teradataml 20.0.0.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1208) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +2762 -0
  4. teradataml/__init__.py +78 -0
  5. teradataml/_version.py +11 -0
  6. teradataml/analytics/Transformations.py +2996 -0
  7. teradataml/analytics/__init__.py +82 -0
  8. teradataml/analytics/analytic_function_executor.py +2416 -0
  9. teradataml/analytics/analytic_query_generator.py +1050 -0
  10. teradataml/analytics/byom/H2OPredict.py +514 -0
  11. teradataml/analytics/byom/PMMLPredict.py +437 -0
  12. teradataml/analytics/byom/__init__.py +16 -0
  13. teradataml/analytics/json_parser/__init__.py +133 -0
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
  15. teradataml/analytics/json_parser/json_store.py +191 -0
  16. teradataml/analytics/json_parser/metadata.py +1666 -0
  17. teradataml/analytics/json_parser/utils.py +805 -0
  18. teradataml/analytics/meta_class.py +236 -0
  19. teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
  21. teradataml/analytics/sqle/__init__.py +128 -0
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
  24. teradataml/analytics/table_operator/__init__.py +11 -0
  25. teradataml/analytics/uaf/__init__.py +82 -0
  26. teradataml/analytics/utils.py +828 -0
  27. teradataml/analytics/valib.py +1617 -0
  28. teradataml/automl/__init__.py +5835 -0
  29. teradataml/automl/autodataprep/__init__.py +493 -0
  30. teradataml/automl/custom_json_utils.py +1625 -0
  31. teradataml/automl/data_preparation.py +1384 -0
  32. teradataml/automl/data_transformation.py +1254 -0
  33. teradataml/automl/feature_engineering.py +2273 -0
  34. teradataml/automl/feature_exploration.py +1873 -0
  35. teradataml/automl/model_evaluation.py +488 -0
  36. teradataml/automl/model_training.py +1407 -0
  37. teradataml/catalog/__init__.py +2 -0
  38. teradataml/catalog/byom.py +1759 -0
  39. teradataml/catalog/function_argument_mapper.py +859 -0
  40. teradataml/catalog/model_cataloging_utils.py +491 -0
  41. teradataml/clients/__init__.py +0 -0
  42. teradataml/clients/auth_client.py +137 -0
  43. teradataml/clients/keycloak_client.py +165 -0
  44. teradataml/clients/pkce_client.py +481 -0
  45. teradataml/common/__init__.py +1 -0
  46. teradataml/common/aed_utils.py +2078 -0
  47. teradataml/common/bulk_exposed_utils.py +113 -0
  48. teradataml/common/constants.py +1669 -0
  49. teradataml/common/deprecations.py +166 -0
  50. teradataml/common/exceptions.py +147 -0
  51. teradataml/common/formula.py +743 -0
  52. teradataml/common/garbagecollector.py +666 -0
  53. teradataml/common/logger.py +1261 -0
  54. teradataml/common/messagecodes.py +518 -0
  55. teradataml/common/messages.py +262 -0
  56. teradataml/common/pylogger.py +67 -0
  57. teradataml/common/sqlbundle.py +764 -0
  58. teradataml/common/td_coltype_code_to_tdtype.py +48 -0
  59. teradataml/common/utils.py +3166 -0
  60. teradataml/common/warnings.py +36 -0
  61. teradataml/common/wrapper_utils.py +625 -0
  62. teradataml/config/__init__.py +0 -0
  63. teradataml/config/dummy_file1.cfg +5 -0
  64. teradataml/config/dummy_file2.cfg +3 -0
  65. teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
  66. teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
  67. teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
  68. teradataml/context/__init__.py +0 -0
  69. teradataml/context/aed_context.py +223 -0
  70. teradataml/context/context.py +1462 -0
  71. teradataml/data/A_loan.csv +19 -0
  72. teradataml/data/BINARY_REALS_LEFT.csv +11 -0
  73. teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
  74. teradataml/data/B_loan.csv +49 -0
  75. teradataml/data/BuoyData2.csv +17 -0
  76. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
  77. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
  78. teradataml/data/Convolve2RealsLeft.csv +5 -0
  79. teradataml/data/Convolve2RealsRight.csv +5 -0
  80. teradataml/data/Convolve2ValidLeft.csv +11 -0
  81. teradataml/data/Convolve2ValidRight.csv +11 -0
  82. teradataml/data/DFFTConv_Real_8_8.csv +65 -0
  83. teradataml/data/Employee.csv +5 -0
  84. teradataml/data/Employee_Address.csv +4 -0
  85. teradataml/data/Employee_roles.csv +5 -0
  86. teradataml/data/JulesBelvezeDummyData.csv +100 -0
  87. teradataml/data/Mall_customer_data.csv +201 -0
  88. teradataml/data/Orders1_12mf.csv +25 -0
  89. teradataml/data/Pi_loan.csv +7 -0
  90. teradataml/data/SMOOTHED_DATA.csv +7 -0
  91. teradataml/data/TestDFFT8.csv +9 -0
  92. teradataml/data/TestRiver.csv +109 -0
  93. teradataml/data/Traindata.csv +28 -0
  94. teradataml/data/__init__.py +0 -0
  95. teradataml/data/acf.csv +17 -0
  96. teradataml/data/adaboost_example.json +34 -0
  97. teradataml/data/adaboostpredict_example.json +24 -0
  98. teradataml/data/additional_table.csv +11 -0
  99. teradataml/data/admissions_test.csv +21 -0
  100. teradataml/data/admissions_train.csv +41 -0
  101. teradataml/data/admissions_train_nulls.csv +41 -0
  102. teradataml/data/advertising.csv +201 -0
  103. teradataml/data/ageandheight.csv +13 -0
  104. teradataml/data/ageandpressure.csv +31 -0
  105. teradataml/data/amazon_reviews_25.csv +26 -0
  106. teradataml/data/antiselect_example.json +36 -0
  107. teradataml/data/antiselect_input.csv +8 -0
  108. teradataml/data/antiselect_input_mixed_case.csv +8 -0
  109. teradataml/data/applicant_external.csv +7 -0
  110. teradataml/data/applicant_reference.csv +7 -0
  111. teradataml/data/apriori_example.json +22 -0
  112. teradataml/data/arima_example.json +9 -0
  113. teradataml/data/assortedtext_input.csv +8 -0
  114. teradataml/data/attribution_example.json +34 -0
  115. teradataml/data/attribution_sample_table.csv +27 -0
  116. teradataml/data/attribution_sample_table1.csv +6 -0
  117. teradataml/data/attribution_sample_table2.csv +11 -0
  118. teradataml/data/bank_churn.csv +10001 -0
  119. teradataml/data/bank_marketing.csv +11163 -0
  120. teradataml/data/bank_web_clicks1.csv +43 -0
  121. teradataml/data/bank_web_clicks2.csv +91 -0
  122. teradataml/data/bank_web_url.csv +85 -0
  123. teradataml/data/barrier.csv +2 -0
  124. teradataml/data/barrier_new.csv +3 -0
  125. teradataml/data/betweenness_example.json +14 -0
  126. teradataml/data/bike_sharing.csv +732 -0
  127. teradataml/data/bin_breaks.csv +8 -0
  128. teradataml/data/bin_fit_ip.csv +4 -0
  129. teradataml/data/binary_complex_left.csv +11 -0
  130. teradataml/data/binary_complex_right.csv +11 -0
  131. teradataml/data/binary_matrix_complex_left.csv +21 -0
  132. teradataml/data/binary_matrix_complex_right.csv +21 -0
  133. teradataml/data/binary_matrix_real_left.csv +21 -0
  134. teradataml/data/binary_matrix_real_right.csv +21 -0
  135. teradataml/data/blood2ageandweight.csv +26 -0
  136. teradataml/data/bmi.csv +501 -0
  137. teradataml/data/boston.csv +507 -0
  138. teradataml/data/boston2cols.csv +721 -0
  139. teradataml/data/breast_cancer.csv +570 -0
  140. teradataml/data/buoydata_mix.csv +11 -0
  141. teradataml/data/burst_data.csv +5 -0
  142. teradataml/data/burst_example.json +21 -0
  143. teradataml/data/byom_example.json +34 -0
  144. teradataml/data/bytes_table.csv +4 -0
  145. teradataml/data/cal_housing_ex_raw.csv +70 -0
  146. teradataml/data/callers.csv +7 -0
  147. teradataml/data/calls.csv +10 -0
  148. teradataml/data/cars_hist.csv +33 -0
  149. teradataml/data/cat_table.csv +25 -0
  150. teradataml/data/ccm_example.json +32 -0
  151. teradataml/data/ccm_input.csv +91 -0
  152. teradataml/data/ccm_input2.csv +13 -0
  153. teradataml/data/ccmexample.csv +101 -0
  154. teradataml/data/ccmprepare_example.json +9 -0
  155. teradataml/data/ccmprepare_input.csv +91 -0
  156. teradataml/data/cfilter_example.json +12 -0
  157. teradataml/data/changepointdetection_example.json +18 -0
  158. teradataml/data/changepointdetectionrt_example.json +8 -0
  159. teradataml/data/chi_sq.csv +3 -0
  160. teradataml/data/churn_data.csv +14 -0
  161. teradataml/data/churn_emission.csv +35 -0
  162. teradataml/data/churn_initial.csv +3 -0
  163. teradataml/data/churn_state_transition.csv +5 -0
  164. teradataml/data/citedges_2.csv +745 -0
  165. teradataml/data/citvertices_2.csv +1210 -0
  166. teradataml/data/clicks2.csv +16 -0
  167. teradataml/data/clickstream.csv +13 -0
  168. teradataml/data/clickstream1.csv +11 -0
  169. teradataml/data/closeness_example.json +16 -0
  170. teradataml/data/complaints.csv +21 -0
  171. teradataml/data/complaints_mini.csv +3 -0
  172. teradataml/data/complaints_test_tokenized.csv +353 -0
  173. teradataml/data/complaints_testtoken.csv +224 -0
  174. teradataml/data/complaints_tokens_model.csv +348 -0
  175. teradataml/data/complaints_tokens_test.csv +353 -0
  176. teradataml/data/complaints_traintoken.csv +472 -0
  177. teradataml/data/computers_category.csv +1001 -0
  178. teradataml/data/computers_test1.csv +1252 -0
  179. teradataml/data/computers_train1.csv +5009 -0
  180. teradataml/data/computers_train1_clustered.csv +5009 -0
  181. teradataml/data/confusionmatrix_example.json +9 -0
  182. teradataml/data/conversion_event_table.csv +3 -0
  183. teradataml/data/corr_input.csv +17 -0
  184. teradataml/data/correlation_example.json +11 -0
  185. teradataml/data/covid_confirm_sd.csv +83 -0
  186. teradataml/data/coxhazardratio_example.json +39 -0
  187. teradataml/data/coxph_example.json +15 -0
  188. teradataml/data/coxsurvival_example.json +28 -0
  189. teradataml/data/cpt.csv +41 -0
  190. teradataml/data/credit_ex_merged.csv +45 -0
  191. teradataml/data/creditcard_data.csv +1001 -0
  192. teradataml/data/customer_loyalty.csv +301 -0
  193. teradataml/data/customer_loyalty_newseq.csv +31 -0
  194. teradataml/data/customer_segmentation_test.csv +2628 -0
  195. teradataml/data/customer_segmentation_train.csv +8069 -0
  196. teradataml/data/dataframe_example.json +173 -0
  197. teradataml/data/decisionforest_example.json +37 -0
  198. teradataml/data/decisionforestpredict_example.json +38 -0
  199. teradataml/data/decisiontree_example.json +21 -0
  200. teradataml/data/decisiontreepredict_example.json +45 -0
  201. teradataml/data/dfft2_size4_real.csv +17 -0
  202. teradataml/data/dfft2_test_matrix16.csv +17 -0
  203. teradataml/data/dfft2conv_real_4_4.csv +65 -0
  204. teradataml/data/diabetes.csv +443 -0
  205. teradataml/data/diabetes_test.csv +89 -0
  206. teradataml/data/dict_table.csv +5 -0
  207. teradataml/data/docperterm_table.csv +4 -0
  208. teradataml/data/docs/__init__.py +1 -0
  209. teradataml/data/docs/byom/__init__.py +0 -0
  210. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
  211. teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
  212. teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
  213. teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
  214. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
  215. teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
  216. teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
  217. teradataml/data/docs/byom/docs/__init__.py +0 -0
  218. teradataml/data/docs/sqle/__init__.py +0 -0
  219. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
  220. teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
  221. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
  222. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
  223. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
  224. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
  225. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
  226. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
  227. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
  228. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
  229. teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
  230. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
  231. teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
  232. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
  233. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
  234. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
  235. teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
  236. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
  237. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
  238. teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
  239. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
  240. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
  241. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
  242. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
  243. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
  244. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
  245. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
  246. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
  247. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
  248. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
  249. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
  250. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
  251. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
  252. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
  253. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
  254. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
  255. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
  256. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
  257. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
  258. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
  259. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
  260. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
  261. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
  262. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
  263. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
  264. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
  265. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
  266. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
  267. teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
  268. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
  269. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
  270. teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
  271. teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
  272. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
  273. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
  274. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  275. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
  276. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
  277. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
  278. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
  279. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
  280. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
  281. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
  282. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
  283. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
  284. teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
  285. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
  286. teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
  287. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
  288. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
  289. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
  290. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
  291. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
  292. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
  293. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
  294. teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
  295. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
  296. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
  297. teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
  298. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
  299. teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
  300. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
  301. teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
  302. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  303. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
  304. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
  305. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
  306. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
  307. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
  308. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
  309. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
  310. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
  311. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
  312. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
  313. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
  314. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
  315. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
  316. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
  317. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
  318. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  319. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
  320. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
  321. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
  322. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
  323. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
  324. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
  325. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
  326. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
  327. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
  328. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
  329. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
  330. teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
  331. teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
  332. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
  333. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
  334. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
  335. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
  336. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
  337. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
  338. teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
  339. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
  340. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
  341. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
  342. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
  343. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
  344. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
  345. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
  346. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  347. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  348. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
  349. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
  350. teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
  351. teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
  352. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
  353. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
  354. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
  355. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
  356. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  357. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
  358. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
  359. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
  360. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
  361. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
  362. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
  363. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
  364. teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
  365. teradataml/data/docs/tableoperator/__init__.py +0 -0
  366. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
  367. teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
  368. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
  369. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
  370. teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
  371. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
  372. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
  373. teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
  374. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  375. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
  376. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
  377. teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
  378. teradataml/data/docs/uaf/__init__.py +0 -0
  379. teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
  380. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
  381. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
  382. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
  383. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  384. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  385. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
  386. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
  387. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
  388. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
  389. teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
  390. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
  391. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  392. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
  393. teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
  394. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
  395. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
  396. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
  397. teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
  398. teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
  399. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  400. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
  401. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
  402. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
  403. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
  404. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  405. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
  406. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
  407. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
  408. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
  409. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
  410. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
  411. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
  412. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  413. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  414. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  415. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
  416. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
  417. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
  418. teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
  419. teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
  420. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  421. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
  422. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
  423. teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
  424. teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
  425. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
  426. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
  427. teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
  428. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  429. teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
  430. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
  431. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
  432. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
  433. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
  434. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
  435. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
  436. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
  437. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
  438. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
  439. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
  440. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  441. teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
  442. teradataml/data/dtw_example.json +18 -0
  443. teradataml/data/dtw_t1.csv +11 -0
  444. teradataml/data/dtw_t2.csv +4 -0
