teradataml 20.0.0.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1208) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +2762 -0
  4. teradataml/__init__.py +78 -0
  5. teradataml/_version.py +11 -0
  6. teradataml/analytics/Transformations.py +2996 -0
  7. teradataml/analytics/__init__.py +82 -0
  8. teradataml/analytics/analytic_function_executor.py +2416 -0
  9. teradataml/analytics/analytic_query_generator.py +1050 -0
  10. teradataml/analytics/byom/H2OPredict.py +514 -0
  11. teradataml/analytics/byom/PMMLPredict.py +437 -0
  12. teradataml/analytics/byom/__init__.py +16 -0
  13. teradataml/analytics/json_parser/__init__.py +133 -0
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
  15. teradataml/analytics/json_parser/json_store.py +191 -0
  16. teradataml/analytics/json_parser/metadata.py +1666 -0
  17. teradataml/analytics/json_parser/utils.py +805 -0
  18. teradataml/analytics/meta_class.py +236 -0
  19. teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
  21. teradataml/analytics/sqle/__init__.py +128 -0
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
  24. teradataml/analytics/table_operator/__init__.py +11 -0
  25. teradataml/analytics/uaf/__init__.py +82 -0
  26. teradataml/analytics/utils.py +828 -0
  27. teradataml/analytics/valib.py +1617 -0
  28. teradataml/automl/__init__.py +5835 -0
  29. teradataml/automl/autodataprep/__init__.py +493 -0
  30. teradataml/automl/custom_json_utils.py +1625 -0
  31. teradataml/automl/data_preparation.py +1384 -0
  32. teradataml/automl/data_transformation.py +1254 -0
  33. teradataml/automl/feature_engineering.py +2273 -0
  34. teradataml/automl/feature_exploration.py +1873 -0
  35. teradataml/automl/model_evaluation.py +488 -0
  36. teradataml/automl/model_training.py +1407 -0
  37. teradataml/catalog/__init__.py +2 -0
  38. teradataml/catalog/byom.py +1759 -0
  39. teradataml/catalog/function_argument_mapper.py +859 -0
  40. teradataml/catalog/model_cataloging_utils.py +491 -0
  41. teradataml/clients/__init__.py +0 -0
  42. teradataml/clients/auth_client.py +137 -0
  43. teradataml/clients/keycloak_client.py +165 -0
  44. teradataml/clients/pkce_client.py +481 -0
  45. teradataml/common/__init__.py +1 -0
  46. teradataml/common/aed_utils.py +2078 -0
  47. teradataml/common/bulk_exposed_utils.py +113 -0
  48. teradataml/common/constants.py +1669 -0
  49. teradataml/common/deprecations.py +166 -0
  50. teradataml/common/exceptions.py +147 -0
  51. teradataml/common/formula.py +743 -0
  52. teradataml/common/garbagecollector.py +666 -0
  53. teradataml/common/logger.py +1261 -0
  54. teradataml/common/messagecodes.py +518 -0
  55. teradataml/common/messages.py +262 -0
  56. teradataml/common/pylogger.py +67 -0
  57. teradataml/common/sqlbundle.py +764 -0
  58. teradataml/common/td_coltype_code_to_tdtype.py +48 -0
  59. teradataml/common/utils.py +3166 -0
  60. teradataml/common/warnings.py +36 -0
  61. teradataml/common/wrapper_utils.py +625 -0
  62. teradataml/config/__init__.py +0 -0
  63. teradataml/config/dummy_file1.cfg +5 -0
  64. teradataml/config/dummy_file2.cfg +3 -0
  65. teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
  66. teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
  67. teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
  68. teradataml/context/__init__.py +0 -0
  69. teradataml/context/aed_context.py +223 -0
  70. teradataml/context/context.py +1462 -0
  71. teradataml/data/A_loan.csv +19 -0
  72. teradataml/data/BINARY_REALS_LEFT.csv +11 -0
  73. teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
  74. teradataml/data/B_loan.csv +49 -0
  75. teradataml/data/BuoyData2.csv +17 -0
  76. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
  77. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
  78. teradataml/data/Convolve2RealsLeft.csv +5 -0
  79. teradataml/data/Convolve2RealsRight.csv +5 -0
  80. teradataml/data/Convolve2ValidLeft.csv +11 -0
  81. teradataml/data/Convolve2ValidRight.csv +11 -0
  82. teradataml/data/DFFTConv_Real_8_8.csv +65 -0
  83. teradataml/data/Employee.csv +5 -0
  84. teradataml/data/Employee_Address.csv +4 -0
  85. teradataml/data/Employee_roles.csv +5 -0
  86. teradataml/data/JulesBelvezeDummyData.csv +100 -0
  87. teradataml/data/Mall_customer_data.csv +201 -0
  88. teradataml/data/Orders1_12mf.csv +25 -0
  89. teradataml/data/Pi_loan.csv +7 -0
  90. teradataml/data/SMOOTHED_DATA.csv +7 -0
  91. teradataml/data/TestDFFT8.csv +9 -0
  92. teradataml/data/TestRiver.csv +109 -0
  93. teradataml/data/Traindata.csv +28 -0
  94. teradataml/data/__init__.py +0 -0
  95. teradataml/data/acf.csv +17 -0
  96. teradataml/data/adaboost_example.json +34 -0
  97. teradataml/data/adaboostpredict_example.json +24 -0
  98. teradataml/data/additional_table.csv +11 -0
  99. teradataml/data/admissions_test.csv +21 -0
  100. teradataml/data/admissions_train.csv +41 -0
  101. teradataml/data/admissions_train_nulls.csv +41 -0
  102. teradataml/data/advertising.csv +201 -0
  103. teradataml/data/ageandheight.csv +13 -0
  104. teradataml/data/ageandpressure.csv +31 -0
  105. teradataml/data/amazon_reviews_25.csv +26 -0
  106. teradataml/data/antiselect_example.json +36 -0
  107. teradataml/data/antiselect_input.csv +8 -0
  108. teradataml/data/antiselect_input_mixed_case.csv +8 -0
  109. teradataml/data/applicant_external.csv +7 -0
  110. teradataml/data/applicant_reference.csv +7 -0
  111. teradataml/data/apriori_example.json +22 -0
  112. teradataml/data/arima_example.json +9 -0
  113. teradataml/data/assortedtext_input.csv +8 -0
  114. teradataml/data/attribution_example.json +34 -0
  115. teradataml/data/attribution_sample_table.csv +27 -0
  116. teradataml/data/attribution_sample_table1.csv +6 -0
  117. teradataml/data/attribution_sample_table2.csv +11 -0
  118. teradataml/data/bank_churn.csv +10001 -0
  119. teradataml/data/bank_marketing.csv +11163 -0
  120. teradataml/data/bank_web_clicks1.csv +43 -0
  121. teradataml/data/bank_web_clicks2.csv +91 -0
  122. teradataml/data/bank_web_url.csv +85 -0
  123. teradataml/data/barrier.csv +2 -0
  124. teradataml/data/barrier_new.csv +3 -0
  125. teradataml/data/betweenness_example.json +14 -0
  126. teradataml/data/bike_sharing.csv +732 -0
  127. teradataml/data/bin_breaks.csv +8 -0
  128. teradataml/data/bin_fit_ip.csv +4 -0
  129. teradataml/data/binary_complex_left.csv +11 -0
  130. teradataml/data/binary_complex_right.csv +11 -0
  131. teradataml/data/binary_matrix_complex_left.csv +21 -0
  132. teradataml/data/binary_matrix_complex_right.csv +21 -0
  133. teradataml/data/binary_matrix_real_left.csv +21 -0
  134. teradataml/data/binary_matrix_real_right.csv +21 -0
  135. teradataml/data/blood2ageandweight.csv +26 -0
  136. teradataml/data/bmi.csv +501 -0
  137. teradataml/data/boston.csv +507 -0
  138. teradataml/data/boston2cols.csv +721 -0
  139. teradataml/data/breast_cancer.csv +570 -0
  140. teradataml/data/buoydata_mix.csv +11 -0
  141. teradataml/data/burst_data.csv +5 -0
  142. teradataml/data/burst_example.json +21 -0
  143. teradataml/data/byom_example.json +34 -0
  144. teradataml/data/bytes_table.csv +4 -0
  145. teradataml/data/cal_housing_ex_raw.csv +70 -0
  146. teradataml/data/callers.csv +7 -0
  147. teradataml/data/calls.csv +10 -0
  148. teradataml/data/cars_hist.csv +33 -0
  149. teradataml/data/cat_table.csv +25 -0
  150. teradataml/data/ccm_example.json +32 -0
  151. teradataml/data/ccm_input.csv +91 -0
  152. teradataml/data/ccm_input2.csv +13 -0
  153. teradataml/data/ccmexample.csv +101 -0
  154. teradataml/data/ccmprepare_example.json +9 -0
  155. teradataml/data/ccmprepare_input.csv +91 -0
  156. teradataml/data/cfilter_example.json +12 -0
  157. teradataml/data/changepointdetection_example.json +18 -0
  158. teradataml/data/changepointdetectionrt_example.json +8 -0
  159. teradataml/data/chi_sq.csv +3 -0
  160. teradataml/data/churn_data.csv +14 -0
  161. teradataml/data/churn_emission.csv +35 -0
  162. teradataml/data/churn_initial.csv +3 -0
  163. teradataml/data/churn_state_transition.csv +5 -0
  164. teradataml/data/citedges_2.csv +745 -0
  165. teradataml/data/citvertices_2.csv +1210 -0
  166. teradataml/data/clicks2.csv +16 -0
  167. teradataml/data/clickstream.csv +13 -0
  168. teradataml/data/clickstream1.csv +11 -0
  169. teradataml/data/closeness_example.json +16 -0
  170. teradataml/data/complaints.csv +21 -0
  171. teradataml/data/complaints_mini.csv +3 -0
  172. teradataml/data/complaints_test_tokenized.csv +353 -0
  173. teradataml/data/complaints_testtoken.csv +224 -0
  174. teradataml/data/complaints_tokens_model.csv +348 -0
  175. teradataml/data/complaints_tokens_test.csv +353 -0
  176. teradataml/data/complaints_traintoken.csv +472 -0
  177. teradataml/data/computers_category.csv +1001 -0
  178. teradataml/data/computers_test1.csv +1252 -0
  179. teradataml/data/computers_train1.csv +5009 -0
  180. teradataml/data/computers_train1_clustered.csv +5009 -0
  181. teradataml/data/confusionmatrix_example.json +9 -0
  182. teradataml/data/conversion_event_table.csv +3 -0
  183. teradataml/data/corr_input.csv +17 -0
  184. teradataml/data/correlation_example.json +11 -0
  185. teradataml/data/covid_confirm_sd.csv +83 -0
  186. teradataml/data/coxhazardratio_example.json +39 -0
  187. teradataml/data/coxph_example.json +15 -0
  188. teradataml/data/coxsurvival_example.json +28 -0
  189. teradataml/data/cpt.csv +41 -0
  190. teradataml/data/credit_ex_merged.csv +45 -0
  191. teradataml/data/creditcard_data.csv +1001 -0
  192. teradataml/data/customer_loyalty.csv +301 -0
  193. teradataml/data/customer_loyalty_newseq.csv +31 -0
  194. teradataml/data/customer_segmentation_test.csv +2628 -0
  195. teradataml/data/customer_segmentation_train.csv +8069 -0
  196. teradataml/data/dataframe_example.json +173 -0
  197. teradataml/data/decisionforest_example.json +37 -0
  198. teradataml/data/decisionforestpredict_example.json +38 -0
  199. teradataml/data/decisiontree_example.json +21 -0
  200. teradataml/data/decisiontreepredict_example.json +45 -0
  201. teradataml/data/dfft2_size4_real.csv +17 -0
  202. teradataml/data/dfft2_test_matrix16.csv +17 -0
  203. teradataml/data/dfft2conv_real_4_4.csv +65 -0
  204. teradataml/data/diabetes.csv +443 -0
  205. teradataml/data/diabetes_test.csv +89 -0
  206. teradataml/data/dict_table.csv +5 -0
  207. teradataml/data/docperterm_table.csv +4 -0
  208. teradataml/data/docs/__init__.py +1 -0
  209. teradataml/data/docs/byom/__init__.py +0 -0
  210. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
  211. teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
  212. teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
  213. teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
  214. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
  215. teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
  216. teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
  217. teradataml/data/docs/byom/docs/__init__.py +0 -0
  218. teradataml/data/docs/sqle/__init__.py +0 -0
  219. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
  220. teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
  221. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
  222. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
  223. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
  224. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
  225. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
  226. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
  227. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
  228. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
  229. teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
  230. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
  231. teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
  232. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
  233. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
  234. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
  235. teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
  236. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
  237. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
  238. teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
  239. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
  240. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
  241. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
  242. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
  243. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
  244. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
  245. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
  246. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
  247. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
  248. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
  249. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
  250. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
  251. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
  252. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
  253. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
  254. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
  255. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
  256. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
  257. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
  258. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
  259. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
  260. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
  261. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
  262. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
  263. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
  264. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
  265. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
  266. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
  267. teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
  268. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
  269. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
  270. teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
  271. teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
  272. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
  273. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
  274. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  275. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
  276. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
  277. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
  278. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
  279. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
  280. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
  281. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
  282. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
  283. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
  284. teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
  285. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
  286. teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
  287. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
  288. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
  289. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
  290. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
  291. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
  292. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
  293. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
  294. teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
  295. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
  296. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
  297. teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
  298. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
  299. teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
  300. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
  301. teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
  302. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  303. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
  304. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
  305. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
  306. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
  307. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
  308. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
  309. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
  310. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
  311. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
  312. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
