teradataml 20.0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +2762 -0
- teradataml/__init__.py +78 -0
- teradataml/_version.py +11 -0
- teradataml/analytics/Transformations.py +2996 -0
- teradataml/analytics/__init__.py +82 -0
- teradataml/analytics/analytic_function_executor.py +2416 -0
- teradataml/analytics/analytic_query_generator.py +1050 -0
- teradataml/analytics/byom/H2OPredict.py +514 -0
- teradataml/analytics/byom/PMMLPredict.py +437 -0
- teradataml/analytics/byom/__init__.py +16 -0
- teradataml/analytics/json_parser/__init__.py +133 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
- teradataml/analytics/json_parser/json_store.py +191 -0
- teradataml/analytics/json_parser/metadata.py +1666 -0
- teradataml/analytics/json_parser/utils.py +805 -0
- teradataml/analytics/meta_class.py +236 -0
- teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
- teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
- teradataml/analytics/sqle/__init__.py +128 -0
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
- teradataml/analytics/table_operator/__init__.py +11 -0
- teradataml/analytics/uaf/__init__.py +82 -0
- teradataml/analytics/utils.py +828 -0
- teradataml/analytics/valib.py +1617 -0
- teradataml/automl/__init__.py +5835 -0
- teradataml/automl/autodataprep/__init__.py +493 -0
- teradataml/automl/custom_json_utils.py +1625 -0
- teradataml/automl/data_preparation.py +1384 -0
- teradataml/automl/data_transformation.py +1254 -0
- teradataml/automl/feature_engineering.py +2273 -0
- teradataml/automl/feature_exploration.py +1873 -0
- teradataml/automl/model_evaluation.py +488 -0
- teradataml/automl/model_training.py +1407 -0
- teradataml/catalog/__init__.py +2 -0
- teradataml/catalog/byom.py +1759 -0
- teradataml/catalog/function_argument_mapper.py +859 -0
- teradataml/catalog/model_cataloging_utils.py +491 -0
- teradataml/clients/__init__.py +0 -0
- teradataml/clients/auth_client.py +137 -0
- teradataml/clients/keycloak_client.py +165 -0
- teradataml/clients/pkce_client.py +481 -0
- teradataml/common/__init__.py +1 -0
- teradataml/common/aed_utils.py +2078 -0
- teradataml/common/bulk_exposed_utils.py +113 -0
- teradataml/common/constants.py +1669 -0
- teradataml/common/deprecations.py +166 -0
- teradataml/common/exceptions.py +147 -0
- teradataml/common/formula.py +743 -0
- teradataml/common/garbagecollector.py +666 -0
- teradataml/common/logger.py +1261 -0
- teradataml/common/messagecodes.py +518 -0
- teradataml/common/messages.py +262 -0
- teradataml/common/pylogger.py +67 -0
- teradataml/common/sqlbundle.py +764 -0
- teradataml/common/td_coltype_code_to_tdtype.py +48 -0
- teradataml/common/utils.py +3166 -0
- teradataml/common/warnings.py +36 -0
- teradataml/common/wrapper_utils.py +625 -0
- teradataml/config/__init__.py +0 -0
- teradataml/config/dummy_file1.cfg +5 -0
- teradataml/config/dummy_file2.cfg +3 -0
- teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
- teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
- teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
- teradataml/context/__init__.py +0 -0
- teradataml/context/aed_context.py +223 -0
- teradataml/context/context.py +1462 -0
- teradataml/data/A_loan.csv +19 -0
- teradataml/data/BINARY_REALS_LEFT.csv +11 -0
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
- teradataml/data/B_loan.csv +49 -0
- teradataml/data/BuoyData2.csv +17 -0
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
- teradataml/data/Convolve2RealsLeft.csv +5 -0
- teradataml/data/Convolve2RealsRight.csv +5 -0
- teradataml/data/Convolve2ValidLeft.csv +11 -0
- teradataml/data/Convolve2ValidRight.csv +11 -0
- teradataml/data/DFFTConv_Real_8_8.csv +65 -0
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/Mall_customer_data.csv +201 -0
- teradataml/data/Orders1_12mf.csv +25 -0
- teradataml/data/Pi_loan.csv +7 -0
- teradataml/data/SMOOTHED_DATA.csv +7 -0
- teradataml/data/TestDFFT8.csv +9 -0
- teradataml/data/TestRiver.csv +109 -0
- teradataml/data/Traindata.csv +28 -0
- teradataml/data/__init__.py +0 -0
- teradataml/data/acf.csv +17 -0
- teradataml/data/adaboost_example.json +34 -0
- teradataml/data/adaboostpredict_example.json +24 -0
- teradataml/data/additional_table.csv +11 -0
- teradataml/data/admissions_test.csv +21 -0
- teradataml/data/admissions_train.csv +41 -0
- teradataml/data/admissions_train_nulls.csv +41 -0
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -0
- teradataml/data/ageandpressure.csv +31 -0
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/antiselect_example.json +36 -0
- teradataml/data/antiselect_input.csv +8 -0
- teradataml/data/antiselect_input_mixed_case.csv +8 -0
- teradataml/data/applicant_external.csv +7 -0
- teradataml/data/applicant_reference.csv +7 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/arima_example.json +9 -0
- teradataml/data/assortedtext_input.csv +8 -0
- teradataml/data/attribution_example.json +34 -0
- teradataml/data/attribution_sample_table.csv +27 -0
- teradataml/data/attribution_sample_table1.csv +6 -0
- teradataml/data/attribution_sample_table2.csv +11 -0
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +43 -0
- teradataml/data/bank_web_clicks2.csv +91 -0
- teradataml/data/bank_web_url.csv +85 -0
- teradataml/data/barrier.csv +2 -0
- teradataml/data/barrier_new.csv +3 -0
- teradataml/data/betweenness_example.json +14 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -0
- teradataml/data/bin_fit_ip.csv +4 -0
- teradataml/data/binary_complex_left.csv +11 -0
- teradataml/data/binary_complex_right.csv +11 -0
- teradataml/data/binary_matrix_complex_left.csv +21 -0
- teradataml/data/binary_matrix_complex_right.csv +21 -0
- teradataml/data/binary_matrix_real_left.csv +21 -0
- teradataml/data/binary_matrix_real_right.csv +21 -0
- teradataml/data/blood2ageandweight.csv +26 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -0
- teradataml/data/burst_data.csv +5 -0
- teradataml/data/burst_example.json +21 -0
- teradataml/data/byom_example.json +34 -0
- teradataml/data/bytes_table.csv +4 -0
- teradataml/data/cal_housing_ex_raw.csv +70 -0
- teradataml/data/callers.csv +7 -0
- teradataml/data/calls.csv +10 -0
- teradataml/data/cars_hist.csv +33 -0
- teradataml/data/cat_table.csv +25 -0
- teradataml/data/ccm_example.json +32 -0
- teradataml/data/ccm_input.csv +91 -0
- teradataml/data/ccm_input2.csv +13 -0
- teradataml/data/ccmexample.csv +101 -0
- teradataml/data/ccmprepare_example.json +9 -0
- teradataml/data/ccmprepare_input.csv +91 -0
- teradataml/data/cfilter_example.json +12 -0
- teradataml/data/changepointdetection_example.json +18 -0
- teradataml/data/changepointdetectionrt_example.json +8 -0
- teradataml/data/chi_sq.csv +3 -0
- teradataml/data/churn_data.csv +14 -0
- teradataml/data/churn_emission.csv +35 -0
- teradataml/data/churn_initial.csv +3 -0
- teradataml/data/churn_state_transition.csv +5 -0
- teradataml/data/citedges_2.csv +745 -0
- teradataml/data/citvertices_2.csv +1210 -0
- teradataml/data/clicks2.csv +16 -0
- teradataml/data/clickstream.csv +13 -0
- teradataml/data/clickstream1.csv +11 -0
- teradataml/data/closeness_example.json +16 -0
- teradataml/data/complaints.csv +21 -0
- teradataml/data/complaints_mini.csv +3 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_testtoken.csv +224 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/complaints_tokens_test.csv +353 -0
- teradataml/data/complaints_traintoken.csv +472 -0
- teradataml/data/computers_category.csv +1001 -0
- teradataml/data/computers_test1.csv +1252 -0
- teradataml/data/computers_train1.csv +5009 -0
- teradataml/data/computers_train1_clustered.csv +5009 -0
- teradataml/data/confusionmatrix_example.json +9 -0
- teradataml/data/conversion_event_table.csv +3 -0
- teradataml/data/corr_input.csv +17 -0
- teradataml/data/correlation_example.json +11 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/coxhazardratio_example.json +39 -0
- teradataml/data/coxph_example.json +15 -0
- teradataml/data/coxsurvival_example.json +28 -0
- teradataml/data/cpt.csv +41 -0
- teradataml/data/credit_ex_merged.csv +45 -0
- teradataml/data/creditcard_data.csv +1001 -0
- teradataml/data/customer_loyalty.csv +301 -0
- teradataml/data/customer_loyalty_newseq.csv +31 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +173 -0
- teradataml/data/decisionforest_example.json +37 -0
- teradataml/data/decisionforestpredict_example.json +38 -0