  445. teradataml/data/dwt2d_dataTable.csv +65 -0
  446. teradataml/data/dwt2d_example.json +16 -0
  447. teradataml/data/dwt_dataTable.csv +8 -0
  448. teradataml/data/dwt_example.json +15 -0
  449. teradataml/data/dwt_filterTable.csv +3 -0
  450. teradataml/data/dwt_filter_dim.csv +5 -0
  451. teradataml/data/emission.csv +9 -0
  452. teradataml/data/emp_table_by_dept.csv +19 -0
  453. teradataml/data/employee_info.csv +4 -0
  454. teradataml/data/employee_table.csv +6 -0
  455. teradataml/data/excluding_event_table.csv +2 -0
  456. teradataml/data/finance_data.csv +6 -0
  457. teradataml/data/finance_data2.csv +61 -0
  458. teradataml/data/finance_data3.csv +93 -0
  459. teradataml/data/finance_data4.csv +13 -0
  460. teradataml/data/fish.csv +160 -0
  461. teradataml/data/fm_blood2ageandweight.csv +26 -0
  462. teradataml/data/fmeasure_example.json +12 -0
  463. teradataml/data/followers_leaders.csv +10 -0
  464. teradataml/data/fpgrowth_example.json +12 -0
  465. teradataml/data/frequentpaths_example.json +29 -0
  466. teradataml/data/friends.csv +9 -0
  467. teradataml/data/fs_input.csv +33 -0
  468. teradataml/data/fs_input1.csv +33 -0
  469. teradataml/data/genData.csv +513 -0
  470. teradataml/data/geodataframe_example.json +40 -0
  471. teradataml/data/glass_types.csv +215 -0
  472. teradataml/data/glm_admissions_model.csv +12 -0
  473. teradataml/data/glm_example.json +56 -0
  474. teradataml/data/glml1l2_example.json +28 -0
  475. teradataml/data/glml1l2predict_example.json +54 -0
  476. teradataml/data/glmpredict_example.json +54 -0
  477. teradataml/data/gq_t1.csv +21 -0
  478. teradataml/data/grocery_transaction.csv +19 -0
  479. teradataml/data/hconvolve_complex_right.csv +5 -0
  480. teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
  481. teradataml/data/histogram_example.json +12 -0
  482. teradataml/data/hmmdecoder_example.json +79 -0
  483. teradataml/data/hmmevaluator_example.json +25 -0
  484. teradataml/data/hmmsupervised_example.json +10 -0
  485. teradataml/data/hmmunsupervised_example.json +8 -0
  486. teradataml/data/hnsw_alter_data.csv +5 -0
  487. teradataml/data/hnsw_data.csv +10 -0
  488. teradataml/data/house_values.csv +12 -0
  489. teradataml/data/house_values2.csv +13 -0
  490. teradataml/data/housing_cat.csv +7 -0
  491. teradataml/data/housing_data.csv +9 -0
  492. teradataml/data/housing_test.csv +47 -0
  493. teradataml/data/housing_test_binary.csv +47 -0
  494. teradataml/data/housing_train.csv +493 -0
  495. teradataml/data/housing_train_attribute.csv +5 -0
  496. teradataml/data/housing_train_binary.csv +437 -0
  497. teradataml/data/housing_train_parameter.csv +2 -0
  498. teradataml/data/housing_train_response.csv +493 -0
  499. teradataml/data/housing_train_segment.csv +201 -0
  500. teradataml/data/ibm_stock.csv +370 -0
  501. teradataml/data/ibm_stock1.csv +370 -0
  502. teradataml/data/identitymatch_example.json +22 -0
  503. teradataml/data/idf_table.csv +4 -0
  504. teradataml/data/idwt2d_dataTable.csv +5 -0
  505. teradataml/data/idwt_dataTable.csv +8 -0
  506. teradataml/data/idwt_filterTable.csv +3 -0
  507. teradataml/data/impressions.csv +101 -0
  508. teradataml/data/inflation.csv +21 -0
  509. teradataml/data/initial.csv +3 -0
  510. teradataml/data/insect2Cols.csv +61 -0
  511. teradataml/data/insect_sprays.csv +13 -0
  512. teradataml/data/insurance.csv +1339 -0
  513. teradataml/data/interpolator_example.json +13 -0
  514. teradataml/data/interval_data.csv +5 -0
  515. teradataml/data/iris_altinput.csv +481 -0
  516. teradataml/data/iris_attribute_output.csv +8 -0
  517. teradataml/data/iris_attribute_test.csv +121 -0
  518. teradataml/data/iris_attribute_train.csv +481 -0
  519. teradataml/data/iris_category_expect_predict.csv +31 -0
  520. teradataml/data/iris_data.csv +151 -0
  521. teradataml/data/iris_input.csv +151 -0
  522. teradataml/data/iris_response_train.csv +121 -0
  523. teradataml/data/iris_test.csv +31 -0
  524. teradataml/data/iris_train.csv +121 -0
  525. teradataml/data/join_table1.csv +4 -0
  526. teradataml/data/join_table2.csv +4 -0
  527. teradataml/data/jsons/anly_function_name.json +7 -0
  528. teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
  529. teradataml/data/jsons/byom/dataikupredict.json +148 -0
  530. teradataml/data/jsons/byom/datarobotpredict.json +147 -0
  531. teradataml/data/jsons/byom/h2opredict.json +195 -0
  532. teradataml/data/jsons/byom/onnxembeddings.json +267 -0
  533. teradataml/data/jsons/byom/onnxpredict.json +187 -0
  534. teradataml/data/jsons/byom/pmmlpredict.json +147 -0
  535. teradataml/data/jsons/paired_functions.json +450 -0
  536. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
  537. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
  538. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
  539. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
  540. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
  541. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
  542. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
  543. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
  544. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
  545. teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
  546. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
  547. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
  548. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
  549. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
  550. teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
  551. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
  552. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
  553. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
  554. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
  555. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
  556. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
  557. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
  558. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
  559. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
  560. teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
  561. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
  562. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
  563. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
  564. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
  565. teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
  566. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
  567. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
  568. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
  569. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
  570. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
  571. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
  572. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
  573. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
  574. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
  575. teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
  576. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
  577. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
  578. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
  579. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
  580. teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
  581. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
  582. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
  583. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
  584. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
  585. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
  586. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
  587. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
  588. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
  589. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
  590. teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
  591. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
  592. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
  593. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
  594. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
  595. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
  596. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
  597. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
  598. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
  599. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
  600. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
  601. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
  602. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
  603. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
  604. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
  605. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
  606. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
  607. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
  608. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
  609. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
  610. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
  611. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
  612. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
  613. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
  614. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
  615. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
  616. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
  617. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
  618. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
  619. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
  620. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
  621. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
  622. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
  623. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
  624. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
  625. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
  626. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
  627. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
  628. teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
  629. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
  630. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
  631. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
  632. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
  633. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
  634. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
  635. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
  636. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
  637. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
  638. teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
  639. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
  640. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
  641. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
  642. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
  643. teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
  644. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
  645. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
  646. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  647. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
  648. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
  649. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
  650. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
  651. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
  652. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
  653. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
  654. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
  655. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
  656. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
  657. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
  658. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
  659. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
  660. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
  661. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
  662. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
  663. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
  664. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
  665. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
  666. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
  667. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
  668. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
  669. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
  670. teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
  671. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  672. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  673. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
  674. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
  675. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
  676. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
  677. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
  678. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
  679. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
  680. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
  681. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
  682. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
  683. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
  684. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
  685. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  686. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
  687. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
  688. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
  689. teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
  690. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
  691. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
  692. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
  693. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
  694. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
  695. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
  696. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
  697. teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
  698. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
  699. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
  700. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
  701. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
  702. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
  703. teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
  704. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
  705. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
  706. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
  707. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
  708. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  709. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
  710. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
  711. teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
  712. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
  713. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
  714. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
  715. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  716. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
  717. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
  718. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
  719. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
  720. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
  721. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
  722. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
  723. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
  724. teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
  725. teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
  726. teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
  727. teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
  728. teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
  729. teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
  730. teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
  731. teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
  732. teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
  733. teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
  734. teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
  735. teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
  736. teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
  737. teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
  738. teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
  739. teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
  740. teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
  741. teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
  742. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  743. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  744. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  745. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  746. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  747. teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
  748. teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
  749. teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
  750. teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
  751. teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
  752. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  753. teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
  754. teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
  755. teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
  756. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
  757. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
  758. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
  759. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  760. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  761. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
  762. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
  763. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
  764. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
  765. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
  766. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
  767. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
  768. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
  769. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
  770. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
  771. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
  772. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
  773. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
  774. teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
  775. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
  776. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  777. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  778. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
  779. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
  780. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
  781. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
  782. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
  783. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
  784. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
  785. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
  786. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  787. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  788. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
  789. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  790. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
  791. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
  792. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
  793. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  794. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
  795. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
  796. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
  797. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
  798. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
  799. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
  800. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
  801. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
  802. teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
  803. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
  804. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
  805. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
  806. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
  807. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
  808. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
  809. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
  810. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
  811. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
  812. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
  813. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
  814. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
  815. teradataml/data/kmeans_example.json +23 -0
  816. teradataml/data/kmeans_table.csv +10 -0
  817. teradataml/data/kmeans_us_arrests_data.csv +51 -0
  818. teradataml/data/knn_example.json +19 -0
  819. teradataml/data/knnrecommender_example.json +7 -0
  820. teradataml/data/knnrecommenderpredict_example.json +12 -0
  821. teradataml/data/lar_example.json +17 -0
  822. teradataml/data/larpredict_example.json +30 -0
  823. teradataml/data/lc_new_predictors.csv +5 -0
  824. teradataml/data/lc_new_reference.csv +9 -0
  825. teradataml/data/lda_example.json +9 -0
  826. teradataml/data/ldainference_example.json +15 -0
  827. teradataml/data/ldatopicsummary_example.json +9 -0
  828. teradataml/data/levendist_input.csv +13 -0
  829. teradataml/data/levenshteindistance_example.json +10 -0
  830. teradataml/data/linreg_example.json +10 -0
  831. teradataml/data/load_example_data.py +350 -0
  832. teradataml/data/loan_prediction.csv +295 -0
  833. teradataml/data/lungcancer.csv +138 -0
  834. teradataml/data/mappingdata.csv +12 -0
  835. teradataml/data/medical_readings.csv +101 -0
  836. teradataml/data/milk_timeseries.csv +157 -0
  837. teradataml/data/min_max_titanic.csv +4 -0
  838. teradataml/data/minhash_example.json +6 -0
  839. teradataml/data/ml_ratings.csv +7547 -0
  840. teradataml/data/ml_ratings_10.csv +2445 -0
  841. teradataml/data/mobile_data.csv +13 -0
  842. teradataml/data/model1_table.csv +5 -0
  843. teradataml/data/model2_table.csv +5 -0
  844. teradataml/data/models/License_file.txt +1 -0
  845. teradataml/data/models/License_file_empty.txt +0 -0
  846. teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
  847. teradataml/data/models/dr_iris_rf +0 -0
  848. teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
  849. teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
  850. teradataml/data/models/iris_db_glm_model.pmml +57 -0
  851. teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
  852. teradataml/data/models/iris_kmeans_model +0 -0
  853. teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
  854. teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
  855. teradataml/data/modularity_example.json +12 -0
  856. teradataml/data/movavg_example.json +8 -0
  857. teradataml/data/mtx1.csv +7 -0
  858. teradataml/data/mtx2.csv +13 -0
  859. teradataml/data/multi_model_classification.csv +401 -0
  860. teradataml/data/multi_model_regression.csv +401 -0
  861. teradataml/data/mvdfft8.csv +9 -0
  862. teradataml/data/naivebayes_example.json +10 -0
  863. teradataml/data/naivebayespredict_example.json +19 -0
  864. teradataml/data/naivebayestextclassifier2_example.json +7 -0
  865. teradataml/data/naivebayestextclassifier_example.json +8 -0
  866. teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
  867. teradataml/data/name_Find_configure.csv +10 -0
  868. teradataml/data/namedentityfinder_example.json +14 -0
  869. teradataml/data/namedentityfinderevaluator_example.json +10 -0
  870. teradataml/data/namedentityfindertrainer_example.json +6 -0
  871. teradataml/data/nb_iris_input_test.csv +31 -0