  313. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
  314. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
  315. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
  316. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
  317. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
  318. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  319. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
  320. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
  321. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
  322. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
  323. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
  324. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
  325. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
  326. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
  327. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
  328. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
  329. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
  330. teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
  331. teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
  332. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
  333. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
  334. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
  335. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
  336. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
  337. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
  338. teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
  339. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
  340. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
  341. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
  342. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
  343. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
  344. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
  345. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
  346. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  347. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  348. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
  349. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
  350. teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
  351. teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
  352. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
  353. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
  354. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
  355. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
  356. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  357. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
  358. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
  359. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
  360. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
  361. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
  362. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
  363. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
  364. teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
  365. teradataml/data/docs/tableoperator/__init__.py +0 -0
  366. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
  367. teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
  368. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
  369. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
  370. teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
  371. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
  372. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
  373. teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
  374. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  375. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
  376. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
  377. teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
  378. teradataml/data/docs/uaf/__init__.py +0 -0
  379. teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
  380. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
  381. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
  382. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
  383. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  384. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  385. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
  386. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
  387. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
  388. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
  389. teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
  390. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
  391. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  392. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
  393. teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
  394. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
  395. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
  396. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
  397. teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
  398. teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
  399. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  400. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
  401. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
  402. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
  403. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
  404. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  405. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
  406. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
  407. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
  408. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
  409. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
  410. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
  411. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
  412. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  413. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  414. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  415. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
  416. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
  417. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
  418. teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
  419. teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
  420. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  421. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
  422. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
  423. teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
  424. teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
  425. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
  426. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
  427. teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
  428. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  429. teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
  430. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
  431. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
  432. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
  433. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
  434. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
  435. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
  436. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
  437. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
  438. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
  439. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
  440. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  441. teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
  442. teradataml/data/dtw_example.json +18 -0
  443. teradataml/data/dtw_t1.csv +11 -0
  444. teradataml/data/dtw_t2.csv +4 -0
  445. teradataml/data/dwt2d_dataTable.csv +65 -0
  446. teradataml/data/dwt2d_example.json +16 -0
  447. teradataml/data/dwt_dataTable.csv +8 -0
  448. teradataml/data/dwt_example.json +15 -0
  449. teradataml/data/dwt_filterTable.csv +3 -0
  450. teradataml/data/dwt_filter_dim.csv +5 -0
  451. teradataml/data/emission.csv +9 -0
  452. teradataml/data/emp_table_by_dept.csv +19 -0
  453. teradataml/data/employee_info.csv +4 -0
  454. teradataml/data/employee_table.csv +6 -0
  455. teradataml/data/excluding_event_table.csv +2 -0
  456. teradataml/data/finance_data.csv +6 -0
  457. teradataml/data/finance_data2.csv +61 -0
  458. teradataml/data/finance_data3.csv +93 -0
  459. teradataml/data/finance_data4.csv +13 -0
  460. teradataml/data/fish.csv +160 -0
  461. teradataml/data/fm_blood2ageandweight.csv +26 -0
  462. teradataml/data/fmeasure_example.json +12 -0
  463. teradataml/data/followers_leaders.csv +10 -0
  464. teradataml/data/fpgrowth_example.json +12 -0
  465. teradataml/data/frequentpaths_example.json +29 -0
  466. teradataml/data/friends.csv +9 -0
  467. teradataml/data/fs_input.csv +33 -0
  468. teradataml/data/fs_input1.csv +33 -0
  469. teradataml/data/genData.csv +513 -0
  470. teradataml/data/geodataframe_example.json +40 -0
  471. teradataml/data/glass_types.csv +215 -0
  472. teradataml/data/glm_admissions_model.csv +12 -0
  473. teradataml/data/glm_example.json +56 -0
  474. teradataml/data/glml1l2_example.json +28 -0
  475. teradataml/data/glml1l2predict_example.json +54 -0
  476. teradataml/data/glmpredict_example.json +54 -0
  477. teradataml/data/gq_t1.csv +21 -0
  478. teradataml/data/grocery_transaction.csv +19 -0
  479. teradataml/data/hconvolve_complex_right.csv +5 -0
  480. teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
  481. teradataml/data/histogram_example.json +12 -0
  482. teradataml/data/hmmdecoder_example.json +79 -0
  483. teradataml/data/hmmevaluator_example.json +25 -0
  484. teradataml/data/hmmsupervised_example.json +10 -0
  485. teradataml/data/hmmunsupervised_example.json +8 -0
  486. teradataml/data/hnsw_alter_data.csv +5 -0
  487. teradataml/data/hnsw_data.csv +10 -0
  488. teradataml/data/house_values.csv +12 -0
  489. teradataml/data/house_values2.csv +13 -0
  490. teradataml/data/housing_cat.csv +7 -0
  491. teradataml/data/housing_data.csv +9 -0
  492. teradataml/data/housing_test.csv +47 -0
  493. teradataml/data/housing_test_binary.csv +47 -0
  494. teradataml/data/housing_train.csv +493 -0
  495. teradataml/data/housing_train_attribute.csv +5 -0
  496. teradataml/data/housing_train_binary.csv +437 -0
  497. teradataml/data/housing_train_parameter.csv +2 -0
  498. teradataml/data/housing_train_response.csv +493 -0
  499. teradataml/data/housing_train_segment.csv +201 -0
  500. teradataml/data/ibm_stock.csv +370 -0
  501. teradataml/data/ibm_stock1.csv +370 -0
  502. teradataml/data/identitymatch_example.json +22 -0
  503. teradataml/data/idf_table.csv +4 -0
  504. teradataml/data/idwt2d_dataTable.csv +5 -0
  505. teradataml/data/idwt_dataTable.csv +8 -0
  506. teradataml/data/idwt_filterTable.csv +3 -0
  507. teradataml/data/impressions.csv +101 -0
  508. teradataml/data/inflation.csv +21 -0
  509. teradataml/data/initial.csv +3 -0
  510. teradataml/data/insect2Cols.csv +61 -0
  511. teradataml/data/insect_sprays.csv +13 -0
  512. teradataml/data/insurance.csv +1339 -0
  513. teradataml/data/interpolator_example.json +13 -0
  514. teradataml/data/interval_data.csv +5 -0
  515. teradataml/data/iris_altinput.csv +481 -0
  516. teradataml/data/iris_attribute_output.csv +8 -0
  517. teradataml/data/iris_attribute_test.csv +121 -0
  518. teradataml/data/iris_attribute_train.csv +481 -0
  519. teradataml/data/iris_category_expect_predict.csv +31 -0
  520. teradataml/data/iris_data.csv +151 -0
  521. teradataml/data/iris_input.csv +151 -0
  522. teradataml/data/iris_response_train.csv +121 -0
  523. teradataml/data/iris_test.csv +31 -0
  524. teradataml/data/iris_train.csv +121 -0
  525. teradataml/data/join_table1.csv +4 -0
  526. teradataml/data/join_table2.csv +4 -0
  527. teradataml/data/jsons/anly_function_name.json +7 -0
  528. teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
  529. teradataml/data/jsons/byom/dataikupredict.json +148 -0
  530. teradataml/data/jsons/byom/datarobotpredict.json +147 -0
  531. teradataml/data/jsons/byom/h2opredict.json +195 -0
  532. teradataml/data/jsons/byom/onnxembeddings.json +267 -0
  533. teradataml/data/jsons/byom/onnxpredict.json +187 -0
  534. teradataml/data/jsons/byom/pmmlpredict.json +147 -0
  535. teradataml/data/jsons/paired_functions.json +450 -0
  536. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
  537. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
  538. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
  539. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
  540. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
  541. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
  542. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
  543. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
  544. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
  545. teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
  546. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
  547. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
  548. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
  549. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
  550. teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
  551. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
  552. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
  553. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
  554. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
  555. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
  556. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
  557. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
  558. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
  559. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
  560. teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
  561. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
  562. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
  563. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
  564. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
  565. teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
  566. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
  567. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
  568. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
  569. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
  570. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
  571. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
  572. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
  573. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
  574. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
  575. teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
  576. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
  577. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
  578. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
  579. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
  580. teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
  581. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
  582. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
  583. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
  584. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
  585. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
  586. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
  587. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
  588. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
  589. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
  590. teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
  591. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
  592. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
  593. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
  594. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
  595. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
  596. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
  597. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
  598. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
  599. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
  600. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
  601. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
  602. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
  603. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
  604. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
  605. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
