teradataml 20.0.0.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1208) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +2762 -0
  4. teradataml/__init__.py +78 -0
  5. teradataml/_version.py +11 -0
  6. teradataml/analytics/Transformations.py +2996 -0
  7. teradataml/analytics/__init__.py +82 -0
  8. teradataml/analytics/analytic_function_executor.py +2416 -0
  9. teradataml/analytics/analytic_query_generator.py +1050 -0
  10. teradataml/analytics/byom/H2OPredict.py +514 -0
  11. teradataml/analytics/byom/PMMLPredict.py +437 -0
  12. teradataml/analytics/byom/__init__.py +16 -0
  13. teradataml/analytics/json_parser/__init__.py +133 -0
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
  15. teradataml/analytics/json_parser/json_store.py +191 -0
  16. teradataml/analytics/json_parser/metadata.py +1666 -0
  17. teradataml/analytics/json_parser/utils.py +805 -0
  18. teradataml/analytics/meta_class.py +236 -0
  19. teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
  21. teradataml/analytics/sqle/__init__.py +128 -0
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
  24. teradataml/analytics/table_operator/__init__.py +11 -0
  25. teradataml/analytics/uaf/__init__.py +82 -0
  26. teradataml/analytics/utils.py +828 -0
  27. teradataml/analytics/valib.py +1617 -0
  28. teradataml/automl/__init__.py +5835 -0
  29. teradataml/automl/autodataprep/__init__.py +493 -0
  30. teradataml/automl/custom_json_utils.py +1625 -0
  31. teradataml/automl/data_preparation.py +1384 -0
  32. teradataml/automl/data_transformation.py +1254 -0
  33. teradataml/automl/feature_engineering.py +2273 -0
  34. teradataml/automl/feature_exploration.py +1873 -0
  35. teradataml/automl/model_evaluation.py +488 -0
  36. teradataml/automl/model_training.py +1407 -0
  37. teradataml/catalog/__init__.py +2 -0
  38. teradataml/catalog/byom.py +1759 -0
  39. teradataml/catalog/function_argument_mapper.py +859 -0
  40. teradataml/catalog/model_cataloging_utils.py +491 -0
  41. teradataml/clients/__init__.py +0 -0
  42. teradataml/clients/auth_client.py +137 -0
  43. teradataml/clients/keycloak_client.py +165 -0
  44. teradataml/clients/pkce_client.py +481 -0
  45. teradataml/common/__init__.py +1 -0
  46. teradataml/common/aed_utils.py +2078 -0
  47. teradataml/common/bulk_exposed_utils.py +113 -0
  48. teradataml/common/constants.py +1669 -0
  49. teradataml/common/deprecations.py +166 -0
  50. teradataml/common/exceptions.py +147 -0
  51. teradataml/common/formula.py +743 -0
  52. teradataml/common/garbagecollector.py +666 -0
  53. teradataml/common/logger.py +1261 -0
  54. teradataml/common/messagecodes.py +518 -0
  55. teradataml/common/messages.py +262 -0
  56. teradataml/common/pylogger.py +67 -0
  57. teradataml/common/sqlbundle.py +764 -0
  58. teradataml/common/td_coltype_code_to_tdtype.py +48 -0
  59. teradataml/common/utils.py +3166 -0
  60. teradataml/common/warnings.py +36 -0
  61. teradataml/common/wrapper_utils.py +625 -0
  62. teradataml/config/__init__.py +0 -0
  63. teradataml/config/dummy_file1.cfg +5 -0
  64. teradataml/config/dummy_file2.cfg +3 -0
  65. teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
  66. teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
  67. teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
  68. teradataml/context/__init__.py +0 -0
  69. teradataml/context/aed_context.py +223 -0
  70. teradataml/context/context.py +1462 -0
  71. teradataml/data/A_loan.csv +19 -0
  72. teradataml/data/BINARY_REALS_LEFT.csv +11 -0
  73. teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
  74. teradataml/data/B_loan.csv +49 -0
  75. teradataml/data/BuoyData2.csv +17 -0
  76. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
  77. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
  78. teradataml/data/Convolve2RealsLeft.csv +5 -0
  79. teradataml/data/Convolve2RealsRight.csv +5 -0
  80. teradataml/data/Convolve2ValidLeft.csv +11 -0
  81. teradataml/data/Convolve2ValidRight.csv +11 -0
  82. teradataml/data/DFFTConv_Real_8_8.csv +65 -0
  83. teradataml/data/Employee.csv +5 -0
  84. teradataml/data/Employee_Address.csv +4 -0
  85. teradataml/data/Employee_roles.csv +5 -0
  86. teradataml/data/JulesBelvezeDummyData.csv +100 -0
  87. teradataml/data/Mall_customer_data.csv +201 -0
  88. teradataml/data/Orders1_12mf.csv +25 -0
  89. teradataml/data/Pi_loan.csv +7 -0
  90. teradataml/data/SMOOTHED_DATA.csv +7 -0
  91. teradataml/data/TestDFFT8.csv +9 -0
  92. teradataml/data/TestRiver.csv +109 -0
  93. teradataml/data/Traindata.csv +28 -0
  94. teradataml/data/__init__.py +0 -0
  95. teradataml/data/acf.csv +17 -0
  96. teradataml/data/adaboost_example.json +34 -0
  97. teradataml/data/adaboostpredict_example.json +24 -0
  98. teradataml/data/additional_table.csv +11 -0
  99. teradataml/data/admissions_test.csv +21 -0
  100. teradataml/data/admissions_train.csv +41 -0
  101. teradataml/data/admissions_train_nulls.csv +41 -0
  102. teradataml/data/advertising.csv +201 -0
  103. teradataml/data/ageandheight.csv +13 -0
  104. teradataml/data/ageandpressure.csv +31 -0
  105. teradataml/data/amazon_reviews_25.csv +26 -0
  106. teradataml/data/antiselect_example.json +36 -0
  107. teradataml/data/antiselect_input.csv +8 -0
  108. teradataml/data/antiselect_input_mixed_case.csv +8 -0
  109. teradataml/data/applicant_external.csv +7 -0
  110. teradataml/data/applicant_reference.csv +7 -0
  111. teradataml/data/apriori_example.json +22 -0
  112. teradataml/data/arima_example.json +9 -0
  113. teradataml/data/assortedtext_input.csv +8 -0
  114. teradataml/data/attribution_example.json +34 -0
  115. teradataml/data/attribution_sample_table.csv +27 -0
  116. teradataml/data/attribution_sample_table1.csv +6 -0
  117. teradataml/data/attribution_sample_table2.csv +11 -0
  118. teradataml/data/bank_churn.csv +10001 -0
  119. teradataml/data/bank_marketing.csv +11163 -0
  120. teradataml/data/bank_web_clicks1.csv +43 -0
  121. teradataml/data/bank_web_clicks2.csv +91 -0
  122. teradataml/data/bank_web_url.csv +85 -0
  123. teradataml/data/barrier.csv +2 -0
  124. teradataml/data/barrier_new.csv +3 -0
  125. teradataml/data/betweenness_example.json +14 -0
  126. teradataml/data/bike_sharing.csv +732 -0
  127. teradataml/data/bin_breaks.csv +8 -0
  128. teradataml/data/bin_fit_ip.csv +4 -0
  129. teradataml/data/binary_complex_left.csv +11 -0
  130. teradataml/data/binary_complex_right.csv +11 -0
  131. teradataml/data/binary_matrix_complex_left.csv +21 -0
  132. teradataml/data/binary_matrix_complex_right.csv +21 -0
  133. teradataml/data/binary_matrix_real_left.csv +21 -0
  134. teradataml/data/binary_matrix_real_right.csv +21 -0
  135. teradataml/data/blood2ageandweight.csv +26 -0
  136. teradataml/data/bmi.csv +501 -0
  137. teradataml/data/boston.csv +507 -0
  138. teradataml/data/boston2cols.csv +721 -0
  139. teradataml/data/breast_cancer.csv +570 -0
  140. teradataml/data/buoydata_mix.csv +11 -0
  141. teradataml/data/burst_data.csv +5 -0
  142. teradataml/data/burst_example.json +21 -0
  143. teradataml/data/byom_example.json +34 -0
  144. teradataml/data/bytes_table.csv +4 -0
  145. teradataml/data/cal_housing_ex_raw.csv +70 -0
  146. teradataml/data/callers.csv +7 -0
  147. teradataml/data/calls.csv +10 -0
  148. teradataml/data/cars_hist.csv +33 -0
  149. teradataml/data/cat_table.csv +25 -0
  150. teradataml/data/ccm_example.json +32 -0
  151. teradataml/data/ccm_input.csv +91 -0
  152. teradataml/data/ccm_input2.csv +13 -0
  153. teradataml/data/ccmexample.csv +101 -0
  154. teradataml/data/ccmprepare_example.json +9 -0
  155. teradataml/data/ccmprepare_input.csv +91 -0
  156. teradataml/data/cfilter_example.json +12 -0
  157. teradataml/data/changepointdetection_example.json +18 -0
  158. teradataml/data/changepointdetectionrt_example.json +8 -0
  159. teradataml/data/chi_sq.csv +3 -0
  160. teradataml/data/churn_data.csv +14 -0
  161. teradataml/data/churn_emission.csv +35 -0
  162. teradataml/data/churn_initial.csv +3 -0
  163. teradataml/data/churn_state_transition.csv +5 -0
  164. teradataml/data/citedges_2.csv +745 -0
  165. teradataml/data/citvertices_2.csv +1210 -0
  166. teradataml/data/clicks2.csv +16 -0
  167. teradataml/data/clickstream.csv +13 -0
  168. teradataml/data/clickstream1.csv +11 -0
  169. teradataml/data/closeness_example.json +16 -0
  170. teradataml/data/complaints.csv +21 -0
  171. teradataml/data/complaints_mini.csv +3 -0
  172. teradataml/data/complaints_test_tokenized.csv +353 -0
  173. teradataml/data/complaints_testtoken.csv +224 -0
  174. teradataml/data/complaints_tokens_model.csv +348 -0
  175. teradataml/data/complaints_tokens_test.csv +353 -0
  176. teradataml/data/complaints_traintoken.csv +472 -0
  177. teradataml/data/computers_category.csv +1001 -0
  178. teradataml/data/computers_test1.csv +1252 -0
  179. teradataml/data/computers_train1.csv +5009 -0
  180. teradataml/data/computers_train1_clustered.csv +5009 -0
  181. teradataml/data/confusionmatrix_example.json +9 -0
  182. teradataml/data/conversion_event_table.csv +3 -0
  183. teradataml/data/corr_input.csv +17 -0
  184. teradataml/data/correlation_example.json +11 -0
  185. teradataml/data/covid_confirm_sd.csv +83 -0
  186. teradataml/data/coxhazardratio_example.json +39 -0
  187. teradataml/data/coxph_example.json +15 -0
  188. teradataml/data/coxsurvival_example.json +28 -0
  189. teradataml/data/cpt.csv +41 -0
  190. teradataml/data/credit_ex_merged.csv +45 -0
  191. teradataml/data/creditcard_data.csv +1001 -0
  192. teradataml/data/customer_loyalty.csv +301 -0
  193. teradataml/data/customer_loyalty_newseq.csv +31 -0
  194. teradataml/data/customer_segmentation_test.csv +2628 -0
  195. teradataml/data/customer_segmentation_train.csv +8069 -0
  196. teradataml/data/dataframe_example.json +173 -0
  197. teradataml/data/decisionforest_example.json +37 -0
  198. teradataml/data/decisionforestpredict_example.json +38 -0
  199. teradataml/data/decisiontree_example.json +21 -0
  200. teradataml/data/decisiontreepredict_example.json +45 -0
  201. teradataml/data/dfft2_size4_real.csv +17 -0
  202. teradataml/data/dfft2_test_matrix16.csv +17 -0
  203. teradataml/data/dfft2conv_real_4_4.csv +65 -0
  204. teradataml/data/diabetes.csv +443 -0
  205. teradataml/data/diabetes_test.csv +89 -0
  206. teradataml/data/dict_table.csv +5 -0
  207. teradataml/data/docperterm_table.csv +4 -0
  208. teradataml/data/docs/__init__.py +1 -0
  209. teradataml/data/docs/byom/__init__.py +0 -0
  210. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
  211. teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
  212. teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
  213. teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
  214. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
  215. teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
  216. teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
  217. teradataml/data/docs/byom/docs/__init__.py +0 -0
  218. teradataml/data/docs/sqle/__init__.py +0 -0
  219. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
  220. teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
  221. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
  222. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
  223. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
  224. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
  225. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
  226. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
  227. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
  228. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
  229. teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
  230. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
  231. teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
  232. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
  233. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
  234. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
  235. teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
  236. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
  237. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
  238. teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