  872. teradataml/data/nb_iris_input_train.csv +121 -0
  873. teradataml/data/nbp_iris_model.csv +13 -0
  874. teradataml/data/ner_dict.csv +8 -0
  875. teradataml/data/ner_extractor_text.csv +2 -0
  876. teradataml/data/ner_input_eng.csv +7 -0
  877. teradataml/data/ner_rule.csv +5 -0
  878. teradataml/data/ner_sports_test2.csv +29 -0
  879. teradataml/data/ner_sports_train.csv +501 -0
  880. teradataml/data/nerevaluator_example.json +6 -0
  881. teradataml/data/nerextractor_example.json +18 -0
  882. teradataml/data/nermem_sports_test.csv +18 -0
  883. teradataml/data/nermem_sports_train.csv +51 -0
  884. teradataml/data/nertrainer_example.json +7 -0
  885. teradataml/data/ngrams_example.json +7 -0
  886. teradataml/data/notebooks/__init__.py +0 -0
  887. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
  888. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
  889. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
  890. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
  891. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
  892. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
  893. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
  894. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
  895. teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
  896. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
  897. teradataml/data/npath_example.json +23 -0
  898. teradataml/data/ntree_example.json +14 -0
  899. teradataml/data/numeric_strings.csv +5 -0
  900. teradataml/data/numerics.csv +4 -0
  901. teradataml/data/ocean_buoy.csv +17 -0
  902. teradataml/data/ocean_buoy2.csv +17 -0
  903. teradataml/data/ocean_buoys.csv +28 -0
  904. teradataml/data/ocean_buoys2.csv +10 -0
  905. teradataml/data/ocean_buoys_nonpti.csv +28 -0
  906. teradataml/data/ocean_buoys_seq.csv +29 -0
  907. teradataml/data/onehot_encoder_train.csv +4 -0
  908. teradataml/data/openml_example.json +92 -0
  909. teradataml/data/optional_event_table.csv +4 -0
  910. teradataml/data/orders1.csv +11 -0
  911. teradataml/data/orders1_12.csv +13 -0
  912. teradataml/data/orders_ex.csv +4 -0
  913. teradataml/data/pack_example.json +9 -0
  914. teradataml/data/package_tracking.csv +19 -0
  915. teradataml/data/package_tracking_pti.csv +19 -0
  916. teradataml/data/pagerank_example.json +13 -0
  917. teradataml/data/paragraphs_input.csv +6 -0
  918. teradataml/data/pathanalyzer_example.json +8 -0
  919. teradataml/data/pathgenerator_example.json +8 -0
  920. teradataml/data/patient_profile.csv +101 -0
  921. teradataml/data/pattern_matching_data.csv +11 -0
  922. teradataml/data/payment_fraud_dataset.csv +10001 -0
  923. teradataml/data/peppers.png +0 -0
  924. teradataml/data/phrases.csv +7 -0
  925. teradataml/data/pivot_example.json +9 -0
  926. teradataml/data/pivot_input.csv +22 -0
  927. teradataml/data/playerRating.csv +31 -0
  928. teradataml/data/pos_input.csv +40 -0
  929. teradataml/data/postagger_example.json +7 -0
  930. teradataml/data/posttagger_output.csv +44 -0
  931. teradataml/data/production_data.csv +17 -0
  932. teradataml/data/production_data2.csv +7 -0
  933. teradataml/data/randomsample_example.json +32 -0
  934. teradataml/data/randomwalksample_example.json +9 -0
  935. teradataml/data/rank_table.csv +6 -0
  936. teradataml/data/real_values.csv +14 -0
  937. teradataml/data/ref_mobile_data.csv +4 -0
  938. teradataml/data/ref_mobile_data_dense.csv +2 -0
  939. teradataml/data/ref_url.csv +17 -0
  940. teradataml/data/restaurant_reviews.csv +7 -0
  941. teradataml/data/retail_churn_table.csv +27772 -0
  942. teradataml/data/river_data.csv +145 -0
  943. teradataml/data/roc_example.json +8 -0
  944. teradataml/data/roc_input.csv +101 -0
  945. teradataml/data/rule_inputs.csv +6 -0
  946. teradataml/data/rule_table.csv +2 -0
  947. teradataml/data/sales.csv +7 -0
  948. teradataml/data/sales_transaction.csv +501 -0
  949. teradataml/data/salesdata.csv +342 -0
  950. teradataml/data/sample_cities.csv +3 -0
  951. teradataml/data/sample_shapes.csv +11 -0
  952. teradataml/data/sample_streets.csv +3 -0
  953. teradataml/data/sampling_example.json +16 -0
  954. teradataml/data/sax_example.json +17 -0
  955. teradataml/data/scale_attributes.csv +3 -0
  956. teradataml/data/scale_example.json +74 -0
  957. teradataml/data/scale_housing.csv +11 -0
  958. teradataml/data/scale_housing_test.csv +6 -0
  959. teradataml/data/scale_input_part_sparse.csv +31 -0
  960. teradataml/data/scale_input_partitioned.csv +16 -0
  961. teradataml/data/scale_input_sparse.csv +11 -0
  962. teradataml/data/scale_parameters.csv +3 -0
  963. teradataml/data/scale_stat.csv +11 -0
  964. teradataml/data/scalebypartition_example.json +13 -0
  965. teradataml/data/scalemap_example.json +13 -0
  966. teradataml/data/scalesummary_example.json +12 -0
  967. teradataml/data/score_category.csv +101 -0
  968. teradataml/data/score_summary.csv +4 -0
  969. teradataml/data/script_example.json +10 -0
  970. teradataml/data/scripts/deploy_script.py +84 -0
  971. teradataml/data/scripts/lightgbm/dataset.template +175 -0
  972. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
  973. teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
  974. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
  975. teradataml/data/scripts/mapper.R +20 -0
  976. teradataml/data/scripts/mapper.py +16 -0
  977. teradataml/data/scripts/mapper_replace.py +16 -0
  978. teradataml/data/scripts/sklearn/__init__.py +0 -0
  979. teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
  980. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
  981. teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
  982. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
  983. teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
  984. teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
  985. teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
  986. teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
  987. teradataml/data/seeds.csv +10 -0
  988. teradataml/data/sentenceextractor_example.json +7 -0
  989. teradataml/data/sentiment_extract_input.csv +11 -0
  990. teradataml/data/sentiment_train.csv +16 -0
  991. teradataml/data/sentiment_word.csv +20 -0
  992. teradataml/data/sentiment_word_input.csv +20 -0
  993. teradataml/data/sentimentextractor_example.json +24 -0
  994. teradataml/data/sentimenttrainer_example.json +8 -0
  995. teradataml/data/sequence_table.csv +10 -0
  996. teradataml/data/seriessplitter_example.json +8 -0
  997. teradataml/data/sessionize_example.json +17 -0
  998. teradataml/data/sessionize_table.csv +116 -0
  999. teradataml/data/setop_test1.csv +24 -0
  1000. teradataml/data/setop_test2.csv +22 -0
  1001. teradataml/data/soc_nw_edges.csv +11 -0
  1002. teradataml/data/soc_nw_vertices.csv +8 -0
  1003. teradataml/data/souvenir_timeseries.csv +168 -0
  1004. teradataml/data/sparse_iris_attribute.csv +5 -0
  1005. teradataml/data/sparse_iris_test.csv +121 -0
  1006. teradataml/data/sparse_iris_train.csv +601 -0
  1007. teradataml/data/star1.csv +6 -0
  1008. teradataml/data/star_pivot.csv +8 -0
  1009. teradataml/data/state_transition.csv +5 -0
  1010. teradataml/data/stock_data.csv +53 -0
  1011. teradataml/data/stock_movement.csv +11 -0
  1012. teradataml/data/stock_vol.csv +76 -0
  1013. teradataml/data/stop_words.csv +8 -0
  1014. teradataml/data/store_sales.csv +37 -0
  1015. teradataml/data/stringsimilarity_example.json +8 -0
  1016. teradataml/data/strsimilarity_input.csv +13 -0
  1017. teradataml/data/students.csv +101 -0
  1018. teradataml/data/svm_iris_input_test.csv +121 -0
  1019. teradataml/data/svm_iris_input_train.csv +481 -0
  1020. teradataml/data/svm_iris_model.csv +7 -0
  1021. teradataml/data/svmdense_example.json +10 -0
  1022. teradataml/data/svmdensepredict_example.json +19 -0
  1023. teradataml/data/svmsparse_example.json +8 -0
  1024. teradataml/data/svmsparsepredict_example.json +14 -0
  1025. teradataml/data/svmsparsesummary_example.json +8 -0
  1026. teradataml/data/target_mobile_data.csv +13 -0
  1027. teradataml/data/target_mobile_data_dense.csv +5 -0
  1028. teradataml/data/target_udt_data.csv +8 -0
  1029. teradataml/data/tdnerextractor_example.json +14 -0
  1030. teradataml/data/templatedata.csv +1201 -0
  1031. teradataml/data/templates/open_source_ml.json +11 -0
  1032. teradataml/data/teradata_icon.ico +0 -0
  1033. teradataml/data/teradataml_example.json +1473 -0
  1034. teradataml/data/test_classification.csv +101 -0
  1035. teradataml/data/test_loan_prediction.csv +53 -0
  1036. teradataml/data/test_pacf_12.csv +37 -0
  1037. teradataml/data/test_prediction.csv +101 -0
  1038. teradataml/data/test_regression.csv +101 -0
  1039. teradataml/data/test_river2.csv +109 -0
  1040. teradataml/data/text_inputs.csv +6 -0
  1041. teradataml/data/textchunker_example.json +8 -0
  1042. teradataml/data/textclassifier_example.json +7 -0
  1043. teradataml/data/textclassifier_input.csv +7 -0
  1044. teradataml/data/textclassifiertrainer_example.json +7 -0
  1045. teradataml/data/textmorph_example.json +11 -0
  1046. teradataml/data/textparser_example.json +15 -0
  1047. teradataml/data/texttagger_example.json +12 -0
  1048. teradataml/data/texttokenizer_example.json +7 -0
  1049. teradataml/data/texttrainer_input.csv +11 -0
  1050. teradataml/data/tf_example.json +7 -0
  1051. teradataml/data/tfidf_example.json +14 -0
  1052. teradataml/data/tfidf_input1.csv +201 -0
  1053. teradataml/data/tfidf_train.csv +6 -0
  1054. teradataml/data/time_table1.csv +535 -0
  1055. teradataml/data/time_table2.csv +14 -0
  1056. teradataml/data/timeseriesdata.csv +1601 -0
  1057. teradataml/data/timeseriesdatasetsd4.csv +105 -0
  1058. teradataml/data/timestamp_data.csv +4 -0
  1059. teradataml/data/titanic.csv +892 -0
  1060. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  1061. teradataml/data/to_num_data.csv +4 -0
  1062. teradataml/data/tochar_data.csv +5 -0
  1063. teradataml/data/token_table.csv +696 -0
  1064. teradataml/data/train_multiclass.csv +101 -0
  1065. teradataml/data/train_regression.csv +101 -0
  1066. teradataml/data/train_regression_multiple_labels.csv +101 -0
  1067. teradataml/data/train_tracking.csv +28 -0
  1068. teradataml/data/trans_dense.csv +16 -0
  1069. teradataml/data/trans_sparse.csv +55 -0
  1070. teradataml/data/transformation_table.csv +6 -0
  1071. teradataml/data/transformation_table_new.csv +2 -0
  1072. teradataml/data/tv_spots.csv +16 -0
  1073. teradataml/data/twod_climate_data.csv +117 -0
  1074. teradataml/data/uaf_example.json +529 -0
  1075. teradataml/data/univariatestatistics_example.json +9 -0
  1076. teradataml/data/unpack_example.json +10 -0
  1077. teradataml/data/unpivot_example.json +25 -0
  1078. teradataml/data/unpivot_input.csv +8 -0
  1079. teradataml/data/url_data.csv +10 -0
  1080. teradataml/data/us_air_pass.csv +37 -0
  1081. teradataml/data/us_population.csv +624 -0
  1082. teradataml/data/us_states_shapes.csv +52 -0
  1083. teradataml/data/varmax_example.json +18 -0
  1084. teradataml/data/vectordistance_example.json +30 -0
  1085. teradataml/data/ville_climatedata.csv +121 -0
  1086. teradataml/data/ville_tempdata.csv +12 -0
  1087. teradataml/data/ville_tempdata1.csv +12 -0
  1088. teradataml/data/ville_temperature.csv +11 -0
  1089. teradataml/data/waveletTable.csv +1605 -0
  1090. teradataml/data/waveletTable2.csv +1605 -0
  1091. teradataml/data/weightedmovavg_example.json +9 -0
  1092. teradataml/data/wft_testing.csv +5 -0
  1093. teradataml/data/windowdfft.csv +16 -0
  1094. teradataml/data/wine_data.csv +1600 -0
  1095. teradataml/data/word_embed_input_table1.csv +6 -0
  1096. teradataml/data/word_embed_input_table2.csv +5 -0
  1097. teradataml/data/word_embed_model.csv +23 -0
  1098. teradataml/data/words_input.csv +13 -0
  1099. teradataml/data/xconvolve_complex_left.csv +6 -0
  1100. teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
  1101. teradataml/data/xgboost_example.json +36 -0
  1102. teradataml/data/xgboostpredict_example.json +32 -0
  1103. teradataml/data/ztest_example.json +16 -0
  1104. teradataml/dataframe/__init__.py +0 -0
  1105. teradataml/dataframe/copy_to.py +2446 -0
  1106. teradataml/dataframe/data_transfer.py +2840 -0
  1107. teradataml/dataframe/dataframe.py +20908 -0
  1108. teradataml/dataframe/dataframe_utils.py +2114 -0
  1109. teradataml/dataframe/fastload.py +794 -0
  1110. teradataml/dataframe/functions.py +2110 -0
  1111. teradataml/dataframe/indexer.py +424 -0
  1112. teradataml/dataframe/row.py +160 -0
  1113. teradataml/dataframe/setop.py +1171 -0
  1114. teradataml/dataframe/sql.py +10904 -0
  1115. teradataml/dataframe/sql_function_parameters.py +440 -0
  1116. teradataml/dataframe/sql_functions.py +652 -0
  1117. teradataml/dataframe/sql_interfaces.py +220 -0
  1118. teradataml/dataframe/vantage_function_types.py +675 -0
  1119. teradataml/dataframe/window.py +694 -0
  1120. teradataml/dbutils/__init__.py +3 -0
  1121. teradataml/dbutils/dbutils.py +2871 -0
  1122. teradataml/dbutils/filemgr.py +318 -0
  1123. teradataml/gen_ai/__init__.py +2 -0
  1124. teradataml/gen_ai/convAI.py +473 -0
  1125. teradataml/geospatial/__init__.py +4 -0
  1126. teradataml/geospatial/geodataframe.py +1105 -0
  1127. teradataml/geospatial/geodataframecolumn.py +392 -0
  1128. teradataml/geospatial/geometry_types.py +926 -0
  1129. teradataml/hyperparameter_tuner/__init__.py +1 -0
  1130. teradataml/hyperparameter_tuner/optimizer.py +4115 -0
  1131. teradataml/hyperparameter_tuner/utils.py +303 -0
  1132. teradataml/lib/__init__.py +0 -0
  1133. teradataml/lib/aed_0_1.dll +0 -0
  1134. teradataml/lib/libaed_0_1.dylib +0 -0
  1135. teradataml/lib/libaed_0_1.so +0 -0
  1136. teradataml/lib/libaed_0_1_aarch64.so +0 -0
  1137. teradataml/lib/libaed_0_1_ppc64le.so +0 -0
  1138. teradataml/opensource/__init__.py +1 -0
  1139. teradataml/opensource/_base.py +1321 -0
  1140. teradataml/opensource/_class.py +464 -0
  1141. teradataml/opensource/_constants.py +61 -0
  1142. teradataml/opensource/_lightgbm.py +949 -0
  1143. teradataml/opensource/_sklearn.py +1008 -0
  1144. teradataml/opensource/_wrapper_utils.py +267 -0
  1145. teradataml/options/__init__.py +148 -0
  1146. teradataml/options/configure.py +489 -0
  1147. teradataml/options/display.py +187 -0
  1148. teradataml/plot/__init__.py +3 -0
  1149. teradataml/plot/axis.py +1427 -0
  1150. teradataml/plot/constants.py +15 -0
  1151. teradataml/plot/figure.py +431 -0
  1152. teradataml/plot/plot.py +810 -0
  1153. teradataml/plot/query_generator.py +83 -0
  1154. teradataml/plot/subplot.py +216 -0
  1155. teradataml/scriptmgmt/UserEnv.py +4273 -0
  1156. teradataml/scriptmgmt/__init__.py +3 -0
  1157. teradataml/scriptmgmt/lls_utils.py +2157 -0
  1158. teradataml/sdk/README.md +79 -0
  1159. teradataml/sdk/__init__.py +4 -0
  1160. teradataml/sdk/_auth_modes.py +422 -0
  1161. teradataml/sdk/_func_params.py +487 -0
  1162. teradataml/sdk/_json_parser.py +453 -0
  1163. teradataml/sdk/_openapi_spec_constants.py +249 -0
  1164. teradataml/sdk/_utils.py +236 -0
  1165. teradataml/sdk/api_client.py +900 -0
  1166. teradataml/sdk/constants.py +62 -0
  1167. teradataml/sdk/modelops/__init__.py +98 -0
  1168. teradataml/sdk/modelops/_client.py +409 -0
  1169. teradataml/sdk/modelops/_constants.py +304 -0
  1170. teradataml/sdk/modelops/models.py +2308 -0
  1171. teradataml/sdk/spinner.py +107 -0
  1172. teradataml/series/__init__.py +0 -0
  1173. teradataml/series/series.py +537 -0
  1174. teradataml/series/series_utils.py +71 -0
  1175. teradataml/store/__init__.py +12 -0
  1176. teradataml/store/feature_store/__init__.py +0 -0
  1177. teradataml/store/feature_store/constants.py +658 -0
  1178. teradataml/store/feature_store/feature_store.py +4814 -0
  1179. teradataml/store/feature_store/mind_map.py +639 -0
  1180. teradataml/store/feature_store/models.py +7330 -0
  1181. teradataml/store/feature_store/utils.py +390 -0
  1182. teradataml/table_operators/Apply.py +979 -0
  1183. teradataml/table_operators/Script.py +1739 -0
  1184. teradataml/table_operators/TableOperator.py +1343 -0
  1185. teradataml/table_operators/__init__.py +2 -0
  1186. teradataml/table_operators/apply_query_generator.py +262 -0
  1187. teradataml/table_operators/query_generator.py +493 -0
  1188. teradataml/table_operators/table_operator_query_generator.py +462 -0
  1189. teradataml/table_operators/table_operator_util.py +726 -0
  1190. teradataml/table_operators/templates/dataframe_apply.template +184 -0
  1191. teradataml/table_operators/templates/dataframe_map.template +176 -0
  1192. teradataml/table_operators/templates/dataframe_register.template +73 -0
  1193. teradataml/table_operators/templates/dataframe_udf.template +67 -0
  1194. teradataml/table_operators/templates/script_executor.template +170 -0
  1195. teradataml/telemetry_utils/__init__.py +0 -0
  1196. teradataml/telemetry_utils/queryband.py +53 -0
  1197. teradataml/utils/__init__.py +0 -0
  1198. teradataml/utils/docstring.py +527 -0
  1199. teradataml/utils/dtypes.py +943 -0
  1200. teradataml/utils/internal_buffer.py +122 -0
  1201. teradataml/utils/print_versions.py +206 -0
  1202. teradataml/utils/utils.py +451 -0
  1203. teradataml/utils/validators.py +3305 -0
  1204. teradataml-20.0.0.8.dist-info/METADATA +2804 -0
  1205. teradataml-20.0.0.8.dist-info/RECORD +1208 -0
  1206. teradataml-20.0.0.8.dist-info/WHEEL +5 -0
  1207. teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
  1208. teradataml-20.0.0.8.dist-info/zip-safe +1 -0
@@ -0,0 +1,4471 @@
1
+ <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2
+ <PMML xmlns="http://www.dmg.org/PMML-4_4" xmlns:data="http://jpmml.org/jpmml-model/InlineTable" version="4.4">
3
+ <Header>
4
+ <Application name="JPMML-SkLearn" version="1.6.5"/>
5
+ <Timestamp>2020-10-21T17:13:13Z</Timestamp>
6
+ </Header>
7
+ <MiningBuildTask>
8
+ <Extension>PMMLPipeline(steps=[('classifier', XGBClassifier(base_score=0.5, booster=None, colsample_bylevel=1,
9
+ colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,
10
+ importance_type='gain', interaction_constraints=None,
11
+ learning_rate=0.300000012, max_delta_step=0, max_depth=6,
12
+ min_child_weight=1, missing=nan, monotone_constraints=None,
13
+ n_estimators=100, n_jobs=0, num_parallel_tree=1,
14
+ objective='multi:softprob', random_state=0, reg_alpha=0,
15
+ reg_lambda=1, scale_pos_weight=None, subsample=1,
16
+ tree_method=None, validate_parameters=False, verbosity=None))])</Extension>
17
+ </MiningBuildTask>
18
+ <DataDictionary>
19
+ <DataField name="y" optype="categorical" dataType="integer">
20
+ <Value value="1"/>
21
+ <Value value="2"/>
22
+ <Value value="3"/>
23
+ </DataField>
24
+ <DataField name="sepal_length" optype="continuous" dataType="float"/>
25
+ <DataField name="sepal_width" optype="continuous" dataType="float"/>
26
+ <DataField name="petal_length" optype="continuous" dataType="float"/>
27
+ <DataField name="petal_width" optype="continuous" dataType="float"/>
28
+ </DataDictionary>
29
+ <MiningModel functionName="classification" algorithmName="XGBoost (GBTree)" x-mathContext="float">
30
+ <MiningSchema>
31
+ <MiningField name="y" usageType="target"/>
32
+ <MiningField name="sepal_length"/>
33
+ <MiningField name="sepal_width"/>
34
+ <MiningField name="petal_length"/>
35
+ <MiningField name="petal_width"/>
36
+ </MiningSchema>
37
+ <Segmentation multipleModelMethod="modelChain" missingPredictionTreatment="returnMissing">
38
+ <Segment id="1">
39
+ <True/>
40
+ <MiningModel functionName="regression" x-mathContext="float">
41
+ <MiningSchema>
42
+ <MiningField name="petal_length"/>
43
+ </MiningSchema>
44
+ <Output>
45
+ <OutputField name="xgbValue(1)" optype="continuous" dataType="float" isFinalResult="false"/>
46
+ </Output>
47
+ <Targets>
48
+ <Target rescaleConstant="0.5"/>
49
+ </Targets>
50
+ <Segmentation multipleModelMethod="sum">
51
+ <Segment id="1">
52
+ <True/>
53
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
54
+ <MiningSchema>
55
+ <MiningField name="petal_length"/>
56
+ </MiningSchema>
57
+ <Node score="0.42603552">
58
+ <True/>
59
+ <Node score="-0.21884502">
60
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
61
+ </Node>
62
+ </Node>
63
+ </TreeModel>
64
+ </Segment>
65
+ <Segment id="2">
66
+ <True/>
67
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
68
+ <MiningSchema>
69
+ <MiningField name="petal_length"/>
70
+ </MiningSchema>
71
+ <Node score="0.2932374">
72
+ <True/>
73
+ <Node score="-0.19578768">
74
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
75
+ </Node>
76
+ </Node>
77
+ </TreeModel>
78
+ </Segment>
79
+ <Segment id="3">
80
+ <True/>
81
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
82
+ <MiningSchema>
83
+ <MiningField name="petal_length"/>
84
+ </MiningSchema>
85
+ <Node score="0.23486565">
86
+ <True/>
87
+ <Node score="-0.18016353">
88
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
89
+ </Node>
90
+ </Node>
91
+ </TreeModel>
92
+ </Segment>
93
+ <Segment id="4">
94
+ <True/>
95
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
96
+ <MiningSchema>
97
+ <MiningField name="petal_length"/>
98
+ </MiningSchema>
99
+ <Node score="0.20236066">
100
+ <True/>
101
+ <Node score="-0.16910432">
102
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
103
+ </Node>
104
+ </Node>
105
+ </TreeModel>
106
+ </Segment>
107
+ <Segment id="5">
108
+ <True/>
109
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
110
+ <MiningSchema>
111
+ <MiningField name="petal_length"/>
112
+ </MiningSchema>
113
+ <Node score="0.18175341">
114
+ <True/>
115
+ <Node score="-0.16075504">
116
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
117
+ </Node>
118
+ </Node>
119
+ </TreeModel>
120
+ </Segment>
121
+ <Segment id="6">
122
+ <True/>
123
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
124
+ <MiningSchema>
125
+ <MiningField name="petal_length"/>
126
+ </MiningSchema>
127
+ <Node score="0.16736233">
128
+ <True/>
129
+ <Node score="-0.15397872">
130
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
131
+ </Node>
132
+ </Node>
133
+ </TreeModel>
134
+ </Segment>
135
+ <Segment id="7">
136
+ <True/>
137
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
138
+ <MiningSchema>
139
+ <MiningField name="petal_length"/>
140
+ </MiningSchema>
141
+ <Node score="0.15644188">
142
+ <True/>
143
+ <Node score="-0.14799415">
144
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
145
+ </Node>
146
+ </Node>
147
+ </TreeModel>
148
+ </Segment>
149
+ <Segment id="8">
150
+ <True/>
151
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
152
+ <MiningSchema>
153
+ <MiningField name="petal_length"/>
154
+ </MiningSchema>
155
+ <Node score="0.14740907">
156
+ <True/>
157
+ <Node score="-0.14257559">
158
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
159
+ </Node>
160
+ </Node>
161
+ </TreeModel>
162
+ </Segment>
163
+ <Segment id="9">
164
+ <True/>
165
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
166
+ <MiningSchema>
167
+ <MiningField name="petal_length"/>
168
+ </MiningSchema>
169
+ <Node score="0.13940626">
170
+ <True/>
171
+ <Node score="-0.13711298">
172
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
173
+ </Node>
174
+ </Node>
175
+ </TreeModel>
176
+ </Segment>
177
+ <Segment id="10">
178
+ <True/>
179
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
180
+ <MiningSchema>
181
+ <MiningField name="petal_length"/>
182
+ </MiningSchema>
183
+ <Node score="0.13188724">
184
+ <True/>
185
+ <Node score="-0.13144246">
186
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
187
+ </Node>
188
+ </Node>
189
+ </TreeModel>
190
+ </Segment>
191
+ <Segment id="11">
192
+ <True/>
193
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
194
+ <MiningSchema>
195
+ <MiningField name="petal_length"/>
196
+ </MiningSchema>
197
+ <Node score="0.12458343">
198
+ <True/>
199
+ <Node score="-0.1256162">
200
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
201
+ </Node>
202
+ </Node>
203
+ </TreeModel>
204
+ </Segment>
205
+ <Segment id="12">
206
+ <True/>
207
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
208
+ <MiningSchema>
209
+ <MiningField name="petal_length"/>
210
+ </MiningSchema>
211
+ <Node score="0.11725016">
212
+ <True/>
213
+ <Node score="-0.12010882">
214
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
215
+ </Node>
216
+ </Node>
217
+ </TreeModel>
218
+ </Segment>
219
+ <Segment id="13">
220
+ <True/>
221
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
222
+ <MiningSchema>
223
+ <MiningField name="petal_length"/>
224
+ </MiningSchema>
225