  606. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
  607. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
  608. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
  609. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
  610. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
  611. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
  612. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
  613. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
  614. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
  615. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
  616. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
  617. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
  618. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
  619. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
  620. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
  621. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
  622. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
  623. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
  624. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
  625. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
  626. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
  627. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
  628. teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
  629. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
  630. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
  631. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
  632. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
  633. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
  634. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
  635. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
  636. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
  637. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
  638. teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
  639. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
  640. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
  641. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
  642. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
  643. teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
  644. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
  645. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
  646. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  647. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
  648. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
  649. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
  650. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
  651. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
  652. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
  653. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
  654. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
  655. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
  656. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
  657. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
  658. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
  659. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
  660. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
  661. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
  662. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
  663. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
  664. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
  665. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
  666. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
  667. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
  668. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
  669. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
  670. teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
  671. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  672. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  673. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
  674. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
  675. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
  676. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
  677. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
  678. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
  679. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
  680. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
  681. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
  682. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
  683. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
  684. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
  685. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  686. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
  687. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
  688. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
  689. teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
  690. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
  691. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
  692. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
  693. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
  694. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
  695. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
  696. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
  697. teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
  698. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
  699. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
  700. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
  701. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
  702. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
  703. teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
  704. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
  705. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
  706. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
  707. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
  708. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  709. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
  710. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
  711. teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
  712. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
  713. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
  714. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
  715. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  716. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
  717. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
  718. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
  719. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
  720. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
  721. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
  722. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
  723. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
  724. teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
  725. teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
  726. teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
  727. teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
  728. teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
  729. teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
  730. teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
  731. teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
  732. teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
  733. teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
  734. teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
  735. teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
  736. teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
  737. teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
  738. teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
  739. teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
  740. teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
  741. teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
  742. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  743. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  744. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  745. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  746. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  747. teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
  748. teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
  749. teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
  750. teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
  751. teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
  752. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  753. teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
  754. teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
  755. teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
  756. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
  757. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
  758. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
  759. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  760. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  761. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
  762. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
  763. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
  764. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
  765. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
  766. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
  767. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
  768. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
  769. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
  770. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
  771. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
  772. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
  773. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
  774. teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
  775. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
  776. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  777. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  778. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
  779. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
  780. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
  781. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
  782. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
  783. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
  784. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
  785. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
  786. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  787. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  788. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
  789. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  790. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
  791. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
  792. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
  793. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  794. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
  795. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
  796. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
  797. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
  798. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
  799. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
  800. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
  801. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
  802. teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
  803. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
  804. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
  805. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
  806. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
  807. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
  808. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
  809. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
  810. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
  811. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
  812. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
  813. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
  814. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
  815. teradataml/data/kmeans_example.json +23 -0
  816. teradataml/data/kmeans_table.csv +10 -0
  817. teradataml/data/kmeans_us_arrests_data.csv +51 -0
  818. teradataml/data/knn_example.json +19 -0
  819. teradataml/data/knnrecommender_example.json +7 -0
  820. teradataml/data/knnrecommenderpredict_example.json +12 -0
  821. teradataml/data/lar_example.json +17 -0
  822. teradataml/data/larpredict_example.json +30 -0
  823. teradataml/data/lc_new_predictors.csv +5 -0
  824. teradataml/data/lc_new_reference.csv +9 -0
  825. teradataml/data/lda_example.json +9 -0
  826. teradataml/data/ldainference_example.json +15 -0
  827. teradataml/data/ldatopicsummary_example.json +9 -0
  828. teradataml/data/levendist_input.csv +13 -0
  829. teradataml/data/levenshteindistance_example.json +10 -0
  830. teradataml/data/linreg_example.json +10 -0
  831. teradataml/data/load_example_data.py +350 -0
  832. teradataml/data/loan_prediction.csv +295 -0
  833. teradataml/data/lungcancer.csv +138 -0
  834. teradataml/data/mappingdata.csv +12 -0
  835. teradataml/data/medical_readings.csv +101 -0
  836. teradataml/data/milk_timeseries.csv +157 -0
  837. teradataml/data/min_max_titanic.csv +4 -0
  838. teradataml/data/minhash_example.json +6 -0
  839. teradataml/data/ml_ratings.csv +7547 -0
  840. teradataml/data/ml_ratings_10.csv +2445 -0
  841. teradataml/data/mobile_data.csv +13 -0
  842. teradataml/data/model1_table.csv +5 -0
  843. teradataml/data/model2_table.csv +5 -0
  844. teradataml/data/models/License_file.txt +1 -0
  845. teradataml/data/models/License_file_empty.txt +0 -0
  846. teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
  847. teradataml/data/models/dr_iris_rf +0 -0
  848. teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
  849. teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
  850. teradataml/data/models/iris_db_glm_model.pmml +57 -0
  851. teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
  852. teradataml/data/models/iris_kmeans_model +0 -0
  853. teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
  854. teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
  855. teradataml/data/modularity_example.json +12 -0
  856. teradataml/data/movavg_example.json +8 -0
  857. teradataml/data/mtx1.csv +7 -0
  858. teradataml/data/mtx2.csv +13 -0
  859. teradataml/data/multi_model_classification.csv +401 -0
  860. teradataml/data/multi_model_regression.csv +401 -0
  861. teradataml/data/mvdfft8.csv +9 -0
  862. teradataml/data/naivebayes_example.json +10 -0
  863. teradataml/data/naivebayespredict_example.json +19 -0
  864. teradataml/data/naivebayestextclassifier2_example.json +7 -0
  865. teradataml/data/naivebayestextclassifier_example.json +8 -0
  866. teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
  867. teradataml/data/name_Find_configure.csv +10 -0
  868. teradataml/data/namedentityfinder_example.json +14 -0
  869. teradataml/data/namedentityfinderevaluator_example.json +10 -0
  870. teradataml/data/namedentityfindertrainer_example.json +6 -0
  871. teradataml/data/nb_iris_input_test.csv +31 -0
  872. teradataml/data/nb_iris_input_train.csv +121 -0
  873. teradataml/data/nbp_iris_model.csv +13 -0
  874. teradataml/data/ner_dict.csv +8 -0
  875. teradataml/data/ner_extractor_text.csv +2 -0
  876. teradataml/data/ner_input_eng.csv +7 -0
  877. teradataml/data/ner_rule.csv +5 -0
  878. teradataml/data/ner_sports_test2.csv +29 -0
  879. teradataml/data/ner_sports_train.csv +501 -0
  880. teradataml/data/nerevaluator_example.json +6 -0
  881. teradataml/data/nerextractor_example.json +18 -0
  882. teradataml/data/nermem_sports_test.csv +18 -0
  883. teradataml/data/nermem_sports_train.csv +51 -0
  884. teradataml/data/nertrainer_example.json +7 -0
  885. teradataml/data/ngrams_example.json +7 -0
  886. teradataml/data/notebooks/__init__.py +0 -0
  887. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
  888. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
  889. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
  890. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
