"
|
|
7
|
+
"2",,"hall",,"galveston","77550","eng","790.0"
|
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
"id","firstname","lastname","email","city","zipcode","department","gender"
|
|
2
|
+
"5","kim","lee","kim.lee@corp-sys.com","clear lake city","77058","sytems","female"
|
|
3
|
+
"4","james","nickson","james.nick@corp-it.com","pasadena","77501","it","male"
|
|
4
|
+
"6","jessica","right","jessica.right@corp-mark.com","sugar land","77459","marketing","female"
|
|
5
|
+
"3","elizabeth","hall","elizabeth.hall@corp-eng.com","galveston","77550","engineering","female"
|
|
6
|
+
"1","john","dewey","john.dewey@corp-mark.com","sugar land","77459","marketing","male"
|
|
7
|
+
"2","sarah","anders","sarah.anders@corp-sales.com","pearland","77584","sales","female"
|
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
{
|
|
2
|
+
"trans_dense": {
|
|
3
|
+
"location": "varchar(100)",
|
|
4
|
+
"tranid": "int",
|
|
5
|
+
"period": "varchar(20)",
|
|
6
|
+
"storeid": "int",
|
|
7
|
+
"region": "varchar(20)",
|
|
8
|
+
"item": "varchar(200)",
|
|
9
|
+
"sku": "int",
|
|
10
|
+
"category": "varchar(20)"
|
|
11
|
+
},
|
|
12
|
+
"trans_sparse": {
|
|
13
|
+
"location": "varchar(20)",
|
|
14
|
+
"tranid": "int",
|
|
15
|
+
"period": "varchar(20)",
|
|
16
|
+
"storeid": "int",
|
|
17
|
+
"region": "varchar(20)",
|
|
18
|
+
"item": "varchar(20)",
|
|
19
|
+
"sku": "int",
|
|
20
|
+
"category": "varchar(20)"
|
|
21
|
+
}
|
|
22
|
+
}
|
|
@@ -0,0 +1,8 @@
|
|
|
1
|
+
"id","source","content"
|
|
2
|
+
"1006","wiki","Houston is the largest city in Texas and the fourth-largest in the United States, while San Antonio is the second largest and seventh largest in the state."
|
|
3
|
+
"1004","wiki","The contiguous United States consists of the 48 adjoining U.S. states plus Washington, D.C., on the continent of North America"
|
|
4
|
+
"1005","wiki","California's economy is centered on Technology, Finance, real estate services, Government, and professional, Scientific and Technicalbusiness Services; together comprising 58% of the State Government economy"
|
|
5
|
+
"1003","misc","contact Roger at tennis@espn.com for all tennis info"
|
|
6
|
+
"1001","misc","contact Alan by email at sports@espn.com for all sport info"
|
|
7
|
+
"1002","misc","contact Mark at cricket@espn.com for all cricket info"
|
|
8
|
+
"1007","wiki","Thomas is a photographer whose natural landscapes of the West are also a statement about the importance of the preservation of the wildness"
|
|
@@ -0,0 +1,34 @@
|
|
|
1
|
+
{
|
|
2
|
+
"attribution_sample_table1": {
|
|
3
|
+
"user_id": "integer",
|
|
4
|
+
"event": "varchar(20) CHARACTER SET LATIN",
|
|
5
|
+
"time_stamp": "timestamp"
|
|
6
|
+
},
|
|
7
|
+
"attribution_sample_table2": {
|
|
8
|
+
"user_id": "integer",
|
|
9
|
+