+ <Node score="0.110020004">
226
+ <True/>
227
+ <Node score="-0.11411184">
228
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
229
+ </Node>
230
+ </Node>
231
+ </TreeModel>
232
+ </Segment>
233
+ <Segment id="14">
234
+ <True/>
235
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
236
+ <MiningSchema>
237
+ <MiningField name="petal_length"/>
238
+ </MiningSchema>
239
+ <Node score="0.10292529">
240
+ <True/>
241
+ <Node score="-0.108088434">
242
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
243
+ </Node>
244
+ </Node>
245
+ </TreeModel>
246
+ </Segment>
247
+ <Segment id="15">
248
+ <True/>
249
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
250
+ <MiningSchema>
251
+ <MiningField name="petal_length"/>
252
+ </MiningSchema>
253
+ <Node score="0.09602936">
254
+ <True/>
255
+ <Node score="-0.10185162">
256
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
257
+ </Node>
258
+ </Node>
259
+ </TreeModel>
260
+ </Segment>
261
+ <Segment id="16">
262
+ <True/>
263
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
264
+ <MiningSchema>
265
+ <MiningField name="petal_length"/>
266
+ </MiningSchema>
267
+ <Node score="0.08981607">
268
+ <True/>
269
+ <Node score="-0.0960599">
270
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
271
+ </Node>
272
+ </Node>
273
+ </TreeModel>
274
+ </Segment>
275
+ <Segment id="17">
276
+ <True/>
277
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
278
+ <MiningSchema>
279
+ <MiningField name="petal_length"/>
280
+ </MiningSchema>
281
+ <Node score="0.08418785">
282
+ <True/>
283
+ <Node score="-0.09083518">
284
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
285
+ </Node>
286
+ </Node>
287
+ </TreeModel>
288
+ </Segment>
289
+ <Segment id="18">
290
+ <True/>
291
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
292
+ <MiningSchema>
293
+ <MiningField name="petal_length"/>
294
+ </MiningSchema>
295
+ <Node score="0.078619525">
296
+ <True/>
297
+ <Node score="-0.08541434">
298
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
299
+ </Node>
300
+ </Node>
301
+ </TreeModel>
302
+ </Segment>
303
+ <Segment id="19">
304
+ <True/>
305
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
306
+ <MiningSchema>
307
+ <MiningField name="petal_length"/>
308
+ </MiningSchema>
309
+ <Node score="0.06457653">
310
+ <True/>
311
+ <Node score="-0.078457646">
312
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="3.4"/>
313
+ </Node>
314
+ </Node>
315
+ </TreeModel>
316
+ </Segment>
317
+ <Segment id="20">
318
+ <True/>
319
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
320
+ <MiningSchema/>
321
+ <Node score="-0.0120015545">
322
+ <True/>
323
+ </Node>
324
+ </TreeModel>
325
+ </Segment>
326
+ <Segment id="21">
327
+ <True/>
328
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
329
+ <MiningSchema/>
330
+ <Node score="-0.011719066">
331
+ <True/>
332
+ </Node>
333
+ </TreeModel>
334
+ </Segment>
335
+ <Segment id="22">
336
+ <True/>
337
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
338
+ <MiningSchema/>
339
+ <Node score="-0.01210609">
340
+ <True/>
341
+ </Node>
342
+ </TreeModel>
343
+ </Segment>
344
+ <Segment id="23">
345
+ <True/>
346
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
347
+ <MiningSchema/>
348
+ <Node score="-0.011120981">
349
+ <True/>
350
+ </Node>
351
+ </TreeModel>
352
+ </Segment>
353
+ <Segment id="24">
354
+ <True/>
355
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
356
+ <MiningSchema/>
357
+ <Node score="-0.011008285">
358
+ <True/>
359
+ </Node>
360
+ </TreeModel>
361
+ </Segment>
362
+ <Segment id="25">
363
+ <True/>
364
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
365
+ <MiningSchema/>
366
+ <Node score="-0.008258023">
367
+ <True/>
368
+ </Node>
369
+ </TreeModel>
370
+ </Segment>
371
+ <Segment id="26">
372
+ <True/>
373
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
374
+ <MiningSchema/>
375
+ <Node score="-0.009007601">
376
+ <True/>
377
+ </Node>
378
+ </TreeModel>
379
+ </Segment>
380
+ <Segment id="27">
381
+ <True/>
382
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
383
+ <MiningSchema/>
384
+ <Node score="-0.009052471">
385
+ <True/>
386
+ </Node>
387
+ </TreeModel>
388
+ </Segment>
389
+ <Segment id="28">
390
+ <True/>
391
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
392
+ <MiningSchema/>
393
+ <Node score="-0.0074751847">
394
+ <True/>
395
+ </Node>
396
+ </TreeModel>
397
+ </Segment>
398
+ <Segment id="29">
399
+ <True/>
400
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
401
+ <MiningSchema/>
402
+ <Node score="-0.008120049">
403
+ <True/>
404
+ </Node>
405
+ </TreeModel>
406
+ </Segment>
407
+ <Segment id="30">
408
+ <True/>
409
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
410
+ <MiningSchema/>
411
+ <Node score="-0.008691555">
412
+ <True/>
413
+ </Node>
414
+ </TreeModel>
415
+ </Segment>
416
+ <Segment id="31">
417
+ <True/>
418
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
419
+ <MiningSchema/>
420
+ <Node score="-0.009149573">
421
+ <True/>
422
+ </Node>
423
+ </TreeModel>
424
+ </Segment>
425
+ <Segment id="32">
426
+ <True/>
427
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
428
+ <MiningSchema/>
429
+ <Node score="-0.009539397">
430
+ <True/>
431
+ </Node>
432
+ </TreeModel>
433
+ </Segment>
434
+ <Segment id="33">
435
+ <True/>
436
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
437
+ <MiningSchema/>
438
+ <Node score="-0.009452953">
439
+ <True/>
440
+ </Node>
441
+ </TreeModel>
442
+ </Segment>
443
+ <Segment id="34">
444
+ <True/>
445
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
446
+ <MiningSchema/>
447
+ <Node score="-0.008305124">
448
+ <True/>
449
+ </Node>
450
+ </TreeModel>
451
+ </Segment>
452
+ <Segment id="35">
453
+ <True/>
454
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
455
+ <MiningSchema/>
456
+ <Node score="-0.0088363">
457
+ <True/>
458
+ </Node>
459
+ </TreeModel>
460
+ </Segment>
461
+ <Segment id="36">
462
+ <True/>
463
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
464
+ <MiningSchema/>
465
+ <Node score="-0.009274257">
466
+ <True/>
467
+ </Node>
468
+ </TreeModel>
469
+ </Segment>
470
+ <Segment id="37">
471
+ <True/>
472
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
473
+ <MiningSchema/>
474
+ <Node score="-0.009351233">
475
+ <True/>
476
+ </Node>
477
+ </TreeModel>
478
+ </Segment>
479
+ <Segment id="38">
480
+ <True/>
481
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
482
+ <MiningSchema/>
483
+ <Node score="-0.009374376">
484
+ <True/>
485
+ </Node>
486
+ </TreeModel>
487
+ </Segment>
488
+ <Segment id="39">
489
+ <True/>
490
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
491
+ <MiningSchema/>
492
+ <Node score="-0.009815114">
493
+ <True/>
494
+ </Node>
495
+ </TreeModel>
496
+ </Segment>
497
+ <Segment id="40">
498
+ <True/>
499
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
500
+ <MiningSchema/>
501
+ <Node score="-0.009750474">
502
+ <True/>
503
+ </Node>
504
+ </TreeModel>
505
+ </Segment>
506
+ <Segment id="41">
507
+ <True/>
508
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
509
+ <MiningSchema/>
510
+ <Node score="-0.009497592">
511
+ <True/>
512
+ </Node>
513
+ </TreeModel>
514
+ </Segment>
515
+ <Segment id="42">
516
+ <True/>
517
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
518
+ <MiningSchema/>
519
+ <Node score="-0.009943621">
520
+ <True/>
521
+ </Node>
522
+ </TreeModel>
523
+ </Segment>
524
+ <Segment id="43">
525
+ <True/>
526
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
527
+ <MiningSchema/>
528
+ <Node score="-0.0103094885">
529
+ <True/>
530
+ </Node>
531
+ </TreeModel>
532
+ </Segment>
533
+ <Segment id="44">
534
+ <True/>
535
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
536
+ <MiningSchema/>
537
+ <Node score="-0.010453302">
538
+ <True/>
539
+ </Node>
540
+ </TreeModel>
541
+ </Segment>
542
+ <Segment id="45">
543
+ <True/>
544
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
545
+ <MiningSchema/>
546
+ <Node score="-0.010706248">
547
+ <True/>
548
+ </Node>
549
+ </TreeModel>
550
+ </Segment>
551
+ <Segment id="46">
552
+ <True/>
553
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
554
+ <MiningSchema/>
555
+ <Node score="-0.010823816">
556
+ <True/>
557
+ </Node>
558
+ </TreeModel>
559
+ </Segment>
560
+ <Segment id="47">
561
+ <True/>
562
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
563
+ <MiningSchema/>
564
+ <Node score="-0.010961487">
565
+ <True/>
566
+ </Node>
567
+ </TreeModel>
568
+ </Segment>
569
+ <Segment id="48">
570
+ <True/>
571
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
572
+ <MiningSchema/>
573
+ <Node score="-0.01085987">
574
+ <True/>
575
+ </Node>
576
+ </TreeModel>
577
+ </Segment>
578
+ <Segment id="49">
579
+ <True/>
580
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
581
+ <MiningSchema/>
582
+ <Node score="-0.0109185185">
583
+ <True/>
584
+ </Node>
585
+ </TreeModel>
586
+ </Segment>
587
+ <Segment id="50">
588
+ <True/>
589
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
590
+ <MiningSchema/>
591
+ <Node score="-0.010374589">
592
+ <True/>
593
+ </Node>
594
+ </TreeModel>
595
+ </Segment>
596
+ <Segment id="51">
597
+ <True/>
598
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
599
+ <MiningSchema/>
600
+ <Node score="-0.010506333">
601
+ <True/>
602
+ </Node>
603
+ </TreeModel>
604
+ </Segment>
605
+ <Segment id="52">
606
+ <True/>
607
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
608
+ <MiningSchema/>
609
+ <Node score="-0.009954225">
610
+ <True/>
611
+ </Node>
612
+ </TreeModel>
613
+ </Segment>
614
+ <Segment id="53">
615
+ <True/>
616
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
617
+ <MiningSchema/>
618
+ <Node score="-0.01003958">
619
+ <True/>
620
+ </Node>
621
+ </TreeModel>
622
+ </Segment>
623
+ <Segment id="54">
624
+ <True/>
625
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
626
+ <MiningSchema/>
627
+ <Node score="-0.009443962">
628
+ <True/>
629
+ </Node>
630
+ </TreeModel>
631
+ </Segment>
632
+ <Segment id="55">
633
+ <True/>
634
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
635
+ <MiningSchema/>
636
+ <Node score="-0.009524652">
637
+ <True/>
638
+ </Node>
639
+ </TreeModel>
640
+ </Segment>
641
+ <Segment id="56">
642
+ <True/>
643
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
644
+ <MiningSchema/>
645
+ <Node score="-0.009611081">
646
+ <True/>
647
+ </Node>
648
+ </TreeModel>
649
+ </Segment>
650
+ <Segment id="57">
651
+ <True/>
652
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
653
+ <MiningSchema/>
654
+ <Node score="-0.0090095755">
655
+ <True/>
656
+ </Node>
657
+ </TreeModel>
658
+ </Segment>
659
+ <Segment id="58">
660
+ <True/>
661
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
662
+ <MiningSchema/>
663
+ <Node score="-0.008577047">
664
+ <True/>
665
+ </Node>
666
+ </TreeModel>
667
+ </Segment>
668
+ <Segment id="59">
669
+ <True/>
670
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
671
+ <MiningSchema/>
672
+ <Node score="-0.008814059">
673
+ <True/>
674
+ </Node>
675
+ </TreeModel>
676
+ </Segment>
677
+ <Segment id="60">
678
+ <True/>
679
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
680
+ <MiningSchema/>
681
+ <Node score="-0.008328276">
682
+ <True/>
683
+ </Node>
684
+ </TreeModel>
685
+ </Segment>
686
+ <Segment id="61">
687
+ <True/>
688
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
689
+ <MiningSchema/>
690
+ <Node score="-0.008542178">
691
+ <True/>
692
+ </Node>
693
+ </TreeModel>
694
+ </Segment>
695
+ <Segment id="62">
696
+ <True/>
697
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
698
+ <MiningSchema/>
699
+ <Node score="-0.008515533">
700
+ <True/>
701
+ </Node>
702
+ </TreeModel>
703
+ </Segment>
704
+ <Segment id="63">
705
+ <True/>
706
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
707
+ <MiningSchema/>
708
+ <Node score="-0.00862006">
709
+ <True/>
710
+ </Node>
711
+ </TreeModel>
712
+ </Segment>
713
+ <Segment id="64">
714
+ <True/>
715
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
716
+ <MiningSchema/>
717
+ <Node score="-0.0072357473">
718
+ <True/>
719
+ </Node>
720
+ </TreeModel>
721
+ </Segment>
722
+ <Segment id="65">
723
+ <True/>
724
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
725
+ <MiningSchema/>
726
+ <Node score="-0.0074347444">
727
+ <True/>
728
+ </Node>
729
+ </TreeModel>
730
+ </Segment>
731
+ <Segment id="66">
732
+ <True/>
733
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
734
+ <MiningSchema/>
735
+ <Node score="-0.0063091177">
736
+ <True/>
737
+ </Node>
738
+ </TreeModel>
739
+ </Segment>
740
+ <Segment id="67">
741
+ <True/>
742
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
743
+ <MiningSchema/>
744
+ <Node score="-0.0065854425">
745
+ <True/>
746
+ </Node>
747
+ </TreeModel>
748
+ </Segment>
749
+ <Segment id="68">
750
+ <True/>
751
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
752
+ <MiningSchema/>
753
+ <Node score="-0.005579351">
754
+ <True/>
755
+ </Node>
756
+ </TreeModel>
757
+ </Segment>
758
+ <Segment id="69">
759
+ <True/>
760
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
761
+ <MiningSchema/>
762
+ <Node score="-0.005791463">
763
+ <True/>
764
+ </Node>
765
+ </TreeModel>
766
+ </Segment>
767
+ <Segment id="70">
768
+ <True/>
769
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
770
+ <MiningSchema/>
771
+ <Node score="-0.0049243635">
772
+ <True/>
773
+ </Node>
774
+ </TreeModel>
775
+ </Segment>
776
+ <Segment id="71">
777
+ <True/>
778
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
779
+ <MiningSchema/>
780
+ <Node score="-0.0052249893">
781
+ <True/>
782
+ </Node>
783
+ </TreeModel>
784
+ </Segment>
785
+ <Segment id="72">
786
+ <True/>
787
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
788
+ <MiningSchema/>
789
+ <Node score="-0.00439269">
790
+ <True/>
791
+ </Node>
792
+ </TreeModel>
793
+ </Segment>
794
+ <Segment id="73">
795
+ <True/>
796
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
797
+ <MiningSchema/>
798
+ <Node score="-0.004721505">
799
+ <True/>
800
+ </Node>
801
+ </TreeModel>
802
+ </Segment>
803
+ <Segment id="74">
804
+ <True/>
805
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
806
+ <MiningSchema/>
807
+ <Node score="-0.0039216504">
808
+ <True/>
809
+ </Node>
810
+ </TreeModel>
811
+ </Segment>
812
+ <Segment id="75">
813
+ <True/>
814
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
815
+ <MiningSchema/>
816
+ <Node score="-0.0042734183">
817
+ <True/>
818
+ </Node>
819
+ </TreeModel>
820
+ </Segment>
821
+ <Segment id="76">
822
+ <True/>
823
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
824
+ <MiningSchema/>
825
+ <Node score="-0.0035031645">
826
+ <True/>
827
+ </Node>
828
+ </TreeModel>
829
+ </Segment>
830
+ <Segment id="77">
831
+ <True/>
832
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
833
+ <MiningSchema/>
834
+ <Node score="-0.003929367">
835
+ <True/>
836
+ </Node>
837
+ </TreeModel>
838
+ </Segment>
839
+ <Segment id="78">
840
+ <True/>
841
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
842
+ <MiningSchema/>
843
+ <Node score="-0.0031360236">
844
+ <True/>
845
+ </Node>
846
+ </TreeModel>
847
+ </Segment>
848
+ <Segment id="79">
849
+ <True/>
850
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
851
+ <MiningSchema/>
852
+ <Node score="-0.0035765206">
853
+ <True/>
854
+ </Node>
855
+ </TreeModel>
856
+ </Segment>
857
+ <Segment id="80">
858
+ <True/>
859
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
860
+ <MiningSchema/>
861
+ <Node score="-0.0028496403">
862
+ <True/>
863
+ </Node>
864
+ </TreeModel>
865
+ </Segment>
866
+ <Segment id="81">
867
+ <True/>
868
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
869
+ <MiningSchema/>
870
+ <Node score="-0.00221864">
871
+ <True/>
872
+ </Node>
873
+ </TreeModel>
874
+ </Segment>
875
+ <Segment id="82">
876
+ <True/>
877
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
878
+ <MiningSchema/>
879
+ <Node score="-0.002705049">
880
+ <True/>
881
+ </Node>
882
+ </TreeModel>
883
+ </Segment>
884
+ <Segment id="83">
885
+ <True/>
886
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
887
+ <MiningSchema/>
888
+ <Node score="-0.0019488458">
889
+ <True/>
890
+ </Node>
891
+ </TreeModel>
892
+ </Segment>
893
+ <Segment id="84">
894
+ <True/>
895
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
896
+ <MiningSchema/>
897
+ <Node score="-0.0012846405">
898
+ <True/>
899
+ </Node>
900
+ </TreeModel>
901
+ </Segment>
902
+ <Segment id="85">
903
+ <True/>
904
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
905
+ <MiningSchema/>
906
+ <Node score="-7.0288987E-4">
907
+ <True/>
908
+ </Node>
909
+ </TreeModel>
910
+ </Segment>
911
+ <Segment id="86">
912
+ <True/>
913
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
914
+ <MiningSchema/>
915
+ <Node score="-2.3860951E-4">
916
+ <True/>
917
+ </Node>
918
+ </TreeModel>
919
+ </Segment>
920
+ <Segment id="87">
921
+ <True/>
922
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
923
+ <MiningSchema/>
924
+ <Node score="-8.6785114E-4">
925
+ <True/>
926
+ </Node>
927
+ </TreeModel>
928
+ </Segment>
929
+ <Segment id="88">
930
+ <True/>
931
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
932
+ <MiningSchema/>
933
+ <Node score="-2.8069413E-4">
934
+ <True/>
935
+ </Node>
936
+ </TreeModel>
937
+ </Segment>
938
+ <Segment id="89">
939
+ <True/>
940
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
941
+ <MiningSchema/>
942
+ <Node score="2.2663428E-4">
943
+ <True/>
944
+ </Node>
945
+ </TreeModel>
946
+ </Segment>
947
+ <Segment id="90">
948
+ <True/>
949
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
950
+ <MiningSchema/>
951
+ <Node score="6.205568E-4">
952
+ <True/>
953
+ </Node>
954
+ </TreeModel>
955
+ </Segment>
956
+ <Segment id="91">
957
+ <True/>
958
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
959
+ <MiningSchema/>
960
+ <Node score="0.0010465415">
961
+ <True/>
962
+ </Node>
963
+ </TreeModel>
964
+ </Segment>
965
+ <Segment id="92">
966
+ <True/>
967
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
968
+ <MiningSchema/>
969
+ <Node score="0.0014092005">
970
+ <True/>
971
+ </Node>
972
+ </TreeModel>
973
+ </Segment>
974
+ <Segment id="93">
975
+ <True/>
976
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
977
+ <MiningSchema/>
978
+ <Node score="0.0017268687">
979
+ <True/>
980
+ </Node>
981
+ </TreeModel>
982
+ </Segment>
983
+ <Segment id="94">
984
+ <True/>
985
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
986
+ <MiningSchema/>
987
+ <Node score="0.0020167422">
988
+ <True/>
989
+ </Node>
990
+ </TreeModel>
991
+ </Segment>
992
+ <Segment id="95">
993
+ <True/>
994
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
995
+ <MiningSchema/>
996
+ <Node score="0.0016437627">
997
+ <True/>
998
+ </Node>
999
+ </TreeModel>
1000
+ </Segment>
1001
+ <Segment id="96">
1002
+ <True/>
1003
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1004
+ <MiningSchema/>
1005
+ <Node score="0.0019150286">
1006
+ <True/>
1007
+ </Node>
1008
+ </TreeModel>
1009
+ </Segment>
1010
+ <Segment id="97">
1011
+ <True/>
1012
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1013
+ <MiningSchema/>
1014
+ <Node score="0.0015535017">
1015
+ <True/>
1016
+ </Node>
1017
+ </TreeModel>
1018
+ </Segment>
1019
+ <Segment id="98">
1020
+ <True/>
1021
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1022
+ <MiningSchema/>
1023
+ <Node score="0.0017667274">
1024
+ <True/>
1025
+ </Node>
1026
+ </TreeModel>
1027
+ </Segment>
1028
+ <Segment id="99">
1029
+ <True/>
1030
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1031
+ <MiningSchema/>
1032
+ <Node score="0.0014182875">
1033
+ <True/>
1034
+ </Node>
1035
+ </TreeModel>
1036
+ </Segment>
1037
+ <Segment id="100">
1038
+ <True/>
1039
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1040
+ <MiningSchema/>
1041
+ <Node score="0.0017022328">
1042
+ <True/>
1043
+ </Node>
1044
+ </TreeModel>
1045
+ </Segment>
1046
+ </Segmentation>
1047
+ </MiningModel>
1048
+ </Segment>
1049
+ <Segment id="2">
1050
+ <True/>
1051
+ <MiningModel functionName="regression" x-mathContext="float">
1052
+ <MiningSchema>
1053
+ <MiningField name="sepal_length"/>
1054
+ <MiningField name="sepal_width"/>
1055
+ <MiningField name="petal_length"/>
1056
+ <MiningField name="petal_width"/>
1057
+ </MiningSchema>
1058
+ <Output>
1059
+ <OutputField name="xgbValue(2)" optype="continuous" dataType="float" isFinalResult="false"/>
1060
+ </Output>
1061
+ <Targets>
1062
+ <Target rescaleConstant="0.5"/>
1063
+ </Targets>
1064
+ <Segmentation multipleModelMethod="sum">
1065
+ <Segment id="1">
1066
+ <True/>
1067
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1068
+ <MiningSchema>
1069
+ <MiningField name="petal_length"/>
1070
+ <MiningField name="petal_width"/>
1071
+ </MiningSchema>
1072
+ <Node score="-0.21301778">
1073
+ <True/>
1074
+ <Node score="0.4228188">
1075
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
1076
+ <Node score="-7.663455E-9">
1077
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
1078
+ <Node score="-0.21176474">
1079
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.8500004"/>
1080
+ </Node>
1081
+ </Node>
1082
+ <Node score="0.12857142">
1083
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.95"/>
1084
+ </Node>
1085
+ <Node score="0.12857142">
1086
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.55"/>
1087
+ </Node>
1088
+ </Node>
1089
+ </Node>
1090
+ </TreeModel>
1091
+ </Segment>
1092
+ <Segment id="2">
1093
+ <True/>
1094
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1095
+ <MiningSchema>
1096
+ <MiningField name="petal_length"/>
1097
+ <MiningField name="petal_width"/>
1098
+ </MiningSchema>
1099
+ <Node score="-0.18951397">
1100
+ <True/>
1101
+ <Node score="0.27788097">
1102
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
1103
+ <Node score="0.011591504">
1104
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
1105
+ <Node score="-0.18940744">
1106
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.8500004"/>
1107
+ </Node>
1108
+ </Node>
1109
+ </Node>
1110
+ </Node>
1111
+ </TreeModel>
1112
+ </Segment>
1113
+ <Segment id="3">
1114
+ <True/>
1115
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1116
+ <MiningSchema>
1117
+ <MiningField name="sepal_length"/>
1118
+ <MiningField name="petal_length"/>
1119
+ <MiningField name="petal_width"/>
1120
+ </MiningSchema>
1121
+ <Node score="-0.17329198">
1122
+ <True/>
1123
+ <Node score="0.07975626">
1124
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
1125
+ <Node score="0.009732658">
1126
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
1127
+ <Node score="-0.17285019">
1128
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.8500004"/>
1129
+ </Node>
1130
+ </Node>
1131
+ <Node score="0.23736395">
1132
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.05"/>
1133
+ <Node score="0.075147">
1134
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.95"/>
1135
+ </Node>
1136
+ </Node>
1137
+ </Node>
1138
+ </Node>
1139
+ </TreeModel>
1140
+ </Segment>
1141
+ <Segment id="4">
1142
+ <True/>
1143
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1144
+ <MiningSchema>
1145
+ <MiningField name="sepal_length"/>
1146
+ <MiningField name="petal_length"/>
1147
+ <MiningField name="petal_width"/>
1148
+ </MiningSchema>
1149
+ <Node score="-0.1611161">
1150
+ <True/>
1151
+ <Node score="0.0641888">
1152
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
1153
+ <Node score="0.010722818">
1154
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
1155
+ <Node score="-0.16306582">
1156
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
1157
+ </Node>
1158
+ </Node>
1159
+ <Node score="0.20369197">
1160
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.05"/>
1161
+ <Node score="0.067216225">
1162
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.95"/>
1163
+ </Node>
1164
+ </Node>
1165
+ </Node>
1166
+ </Node>
1167
+ </TreeModel>
1168
+ </Segment>
1169
+ <Segment id="5">
1170
+ <True/>
1171
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1172
+ <MiningSchema>
1173
+ <MiningField name="sepal_length"/>
1174
+ <MiningField name="petal_length"/>
1175
+ <MiningField name="petal_width"/>
1176
+ </MiningSchema>
1177
+ <Node score="-0.15125857">
1178
+ <True/>
1179
+ <Node score="0.0515964">
1180
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
1181
+ <Node score="0.027994778">
1182
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
1183
+ <Node score="-0.1516178">
1184