  239. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
  240. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
  241. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
  242. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
  243. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
  244. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
  245. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
  246. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
  247. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
  248. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
  249. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
  250. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
  251. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
  252. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
  253. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
  254. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
  255. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
  256. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
  257. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
  258. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
  259. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
  260. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
  261. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
  262. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
  263. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
  264. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
  265. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
  266. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
  267. teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
  268. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
  269. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
  270. teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
  271. teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
  272. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
  273. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
  274. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  275. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
  276. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
  277. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
  278. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
  279. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
  280. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
  281. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
  282. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
  283. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
  284. teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
  285. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
  286. teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
  287. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
  288. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
  289. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
  290. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
  291. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
  292. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
  293. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
  294. teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
  295. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
  296. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
  297. teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
  298. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
  299. teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
  300. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
  301. teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
  302. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  303. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
  304. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
  305. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
  306. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
  307. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
  308. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
  309. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
  310. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
  311. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
  312. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
  313. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
  314. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
  315. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
  316. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
  317. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
  318. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  319. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
  320. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
  321. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
  322. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
  323. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
  324. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
  325. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
  326. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
  327. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
  328. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
  329. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
  330. teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
  331. teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
  332. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
  333. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
  334. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
  335. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
  336. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
  337. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
  338. teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
  339. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
  340. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
  341. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
  342. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
  343. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
  344. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
  345. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
  346. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  347. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  348. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
  349. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
  350. teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
  351. teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
  352. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
  353. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
  354. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
  355. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
  356. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  357. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
  358. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
  359. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
  360. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
  361. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
  362. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
  363. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
  364. teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
  365. teradataml/data/docs/tableoperator/__init__.py +0 -0
  366. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
  367. teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
  368. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
  369. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
  370. teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
  371. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
  372. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
  373. teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
  374. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  375. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
  376. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
  377. teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
  378. teradataml/data/docs/uaf/__init__.py +0 -0
  379. teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
  380. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
  381. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
  382. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
  383. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  384. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  385. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
  386. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
  387. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
  388. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
  389. teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
  390. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
  391. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  392. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
  393. teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
  394. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
  395. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
  396. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
  397. teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
  398. teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
  399. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  400. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
  401. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
  402. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
  403. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
  404. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  405. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
  406. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
  407. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
  408. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
  409. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
  410. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
  411. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
  412. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  413. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  414. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  415. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
  416. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
  417. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
  418. teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
  419. teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
  420. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  421. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
  422. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
  423. teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
  424. teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
  425. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
  426. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
  427. teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
  428. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  429. teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
  430. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
  431. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
  432. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
  433. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
  434. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
  435. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
  436. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
  437. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
  438. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
  439. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
  440. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  441. teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
  442. teradataml/data/dtw_example.json +18 -0