  891. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
  892. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
  893. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
  894. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
  895. teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
  896. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
  897. teradataml/data/npath_example.json +23 -0
  898. teradataml/data/ntree_example.json +14 -0
  899. teradataml/data/numeric_strings.csv +5 -0
  900. teradataml/data/numerics.csv +4 -0
  901. teradataml/data/ocean_buoy.csv +17 -0
  902. teradataml/data/ocean_buoy2.csv +17 -0
  903. teradataml/data/ocean_buoys.csv +28 -0
  904. teradataml/data/ocean_buoys2.csv +10 -0
  905. teradataml/data/ocean_buoys_nonpti.csv +28 -0
  906. teradataml/data/ocean_buoys_seq.csv +29 -0
  907. teradataml/data/onehot_encoder_train.csv +4 -0
  908. teradataml/data/openml_example.json +92 -0
  909. teradataml/data/optional_event_table.csv +4 -0
  910. teradataml/data/orders1.csv +11 -0
  911. teradataml/data/orders1_12.csv +13 -0
  912. teradataml/data/orders_ex.csv +4 -0
  913. teradataml/data/pack_example.json +9 -0
  914. teradataml/data/package_tracking.csv +19 -0
  915. teradataml/data/package_tracking_pti.csv +19 -0
  916. teradataml/data/pagerank_example.json +13 -0
  917. teradataml/data/paragraphs_input.csv +6 -0
  918. teradataml/data/pathanalyzer_example.json +8 -0
  919. teradataml/data/pathgenerator_example.json +8 -0
  920. teradataml/data/patient_profile.csv +101 -0
  921. teradataml/data/pattern_matching_data.csv +11 -0
  922. teradataml/data/payment_fraud_dataset.csv +10001 -0
  923. teradataml/data/peppers.png +0 -0
  924. teradataml/data/phrases.csv +7 -0
  925. teradataml/data/pivot_example.json +9 -0
  926. teradataml/data/pivot_input.csv +22 -0
  927. teradataml/data/playerRating.csv +31 -0
  928. teradataml/data/pos_input.csv +40 -0
  929. teradataml/data/postagger_example.json +7 -0
  930. teradataml/data/posttagger_output.csv +44 -0
  931. teradataml/data/production_data.csv +17 -0
  932. teradataml/data/production_data2.csv +7 -0
  933. teradataml/data/randomsample_example.json +32 -0
  934. teradataml/data/randomwalksample_example.json +9 -0
  935. teradataml/data/rank_table.csv +6 -0
  936. teradataml/data/real_values.csv +14 -0
  937. teradataml/data/ref_mobile_data.csv +4 -0
  938. teradataml/data/ref_mobile_data_dense.csv +2 -0
  939. teradataml/data/ref_url.csv +17 -0
  940. teradataml/data/restaurant_reviews.csv +7 -0
  941. teradataml/data/retail_churn_table.csv +27772 -0
  942. teradataml/data/river_data.csv +145 -0
  943. teradataml/data/roc_example.json +8 -0
  944. teradataml/data/roc_input.csv +101 -0
  945. teradataml/data/rule_inputs.csv +6 -0
  946. teradataml/data/rule_table.csv +2 -0
  947. teradataml/data/sales.csv +7 -0
  948. teradataml/data/sales_transaction.csv +501 -0
  949. teradataml/data/salesdata.csv +342 -0
  950. teradataml/data/sample_cities.csv +3 -0
  951. teradataml/data/sample_shapes.csv +11 -0
  952. teradataml/data/sample_streets.csv +3 -0
  953. teradataml/data/sampling_example.json +16 -0
  954. teradataml/data/sax_example.json +17 -0
  955. teradataml/data/scale_attributes.csv +3 -0
  956. teradataml/data/scale_example.json +74 -0
  957. teradataml/data/scale_housing.csv +11 -0
  958. teradataml/data/scale_housing_test.csv +6 -0
  959. teradataml/data/scale_input_part_sparse.csv +31 -0
  960. teradataml/data/scale_input_partitioned.csv +16 -0
  961. teradataml/data/scale_input_sparse.csv +11 -0
  962. teradataml/data/scale_parameters.csv +3 -0
  963. teradataml/data/scale_stat.csv +11 -0
  964. teradataml/data/scalebypartition_example.json +13 -0
  965. teradataml/data/scalemap_example.json +13 -0
  966. teradataml/data/scalesummary_example.json +12 -0
  967. teradataml/data/score_category.csv +101 -0
  968. teradataml/data/score_summary.csv +4 -0
  969. teradataml/data/script_example.json +10 -0
  970. teradataml/data/scripts/deploy_script.py +84 -0
  971. teradataml/data/scripts/lightgbm/dataset.template +175 -0
  972. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
  973. teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
  974. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
  975. teradataml/data/scripts/mapper.R +20 -0
  976. teradataml/data/scripts/mapper.py +16 -0
  977. teradataml/data/scripts/mapper_replace.py +16 -0
  978. teradataml/data/scripts/sklearn/__init__.py +0 -0
  979. teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
  980. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
  981. teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
  982. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
  983. teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
  984. teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
  985. teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
  986. teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
  987. teradataml/data/seeds.csv +10 -0
  988. teradataml/data/sentenceextractor_example.json +7 -0
  989. teradataml/data/sentiment_extract_input.csv +11 -0
  990. teradataml/data/sentiment_train.csv +16 -0
  991. teradataml/data/sentiment_word.csv +20 -0
  992. teradataml/data/sentiment_word_input.csv +20 -0
  993. teradataml/data/sentimentextractor_example.json +24 -0
  994. teradataml/data/sentimenttrainer_example.json +8 -0
  995. teradataml/data/sequence_table.csv +10 -0
  996. teradataml/data/seriessplitter_example.json +8 -0
  997. teradataml/data/sessionize_example.json +17 -0
  998. teradataml/data/sessionize_table.csv +116 -0
  999. teradataml/data/setop_test1.csv +24 -0
  1000. teradataml/data/setop_test2.csv +22 -0
  1001. teradataml/data/soc_nw_edges.csv +11 -0
  1002. teradataml/data/soc_nw_vertices.csv +8 -0
  1003. teradataml/data/souvenir_timeseries.csv +168 -0
  1004. teradataml/data/sparse_iris_attribute.csv +5 -0
  1005. teradataml/data/sparse_iris_test.csv +121 -0
  1006. teradataml/data/sparse_iris_train.csv +601 -0
  1007. teradataml/data/star1.csv +6 -0
  1008. teradataml/data/star_pivot.csv +8 -0
  1009. teradataml/data/state_transition.csv +5 -0
  1010. teradataml/data/stock_data.csv +53 -0
  1011. teradataml/data/stock_movement.csv +11 -0
  1012. teradataml/data/stock_vol.csv +76 -0
  1013. teradataml/data/stop_words.csv +8 -0
  1014. teradataml/data/store_sales.csv +37 -0
  1015. teradataml/data/stringsimilarity_example.json +8 -0
  1016. teradataml/data/strsimilarity_input.csv +13 -0
  1017. teradataml/data/students.csv +101 -0
  1018. teradataml/data/svm_iris_input_test.csv +121 -0
  1019. teradataml/data/svm_iris_input_train.csv +481 -0
  1020. teradataml/data/svm_iris_model.csv +7 -0
  1021. teradataml/data/svmdense_example.json +10 -0
  1022. teradataml/data/svmdensepredict_example.json +19 -0
  1023. teradataml/data/svmsparse_example.json +8 -0
  1024. teradataml/data/svmsparsepredict_example.json +14 -0
  1025. teradataml/data/svmsparsesummary_example.json +8 -0
  1026. teradataml/data/target_mobile_data.csv +13 -0
  1027. teradataml/data/target_mobile_data_dense.csv +5 -0
  1028. teradataml/data/target_udt_data.csv +8 -0
  1029. teradataml/data/tdnerextractor_example.json +14 -0
  1030. teradataml/data/templatedata.csv +1201 -0
  1031. teradataml/data/templates/open_source_ml.json +11 -0
  1032. teradataml/data/teradata_icon.ico +0 -0
  1033. teradataml/data/teradataml_example.json +1473 -0
  1034. teradataml/data/test_classification.csv +101 -0
  1035. teradataml/data/test_loan_prediction.csv +53 -0
  1036. teradataml/data/test_pacf_12.csv +37 -0
  1037. teradataml/data/test_prediction.csv +101 -0
  1038. teradataml/data/test_regression.csv +101 -0
  1039. teradataml/data/test_river2.csv +109 -0
  1040. teradataml/data/text_inputs.csv +6 -0
  1041. teradataml/data/textchunker_example.json +8 -0
  1042. teradataml/data/textclassifier_example.json +7 -0
  1043. teradataml/data/textclassifier_input.csv +7 -0
  1044. teradataml/data/textclassifiertrainer_example.json +7 -0
  1045. teradataml/data/textmorph_example.json +11 -0
  1046. teradataml/data/textparser_example.json +15 -0
  1047. teradataml/data/texttagger_example.json +12 -0
  1048. teradataml/data/texttokenizer_example.json +7 -0
  1049. teradataml/data/texttrainer_input.csv +11 -0
  1050. teradataml/data/tf_example.json +7 -0
  1051. teradataml/data/tfidf_example.json +14 -0
  1052. teradataml/data/tfidf_input1.csv +201 -0
  1053. teradataml/data/tfidf_train.csv +6 -0
  1054. teradataml/data/time_table1.csv +535 -0
  1055. teradataml/data/time_table2.csv +14 -0
  1056. teradataml/data/timeseriesdata.csv +1601 -0
  1057. teradataml/data/timeseriesdatasetsd4.csv +105 -0
  1058. teradataml/data/timestamp_data.csv +4 -0
  1059. teradataml/data/titanic.csv +892 -0
  1060. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  1061. teradataml/data/to_num_data.csv +4 -0
  1062. teradataml/data/tochar_data.csv +5 -0
  1063. teradataml/data/token_table.csv +696 -0
  1064. teradataml/data/train_multiclass.csv +101 -0
  1065. teradataml/data/train_regression.csv +101 -0
  1066. teradataml/data/train_regression_multiple_labels.csv +101 -0
  1067. teradataml/data/train_tracking.csv +28 -0
  1068. teradataml/data/trans_dense.csv +16 -0
  1069. teradataml/data/trans_sparse.csv +55 -0
  1070. teradataml/data/transformation_table.csv +6 -0
  1071. teradataml/data/transformation_table_new.csv +2 -0
  1072. teradataml/data/tv_spots.csv +16 -0
  1073. teradataml/data/twod_climate_data.csv +117 -0
  1074. teradataml/data/uaf_example.json +529 -0
  1075. teradataml/data/univariatestatistics_example.json +9 -0
  1076. teradataml/data/unpack_example.json +10 -0
  1077. teradataml/data/unpivot_example.json +25 -0
  1078. teradataml/data/unpivot_input.csv +8 -0
  1079. teradataml/data/url_data.csv +10 -0
  1080. teradataml/data/us_air_pass.csv +37 -0
  1081. teradataml/data/us_population.csv +624 -0
  1082. teradataml/data/us_states_shapes.csv +52 -0
  1083. teradataml/data/varmax_example.json +18 -0
  1084. teradataml/data/vectordistance_example.json +30 -0
  1085. teradataml/data/ville_climatedata.csv +121 -0
  1086. teradataml/data/ville_tempdata.csv +12 -0
  1087. teradataml/data/ville_tempdata1.csv +12 -0
  1088. teradataml/data/ville_temperature.csv +11 -0
  1089. teradataml/data/waveletTable.csv +1605 -0
  1090. teradataml/data/waveletTable2.csv +1605 -0
  1091. teradataml/data/weightedmovavg_example.json +9 -0
  1092. teradataml/data/wft_testing.csv +5 -0
  1093. teradataml/data/windowdfft.csv +16 -0
  1094. teradataml/data/wine_data.csv +1600 -0
  1095. teradataml/data/word_embed_input_table1.csv +6 -0
  1096. teradataml/data/word_embed_input_table2.csv +5 -0
  1097. teradataml/data/word_embed_model.csv +23 -0
  1098. teradataml/data/words_input.csv +13 -0
  1099. teradataml/data/xconvolve_complex_left.csv +6 -0
  1100. teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
  1101. teradataml/data/xgboost_example.json +36 -0
  1102. teradataml/data/xgboostpredict_example.json +32 -0
  1103. teradataml/data/ztest_example.json +16 -0
  1104. teradataml/dataframe/__init__.py +0 -0
  1105. teradataml/dataframe/copy_to.py +2446 -0
  1106. teradataml/dataframe/data_transfer.py +2840 -0
  1107. teradataml/dataframe/dataframe.py +20908 -0
  1108. teradataml/dataframe/dataframe_utils.py +2114 -0
  1109. teradataml/dataframe/fastload.py +794 -0
  1110. teradataml/dataframe/functions.py +2110 -0
  1111. teradataml/dataframe/indexer.py +424 -0
  1112. teradataml/dataframe/row.py +160 -0
  1113. teradataml/dataframe/setop.py +1171 -0
  1114. teradataml/dataframe/sql.py +10904 -0
  1115. teradataml/dataframe/sql_function_parameters.py +440 -0
  1116. teradataml/dataframe/sql_functions.py +652 -0
  1117. teradataml/dataframe/sql_interfaces.py +220 -0
  1118. teradataml/dataframe/vantage_function_types.py +675 -0
  1119. teradataml/dataframe/window.py +694 -0
  1120. teradataml/dbutils/__init__.py +3 -0
  1121. teradataml/dbutils/dbutils.py +2871 -0
  1122. teradataml/dbutils/filemgr.py +318 -0
  1123. teradataml/gen_ai/__init__.py +2 -0
  1124. teradataml/gen_ai/convAI.py +473 -0
  1125. teradataml/geospatial/__init__.py +4 -0
  1126. teradataml/geospatial/geodataframe.py +1105 -0
  1127. teradataml/geospatial/geodataframecolumn.py +392 -0
  1128. teradataml/geospatial/geometry_types.py +926 -0
  1129. teradataml/hyperparameter_tuner/__init__.py +1 -0
  1130. teradataml/hyperparameter_tuner/optimizer.py +4115 -0
  1131. teradataml/hyperparameter_tuner/utils.py +303 -0
  1132. teradataml/lib/__init__.py +0 -0
  1133. teradataml/lib/aed_0_1.dll +0 -0
  1134. teradataml/lib/libaed_0_1.dylib +0 -0
  1135. teradataml/lib/libaed_0_1.so +0 -0
  1136. teradataml/lib/libaed_0_1_aarch64.so +0 -0
  1137. teradataml/lib/libaed_0_1_ppc64le.so +0 -0
  1138. teradataml/opensource/__init__.py +1 -0
  1139. teradataml/opensource/_base.py +1321 -0
  1140. teradataml/opensource/_class.py +464 -0
  1141. teradataml/opensource/_constants.py +61 -0
  1142. teradataml/opensource/_lightgbm.py +949 -0
  1143. teradataml/opensource/_sklearn.py +1008 -0
  1144. teradataml/opensource/_wrapper_utils.py +267 -0
  1145. teradataml/options/__init__.py +148 -0
  1146. teradataml/options/configure.py +489 -0
  1147. teradataml/options/display.py +187 -0
  1148. teradataml/plot/__init__.py +3 -0
  1149. teradataml/plot/axis.py +1427 -0
  1150. teradataml/plot/constants.py +15 -0
  1151. teradataml/plot/figure.py +431 -0
  1152. teradataml/plot/plot.py +810 -0
  1153. teradataml/plot/query_generator.py +83 -0
  1154. teradataml/plot/subplot.py +216 -0
  1155. teradataml/scriptmgmt/UserEnv.py +4273 -0
  1156. teradataml/scriptmgmt/__init__.py +3 -0
  1157. teradataml/scriptmgmt/lls_utils.py +2157 -0
  1158. teradataml/sdk/README.md +79 -0
  1159. teradataml/sdk/__init__.py +4 -0
  1160. teradataml/sdk/_auth_modes.py +422 -0
  1161. teradataml/sdk/_func_params.py +487 -0
  1162. teradataml/sdk/_json_parser.py +453 -0
  1163. teradataml/sdk/_openapi_spec_constants.py +249 -0
  1164. teradataml/sdk/_utils.py +236 -0
  1165. teradataml/sdk/api_client.py +900 -0
  1166. teradataml/sdk/constants.py +62 -0
  1167. teradataml/sdk/modelops/__init__.py +98 -0
  1168. teradataml/sdk/modelops/_client.py +409 -0
  1169. teradataml/sdk/modelops/_constants.py +304 -0
  1170. teradataml/sdk/modelops/models.py +2308 -0
  1171. teradataml/sdk/spinner.py +107 -0
  1172. teradataml/series/__init__.py +0 -0
  1173. teradataml/series/series.py +537 -0
  1174. teradataml/series/series_utils.py +71 -0
  1175. teradataml/store/__init__.py +12 -0
  1176. teradataml/store/feature_store/__init__.py +0 -0
  1177. teradataml/store/feature_store/constants.py +658 -0
  1178. teradataml/store/feature_store/feature_store.py +4814 -0
  1179. teradataml/store/feature_store/mind_map.py +639 -0
  1180. teradataml/store/feature_store/models.py +7330 -0
  1181. teradataml/store/feature_store/utils.py +390 -0
  1182. teradataml/table_operators/Apply.py +979 -0
  1183. teradataml/table_operators/Script.py +1739 -0
  1184. teradataml/table_operators/TableOperator.py +1343 -0
  1185. teradataml/table_operators/__init__.py +2 -0
  1186. teradataml/table_operators/apply_query_generator.py +262 -0
  1187. teradataml/table_operators/query_generator.py +493 -0
  1188. teradataml/table_operators/table_operator_query_generator.py +462 -0
  1189. teradataml/table_operators/table_operator_util.py +726 -0
  1190. teradataml/table_operators/templates/dataframe_apply.template +184 -0
  1191. teradataml/table_operators/templates/dataframe_map.template +176 -0
  1192. teradataml/table_operators/templates/dataframe_register.template +73 -0
  1193. teradataml/table_operators/templates/dataframe_udf.template +67 -0
  1194. teradataml/table_operators/templates/script_executor.template +170 -0
  1195. teradataml/telemetry_utils/__init__.py +0 -0
  1196. teradataml/telemetry_utils/queryband.py +53 -0
  1197. teradataml/utils/__init__.py +0 -0
  1198. teradataml/utils/docstring.py +527 -0
  1199. teradataml/utils/dtypes.py +943 -0
  1200. teradataml/utils/internal_buffer.py +122 -0
  1201. teradataml/utils/print_versions.py +206 -0
  1202. teradataml/utils/utils.py +451 -0
  1203. teradataml/utils/validators.py +3305 -0
  1204. teradataml-20.0.0.8.dist-info/METADATA +2804 -0
  1205. teradataml-20.0.0.8.dist-info/RECORD +1208 -0
  1206. teradataml-20.0.0.8.dist-info/WHEEL +5 -0
  1207. teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
  1208. teradataml-20.0.0.8.dist-info/zip-safe +1 -0
@@ -0,0 +1,949 @@
1
+ # ##################################################################
2
+ #
3
+ # Copyright 2024 Teradata. All rights reserved.