- teradataml/data/decisiontree_example.json +21 -0
- teradataml/data/decisiontreepredict_example.json +45 -0
- teradataml/data/dfft2_size4_real.csv +17 -0
- teradataml/data/dfft2_test_matrix16.csv +17 -0
- teradataml/data/dfft2conv_real_4_4.csv +65 -0
- teradataml/data/diabetes.csv +443 -0
- teradataml/data/diabetes_test.csv +89 -0
- teradataml/data/dict_table.csv +5 -0
- teradataml/data/docperterm_table.csv +4 -0
- teradataml/data/docs/__init__.py +1 -0
- teradataml/data/docs/byom/__init__.py +0 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
- teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
- teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
- teradataml/data/docs/byom/docs/__init__.py +0 -0
- teradataml/data/docs/sqle/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
- teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
- teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/tableoperator/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/uaf/__init__.py +0 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
- teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
- teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
- teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
- teradataml/data/dtw_example.json +18 -0
- teradataml/data/dtw_t1.csv +11 -0
- teradataml/data/dtw_t2.csv +4 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt2d_example.json +16 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_example.json +15 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/dwt_filter_dim.csv +5 -0
- teradataml/data/emission.csv +9 -0
- teradataml/data/emp_table_by_dept.csv +19 -0
- teradataml/data/employee_info.csv +4 -0
- teradataml/data/employee_table.csv +6 -0
- teradataml/data/excluding_event_table.csv +2 -0
- teradataml/data/finance_data.csv +6 -0
- teradataml/data/finance_data2.csv +61 -0
- teradataml/data/finance_data3.csv +93 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -0
- teradataml/data/fmeasure_example.json +12 -0
- teradataml/data/followers_leaders.csv +10 -0
- teradataml/data/fpgrowth_example.json +12 -0
- teradataml/data/frequentpaths_example.json +29 -0
- teradataml/data/friends.csv +9 -0
- teradataml/data/fs_input.csv +33 -0
- teradataml/data/fs_input1.csv +33 -0
- teradataml/data/genData.csv +513 -0
- teradataml/data/geodataframe_example.json +40 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -0
- teradataml/data/glm_example.json +56 -0
- teradataml/data/glml1l2_example.json +28 -0
- teradataml/data/glml1l2predict_example.json +54 -0
- teradataml/data/glmpredict_example.json +54 -0
- teradataml/data/gq_t1.csv +21 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/hconvolve_complex_right.csv +5 -0
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
- teradataml/data/histogram_example.json +12 -0
- teradataml/data/hmmdecoder_example.json +79 -0
- teradataml/data/hmmevaluator_example.json +25 -0
- teradataml/data/hmmsupervised_example.json +10 -0
- teradataml/data/hmmunsupervised_example.json +8 -0
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/house_values.csv +12 -0
- teradataml/data/house_values2.csv +13 -0
- teradataml/data/housing_cat.csv +7 -0
- teradataml/data/housing_data.csv +9 -0
- teradataml/data/housing_test.csv +47 -0
- teradataml/data/housing_test_binary.csv +47 -0
- teradataml/data/housing_train.csv +493 -0
- teradataml/data/housing_train_attribute.csv +5 -0
- teradataml/data/housing_train_binary.csv +437 -0
- teradataml/data/housing_train_parameter.csv +2 -0
- teradataml/data/housing_train_response.csv +493 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -0
- teradataml/data/ibm_stock1.csv +370 -0
- teradataml/data/identitymatch_example.json +22 -0
- teradataml/data/idf_table.csv +4 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/impressions.csv +101 -0
- teradataml/data/inflation.csv +21 -0
- teradataml/data/initial.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +13 -0
- teradataml/data/insurance.csv +1339 -0
- teradataml/data/interpolator_example.json +13 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/iris_altinput.csv +481 -0
- teradataml/data/iris_attribute_output.csv +8 -0
- teradataml/data/iris_attribute_test.csv +121 -0
- teradataml/data/iris_attribute_train.csv +481 -0
- teradataml/data/iris_category_expect_predict.csv +31 -0
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -0
- teradataml/data/iris_response_train.csv +121 -0
- teradataml/data/iris_test.csv +31 -0
- teradataml/data/iris_train.csv +121 -0
- teradataml/data/join_table1.csv +4 -0
- teradataml/data/join_table2.csv +4 -0
- teradataml/data/jsons/anly_function_name.json +7 -0
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/byom/dataikupredict.json +148 -0
- teradataml/data/jsons/byom/datarobotpredict.json +147 -0
- teradataml/data/jsons/byom/h2opredict.json +195 -0
- teradataml/data/jsons/byom/onnxembeddings.json +267 -0
- teradataml/data/jsons/byom/onnxpredict.json +187 -0
- teradataml/data/jsons/byom/pmmlpredict.json +147 -0
- teradataml/data/jsons/paired_functions.json +450 -0
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/kmeans_example.json +23 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +51 -0
- teradataml/data/knn_example.json +19 -0
- teradataml/data/knnrecommender_example.json +7 -0
- teradataml/data/knnrecommenderpredict_example.json +12 -0
- teradataml/data/lar_example.json +17 -0
- teradataml/data/larpredict_example.json +30 -0
- teradataml/data/lc_new_predictors.csv +5 -0
- teradataml/data/lc_new_reference.csv +9 -0
- teradataml/data/lda_example.json +9 -0
- teradataml/data/ldainference_example.json +15 -0
- teradataml/data/ldatopicsummary_example.json +9 -0
- teradataml/data/levendist_input.csv +13 -0
- teradataml/data/levenshteindistance_example.json +10 -0
- teradataml/data/linreg_example.json +10 -0
- teradataml/data/load_example_data.py +350 -0
- teradataml/data/loan_prediction.csv +295 -0
- teradataml/data/lungcancer.csv +138 -0
- teradataml/data/mappingdata.csv +12 -0
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/milk_timeseries.csv +157 -0
- teradataml/data/min_max_titanic.csv +4 -0
- teradataml/data/minhash_example.json +6 -0
- teradataml/data/ml_ratings.csv +7547 -0
- teradataml/data/ml_ratings_10.csv +2445 -0
- teradataml/data/mobile_data.csv +13 -0
- teradataml/data/model1_table.csv +5 -0
- teradataml/data/model2_table.csv +5 -0
- teradataml/data/models/License_file.txt +1 -0
- teradataml/data/models/License_file_empty.txt +0 -0
- teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
- teradataml/data/models/dr_iris_rf +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
- teradataml/data/models/iris_db_glm_model.pmml +57 -0
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
- teradataml/data/models/iris_kmeans_model +0 -0
- teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
- teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
- teradataml/data/modularity_example.json +12 -0
- teradataml/data/movavg_example.json +8 -0
- teradataml/data/mtx1.csv +7 -0
- teradataml/data/mtx2.csv +13 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -0
- teradataml/data/naivebayes_example.json +10 -0
- teradataml/data/naivebayespredict_example.json +19 -0
- teradataml/data/naivebayestextclassifier2_example.json +7 -0
- teradataml/data/naivebayestextclassifier_example.json +8 -0
- teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
- teradataml/data/name_Find_configure.csv +10 -0
- teradataml/data/namedentityfinder_example.json +14 -0
- teradataml/data/namedentityfinderevaluator_example.json +10 -0
- teradataml/data/namedentityfindertrainer_example.json +6 -0
- teradataml/data/nb_iris_input_test.csv +31 -0
- teradataml/data/nb_iris_input_train.csv +121 -0
- teradataml/data/nbp_iris_model.csv +13 -0
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_extractor_text.csv +2 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/ner_sports_test2.csv +29 -0
- teradataml/data/ner_sports_train.csv +501 -0
- teradataml/data/nerevaluator_example.json +6 -0
- teradataml/data/nerextractor_example.json +18 -0
- teradataml/data/nermem_sports_test.csv +18 -0
- teradataml/data/nermem_sports_train.csv +51 -0
- teradataml/data/nertrainer_example.json +7 -0
- teradataml/data/ngrams_example.json +7 -0
- teradataml/data/notebooks/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
- teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
- teradataml/data/npath_example.json +23 -0
- teradataml/data/ntree_example.json +14 -0
- teradataml/data/numeric_strings.csv +5 -0
- teradataml/data/numerics.csv +4 -0
- teradataml/data/ocean_buoy.csv +17 -0
- teradataml/data/ocean_buoy2.csv +17 -0
- teradataml/data/ocean_buoys.csv +28 -0
- teradataml/data/ocean_buoys2.csv +10 -0
- teradataml/data/ocean_buoys_nonpti.csv +28 -0
- teradataml/data/ocean_buoys_seq.csv +29 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -0
- teradataml/data/orders1.csv +11 -0
- teradataml/data/orders1_12.csv +13 -0
- teradataml/data/orders_ex.csv +4 -0
- teradataml/data/pack_example.json +9 -0
- teradataml/data/package_tracking.csv +19 -0
- teradataml/data/package_tracking_pti.csv +19 -0
- teradataml/data/pagerank_example.json +13 -0
- teradataml/data/paragraphs_input.csv +6 -0
- teradataml/data/pathanalyzer_example.json +8 -0
- teradataml/data/pathgenerator_example.json +8 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/pattern_matching_data.csv +11 -0
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/phrases.csv +7 -0
- teradataml/data/pivot_example.json +9 -0
- teradataml/data/pivot_input.csv +22 -0
- teradataml/data/playerRating.csv +31 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/postagger_example.json +7 -0
- teradataml/data/posttagger_output.csv +44 -0
- teradataml/data/production_data.csv +17 -0
- teradataml/data/production_data2.csv +7 -0
- teradataml/data/randomsample_example.json +32 -0
- teradataml/data/randomwalksample_example.json +9 -0
- teradataml/data/rank_table.csv +6 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/ref_mobile_data.csv +4 -0
- teradataml/data/ref_mobile_data_dense.csv +2 -0
- teradataml/data/ref_url.csv +17 -0
- teradataml/data/restaurant_reviews.csv +7 -0
- teradataml/data/retail_churn_table.csv +27772 -0
- teradataml/data/river_data.csv +145 -0
- teradataml/data/roc_example.json +8 -0
- teradataml/data/roc_input.csv +101 -0
- teradataml/data/rule_inputs.csv +6 -0
- teradataml/data/rule_table.csv +2 -0
- teradataml/data/sales.csv +7 -0
- teradataml/data/sales_transaction.csv +501 -0
- teradataml/data/salesdata.csv +342 -0
- teradataml/data/sample_cities.csv +3 -0
- teradataml/data/sample_shapes.csv +11 -0
- teradataml/data/sample_streets.csv +3 -0
- teradataml/data/sampling_example.json +16 -0
- teradataml/data/sax_example.json +17 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -0
- teradataml/data/scale_housing.csv +11 -0
- teradataml/data/scale_housing_test.csv +6 -0
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -0
- teradataml/data/scalebypartition_example.json +13 -0
- teradataml/data/scalemap_example.json +13 -0
- teradataml/data/scalesummary_example.json +12 -0
- teradataml/data/score_category.csv +101 -0
- teradataml/data/score_summary.csv +4 -0
- teradataml/data/script_example.json +10 -0
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/lightgbm/dataset.template +175 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +16 -0
- teradataml/data/scripts/mapper_replace.py +16 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
- teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
- teradataml/data/seeds.csv +10 -0
- teradataml/data/sentenceextractor_example.json +7 -0
- teradataml/data/sentiment_extract_input.csv +11 -0
- teradataml/data/sentiment_train.csv +16 -0
- teradataml/data/sentiment_word.csv +20 -0
- teradataml/data/sentiment_word_input.csv +20 -0
- teradataml/data/sentimentextractor_example.json +24 -0
- teradataml/data/sentimenttrainer_example.json +8 -0
- teradataml/data/sequence_table.csv +10 -0
- teradataml/data/seriessplitter_example.json +8 -0
- teradataml/data/sessionize_example.json +17 -0
- teradataml/data/sessionize_table.csv +116 -0
- teradataml/data/setop_test1.csv +24 -0
- teradataml/data/setop_test2.csv +22 -0
- teradataml/data/soc_nw_edges.csv +11 -0
- teradataml/data/soc_nw_vertices.csv +8 -0
- teradataml/data/souvenir_timeseries.csv +168 -0
- teradataml/data/sparse_iris_attribute.csv +5 -0
- teradataml/data/sparse_iris_test.csv +121 -0
- teradataml/data/sparse_iris_train.csv +601 -0
- teradataml/data/star1.csv +6 -0
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/state_transition.csv +5 -0
- teradataml/data/stock_data.csv +53 -0
- teradataml/data/stock_movement.csv +11 -0
- teradataml/data/stock_vol.csv +76 -0
- teradataml/data/stop_words.csv +8 -0
- teradataml/data/store_sales.csv +37 -0
- teradataml/data/stringsimilarity_example.json +8 -0
- teradataml/data/strsimilarity_input.csv +13 -0
- teradataml/data/students.csv +101 -0
- teradataml/data/svm_iris_input_test.csv +121 -0
- teradataml/data/svm_iris_input_train.csv +481 -0
- teradataml/data/svm_iris_model.csv +7 -0
- teradataml/data/svmdense_example.json +10 -0
- teradataml/data/svmdensepredict_example.json +19 -0
- teradataml/data/svmsparse_example.json +8 -0
- teradataml/data/svmsparsepredict_example.json +14 -0
- teradataml/data/svmsparsesummary_example.json +8 -0
- teradataml/data/target_mobile_data.csv +13 -0
- teradataml/data/target_mobile_data_dense.csv +5 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/templatedata.csv +1201 -0
- teradataml/data/templates/open_source_ml.json +11 -0
- teradataml/data/teradata_icon.ico +0 -0
- teradataml/data/teradataml_example.json +1473 -0
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -0
- teradataml/data/test_pacf_12.csv +37 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -0
- teradataml/data/text_inputs.csv +6 -0
- teradataml/data/textchunker_example.json +8 -0
- teradataml/data/textclassifier_example.json +7 -0
- teradataml/data/textclassifier_input.csv +7 -0
- teradataml/data/textclassifiertrainer_example.json +7 -0
- teradataml/data/textmorph_example.json +11 -0
- teradataml/data/textparser_example.json +15 -0
- teradataml/data/texttagger_example.json +12 -0
- teradataml/data/texttokenizer_example.json +7 -0
- teradataml/data/texttrainer_input.csv +11 -0
- teradataml/data/tf_example.json +7 -0
- teradataml/data/tfidf_example.json +14 -0
- teradataml/data/tfidf_input1.csv +201 -0
- teradataml/data/tfidf_train.csv +6 -0
- teradataml/data/time_table1.csv +535 -0
- teradataml/data/time_table2.csv +14 -0
- teradataml/data/timeseriesdata.csv +1601 -0
- teradataml/data/timeseriesdatasetsd4.csv +105 -0
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic.csv +892 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/token_table.csv +696 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +28 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/transformation_table.csv +6 -0
- teradataml/data/transformation_table_new.csv +2 -0
- teradataml/data/tv_spots.csv +16 -0
- teradataml/data/twod_climate_data.csv +117 -0
- teradataml/data/uaf_example.json +529 -0
- teradataml/data/univariatestatistics_example.json +9 -0
- teradataml/data/unpack_example.json +10 -0
- teradataml/data/unpivot_example.json +25 -0
- teradataml/data/unpivot_input.csv +8 -0
- teradataml/data/url_data.csv +10 -0
- teradataml/data/us_air_pass.csv +37 -0
- teradataml/data/us_population.csv +624 -0
- teradataml/data/us_states_shapes.csv +52 -0
- teradataml/data/varmax_example.json +18 -0
- teradataml/data/vectordistance_example.json +30 -0
- teradataml/data/ville_climatedata.csv +121 -0
- teradataml/data/ville_tempdata.csv +12 -0
- teradataml/data/ville_tempdata1.csv +12 -0
- teradataml/data/ville_temperature.csv +11 -0
- teradataml/data/waveletTable.csv +1605 -0
- teradataml/data/waveletTable2.csv +1605 -0
- teradataml/data/weightedmovavg_example.json +9 -0
- teradataml/data/wft_testing.csv +5 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +6 -0
- teradataml/data/word_embed_input_table2.csv +5 -0
- teradataml/data/word_embed_model.csv +23 -0
- teradataml/data/words_input.csv +13 -0
- teradataml/data/xconvolve_complex_left.csv +6 -0
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
- teradataml/data/xgboost_example.json +36 -0
- teradataml/data/xgboostpredict_example.json +32 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/__init__.py +0 -0
- teradataml/dataframe/copy_to.py +2446 -0
- teradataml/dataframe/data_transfer.py +2840 -0
- teradataml/dataframe/dataframe.py +20908 -0
- teradataml/dataframe/dataframe_utils.py +2114 -0
- teradataml/dataframe/fastload.py +794 -0