  443. teradataml/data/dtw_t1.csv +11 -0
  444. teradataml/data/dtw_t2.csv +4 -0
  445. teradataml/data/dwt2d_dataTable.csv +65 -0
  446. teradataml/data/dwt2d_example.json +16 -0
  447. teradataml/data/dwt_dataTable.csv +8 -0
  448. teradataml/data/dwt_example.json +15 -0
  449. teradataml/data/dwt_filterTable.csv +3 -0
  450. teradataml/data/dwt_filter_dim.csv +5 -0
  451. teradataml/data/emission.csv +9 -0
  452. teradataml/data/emp_table_by_dept.csv +19 -0
  453. teradataml/data/employee_info.csv +4 -0
  454. teradataml/data/employee_table.csv +6 -0
  455. teradataml/data/excluding_event_table.csv +2 -0
  456. teradataml/data/finance_data.csv +6 -0
  457. teradataml/data/finance_data2.csv +61 -0
  458. teradataml/data/finance_data3.csv +93 -0
  459. teradataml/data/finance_data4.csv +13 -0
  460. teradataml/data/fish.csv +160 -0
  461. teradataml/data/fm_blood2ageandweight.csv +26 -0
  462. teradataml/data/fmeasure_example.json +12 -0
  463. teradataml/data/followers_leaders.csv +10 -0
  464. teradataml/data/fpgrowth_example.json +12 -0
  465. teradataml/data/frequentpaths_example.json +29 -0
  466. teradataml/data/friends.csv +9 -0
  467. teradataml/data/fs_input.csv +33 -0
  468. teradataml/data/fs_input1.csv +33 -0
  469. teradataml/data/genData.csv +513 -0
  470. teradataml/data/geodataframe_example.json +40 -0
  471. teradataml/data/glass_types.csv +215 -0
  472. teradataml/data/glm_admissions_model.csv +12 -0
  473. teradataml/data/glm_example.json +56 -0
  474. teradataml/data/glml1l2_example.json +28 -0
  475. teradataml/data/glml1l2predict_example.json +54 -0
  476. teradataml/data/glmpredict_example.json +54 -0
  477. teradataml/data/gq_t1.csv +21 -0
  478. teradataml/data/grocery_transaction.csv +19 -0
  479. teradataml/data/hconvolve_complex_right.csv +5 -0
  480. teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
  481. teradataml/data/histogram_example.json +12 -0
  482. teradataml/data/hmmdecoder_example.json +79 -0
  483. teradataml/data/hmmevaluator_example.json +25 -0
  484. teradataml/data/hmmsupervised_example.json +10 -0
  485. teradataml/data/hmmunsupervised_example.json +8 -0
  486. teradataml/data/hnsw_alter_data.csv +5 -0
  487. teradataml/data/hnsw_data.csv +10 -0
  488. teradataml/data/house_values.csv +12 -0
  489. teradataml/data/house_values2.csv +13 -0
  490. teradataml/data/housing_cat.csv +7 -0
  491. teradataml/data/housing_data.csv +9 -0
  492. teradataml/data/housing_test.csv +47 -0
  493. teradataml/data/housing_test_binary.csv +47 -0
  494. teradataml/data/housing_train.csv +493 -0
  495. teradataml/data/housing_train_attribute.csv +5 -0
  496. teradataml/data/housing_train_binary.csv +437 -0
  497. teradataml/data/housing_train_parameter.csv +2 -0
  498. teradataml/data/housing_train_response.csv +493 -0
  499. teradataml/data/housing_train_segment.csv +201 -0
  500. teradataml/data/ibm_stock.csv +370 -0
  501. teradataml/data/ibm_stock1.csv +370 -0
  502. teradataml/data/identitymatch_example.json +22 -0
  503. teradataml/data/idf_table.csv +4 -0
  504. teradataml/data/idwt2d_dataTable.csv +5 -0
  505. teradataml/data/idwt_dataTable.csv +8 -0
  506. teradataml/data/idwt_filterTable.csv +3 -0
  507. teradataml/data/impressions.csv +101 -0
  508. teradataml/data/inflation.csv +21 -0
  509. teradataml/data/initial.csv +3 -0
  510. teradataml/data/insect2Cols.csv +61 -0
  511. teradataml/data/insect_sprays.csv +13 -0
  512. teradataml/data/insurance.csv +1339 -0
  513. teradataml/data/interpolator_example.json +13 -0
  514. teradataml/data/interval_data.csv +5 -0
  515. teradataml/data/iris_altinput.csv +481 -0
  516. teradataml/data/iris_attribute_output.csv +8 -0
  517. teradataml/data/iris_attribute_test.csv +121 -0
  518. teradataml/data/iris_attribute_train.csv +481 -0
  519. teradataml/data/iris_category_expect_predict.csv +31 -0
  520. teradataml/data/iris_data.csv +151 -0
  521. teradataml/data/iris_input.csv +151 -0
  522. teradataml/data/iris_response_train.csv +121 -0
  523. teradataml/data/iris_test.csv +31 -0
  524. teradataml/data/iris_train.csv +121 -0
  525. teradataml/data/join_table1.csv +4 -0
  526. teradataml/data/join_table2.csv +4 -0
  527. teradataml/data/jsons/anly_function_name.json +7 -0
  528. teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
  529. teradataml/data/jsons/byom/dataikupredict.json +148 -0
  530. teradataml/data/jsons/byom/datarobotpredict.json +147 -0
  531. teradataml/data/jsons/byom/h2opredict.json +195 -0
  532. teradataml/data/jsons/byom/onnxembeddings.json +267 -0
  533. teradataml/data/jsons/byom/onnxpredict.json +187 -0
  534. teradataml/data/jsons/byom/pmmlpredict.json +147 -0
  535. teradataml/data/jsons/paired_functions.json +450 -0
  536. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
  537. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
  538. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
  539. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
  540. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
  541. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
  542. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
  543. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
  544. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
  545. teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
  546. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
  547. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
  548. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
  549. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
  550. teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
  551. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
  552. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
  553. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
  554. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
  555. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
  556. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
  557. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
  558. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
  559. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
  560. teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
  561. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
  562. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
  563. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
  564. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
  565. teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
  566. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
  567. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
  568. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
  569. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
  570. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
  571. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
  572. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
  573. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
  574. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
  575. teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
  576. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
  577. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
  578. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
  579. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
  580. teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
  581. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
  582. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
  583. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
  584. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
  585. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
  586. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
  587. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
  588. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
  589. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
  590. teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
  591. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
  592. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
  593. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
  594. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
  595. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
  596. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
  597. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
  598. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
  599. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
  600. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
  601. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
  602. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
  603. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
  604. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
  605. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
  606. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
  607. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
  608. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
  609. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
  610. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
  611. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
  612. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
  613. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
  614. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
  615. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
  616. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
  617. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
  618. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
  619. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
  620. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
  621. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
  622. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
  623. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
  624. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
  625. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
  626. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
  627. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
  628. teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
  629. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
  630. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
  631. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
  632. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
  633. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
  634. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
  635. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
  636. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
  637. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
  638. teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
  639. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
  640. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
  641. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
  642. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
  643. teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
  644. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
  645. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
  646. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  647. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
  648. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
  649. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
  650. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
  651. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
  652. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
  653. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
  654. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
  655. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
  656. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
  657. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
  658. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
  659. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
  660. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