4
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
5
+ #
6
+ # Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
7
+ # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
+ #
9
+ # Version: 1.0
10
+ # Function Version: 1.0
11
+ #
12
+ # This file contains object wrapper class for lightgbm opensource package.
13
+ #
14
+ # ##################################################################
15
+
16
+
17
+ import base64
18
+ import json
19
+ import os
20
+ import pickle
21
+ import warnings
22
+ from collections import OrderedDict
23
+ from importlib import import_module
24
+
25
+ import numpy
26
+ import pandas as pd
27
+ from teradatasqlalchemy import BLOB, CLOB, FLOAT
28
+
29
+ from teradataml import (_TDML_DIRECTORY, MessageCodes, Messages,
30
+ TeradataMlException, UtilFuncs, execute_sql)
31
+ from teradataml.opensource._base import (_FunctionWrapper,
32
+ _OpenSourceObjectWrapper)
33
+ from teradataml.opensource._constants import OpenSourcePackage
34
+ from teradataml.opensource._sklearn import _SkLearnObjectWrapper
35
+ from teradataml.opensource._wrapper_utils import _generate_new_name
36
+
37
+
38
+ class _LightgbmDatasetWrapper(_OpenSourceObjectWrapper):
39
+ """
40
+ Internal class for Lightgbm Dataset object.
41
+ """
42
+ OPENSOURCE_PACKAGE_NAME = OpenSourcePackage.LIGHTGBM
43
+ def __init__(self, model=None, module_name=None, class_name=None, kwargs=None):
44
+
45
+ file_type = "file_fn_lightgbm"
46
+ self._template_file = "dataset.template"
47
+ self._pkgs = ["lightgbm", "scikit-learn", "numpy", "scipy"]
48
+ super().__init__(model=model, module_name=module_name, class_name=class_name, kwargs=kwargs)
49
+
50
+ self._scripts_path = os.path.join(_TDML_DIRECTORY, "data", "scripts", "lightgbm")
51
+
52
+ self._script_file_name = _generate_new_name(type=file_type, extension="py")
53
+ self._data_args = OrderedDict()
54
+
55
+ self._initialize_variables(table_name_prefix="td_lightgbm_")
56
+ if model:
57
+ self.modelObj = model
58
+ self.module_name = model.__module__.split("._")[0]
59
+ self.class_name = model.__class__.__name__
60
+ _model_init_arguments = model.__init__.__code__.co_varnames
61
+ self.kwargs = dict((k, v) for k, v in model.__dict__.items() if k in _model_init_arguments)
62
+
63
+ self.pos_args = tuple() # Kept empty as all are moved to kwargs.
64
+ else:
65
+ self.initial_args = kwargs
66
+ self._initialize_object()
67
+ self.__run_func_returning_objects(all_kwargs=self.kwargs, use_dummy_initial_file=True)
68
+
69
+ def __getattr__(self, name):
70
+ if name in ["construct"]:
71
+ wt = self.initial_args.get("weight", None) if hasattr(self, "initial_args") else None
72
+ if (isinstance(wt, pd.DataFrame) and wt.iloc[0]["get_weight"] is not None) or wt is not None:
73
+ raise ValueError(f"The method '{name}' is not implemented when \"weight\" argument is provided.")
74
+
75
+ if name in ["set_weight", "set_label"]:
76
+ raise NotImplementedError(f"'{name}' is not implemented for Lightgbm Dataset object.\n")
77
+
78
+ if name == "set_group" and isinstance(self.modelObj, pd.DataFrame):
79
+ raise NotImplementedError("'set_group' is not implemented for Lightgbm Dataset object "\
80
+ "in multi-model case as different models have different number "\
81
+ "of rows and grouping them in one set of group is not possible.")
82
+
83
+ return super().__getattr__(name)
84
+
85
+ def save_binary(self, file_name, save_in_vantage=False):
86
+ """
87
+ DESCRIPTION:
88
+ Save the model(s) to a binary file(s). Additionally the files are saved
89
+ to Vantage if "save_in_vantage" argument is set to True.
90
+
91
+ PARAMETERS:
92
+ file_name:
93
+ Required Argument.
94
+ Specifies the absolute path of the file name to which lightgbm Dataset
95
+ object is to be saved to.
96
+ Note:
97
+ * File name is prefixed with underscore delimitted partition column
98
+ values in multi-model case.
99
+ * File name excluding extension and file name with extension should
100
+ not already be present in Vantage.
101
+ Type: str
102
+
103
+ save_in_vantage:
104
+ Optional Argument.
105
+ Specifies whether to save the file in VantageCloud Enterprise or user environment
106
+ of VantageCloud Lake.
107
+ Default Value: False
108
+ Type: bool
109
+
110
+ RETURNS:
111
+ None
112
+
113
+ RAISES:
114
+ TeradataMlException
115
+
116
+ EXAMPLES:
117
+ >>> # Save the lightgbm Dataset object to a binary file in client.
118
+ >>> lightgbm_dataset.save_binary("lightgbm_dataset.pickle")
119
+
120
+ >>> # Save the lightgbm Dataset object to a binary file in client and Vantage.
121
+ >>> lightgbm_dataset.save_binary("lightgbm_dataset.pickle", save_in_vantage=True)
122
+
123
+ """
124
+ _file_name = os.path.basename(file_name)
125
+ _file_dir = os.path.dirname(file_name)
126
+ if not isinstance(self.modelObj, pd.DataFrame):
127
+ self.modelObj.save_binary(file_name)
128
+ file_prefix = _file_name.split(".")[0]
129
+ print("Model saved in client as ", file_name)
130
+ if save_in_vantage:
131
+ self._install_script_file(file_identifier=file_prefix,
132
+ file_name=_file_name,
133
+ is_binary=True,
134
+ file_location=_file_dir)
135
+ print(f"Model file {_file_name} saved in Vantage.")
136
+ else:
137
+ no_of_unique_partitions = len(self._fit_partition_unique_values)
138
+ no_of_partitioning_cols = len(self._fit_partition_unique_values[0])
139
+
140
+ print("Multiple model files in multi-model case are saved with different names"\
141
+ " with partition column values information delimited by underscore.")
142
+
143
+ for i in range(no_of_unique_partitions):
144
+ partition_join = "_".join(list(map(str, self.modelObj.iloc[i, :no_of_partitioning_cols])))
145
+ # Split extension from file name to add partition column values before extension.
146
+ __file_name, __file_ext = os.path.splitext(_file_name)
147
+ __file_name = f"{__file_name}_{partition_join}{__file_ext}"
148
+ __file_prefix = os.path.splitext(__file_name)[0] # File identifier.
149
+
150
+ __joined_file = os.path.join(_file_dir, __file_name)
151
+ self.modelObj.iloc[i]["model"].save_binary(__joined_file)
152
+
153
+ if save_in_vantage:
154
+ self._install_script_file(file_identifier=__file_prefix,
155
+ file_name=__file_name,
156
+ is_binary=True,
157
+ file_location=_file_dir)
158
+ print(f"Model file {__file_name} saved in Vantage.")
159
+
160
+ def create_valid(self, **kwargs):
161
+ if isinstance(self.modelObj, pd.DataFrame):
162
+ raise NotImplementedError("'create_valid' is not implemented for Lightgbm Dataset object"\
163
+ " in multi-model case.")
164
+ return self.__run_func_returning_objects(all_kwargs=kwargs, func_name="create_valid")
165
+
166
+ def __run_func_returning_objects(self, all_kwargs, func_name=None, use_dummy_initial_file=False):
167
+ """
168
+ Run the function with all the arguments passed from `td_sklearn.<function_name>` function.
169
+ """
170
+ kwargs = all_kwargs.copy()
171
+
172
+ if kwargs.get("label", None) is not None:
173
+ label_df = kwargs["label"]
174
+ self._fit_label_columns_types = []
175
+ self._fit_label_columns_python_types = []
176
+ for l_c in label_df.columns:
177
+ column_data = label_df._td_column_names_and_sqlalchemy_types[l_c.lower()]
178
+ self._fit_label_columns_types.append(column_data)
179
+ self._fit_label_columns_python_types.append(column_data.python_type.__name__)
180
+
181
+ replace_dict, partition_cols = self._process_data_for_funcs_returning_objects(kwargs)
182
+
183
+ script_file_path = f"{self._script_file_name}" if self._is_lake_system \
184
+ else f"./{self._db_name}/{self._script_file_name}"
185
+
186
+ py_exc = UtilFuncs._get_python_execution_path()
187
+ script_command = f"{py_exc} {script_file_path} {self._model_file_name_prefix} {self._is_lake_system}"
188
+
189
+ model_type = BLOB() if self._is_lake_system else CLOB()
190
+ return_types = [(col, self._tdml_df._td_column_names_and_sqlalchemy_types[col.lower()])
191
+ for col in partition_cols] + [("model", model_type)]
192
+
193
+ if "reference" in kwargs.keys() and kwargs["reference"] is not None:
194
+ # "reference" is another Dataset object which is passed as an argument.
195
+ # It should be accessed through model file name prefix as it raises an exception
196
+ # if we try to dump it as json -`TypeError: Object of type Dataset is not JSON serializable`.
197
+ self.initial_args["reference"]._install_initial_model_file()
198
+ kwargs["reference"] = self.initial_args["reference"]._model_file_name_prefix
199
+
200
+ replace_dict.update({"<all_col_names>": str(list(self._tdml_df.columns)),
201
+ "<params>": json.dumps(kwargs),
202
+ "<module_name>": f"'{self.module_name}'",
203
+ "<class_name>": f"'{self.class_name}'",
204
+ "<func_name>": f"'{func_name}'" if func_name else "None"})
205
+
206
+ # Generate new file in .teradataml directory and install it to Vantage.
207
+ self._prepare_and_install_file(replace_dict=replace_dict)
208
+
209
+ if partition_cols:
210
+ self._fit_partition_unique_values = self._tdml_df.drop_duplicate(partition_cols).get_values()
211
+
212
+ self._install_initial_model_file(use_dummy_initial_file=use_dummy_initial_file)
213
+
214
+ self._model_data = self._run_script(self._tdml_df, script_command, partition_cols, return_types)
215
+ self._model_data._index_label = None
216
+
217
+ self._extract_model_objs(n_unique_partitions=len(self._fit_partition_unique_values),
218
+ n_partition_cols=len(partition_cols))
219
+
220
+ # File cleanup after processing.