- teradataml/dataframe/functions.py +2110 -0
- teradataml/dataframe/indexer.py +424 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +1171 -0
- teradataml/dataframe/sql.py +10904 -0
- teradataml/dataframe/sql_function_parameters.py +440 -0
- teradataml/dataframe/sql_functions.py +652 -0
- teradataml/dataframe/sql_interfaces.py +220 -0
- teradataml/dataframe/vantage_function_types.py +675 -0
- teradataml/dataframe/window.py +694 -0
- teradataml/dbutils/__init__.py +3 -0
- teradataml/dbutils/dbutils.py +2871 -0
- teradataml/dbutils/filemgr.py +318 -0
- teradataml/gen_ai/__init__.py +2 -0
- teradataml/gen_ai/convAI.py +473 -0
- teradataml/geospatial/__init__.py +4 -0
- teradataml/geospatial/geodataframe.py +1105 -0
- teradataml/geospatial/geodataframecolumn.py +392 -0
- teradataml/geospatial/geometry_types.py +926 -0
- teradataml/hyperparameter_tuner/__init__.py +1 -0
- teradataml/hyperparameter_tuner/optimizer.py +4115 -0
- teradataml/hyperparameter_tuner/utils.py +303 -0
- teradataml/lib/__init__.py +0 -0
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/lib/libaed_0_1_ppc64le.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/_base.py +1321 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/_constants.py +61 -0
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +267 -0
- teradataml/options/__init__.py +148 -0
- teradataml/options/configure.py +489 -0
- teradataml/options/display.py +187 -0
- teradataml/plot/__init__.py +3 -0
- teradataml/plot/axis.py +1427 -0
- teradataml/plot/constants.py +15 -0
- teradataml/plot/figure.py +431 -0
- teradataml/plot/plot.py +810 -0
- teradataml/plot/query_generator.py +83 -0
- teradataml/plot/subplot.py +216 -0
- teradataml/scriptmgmt/UserEnv.py +4273 -0
- teradataml/scriptmgmt/__init__.py +3 -0
- teradataml/scriptmgmt/lls_utils.py +2157 -0
- teradataml/sdk/README.md +79 -0
- teradataml/sdk/__init__.py +4 -0
- teradataml/sdk/_auth_modes.py +422 -0
- teradataml/sdk/_func_params.py +487 -0
- teradataml/sdk/_json_parser.py +453 -0
- teradataml/sdk/_openapi_spec_constants.py +249 -0
- teradataml/sdk/_utils.py +236 -0
- teradataml/sdk/api_client.py +900 -0
- teradataml/sdk/constants.py +62 -0
- teradataml/sdk/modelops/__init__.py +98 -0
- teradataml/sdk/modelops/_client.py +409 -0
- teradataml/sdk/modelops/_constants.py +304 -0
- teradataml/sdk/modelops/models.py +2308 -0
- teradataml/sdk/spinner.py +107 -0
- teradataml/series/__init__.py +0 -0
- teradataml/series/series.py +537 -0
- teradataml/series/series_utils.py +71 -0
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +658 -0
- teradataml/store/feature_store/feature_store.py +4814 -0
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +7330 -0
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/Apply.py +979 -0
- teradataml/table_operators/Script.py +1739 -0
- teradataml/table_operators/TableOperator.py +1343 -0
- teradataml/table_operators/__init__.py +2 -0
- teradataml/table_operators/apply_query_generator.py +262 -0
- teradataml/table_operators/query_generator.py +493 -0
- teradataml/table_operators/table_operator_query_generator.py +462 -0
- teradataml/table_operators/table_operator_util.py +726 -0
- teradataml/table_operators/templates/dataframe_apply.template +184 -0
- teradataml/table_operators/templates/dataframe_map.template +176 -0
- teradataml/table_operators/templates/dataframe_register.template +73 -0
- teradataml/table_operators/templates/dataframe_udf.template +67 -0
- teradataml/table_operators/templates/script_executor.template +170 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +53 -0
- teradataml/utils/__init__.py +0 -0
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +943 -0
- teradataml/utils/internal_buffer.py +122 -0
- teradataml/utils/print_versions.py +206 -0
- teradataml/utils/utils.py +451 -0
- teradataml/utils/validators.py +3305 -0
- teradataml-20.0.0.8.dist-info/METADATA +2804 -0
- teradataml-20.0.0.8.dist-info/RECORD +1208 -0
- teradataml-20.0.0.8.dist-info/WHEEL +5 -0
- teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
- teradataml-20.0.0.8.dist-info/zip-safe +1 -0
teradataml/plot/plot.py
ADDED
|
@@ -0,0 +1,810 @@
|
|
|
1
|
+
# ##################################################################
|
|
2
|
+
#
|
|
3
|
+
# Copyright 2023 Teradata. All rights reserved.
|
|
4
|
+
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
5
|
+
#
|
|
6
|
+
# Primary Owner: Pradeep Garre (pradeep.garre@teradata.com)
|
|
7
|
+
# Secondary Owner:
|
|
8
|
+
#
|
|
9
|
+
# This file implements _Plot, which is used to generate plot's on
|
|
10
|
+
# teradataml DataFrames.
|
|
11
|
+
#
|
|
12
|
+
# ##################################################################
|
|
13
|
+
import os
|
|
14
|
+
from sqlalchemy import text
|
|
15
|
+
from teradataml.common.exceptions import TeradataMlException
|
|
16
|
+
from teradataml.common.messages import Messages
|
|
17
|
+
from teradataml.common.messagecodes import MessageCodes
|
|
18
|
+
from teradataml.common.utils import UtilFuncs
|
|
19
|
+
from teradataml.context.context import get_connection
|
|
20
|
+
from teradataml.dataframe.sql import ColumnExpression
|
|
21
|
+
from teradataml.options.configure import configure
|
|
22
|
+
from teradataml.utils.validators import _Validators
|
|
23
|
+
from teradataml.options.display import display
|
|
24
|
+
from teradataml.plot.axis import Axis
|
|
25
|
+
from teradataml.plot.figure import Figure
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
class _Plot:
|
|
29
|
+
def __init__(self, x, y, scale=None, kind='line', **kwargs):
|
|
30
|
+
"""
|
|
31
|
+
DESCRIPTION:
|
|
32
|
+
Generate plots on teradataml DataFrame. Following type of plots
|
|
33
|
+
are supported, which can be specified using argument "kind":
|
|
34
|
+
* bar plot
|
|
35
|
+
* corr plot
|
|
36
|
+
* line plot
|
|
37
|
+
* mesh plot
|
|
38
|
+
* scatter plot
|
|
39
|
+
* wiggle plot
|
|
40
|
+
|
|
41
|
+
PARAMETERS:
|
|
42
|
+
x:
|
|
43
|
+
Required Argument.
|
|
44
|
+
Specifies a DataFrame column to use for the x-axis data.
|
|
45
|
+
Types: teradataml DataFrame Column
|
|
46
|
+
|
|
47
|
+
y:
|
|
48
|
+
Required Argument.
|
|
49
|
+
Specifies DataFrame column(s) to use for the y-axis data.
|
|
50
|
+
Types: teradataml DataFrame Column OR list of teradataml DataFrame Columns.
|
|
51
|
+
|
|
52
|
+
scale:
|
|
53
|
+
Optional Argument.
|
|
54
|
+
Specifies DataFrame column(s) to use for scale data to
|
|
55
|
+
wiggle and mesh plots.
|
|
56
|
+
Note:
|
|
57
|
+
"scale" is significant for wiggle and mesh plots. Ignored for other
|
|
58
|
+
type of plots.
|
|
59
|
+
Types: teradataml DataFrame Column OR list of teradataml DataFrame Columns.
|
|
60
|
+
|
|
61
|
+
kind:
|
|
62
|
+
Optional Argument.
|
|
63
|
+
Specifies the kind of plot.
|
|
64
|
+
Permitted Values:
|
|
65
|
+
* 'line'
|
|
66
|
+
* 'bar'
|
|
67
|
+
* 'scatter'
|
|
68
|
+
* 'corr'
|
|
69
|
+
* 'wiggle'
|
|
70
|
+
* 'mesh'
|
|
71
|
+
Default Value: line
|
|
72
|
+
Types: str
|
|
73
|
+
|
|
74
|
+
ax:
|
|
75
|
+
Optional Argument.
|
|
76
|
+
Specifies the axis for the plot.
|
|
77
|
+
Types: Axis
|
|
78
|
+
|
|
79
|
+
cmap:
|
|
80
|
+
Optional Argument.
|
|
81
|
+
Specifies the name of the colormap to be used for plotting.
|
|
82
|
+
Note:
|
|
83
|
+
* Significant only when corresponding type of plot is mesh or geometry.
|
|
84
|
+
* Ignored for other type of plots.
|
|
85
|
+
Permitted Values:
|
|
86
|
+
* All the colormaps mentioned in below URLs are supported.
|
|
87
|
+
* https://matplotlib.org/stable/tutorials/colors/colormaps.html
|
|
88
|
+
* https://matplotlib.org/cmocean/
|
|
89
|
+
Types: str
|
|
90
|
+
|
|
91
|
+
color:
|
|
92
|
+
Optional Argument.
|
|
93
|
+
Specifies the color for the plot.
|
|
94
|
+
Note:
|
|
95
|
+
Hexadecimal color codes are not supported.
|
|
96
|
+
Permitted Values:
|
|
97
|
+
* 'blue'
|
|
98
|
+
* 'orange'
|
|
99
|
+
* 'green'
|
|
100
|
+
* 'red'
|
|
101
|
+
* 'purple'
|
|
102
|
+
* 'brown'
|
|
103
|
+
* 'pink'
|
|
104
|
+
* 'gray'
|
|
105
|
+
* 'olive'
|
|
106
|
+
* 'cyan'
|
|
107
|
+
* Apart from above mentioned colors, the colors mentioned in
|
|
108
|
+
https://xkcd.com/color/rgb are also supported.
|
|
109
|
+
Types: str
|
|
110
|
+
|
|
111
|
+
figure:
|
|
112
|
+
Optional Argument.
|
|
113
|
+
Specifies the figure for the plot.
|
|
114
|
+
Types: Figure
|
|
115
|
+
|
|
116
|
+
figsize:
|
|
117
|
+
Optional Argument.