  661. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
  662. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
  663. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
  664. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
  665. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
  666. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
  667. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
  668. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
  669. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
  670. teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
  671. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  672. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  673. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
  674. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
  675. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
  676. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
  677. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
  678. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
  679. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
  680. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
  681. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
  682. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
  683. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
  684. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
  685. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  686. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
  687. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
  688. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
  689. teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
  690. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
  691. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
  692. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
  693. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
  694. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
  695. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
  696. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
  697. teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
  698. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
  699. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
  700. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
  701. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
  702. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
  703. teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
  704. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
  705. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
  706. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
  707. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
  708. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  709. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
  710. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
  711. teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
  712. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
  713. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
  714. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
  715. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  716. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
  717. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
  718. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
  719. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
  720. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
  721. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
  722. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
  723. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
  724. teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
  725. teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
  726. teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
  727. teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
  728. teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
  729. teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
  730. teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
  731. teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
  732. teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
  733. teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
  734. teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
  735. teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
  736. teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
  737. teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
  738. teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
  739. teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
  740. teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
  741. teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
  742. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  743. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  744. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  745. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  746. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  747. teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
  748. teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
  749. teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
  750. teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
  751. teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
  752. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  753. teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
  754. teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
  755. teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
  756. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
  757. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
  758. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
  759. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  760. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  761. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
  762. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
  763. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
  764. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
  765. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
  766. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
  767. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
  768. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
  769. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
  770. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
  771. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
  772. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
  773. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
  774. teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
  775. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
  776. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  777. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  778. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
  779. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
  780. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
  781. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
  782. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
  783. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
  784. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
  785. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
  786. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  787. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  788. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
  789. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  790. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
  791. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
  792. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
  793. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  794. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
  795. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
  796. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
  797. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
  798. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
  799. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
  800. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
  801. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
  802. teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
  803. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
  804. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
  805. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
  806. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
  807. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
  808. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
  809. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
  810. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
  811. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
  812. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
  813. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
  814. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
  815. teradataml/data/kmeans_example.json +23 -0
  816. teradataml/data/kmeans_table.csv +10 -0
  817. teradataml/data/kmeans_us_arrests_data.csv +51 -0
  818. teradataml/data/knn_example.json +19 -0
  819. teradataml/data/knnrecommender_example.json +7 -0
  820. teradataml/data/knnrecommenderpredict_example.json +12 -0
  821. teradataml/data/lar_example.json +17 -0
  822. teradataml/data/larpredict_example.json +30 -0
  823. teradataml/data/lc_new_predictors.csv +5 -0
  824. teradataml/data/lc_new_reference.csv +9 -0
  825. teradataml/data/lda_example.json +9 -0
  826. teradataml/data/ldainference_example.json +15 -0
  827. teradataml/data/ldatopicsummary_example.json +9 -0
  828. teradataml/data/levendist_input.csv +13 -0
  829. teradataml/data/levenshteindistance_example.json +10 -0
  830. teradataml/data/linreg_example.json +10 -0
  831. teradataml/data/load_example_data.py +350 -0
  832. teradataml/data/loan_prediction.csv +295 -0
  833. teradataml/data/lungcancer.csv +138 -0
  834. teradataml/data/mappingdata.csv +12 -0
  835. teradataml/data/medical_readings.csv +101 -0
  836. teradataml/data/milk_timeseries.csv +157 -0
  837. teradataml/data/min_max_titanic.csv +4 -0
  838. teradataml/data/minhash_example.json +6 -0
  839. teradataml/data/ml_ratings.csv +7547 -0
  840. teradataml/data/ml_ratings_10.csv +2445 -0
  841. teradataml/data/mobile_data.csv +13 -0
  842. teradataml/data/model1_table.csv +5 -0
  843. teradataml/data/model2_table.csv +5 -0
  844. teradataml/data/models/License_file.txt +1 -0
  845. teradataml/data/models/License_file_empty.txt +0 -0
  846. teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
  847. teradataml/data/models/dr_iris_rf +0 -0
  848. teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
  849. teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
  850. teradataml/data/models/iris_db_glm_model.pmml +57 -0
  851. teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
  852. teradataml/data/models/iris_kmeans_model +0 -0
  853. teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
  854. teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
  855. teradataml/data/modularity_example.json +12 -0
  856. teradataml/data/movavg_example.json +8 -0
  857. teradataml/data/mtx1.csv +7 -0
  858. teradataml/data/mtx2.csv +13 -0
  859. teradataml/data/multi_model_classification.csv +401 -0
  860. teradataml/data/multi_model_regression.csv +401 -0
  861. teradataml/data/mvdfft8.csv +9 -0
  862. teradataml/data/naivebayes_example.json +10 -0
  863. teradataml/data/naivebayespredict_example.json +19 -0
  864. teradataml/data/naivebayestextclassifier2_example.json +7 -0
  865. teradataml/data/naivebayestextclassifier_example.json +8 -0
  866. teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
  867. teradataml/data/name_Find_configure.csv +10 -0
  868. teradataml/data/namedentityfinder_example.json +14 -0
  869. teradataml/data/namedentityfinderevaluator_example.json +10 -0