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.8500004"/>
1185
+ </Node>
1186
+ </Node>
1187
+ <Node score="0.18232751">
1188
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.05"/>
1189
+ <Node score="0.05584421">
1190
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.95"/>
1191
+ </Node>
1192
+ </Node>
1193
+ </Node>
1194
+ </Node>
1195
+ </TreeModel>
1196
+ </Segment>
1197
+ <Segment id="6">
1198
+ <True/>
1199
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1200
+ <MiningSchema>
1201
+ <MiningField name="sepal_length"/>
1202
+ <MiningField name="petal_length"/>
1203
+ <MiningField name="petal_width"/>
1204
+ </MiningSchema>
1205
+ <Node score="-0.1426649">
1206
+ <True/>
1207
+ <Node score="0.041324828">
1208
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
1209
+ <Node score="0.03282992">
1210
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
1211
+ <Node score="-0.14621852">
1212
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
1213
+ </Node>
1214
+ </Node>
1215
+ <Node score="0.1673777">
1216
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.05"/>
1217
+ <Node score="0.04644333">
1218
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.95"/>
1219
+ </Node>
1220
+ </Node>
1221
+ </Node>
1222
+ </Node>
1223
+ </TreeModel>
1224
+ </Segment>
1225
+ <Segment id="7">
1226
+ <True/>
1227
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1228
+ <MiningSchema>
1229
+ <MiningField name="sepal_length"/>
1230
+ <MiningField name="petal_length"/>
1231
+ <MiningField name="petal_width"/>
1232
+ </MiningSchema>
1233
+ <Node score="-0.13465998">
1234
+ <True/>
1235
+ <Node score="0.030755151">
1236
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
1237
+ <Node score="0.03889872">
1238
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
1239
+ <Node score="-0.13597369">
1240
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.8500004"/>
1241
+ </Node>
1242
+ </Node>
1243
+ <Node score="0.15611462">
1244
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.05"/>
1245
+ <Node score="0.0387137">
1246
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.95"/>
1247
+ </Node>
1248
+ </Node>
1249
+ </Node>
1250
+ </Node>
1251
+ </TreeModel>
1252
+ </Segment>
1253
+ <Segment id="8">
1254
+ <True/>
1255
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1256
+ <MiningSchema>
1257
+ <MiningField name="sepal_width"/>
1258
+ <MiningField name="petal_length"/>
1259
+ <MiningField name="petal_width"/>
1260
+ </MiningSchema>
1261
+ <Node score="-0.1268367">
1262
+ <True/>
1263
+ <Node score="0.15056702">
1264
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
1265
+ <Node score="0.008673897">
1266
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
1267
+ <Node score="-0.14567697">
1268
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.75"/>
1269
+ </Node>
1270
+ </Node>
1271
+ <Node score="-0.10794682">
1272
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
1273
+ <Node score="0.09265725">
1274
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.9"/>
1275
+ </Node>
1276
+ </Node>
1277
+ </Node>
1278
+ </Node>
1279
+ </TreeModel>
1280
+ </Segment>
1281
+ <Segment id="9">
1282
+ <True/>
1283
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1284
+ <MiningSchema>
1285
+ <MiningField name="sepal_width"/>
1286
+ <MiningField name="petal_length"/>
1287
+ <MiningField name="petal_width"/>
1288
+ </MiningSchema>
1289
+ <Node score="-0.118970506">
1290
+ <True/>
1291
+ <Node score="0.14208084">
1292
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
1293
+ <Node score="0.01337287">
1294
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
1295
+ <Node score="-0.13922402">
1296
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.75"/>
1297
+ </Node>
1298
+ </Node>
1299
+ <Node score="-0.09782757">
1300
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
1301
+ <Node score="0.07685975">
1302
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.9"/>
1303
+ </Node>
1304
+ </Node>
1305
+ </Node>
1306
+ </Node>
1307
+ </TreeModel>
1308
+ </Segment>
1309
+ <Segment id="10">
1310
+ <True/>
1311
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1312
+ <MiningSchema>
1313
+ <MiningField name="sepal_width"/>
1314
+ <MiningField name="petal_length"/>
1315
+ <MiningField name="petal_width"/>
1316
+ </MiningSchema>
1317
+ <Node score="-0.11099657">
1318
+ <True/>
1319
+ <Node score="0.13451135">
1320
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
1321
+ <Node score="0.01574561">
1322
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
1323
+ <Node score="-0.13153887">
1324
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.75"/>
1325
+ </Node>
1326
+ </Node>
1327
+ <Node score="-0.090710856">
1328
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
1329
+ <Node score="0.07025579">
1330
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.9"/>
1331
+ </Node>
1332
+ </Node>
1333
+ </Node>
1334
+ </Node>
1335
+ </TreeModel>
1336
+ </Segment>
1337
+ <Segment id="11">
1338
+ <True/>
1339
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1340
+ <MiningSchema>
1341
+ <MiningField name="sepal_length"/>
1342
+ <MiningField name="sepal_width"/>
1343
+ <MiningField name="petal_length"/>
1344
+ <MiningField name="petal_width"/>
1345
+ </MiningSchema>
1346
+ <Node score="-0.102964535">
1347
+ <True/>
1348
+ <Node score="0.12730935">
1349
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
1350
+ <Node score="0.017509475">
1351
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
1352
+ <Node score="-0.123747624">
1353
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.75"/>
1354
+ </Node>
1355
+ </Node>
1356
+ <Node score="0.026313795">
1357
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
1358
+ <Node score="-0.023790509">
1359
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
1360
+ </Node>
1361
+ </Node>
1362
+ </Node>
1363
+ </Node>
1364
+ </TreeModel>
1365
+ </Segment>
1366
+ <Segment id="12">
1367
+ <True/>
1368
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1369
+ <MiningSchema>
1370
+ <MiningField name="sepal_length"/>
1371
+ <MiningField name="petal_length"/>
1372
+ <MiningField name="petal_width"/>
1373
+ </MiningSchema>
1374
+ <Node score="-0.09500686">
1375
+ <True/>
1376
+ <Node score="0.12040869">
1377
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
1378
+ <Node score="-0.07740097">
1379
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
1380
+ </Node>
1381
+ <Node score="0.029557725">
1382
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
1383
+ <Node score="-0.015467996">
1384
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
1385
+ </Node>
1386
+ </Node>
1387
+ </Node>
1388
+ </Node>
1389
+ </TreeModel>
1390
+ </Segment>
1391
+ <Segment id="13">
1392
+ <True/>
1393
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1394
+ <MiningSchema>
1395
+ <MiningField name="petal_length"/>
1396
+ <MiningField name="petal_width"/>
1397
+ </MiningSchema>
1398
+ <Node score="-0.08727664">
1399
+ <True/>
1400
+ <Node score="-0.08974078">
1401
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.8499999"/>
1402
+ </Node>
1403
+ <Node score="0.11259047">
1404
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
1405
+ <Node score="-0.021260323">
1406
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
1407
+ </Node>
1408
+ <Node score="0.021367647">
1409
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
1410
+ </Node>
1411
+ </Node>
1412
+ </Node>
1413
+ </TreeModel>
1414
+ </Segment>
1415
+ <Segment id="14">
1416
+ <True/>
1417
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1418
+ <MiningSchema>
1419
+ <MiningField name="petal_length"/>
1420
+ <MiningField name="petal_width"/>
1421
+ </MiningSchema>
1422
+ <Node score="-0.0799245">
1423
+ <True/>
1424
+ <Node score="-0.08299602">
1425
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.8499999"/>
1426
+ </Node>
1427
+ <Node score="0.1060347">
1428
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="2.35"/>
1429
+ <Node score="-0.018557914">
1430
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
1431
+ </Node>
1432
+ <Node score="0.020146495">
1433
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
1434
+ </Node>
1435
+ </Node>
1436
+ </Node>
1437
+ </TreeModel>
1438
+ </Segment>
1439
+ <Segment id="15">
1440
+ <True/>
1441
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1442
+ <MiningSchema>
1443
+ <MiningField name="sepal_length"/>
1444
+ <MiningField name="petal_length"/>
1445
+ <MiningField name="petal_width"/>
1446
+ </MiningSchema>
1447
+ <Node score="-0.06208588">
1448
+ <True/>
1449
+ <Node score="-0.07744635">
1450
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.8499999"/>
1451
+ </Node>
1452
+ <Node score="0.10077276">
1453
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.45"/>
1454
+ <Node score="-0.015950214">
1455
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
1456
+ </Node>
1457
+ <Node score="0.020921">
1458
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
1459
+ </Node>
1460
+ </Node>
1461
+ </Node>
1462
+ </TreeModel>
1463
+ </Segment>
1464
+ <Segment id="16">
1465
+ <True/>
1466
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1467
+ <MiningSchema>
1468
+ <MiningField name="sepal_length"/>
1469
+ <MiningField name="petal_length"/>
1470
+ <MiningField name="petal_width"/>
1471
+ </MiningSchema>
1472
+ <Node score="-0.055925563">
1473
+ <True/>
1474
+ <Node score="0.09457698">
1475
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.45"/>
1476
+ <Node score="-0.04510989">
1477
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
1478
+ </Node>
1479
+ <Node score="0.0049245465">
1480
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
1481
+ </Node>
1482
+ </Node>
1483
+ </Node>
1484
+ </TreeModel>
1485
+ </Segment>
1486
+ <Segment id="17">
1487
+ <True/>
1488
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1489
+ <MiningSchema>
1490
+ <MiningField name="sepal_length"/>
1491
+ <MiningField name="petal_length"/>
1492
+ <MiningField name="petal_width"/>
1493
+ </MiningSchema>
1494
+ <Node score="-0.050484862">
1495
+ <True/>
1496
+ <Node score="0.08736515">
1497
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.45"/>
1498
+ <Node score="-0.03992725">
1499
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
1500
+ </Node>
1501
+ <Node score="0.008822388">
1502
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
1503
+ </Node>
1504
+ </Node>
1505
+ </Node>
1506
+ </TreeModel>
1507
+ </Segment>
1508
+ <Segment id="18">
1509
+ <True/>
1510
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1511
+ <MiningSchema>
1512
+ <MiningField name="sepal_length"/>
1513
+ <MiningField name="sepal_width"/>
1514
+ </MiningSchema>
1515
+ <Node score="-0.040114827">
1516
+ <True/>
1517
+ <Node score="0.092584975">
1518
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
1519
+ <Node score="-0.056282256">
1520
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
1521
+ <Node score="0.012117363">
1522
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
1523
+ </Node>
1524
+ </Node>
1525
+ </Node>
1526
+ </Node>
1527
+ </TreeModel>
1528
+ </Segment>
1529
+ <Segment id="19">
1530
+ <True/>
1531
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1532
+ <MiningSchema>
1533
+ <MiningField name="sepal_length"/>
1534
+ </MiningSchema>
1535
+ <Node score="-0.037816092">
1536
+ <True/>
1537
+ <Node score="0.08280347">
1538
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
1539
+ <Node score="-0.023839481">
1540
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
1541
+ </Node>
1542
+ </Node>
1543
+ </Node>
1544
+ </TreeModel>
1545
+ </Segment>
1546
+ <Segment id="20">
1547
+ <True/>
1548
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1549
+ <MiningSchema>
1550
+ <MiningField name="sepal_length"/>
1551
+ <MiningField name="petal_length"/>
1552
+ </MiningSchema>
1553
+ <Node score="-0.03175839">
1554
+ <True/>
1555
+ <Node score="-0.036086638">
1556
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
1557
+ </Node>
1558
+ <Node score="0.059346404">
1559
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.75"/>
1560
+ </Node>
1561
+ </Node>
1562
+ </TreeModel>
1563
+ </Segment>
1564
+ <Segment id="21">
1565
+ <True/>
1566
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1567
+ <MiningSchema>
1568
+ <MiningField name="sepal_length"/>
1569
+ <MiningField name="petal_length"/>
1570
+ </MiningSchema>
1571
+ <Node score="-0.031059572">
1572
+ <True/>
1573
+ <Node score="-0.033933476">
1574
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
1575
+ </Node>
1576
+ <Node score="0.055697624">
1577
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.75"/>
1578
+ </Node>
1579
+ </Node>
1580
+ </TreeModel>
1581
+ </Segment>
1582
+ <Segment id="22">
1583
+ <True/>
1584
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1585
+ <MiningSchema>
1586
+ <MiningField name="sepal_length"/>
1587
+ <MiningField name="petal_width"/>
1588
+ </MiningSchema>
1589
+ <Node score="-0.030904308">
1590
+ <True/>
1591
+ <Node score="-0.029412236">
1592
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
1593
+ </Node>
1594
+ <Node score="0.0549645">
1595
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.55"/>
1596
+ </Node>
1597
+ </Node>
1598
+ </TreeModel>
1599
+ </Segment>
1600
+ <Segment id="23">
1601
+ <True/>
1602
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1603
+ <MiningSchema>
1604
+ <MiningField name="sepal_length"/>
1605
+ <MiningField name="petal_length"/>
1606
+ </MiningSchema>
1607
+ <Node score="-0.030657103">
1608
+ <True/>
1609
+ <Node score="-0.03407916">
1610
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
1611
+ </Node>
1612
+ <Node score="0.055082835">
1613
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.75"/>
1614
+ </Node>
1615
+ </Node>
1616
+ </TreeModel>
1617
+ </Segment>
1618
+ <Segment id="24">
1619
+ <True/>
1620
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1621
+ <MiningSchema>
1622
+ <MiningField name="sepal_length"/>
1623
+ <MiningField name="sepal_width"/>
1624
+ </MiningSchema>
1625
+ <Node score="0.034161206">
1626
+ <True/>
1627
+ <Node score="0.028089497">
1628
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.75"/>
1629
+ <Node score="-0.047466904">
1630
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
1631
+ </Node>
1632
+ </Node>
1633
+ </Node>
1634
+ </TreeModel>
1635
+ </Segment>
1636
+ <Segment id="25">
1637
+ <True/>
1638
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1639
+ <MiningSchema>
1640
+ <MiningField name="sepal_length"/>
1641
+ </MiningSchema>
1642
+ <Node score="-0.032893844">
1643
+ <True/>
1644
+ <Node score="0.06198056">
1645
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
1646
+ <Node score="-0.018456647">
1647
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
1648
+ </Node>
1649
+ </Node>
1650
+ </Node>
1651
+ </TreeModel>
1652
+ </Segment>
1653
+ <Segment id="26">
1654
+ <True/>
1655
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1656
+ <MiningSchema>
1657
+ <MiningField name="sepal_length"/>
1658
+ <MiningField name="petal_length"/>
1659
+ </MiningSchema>
1660
+ <Node score="-0.030455148">
1661
+ <True/>
1662
+ <Node score="0.05003903">
1663
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
1664
+ <Node score="-0.026954835">
1665
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
1666
+ </Node>
1667
+ </Node>
1668
+ </Node>
1669
+ </TreeModel>
1670
+ </Segment>
1671
+ <Segment id="27">
1672
+ <True/>
1673
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1674
+ <MiningSchema>
1675
+ <MiningField name="sepal_length"/>
1676
+ <MiningField name="sepal_width"/>
1677
+ </MiningSchema>
1678
+ <Node score="0.03257335">
1679
+ <True/>
1680
+ <Node score="0.020832524">
1681
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.75"/>
1682
+ <Node score="-0.04221604">
1683
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
1684
+ </Node>
1685
+ </Node>
1686
+ </Node>
1687
+ </TreeModel>
1688
+ </Segment>
1689
+ <Segment id="28">
1690
+ <True/>
1691
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1692
+ <MiningSchema>
1693
+ <MiningField name="sepal_length"/>
1694
+ </MiningSchema>
1695
+ <Node score="-0.032369066">
1696
+ <True/>
1697
+ <Node score="0.05763898">
1698
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
1699
+ <Node score="-0.015940918">
1700
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
1701
+ </Node>
1702
+ </Node>
1703
+ </Node>
1704
+ </TreeModel>
1705
+ </Segment>
1706
+ <Segment id="29">
1707
+ <True/>
1708
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1709
+ <MiningSchema>
1710
+ <MiningField name="sepal_length"/>
1711
+ </MiningSchema>
1712
+ <Node score="-0.031377476">
1713
+ <True/>
1714
+ <Node score="0.054373346">
1715
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
1716
+ <Node score="-0.014527579">
1717
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
1718
+ </Node>
1719
+ </Node>
1720
+ </Node>
1721
+ </TreeModel>
1722
+ </Segment>
1723
+ <Segment id="30">
1724
+ <True/>
1725
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1726
+ <MiningSchema>
1727
+ <MiningField name="sepal_length"/>
1728
+ </MiningSchema>
1729
+ <Node score="-0.02908844">
1730
+ <True/>
1731
+ <Node score="0.051204614">
1732
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
1733
+ <Node score="-0.013372457">
1734
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
1735
+ </Node>
1736
+ </Node>
1737
+ </Node>
1738
+ </TreeModel>
1739
+ </Segment>
1740
+ <Segment id="31">
1741
+ <True/>
1742
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1743
+ <MiningSchema>
1744
+ <MiningField name="sepal_length"/>
1745
+ </MiningSchema>
1746
+ <Node score="-0.028405882">
1747
+ <True/>
1748
+ <Node score="0.048527118">
1749
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
1750
+ <Node score="-0.0122240735">
1751
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
1752
+ </Node>
1753
+ </Node>
1754
+ </Node>
1755
+ </TreeModel>
1756
+ </Segment>
1757
+ <Segment id="32">
1758
+ <True/>
1759
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1760
+ <MiningSchema>
1761
+ <MiningField name="sepal_length"/>
1762
+ <MiningField name="petal_width"/>
1763
+ </MiningSchema>
1764
+ <Node score="-0.026406428">
1765
+ <True/>
1766
+ <Node score="0.042647522">
1767
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
1768
+ <Node score="-0.0145045305">
1769
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
1770
+ </Node>
1771
+ </Node>
1772
+ </Node>
1773
+ </TreeModel>
1774
+ </Segment>
1775
+ <Segment id="33">
1776
+ <True/>
1777
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1778
+ <MiningSchema>
1779
+ <MiningField name="sepal_width"/>
1780
+ </MiningSchema>
1781
+ <Node score="0.029789265">
1782
+ <True/>
1783
+ <Node score="-0.039829675">
1784
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.75"/>
1785
+ <Node score="0.021096835">
1786
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="3.05"/>
1787
+ </Node>
1788
+ </Node>
1789
+ </Node>
1790
+ </TreeModel>
1791
+ </Segment>
1792
+ <Segment id="34">
1793
+ <True/>
1794
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1795
+ <MiningSchema>
1796
+ <MiningField name="sepal_length"/>
1797
+ </MiningSchema>
1798
+ <Node score="-0.02911968">
1799
+ <True/>
1800
+ <Node score="0.04693711">
1801
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
1802
+ <Node score="-0.010316298">
1803
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
1804
+ </Node>
1805
+ </Node>
1806
+ </Node>
1807
+ </TreeModel>
1808
+ </Segment>
1809
+ <Segment id="35">
1810
+ <True/>
1811
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1812
+ <MiningSchema>
1813
+ <MiningField name="sepal_length"/>
1814
+ </MiningSchema>
1815
+ <Node score="-0.027028691">
1816
+ <True/>
1817
+ <Node score="0.04433395">
1818
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
1819
+ <Node score="-0.009553976">
1820
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
1821
+ </Node>
1822
+ </Node>
1823
+ </Node>
1824
+ </TreeModel>
1825
+ </Segment>
1826
+ <Segment id="36">
1827
+ <True/>
1828
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1829
+ <MiningSchema>
1830
+ <MiningField name="sepal_length"/>
1831
+ <MiningField name="petal_width"/>
1832
+ </MiningSchema>
1833
+ <Node score="-0.026410887">
1834
+ <True/>
1835
+ <Node score="0.041443344">
1836
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
1837
+ <Node score="-0.013135548">
1838
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
1839
+ </Node>
1840
+ </Node>
1841
+ </Node>
1842
+ </TreeModel>
1843
+ </Segment>
1844
+ <Segment id="37">
1845
+ <True/>
1846
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1847
+ <MiningSchema>
1848
+ <MiningField name="sepal_length"/>
1849
+ <MiningField name="petal_width"/>
1850
+ </MiningSchema>
1851
+ <Node score="-0.025879717">
1852
+ <True/>
1853
+ <Node score="0.04007338">
1854
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
1855
+ <Node score="-0.0118399765">
1856
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
1857
+ </Node>
1858
+ </Node>
1859
+ </Node>
1860
+ </TreeModel>
1861
+ </Segment>
1862
+ <Segment id="38">
1863
+ <True/>
1864
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1865
+ <MiningSchema>
1866
+ <MiningField name="sepal_length"/>
1867
+ </MiningSchema>
1868
+ <Node score="-0.025310762">
1869
+ <True/>
1870
+ <Node score="0.043461747">
1871
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
1872
+ <Node score="-0.011462938">
1873
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
1874
+ </Node>
1875
+ </Node>
1876
+ </Node>
1877
+ </TreeModel>
1878
+ </Segment>
1879
+ <Segment id="39">
1880
+ <True/>
1881
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1882
+ <MiningSchema>
1883
+ <MiningField name="sepal_length"/>
1884
+ <MiningField name="petal_width"/>
1885
+ </MiningSchema>
1886
+ <Node score="-0.024840152">
1887
+ <True/>
1888
+ <Node score="0.039246216">
1889
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
1890
+ <Node score="-0.011685044">
1891
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
1892
+ </Node>
1893
+ </Node>
1894
+ </Node>
1895
+ </TreeModel>
1896
+ </Segment>
1897
+ <Segment id="40">
1898
+ <True/>
1899
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1900
+ <MiningSchema>
1901
+ <MiningField name="sepal_length"/>
1902
+ <MiningField name="petal_width"/>
1903
+ </MiningSchema>
1904
+ <Node score="-0.02533746">
1905
+ <True/>
1906
+ <Node score="0.037582234">
1907
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.6499996"/>
1908
+ <Node score="-0.0138557125">
1909
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
1910
+ </Node>
1911
+ </Node>
1912
+ </Node>
1913
+ </TreeModel>
1914
+ </Segment>
1915
+ <Segment id="41">
1916
+ <True/>
1917
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1918
+ <MiningSchema>
1919
+ <MiningField name="sepal_length"/>
1920
+ </MiningSchema>
1921
+ <Node score="-0.023329165">
1922
+ <True/>
1923
+ <Node score="0.041902285">
1924
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
1925
+ <Node score="-0.01111785">
1926
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
1927
+ </Node>
1928
+ </Node>
1929
+ </Node>
1930
+ </TreeModel>
1931
+ </Segment>
1932
+ <Segment id="42">
1933
+ <True/>
1934
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1935
+ <MiningSchema>
1936
+ <MiningField name="sepal_width"/>
1937
+ <MiningField name="petal_width"/>
1938
+ </MiningSchema>
1939
+ <Node score="0.028662989">
1940
+ <True/>
1941
+ <Node score="-0.04226137">
1942
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.75"/>
1943
+ <Node score="0.014777965">
1944
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.55"/>
1945
+ </Node>
1946
+ </Node>
1947
+ </Node>
1948
+ </TreeModel>
1949
+ </Segment>
1950
+ <Segment id="43">
1951
+ <True/>
1952
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1953
+ <MiningSchema>
1954
+ <MiningField name="sepal_length"/>
1955
+ </MiningSchema>
1956
+ <Node score="-0.022584707">
1957
+ <True/>
1958
+ <Node score="0.0371306">
1959
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
1960
+ <Node score="-0.007353412">
1961
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
1962
+ </Node>
1963
+ </Node>
1964
+ </Node>
1965
+ </TreeModel>
1966
+ </Segment>
1967
+ <Segment id="44">
1968
+ <True/>
1969
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1970
+ <MiningSchema>
1971
+ <MiningField name="sepal_width"/>
1972
+ <MiningField name="petal_width"/>
1973
+ </MiningSchema>
1974