221
+ os.remove(self._script_file_local)
222
+ self._remove_script_file(self._script_file_name)
223
+
224
+ return self
225
+
226
+ def deploy(self, model_name, replace_if_exists=False):
227
+ raise ValueError("lightgbm Dataset object is not the model object that can be trained. "
228
+ "Hence, not deployable.")
229
+
230
+ class _LightgbmFunctionWrapper(_FunctionWrapper):
231
+ OPENSOURCE_PACKAGE_NAME = OpenSourcePackage.LIGHTGBM
232
+ def __init__(self, module_name=None, func_name=None):
233
+ file_type = "file_fn_lightgbm"
234
+ template_file = "lightgbm_function.template"
235
+ self._pkgs = ["lightgbm", "scikit-learn", "numpy", "scipy"]
236
+ self._script_file_name = _generate_new_name(type=file_type, extension="py")
237
+ super().__init__(module_name, func_name, file_type=file_type, template_file=template_file)
238
+ self._scripts_path = os.path.join(_TDML_DIRECTORY, "data", "scripts", "lightgbm")
239
+
240
+ def _extract_model_objs(self, n_unique_partitions=1, n_partition_cols=1, record_eval_exists=False):
241
+ """
242
+ Internal function to extract lightgbm object from the model(s) depending on the number of
243
+ partitions. When it is only one model, it is directly used as modelObj.
244
+ When it is multiple models, it is converted to pandas DataFrame and stored in modelObj.
245
+
246
+ PARAMETERS:
247
+ n_unique_partitions:
248
+ Optional Argument.
249
+ Specifies the number of unique partitions. If this argument is greater than 1,
250
+ then pandas DataFame is created for modelObj. Otherwise, model object is directly
251
+ stored in modelObj.
252
+ Type: int
253
+
254
+ n_partition_cols:
255
+ Optional Argument.
256
+ Specifies the number of partition columns. Since partition columns are stored in
257
+ the first columns of the self.model_data, this argument is used to extract model
258
+ object and other columns (console_output) from self.model_data.
259
+ Type: int
260
+
261
+ record_eval_exists:
262
+ Optional Argument.
263
+ Specifies whether record_evaluation callback exists in the function call.
264
+ If yes, then record_evaluation_result is also extracted from the model data.
265
+ Type: bool
266
+
267
+ RETURNS:
268
+ None
269
+
270
+ RAISES:
271
+ ValueError
272
+
273
+ EXAMPLES:
274
+ >>> # Extract model object, console output and record_evaluation results from the model
275
+ >>> # data and assign them to self.modelObj.
276
+ >>> self._extract_model_objs(n_unique_partitions=4, n_partition_cols=2, record_eval_exists=True)
277
+
278
+ """
279
+ vals = execute_sql("select * from {}".format(self._model_data._table_name)).fetchall()
280
+
281
+ # pickle will issue a caution warning, if model pickling was done with
282
+ # different library version than used here. The following disables any warnings
283
+ # that might otherwise show in the scriptlog files on the Advanced SQL Engine
284
+ # nodes in this case. Yet, do keep an eye for incompatible pickle versions.
285
+ warnings.filterwarnings("ignore")
286
+
287
+ model_obj = None
288
+ console_opt = None
289
+ record_eval_result = None
290
+ # Extract and unpickle the following:
291
+ # - column next to partition columns - model object.
292
+ # - column next to model object - console output.
293
+ # - column next to console output - record_evaluation_result (if record_evaluation callback
294
+ # is there in input).
295
+ for i, row in enumerate(vals):
296
+ if self._is_lake_system:
297
+ model_obj = pickle.loads(row[n_partition_cols])
298
+ # console_output is stored in the column next to model object.
299
+ console_opt = row[n_partition_cols+1].decode()
300
+ if record_eval_exists:
301
+ # record_evaluation_result is stored in the column next to console_output.
302
+ record_eval_result = pickle.loads(row[n_partition_cols+2])
303
+ else:
304
+ model_obj = pickle.loads(base64.b64decode(row[n_partition_cols].partition("'")[2]))
305
+ # console_output is stored in the column next to model object.
306
+ console_opt = base64.b64decode(row[n_partition_cols+1].partition("'")[2]).decode()
307
+ if record_eval_exists:
308
+ # record_evaluation_result is stored in the column next to console_output.
309
+ record_eval_result = pickle.loads(
310
+ base64.b64decode(row[n_partition_cols+2].partition("'")[2]))
311
+ row[n_partition_cols] = model_obj
312
+ row[n_partition_cols+1] = console_opt
313
+ if record_eval_exists:
314
+ row[n_partition_cols+2] = record_eval_result
315
+ vals[i] = row
316
+ if n_unique_partitions == 1:
317
+ # Return both model object and console output for single model case.
318
+ pdf_data = [model_obj, console_opt]
319
+ if record_eval_exists:
320
+ # Add record_evaluation_result to the pandas df if exists.
321
+ pdf_data.append(record_eval_result)
322
+ self.modelObj = pd.DataFrame([pdf_data],
323
+ # First column is partition column. Hence, removed.
324
+ columns=self._model_data.columns[1:])
325
+ elif n_unique_partitions > 1:
326
+ self.modelObj = pd.DataFrame(vals, columns=self._model_data.columns)
327
+ else:
328
+ ValueError("Number of partitions should be greater than 0.")
329
+
330
+ warnings.filterwarnings("default")
331
+
332
+ def __call__(self, **kwargs):
333
+
334
+ if self._func_name == "cv" and kwargs.get("return_cvbooster", None):
335
+ raise NotImplementedError("return_cvbooster argument is not supported yet.")
336
+
337
+ train_set = kwargs.pop("train_set")
338
+
339
+ train_set._install_initial_model_file()
340
+
341
+ # Data with only partition columns to run training on correct Dataset object in
342
+ # appropriate AMP/Node.
343
+ data = train_set._model_data.drop(columns="model")
344
+
345
+ kwargs["train_set"] = train_set._model_file_name_prefix
346
+ train_part_unique_vals = train_set._fit_partition_unique_values
347
+
348
+ partition_cols = data.columns # Because all the columns are parition columns.
349
+
350
+ valid_sets = kwargs.pop("valid_sets", None)
351
+ if valid_sets:
352
+ kwargs["valid_sets"] = []
353
+ for _, val in enumerate(valid_sets):
354
+ val._install_initial_model_file()
355
+ kwargs["valid_sets"].append(val._model_file_name_prefix)
356
+ val_part_unique_vals = val._fit_partition_unique_values
357
+
358
+ # Make sure all datasets are partitioned on same column values.
359
+ if not self._validate_equality_of_partition_values(train_part_unique_vals,
360
+ val_part_unique_vals):
361
+ raise TeradataMlException(
362
+ Messages.get_message(MessageCodes.PARTITION_VALUES_NOT_MATCHING,
363
+ "training", "validation"),
364
+ MessageCodes.PARTITION_VALUES_NOT_MATCHING
365
+ )
366
+
367
+ # Handle callbacks. Check if record_evaluation callback is present.
368
+ rec_eval_exists = False # Flag to check if record_evaluation callback exists.
369
+ if "callbacks" in kwargs and kwargs["callbacks"] is not None:
370
+ callbacks = kwargs["callbacks"]
371
+ callbacks = [callbacks] if not isinstance(callbacks, list) else callbacks
372
+ for callback in callbacks:
373
+ if callback["func_name"] == "record_evaluation":
374
+ rec_eval_exists = True
375
+ break
376
+
377
+ script_file_path = f"{self._script_file_name}" if self._is_lake_system \
378
+ else f"./{self._db_name}/{self._script_file_name}"
379
+
380
+ py_exc = UtilFuncs._get_python_execution_path()
381
+ script_command = f"{py_exc} {script_file_path}"
382
+
383
+ _, partition_indices, partition_types, partition_cols = \
384
+ self._get_data_col_types_and_partition_col_indices_and_types(data,
385
+ partition_cols,
386
+ idx_delim=None,
387
+ types_delim=None)
388
+
389
+ model_file_prefix = None
390
+ if self._is_lake_system:
391
+ model_file_prefix = self._script_file_name.replace(".py", "")
392
+
393
+ replace_dict = {"<module_name>": self._module_name,
394
+ "<func_name>": self._func_name,
395
+ "<is_lake_system>": str(self._is_lake_system),
396
+ "<params>": json.dumps(kwargs),
397
+ "<partition_cols_indices>": str(partition_indices),
398
+ "<partition_cols_types>": str(partition_types),
399
+ "<model_file_prefix>": str(model_file_prefix)}
400
+
401
+ self._prepare_and_install_file(replace_dict=replace_dict)
402
+
403
+ # One additional column "console_output" containing captured console output which contain
404
+ # training and validation logs.
405
+ model_type = BLOB() if self._is_lake_system else CLOB()
406
+ return_types = [(col, data._td_column_names_and_sqlalchemy_types[col.lower()])
407
+ for col in partition_cols] + \
408
+ [("model", model_type), ("console_output", model_type)]
409
+
410
+ rec_eval_col_name = "record_evaluation_result"
411
+ if rec_eval_exists:
412
+ # If record_evaluation result exists in callback, add it to return types and corresponding
413
+ # output in script.
414
+ return_types.append((rec_eval_col_name, model_type))
415
+
416
+ _no_of_unique_partitions = len(train_set._fit_partition_unique_values)
417
+
418
+ try:
419
+ self._model_data = self._run_script(data, script_command, partition_cols, return_types)
420
+
421
+ self._extract_model_objs(n_unique_partitions=_no_of_unique_partitions,
422
+ n_partition_cols=len(partition_cols),
423
+ record_eval_exists=rec_eval_exists)
424
+
425
+ except Exception as ex:
426
+ # File cleanup if script execution fails or unable to fetch modelObj.
427
+ os.remove(self._script_file_local)
428
+ self._remove_script_file(self._script_file_name)
429
+ raise
430
+
431
+ # File cleanup after processing.
432
+ os.remove(self._script_file_local)
433
+ self._remove_script_file(self._script_file_name)
434
+
435
+ if _no_of_unique_partitions == 1:
436
+ # If only one partition, print the console output and return the model object.
437
+ print(self.modelObj.iloc[0]["console_output"])
438
+ if self._func_name == "cv":
439
+ return self.modelObj.iloc[0]["model"]
440
+ if not rec_eval_exists:
441
+ booster_obj = _LightgbmBoosterWrapper(model=self.modelObj.iloc[0]["model"])
442
+ else:
443
+ # If record_evaluation results are there, return dictionary of model object and
444
+ # record_evaluation results.
445
+ model_dict = {"model" : self.modelObj.iloc[0]["model"],
446
+ rec_eval_col_name : self.modelObj.iloc[0][rec_eval_col_name]}
447
+ booster_obj = _LightgbmBoosterWrapper(model=model_dict, model_column_name="model")
448
+ booster_obj._is_default_partition_value_fit = True
449
+ booster_obj._fit_partition_unique_values = train_part_unique_vals
450
+ booster_obj._is_model_installed = False # As model is trained and returned but not saved to Vantage.
451
+
452
+ else:
453
+ if self._func_name == "cv":
454
+ return self.modelObj
455
+ booster_obj = _LightgbmBoosterWrapper(model=self.modelObj, model_column_name="model")
456
+ booster_obj._fit_partition_colums_non_default = partition_cols
457
+ booster_obj._is_default_partition_value_fit = train_set._is_default_partition_value_fit
458
+
459
+ booster_obj._fit_partition_unique_values = train_part_unique_vals
460
+ booster_obj._is_model_installed = False # As model is trained and returned but not saved to Vantage.