|
|
118
|
+
Specifies the size of the figure in a tuple of 2 elements. First
|
|
119
|
+
element represents width of plot image in pixels and second
|
|
120
|
+
element represents height of plot image in pixels.
|
|
121
|
+
Default Value: (640, 480)
|
|
122
|
+
Types: tuple
|
|
123
|
+
|
|
124
|
+
figtype:
|
|
125
|
+
Optional Argument.
|
|
126
|
+
Specifies the type of the image to generate.
|
|
127
|
+
Permitted Values:
|
|
128
|
+
* 'png'
|
|
129
|
+
* 'jpg'
|
|
130
|
+
* 'svg'
|
|
131
|
+
Default Value: 'png'
|
|
132
|
+
Types: str
|
|
133
|
+
|
|
134
|
+
figdpi:
|
|
135
|
+
Optional Argument.
|
|
136
|
+
Specifies the dots per inch for the plot image.
|
|
137
|
+
Note:
|
|
138
|
+
* Valid range for "dpi" is: 72 <= dpi <= 300.
|
|
139
|
+
* This argument is not applicable for SVG Type image.
|
|
140
|
+
Default Value: 100 for PNG and JPG Type image.
|
|
141
|
+
Types: int
|
|
142
|
+
|
|
143
|
+
grid_color:
|
|
144
|
+
Optional Argument.
|
|
145
|
+
Specifies the color of the grid. By default, grid is generated with
|
|
146
|
+
Gray color.
|
|
147
|
+
Note:
|
|
148
|
+
Hexadecimal color codes are not supported.
|
|
149
|
+
Permitted Values:
|
|
150
|
+
* 'blue'
|
|
151
|
+
* 'orange'
|
|
152
|
+
* 'green'
|
|
153
|
+
* 'red'
|
|
154
|
+
* 'purple'
|
|
155
|
+
* 'brown'
|
|
156
|
+
* 'pink'
|
|
157
|
+
* 'gray'
|
|
158
|
+
* 'olive'
|
|
159
|
+
* 'cyan'
|
|
160
|
+
* Apart from above mentioned colors, the colors mentioned in
|
|
161
|
+
https://xkcd.com/color/rgb are also supported.
|
|
162
|
+
Types: str
|
|
163
|
+
|
|
164
|
+
grid_format:
|
|
165
|
+
Optional Argument.
|
|
166
|
+
Specifies the format for the grid.
|
|
167
|
+
Types: str
|
|
168
|
+
|
|
169
|
+
grid_linestyle:
|
|
170
|
+
Optional Argument.
|
|
171
|
+
Specifies the line style of the grid.
|
|
172
|
+
Permitted Values:
|
|
173
|
+
* -
|
|
174
|
+
* --
|
|
175
|
+
* -.
|
|
176
|
+
Default Value: -
|
|
177
|
+
Types: str
|
|
178
|
+
|
|
179
|
+
grid_linewidth:
|
|
180
|
+
Optional Argument.
|
|
181
|
+
Specifies the line width of the grid.
|
|
182
|
+
Note:
|
|
183
|
+
Valid range for "grid_linewidth" is: 0.5 <= grid_linewidth <= 10.
|
|
184
|
+
Default Value: 0.8
|
|
185
|
+
Types: int OR float
|
|
186
|
+
|
|
187
|
+
heading:
|
|
188
|
+
Optional Argument.
|
|
189
|
+
Specifies the heading for the plot.
|
|
190
|
+
Types: str
|
|
191
|
+
|
|
192
|
+
legend:
|
|
193
|
+
Optional Argument.
|
|
194
|
+
Specifies the legend(s) for the Plot.
|
|
195
|
+
Types: str OR list of str
|
|
196
|
+
|
|
197
|
+
legend_style:
|
|
198
|
+
Optional Argument.
|
|
199
|
+
Specifies the location for legend to display on Plot image.
|
|
200
|
+
Permitted Values:
|
|
201
|
+
* 'upper right'
|
|
202
|
+
* 'upper left'
|
|
203
|
+
* 'lower right'
|
|
204
|
+
* 'lower left'
|
|
205
|
+
* 'right'
|
|
206
|
+
* 'center left'
|
|
207
|
+
* 'center right'
|
|
208
|
+
* 'lower center'
|
|
209
|
+
* 'upper center'
|
|
210
|
+
* 'center'
|
|
211
|
+
Default Value: 'upper right'
|
|
212
|
+
Types: str
|
|
213
|
+
|
|
214
|
+
linestyle:
|
|
215
|
+
Optional Argument.
|
|
216
|
+
Specifies the line style for the plot.
|
|
217
|
+
Permitted Values:
|
|
218
|
+
* -
|
|
219
|
+
* --
|
|
220
|
+
* -.
|
|
221
|
+
* :
|
|
222
|
+
Default Value: -
|
|
223
|
+
Types: str
|
|
224
|
+
|
|
225
|
+
linewidth:
|
|
226
|
+
Optional Argument.
|
|
227
|
+
Specifies the line width for the plot.
|
|
228
|
+
Note:
|
|
229
|
+
Valid range for "linewidth" is: 0.5 <= linewidth <= 10.
|
|
230
|
+
Default Value: 0.8
|
|
231
|
+
Types: int OR float
|
|
232
|
+
|
|
233
|
+
marker:
|
|
234
|
+
Optional Argument.
|
|
235
|
+
Specifies the type of the marker to be used.
|
|
236
|
+
Permitted Values:
|
|
237
|
+
All the markers mentioned in https://matplotlib.org/stable/api/markers_api.html
|
|
238
|
+
are supported.
|
|
239
|
+
Types: str
|
|
240
|
+
|
|
241
|
+
markersize:
|
|
242
|
+
Optional Argument.
|
|
243
|
+
Specifies the size of the marker.
|
|
244
|
+
Note:
|
|
245
|
+
Valid range for "markersize" is: 1 <= markersize <= 20.
|
|
246
|
+
Default Value: 6
|
|
247
|
+
Types: int OR float
|
|
248
|
+
|
|
249
|
+
position:
|
|
250
|
+
Optional Argument.
|
|
251
|
+
Specifies the position of the axis in the figure. Accepts a tuple
|
|
252
|
+
of two elements where first element represents the row and second
|
|
253
|
+
element represents column.
|
|
254
|
+
Default Value: (1, 1)
|
|
255
|
+
Types: tuple
|
|
256
|
+
|
|
257
|
+
span:
|
|
258
|
+
Optional Argument.
|
|
259
|
+
Specifies the span of the axis in the figure. Accepts a tuple
|
|
260
|
+
of two elements where first element represents the row and second
|
|
261
|
+
element represents column.
|
|
262
|
+
For Example,
|
|
263
|
+
Span of (2, 1) specifies the Axis occupies 2 rows and 1 column
|
|
264
|
+
in Figure.
|
|
265
|
+
Default Value: (1, 1)
|
|
266
|
+
Types: tuple
|
|
267
|
+
|
|
268
|
+
reverse_xaxis:
|
|
269
|
+
Optional Argument.
|
|
270
|
+
Specifies whether to reverse tick values on x-axis or not.
|
|
271
|
+
Default Value: False
|
|
272
|
+
Types: bool
|
|
273
|
+
|
|
274
|
+
reverse_yaxis:
|
|
275
|
+
Optional Argument.
|
|
276
|
+
Specifies whether to reverse tick values on y-axis or not.
|
|
277
|
+
Default Value: False
|
|
278
|
+
Types: bool
|
|
279
|
+
|
|
280
|
+
series_identifier:
|
|
281
|
+
Optional Argument.
|
|
282
|
+
Specifies the teradataml DataFrame Column which represents the
|
|
283
|
+
identifier for the data. As many plots as distinct "series_identifier"
|
|
284
|
+
are generated in a single Axis.
|
|
285
|
+
For example:
|
|
286
|
+
consider the below data in teradataml DataFrame.
|
|
287
|
+
ID x y
|
|
288
|
+
0 1 1 1
|
|
289
|
+
1 1 2 2
|
|
290
|
+
2 2 10 10
|
|
291
|
+
3 2 20 20
|
|
292
|
+
If "series_identifier" is not specified, simple plot is
|
|
293
|
+
generated where every 'y' is plotted against 'x' in a
|
|
294
|
+
single plot. However, specifying "series_identifier" as 'ID'
|
|
295
|
+
generates two plots in a single axis. One plot is for ID 1
|
|
296
|
+
and another plot is for ID 2.
|
|
297
|
+
Types: teradataml DataFrame Column.
|
|
298
|
+
|
|
299
|
+
title:
|
|
300
|
+
Optional Argument.
|
|
301
|
+
Specifies the title for the Axis.
|
|
302
|
+
Types: str
|
|
303
|
+
|
|
304
|
+
xlabel:
|
|
305
|
+
Optional Argument.
|
|
306
|
+
Specifies the label for x-axis.
|
|
307
|
+
Notes:
|
|
308
|
+
* When set to empty string, label is not displayed for x-axis.
|
|
309
|
+
* When set to None, name of the x-axis column is displayed as
|
|
310
|
+
label.