  870. teradataml/data/namedentityfindertrainer_example.json +6 -0
  871. teradataml/data/nb_iris_input_test.csv +31 -0
  872. teradataml/data/nb_iris_input_train.csv +121 -0
  873. teradataml/data/nbp_iris_model.csv +13 -0
  874. teradataml/data/ner_dict.csv +8 -0
  875. teradataml/data/ner_extractor_text.csv +2 -0
  876. teradataml/data/ner_input_eng.csv +7 -0
  877. teradataml/data/ner_rule.csv +5 -0
  878. teradataml/data/ner_sports_test2.csv +29 -0
  879. teradataml/data/ner_sports_train.csv +501 -0
  880. teradataml/data/nerevaluator_example.json +6 -0
  881. teradataml/data/nerextractor_example.json +18 -0
  882. teradataml/data/nermem_sports_test.csv +18 -0
  883. teradataml/data/nermem_sports_train.csv +51 -0
  884. teradataml/data/nertrainer_example.json +7 -0
  885. teradataml/data/ngrams_example.json +7 -0
  886. teradataml/data/notebooks/__init__.py +0 -0
  887. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
  888. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
  889. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
  890. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
  891. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
  892. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
  893. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
  894. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
  895. teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
  896. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
  897. teradataml/data/npath_example.json +23 -0
  898. teradataml/data/ntree_example.json +14 -0
  899. teradataml/data/numeric_strings.csv +5 -0
  900. teradataml/data/numerics.csv +4 -0
  901. teradataml/data/ocean_buoy.csv +17 -0
  902. teradataml/data/ocean_buoy2.csv +17 -0
  903. teradataml/data/ocean_buoys.csv +28 -0
  904. teradataml/data/ocean_buoys2.csv +10 -0
  905. teradataml/data/ocean_buoys_nonpti.csv +28 -0
  906. teradataml/data/ocean_buoys_seq.csv +29 -0
  907. teradataml/data/onehot_encoder_train.csv +4 -0
  908. teradataml/data/openml_example.json +92 -0
  909. teradataml/data/optional_event_table.csv +4 -0
  910. teradataml/data/orders1.csv +11 -0
  911. teradataml/data/orders1_12.csv +13 -0
  912. teradataml/data/orders_ex.csv +4 -0
  913. teradataml/data/pack_example.json +9 -0
  914. teradataml/data/package_tracking.csv +19 -0
  915. teradataml/data/package_tracking_pti.csv +19 -0
  916. teradataml/data/pagerank_example.json +13 -0
  917. teradataml/data/paragraphs_input.csv +6 -0
  918. teradataml/data/pathanalyzer_example.json +8 -0
  919. teradataml/data/pathgenerator_example.json +8 -0
  920. teradataml/data/patient_profile.csv +101 -0
  921. teradataml/data/pattern_matching_data.csv +11 -0
  922. teradataml/data/payment_fraud_dataset.csv +10001 -0
  923. teradataml/data/peppers.png +0 -0
  924. teradataml/data/phrases.csv +7 -0
  925. teradataml/data/pivot_example.json +9 -0
  926. teradataml/data/pivot_input.csv +22 -0
  927. teradataml/data/playerRating.csv +31 -0
  928. teradataml/data/pos_input.csv +40 -0
  929. teradataml/data/postagger_example.json +7 -0
  930. teradataml/data/posttagger_output.csv +44 -0
  931. teradataml/data/production_data.csv +17 -0
  932. teradataml/data/production_data2.csv +7 -0
  933. teradataml/data/randomsample_example.json +32 -0
  934. teradataml/data/randomwalksample_example.json +9 -0
  935. teradataml/data/rank_table.csv +6 -0
  936. teradataml/data/real_values.csv +14 -0
  937. teradataml/data/ref_mobile_data.csv +4 -0
  938. teradataml/data/ref_mobile_data_dense.csv +2 -0
  939. teradataml/data/ref_url.csv +17 -0
  940. teradataml/data/restaurant_reviews.csv +7 -0
  941. teradataml/data/retail_churn_table.csv +27772 -0
  942. teradataml/data/river_data.csv +145 -0
  943. teradataml/data/roc_example.json +8 -0
  944. teradataml/data/roc_input.csv +101 -0
  945. teradataml/data/rule_inputs.csv +6 -0
  946. teradataml/data/rule_table.csv +2 -0
  947. teradataml/data/sales.csv +7 -0
  948. teradataml/data/sales_transaction.csv +501 -0
  949. teradataml/data/salesdata.csv +342 -0
  950. teradataml/data/sample_cities.csv +3 -0
  951. teradataml/data/sample_shapes.csv +11 -0
  952. teradataml/data/sample_streets.csv +3 -0
  953. teradataml/data/sampling_example.json +16 -0
  954. teradataml/data/sax_example.json +17 -0
  955. teradataml/data/scale_attributes.csv +3 -0
  956. teradataml/data/scale_example.json +74 -0
  957. teradataml/data/scale_housing.csv +11 -0
  958. teradataml/data/scale_housing_test.csv +6 -0
  959. teradataml/data/scale_input_part_sparse.csv +31 -0
  960. teradataml/data/scale_input_partitioned.csv +16 -0
  961. teradataml/data/scale_input_sparse.csv +11 -0
  962. teradataml/data/scale_parameters.csv +3 -0
  963. teradataml/data/scale_stat.csv +11 -0
  964. teradataml/data/scalebypartition_example.json +13 -0
  965. teradataml/data/scalemap_example.json +13 -0
  966. teradataml/data/scalesummary_example.json +12 -0
  967. teradataml/data/score_category.csv +101 -0
  968. teradataml/data/score_summary.csv +4 -0
  969. teradataml/data/script_example.json +10 -0
  970. teradataml/data/scripts/deploy_script.py +84 -0
  971. teradataml/data/scripts/lightgbm/dataset.template +175 -0
  972. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
  973. teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
  974. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
  975. teradataml/data/scripts/mapper.R +20 -0
  976. teradataml/data/scripts/mapper.py +16 -0
  977. teradataml/data/scripts/mapper_replace.py +16 -0
  978. teradataml/data/scripts/sklearn/__init__.py +0 -0
  979. teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
  980. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
  981. teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
  982. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
  983. teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
  984. teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
  985. teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
  986. teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
  987. teradataml/data/seeds.csv +10 -0
  988. teradataml/data/sentenceextractor_example.json +7 -0
  989. teradataml/data/sentiment_extract_input.csv +11 -0
  990. teradataml/data/sentiment_train.csv +16 -0
  991. teradataml/data/sentiment_word.csv +20 -0
  992. teradataml/data/sentiment_word_input.csv +20 -0
  993. teradataml/data/sentimentextractor_example.json +24 -0
  994. teradataml/data/sentimenttrainer_example.json +8 -0
  995. teradataml/data/sequence_table.csv +10 -0
  996. teradataml/data/seriessplitter_example.json +8 -0
  997. teradataml/data/sessionize_example.json +17 -0
  998. teradataml/data/sessionize_table.csv +116 -0
  999. teradataml/data/setop_test1.csv +24 -0
  1000. teradataml/data/setop_test2.csv +22 -0
  1001. teradataml/data/soc_nw_edges.csv +11 -0
  1002. teradataml/data/soc_nw_vertices.csv +8 -0
  1003. teradataml/data/souvenir_timeseries.csv +168 -0
  1004. teradataml/data/sparse_iris_attribute.csv +5 -0
  1005. teradataml/data/sparse_iris_test.csv +121 -0
  1006. teradataml/data/sparse_iris_train.csv +601 -0
  1007. teradataml/data/star1.csv +6 -0
  1008. teradataml/data/star_pivot.csv +8 -0
  1009. teradataml/data/state_transition.csv +5 -0
  1010. teradataml/data/stock_data.csv +53 -0
  1011. teradataml/data/stock_movement.csv +11 -0
  1012. teradataml/data/stock_vol.csv +76 -0
  1013. teradataml/data/stop_words.csv +8 -0
  1014. teradataml/data/store_sales.csv +37 -0
  1015. teradataml/data/stringsimilarity_example.json +8 -0
  1016. teradataml/data/strsimilarity_input.csv +13 -0
  1017. teradataml/data/students.csv +101 -0
  1018. teradataml/data/svm_iris_input_test.csv +121 -0
  1019. teradataml/data/svm_iris_input_train.csv +481 -0
  1020. teradataml/data/svm_iris_model.csv +7 -0
  1021. teradataml/data/svmdense_example.json +10 -0
  1022. teradataml/data/svmdensepredict_example.json +19 -0
  1023. teradataml/data/svmsparse_example.json +8 -0
  1024. teradataml/data/svmsparsepredict_example.json +14 -0
  1025. teradataml/data/svmsparsesummary_example.json +8 -0
  1026. teradataml/data/target_mobile_data.csv +13 -0
  1027. teradataml/data/target_mobile_data_dense.csv +5 -0
  1028. teradataml/data/target_udt_data.csv +8 -0
  1029. teradataml/data/tdnerextractor_example.json +14 -0
  1030. teradataml/data/templatedata.csv +1201 -0
  1031. teradataml/data/templates/open_source_ml.json +11 -0
  1032. teradataml/data/teradata_icon.ico +0 -0
  1033. teradataml/data/teradataml_example.json +1473 -0
  1034. teradataml/data/test_classification.csv +101 -0
  1035. teradataml/data/test_loan_prediction.csv +53 -0
  1036. teradataml/data/test_pacf_12.csv +37 -0
  1037. teradataml/data/test_prediction.csv +101 -0
  1038. teradataml/data/test_regression.csv +101 -0
  1039. teradataml/data/test_river2.csv +109 -0
  1040. teradataml/data/text_inputs.csv +6 -0
  1041. teradataml/data/textchunker_example.json +8 -0
  1042. teradataml/data/textclassifier_example.json +7 -0
  1043. teradataml/data/textclassifier_input.csv +7 -0
  1044. teradataml/data/textclassifiertrainer_example.json +7 -0
  1045. teradataml/data/textmorph_example.json +11 -0
  1046. teradataml/data/textparser_example.json +15 -0
  1047. teradataml/data/texttagger_example.json +12 -0
  1048. teradataml/data/texttokenizer_example.json +7 -0
  1049. teradataml/data/texttrainer_input.csv +11 -0
  1050. teradataml/data/tf_example.json +7 -0
  1051. teradataml/data/tfidf_example.json +14 -0
  1052. teradataml/data/tfidf_input1.csv +201 -0
  1053. teradataml/data/tfidf_train.csv +6 -0
  1054. teradataml/data/time_table1.csv +535 -0
  1055. teradataml/data/time_table2.csv +14 -0
  1056. teradataml/data/timeseriesdata.csv +1601 -0
  1057. teradataml/data/timeseriesdatasetsd4.csv +105 -0
  1058. teradataml/data/timestamp_data.csv +4 -0
  1059. teradataml/data/titanic.csv +892 -0
  1060. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  1061. teradataml/data/to_num_data.csv +4 -0
  1062. teradataml/data/tochar_data.csv +5 -0
  1063. teradataml/data/token_table.csv +696 -0
  1064. teradataml/data/train_multiclass.csv +101 -0
  1065. teradataml/data/train_regression.csv +101 -0
  1066. teradataml/data/train_regression_multiple_labels.csv +101 -0
  1067. teradataml/data/train_tracking.csv +28 -0
  1068. teradataml/data/trans_dense.csv +16 -0
  1069. teradataml/data/trans_sparse.csv +55 -0
  1070. teradataml/data/transformation_table.csv +6 -0
  1071. teradataml/data/transformation_table_new.csv +2 -0
  1072. teradataml/data/tv_spots.csv +16 -0
  1073. teradataml/data/twod_climate_data.csv +117 -0
  1074. teradataml/data/uaf_example.json +529 -0
  1075. teradataml/data/univariatestatistics_example.json +9 -0
  1076. teradataml/data/unpack_example.json +10 -0
  1077. teradataml/data/unpivot_example.json +25 -0
  1078. teradataml/data/unpivot_input.csv +8 -0
  1079. teradataml/data/url_data.csv +10 -0
  1080. teradataml/data/us_air_pass.csv +37 -0
  1081. teradataml/data/us_population.csv +624 -0
  1082. teradataml/data/us_states_shapes.csv +52 -0
  1083. teradataml/data/varmax_example.json +18 -0
  1084. teradataml/data/vectordistance_example.json +30 -0
  1085. teradataml/data/ville_climatedata.csv +121 -0
  1086. teradataml/data/ville_tempdata.csv +12 -0
  1087. teradataml/data/ville_tempdata1.csv +12 -0
  1088. teradataml/data/ville_temperature.csv +11 -0
  1089. teradataml/data/waveletTable.csv +1605 -0
  1090. teradataml/data/waveletTable2.csv +1605 -0
  1091. teradataml/data/weightedmovavg_example.json +9 -0
  1092. teradataml/data/wft_testing.csv +5 -0
  1093. teradataml/data/windowdfft.csv +16 -0
  1094. teradataml/data/wine_data.csv +1600 -0
  1095. teradataml/data/word_embed_input_table1.csv +6 -0
  1096. teradataml/data/word_embed_input_table2.csv +5 -0
  1097. teradataml/data/word_embed_model.csv +23 -0
  1098. teradataml/data/words_input.csv +13 -0
  1099. teradataml/data/xconvolve_complex_left.csv +6 -0
  1100. teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
  1101. teradataml/data/xgboost_example.json +36 -0
  1102. teradataml/data/xgboostpredict_example.json +32 -0
  1103. teradataml/data/ztest_example.json +16 -0