461
+
462
+ return booster_obj
463
+
464
+
465
+ # Using _SkLearnObjectWrapper as base class for _LightgbmBoosterWrapper as _transform method is not
466
+ # present in _OpenSourceObjectWrapper class.
467
+ class _LightgbmBoosterWrapper(_SkLearnObjectWrapper):
468
+ OPENSOURCE_PACKAGE_NAME = OpenSourcePackage.LIGHTGBM
469
+ def __init__(self, model=None, module_name=None, class_name=None, kwargs=None, model_column_name=None):
470
+ file_type = "file_fn_lightgbm_booster"
471
+ self._model_column_name = model_column_name
472
+ self.record_evaluation_result = None
473
+ self._pkgs = ["lightgbm", "scikit-learn", "numpy", "scipy"]
474
+
475
+ if model is not None and isinstance(model, dict) and self._model_column_name in model.keys():
476
+ self.record_evaluation_result = model["record_evaluation_result"]
477
+ model = model[self._model_column_name] # As model is stored in dictionary with key as "train_".
478
+
479
+ _OpenSourceObjectWrapper.__init__(self, model=model, module_name=module_name, class_name=class_name, kwargs=kwargs)
480
+
481
+ self._scripts_path = os.path.join(_TDML_DIRECTORY, "data", "scripts", "lightgbm")
482
+
483
+ self._script_file_name = _generate_new_name(type=file_type, extension="py")
484
+
485
+ self._initialize_variables(table_name_prefix="td_lightgbm_")
486
+ if model is not None:
487
+ first_model = model
488
+ if isinstance(model, pd.DataFrame):
489
+ first_model = model.iloc[0][self._model_column_name]
490
+ self.modelObj = model
491
+ self.module_name = first_model.__module__.split("._")[0]
492
+ self.class_name = first_model.__class__.__name__
493
+ _model_init_arguments = first_model.__init__.__code__.co_varnames
494
+ self.kwargs = dict((k, v) for k, v in first_model.__dict__.items() if k in _model_init_arguments)
495
+
496
+ self.pos_args = tuple()
497
+
498
+ else:
499
+ # Create model object from new positional and keyword arguments.
500
+ if "train_set" in self.kwargs and self.kwargs["train_set"] is not None and \
501
+ isinstance(self.kwargs["train_set"], _LightgbmDatasetWrapper):
502
+ self.kwargs["train_set"] = self.kwargs["train_set"].modelObj
503
+
504
+ from importlib import import_module
505
+ class_obj = getattr(import_module(self.module_name), self.class_name)
506
+ self.modelObj = class_obj(**self.kwargs)
507
+
508
+ @property
509
+ def model_info(self):
510
+ """
511
+ DESCRIPTION:
512
+ Get the model information along with console output for multi-model case. Only model
513
+ object is returned for single model case.
514
+ Note:
515
+ This is particularly useful in multi-model case when the user want to see the console
516
+ output of each partition.
517
+
518
+ PARAMETERS:
519
+ None
520
+
521
+ RAISES:
522
+ None
523
+
524
+ RETURNS:
525
+ Pandas DataFrame
526
+
527
+ EXAMPLES:
528
+ # Load example data.
529
+ >>> load_example_data("openml", ["multi_model_classification"])
530
+ >>> df = DataFrame("multi_model_classification")
531
+ >>> df.head(3)
532
+ col2 col3 col4 label group_column partition_column_1 partition_column_2
533
+ col1
534
+ -2.560430 0.402232 -1.100742 -2.959588 0 9 0 10
535
+ -3.587546 0.291819 -1.850169 -4.331055 0 10 0 10
536
+ -3.697436 1.576888 -0.461220 -3.598652 0 10 0 11
537
+
538
+ # Get the feature and label data.
539
+ >>> df_x = df.select(["col1", "col2", "col3", "col4"])
540
+ >>> df_y = df.select("label")
541
+
542
+ # Partition columns for multi model case.
543
+ >>> part_cols = ["partition_column_1", "partition_column_2"]
544
+
545
+ ## Single model case.
546
+ # Create lightgbm Dataset object.
547
+ >>> lgbm_data = td_lightgbm.Dataset(data=df_x, label=df_y, free_raw_data=False)
548
+
549
+ # Train the model.
550
+ >>> model = td_lightgbm.train(params={}, train_set=lgbm_data,
551
+ ... num_boost_round=30,
552
+ ... early_stopping_rounds=50)
553
+ >>> model # This is object of _LightgbmBoosterWrapper class.
554
+ <lightgbm.basic.Booster object at 0x0000025BD2459160>
555
+
556
+ ## Multi model case.
557
+ # Create lightgbm Dataset objects for training and validation.
558
+ >>> obj_m = td_lightgbm.Dataset(df_x, df_y, free_raw_data=False,
559
+ partition_columns=part_cols)
560
+
561
+ >>> obj_m_v = td_lightgbm.Dataset(df_x, df_y, free_raw_data=False,
562
+ partition_columns=part_cols)
563
+
564
+ # Train the models in multi model case.
565
+ >>> model = td_lightgbm.train(params={}, train_set=obj_m,
566
+ ... num_boost_round=30,
567
+ ... early_stopping_rounds=50,
568
+ ... valid_sets=[obj_m_v, obj_m_v])
569
+ >>> model
570
+ partition_column_1 partition_column_2 \
571
+ 0 1 11
572
+ 1 0 11
573
+ 2 1 10
574
+ 3 0 10
575
+
576
+ model \
577
+ 0 <lightgbm.basic.Booster object at 0x7f2e95ffc0a0>
578
+ 1 <lightgbm.basic.Booster object at 0x7f2e95ffc880>
579
+ 2 <lightgbm.basic.Booster object at 0x7f2e95f852e0>
580
+ 3 <lightgbm.basic.Booster object at 0x7f2e95f853a0>
581
+
582
+ console_output
583
+ 0 [LightGBM] [Warning] Auto-choosing col-wise mu...
584
+ 1 [LightGBM] [Warning] Auto-choosing row-wise mu...
585
+ 2 [LightGBM] [Warning] Auto-choosing col-wise mu...
586
+ 3 [LightGBM] [Warning] Auto-choosing row-wise mu...
587
+
588
+ # Get the model information which returns the printed output as pandas
589
+ # DataFrame containing the model information along with console output.
590
+ >>> model_info = lightgbm_booster.model_info
591
+
592
+ # Print console output of first partition.
593
+ >>> print(model_info.iloc[0]["console_output"])
594
+ [LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000043 seconds.
595
+ You can set `force_col_wise=true` to remove the overhead.
596
+ [LightGBM] [Info] Total Bins 136
597
+ [LightGBM] [Info] Number of data points in the train set: 97, number of used features: 4
598
+ [LightGBM] [Info] Start training from score 0.556701
599
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
600
+ [1] valid_0's l2: 0.219637 valid_1's l2: 0.219637
601
+ Training until validation scores don't improve for 50 rounds
602
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
603
+ [2] valid_0's l2: 0.196525 valid_1's l2: 0.196525
604
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
605
+ [3] valid_0's l2: 0.178462 valid_1's l2: 0.178462
606
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
607
+ [4] valid_0's l2: 0.162887 valid_1's l2: 0.162887
608
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
609
+ [5] valid_0's l2: 0.150271 valid_1's l2: 0.150271
610
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
611
+ [6] valid_0's l2: 0.140219 valid_1's l2: 0.140219
612
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
613
+ [7] valid_0's l2: 0.131697 valid_1's l2: 0.131697
614
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
615
+ [8] valid_0's l2: 0.124056 valid_1's l2: 0.124056
616
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
617
+ [9] valid_0's l2: 0.117944 valid_1's l2: 0.117944
618
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
619
+ [10] valid_0's l2: 0.11263 valid_1's l2: 0.11263
620
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
621
+ [11] valid_0's l2: 0.105228 valid_1's l2: 0.105228
622
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
623
+ [12] valid_0's l2: 0.0981571 valid_1's l2: 0.0981571
624
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
625
+ [13] valid_0's l2: 0.0924294 valid_1's l2: 0.0924294
626
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
627
+ [14] valid_0's l2: 0.0877899 valid_1's l2: 0.0877899
628
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
629
+ [15] valid_0's l2: 0.084032 valid_1's l2: 0.084032
630
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
631
+ [16] valid_0's l2: 0.080988 valid_1's l2: 0.080988
632
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
633
+ [17] valid_0's l2: 0.0785224 valid_1's l2: 0.0785224
634
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
635
+ [18] valid_0's l2: 0.0765253 valid_1's l2: 0.0765253
636
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
637
+ [19] valid_0's l2: 0.0750803 valid_1's l2: 0.0750803
638
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
639
+ [20] valid_0's l2: 0.0738915 valid_1's l2: 0.0738915
640
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
641
+ [21] valid_0's l2: 0.07288 valid_1's l2: 0.07288
642
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
643
+ [22] valid_0's l2: 0.0718676 valid_1's l2: 0.0718676
644
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
645
+ [23] valid_0's l2: 0.0706037 valid_1's l2: 0.0706037
646
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
647
+ [24] valid_0's l2: 0.0695799 valid_1's l2: 0.0695799
648
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
649
+ [25] valid_0's l2: 0.0687507 valid_1's l2: 0.0687507
650
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
651
+ [26] valid_0's l2: 0.0680819 valid_1's l2: 0.0680819
652
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
653
+ [27] valid_0's l2: 0.0674077 valid_1's l2: 0.0674077
654
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
655
+ [28] valid_0's l2: 0.0665111 valid_1's l2: 0.0665111
656
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
657
+ [29] valid_0's l2: 0.0659656 valid_1's l2: 0.0659656
658
+ [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
659
+ [30] valid_0's l2: 0.0652665 valid_1's l2: 0.0652665
660
+ Did not meet early stopping. Best iteration is:
661
+ [30] valid_0's l2: 0.0652665 valid_1's l2: 0.0652665
662
+
663
+ """
664
+ return self.modelObj
665
+
666
+ def __getattr__(self, name):
667
+ def __run_transform(*c, **kwargs):
668
+ # Lightgbm predict method takes other keyword arguments along with data related arguments.
669
+ # Hence need to generate script dynamically instead of standard scikit-learn's
670
+ # sklearn_transform.py file.
671
+ self._convert_pos_args_to_kwargs_for_function(c, kwargs, name)
672
+ self._generate_script_file_from_template_file(kwargs=kwargs,
673
+ template_file="lightgbm_class_functions.template",
674
+ func_name=name)
675
+
676
+ return self._transform(**kwargs)
677
+
678
+ # TODO: Will be added as part of ELE-7150
679
+ if name in ["add_valid", "eval", "eval_train", "eval_valid", "refit", "set_attr", "update"]:
680
+ raise NotImplementedError(f"{name}() function is not supported yet. Will be added in future releases.")
681
+
682
+ # TODO: Will be added as part of ELE-7150
683
+ if name == "model_from_string" and not self._is_default_partition_value_fit:
684
+ # For multi model case of model_from_string() function.
685
+ raise NotImplementedError(
686
+ "model_from_string() function is not supported for multi model case. Will be added in future releases.")
687
+
688
+ # TODO: Will be added as part of ELE-7150
689
+ if name == "set_network":
690
+ raise NotImplementedError(
691
+ "set_network() function is not applicable for Teradata Vantage.")
692
+
693
+ if name in ["predict"]:
694
+ return __run_transform
695
+ return super().__getattr__(name)
696
+
697
+ def _execute_function_locally(self, ten_row_data, feature_columns, label_columns, openml_obj,
698
+ func_name, **kwargs):
699
+ """
700
+ Function which overrides the existing _execute_function_locally method to handle ValueError
701
+ as argument names are different in lightgbm compared to scikit-learn.