+ <Node score="0.026246406">
1975
+ <True/>
1976
+ <Node score="-0.03924304">
1977
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.75"/>
1978
+ <Node score="0.014860995">
1979
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.55"/>
1980
+ </Node>
1981
+ </Node>
1982
+ </Node>
1983
+ </TreeModel>
1984
+ </Segment>
1985
+ <Segment id="45">
1986
+ <True/>
1987
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
1988
+ <MiningSchema>
1989
+ <MiningField name="sepal_length"/>
1990
+ </MiningSchema>
1991
+ <Node score="-0.022699913">
1992
+ <True/>
1993
+ <Node score="0.034502838">
1994
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
1995
+ <Node score="-0.0044097104">
1996
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
1997
+ </Node>
1998
+ </Node>
1999
+ </Node>
2000
+ </TreeModel>
2001
+ </Segment>
2002
+ <Segment id="46">
2003
+ <True/>
2004
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2005
+ <MiningSchema>
2006
+ <MiningField name="sepal_length"/>
2007
+ </MiningSchema>
2008
+ <Node score="-0.021191014">
2009
+ <True/>
2010
+ <Node score="0.030935703">
2011
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2012
+ <Node score="-0.0044053593">
2013
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.1499996"/>
2014
+ </Node>
2015
+ </Node>
2016
+ </Node>
2017
+ </TreeModel>
2018
+ </Segment>
2019
+ <Segment id="47">
2020
+ <True/>
2021
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2022
+ <MiningSchema>
2023
+ <MiningField name="sepal_width"/>
2024
+ <MiningField name="petal_width"/>
2025
+ </MiningSchema>
2026
+ <Node score="0.026216121">
2027
+ <True/>
2028
+ <Node score="-0.033866156">
2029
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.75"/>
2030
+ <Node score="0.0104541425">
2031
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
2032
+ </Node>
2033
+ </Node>
2034
+ </Node>
2035
+ </TreeModel>
2036
+ </Segment>
2037
+ <Segment id="48">
2038
+ <True/>
2039
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2040
+ <MiningSchema>
2041
+ <MiningField name="sepal_length"/>
2042
+ </MiningSchema>
2043
+ <Node score="-0.020264138">
2044
+ <True/>
2045
+ <Node score="0.028200628">
2046
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2047
+ <Node score="-0.0040152557">
2048
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.1499996"/>
2049
+ </Node>
2050
+ </Node>
2051
+ </Node>
2052
+ </TreeModel>
2053
+ </Segment>
2054
+ <Segment id="49">
2055
+ <True/>
2056
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2057
+ <MiningSchema>
2058
+ <MiningField name="sepal_length"/>
2059
+ <MiningField name="petal_width"/>
2060
+ </MiningSchema>
2061
+ <Node score="-0.017617423">
2062
+ <True/>
2063
+ <Node score="-0.02162933">
2064
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
2065
+ </Node>
2066
+ <Node score="0.039719053">
2067
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.75"/>
2068
+ </Node>
2069
+ </Node>
2070
+ </TreeModel>
2071
+ </Segment>
2072
+ <Segment id="50">
2073
+ <True/>
2074
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2075
+ <MiningSchema>
2076
+ <MiningField name="sepal_length"/>
2077
+ </MiningSchema>
2078
+ <Node score="-0.019770198">
2079
+ <True/>
2080
+ <Node score="0.028373012">
2081
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2082
+ <Node score="-0.0050233975">
2083
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.1499996"/>
2084
+ </Node>
2085
+ </Node>
2086
+ </Node>
2087
+ </TreeModel>
2088
+ </Segment>
2089
+ <Segment id="51">
2090
+ <True/>
2091
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2092
+ <MiningSchema>
2093
+ <MiningField name="sepal_width"/>
2094
+ </MiningSchema>
2095
+ <Node score="0.024602614">
2096
+ <True/>
2097
+ <Node score="-0.013863183">
2098
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.75"/>
2099
+ </Node>
2100
+ </Node>
2101
+ </TreeModel>
2102
+ </Segment>
2103
+ <Segment id="52">
2104
+ <True/>
2105
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2106
+ <MiningSchema>
2107
+ <MiningField name="sepal_length"/>
2108
+ </MiningSchema>
2109
+ <Node score="-0.019857677">
2110
+ <True/>
2111
+ <Node score="0.016561309">
2112
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2113
+ </Node>
2114
+ </Node>
2115
+ </TreeModel>
2116
+ </Segment>
2117
+ <Segment id="53">
2118
+ <True/>
2119
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2120
+ <MiningSchema>
2121
+ <MiningField name="sepal_width"/>
2122
+ </MiningSchema>
2123
+ <Node score="0.024328744">
2124
+ <True/>
2125
+ <Node score="-0.0136368945">
2126
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.75"/>
2127
+ </Node>
2128
+ </Node>
2129
+ </TreeModel>
2130
+ </Segment>
2131
+ <Segment id="54">
2132
+ <True/>
2133
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2134
+ <MiningSchema>
2135
+ <MiningField name="sepal_length"/>
2136
+ </MiningSchema>
2137
+ <Node score="-0.018836165">
2138
+ <True/>
2139
+ <Node score="0.015818423">
2140
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2141
+ </Node>
2142
+ </Node>
2143
+ </TreeModel>
2144
+ </Segment>
2145
+ <Segment id="55">
2146
+ <True/>
2147
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2148
+ <MiningSchema>
2149
+ <MiningField name="sepal_length"/>
2150
+ </MiningSchema>
2151
+ <Node score="-0.01868967">
2152
+ <True/>
2153
+ <Node score="0.0156000275">
2154
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2155
+ </Node>
2156
+ </Node>
2157
+ </TreeModel>
2158
+ </Segment>
2159
+ <Segment id="56">
2160
+ <True/>
2161
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2162
+ <MiningSchema>
2163
+ <MiningField name="sepal_width"/>
2164
+ </MiningSchema>
2165
+ <Node score="0.024370939">
2166
+ <True/>
2167
+ <Node score="-0.013740897">
2168
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.75"/>
2169
+ </Node>
2170
+ </Node>
2171
+ </TreeModel>
2172
+ </Segment>
2173
+ <Segment id="57">
2174
+ <True/>
2175
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2176
+ <MiningSchema>
2177
+ <MiningField name="sepal_width"/>
2178
+ </MiningSchema>
2179
+ <Node score="0.021758322">
2180
+ <True/>
2181
+ <Node score="-0.012024749">
2182
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.75"/>
2183
+ </Node>
2184
+ </Node>
2185
+ </TreeModel>
2186
+ </Segment>
2187
+ <Segment id="58">
2188
+ <True/>
2189
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2190
+ <MiningSchema>
2191
+ <MiningField name="sepal_length"/>
2192
+ </MiningSchema>
2193
+ <Node score="-0.02031299">
2194
+ <True/>
2195
+ <Node score="0.016874926">
2196
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2197
+ </Node>
2198
+ </Node>
2199
+ </TreeModel>
2200
+ </Segment>
2201
+ <Segment id="59">
2202
+ <True/>
2203
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2204
+ <MiningSchema>
2205
+ <MiningField name="sepal_width"/>
2206
+ </MiningSchema>
2207
+ <Node score="0.021739352">
2208
+ <True/>
2209
+ <Node score="-0.012065518">
2210
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.75"/>
2211
+ </Node>
2212
+ </Node>
2213
+ </TreeModel>
2214
+ </Segment>
2215
+ <Segment id="60">
2216
+ <True/>
2217
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2218
+ <MiningSchema>
2219
+ <MiningField name="sepal_length"/>
2220
+ </MiningSchema>
2221
+ <Node score="-0.019102054">
2222
+ <True/>
2223
+ <Node score="0.015932895">
2224
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2225
+ </Node>
2226
+ </Node>
2227
+ </TreeModel>
2228
+ </Segment>
2229
+ <Segment id="61">
2230
+ <True/>
2231
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2232
+ <MiningSchema>
2233
+ <MiningField name="sepal_length"/>
2234
+ </MiningSchema>
2235
+ <Node score="-0.017727332">
2236
+ <True/>
2237
+ <Node score="0.013645383">
2238
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.75"/>
2239
+ </Node>
2240
+ </Node>
2241
+ </TreeModel>
2242
+ </Segment>
2243
+ <Segment id="62">
2244
+ <True/>
2245
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2246
+ <MiningSchema>
2247
+ <MiningField name="sepal_length"/>
2248
+ </MiningSchema>
2249
+ <Node score="-0.01675046">
2250
+ <True/>
2251
+ <Node score="0.013017292">
2252
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2253
+ </Node>
2254
+ </Node>
2255
+ </TreeModel>
2256
+ </Segment>
2257
+ <Segment id="63">
2258
+ <True/>
2259
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2260
+ <MiningSchema>
2261
+ <MiningField name="petal_width"/>
2262
+ </MiningSchema>
2263
+ <Node score="0.015120173">
2264
+ <True/>
2265
+ <Node score="-0.0147165125">
2266
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
2267
+ </Node>
2268
+ </Node>
2269
+ </TreeModel>
2270
+ </Segment>
2271
+ <Segment id="64">
2272
+ <True/>
2273
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2274
+ <MiningSchema>
2275
+ <MiningField name="sepal_length"/>
2276
+ </MiningSchema>
2277
+ <Node score="-0.016343733">
2278
+ <True/>
2279
+ <Node score="0.012169996">
2280
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2281
+ </Node>
2282
+ </Node>
2283
+ </TreeModel>
2284
+ </Segment>
2285
+ <Segment id="65">
2286
+ <True/>
2287
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2288
+ <MiningSchema>
2289
+ <MiningField name="sepal_length"/>
2290
+ </MiningSchema>
2291
+ <Node score="0.015050585">
2292
+ <True/>
2293
+ <Node score="-0.013404136">
2294
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
2295
+ </Node>
2296
+ </Node>
2297
+ </TreeModel>
2298
+ </Segment>
2299
+ <Segment id="66">
2300
+ <True/>
2301
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2302
+ <MiningSchema>
2303
+ <MiningField name="sepal_length"/>
2304
+ </MiningSchema>
2305
+ <Node score="-0.016474439">
2306
+ <True/>
2307
+ <Node score="0.011974123">
2308
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2309
+ </Node>
2310
+ </Node>
2311
+ </TreeModel>
2312
+ </Segment>
2313
+ <Segment id="67">
2314
+ <True/>
2315
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2316
+ <MiningSchema>
2317
+ <MiningField name="sepal_length"/>
2318
+ </MiningSchema>
2319
+ <Node score="0.014594327">
2320
+ <True/>
2321
+ <Node score="-0.01336354">
2322
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
2323
+ </Node>
2324
+ </Node>
2325
+ </TreeModel>
2326
+ </Segment>
2327
+ <Segment id="68">
2328
+ <True/>
2329
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2330
+ <MiningSchema>
2331
+ <MiningField name="sepal_length"/>
2332
+ </MiningSchema>
2333
+ <Node score="-0.016016334">
2334
+ <True/>
2335
+ <Node score="0.011882765">
2336
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2337
+ </Node>
2338
+ </Node>
2339
+ </TreeModel>
2340
+ </Segment>
2341
+ <Segment id="69">
2342
+ <True/>
2343
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2344
+ <MiningSchema>
2345
+ <MiningField name="sepal_length"/>
2346
+ </MiningSchema>
2347
+ <Node score="0.014498687">
2348
+ <True/>
2349
+ <Node score="-0.013451017">
2350
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
2351
+ </Node>
2352
+ </Node>
2353
+ </TreeModel>
2354
+ </Segment>
2355
+ <Segment id="70">
2356
+ <True/>
2357
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2358
+ <MiningSchema>
2359
+ <MiningField name="sepal_length"/>
2360
+ </MiningSchema>
2361
+ <Node score="-0.016058672">
2362
+ <True/>
2363
+ <Node score="0.01166976">
2364
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2365
+ </Node>
2366
+ </Node>
2367
+ </TreeModel>
2368
+ </Segment>
2369
+ <Segment id="71">
2370
+ <True/>
2371
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2372
+ <MiningSchema>
2373
+ <MiningField name="sepal_length"/>
2374
+ </MiningSchema>
2375
+ <Node score="0.014514274">
2376
+ <True/>
2377
+ <Node score="-0.013182963">
2378
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
2379
+ </Node>
2380
+ </Node>
2381
+ </TreeModel>
2382
+ </Segment>
2383
+ <Segment id="72">
2384
+ <True/>
2385
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2386
+ <MiningSchema>
2387
+ <MiningField name="sepal_length"/>
2388
+ </MiningSchema>
2389
+ <Node score="-0.015623019">
2390
+ <True/>
2391
+ <Node score="0.011515604">
2392
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2393
+ </Node>
2394
+ </Node>
2395
+ </TreeModel>
2396
+ </Segment>
2397
+ <Segment id="73">
2398
+ <True/>
2399
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2400
+ <MiningSchema>
2401
+ <MiningField name="sepal_length"/>
2402
+ </MiningSchema>
2403
+ <Node score="0.014476807">
2404
+ <True/>
2405
+ <Node score="-0.012966142">
2406
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
2407
+ </Node>
2408
+ </Node>
2409
+ </TreeModel>
2410
+ </Segment>
2411
+ <Segment id="74">
2412
+ <True/>
2413
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2414
+ <MiningSchema>
2415
+ <MiningField name="sepal_length"/>
2416
+ </MiningSchema>
2417
+ <Node score="-0.015240448">
2418
+ <True/>
2419
+ <Node score="0.011329058">
2420
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2421
+ </Node>
2422
+ </Node>
2423
+ </TreeModel>
2424
+ </Segment>
2425
+ <Segment id="75">
2426
+ <True/>
2427
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2428
+ <MiningSchema>
2429
+ <MiningField name="sepal_length"/>
2430
+ </MiningSchema>
2431
+ <Node score="0.014401726">
2432
+ <True/>
2433
+ <Node score="-0.012781697">
2434
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
2435
+ </Node>
2436
+ </Node>
2437
+ </TreeModel>
2438
+ </Segment>
2439
+ <Segment id="76">
2440
+ <True/>
2441
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2442
+ <MiningSchema>
2443
+ <MiningField name="sepal_length"/>
2444
+ </MiningSchema>
2445
+ <Node score="-0.01489951">
2446
+ <True/>
2447
+ <Node score="0.011125741">
2448
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2449
+ </Node>
2450
+ </Node>
2451
+ </TreeModel>
2452
+ </Segment>
2453
+ <Segment id="77">
2454
+ <True/>
2455
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2456
+ <MiningSchema>
2457
+ <MiningField name="sepal_length"/>
2458
+ </MiningSchema>
2459
+ <Node score="0.014017243">
2460
+ <True/>
2461
+ <Node score="-0.012516829">
2462
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
2463
+ </Node>
2464
+ </Node>
2465
+ </TreeModel>
2466
+ </Segment>
2467
+ <Segment id="78">
2468
+ <True/>
2469
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2470
+ <MiningSchema>
2471
+ <MiningField name="sepal_length"/>
2472
+ </MiningSchema>
2473
+ <Node score="-0.014588227">
2474
+ <True/>
2475
+ <Node score="0.010948051">
2476
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2477
+ </Node>
2478
+ </Node>
2479
+ </TreeModel>
2480
+ </Segment>
2481
+ <Segment id="79">
2482
+ <True/>
2483
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2484
+ <MiningSchema>
2485
+ <MiningField name="sepal_length"/>
2486
+ </MiningSchema>
2487
+ <Node score="0.0139459735">
2488
+ <True/>
2489
+ <Node score="-0.012374256">
2490
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
2491
+ </Node>
2492
+ </Node>
2493
+ </TreeModel>
2494
+ </Segment>
2495
+ <Segment id="80">
2496
+ <True/>
2497
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2498
+ <MiningSchema>
2499
+ <MiningField name="sepal_length"/>
2500
+ </MiningSchema>
2501
+ <Node score="0.012789894">
2502
+ <True/>
2503
+ <Node score="-0.011190086">
2504
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
2505
+ </Node>
2506
+ </Node>
2507
+ </TreeModel>
2508
+ </Segment>
2509
+ <Segment id="81">
2510
+ <True/>
2511
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2512
+ <MiningSchema>
2513
+ <MiningField name="sepal_length"/>
2514
+ </MiningSchema>
2515
+ <Node score="-0.014503096">
2516
+ <True/>
2517
+ <Node score="0.010817036">
2518
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2519
+ </Node>
2520
+ </Node>
2521
+ </TreeModel>
2522
+ </Segment>
2523
+ <Segment id="82">
2524
+ <True/>
2525
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2526
+ <MiningSchema>
2527
+ <MiningField name="petal_width"/>
2528
+ </MiningSchema>
2529
+ <Node score="0.012384056">
2530
+ <True/>
2531
+ <Node score="-0.013540466">
2532
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
2533
+ </Node>
2534
+ </Node>
2535
+ </TreeModel>
2536
+ </Segment>
2537
+ <Segment id="83">
2538
+ <True/>
2539
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2540
+ <MiningSchema>
2541
+ <MiningField name="petal_width"/>
2542
+ </MiningSchema>
2543
+ <Node score="0.01170108">
2544
+ <True/>
2545
+ <Node score="-0.012876953">
2546
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
2547
+ </Node>
2548
+ </Node>
2549
+ </TreeModel>
2550
+ </Segment>
2551
+ <Segment id="84">
2552
+ <True/>
2553
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2554
+ <MiningSchema>
2555
+ <MiningField name="petal_width"/>
2556
+ </MiningSchema>
2557
+ <Node score="0.01108574">
2558
+ <True/>
2559
+ <Node score="-0.012283994">
2560
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
2561
+ </Node>
2562
+ </Node>
2563
+ </TreeModel>
2564
+ </Segment>
2565
+ <Segment id="85">
2566
+ <True/>
2567
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2568
+ <MiningSchema>
2569
+ <MiningField name="sepal_length"/>
2570
+ </MiningSchema>
2571
+ <Node score="0.012181774">
2572
+ <True/>
2573
+ <Node score="-0.010988965">
2574
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
2575
+ </Node>
2576
+ </Node>
2577
+ </TreeModel>
2578
+ </Segment>
2579
+ <Segment id="86">
2580
+ <True/>
2581
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2582
+ <MiningSchema>
2583
+ <MiningField name="sepal_length"/>
2584
+ </MiningSchema>
2585
+ <Node score="-0.014469593">
2586
+ <True/>
2587
+ <Node score="0.01045166">
2588
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
2589
+ </Node>
2590
+ </Node>
2591
+ </TreeModel>
2592
+ </Segment>
2593
+ <Segment id="87">
2594
+ <True/>
2595
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2596
+ <MiningSchema>
2597
+ <MiningField name="petal_width"/>
2598
+ </MiningSchema>
2599
+ <Node score="0.011524875">
2600
+ <True/>
2601
+ <Node score="-0.013132685">
2602
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
2603
+ </Node>
2604
+ </Node>
2605
+ </TreeModel>
2606
+ </Segment>
2607
+ <Segment id="88">
2608
+ <True/>
2609
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2610
+ <MiningSchema>
2611
+ <MiningField name="petal_width"/>
2612
+ </MiningSchema>
2613
+ <Node score="0.010851675">
2614
+ <True/>
2615
+ <Node score="-0.012443855">
2616
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
2617
+ </Node>
2618
+ </Node>
2619
+ </TreeModel>
2620
+ </Segment>
2621
+ <Segment id="89">
2622
+ <True/>
2623
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2624
+ <MiningSchema>
2625
+ <MiningField name="sepal_length"/>
2626
+ </MiningSchema>
2627
+ <Node score="0.011825959">
2628
+ <True/>
2629
+ <Node score="-0.010879827">
2630
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
2631
+ </Node>
2632
+ </Node>
2633
+ </TreeModel>
2634
+ </Segment>
2635
+ <Segment id="90">
2636
+ <True/>
2637
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2638
+ <MiningSchema>
2639
+ <MiningField name="petal_width"/>
2640
+ </MiningSchema>
2641
+ <Node score="0.010572602">
2642
+ <True/>
2643
+ <Node score="-0.012112227">
2644
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
2645
+ </Node>
2646
+ </Node>
2647
+ </TreeModel>
2648
+ </Segment>
2649
+ <Segment id="91">
2650
+ <True/>
2651
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2652
+ <MiningSchema>
2653
+ <MiningField name="petal_width"/>
2654
+ </MiningSchema>
2655
+ <Node score="0.009977164">
2656
+ <True/>
2657
+ <Node score="-0.011527218">
2658
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
2659
+ </Node>
2660
+ </Node>
2661
+ </TreeModel>
2662
+ </Segment>
2663
+ <Segment id="92">
2664
+ <True/>
2665
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2666
+ <MiningSchema>
2667
+ <MiningField name="sepal_length"/>
2668
+ </MiningSchema>
2669
+ <Node score="0.010740966">
2670
+ <True/>
2671
+ <Node score="-0.009908762">
2672
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
2673
+ </Node>
2674
+ </Node>
2675
+ </TreeModel>
2676
+ </Segment>
2677
+ <Segment id="93">
2678
+ <True/>
2679
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2680
+ <MiningSchema>
2681
+ <MiningField name="petal_width"/>
2682
+ </MiningSchema>
2683
+ <Node score="0.009563805">
2684
+ <True/>
2685
+ <Node score="-0.011079367">
2686
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
2687
+ </Node>
2688
+ </Node>
2689
+ </TreeModel>
2690
+ </Segment>
2691
+ <Segment id="94">
2692
+ <True/>
2693
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2694
+ <MiningSchema>
2695
+ <MiningField name="sepal_width"/>
2696
+ </MiningSchema>
2697
+ <Node score="0.010292187">
2698
+ <True/>
2699
+ <Node score="-0.00971478">
2700
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.95"/>
2701
+ </Node>
2702
+ </Node>
2703
+ </TreeModel>
2704
+ </Segment>
2705
+ <Segment id="95">
2706
+ <True/>
2707
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2708
+ <MiningSchema>
2709
+ <MiningField name="petal_width"/>
2710
+ </MiningSchema>
2711
+ <Node score="0.009112751">
2712
+ <True/>
2713
+ <Node score="-0.0105453525">
2714
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
2715
+ </Node>
2716
+ </Node>
2717
+ </TreeModel>
2718
+ </Segment>
2719
+ <Segment id="96">
2720
+ <True/>
2721
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2722
+ <MiningSchema>
2723
+ <MiningField name="sepal_width"/>
2724
+ </MiningSchema>
2725
+ <Node score="0.009978279">
2726
+ <True/>
2727
+ <Node score="-0.009393317">
2728
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.95"/>
2729
+ </Node>
2730
+ </Node>
2731
+ </TreeModel>
2732
+ </Segment>
2733
+ <Segment id="97">
2734
+ <True/>
2735
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2736
+ <MiningSchema>
2737
+ <MiningField name="sepal_length"/>
2738
+ </MiningSchema>
2739
+ <Node score="0.009833495">
2740
+ <True/>
2741
+ <Node score="-0.008976651">
2742
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
2743
+ </Node>
2744
+ </Node>
2745
+ </TreeModel>
2746
+ </Segment>
2747
+ <Segment id="98">
2748
+ <True/>
2749
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2750
+ <MiningSchema>
2751
+ <MiningField name="sepal_width"/>
2752
+ </MiningSchema>
2753
+ <Node score="0.010211514">
2754
+ <True/>
2755
+ <Node score="-0.009468766">
2756
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.95"/>
2757
+ </Node>
2758
+ </Node>
2759
+ </TreeModel>
2760
+ </Segment>
2761
+ <Segment id="99">
2762
+ <True/>
2763
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2764
+ <MiningSchema>
2765
+ <MiningField name="petal_width"/>
2766
+ </MiningSchema>
2767
+ <Node score="0.009039359">
2768
+ <True/>
2769
+ <Node score="-0.010301042">
2770
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
2771
+ </Node>
2772
+ </Node>
2773
+ </TreeModel>
2774
+ </Segment>
2775
+ <Segment id="100">
2776
+ <True/>
2777
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2778
+ <MiningSchema>
2779
+ <MiningField name="petal_width"/>
2780
+ </MiningSchema>
2781
+ <Node score="-0.010114831">
2782
+ <True/>
2783
+ <Node score="0.009283212">
2784
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.55"/>
2785
+ </Node>
2786
+ </Node>
2787
+ </TreeModel>
2788
+ </Segment>
2789
+ </Segmentation>
2790
+ </MiningModel>
2791
+ </Segment>
2792
+ <Segment id="3">
2793
+ <True/>
2794
+ <MiningModel functionName="regression" x-mathContext="float">
2795
+ <MiningSchema>
2796
+ <MiningField name="sepal_length"/>
2797
+ <MiningField name="sepal_width"/>
2798
+ <MiningField name="petal_length"/>
2799
+ <MiningField name="petal_width"/>
2800
+ </MiningSchema>
2801
+ <Output>
2802
+ <OutputField name="xgbValue(3)" optype="continuous" dataType="float" isFinalResult="false"/>
2803
+ </Output>
2804
+ <Targets>
2805
+ <Target rescaleConstant="0.5"/>
2806
+ </Targets>
2807
+ <Segmentation multipleModelMethod="sum">
2808
+ <Segment id="1">
2809
+ <True/>
2810
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2811
+ <MiningSchema>
2812
+ <MiningField name="petal_length"/>
2813
+ <MiningField name="petal_width"/>
2814
+ </MiningSchema>
2815
+ <Node score="-0.21844663">
2816
+ <True/>
2817
+ <Node score="0.39537573">
2818
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
2819
+ </Node>
2820
+ <Node score="-0.03600001">
2821
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.8500004"/>
2822
+ </Node>
2823
+ </Node>
2824
+ </TreeModel>
2825
+ </Segment>
2826
+ <Segment id="2">
2827
+ <True/>
2828
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2829
+ <MiningSchema>