  1104. teradataml/dataframe/__init__.py +0 -0
  1105. teradataml/dataframe/copy_to.py +2446 -0
  1106. teradataml/dataframe/data_transfer.py +2840 -0
  1107. teradataml/dataframe/dataframe.py +20908 -0
  1108. teradataml/dataframe/dataframe_utils.py +2114 -0
  1109. teradataml/dataframe/fastload.py +794 -0
  1110. teradataml/dataframe/functions.py +2110 -0
  1111. teradataml/dataframe/indexer.py +424 -0
  1112. teradataml/dataframe/row.py +160 -0
  1113. teradataml/dataframe/setop.py +1171 -0
  1114. teradataml/dataframe/sql.py +10904 -0
  1115. teradataml/dataframe/sql_function_parameters.py +440 -0
  1116. teradataml/dataframe/sql_functions.py +652 -0
  1117. teradataml/dataframe/sql_interfaces.py +220 -0
  1118. teradataml/dataframe/vantage_function_types.py +675 -0
  1119. teradataml/dataframe/window.py +694 -0
  1120. teradataml/dbutils/__init__.py +3 -0
  1121. teradataml/dbutils/dbutils.py +2871 -0
  1122. teradataml/dbutils/filemgr.py +318 -0
  1123. teradataml/gen_ai/__init__.py +2 -0
  1124. teradataml/gen_ai/convAI.py +473 -0
  1125. teradataml/geospatial/__init__.py +4 -0
  1126. teradataml/geospatial/geodataframe.py +1105 -0
  1127. teradataml/geospatial/geodataframecolumn.py +392 -0
  1128. teradataml/geospatial/geometry_types.py +926 -0
  1129. teradataml/hyperparameter_tuner/__init__.py +1 -0
  1130. teradataml/hyperparameter_tuner/optimizer.py +4115 -0
  1131. teradataml/hyperparameter_tuner/utils.py +303 -0
  1132. teradataml/lib/__init__.py +0 -0
  1133. teradataml/lib/aed_0_1.dll +0 -0
  1134. teradataml/lib/libaed_0_1.dylib +0 -0
  1135. teradataml/lib/libaed_0_1.so +0 -0
  1136. teradataml/lib/libaed_0_1_aarch64.so +0 -0
  1137. teradataml/lib/libaed_0_1_ppc64le.so +0 -0
  1138. teradataml/opensource/__init__.py +1 -0
  1139. teradataml/opensource/_base.py +1321 -0
  1140. teradataml/opensource/_class.py +464 -0
  1141. teradataml/opensource/_constants.py +61 -0
  1142. teradataml/opensource/_lightgbm.py +949 -0
  1143. teradataml/opensource/_sklearn.py +1008 -0
  1144. teradataml/opensource/_wrapper_utils.py +267 -0
  1145. teradataml/options/__init__.py +148 -0
  1146. teradataml/options/configure.py +489 -0
  1147. teradataml/options/display.py +187 -0
  1148. teradataml/plot/__init__.py +3 -0
  1149. teradataml/plot/axis.py +1427 -0
  1150. teradataml/plot/constants.py +15 -0
  1151. teradataml/plot/figure.py +431 -0
  1152. teradataml/plot/plot.py +810 -0
  1153. teradataml/plot/query_generator.py +83 -0
  1154. teradataml/plot/subplot.py +216 -0
  1155. teradataml/scriptmgmt/UserEnv.py +4273 -0
  1156. teradataml/scriptmgmt/__init__.py +3 -0
  1157. teradataml/scriptmgmt/lls_utils.py +2157 -0
  1158. teradataml/sdk/README.md +79 -0
  1159. teradataml/sdk/__init__.py +4 -0
  1160. teradataml/sdk/_auth_modes.py +422 -0
  1161. teradataml/sdk/_func_params.py +487 -0
  1162. teradataml/sdk/_json_parser.py +453 -0
  1163. teradataml/sdk/_openapi_spec_constants.py +249 -0
  1164. teradataml/sdk/_utils.py +236 -0
  1165. teradataml/sdk/api_client.py +900 -0
  1166. teradataml/sdk/constants.py +62 -0
  1167. teradataml/sdk/modelops/__init__.py +98 -0
  1168. teradataml/sdk/modelops/_client.py +409 -0
  1169. teradataml/sdk/modelops/_constants.py +304 -0
  1170. teradataml/sdk/modelops/models.py +2308 -0
  1171. teradataml/sdk/spinner.py +107 -0
  1172. teradataml/series/__init__.py +0 -0
  1173. teradataml/series/series.py +537 -0
  1174. teradataml/series/series_utils.py +71 -0
  1175. teradataml/store/__init__.py +12 -0
  1176. teradataml/store/feature_store/__init__.py +0 -0
  1177. teradataml/store/feature_store/constants.py +658 -0
  1178. teradataml/store/feature_store/feature_store.py +4814 -0
  1179. teradataml/store/feature_store/mind_map.py +639 -0
  1180. teradataml/store/feature_store/models.py +7330 -0
  1181. teradataml/store/feature_store/utils.py +390 -0
  1182. teradataml/table_operators/Apply.py +979 -0
  1183. teradataml/table_operators/Script.py +1739 -0
  1184. teradataml/table_operators/TableOperator.py +1343 -0
  1185. teradataml/table_operators/__init__.py +2 -0
  1186. teradataml/table_operators/apply_query_generator.py +262 -0
  1187. teradataml/table_operators/query_generator.py +493 -0
  1188. teradataml/table_operators/table_operator_query_generator.py +462 -0
  1189. teradataml/table_operators/table_operator_util.py +726 -0
  1190. teradataml/table_operators/templates/dataframe_apply.template +184 -0
  1191. teradataml/table_operators/templates/dataframe_map.template +176 -0
  1192. teradataml/table_operators/templates/dataframe_register.template +73 -0
  1193. teradataml/table_operators/templates/dataframe_udf.template +67 -0
  1194. teradataml/table_operators/templates/script_executor.template +170 -0
  1195. teradataml/telemetry_utils/__init__.py +0 -0
  1196. teradataml/telemetry_utils/queryband.py +53 -0
  1197. teradataml/utils/__init__.py +0 -0
  1198. teradataml/utils/docstring.py +527 -0
  1199. teradataml/utils/dtypes.py +943 -0
  1200. teradataml/utils/internal_buffer.py +122 -0
  1201. teradataml/utils/print_versions.py +206 -0
  1202. teradataml/utils/utils.py +451 -0
  1203. teradataml/utils/validators.py +3305 -0
  1204. teradataml-20.0.0.8.dist-info/METADATA +2804 -0
  1205. teradataml-20.0.0.8.dist-info/RECORD +1208 -0
  1206. teradataml-20.0.0.8.dist-info/WHEEL +5 -0
  1207. teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
  1208. teradataml-20.0.0.8.dist-info/zip-safe +1 -0
@@ -0,0 +1,1455 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "### Disclaimer\n",
8
+ "Please note, the Vantage Functions via SQLAlchemy feature is a preview/beta code release with limited functionality (the “Code”). As such, you acknowledge that the Code is experimental in nature and that the Code is provided “AS IS” and may not be functional on any machine or in any environment. TERADATA DISCLAIMS ALL WARRANTIES RELATING TO THE CODE, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTIES AGAINST INFRINGEMENT OF THIRD-PARTY RIGHTS, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.\n",
9
+ "\n",
10
+ "TERADATA SHALL NOT BE RESPONSIBLE OR LIABLE WITH RESPECT TO ANY SUBJECT MATTER OF THE CODE UNDER ANY CONTRACT, NEGLIGENCE, STRICT LIABILITY OR OTHER THEORY \n",
11
+ " (A) FOR LOSS OR INACCURACY OF DATA OR COST OF PROCUREMENT OF SUBSTITUTE GOODS, SERVICES OR TECHNOLOGY, OR \n",
12
+ " (B) FOR ANY INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO LOSS OF REVENUES AND LOSS OF PROFITS. TERADATA SHALL NOT BE RESPONSIBLE FOR ANY MATTER BEYOND ITS REASONABLE CONTROL.\n",
13
+ "\n",
14
+ "Notwithstanding anything to the contrary: \n",
15
+ " (a) Teradata will have no obligation of any kind with respect to any Code-related comments, suggestions, design changes or improvements that you elect to provide to Teradata in either verbal or written form (collectively, “Feedback”), and \n",
16
+ " (b) Teradata and its affiliates are hereby free to use any ideas, concepts, know-how or techniques, in whole or in part, contained in Feedback: \n",
17
+ " (i) for any purpose whatsoever, including developing, manufacturing, and/or marketing products and/or services incorporating Feedback in whole or in part, and \n",
18
+ " (ii) without any restrictions or limitations, including requiring the payment of any license fees, royalties, or other consideration. "
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "code",
23
+ "execution_count": 1,
24
+ "metadata": {},
25
+ "outputs": [],
26
+ "source": [
27
+ "# In this notebook, we will be covering examples for following Regular Aggregate Functions\n",
28
+ "# SQL Documentation: https://docs.teradata.com/reader/756LNiPSFdY~4JcCCcR5Cw/c2fX4dzxCcDJFKqXbyQtTA\n",
29
+ " # 1. avg/average/ave\n",
30
+ " # 2. corr\n",
31
+ " # 3. count\n",
32
+ " # 4. covar_pop\n",
33
+ " # 5. covar_samp\n",
34
+ " # 6. var_pop\n",
35
+ " # 7. var_samp\n",
36
+ " # 8. kurtosis\n",
37
+ " # 9. max\n",
38
+ " # 10. REGR_AVGX\n",
39
+ " # 11. REGR_AVGY\n",
40
+ " # 12. REGR_Intercept\n",
41
+ " # 13. REGR_SLOPE\n",
42
+ " # 14. REGR_R2\n",
43
+ " # 15. REGR_SXX\n",
44
+ " # 16. REGR_SXY\n",
45
+ " # 17. REGR_SYY\n",
46
+ " # 18. min\n",
47
+ " # 19. skew\n",
48
+ " # 20. stddev_pop\n",
49
+ " # 21. stddev_samp\n",
50
+ " # 22. sum"
51
+ ]
52
+ },
53
+ {
54
+ "cell_type": "code",
55
+ "execution_count": 2,
56
+ "metadata": {},
57
+ "outputs": [
58
+ {
59
+ "name": "stdout",
60
+ "output_type": "stream",
61
+ "text": [
62
+ "Hostname: ········\n",
63
+ "Username: ········\n",
64
+ "Password: ········\n",
65
+ "WARNING: Skipped loading table admissions_train since it already exists in the database.\n"
66
+ ]
67
+ }
68
+ ],
69
+ "source": [
70
+ "# Get the connection to the Vantage using create_context()\n",
71
+ "from teradataml import *\n",
72
+ "import getpass\n",
73
+ "td_context = create_context(host=getpass.getpass(\"Hostname: \"), username=getpass.getpass(\"Username: \"), password=getpass.getpass(\"Password: \"))\n",
74
+ "# Load the example dataset.\n",
75
+ "load_example_data(\"GLM\", [\"admissions_train\"])"
76
+ ]
77
+ },
78
+ {
79
+ "cell_type": "code",
80
+ "execution_count": 3,
81
+ "metadata": {},
82
+ "outputs": [
83
+ {
84
+ "data": {
85
+ "text/plain": [
86
+ " masters gpa stats programming admitted\n",
87
+ "id \n",
88
+ "15 yes 4.00 Advanced Advanced 1\n",
89
+ "7 yes 2.33 Novice Novice 1\n",
90
+ "22 yes 3.46 Novice Beginner 0\n",
91
+ "17 no 3.83 Advanced Advanced 1\n",
92
+ "13 no 4.00 Advanced Novice 1\n",
93
+ "38 yes 2.65 Advanced Beginner 1\n",
94
+ "26 yes 3.57 Advanced Advanced 1\n",
95
+ "5 no 3.44 Novice Novice 0\n",
96
+ "34 yes 3.85 Advanced Beginner 0\n",
97
+ "40 yes 3.95 Novice Beginner 0"
98
+ ]
99
+ },
100
+ "execution_count": 3,
101
+ "metadata": {},
102
+ "output_type": "execute_result"
103
+ }
104
+ ],
105
+ "source": [
106
+ "# Create the DataFrame on 'admissions_train' table\n",
107
+ "admissions_train = DataFrame(\"admissions_train\")\n",
108
+ "admissions_train"
109
+ ]
110
+ },
111
+ {
112
+ "cell_type": "code",
113
+ "execution_count": 4,
114
+ "metadata": {},
115
+ "outputs": [],
116
+ "source": [
117
+ "def print_variables(df, columns):\n",
118
+ " print(\"Equivalent SQL: {}\".format(df.show_query()))\n",
119
+ " print(\"\\n\")\n",
120
+ " print(\" ************************* DataFrame ********************* \")\n",
121
+ " print(df)\n",
122
+ " print(\"\\n\\n\")\n",
123
+ " print(\" ************************* DataFrame.dtypes ********************* \")\n",
124
+ " print(df.dtypes)\n",
125
+ " print(\"\\n\\n\")\n",
126
+ " if isinstance(columns, str):\n",
127
+ " columns = [columns]\n",
128
+ " for col in columns:\n",
129
+ " coltype = df.__getattr__(col).type\n",
130
+ " if isinstance(coltype, sqlalchemy.sql.sqltypes.NullType):\n",
131
+ " coltype = \"NullType\"\n",
132
+ " print(\" '{}' Column Type: {}\".format(col, coltype))"
133
+ ]
134
+ },
135
+ {
136
+ "cell_type": "markdown",
137
+ "metadata": {},
138
+ "source": [
139
+ "# Using Aggregate Functions from Teradata Vanatge with SQLAlchemy"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "code",
144
+ "execution_count": 5,
145
+ "metadata": {},
146
+ "outputs": [],
147
+ "source": [
148
+ "# Import func from SQLAlchemy to use the same for executing aggregate functions\n",
149
+ "from sqlalchemy import func"
150
+ ]
151
+ },
152
+ {
153
+ "cell_type": "code",
154
+ "execution_count": 6,
155
+ "metadata": {},
156
+ "outputs": [],
157
+ "source": [
158
+ "# Before we move on with examples, one should read below just to understand how teradataml DataFrame and \n",
159
+ "# it's columns are used to create a SQLAlchemy ClauseElement/Expression.\n",
160
+ "\n",
161
+ "# Often in below examples one would see something like this: 'admissions_train.admitted.expression'\n",
162
+ "# Here in the above expression,\n",
163
+ "# 'admissions_train' is 'teradataml DataFrame'\n",
164
+ "# 'admitted' is 'column name' in teradataml DataFrame 'admissions_train'\n",
165
+ "# Thus, \n",
166
+ "# 'admissions_train.admitted' together forms a ColumnExpression.\n",
167
+ "# expression allows us to use teradata ColumnExpression to be treated as SQLAlchemy Expression.\n",
168
+ "# Thus,\n",
169
+ "# 'admissions_train.admitted.expression' gives us an expression that can be used with SQLAlchemy clauseElements."