|
|
311
|
+
Types: str
|
|
312
|
+
|
|
313
|
+
xlim:
|
|
314
|
+
Optional Argument.
|
|
315
|
+
Specifies the range for xtick values.
|
|
316
|
+
Types: tuple
|
|
317
|
+
|
|
318
|
+
xtick_format:
|
|
319
|
+
Optional Argument.
|
|
320
|
+
Specifies how to format tick values for x-axis.
|
|
321
|
+
Types: str
|
|
322
|
+
|
|
323
|
+
ylabel:
|
|
324
|
+
Optional Argument.
|
|
325
|
+
Specifies the label for y-axis.
|
|
326
|
+
Notes:
|
|
327
|
+
* When set to empty string, label is not displayed for y-axis.
|
|
328
|
+
* When set to None, name of the y-axis column(s) is displayed as
|
|
329
|
+
label.
|
|
330
|
+
Types: str
|
|
331
|
+
|
|
332
|
+
ylim:
|
|
333
|
+
Optional Argument.
|
|
334
|
+
Specifies the range for ytick values.
|
|
335
|
+
Types: tuple
|
|
336
|
+
|
|
337
|
+
ytick_format:
|
|
338
|
+
Optional Argument.
|
|
339
|
+
Specifies how to format tick values for y-axis.
|
|
340
|
+
Types: str
|
|
341
|
+
|
|
342
|
+
vmin:
|
|
343
|
+
Optional Argument.
|
|
344
|
+
Specifies the lower range of the color map. By default, the range
|
|
345
|
+
is derived from data and color codes are assigned accordingly.
|
|
346
|
+
Note:
|
|
347
|
+
"vmin" Significant only for Mesh and Geometry Plot.
|
|
348
|
+
Types: int OR float
|
|
349
|
+
|
|
350
|
+
vmax:
|
|
351
|
+
Optional Argument.
|
|
352
|
+
Specifies the upper range of the color map. By default, the range is
|
|
353
|
+
derived from data and color codes are assigned accordingly.
|
|
354
|
+
Note:
|
|
355
|
+
"vmax" Significant only for Mesh and Geometry Plot.
|
|
356
|
+
For example:
|
|
357
|
+
Assuming user wants to use colormap 'matter' and derive the colors for
|
|
358
|
+
values which are in between 1 and 100.
|
|
359
|
+
Note: colormap 'matter' starts with Pale Yellow and ends with Violet.
|
|
360
|
+
* If "colormap_range" is not specified, then range is derived from
|
|
361
|
+
existing values. Thus, colors are represented as below in the whole range:
|
|
362
|
+
* 1 as Pale Yellow.
|
|
363
|
+
* 100 as Violet.
|
|
364
|
+
* If "colormap_range" is specified as -100 and 100, the value 1 is at middle of
|
|
365
|
+
the specified range. Thus, colors are represented as below in the whole range:
|
|
366
|
+
* -100 as Pale Yellow.
|
|
367
|
+
* 1 as Orange.
|
|
368
|
+
* 100 as Violet.
|
|
369
|
+
Types: int OR float
|
|
370
|
+
|
|
371
|
+
wiggle_fill:
|
|
372
|
+
Optional Argument.
|
|
373
|
+
Specifies whether to fill the wiggle area or not. By default, the right
|
|
374
|
+
positive half of the wiggle is not filled. If specified as True, wiggle
|
|
375
|
+
area is filled.
|
|
376
|
+
Note:
|
|
377
|
+
Applicable only for the wiggle plot.
|
|
378
|
+
Default Value: False
|
|
379
|
+
Types: bool
|
|
380
|
+
|
|
381
|
+
wiggle_scale:
|
|
382
|
+
Optional Argument.
|
|
383
|
+
Specifies the scale of the wiggle. By default, the amplitude of wiggle is scaled
|
|
384
|
+
relative to RMS of the first payload. In certain cases, it can lead to excessively
|
|
385
|
+
large wiggles. Use SCALE to adjust the relative size of the wiggle.
|
|
386
|
+
Note:
|
|
387
|
+
Applicable only for the wiggle and mesh plots.
|
|
388
|
+
Types: int OR float
|
|
389
|
+
|
|
390
|
+
ignore_nulls:
|
|
391
|
+
Optional Argument.
|
|
392
|
+
Specifies whether to delete rows with null values or not present in 'x', 'y' and
|
|
393
|
+
'scale' params.
|
|
394
|
+
Default Value: False
|
|
395
|
+
Types: bool
|
|
396
|
+
|
|
397
|
+
|
|
398
|
+
RAISES:
|
|
399
|
+
TeradataMlException
|
|
400
|
+
|
|
401
|
+
EXAMPLES:
|
|
402
|
+
# Examples added in DataFrame.plot().
|
|
403
|
+
"""
|
|
404
|
+
self.x = x
|
|
405
|
+
self.y = y
|
|
406
|
+
self.scale = scale
|
|
407
|
+
self.kind = kind
|
|
408
|
+
|
|
409
|
+
arg_info_matrix = []
|
|
410
|
+
|
|
411
|
+
if self.kind != "geometry":
|
|
412
|
+
arg_info_matrix.append(["x", self.x, False, (ColumnExpression), True])
|
|
413
|
+
|
|
414
|
+
arg_info_matrix.append(["y", self.y, False, (ColumnExpression, list, tuple), True])
|
|
415
|
+
arg_info_matrix.append(["scale", self.scale, True, ColumnExpression, True])
|
|
416
|
+
|
|
417
|
+
# Permitted values for kind.
|
|
418
|
+
kind_permitted_values = ["bar", "corr", "line", "mesh", "scatter", "wiggle",
|
|
419
|
+
"geometry"]
|
|
420
|
+
|
|
421
|
+
arg_info_matrix.append(["kind", self.kind, True, (str),
|
|
422
|
+
True, kind_permitted_values])
|
|
423
|
+
|
|
424
|
+
# Extract figure and figure related arguments from kwargs.
|
|
425
|
+
self.figure = kwargs.get("figure")
|
|
426
|
+
self.figsize = kwargs.get("figsize", (640, 480))
|
|
427
|
+
self.figtype = kwargs.get("figtype", "png")
|
|
428
|
+
self.figdpi = kwargs.get("figdpi", None)
|
|
429
|
+
|
|
430
|
+
# Default value for 'figdpi' is 100 for figtype='png' and figtype='jpg'.
|
|
431
|
+
if self.figtype in ["png", "jpg"] and self.figdpi is None:
|
|
432
|
+
self.figdpi = 100
|
|
433
|
+
|
|
434
|
+
arg_info_matrix.append(["figure", self.figure, True, (Figure), False])
|
|
435
|
+
|
|
436
|
+
figtype_permitted_values = ["png", "jpg", "svg"]
|
|
437
|
+
arg_info_matrix.append(["figtype", self.figtype, True,
|
|
438
|
+
(str), True, figtype_permitted_values])
|
|
439
|
+
arg_info_matrix.append(["figsize", self.figsize, True, (tuple), True])
|
|
440
|
+
arg_info_matrix.append(["figdpi", self.figdpi, True, (int), True])
|
|
441
|
+
|
|
442
|
+
# Extract wiggle_fill and wiggle_scale from parameters.
|
|
443
|
+
self.wiggle_fill = kwargs.pop("wiggle_fill", None)
|
|
444
|
+
self.wiggle_scale = kwargs.pop("wiggle_scale", None)
|
|
445
|
+
|
|
446
|
+
arg_info_matrix.append((["wiggle_fill", self.wiggle_fill, True, (bool)]))
|
|
447
|
+
arg_info_matrix.append((["wiggle_scale", self.wiggle_scale, True, (int, float)]))
|
|
448
|
+
|
|
449
|
+
# 'wiggle_scale' is applicable only for Mesh and Wiggle plot.
|
|
450
|
+
_Validators._validate_dependent_argument("wiggle_scale", self.wiggle_scale,
|
|
451
|
+
"kind", None if self.kind not in ['wiggle', 'mesh'] else self.kind, "kind='wiggle' or kind='mesh'")
|
|
452
|
+
|
|
453
|
+
# 'wiggle_fill' is applicable only for wiggle plot.
|
|
454
|
+
_Validators._validate_dependent_argument("wiggle_fill", self.wiggle_fill,
|
|
455
|
+
"kind", None if self.kind != "wiggle" else self.kind, "kind='wiggle'")
|
|
456
|
+
|
|
457
|
+
# Argument validations.
|
|
458
|
+
_Validators._validate_function_arguments(arg_info_matrix)
|
|
459
|
+
|
|
460
|
+
# 'figdpi' is applicable only for "png" and "jpg" type only.
|
|
461
|
+
_Validators._validate_dependent_argument("figdpi", self.figdpi,
|
|
462
|
+
"figtype", None if self.figtype not in ["png", "jpg"] else self.figtype, "figtype='png' or figtype='jpg'")
|
|
463
|
+
|
|
464
|
+
# Argument range check.
|
|
465
|
+
_Validators._validate_argument_range(self.figdpi, "figdpi",
|
|
466
|
+
lbound=72, lbound_inclusive=True,
|
|
467
|
+
ubound=300, ubound_inclusive=True)