"event": "varchar(20) CHARACTER SET LATIN",
|
|
10
|
+
"time_stamp": "timestamp"
|
|
11
|
+
},
|
|
12
|
+
"conversion_event_table": {
|
|
13
|
+
"conversion_events": "varchar(20) CHARACTER SET LATIN"
|
|
14
|
+
},
|
|
15
|
+
"optional_event_table": {
|
|
16
|
+
"optional_events": "varchar(20) CHARACTER SET LATIN"
|
|
17
|
+
},
|
|
18
|
+
"model1_table": {
|
|
19
|
+
"id": "integer",
|
|
20
|
+
"model": "varchar(30) CHARACTER SET LATIN"
|
|
21
|
+
},
|
|
22
|
+
"model2_table": {
|
|
23
|
+
"id": "integer",
|
|
24
|
+
"model": "varchar(30) CHARACTER SET LATIN"
|
|
25
|
+
},
|
|
26
|
+
"attribution_sample_table": {
|
|
27
|
+
"user_id": "integer",
|
|
28
|
+
"event": "varchar(20) CHARACTER SET LATIN",
|
|
29
|
+
"time_stamp": "timestamp"
|
|
30
|
+
},
|
|
31
|
+
"excluding_event_table": {
|
|
32
|
+
"excluding_events" : "varchar(20) CHARACTER SET LATIN"
|
|
33
|
+
}
|
|
34
|
+
}
|
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
"user_id","event","time_stamp"
|
|
2
|
+
"1","impression","2001-09-27 23:00:01"
|
|
3
|
+
"1","impression","2001-09-27 23:00:03"
|
|
4
|
+
"1","impression","2001-09-27 23:00:05"
|
|
5
|
+
"1","impression","2001-09-27 23:00:07"
|
|
6
|
+
"1","impression","2001-09-27 23:00:09"
|
|
7
|
+
"1","impression","2001-09-27 23:00:11"
|
|
8
|
+
"1","impression","2001-09-27 23:00:13"
|
|
9
|
+
"1","Email","2001-09-27 23:00:15"
|
|
10
|
+
"1","impression","2001-09-27 23:00:17"
|
|
11
|
+
"1","impression","2001-09-27 23:00:19"
|
|
12
|
+
"1","SocialNetwork","2001-09-27 23:00:20"
|
|
13
|
+
"1","Direct","2001-09-27 23:00:21"
|
|
14
|
+
"1","Referral","2001-09-27 23:00:22"
|
|
15
|
+
"1","PaidSearch","2001-09-27 23:00:23"
|
|
16
|
+
"2","impression","2001-09-27 23:00:29"
|
|
17
|
+
"2","impression","2001-09-27 23:00:31"
|
|
18
|
+
"2","impression","2001-09-27 23:00:33"
|
|
19
|
+
"2","impression","2001-09-27 23:00:36"
|
|
20
|
+
"2","impression","2001-09-27 23:00:38"
|
|
21
|
+
"2","impression","2001-09-27 23:00:43"
|
|
22
|
+
"2","impression","2001-09-27 23:00:47"
|
|
23
|
+
"2","OrganicSearch","2001-09-27 23:00:49"
|
|
24
|
+
"2","impression","2001-09-27 23:00:51"
|
|
25
|
+
"2","impression","2001-09-27 23:00:53"
|
|
26
|
+
"2","impression","2001-09-27 23:00:55"
|
|
27
|
+
"2","SocialNetwork","2001-09-27 23:00:59"
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
"user_id","event","time_stamp"
|
|
2
|
+
1,"impression",2001-09-27 23:00:19
|
|
3
|
+
1,"socialnetwork",2001-09-27 23:00:20
|
|
4
|
+
1,"direct",2001-09-27 23:00:21
|
|
5
|
+
1,"referral",2001-09-27 23:00:22
|
|
6
|
+
1,"paidsearch",2001-09-27 23:00:23
|
|
7
|
+
2,"impression",2001-09-27 23:00:29
|
|
8
|
+
2,"impression",2001-09-27 23:00:31
|
|
9
|
+
2,"impression",2001-09-27 23:00:33
|
|
10
|
+
2,"impression",2001-09-27 23:00:36
|
|
11
|
+
2,"impression",2001-09-27 23:00:38
|