170
+ ]
171
+ },
172
+ {
173
+ "cell_type": "markdown",
174
+ "metadata": {},
175
+ "source": [
176
+ "## Avg/Average/Ave Function"
177
+ ]
178
+ },
179
+ {
180
+ "cell_type": "code",
181
+ "execution_count": 7,
182
+ "metadata": {},
183
+ "outputs": [],
184
+ "source": [
185
+ "# Function returns the arithmetic average of all values in value_expression.\n",
186
+ "# Syntax:\n",
187
+ "# Avg(value_expression)"
188
+ ]
189
+ },
190
+ {
191
+ "cell_type": "code",
192
+ "execution_count": 8,
193
+ "metadata": {},
194
+ "outputs": [
195
+ {
196
+ "data": {
197
+ "text/plain": [
198
+ "sqlalchemy.sql.functions.Function"
199
+ ]
200
+ },
201
+ "execution_count": 8,
202
+ "metadata": {},
203
+ "output_type": "execute_result"
204
+ }
205
+ ],
206
+ "source": [
207
+ "agg_func_ = func.avg(admissions_train.gpa.expression)\n",
208
+ "type(agg_func_)"
209
+ ]
210
+ },
211
+ {
212
+ "cell_type": "code",
213
+ "execution_count": 9,
214
+ "metadata": {},
215
+ "outputs": [
216
+ {
217
+ "name": "stdout",
218
+ "output_type": "stream",
219
+ "text": [
220
+ "Equivalent SQL: select ave(admitted) AS ave_admitted_, average(admitted) AS average_admitted_, avg(gpa) AS avg_gpa_ from \"admissions_train\"\n",
221
+ "\n",
222
+ "\n",
223
+ " ************************* DataFrame ********************* \n",
224
+ " ave_admitted_ average_admitted_ avg_gpa_\n",
225
+ "0 0.65 0.65 3.54175\n",
226
+ "\n",
227
+ "\n",
228
+ "\n",
229
+ " ************************* DataFrame.dtypes ********************* \n",
230
+ "ave_admitted_ float\n",
231
+ "average_admitted_ float\n",
232
+ "avg_gpa_ float\n",
233
+ "\n",
234
+ "\n",
235
+ "\n",
236
+ " 'avg_gpa_' Column Type: FLOAT\n",
237
+ " 'average_admitted_' Column Type: FLOAT\n",
238
+ " 'ave_admitted_' Column Type: FLOAT\n"
239
+ ]
240
+ }
241
+ ],
242
+ "source": [
243
+ "df = admissions_train.assign(True, avg_gpa_=agg_func_, \n",
244
+ " average_admitted_=func.average(admissions_train.admitted.expression),\n",
245
+ " ave_admitted_=func.ave(admissions_train.admitted.expression))\n",
246
+ "print_variables(df, [\"avg_gpa_\", \"average_admitted_\", \"ave_admitted_\"])"
247
+ ]
248
+ },
249
+ {
250
+ "cell_type": "markdown",
251
+ "metadata": {},
252
+ "source": [
253
+ "## CORR Function"
254
+ ]
255
+ },
256
+ {
257
+ "cell_type": "code",
258
+ "execution_count": 10,
259
+ "metadata": {},
260
+ "outputs": [],
261
+ "source": [
262
+ "# Function returns the Sample Pearson product moment correlation coefficient of its arguments for all non-null data point pairs.\n",
263
+ "# Syntax:\n",
264
+ "# Corr(value_expression1, value_expression2)"
265
+ ]
266
+ },
267
+ {
268
+ "cell_type": "code",
269
+ "execution_count": 11,
270
+ "metadata": {},
271
+ "outputs": [
272
+ {
273
+ "name": "stdout",
274
+ "output_type": "stream",
275
+ "text": [
276
+ "Equivalent SQL: select corr(admitted, gpa) AS corr_numeric_ from \"admissions_train\"\n",
277
+ "\n",
278
+ "\n",
279
+ " ************************* DataFrame ********************* \n",
280
+ " corr_numeric_\n",
281
+ "0 -0.022265\n",
282
+ "\n",
283
+ "\n",
284
+ "\n",
285
+ " ************************* DataFrame.dtypes ********************* \n",
286
+ "corr_numeric_ float\n",
287
+ "\n",
288
+ "\n",
289
+ "\n",
290
+ " 'corr_numeric_' Column Type: FLOAT\n"
291
+ ]
292
+ }
293
+ ],
294
+ "source": [
295
+ "df = admissions_train.assign(True, \n",
296
+ " corr_numeric_=func.corr(admissions_train.admitted.expression, admissions_train.gpa.expression))\n",
297
+ "print_variables(df, [\"corr_numeric_\"])"
298
+ ]
299
+ },
300
+ {
301
+ "cell_type": "markdown",
302
+ "metadata": {},
303
+ "source": [
304
+ "## Count Function"
305
+ ]
306
+ },
307
+ {
308
+ "cell_type": "code",
309
+ "execution_count": 12,
310
+ "metadata": {},
311
+ "outputs": [],
312
+ "source": [
313
+ "# Function returns a column value that is the total number of qualified rows in value_expression.\n",
314
+ "# Syntax:\n",
315
+ "# Count(value_expression)"
316
+ ]
317
+ },
318
+ {
319
+ "cell_type": "code",
320
+ "execution_count": 13,
321
+ "metadata": {},
322
+ "outputs": [
323
+ {
324
+ "name": "stdout",
325
+ "output_type": "stream",
326
+ "text": [
327
+ "Equivalent SQL: select count(admitted) AS assined_count_col_ from \"admissions_train\"\n",
328
+ "\n",
329
+ "\n",
330
+ " ************************* DataFrame ********************* \n",
331
+ " assined_count_col_\n",
332
+ "0 40\n",
333
+ "\n",
334
+ "\n",
335
+ "\n",
336
+ " ************************* DataFrame.dtypes ********************* \n",
337
+ "assined_count_col_ int\n",
338
+ "\n",
339
+ "\n",
340
+ "\n",
341
+ " 'assined_count_col_' Column Type: INTEGER\n"
342
+ ]
343
+ }
344
+ ],
345
+ "source": [
346
+ "df = admissions_train.assign(True, assined_count_col_=func.count(admissions_train.admitted.expression))\n",
347
+ "print_variables(df, [\"assined_count_col_\"])"
348
+ ]
349
+ },
350
+ {
351
+ "cell_type": "markdown",
352
+ "metadata": {},
353
+ "source": [
354
+ "## Covar_pop Function"
355
+ ]
356
+ },
357
+ {
358
+ "cell_type": "code",
359
+ "execution_count": 14,
360
+ "metadata": {},
361
+ "outputs": [],
362
+ "source": [
363
+ "# Function returns the population covariance of its arguments for all non-null data point pairs.\n",
364
+ "# Syntax:\n",
365
+ "# Covar_pop(value_expression1, value_expression2)"
366
+ ]
367
+ },
368
+ {
369
+ "cell_type": "code",
370
+ "execution_count": 15,
371
+ "metadata": {},
372
+ "outputs": [
373
+ {
374
+ "name": "stdout",
375
+ "output_type": "stream",
376
+ "text": [
377
+ "Equivalent SQL: select Covar_pop(admitted, gpa) AS \"assined_col_Covar_pop\" from \"admissions_train\"\n",
378
+ "\n",
379
+ "\n",
380
+ " ************************* DataFrame ********************* \n",
381
+ " assined_col_Covar_pop\n",
382
+ "0 -0.005387\n",
383
+ "\n",
384
+ "\n",
385
+ "\n",
386
+ " ************************* DataFrame.dtypes ********************* \n",
387
+ "assined_col_Covar_pop float\n",
388
+ "\n",
389
+ "\n",
390
+ "\n",
391
+ " 'assined_col_Covar_pop' Column Type: FLOAT\n"
392
+ ]
393
+ }
394
+ ],
395
+ "source": [
396
+ "df = admissions_train.assign(True, \n",
397
+ " assined_col_Covar_pop=func.Covar_pop(admissions_train.admitted.expression, admissions_train.gpa.expression))\n",
398
+ "print_variables(df, [\"assined_col_Covar_pop\"])"
399
+ ]
400
+ },
401
+ {
402
+ "cell_type": "markdown",
403
+ "metadata": {},
404
+ "source": [
405
+ "## Covar_samp Function"
406
+ ]
407
+ },
408
+ {
409
+ "cell_type": "code",
410
+ "execution_count": 16,
411
+ "metadata": {},
412
+ "outputs": [],
413
+ "source": [
414
+ "# Function returns the sample covariance of its arguments for all non-null data point pairs.\n",
415
+ "# Syntax:\n",
416
+ "# Covar_samp(value_expression)"
417
+ ]
418
+ },
419
+ {
420
+ "cell_type": "code",
421
+ "execution_count": 17,
422
+ "metadata": {},
423
+ "outputs": [
424
+ {
425
+ "name": "stdout",
426
+ "output_type": "stream",
427
+ "text": [
428
+ "Equivalent SQL: select Covar_samp(admitted, gpa) AS \"assined_col_Covar_samp\" from \"admissions_train\"\n",
429
+ "\n",
430
+ "\n",
431
+ " ************************* DataFrame ********************* \n",
432
+ " assined_col_Covar_samp\n",
433
+ "0 -0.005526\n",
434
+ "\n",
435
+ "\n",
436
+ "\n",
437
+ " ************************* DataFrame.dtypes ********************* \n",
438
+ "assined_col_Covar_samp float\n",
439
+ "\n",
440
+ "\n",
441
+ "\n",
442
+ " 'assined_col_Covar_samp' Column Type: FLOAT\n"
443
+ ]
444
+ }
445
+ ],
446
+ "source": [
447
+ "df = admissions_train.assign(True, \n",
448
+ " assined_col_Covar_samp=func.Covar_samp(admissions_train.admitted.expression, admissions_train.gpa.expression))\n",
449
+ "print_variables(df, [\"assined_col_Covar_samp\"])"
450
+ ]
451
+ },
452
+ {
453
+ "cell_type": "markdown",
454
+ "metadata": {},
455
+ "source": [
456
+ "## Kurtosis Function"
457
+ ]
458
+ },
459
+ {
460
+ "cell_type": "code",
461
+ "execution_count": 18,
462
+ "metadata": {},
463
+ "outputs": [],
464
+ "source": [
465
+ "# Function returns the kurtosis of the distribution of value_expression.\n",
466
+ "# Syntax:\n",
467
+ "# Kurtosis(value_expression)"
468
+ ]
469
+ },
470
+ {
471
+ "cell_type": "code",
472
+ "execution_count": 19,
473
+ "metadata": {},
474
+ "outputs": [
475
+ {
476
+ "name": "stdout",
477
+ "output_type": "stream",
478
+ "text": [
479
+ "Equivalent SQL: select Kurtosis(gpa) AS \"assined_col_Kurtosis_num\" from \"admissions_train\"\n",
480
+ "\n",
481
+ "\n",
482