|
|
468
|
+
|
|
469
|
+
# Get figure. If user did not pass, create a default one.
|
|
470
|
+
# self.figure = kwargs.get("figure")
|
|
471
|
+
if self.figure is None:
|
|
472
|
+
self.figure = Figure()
|
|
473
|
+
self._figure = self.figure
|
|
474
|
+
|
|
475
|
+
self.axis = kwargs.get("ax", None)
|
|
476
|
+
# If axis is not passed, generate a default one.
|
|
477
|
+
if self.axis is None:
|
|
478
|
+
self.axis = Axis(kind=kind, **kwargs)
|
|
479
|
+
else:
|
|
480
|
+
# If user passes axes, i.e., for subplot, add additional params
|
|
481
|
+
# which is passed as kwargs.
|
|
482
|
+
self.axis.set_params(kind=kind, **kwargs)
|
|
483
|
+
|
|
484
|
+
# Set the axis data.
|
|
485
|
+
self.axis._set_data(x, y, scale=scale)
|
|
486
|
+
|
|
487
|
+
# Add the axis to figure.
|
|
488
|
+
self._figure._add_axis(self.axis)
|
|
489
|
+
self._query = None
|
|
490
|
+
self._plot_image_data = None
|
|
491
|
+
self.heading = kwargs.get("heading")
|
|
492
|
+
_Validators._validate_input_columns_not_empty(self.heading, "heading")
|
|
493
|
+
self.__params = kwargs
|
|
494
|
+
|
|
495
|
+
def __eq__(self, other):
|
|
496
|
+
"""
|
|
497
|
+
DESCRIPTION:
|
|
498
|
+
Magic method to check if two Plot objects are equal or not.
|
|
499
|
+
If all the associated parameters are same, then two Plot objects
|
|
500
|
+
are equal. Else, they are not equal.
|
|
501
|
+
|
|
502
|
+
PARAMETERS:
|
|
503
|
+
other:
|
|
504
|
+
Required Argument.
|
|
505
|
+
Specifies the object of Plot.
|
|
506
|
+
Types: Plot
|
|
507
|
+
|
|
508
|
+
RETURNS:
|
|
509
|
+
bool
|
|
510
|
+
|
|
511
|
+
RAISES:
|
|
512
|
+
None.
|
|
513
|
+
|
|
514
|
+
EXAMPLES:
|
|
515
|
+
>>> _Plot() == _Plot()
|
|
516
|
+
"""
|
|
517
|
+
|
|
518
|
+
# Check whether x and y are same or not.
|
|
519
|
+
# If two plots to be same, their data and plot parameters to be same.
|
|
520
|
+
if self.x.compile() != other.x.compile():
|
|
521
|
+
return False
|
|
522
|
+
|
|
523
|
+
self_y = (self.y, ) if isinstance(self.y, ColumnExpression) else self.y
|
|
524
|
+
other_y = (other.y, ) if isinstance(other.y, ColumnExpression) else other.y
|
|
525
|
+
|
|
526
|
+
if len(self_y) != len(other_y):
|
|
527
|
+
return False
|
|
528
|
+
|
|
529
|
+
for self_col, other_col in zip(self_y, other_y):
|
|
530
|
+
if self_col.compile() != other_col.compile():
|
|
531
|
+
return False
|
|
532
|
+
|
|
533
|
+
# Validate plot parameters are same or not.
|
|
534
|
+
attrs = ["scale", "kind",
|
|
535
|
+
"figsize", "figtype", "figdpi",
|
|
536
|
+
"heading", "wiggle_fill", "wiggle_scale",
|
|
537
|
+
"axis", "figure"]
|
|
538
|
+
|
|
539
|
+
for attr in attrs:
|
|
540
|
+
if getattr(self, attr) == getattr(other, attr):
|
|
541
|
+
continue
|
|
542
|
+
else:
|
|
543
|
+
return False
|
|
544
|
+
|
|
545
|
+
return True
|
|
546
|
+
|
|
547
|
+
def _execute_query(self):
|
|
548
|
+
"""
|
|
549
|
+
DESCRIPTION:
|
|
550
|
+
Internal function to execute the Plot Query.
|
|
551
|
+
|
|
552
|
+
EXAMPLES:
|
|
553
|
+
>>> _plot._execute_query()
|
|
554
|
+
"""
|
|
555
|
+
if self._plot_image_data is None:
|
|
556
|
+
query = self._get_query()
|
|
557
|
+
|
|
558
|
+
res = get_connection().execute(text(query))
|
|
559
|
+
self._plot_image_data = res.fetchone().IMAGE
|
|
560
|
+
|
|
561
|
+
def show_query(self):
|
|
562
|
+
"""
|
|
563
|
+
DESCRIPTION:
|
|
564
|
+
Function to display the query used to generate Plot.
|
|
565
|
+
|
|
566
|
+
EXAMPLES:
|
|
567
|
+
# Example - Create a DataFrame and plot the data using DataFrame.plot.
|
|
568
|
+
# And, display the query.
|
|
569
|
+
# Load the data.
|
|
570
|
+
>>> load_example_data("movavg", "ibm_stock")
|
|
571
|
+
# Create DataFrame.
|
|
572
|
+
>>> ibm_stock = DataFrame("ibm_stock")
|
|
573
|
+
# Display the query.
|
|
574
|
+
>>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
|
|
575
|
+
>>> plot.show_query()
|
|
576
|
+
"""
|
|
577
|
+
return self._get_query()
|
|
578
|
+
|
|
579
|
+
def show(self):
|
|
580
|
+
"""
|
|
581
|
+
DESCRIPTION:
|
|
582
|
+
Function to show the plot in the console. The function displays plot
|
|
583
|
+
in either on the console or in a new window based on the option 'inline_plot'.
|
|
584
|
+
* If the console is IPython console, the plot is displayed on the console
|
|
585
|
+
when the option 'inline_plot' is set to True. If the option 'inline_plot'
|
|
586
|
+
is set to False, plot is displayed on new window.
|
|
587
|
+
* If the console is regular Python console and not an IPython console,
|
|
588
|
+
then plot is displayed on a new window irrespective of option 'inline_plot'.
|
|
589
|
+
Note:
|
|
590
|
+
Displaying the plot in a new window requires an additional Python module
|
|
591
|
+
tkinter. One needs to install it manually since teradataml does not install
|
|
592
|
+
it by default.
|
|
593
|
+
|
|
594
|
+
EXAMPLES:
|
|
595
|
+
# Example 1 - Generate a line plot and display it in the console.
|
|
596
|
+
>>> load_example_data("movavg", "ibm_stock")
|
|
597
|
+
# Set the option to display the plot in the console.
|
|
598
|
+
>>> from teradataml import configure
|
|
599
|
+
>>> configure.inline_plot = True
|
|
600
|
+
# Create DataFrame.
|
|
601
|
+
>>> ibm_stock = DataFrame("ibm_stock")
|
|
602
|
+
# Generate the plot
|
|
603
|
+
>>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
|
|
604
|
+
>>> plot.show()
|
|
605
|
+
|
|
606
|
+
# Example 2 - Generate a bar plot and display it in a new window.
|
|
607
|
+
>>> load_example_data("movavg", "ibm_stock")
|
|
608
|
+
# Set the option to display the plot in a new window.
|
|
609
|
+
>>> from teradataml import configure
|
|
610
|
+
>>> configure.inline_plot = False
|
|
611
|
+
# Create DataFrame.
|
|
612
|
+
>>> ibm_stock = DataFrame("ibm_stock")
|
|
613
|
+
# Generate the plot
|
|
614
|
+
>>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice, kind="bar")
|
|
615
|
+
>>> plot.show()
|
|
616
|
+
"""
|
|
617
|
+
if self._plot_image_data is None:
|
|
618
|
+
self._execute_query()
|
|
619
|
+
|
|
620
|
+
# If user choose for inline plot, then check if Python console supports
|
|
621
|
+
# inline plotting or not. If not supports, then go for outline plot.
|
|
622
|
+
if configure.inline_plot is None:
|
|
623
|
+
try:
|
|
624
|
+
if __IPYTHON__:
|
|
625
|
+
self._show_inline_plot()
|
|
626
|
+
except NameError:
|
|
627
|
+
self._show_outline_plot()
|
|
628
|
+
else:
|
|
629
|
+
self._show_inline_plot() if configure.inline_plot else self._show_outline_plot()
|
|
630
|
+
|
|
631
|
+
def _repr_html_(self):
|
|
632
|
+
"""
|
|
633
|
+
DESCRIPTION:
|
|
634
|
+
Function to display the Plot in for iPython rich display.
|
|
635
|
+
"""
|
|
636
|
+
self.show()
|
|
637
|
+
|
|
638
|
+
def _show_inline_plot(self):
|
|
639
|
+
"""
|
|
640
|
+
DESCRIPTION:
|
|
641
|
+
Internal function to display the plot in the console.