702
+ """
703
+ X = numpy.array(ten_row_data)
704
+
705
+ if label_columns:
706
+ n_f = len(feature_columns)
707
+ n_c = len(label_columns)
708
+ y = X[:,n_f : n_f + n_c]
709
+ X = X[:,:n_f]
710
+ # predict() now takes 'y' ("label" lightgbm argument) also for it to return the labels
711
+ # from script. Skipping 'y' in local run if passed.
712
+ # Generally, 'y' is passed to return y along with actual output.
713
+ # Since actual lightgbm predict() does not have "label" argument and have other arguments like
714
+ # "start_iteration" etc, local run in try block is resulting into ValueError as
715
+ # "ValueError: The truth value of an array with more than one element is ambiguous.
716
+ # Use a.any() or a.all()" for "start_iteration" argument because the value for "y" is
717
+ # taken for "start_iteration" positional argument. Hence, skipping y in local run.
718
+ try:
719
+ trans_opt = getattr(openml_obj, func_name)(X, y, **kwargs)
720
+ except TypeError as _:
721
+ # Function which does not accept 'y' like predict_proba() raises error like
722
+ # "predict_proba() takes 2 positional arguments but 3 were given".
723
+ trans_opt = getattr(openml_obj, func_name)(X, **kwargs)
724
+ except ValueError as _:
725
+ trans_opt = getattr(openml_obj, func_name)(X, **kwargs)
726
+ else:
727
+ trans_opt = getattr(openml_obj, func_name)(X, **kwargs)
728
+
729
+ if isinstance(trans_opt, numpy.ndarray) and trans_opt.shape == (X.shape[0],):
730
+ trans_opt = trans_opt.reshape(X.shape[0], 1)
731
+
732
+ return trans_opt
733
+
734
+ def _transform(self, **kwargs):
735
+ # Overwriting existing _transform method to handle data related arguments and other
736
+ # keyword arguments.
737
+
738
+ # Extract data and label columns.
739
+ data_df = kwargs.pop("data") # "data" is mandatory argument for predict method.
740
+ current_dfs = [data_df]
741
+ feature_columns = data_df.columns
742
+
743
+ label_columns = None
744
+ if "label" in kwargs.keys() and kwargs["label"] is not None:
745
+ label_df = kwargs.pop("label")
746
+ current_dfs.append(label_df)
747
+ label_columns = label_df.columns
748
+
749
+ file_name = kwargs.pop("file_name")
750
+
751
+ from teradataml.dataframe.dataframe_utils import DataFrameUtils
752
+ data = DataFrameUtils()._get_common_parent_df_from_dataframes(current_dfs)
753
+
754
+ try:
755
+ # Install initial model file and script file to Vantage.
756
+ self._install_model_and_script_files(file_name=file_name,
757
+ file_location=self._tdml_tmp_dir)
758
+
759
+ trans_opt = super()._transform(data=data, feature_columns=feature_columns,
760
+ label_columns=label_columns, file_name=file_name,
761
+ **kwargs)
762
+ except Exception as ex:
763
+ # File cleanup if script execution fails or unable to fetch modelObj.
764
+ os.remove(os.path.join(self._tdml_tmp_dir, file_name))
765
+ self._remove_script_file(file_name)
766
+ raise
767
+
768
+ # File cleanup after processing.
769
+ os.remove(os.path.join(self._tdml_tmp_dir, file_name))
770
+ self._remove_script_file(file_name)
771
+
772
+ return trans_opt
773
+
774
+ def __repr__(self):
775
+ return self.modelObj.__repr__()
776
+
777
+
778
+ class _LightgbmSklearnWrapper(_SkLearnObjectWrapper):
779
+ OPENSOURCE_PACKAGE_NAME = OpenSourcePackage.LIGHTGBM
780
+ def __init__(self, model=None, module_name=None, class_name=None, kwargs=None):
781
+ self._pkgs = ["lightgbm", "scikit-learn", "numpy", "scipy"]
782
+ super().__init__(model=model, module_name=module_name, class_name=class_name, kwargs=kwargs)
783
+ self._scripts_path = os.path.join(_TDML_DIRECTORY, "data", "scripts", "lightgbm")
784
+
785
+ def set_params(self, **params):
786
+ """
787
+ Please check the description in Docs/OpensourceML/sklearn.py.
788
+ """
789
+ for key, val in params.items():
790
+ self.kwargs[key] = val
791
+
792
+ self.__init__(None, self.module_name, self.class_name, self.kwargs)
793
+ return self
794
+
795
+ def _process_and_run_fit_and_score_run(self, pos_args, kwargs, func_name):
796
+ """
797
+ Internal function to process data related arguments and other keyword arguments
798
+ for fit and score methods.
799
+ """
800
+ self._convert_pos_args_to_kwargs_for_function(pos_args, kwargs, func_name)
801
+
802
+ label_columns = kwargs["y"].columns if kwargs.get("y", None) else kwargs.get("label_columns", None)
803
+
804
+ if func_name == "score":
805
+ # Get partition columns from the trained model object.
806
+ if self._fit_partition_colums_non_default is not None and "partition_columns" not in kwargs.keys():
807
+ kwargs["partition_columns"] = self._fit_partition_colums_non_default
808
+ if func_name == "fit":
809
+ earlier_partition_cols = kwargs.get("partition_columns", None)
810
+ if earlier_partition_cols:
811
+ self._is_default_partition_value_fit = False
812
+ self._fit_partition_colums_non_default = earlier_partition_cols
813
+ else:
814
+ self._is_default_partition_value_fit = True
815
+ self._fit_partition_colums_non_default = None
816
+
817
+ generated_script_file = _generate_new_name(type=f"file_fn_lightgbm_sklearn_{func_name}", extension="py")
818
+
819
+ non_data_related_args = self._get_non_data_related_args_from_kwargs(kwargs)
820
+
821
+ replace_dict, partition_cols = self._process_data_for_funcs_returning_objects(kwargs)
822
+
823
+ # Update non data related arguments in replace_dict containing data related argument information.
824
+ replace_dict.update({"<params>": json.dumps(non_data_related_args),
825
+ "<func_name>": f"'{func_name}'",
826
+ "<model_file_prefix>": f"'{self._model_file_name_prefix}'",
827
+ "<is_lake_system>": str(self._is_lake_system)})
828
+
829
+ # Replace placeholders in tempate file with actual values and write to new file.
830
+ self._read_from_template_and_write_dict_to_file(template_file="lightgbm_sklearn.template",
831
+ replace_dict=replace_dict,
832
+ output_script_file_name=generated_script_file)
833
+
834
+ if func_name == "fit":
835
+ # Get unique values in partitioning columns.
836
+ self._fit_partition_unique_values = self._tdml_df.drop_duplicate(partition_cols).get_values()
837
+
838
+ # Install initial model file and script file to Vantage.
839
+ self._install_model_and_script_files(file_name=generated_script_file,
840
+ file_location=self._tdml_tmp_dir)
841
+
842
+ # db_name is applicable for enterprise system.
843
+ db_file_name = generated_script_file if self._is_lake_system else f"./{self._db_name}/{generated_script_file}"
844
+ py_exc = UtilFuncs._get_python_execution_path()
845
+ script_command = f"{py_exc} {db_file_name}"
846
+
847
+ return_types = [(col, self._tdml_df._td_column_names_and_sqlalchemy_types[col.lower()])
848
+ for col in partition_cols]
849
+ if func_name == "fit":
850
+ model_type = BLOB() if self._is_lake_system else CLOB()
851
+ return_types += [("model", model_type)]
852
+ if func_name == "score":
853
+ return_types += [("score", FLOAT())]
854
+ # Checking the trained model installation. If not installed,
855
+ # set flag to True (as it is already installed in
856
+ # `self._install_model_and_script_files()` call).
857
+ if not self._is_trained_model_installed:
858
+ self._is_trained_model_installed = True
859
+
860
+ try:
861
+ opt = self._run_script(data=self._tdml_df, command=script_command,
862
+ partition_columns=partition_cols,
863
+ return_types=return_types)
864
+ except Exception as ex:
865
+ # File cleanup if script execution fails or unable to fetch modelObj.
866
+ os.remove(os.path.join(self._tdml_tmp_dir, generated_script_file))
867
+ self._remove_script_file(generated_script_file)
868
+ raise
869
+
870
+ # File cleanup after processing.
871
+ os.remove(os.path.join(self._tdml_tmp_dir, generated_script_file))
872
+ self._remove_script_file(generated_script_file)
873
+
874
+ if func_name == "fit":
875
+ self._model_data = opt
876
+ self._assign_fit_variables_after_execution(self._tdml_df, partition_cols, label_columns)
877
+ return self
878
+
879
+ if func_name == "score":
880
+ if self._is_default_partition_value_fit:
881
+ # For single model case, partition column is internally generated and
882
+ # no point in returning it to the user.
883
+ opt = opt.select(func_name)
884
+ return opt
885
+
886
+ def fit(self, *c, **kwargs):
887
+ return self._process_and_run_fit_and_score_run(c, kwargs, "fit")
888
+
889
+ def score(self, *c, **kwargs):
890
+ return self._process_and_run_fit_and_score_run(c, kwargs, "score")
891
+
892
+ def _transform(self, **kwargs):
893
+ # Overwriting existing _transform method to handle data related arguments and other
894
+ # keyword arguments.
895
+
896
+ # Extract data and label columns.
897
+ data_df = kwargs.pop("X") # "X" is mandatory argument for predict method.
898
+ current_dfs = [data_df]
899
+ feature_columns = data_df.columns
900
+
901
+ label_columns = None
902
+ if "y" in kwargs.keys() and kwargs["y"] is not None:
903
+ label_df = kwargs.pop("y")
904
+ current_dfs.append(label_df)
905
+ label_columns = label_df.columns
906
+
907
+ file_name = kwargs.pop("file_name")
908
+
909
+ from teradataml.dataframe.dataframe_utils import DataFrameUtils
910
+ data = DataFrameUtils()._get_common_parent_df_from_dataframes(current_dfs)
911
+
912
+ try:
913
+ # Install initial model file and script file to Vantage.
914
+ self._install_model_and_script_files(file_name=file_name,
915
+ file_location=self._tdml_tmp_dir)
916
+
917
+ trans_opt = super()._transform(data=data, feature_columns=feature_columns,
918
+ label_columns=label_columns, file_name=file_name,
919
+ **kwargs)
920
+ except Exception as ex:
921
+ # File cleanup if script execution fails or unable to fetch modelObj.
922
+ os.remove(os.path.join(self._tdml_tmp_dir, file_name))
923
+ self._remove_script_file(file_name)
924
+ raise
925
+
926
+ # File cleanup after processing.
927
+ os.remove(os.path.join(self._tdml_tmp_dir, file_name))
928
+ self._remove_script_file(file_name)
929
+
930
+ return trans_opt
931
+
932
+ def __getattr__(self, name):
933
+ def __run_transform(*c, **kwargs):
934
+ # Lightgbm predict method takes other keyword arguments along with data related arguments.
935
+ # Hence need to generate script dynamically instead of standard scikit-learn's
936
+ # sklearn_transform.py file.
937
+ generated_script_file = _generate_new_name(type=f"file_fn_lightgbm_sklearn_{name}", extension="py")
938
+
939
+ self._convert_pos_args_to_kwargs_for_function(c, kwargs, name)
940
+ self._generate_script_file_from_template_file(kwargs=kwargs,
941
+ template_file="lightgbm_class_functions.template",
942
+ func_name=name,
943
+ output_script_file_name=generated_script_file)
944
+
945
+ return self._transform(**kwargs)
946
+
947
+ if name in ["predict", "predict_proba"]:
948
+ return __run_transform
949
+ return super().__getattr__(name)