2830
+ <MiningField name="petal_length"/>
2831
+ <MiningField name="petal_width"/>
2832
+ </MiningSchema>
2833
+ <Node score="-0.19512509">
2834
+ <True/>
2835
+ <Node score="0.07787265">
2836
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
2837
+ <Node score="0.29640067">
2838
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.8500004"/>
2839
+ </Node>
2840
+ </Node>
2841
+ <Node score="-0.012304146">
2842
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.95"/>
2843
+ </Node>
2844
+ <Node score="-0.0024873647">
2845
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.55"/>
2846
+ </Node>
2847
+ </Node>
2848
+ </TreeModel>
2849
+ </Segment>
2850
+ <Segment id="3">
2851
+ <True/>
2852
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2853
+ <MiningSchema>
2854
+ <MiningField name="petal_length"/>
2855
+ <MiningField name="petal_width"/>
2856
+ </MiningSchema>
2857
+ <Node score="-0.17981872">
2858
+ <True/>
2859
+ <Node score="0.21857671">
2860
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
2861
+ </Node>
2862
+ <Node score="-0.008137716">
2863
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.8500004"/>
2864
+ </Node>
2865
+ </Node>
2866
+ </TreeModel>
2867
+ </Segment>
2868
+ <Segment id="4">
2869
+ <True/>
2870
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2871
+ <MiningSchema>
2872
+ <MiningField name="sepal_width"/>
2873
+ <MiningField name="petal_length"/>
2874
+ <MiningField name="petal_width"/>
2875
+ </MiningSchema>
2876
+ <Node score="-0.16839066">
2877
+ <True/>
2878
+ <Node score="0.18009295">
2879
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
2880
+ <Node score="0.20205033">
2881
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
2882
+ </Node>
2883
+ <Node score="-0.02741418">
2884
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.9"/>
2885
+ </Node>
2886
+ </Node>
2887
+ <Node score="-0.0013320078">
2888
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.8500004"/>
2889
+ </Node>
2890
+ </Node>
2891
+ </TreeModel>
2892
+ </Segment>
2893
+ <Segment id="5">
2894
+ <True/>
2895
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2896
+ <MiningSchema>
2897
+ <MiningField name="sepal_width"/>
2898
+ <MiningField name="petal_length"/>
2899
+ <MiningField name="petal_width"/>
2900
+ </MiningSchema>
2901
+ <Node score="-0.15961207">
2902
+ <True/>
2903
+ <Node score="0.16099331">
2904
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
2905
+ <Node score="0.18079282">
2906
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
2907
+ </Node>
2908
+ <Node score="-0.033812698">
2909
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.9"/>
2910
+ </Node>
2911
+ </Node>
2912
+ <Node score="0.0049838107">
2913
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.8500004"/>
2914
+ </Node>
2915
+ </Node>
2916
+ </TreeModel>
2917
+ </Segment>
2918
+ <Segment id="6">
2919
+ <True/>
2920
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2921
+ <MiningSchema>
2922
+ <MiningField name="sepal_length"/>
2923
+ <MiningField name="sepal_width"/>
2924
+ <MiningField name="petal_width"/>
2925
+ </MiningSchema>
2926
+ <Node score="-0.15063795">
2927
+ <True/>
2928
+ <Node score="0.025216958">
2929
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
2930
+ <Node score="0.17228574">
2931
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
2932
+ </Node>
2933
+ </Node>
2934
+ <Node score="0.06700099">
2935
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.45"/>
2936
+ <Node score="-0.12885135">
2937
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
2938
+ </Node>
2939
+ </Node>
2940
+ </Node>
2941
+ </TreeModel>
2942
+ </Segment>
2943
+ <Segment id="7">
2944
+ <True/>
2945
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2946
+ <MiningSchema>
2947
+ <MiningField name="sepal_width"/>
2948
+ <MiningField name="petal_length"/>
2949
+ <MiningField name="petal_width"/>
2950
+ </MiningSchema>
2951
+ <Node score="-0.14619362">
2952
+ <True/>
2953
+ <Node score="0.13755275">
2954
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
2955
+ <Node score="0.15434475">
2956
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
2957
+ </Node>
2958
+ <Node score="-0.048369307">
2959
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.9"/>
2960
+ </Node>
2961
+ </Node>
2962
+ <Node score="0.013265152">
2963
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.8500004"/>
2964
+ </Node>
2965
+ </Node>
2966
+ </TreeModel>
2967
+ </Segment>
2968
+ <Segment id="8">
2969
+ <True/>
2970
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2971
+ <MiningSchema>
2972
+ <MiningField name="sepal_width"/>
2973
+ <MiningField name="petal_length"/>
2974
+ <MiningField name="petal_width"/>
2975
+ </MiningSchema>
2976
+ <Node score="-0.14018828">
2977
+ <True/>
2978
+ <Node score="0.12734868">
2979
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
2980
+ <Node score="0.14451496">
2981
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
2982
+ </Node>
2983
+ <Node score="-0.046574034">
2984
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.9"/>
2985
+ </Node>
2986
+ </Node>
2987
+ <Node score="0.017174892">
2988
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.8500004"/>
2989
+ </Node>
2990
+ </Node>
2991
+ </TreeModel>
2992
+ </Segment>
2993
+ <Segment id="9">
2994
+ <True/>
2995
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
2996
+ <MiningSchema>
2997
+ <MiningField name="sepal_length"/>
2998
+ <MiningField name="sepal_width"/>
2999
+ <MiningField name="petal_width"/>
3000
+ </MiningSchema>
3001
+ <Node score="-0.095307745">
3002
+ <True/>
3003
+ <Node score="-0.0063221245">
3004
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3005
+ <Node score="0.14616847">
3006
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
3007
+ </Node>
3008
+ </Node>
3009
+ <Node score="-0.13630944">
3010
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
3011
+ </Node>
3012
+ <Node score="0.05960263">
3013
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.45"/>
3014
+ </Node>
3015
+ </Node>
3016
+ </TreeModel>
3017
+ </Segment>
3018
+ <Segment id="10">
3019
+ <True/>
3020
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3021
+ <MiningSchema>
3022
+ <MiningField name="sepal_length"/>
3023
+ <MiningField name="sepal_width"/>
3024
+ <MiningField name="petal_width"/>
3025
+ </MiningSchema>
3026
+ <Node score="-0.08658763">
3027
+ <True/>
3028
+ <Node score="-0.008561933">
3029
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3030
+ <Node score="0.13901287">
3031
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
3032
+ </Node>
3033
+ </Node>
3034
+ <Node score="-0.12929438">
3035
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
3036
+ </Node>
3037
+ <Node score="0.05006891">
3038
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.45"/>
3039
+ </Node>
3040
+ </Node>
3041
+ </TreeModel>
3042
+ </Segment>
3043
+ <Segment id="11">
3044
+ <True/>
3045
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3046
+ <MiningSchema>
3047
+ <MiningField name="sepal_length"/>
3048
+ <MiningField name="sepal_width"/>
3049
+ <MiningField name="petal_width"/>
3050
+ </MiningSchema>
3051
+ <Node score="-0.12846537">
3052
+ <True/>
3053
+ <Node score="0.13409239">
3054
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
3055
+ <Node score="-0.0029032072">
3056
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="3.15"/>
3057
+ </Node>
3058
+ <Node score="0.03917779">
3059
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.6"/>
3060
+ </Node>
3061
+ </Node>
3062
+ <Node score="0.021612834">
3063
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.25"/>
3064
+ </Node>
3065
+ </Node>
3066
+ </TreeModel>
3067
+ </Segment>
3068
+ <Segment id="12">
3069
+ <True/>
3070
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3071
+ <MiningSchema>
3072
+ <MiningField name="sepal_width"/>
3073
+ <MiningField name="petal_length"/>
3074
+ <MiningField name="petal_width"/>
3075
+ </MiningSchema>
3076
+ <Node score="-0.11816355">
3077
+ <True/>
3078
+ <Node score="0.008684167">
3079
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
3080
+ <Node score="0.13519429">
3081
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.75"/>
3082
+ </Node>
3083
+ </Node>
3084
+ <Node score="0.092168294">
3085
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
3086
+ <Node score="-0.047489576">
3087
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.9"/>
3088
+ </Node>
3089
+ </Node>
3090
+ </Node>
3091
+ </TreeModel>
3092
+ </Segment>
3093
+ <Segment id="13">
3094
+ <True/>
3095
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3096
+ <MiningSchema>
3097
+ <MiningField name="sepal_width"/>
3098
+ <MiningField name="petal_length"/>
3099
+ <MiningField name="petal_width"/>
3100
+ </MiningSchema>
3101
+ <Node score="-0.015896944">
3102
+ <True/>
3103
+ <Node score="0.123507135">
3104
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3105
+ <Node score="-0.02012863">
3106
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="3.15"/>
3107
+ </Node>
3108
+ </Node>
3109
+ <Node score="-0.112152">
3110
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
3111
+ </Node>
3112
+ <Node score="0.009329087">
3113
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.8500004"/>
3114
+ </Node>
3115
+ </Node>
3116
+ </TreeModel>
3117
+ </Segment>
3118
+ <Segment id="14">
3119
+ <True/>
3120
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3121
+ <MiningSchema>
3122
+ <MiningField name="sepal_length"/>
3123
+ <MiningField name="sepal_width"/>
3124
+ <MiningField name="petal_length"/>
3125
+ <MiningField name="petal_width"/>
3126
+ </MiningSchema>
3127
+ <Node score="-0.009549501">
3128
+ <True/>
3129
+ <Node score="-0.030408597">
3130
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3131
+ <Node score="0.117170006">
3132
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
3133
+ </Node>
3134
+ </Node>
3135
+ <Node score="-0.10522849">
3136
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
3137
+ </Node>
3138
+ <Node score="0.0076820212">
3139
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.8500004"/>
3140
+ </Node>
3141
+ </Node>
3142
+ </TreeModel>
3143
+ </Segment>
3144
+ <Segment id="15">
3145
+ <True/>
3146
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3147
+ <MiningSchema>
3148
+ <MiningField name="sepal_width"/>
3149
+ <MiningField name="petal_length"/>
3150
+ <MiningField name="petal_width"/>
3151
+ </MiningSchema>
3152
+ <Node score="-0.077864304">
3153
+ <True/>
3154
+ <Node score="0.080320485">
3155
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
3156
+ </Node>
3157
+ <Node score="-0.1152853">
3158
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="3.05"/>
3159
+ </Node>
3160
+ <Node score="0.06569045">
3161
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6"/>
3162
+ </Node>
3163
+ </Node>
3164
+ </TreeModel>
3165
+ </Segment>
3166
+ <Segment id="16">
3167
+ <True/>
3168
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3169
+ <MiningSchema>
3170
+ <MiningField name="sepal_width"/>
3171
+ <MiningField name="petal_width"/>
3172
+ </MiningSchema>
3173
+ <Node score="-0.0013763193">
3174
+ <True/>
3175
+ <Node score="0.105833076">
3176
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3177
+ <Node score="-0.024049679">
3178
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="3.05"/>
3179
+ </Node>
3180
+ </Node>
3181
+ <Node score="-0.0931603">
3182
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
3183
+ </Node>
3184
+ </Node>
3185
+ </TreeModel>
3186
+ </Segment>
3187
+ <Segment id="17">
3188
+ <True/>
3189
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3190
+ <MiningSchema>
3191
+ <MiningField name="sepal_length"/>
3192
+ <MiningField name="petal_length"/>
3193
+ <MiningField name="petal_width"/>
3194
+ </MiningSchema>
3195
+ <Node score="-0.106951855">
3196
+ <True/>
3197
+ <Node score="-0.031998478">
3198
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
3199
+ <Node score="0.11295655">
3200
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
3201
+ </Node>
3202
+ </Node>
3203
+ <Node score="0.022593226">
3204
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
3205
+ </Node>
3206
+ </Node>
3207
+ </TreeModel>
3208
+ </Segment>
3209
+ <Segment id="18">
3210
+ <True/>
3211
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3212
+ <MiningSchema>
3213
+ <MiningField name="sepal_length"/>
3214
+ <MiningField name="petal_length"/>
3215
+ <MiningField name="petal_width"/>
3216
+ </MiningSchema>
3217
+ <Node score="-0.10243487">
3218
+ <True/>
3219
+ <Node score="-0.026373789">
3220
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
3221
+ <Node score="0.105966896">
3222
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
3223
+ </Node>
3224
+ </Node>
3225
+ <Node score="0.019109946">
3226
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
3227
+ </Node>
3228
+ </Node>
3229
+ </TreeModel>
3230
+ </Segment>
3231
+ <Segment id="19">
3232
+ <True/>
3233
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3234
+ <MiningSchema>
3235
+ <MiningField name="sepal_width"/>
3236
+ <MiningField name="petal_width"/>
3237
+ </MiningSchema>
3238
+ <Node score="-0.053690657">
3239
+ <True/>
3240
+ <Node score="0.08643188">
3241
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
3242
+ <Node score="-0.003326326">
3243
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.95"/>
3244
+ </Node>
3245
+ </Node>
3246
+ </Node>
3247
+ </TreeModel>
3248
+ </Segment>
3249
+ <Segment id="20">
3250
+ <True/>
3251
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3252
+ <MiningSchema>
3253
+ <MiningField name="sepal_length"/>
3254
+ <MiningField name="petal_width"/>
3255
+ </MiningSchema>
3256
+ <Node score="-0.09116547">
3257
+ <True/>
3258
+ <Node score="-0.0022932657">
3259
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
3260
+ <Node score="0.0798718">
3261
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3262
+ </Node>
3263
+ </Node>
3264
+ <Node score="0.019122671">
3265
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
3266
+ </Node>
3267
+ </Node>
3268
+ </TreeModel>
3269
+ </Segment>
3270
+ <Segment id="21">
3271
+ <True/>
3272
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3273
+ <MiningSchema>
3274
+ <MiningField name="sepal_length"/>
3275
+ <MiningField name="sepal_width"/>
3276
+ <MiningField name="petal_width"/>
3277
+ </MiningSchema>
3278
+ <Node score="-0.0883641">
3279
+ <True/>
3280
+ <Node score="0.06204501">
3281
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
3282
+ <Node score="0.012748577">
3283
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.95"/>
3284
+ </Node>
3285
+ </Node>
3286
+ <Node score="0.019407075">
3287
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
3288
+ </Node>
3289
+ </Node>
3290
+ </TreeModel>
3291
+ </Segment>
3292
+ <Segment id="22">
3293
+ <True/>
3294
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3295
+ <MiningSchema>
3296
+ <MiningField name="sepal_length"/>
3297
+ <MiningField name="petal_width"/>
3298
+ </MiningSchema>
3299
+ <Node score="-0.052652955">
3300
+ <True/>
3301
+ <Node score="0.046995215">
3302
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3303
+ </Node>
3304
+ <Node score="-0.0024961089">
3305
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
3306
+ </Node>
3307
+ </Node>
3308
+ </TreeModel>
3309
+ </Segment>
3310
+ <Segment id="23">
3311
+ <True/>
3312
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3313
+ <MiningSchema>
3314
+ <MiningField name="sepal_width"/>
3315
+ <MiningField name="petal_width"/>
3316
+ </MiningSchema>
3317
+ <Node score="-0.019798936">
3318
+ <True/>
3319
+ <Node score="-0.058607396">
3320
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="3.05"/>
3321
+ </Node>
3322
+ <Node score="0.0904676">
3323
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3324
+ </Node>
3325
+ </Node>
3326
+ </TreeModel>
3327
+ </Segment>
3328
+ <Segment id="24">
3329
+ <True/>
3330
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3331
+ <MiningSchema>
3332
+ <MiningField name="sepal_length"/>
3333
+ </MiningSchema>
3334
+ <Node score="0.0041206046">
3335
+ <True/>
3336
+ <Node score="0.049929593">
3337
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="6.05"/>
3338
+ </Node>
3339
+ <Node score="-0.058508184">
3340
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.8500004"/>
3341
+ </Node>
3342
+ </Node>
3343
+ </TreeModel>
3344
+ </Segment>
3345
+ <Segment id="25">
3346
+ <True/>
3347
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3348
+ <MiningSchema>
3349
+ <MiningField name="sepal_width"/>
3350
+ <MiningField name="petal_width"/>
3351
+ </MiningSchema>
3352
+ <Node score="-0.020325411">
3353
+ <True/>
3354
+ <Node score="-0.05344567">
3355
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="3.05"/>
3356
+ </Node>
3357
+ <Node score="0.08667495">
3358
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3359
+ </Node>
3360
+ </Node>
3361
+ </TreeModel>
3362
+ </Segment>
3363
+ <Segment id="26">
3364
+ <True/>
3365
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3366
+ <MiningSchema>
3367
+ <MiningField name="petal_length"/>
3368
+ <MiningField name="petal_width"/>
3369
+ </MiningSchema>
3370
+ <Node score="-0.051548608">
3371
+ <True/>
3372
+ <Node score="0.050198622">
3373
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
3374
+ </Node>
3375
+ <Node score="0.0083102975">
3376
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3377
+ </Node>
3378
+ </Node>
3379
+ </TreeModel>
3380
+ </Segment>
3381
+ <Segment id="27">
3382
+ <True/>
3383
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3384
+ <MiningSchema>
3385
+ <MiningField name="petal_width"/>
3386
+ </MiningSchema>
3387
+ <Node score="-0.039950028">
3388
+ <True/>
3389
+ <Node score="0.03651872">
3390
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
3391
+ </Node>
3392
+ </Node>
3393
+ </TreeModel>
3394
+ </Segment>
3395
+ <Segment id="28">
3396
+ <True/>
3397
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3398
+ <MiningSchema>
3399
+ <MiningField name="petal_length"/>
3400
+ <MiningField name="petal_width"/>
3401
+ </MiningSchema>
3402
+ <Node score="-0.047489185">
3403
+ <True/>
3404
+ <Node score="0.045160368">
3405
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
3406
+ </Node>
3407
+ <Node score="0.007386086">
3408
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3409
+ </Node>
3410
+ </Node>
3411
+ </TreeModel>
3412
+ </Segment>
3413
+ <Segment id="29">
3414
+ <True/>
3415
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3416
+ <MiningSchema>
3417
+ <MiningField name="petal_width"/>
3418
+ </MiningSchema>
3419
+ <Node score="-0.03765213">
3420
+ <True/>
3421
+ <Node score="0.0331369">
3422
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
3423
+ </Node>
3424
+ </Node>
3425
+ </TreeModel>
3426
+ </Segment>
3427
+ <Segment id="30">
3428
+ <True/>
3429
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3430
+ <MiningSchema>
3431
+ <MiningField name="petal_length"/>
3432
+ <MiningField name="petal_width"/>
3433
+ </MiningSchema>
3434
+ <Node score="-0.04702604">
3435
+ <True/>
3436
+ <Node score="0.04426246">
3437
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
3438
+ </Node>
3439
+ <Node score="0.0094350595">
3440
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3441
+ </Node>
3442
+ </Node>
3443
+ </TreeModel>
3444
+ </Segment>
3445
+ <Segment id="31">
3446
+ <True/>
3447
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3448
+ <MiningSchema>
3449
+ <MiningField name="petal_width"/>
3450
+ </MiningSchema>
3451
+ <Node score="-0.035114802">
3452
+ <True/>
3453
+ <Node score="0.03170233">
3454
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
3455
+ </Node>
3456
+ </Node>
3457
+ </TreeModel>
3458
+ </Segment>
3459
+ <Segment id="32">
3460
+ <True/>
3461
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3462
+ <MiningSchema>
3463
+ <MiningField name="petal_length"/>
3464
+ <MiningField name="petal_width"/>
3465
+ </MiningSchema>
3466
+ <Node score="-0.04640518">
3467
+ <True/>
3468
+ <Node score="0.043301806">
3469
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
3470
+ </Node>
3471
+ <Node score="0.011036446">
3472
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3473
+ </Node>
3474
+ </Node>
3475
+ </TreeModel>
3476
+ </Segment>
3477
+ <Segment id="33">
3478
+ <True/>
3479
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3480
+ <MiningSchema>
3481
+ <MiningField name="sepal_length"/>
3482
+ <MiningField name="petal_length"/>
3483
+ </MiningSchema>
3484
+ <Node score="-0.036584754">
3485
+ <True/>
3486
+ <Node score="0.009382358">
3487
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
3488
+ <Node score="0.03790851">
3489
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
3490
+ </Node>
3491
+ </Node>
3492
+ </Node>
3493
+ </TreeModel>
3494
+ </Segment>
3495
+ <Segment id="34">
3496
+ <True/>
3497
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3498
+ <MiningSchema>
3499
+ <MiningField name="petal_width"/>
3500
+ </MiningSchema>
3501
+ <Node score="-0.03238112">
3502
+ <True/>
3503
+ <Node score="0.028918643">
3504
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
3505
+ </Node>
3506
+ </Node>
3507
+ </TreeModel>
3508
+ </Segment>
3509
+ <Segment id="35">
3510
+ <True/>
3511
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3512
+ <MiningSchema>
3513
+ <MiningField name="petal_length"/>
3514
+ <MiningField name="petal_width"/>
3515
+ </MiningSchema>
3516
+ <Node score="-0.04290201">
3517
+ <True/>
3518
+ <Node score="0.040962882">
3519
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
3520
+ </Node>
3521
+ <Node score="0.009529357">
3522
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3523
+ </Node>
3524
+ </Node>
3525
+ </TreeModel>
3526
+ </Segment>
3527
+ <Segment id="36">
3528
+ <True/>
3529
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3530
+ <MiningSchema>
3531
+ <MiningField name="sepal_length"/>
3532
+ </MiningSchema>
3533
+ <Node score="-0.03236598">
3534
+ <True/>
3535
+ <Node score="0.028274478">
3536
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
3537
+ </Node>
3538
+ </Node>
3539
+ </TreeModel>
3540
+ </Segment>
3541
+ <Segment id="37">
3542
+ <True/>
3543
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3544
+ <MiningSchema>
3545
+ <MiningField name="petal_length"/>
3546
+ <MiningField name="petal_width"/>
3547
+ </MiningSchema>
3548
+ <Node score="-0.040342364">
3549
+ <True/>
3550
+ <Node score="0.038582224">
3551
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="5.05"/>
3552
+ </Node>
3553
+ <Node score="0.010089131">
3554
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3555
+ </Node>
3556
+ </Node>
3557
+ </TreeModel>
3558
+ </Segment>
3559
+ <Segment id="38">
3560
+ <True/>
3561
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3562
+ <MiningSchema>
3563
+ <MiningField name="sepal_length"/>
3564
+ </MiningSchema>
3565
+ <Node score="-0.031590443">
3566
+ <True/>
3567
+ <Node score="0.028563855">
3568
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
3569
+ </Node>
3570
+ </Node>
3571
+ </TreeModel>
3572
+ </Segment>
3573
+ <Segment id="39">
3574
+ <True/>
3575
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3576
+ <MiningSchema>
3577
+ <MiningField name="petal_width"/>
3578
+ </MiningSchema>
3579
+ <Node score="-0.029123748">
3580
+ <True/>
3581
+ <Node score="0.027417315">
3582
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
3583
+ </Node>
3584
+ </Node>
3585
+ </TreeModel>
3586
+ </Segment>
3587
+ <Segment id="40">
3588
+ <True/>
3589
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3590
+ <MiningSchema>
3591
+ <MiningField name="sepal_length"/>
3592
+ </MiningSchema>
3593
+ <Node score="-0.03158061">
3594
+ <True/>
3595
+ <Node score="0.028424507">
3596
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
3597
+ </Node>
3598
+ </Node>
3599
+ </TreeModel>
3600
+ </Segment>
3601
+ <Segment id="41">
3602
+ <True/>
3603
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3604
+ <MiningSchema>
3605
+ <MiningField name="sepal_width"/>
3606
+ </MiningSchema>
3607
+ <Node score="0.031557217">
3608
+ <True/>
3609
+ <Node score="-0.026057655">
3610
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
3611
+ </Node>
3612
+ </Node>
3613
+ </TreeModel>
3614
+ </Segment>
3615
+ <Segment id="42">
3616
+ <True/>
3617
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3618
+ <MiningSchema>
3619
+ <MiningField name="sepal_length"/>
3620
+ </MiningSchema>
3621