|
|
642
|
+
|
|
643
|
+
EXAMPLES:
|
|
644
|
+
# Example - Create a DataFrame and plot the data using DataFrame.plot.
|
|
645
|
+
# And, display it in same console.
|
|
646
|
+
# Load the data.
|
|
647
|
+
>>> load_example_data("movavg", "ibm_stock")
|
|
648
|
+
# Create DataFrame.
|
|
649
|
+
>>> ibm_stock = DataFrame("ibm_stock")
|
|
650
|
+
# Generate plot and display it in console.
|
|
651
|
+
>>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
|
|
652
|
+
>>> plot._show_inline_plot()
|
|
653
|
+
"""
|
|
654
|
+
from IPython.display import display as dsp, Image
|
|
655
|
+
dsp(Image(data=self._plot_image_data))
|
|
656
|
+
|
|
657
|
+
def _show_outline_plot(self):
|
|
658
|
+
"""
|
|
659
|
+
DESCRIPTION:
|
|
660
|
+
Internal function to display the plot in a new window.
|
|
661
|
+
|
|
662
|
+
EXAMPLES:
|
|
663
|
+
# Example - Create a DataFrame and plot the data using DataFrame.plot.
|
|
664
|
+
# And, display it in a new window.
|
|
665
|
+
# Load the data.
|
|
666
|
+
>>> load_example_data("movavg", "ibm_stock")
|
|
667
|
+
# Create DataFrame.
|
|
668
|
+
>>> ibm_stock = DataFrame("ibm_stock")
|
|
669
|
+
# Generate plot and display it in console.
|
|
670
|
+
>>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
|
|
671
|
+
>>> plot._show_outline_plot()
|
|
672
|
+
"""
|
|
673
|
+
try:
|
|
674
|
+
import tkinter as tk
|
|
675
|
+
root = tk.Tk()
|
|
676
|
+
file_format = self._figure.image_type
|
|
677
|
+
canvas = tk.Canvas(width=self._figure.width, height=self._figure.height)
|
|
678
|
+
canvas.pack()
|
|
679
|
+
img = tk.PhotoImage(data=self._plot_image_data, format=file_format)
|
|
680
|
+
canvas.create_image(0, 0, anchor=tk.NW, image=img)
|
|
681
|
+
root.wm_iconbitmap(os.path.join(UtilFuncs._get_tdml_directory(), "data", "teradata_icon.ico"))
|
|
682
|
+
root.wm_title('teradataml plot')
|
|
683
|
+
root.mainloop()
|
|
684
|
+
except ModuleNotFoundError:
|
|
685
|
+
print("Install module 'tkinter' to display the plot.")
|
|
686
|
+
|
|
687
|
+
def _get_query(self):
|
|
688
|
+
"""
|
|
689
|
+
DESCRIPTION:
|
|
690
|
+
Internal function to get the query.
|
|
691
|
+
|
|
692
|
+
EXAMPLES:
|
|
693
|
+
>>> plot._get_query()
|
|
694
|
+
"""
|
|
695
|
+
|
|
696
|
+
if not self._query:
|
|
697
|
+
|
|
698
|
+
from teradataml.plot.query_generator import PlotQueryGenerator
|
|
699
|
+
_series_spec = []
|
|
700
|
+
_plot_params = []
|
|
701
|
+
func_other_args = {}
|
|
702
|
+
|
|
703
|
+
_id = 1
|
|
704
|
+
# Every figure has one or more axis. And, every axis contains
|
|
705
|
+
# plot data and axis parameters.
|
|
706
|
+
for axis in self._figure.get_axes():
|
|
707
|
+
|
|
708
|
+
if axis._has_data():
|
|
709
|
+
_virtual_table, _spec, _plot_param = axis._get_plot_data()
|
|
710
|
+
_plot_param["ID"] = _id
|
|
711
|
+
_series_spec.append(_spec)
|
|
712
|
+
|
|
713
|
+
# Update the wiggle parameters.
|
|
714
|
+
if self.kind.lower() == "wiggle":
|
|
715
|
+
_wiggle_params = {}
|
|
716
|
+
if self.wiggle_fill is not None:
|
|
717
|
+
_wiggle_params["FILL"] = 1 if self.wiggle_fill else 0
|
|
718
|
+
|
|
719
|
+
if self.wiggle_scale is not None:
|
|
720
|
+
_wiggle_params["SCALE"] = self.wiggle_scale
|
|
721
|
+
|
|
722
|
+
if _wiggle_params:
|
|
723
|
+
_plot_param["WIGGLE"] = _wiggle_params
|
|
724
|
+
|
|
725
|
+
_plot_params.append(_plot_param)
|
|
726
|
+
_id = _id + 1
|
|
727
|
+
|
|
728
|
+
dpi = self.__params.get("figdpi") if self.__params.get("figdpi") else self._figure.dpi
|
|
729
|
+
height = self.__params.get("figsize")[1] if self.__params.get("figsize") else self._figure.height
|
|
730
|
+
width = self.__params.get("figsize")[0] if self.__params.get("figsize") else self._figure.width
|
|
731
|
+
type_ = self.__params.get("figtype") if self.__params.get("figtype") else self._figure.image_type
|
|
732
|
+
|
|
733
|
+
# teradataml maintains layout as rows and columns. However,
|
|
734
|
+
# SQL maintains it as columns and rows. Hence, reverse the layout.
|
|
735
|
+
layout = self._figure.layout[::-1]
|
|
736
|
+
func_other_args.update({"LAYOUT": layout,
|
|
737
|
+
"PLOTS": _plot_params,
|
|
738
|
+
"DPI": dpi,
|
|
739
|
+
"IMAGE": "'{}'".format(type_),
|
|
740
|
+
"WIDTH": width,
|
|
741
|
+
"HEIGHT": height
|
|
742
|
+
})
|
|
743
|
+
|
|
744
|
+
heading = self.heading if self.heading is not None else self._figure.heading
|
|
745
|
+
if heading:
|
|
746
|
+
func_other_args["TITLE"] = "'{}'".format(heading)
|
|
747
|
+
|
|
748
|
+
query_generator = PlotQueryGenerator(function_name="TD_PLOT",
|
|
749
|
+
func_input_args=", \n".join(_series_spec),
|
|
750
|
+
func_input_filter_expr_args=None,
|
|
751
|
+
func_output_args=None,
|
|
752
|
+
func_other_args=func_other_args)
|
|
753
|
+
|
|
754
|
+
self._query = query_generator._get_display_uaf()
|
|
755
|
+
|
|
756
|
+
return self._query
|
|
757
|
+
|
|
758
|
+
def save(self, file_name, dir=None):
|
|
759
|
+
"""
|
|
760
|
+
Function to save the plot to an image.
|
|
761
|
+
|
|
762
|
+
PARAMETERS:
|
|
763
|
+
file_name:
|
|
764
|
+
Required Argument.
|
|
765
|
+
Specifies the name of the image file.
|
|
766
|
+
Note:
|
|
767
|
+
Do not mention the extension for the filename.
|
|
768
|
+
Types: str
|
|
769
|
+
|
|
770
|
+
dir:
|
|
771
|
+
Optional Argument.
|
|
772
|
+
Specifies the absolute path of the directory to store the plot image.
|
|
773
|
+
Types: str
|
|
774
|
+
|
|
775
|
+
RAISES:
|
|
776
|
+
TeradataMlException
|
|
777
|
+
|
|
778
|
+
EXAMPLES:
|
|
779
|
+
# Example 1: Generate a scatter plot and store it in current directory.
|
|
780
|
+
# Load the data.
|
|
781
|
+
>>> load_example_data("movavg", "ibm_stock")
|
|
782
|
+
# Create DataFrame.
|
|
783
|
+
>>> ibm_stock = DataFrame("ibm_stock")
|
|
784
|
+
# Generate plot.
|
|
785
|
+
>>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
|
|
786
|
+
>>> plot.save("example1")
|
|
787
|
+
|
|
788
|
+
# Example 2: Generate a scatter plot and store it in temp directory.
|
|
789
|
+
# Load the data.
|
|
790
|
+
>>> load_example_data("movavg", "ibm_stock")
|
|
791
|
+
# Create DataFrame.
|
|
792
|
+
>>> ibm_stock = DataFrame("ibm_stock")
|
|
793
|
+
# Generate plot.
|
|
794
|
+
>>> plot = ibm_stock.plot(x=ibm_stock.period, y=ibm_stock.stockprice)
|
|
795
|
+
>>> # Store in temp directory.
|
|
796
|
+
>>> from tempfile import gettempdir
|
|
797
|
+
>>> plot.save("example2", dir=gettempdir())
|
|
798
|
+
"""
|
|
799
|
+
# TODO: Check for the existance of 'dir'.
|
|
800
|
+
type_ = self.__params.get("figtype") if self.__params.get("figtype") else self._figure.image_type
|
|
801
|
+
file_name = "{}.{}".format(file_name, type_)
|
|
802
|
+
if dir:
|
|
803
|
+
file_name = os.path.join(dir, file_name)
|
|
804
|
+
|
|
805
|
+
# Execute the query if it is not executed already.
|
|
806
|
+
self._execute_query()
|
|
807
|
+
|
|
808
|
+
# Store the image.
|
|
809
|
+
with open(file_name, "wb") as fp:
|
|
810
|
+
fp.write(self._plot_image_data)
|