+ <Node score="-0.030819368">
3622
+ <True/>
3623
+ <Node score="0.027919447">
3624
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
3625
+ </Node>
3626
+ </Node>
3627
+ </TreeModel>
3628
+ </Segment>
3629
+ <Segment id="43">
3630
+ <True/>
3631
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3632
+ <MiningSchema>
3633
+ <MiningField name="petal_width"/>
3634
+ </MiningSchema>
3635
+ <Node score="-0.02759191">
3636
+ <True/>
3637
+ <Node score="0.02665102">
3638
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
3639
+ </Node>
3640
+ </Node>
3641
+ </TreeModel>
3642
+ </Segment>
3643
+ <Segment id="44">
3644
+ <True/>
3645
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3646
+ <MiningSchema>
3647
+ <MiningField name="sepal_length"/>
3648
+ </MiningSchema>
3649
+ <Node score="-0.028382674">
3650
+ <True/>
3651
+ <Node score="0.026095191">
3652
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
3653
+ </Node>
3654
+ </Node>
3655
+ </TreeModel>
3656
+ </Segment>
3657
+ <Segment id="45">
3658
+ <True/>
3659
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3660
+ <MiningSchema>
3661
+ <MiningField name="petal_width"/>
3662
+ </MiningSchema>
3663
+ <Node score="-0.027121227">
3664
+ <True/>
3665
+ <Node score="0.026140008">
3666
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
3667
+ </Node>
3668
+ </Node>
3669
+ </TreeModel>
3670
+ </Segment>
3671
+ <Segment id="46">
3672
+ <True/>
3673
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3674
+ <MiningSchema>
3675
+ <MiningField name="sepal_width"/>
3676
+ </MiningSchema>
3677
+ <Node score="0.029989917">
3678
+ <True/>
3679
+ <Node score="-0.02359569">
3680
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
3681
+ </Node>
3682
+ </Node>
3683
+ </TreeModel>
3684
+ </Segment>
3685
+ <Segment id="47">
3686
+ <True/>
3687
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3688
+ <MiningSchema>
3689
+ <MiningField name="petal_width"/>
3690
+ </MiningSchema>
3691
+ <Node score="-0.021614155">
3692
+ <True/>
3693
+ <Node score="0.03273086">
3694
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3695
+ </Node>
3696
+ </Node>
3697
+ </TreeModel>
3698
+ </Segment>
3699
+ <Segment id="48">
3700
+ <True/>
3701
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3702
+ <MiningSchema>
3703
+ <MiningField name="sepal_length"/>
3704
+ </MiningSchema>
3705
+ <Node score="-0.026267255">
3706
+ <True/>
3707
+ <Node score="0.025485994">
3708
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
3709
+ </Node>
3710
+ </Node>
3711
+ </TreeModel>
3712
+ </Segment>
3713
+ <Segment id="49">
3714
+ <True/>
3715
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3716
+ <MiningSchema>
3717
+ <MiningField name="petal_width"/>
3718
+ </MiningSchema>
3719
+ <Node score="-0.020543132">
3720
+ <True/>
3721
+ <Node score="0.032030616">
3722
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3723
+ </Node>
3724
+ </Node>
3725
+ </TreeModel>
3726
+ </Segment>
3727
+ <Segment id="50">
3728
+ <True/>
3729
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3730
+ <MiningSchema>
3731
+ <MiningField name="sepal_width"/>
3732
+ </MiningSchema>
3733
+ <Node score="0.030542307">
3734
+ <True/>
3735
+ <Node score="-0.023010228">
3736
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
3737
+ </Node>
3738
+ </Node>
3739
+ </TreeModel>
3740
+ </Segment>
3741
+ <Segment id="51">
3742
+ <True/>
3743
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3744
+ <MiningSchema>
3745
+ <MiningField name="sepal_length"/>
3746
+ </MiningSchema>
3747
+ <Node score="-0.026813041">
3748
+ <True/>
3749
+ <Node score="0.026221927">
3750
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
3751
+ </Node>
3752
+ </Node>
3753
+ </TreeModel>
3754
+ </Segment>
3755
+ <Segment id="52">
3756
+ <True/>
3757
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3758
+ <MiningSchema>
3759
+ <MiningField name="sepal_width"/>
3760
+ </MiningSchema>
3761
+ <Node score="0.02816624">
3762
+ <True/>
3763
+ <Node score="-0.021889381">
3764
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
3765
+ </Node>
3766
+ </Node>
3767
+ </TreeModel>
3768
+ </Segment>
3769
+ <Segment id="53">
3770
+ <True/>
3771
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3772
+ <MiningSchema>
3773
+ <MiningField name="petal_width"/>
3774
+ </MiningSchema>
3775
+ <Node score="-0.025967766">
3776
+ <True/>
3777
+ <Node score="0.026082791">
3778
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
3779
+ </Node>
3780
+ </Node>
3781
+ </TreeModel>
3782
+ </Segment>
3783
+ <Segment id="54">
3784
+ <True/>
3785
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3786
+ <MiningSchema>
3787
+ <MiningField name="sepal_length"/>
3788
+ </MiningSchema>
3789
+ <Node score="-0.02599199">
3790
+ <True/>
3791
+ <Node score="0.023967477">
3792
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
3793
+ </Node>
3794
+ </Node>
3795
+ </TreeModel>
3796
+ </Segment>
3797
+ <Segment id="55">
3798
+ <True/>
3799
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3800
+ <MiningSchema>
3801
+ <MiningField name="sepal_width"/>
3802
+ </MiningSchema>
3803
+ <Node score="0.027419481">
3804
+ <True/>
3805
+ <Node score="-0.021347381">
3806
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
3807
+ </Node>
3808
+ </Node>
3809
+ </TreeModel>
3810
+ </Segment>
3811
+ <Segment id="56">
3812
+ <True/>
3813
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3814
+ <MiningSchema>
3815
+ <MiningField name="petal_width"/>
3816
+ </MiningSchema>
3817
+ <Node score="-0.020060034">
3818
+ <True/>
3819
+ <Node score="0.031183055">
3820
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3821
+ </Node>
3822
+ </Node>
3823
+ </TreeModel>
3824
+ </Segment>
3825
+ <Segment id="57">
3826
+ <True/>
3827
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3828
+ <MiningSchema>
3829
+ <MiningField name="sepal_length"/>
3830
+ </MiningSchema>
3831
+ <Node score="-0.025278466">
3832
+ <True/>
3833
+ <Node score="0.023948835">
3834
+ <SimplePredicate field="sepal_length" operator="greaterOrEqual" value="5.95"/>
3835
+ </Node>
3836
+ </Node>
3837
+ </TreeModel>
3838
+ </Segment>
3839
+ <Segment id="58">
3840
+ <True/>
3841
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3842
+ <MiningSchema>
3843
+ <MiningField name="sepal_width"/>
3844
+ </MiningSchema>
3845
+ <Node score="0.027700545">
3846
+ <True/>
3847
+ <Node score="-0.022600472">
3848
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
3849
+ </Node>
3850
+ </Node>
3851
+ </TreeModel>
3852
+ </Segment>
3853
+ <Segment id="59">
3854
+ <True/>
3855
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3856
+ <MiningSchema>
3857
+ <MiningField name="petal_width"/>
3858
+ </MiningSchema>
3859
+ <Node score="-0.02494677">
3860
+ <True/>
3861
+ <Node score="0.024328047">
3862
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
3863
+ </Node>
3864
+ </Node>
3865
+ </TreeModel>
3866
+ </Segment>
3867
+ <Segment id="60">
3868
+ <True/>
3869
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3870
+ <MiningSchema>
3871
+ <MiningField name="sepal_width"/>
3872
+ </MiningSchema>
3873
+ <Node score="0.027120357">
3874
+ <True/>
3875
+ <Node score="-0.022048881">
3876
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
3877
+ </Node>
3878
+ </Node>
3879
+ </TreeModel>
3880
+ </Segment>
3881
+ <Segment id="61">
3882
+ <True/>
3883
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3884
+ <MiningSchema>
3885
+ <MiningField name="petal_width"/>
3886
+ </MiningSchema>
3887
+ <Node score="-0.019006602">
3888
+ <True/>
3889
+ <Node score="0.028831681">
3890
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3891
+ </Node>
3892
+ </Node>
3893
+ </TreeModel>
3894
+ </Segment>
3895
+ <Segment id="62">
3896
+ <True/>
3897
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3898
+ <MiningSchema>
3899
+ <MiningField name="sepal_width"/>
3900
+ </MiningSchema>
3901
+ <Node score="0.026276933">
3902
+ <True/>
3903
+ <Node score="-0.019491429">
3904
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
3905
+ </Node>
3906
+ </Node>
3907
+ </TreeModel>
3908
+ </Segment>
3909
+ <Segment id="63">
3910
+ <True/>
3911
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3912
+ <MiningSchema>
3913
+ <MiningField name="petal_width"/>
3914
+ </MiningSchema>
3915
+ <Node score="-0.018053968">
3916
+ <True/>
3917
+ <Node score="0.029118605">
3918
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3919
+ </Node>
3920
+ </Node>
3921
+ </TreeModel>
3922
+ </Segment>
3923
+ <Segment id="64">
3924
+ <True/>
3925
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3926
+ <MiningSchema>
3927
+ <MiningField name="sepal_width"/>
3928
+ </MiningSchema>
3929
+ <Node score="0.025712453">
3930
+ <True/>
3931
+ <Node score="-0.019270502">
3932
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
3933
+ </Node>
3934
+ </Node>
3935
+ </TreeModel>
3936
+ </Segment>
3937
+ <Segment id="65">
3938
+ <True/>
3939
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3940
+ <MiningSchema>
3941
+ <MiningField name="petal_width"/>
3942
+ </MiningSchema>
3943
+ <Node score="-0.017169734">
3944
+ <True/>
3945
+ <Node score="0.027596893">
3946
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3947
+ </Node>
3948
+ </Node>
3949
+ </TreeModel>
3950
+ </Segment>
3951
+ <Segment id="66">
3952
+ <True/>
3953
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3954
+ <MiningSchema>
3955
+ <MiningField name="sepal_width"/>
3956
+ </MiningSchema>
3957
+ <Node score="0.024452047">
3958
+ <True/>
3959
+ <Node score="-0.018509917">
3960
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
3961
+ </Node>
3962
+ </Node>
3963
+ </TreeModel>
3964
+ </Segment>
3965
+ <Segment id="67">
3966
+ <True/>
3967
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3968
+ <MiningSchema>
3969
+ <MiningField name="petal_width"/>
3970
+ </MiningSchema>
3971
+ <Node score="-0.021834934">
3972
+ <True/>
3973
+ <Node score="0.02276113">
3974
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
3975
+ </Node>
3976
+ </Node>
3977
+ </TreeModel>
3978
+ </Segment>
3979
+ <Segment id="68">
3980
+ <True/>
3981
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3982
+ <MiningSchema>
3983
+ <MiningField name="petal_width"/>
3984
+ </MiningSchema>
3985
+ <Node score="-0.016808318">
3986
+ <True/>
3987
+ <Node score="0.025461523">
3988
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.75"/>
3989
+ </Node>
3990
+ </Node>
3991
+ </TreeModel>
3992
+ </Segment>
3993
+ <Segment id="69">
3994
+ <True/>
3995
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
3996
+ <MiningSchema>
3997
+ <MiningField name="sepal_width"/>
3998
+ </MiningSchema>
3999
+ <Node score="0.024103167">
4000
+ <True/>
4001
+ <Node score="-0.018340774">
4002
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4003
+ </Node>
4004
+ </Node>
4005
+ </TreeModel>
4006
+ </Segment>
4007
+ <Segment id="70">
4008
+ <True/>
4009
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4010
+ <MiningSchema>
4011
+ <MiningField name="petal_width"/>
4012
+ </MiningSchema>
4013
+ <Node score="-0.021029469">
4014
+ <True/>
4015
+ <Node score="0.020826045">
4016
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
4017
+ </Node>
4018
+ </Node>
4019
+ </TreeModel>
4020
+ </Segment>
4021
+ <Segment id="71">
4022
+ <True/>
4023
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4024
+ <MiningSchema>
4025
+ <MiningField name="sepal_width"/>
4026
+ </MiningSchema>
4027
+ <Node score="0.022750072">
4028
+ <True/>
4029
+ <Node score="-0.01776685">
4030
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4031
+ </Node>
4032
+ </Node>
4033
+ </TreeModel>
4034
+ </Segment>
4035
+ <Segment id="72">
4036
+ <True/>
4037
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4038
+ <MiningSchema>
4039
+ <MiningField name="petal_width"/>
4040
+ </MiningSchema>
4041
+ <Node score="-0.020844894">
4042
+ <True/>
4043
+ <Node score="0.02016545">
4044
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
4045
+ </Node>
4046
+ </Node>
4047
+ </TreeModel>
4048
+ </Segment>
4049
+ <Segment id="73">
4050
+ <True/>
4051
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4052
+ <MiningSchema>
4053
+ <MiningField name="sepal_width"/>
4054
+ </MiningSchema>
4055
+ <Node score="0.021557758">
4056
+ <True/>
4057
+ <Node score="-0.017190842">
4058
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4059
+ </Node>
4060
+ </Node>
4061
+ </TreeModel>
4062
+ </Segment>
4063
+ <Segment id="74">
4064
+ <True/>
4065
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4066
+ <MiningSchema>
4067
+ <MiningField name="petal_width"/>
4068
+ </MiningSchema>
4069
+ <Node score="-0.020604644">
4070
+ <True/>
4071
+ <Node score="0.019576844">
4072
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
4073
+ </Node>
4074
+ </Node>
4075
+ </TreeModel>
4076
+ </Segment>
4077
+ <Segment id="75">
4078
+ <True/>
4079
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4080
+ <MiningSchema>
4081
+ <MiningField name="sepal_width"/>
4082
+ </MiningSchema>
4083
+ <Node score="0.020497873">
4084
+ <True/>
4085
+ <Node score="-0.016625918">
4086
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4087
+ </Node>
4088
+ </Node>
4089
+ </TreeModel>
4090
+ </Segment>
4091
+ <Segment id="76">
4092
+ <True/>
4093
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4094
+ <MiningSchema>
4095
+ <MiningField name="sepal_width"/>
4096
+ </MiningSchema>
4097
+ <Node score="0.018638134">
4098
+ <True/>
4099
+ <Node score="-0.015651297">
4100
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4101
+ </Node>
4102
+ </Node>
4103
+ </TreeModel>
4104
+ </Segment>
4105
+ <Segment id="77">
4106
+ <True/>
4107
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4108
+ <MiningSchema>
4109
+ <MiningField name="petal_width"/>
4110
+ </MiningSchema>
4111
+ <Node score="-0.020905135">
4112
+ <True/>
4113
+ <Node score="0.020239534">
4114
+ <SimplePredicate field="petal_width" operator="greaterOrEqual" value="1.6500001"/>
4115
+ </Node>
4116
+ </Node>
4117
+ </TreeModel>
4118
+ </Segment>
4119
+ <Segment id="78">
4120
+ <True/>
4121
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4122
+ <MiningSchema>
4123
+ <MiningField name="sepal_width"/>
4124
+ </MiningSchema>
4125
+ <Node score="0.017850239">
4126
+ <True/>
4127
+ <Node score="-0.015262595">
4128
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4129
+ </Node>
4130
+ </Node>
4131
+ </TreeModel>
4132
+ </Segment>
4133
+ <Segment id="79">
4134
+ <True/>
4135
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4136
+ <MiningSchema>
4137
+ <MiningField name="sepal_width"/>
4138
+ </MiningSchema>
4139
+ <Node score="0.016527994">
4140
+ <True/>
4141
+ <Node score="-0.013297071">
4142
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4143
+ </Node>
4144
+ </Node>
4145
+ </TreeModel>
4146
+ </Segment>
4147
+ <Segment id="80">
4148
+ <True/>
4149
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4150
+ <MiningSchema>
4151
+ <MiningField name="sepal_width"/>
4152
+ </MiningSchema>
4153
+ <Node score="0.0149906585">
4154
+ <True/>
4155
+ <Node score="-0.012592588">
4156
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4157
+ </Node>
4158
+ </Node>
4159
+ </TreeModel>
4160
+ </Segment>
4161
+ <Segment id="81">
4162
+ <True/>
4163
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4164
+ <MiningSchema>
4165
+ <MiningField name="sepal_width"/>
4166
+ </MiningSchema>
4167
+ <Node score="0.013601843">
4168
+ <True/>
4169
+ <Node score="-0.011907004">
4170
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4171
+ </Node>
4172
+ </Node>
4173
+ </TreeModel>
4174
+ </Segment>
4175
+ <Segment id="82">
4176
+ <True/>
4177
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4178
+ <MiningSchema>
4179
+ <MiningField name="sepal_width"/>
4180
+ </MiningSchema>
4181
+ <Node score="0.012617256">
4182
+ <True/>
4183
+ <Node score="-0.0102186715">
4184
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4185
+ </Node>
4186
+ </Node>
4187
+ </TreeModel>
4188
+ </Segment>
4189
+ <Segment id="83">
4190
+ <True/>
4191
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4192
+ <MiningSchema>
4193
+ <MiningField name="sepal_width"/>
4194
+ </MiningSchema>
4195
+ <Node score="0.012079694">
4196
+ <True/>
4197
+ <Node score="-0.010257441">
4198
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4199
+ </Node>
4200
+ </Node>
4201
+ </TreeModel>
4202
+ </Segment>
4203
+ <Segment id="84">
4204
+ <True/>
4205
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4206
+ <MiningSchema>
4207
+ <MiningField name="sepal_width"/>
4208
+ </MiningSchema>
4209
+ <Node score="0.011567504">
4210
+ <True/>
4211
+ <Node score="-0.010245887">
4212
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4213
+ </Node>
4214
+ </Node>
4215
+ </TreeModel>
4216
+ </Segment>
4217
+ <Segment id="85">
4218
+ <True/>
4219
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4220
+ <MiningSchema>
4221
+ <MiningField name="sepal_width"/>
4222
+ </MiningSchema>
4223
+ <Node score="0.011079886">
4224
+ <True/>
4225
+ <Node score="-0.010193469">
4226
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4227
+ </Node>
4228
+ </Node>
4229
+ </TreeModel>
4230
+ </Segment>
4231
+ <Segment id="86">
4232
+ <True/>
4233
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4234
+ <MiningSchema>
4235
+ <MiningField name="sepal_width"/>
4236
+ </MiningSchema>
4237
+ <Node score="0.009999748">
4238
+ <True/>
4239
+ <Node score="-0.0096880905">
4240
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4241
+ </Node>
4242
+ </Node>
4243
+ </TreeModel>
4244
+ </Segment>
4245
+ <Segment id="87">
4246
+ <True/>
4247
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4248
+ <MiningSchema>
4249
+ <MiningField name="sepal_width"/>
4250
+ </MiningSchema>
4251
+ <Node score="0.009311769">
4252
+ <True/>
4253
+ <Node score="-0.0081877215">
4254
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4255
+ </Node>
4256
+ </Node>
4257
+ </TreeModel>
4258
+ </Segment>
4259
+ <Segment id="88">
4260
+ <True/>
4261
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4262
+ <MiningSchema>
4263
+ <MiningField name="sepal_width"/>
4264
+ </MiningSchema>
4265
+ <Node score="0.0090270005">
4266
+ <True/>
4267
+ <Node score="-0.008354667">
4268
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4269
+ </Node>
4270
+ </Node>
4271
+ </TreeModel>
4272
+ </Segment>
4273
+ <Segment id="89">
4274
+ <True/>
4275
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4276
+ <MiningSchema>
4277
+ <MiningField name="sepal_width"/>
4278
+ </MiningSchema>
4279
+ <Node score="0.008744696">
4280
+ <True/>
4281
+ <Node score="-0.008460358">
4282
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4283
+ </Node>
4284
+ </Node>
4285
+ </TreeModel>
4286
+ </Segment>
4287
+ <Segment id="90">
4288
+ <True/>
4289
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4290
+ <MiningSchema>
4291
+ <MiningField name="sepal_width"/>
4292
+ </MiningSchema>
4293
+ <Node score="0.007845793">
4294
+ <True/>
4295
+ <Node score="-0.0080921445">
4296
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4297
+ </Node>
4298
+ </Node>
4299
+ </TreeModel>
4300
+ </Segment>
4301
+ <Segment id="91">
4302
+ <True/>
4303
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4304
+ <MiningSchema>
4305
+ <MiningField name="sepal_width"/>
4306
+ </MiningSchema>
4307
+ <Node score="0.0076534506">
4308
+ <True/>
4309
+ <Node score="-0.008189133">
4310
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4311
+ </Node>
4312
+ </Node>
4313
+ </TreeModel>
4314
+ </Segment>
4315
+ <Segment id="92">
4316
+ <True/>
4317
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4318
+ <MiningSchema>
4319
+ <MiningField name="petal_length"/>
4320
+ </MiningSchema>
4321
+ <Node score="-0.008408513">
4322
+ <True/>
4323
+ <Node score="0.007520887">
4324
+ <SimplePredicate field="petal_length" operator="greaterOrEqual" value="4.8500004"/>
4325
+ </Node>
4326
+ </Node>
4327
+ </TreeModel>
4328
+ </Segment>
4329
+ <Segment id="93">
4330
+ <True/>
4331
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4332
+ <MiningSchema>
4333
+ <MiningField name="sepal_width"/>
4334
+ </MiningSchema>
4335
+ <Node score="0.007173822">
4336
+ <True/>
4337
+ <Node score="-0.008330379">
4338
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4339
+ </Node>
4340
+ </Node>
4341
+ </TreeModel>
4342
+ </Segment>
4343
+ <Segment id="94">
4344
+ <True/>
4345
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4346
+ <MiningSchema>
4347
+ <MiningField name="sepal_width"/>
4348
+ </MiningSchema>
4349
+ <Node score="0.0070010233">
4350
+ <True/>
4351
+ <Node score="-0.00833409">
4352
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4353
+ </Node>
4354
+ </Node>
4355
+ </TreeModel>
4356
+ </Segment>
4357
+ <Segment id="95">
4358
+ <True/>
4359
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4360
+ <MiningSchema>
4361
+ <MiningField name="sepal_width"/>
4362
+ </MiningSchema>
4363
+ <Node score="0.007225218">
4364
+ <True/>
4365
+ <Node score="-0.008292795">
4366
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4367
+ </Node>
4368
+ </Node>
4369
+ </TreeModel>
4370
+ </Segment>
4371
+ <Segment id="96">
4372
+ <True/>
4373
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4374
+ <MiningSchema>
4375
+ <MiningField name="sepal_width"/>
4376
+ </MiningSchema>
4377
+ <Node score="0.007033277">
4378
+ <True/>
4379
+ <Node score="-0.008268135">
4380
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4381
+ </Node>
4382
+ </Node>
4383
+ </TreeModel>
4384
+ </Segment>
4385
+ <Segment id="97">
4386
+ <True/>
4387
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4388
+ <MiningSchema>
4389
+ <MiningField name="sepal_width"/>
4390
+ </MiningSchema>
4391
+ <Node score="0.007230854">
4392
+ <True/>
4393
+ <Node score="-0.008211672">
4394
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4395
+ </Node>
4396
+ </Node>
4397
+ </TreeModel>
4398
+ </Segment>
4399
+ <Segment id="98">
4400
+ <True/>
4401
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4402
+ <MiningSchema>
4403
+ <MiningField name="sepal_width"/>
4404
+ </MiningSchema>
4405
+ <Node score="0.0064901835">
4406
+ <True/>
4407
+ <Node score="-0.0077960077">
4408
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4409
+ </Node>
4410
+ </Node>
4411
+ </TreeModel>
4412
+ </Segment>
4413
+ <Segment id="99">
4414
+ <True/>
4415
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4416
+ <MiningSchema>
4417
+ <MiningField name="sepal_width"/>
4418
+ </MiningSchema>
4419
+ <Node score="0.0067473645">
4420
+ <True/>
4421
+ <Node score="-0.007783811">
4422
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4423
+ </Node>
4424
+ </Node>
4425
+ </TreeModel>
4426
+ </Segment>
4427
+ <Segment id="100">
4428
+ <True/>
4429
+ <TreeModel functionName="regression" noTrueChildStrategy="returnLastPrediction" x-mathContext="float">
4430
+ <MiningSchema>
4431
+ <MiningField name="sepal_width"/>
4432
+ </MiningSchema>
4433
+ <Node score="0.006593206">
4434
+ <True/>
4435
+ <Node score="-0.0077876495">
4436
+ <SimplePredicate field="sepal_width" operator="greaterOrEqual" value="2.85"/>
4437
+ </Node>
4438
+ </Node>
4439
+ </TreeModel>
4440
+ </Segment>
4441
+ </Segmentation>
4442
+ </MiningModel>
4443
+ </Segment>
4444
+ <Segment id="4">
4445
+ <True/>
4446
+ <RegressionModel functionName="classification" normalizationMethod="softmax" x-mathContext="float">
4447
+ <MiningSchema>
4448
+ <MiningField name="y" usageType="target"/>
4449
+ <MiningField name="xgbValue(1)"/>
4450
+ <MiningField name="xgbValue(2)"/>
4451
+ <MiningField name="xgbValue(3)"/>
4452
+ </MiningSchema>
4453
+ <Output>
4454
+ <OutputField name="probability(1)" optype="continuous" dataType="float" feature="probability" value="1"/>
4455
+ <OutputField name="probability(2)" optype="continuous" dataType="float" feature="probability" value="2"/>
4456
+ <OutputField name="probability(3)" optype="continuous" dataType="float" feature="probability" value="3"/>
4457
+ </Output>
4458
+ <RegressionTable intercept="0.0" targetCategory="1">
4459
+ <NumericPredictor name="xgbValue(1)" coefficient="1.0"/>
4460
+ </RegressionTable>
4461
+ <RegressionTable intercept="0.0" targetCategory="2">
4462
+ <NumericPredictor name="xgbValue(2)" coefficient="1.0"/>
4463
+ </RegressionTable>
4464
+ <RegressionTable intercept="0.0" targetCategory="3">
4465
+ <NumericPredictor name="xgbValue(3)" coefficient="1.0"/>
4466
+ </RegressionTable>
4467
+ </RegressionModel>
4468
+ </Segment>
4469
+ </Segmentation>
4470
+ </MiningModel>
4471
+ </PMML>