+ " ************************* DataFrame ********************* \n",
483
+ " assined_col_Kurtosis_num\n",
484
+ "0 4.052659\n",
485
+ "\n",
486
+ "\n",
487
+ "\n",
488
+ " ************************* DataFrame.dtypes ********************* \n",
489
+ "assined_col_Kurtosis_num float\n",
490
+ "\n",
491
+ "\n",
492
+ "\n",
493
+ " 'assined_col_Kurtosis_num' Column Type: FLOAT\n"
494
+ ]
495
+ }
496
+ ],
497
+ "source": [
498
+ "df = admissions_train.assign(True, assined_col_Kurtosis_num=func.Kurtosis(admissions_train.gpa.expression))\n",
499
+ "print_variables(df, [\"assined_col_Kurtosis_num\"])"
500
+ ]
501
+ },
502
+ {
503
+ "cell_type": "markdown",
504
+ "metadata": {},
505
+ "source": [
506
+ "## max/maximum Function"
507
+ ]
508
+ },
509
+ {
510
+ "cell_type": "code",
511
+ "execution_count": 20,
512
+ "metadata": {},
513
+ "outputs": [],
514
+ "source": [
515
+ "# Function returns a column value that is the maximum value for value_expression.\n",
516
+ "# Syntax:\n",
517
+ "# max(value_expression)"
518
+ ]
519
+ },
520
+ {
521
+ "cell_type": "code",
522
+ "execution_count": 21,
523
+ "metadata": {},
524
+ "outputs": [
525
+ {
526
+ "name": "stdout",
527
+ "output_type": "stream",
528
+ "text": [
529
+ "Equivalent SQL: select max(gpa) AS assined_col_max, maximum(stats) AS assined_col_maximum from \"admissions_train\"\n",
530
+ "\n",
531
+ "\n",
532
+ " ************************* DataFrame ********************* \n",
533
+ " assined_col_max assined_col_maximum\n",
534
+ "0 4.0 Novice\n",
535
+ "\n",
536
+ "\n",
537
+ "\n",
538
+ " ************************* DataFrame.dtypes ********************* \n",
539
+ "assined_col_max float\n",
540
+ "assined_col_maximum str\n",
541
+ "\n",
542
+ "\n",
543
+ "\n",
544
+ " 'assined_col_maximum' Column Type: VARCHAR\n",
545
+ " 'assined_col_max' Column Type: FLOAT\n"
546
+ ]
547
+ }
548
+ ],
549
+ "source": [
550
+ "df = admissions_train.assign(True, \n",
551
+ " assined_col_max=func.max(admissions_train.gpa.expression),\n",
552
+ " assined_col_maximum=func.maximum(admissions_train.stats.expression))\n",
553
+ "print_variables(df, [\"assined_col_maximum\", \"assined_col_max\"])"
554
+ ]
555
+ },
556
+ {
557
+ "cell_type": "markdown",
558
+ "metadata": {},
559
+ "source": [
560
+ "## min/minimum Function"
561
+ ]
562
+ },
563
+ {
564
+ "cell_type": "code",
565
+ "execution_count": 22,
566
+ "metadata": {},
567
+ "outputs": [],
568
+ "source": [
569
+ "# Function returns a column value that is the minimum value for value_expression.\n",
570
+ "# Syntax:\n",
571
+ "# min(value_expression)"
572
+ ]
573
+ },
574
+ {
575
+ "cell_type": "code",
576
+ "execution_count": 23,
577
+ "metadata": {},
578
+ "outputs": [
579
+ {
580
+ "name": "stdout",
581
+ "output_type": "stream",
582
+ "text": [
583
+ "Equivalent SQL: select min(gpa) AS assined_col_min, minimum(stats) AS assined_col_minimum from \"admissions_train\"\n",
584
+ "\n",
585
+ "\n",
586
+ " ************************* DataFrame ********************* \n",
587
+ " assined_col_min assined_col_minimum\n",
588
+ "0 1.87 Advanced\n",
589
+ "\n",
590
+ "\n",
591
+ "\n",
592
+ " ************************* DataFrame.dtypes ********************* \n",
593
+ "assined_col_min float\n",
594
+ "assined_col_minimum str\n",
595
+ "\n",
596
+ "\n",
597
+ "\n",
598
+ " 'assined_col_min' Column Type: FLOAT\n",
599
+ " 'assined_col_minimum' Column Type: VARCHAR\n"
600
+ ]
601
+ }
602
+ ],
603
+ "source": [
604
+ "df = admissions_train.assign(True, \n",
605
+ " assined_col_min=func.min(admissions_train.gpa.expression),\n",
606
+ " assined_col_minimum=func.minimum(admissions_train.stats.expression))\n",
607
+ "print_variables(df, [\"assined_col_min\", \"assined_col_minimum\"])"
608
+ ]
609
+ },
610
+ {
611
+ "cell_type": "markdown",
612
+ "metadata": {},
613
+ "source": [
614
+ "## REGR_AVGX Function"
615
+ ]
616
+ },
617
+ {
618
+ "cell_type": "code",
619
+ "execution_count": 24,
620
+ "metadata": {},
621
+ "outputs": [],
622
+ "source": [
623
+ "# Function returns the mean of the independent_variable_expression for all non-null data pairs of the \n",
624
+ "# dependent and independent variable arguments.\n",
625
+ "# Syntax:\n",
626
+ "# REGR_AVGX(dependent_value_expression, independent_value_expression)"
627
+ ]
628
+ },
629
+ {
630
+ "cell_type": "code",
631
+ "execution_count": 25,
632
+ "metadata": {},
633
+ "outputs": [
634
+ {
635
+ "name": "stdout",
636
+ "output_type": "stream",
637
+ "text": [
638
+ "Equivalent SQL: select regr_avgx(admitted, gpa) AS assined_col_ from \"admissions_train\"\n",
639
+ "\n",
640
+ "\n",
641
+ " ************************* DataFrame ********************* \n",
642
+ " assined_col_\n",
643
+ "0 3.54175\n",
644
+ "\n",
645
+ "\n",
646
+ "\n",
647
+ " ************************* DataFrame.dtypes ********************* \n",
648
+ "assined_col_ float\n",
649
+ "\n",
650
+ "\n",
651
+ "\n",
652
+ " 'assined_col_' Column Type: FLOAT\n"
653
+ ]
654
+ }
655
+ ],
656
+ "source": [
657
+ "df = admissions_train.assign(True, \n",
658
+ " assined_col_=func.regr_avgx(admissions_train.admitted.expression, \n",
659
+ " admissions_train.gpa.expression))\n",
660
+ "print_variables(df, [\"assined_col_\"])"
661
+ ]
662
+ },
663
+ {
664
+ "cell_type": "markdown",
665
+ "metadata": {},
666
+ "source": [
667
+ "## REGR_AVGY Function"
668
+ ]
669
+ },
670
+ {
671
+ "cell_type": "code",
672
+ "execution_count": 26,
673
+ "metadata": {},
674
+ "outputs": [],
675
+ "source": [
676
+ "# Function returns the mean of the dependent_variable_expression for all non-null data pairs of the \n",
677
+ "# dependent and independent variable arguments.\n",
678
+ "# Syntax:\n",
679
+ "# REGR_AVGY(dependent_value_expression, independent_value_expression)"
680
+ ]
681
+ },
682
+ {
683
+ "cell_type": "code",
684
+ "execution_count": 27,
685
+ "metadata": {},
686
+ "outputs": [
687
+ {
688
+ "name": "stdout",
689
+ "output_type": "stream",
690
+ "text": [
691
+ "Equivalent SQL: select regr_avgy(admitted, gpa) AS assined_col_ from \"admissions_train\"\n",
692
+ "\n",
693
+ "\n",
694
+ " ************************* DataFrame ********************* \n",
695
+ " assined_col_\n",
696
+ "0 0.65\n",
697
+ "\n",
698
+ "\n",
699
+ "\n",
700
+ " ************************* DataFrame.dtypes ********************* \n",
701
+ "assined_col_ float\n",
702
+ "\n",
703
+ "\n",
704
+ "\n",
705
+ " 'assined_col_' Column Type: FLOAT\n"
706
+ ]
707
+ }
708
+ ],
709
+ "source": [
710
+ "df = admissions_train.assign(True, \n",
711
+ " assined_col_=func.regr_avgy(admissions_train.admitted.expression, \n",
712
+ " admissions_train.gpa.expression))\n",
713
+ "print_variables(df, [\"assined_col_\"])"
714
+ ]
715
+ },
716
+ {
717
+ "cell_type": "markdown",
718
+ "metadata": {},
719
+ "source": [
720
+ "## REGR_Count Function"
721
+ ]
722
+ },
723
+ {
724
+ "cell_type": "code",
725
+ "execution_count": 28,
726
+ "metadata": {},
727
+ "outputs": [],
728
+ "source": [
729
+ "# Function returns the count of all non-null data pairs of the dependent and independent variable arguments.\n",
730
+ "# Syntax:\n",
731
+ "# REGR_count(dependent_value_expression, independent_value_expression)"
732
+ ]
733
+ },
734
+ {
735
+ "cell_type": "code",
736
+ "execution_count": 29,
737
+ "metadata": {},
738
+ "outputs": [
739
+ {
740
+ "name": "stdout",
741
+ "output_type": "stream",
742
+ "text": [
743
+ "Equivalent SQL: select REGR_count(admitted, gpa) AS assined_col_ from \"admissions_train\"\n",
744
+ "\n",
745
+ "\n",
746
+ " ************************* DataFrame ********************* \n",
747
+ " assined_col_\n",
748
+ "0 40\n",
749
+ "\n",
750
+ "\n",
751
+ "\n",
752
+ " ************************* DataFrame.dtypes ********************* \n",
753
+ "assined_col_ int\n",
754
+ "\n",
755
+ "\n",
756
+ "\n",
757
+ " 'assined_col_' Column Type: INTEGER\n"
758
+ ]
759
+ }
760
+ ],
761
+ "source": [
762
+ "df = admissions_train.assign(True, \n",
763
+ " assined_col_=func.REGR_count(admissions_train.admitted.expression, \n",
764
+ " admissions_train.gpa.expression))\n",
765
+ "print_variables(df, [\"assined_col_\"])"
766
+ ]
767
+ },
768
+ {
769
+ "cell_type": "markdown",
770
+ "metadata": {},
771
+ "source": [
772
+ "## REGR_Intercept Function"
773
+ ]
774
+ },
775
+ {
776
+ "cell_type": "code",
777
+ "execution_count": 30,
778
+ "metadata": {},
779
+ "outputs": [],
780
+ "source": [
781
+ "# Function returns the intercept of the univariate linear regression line through all non-null data pairs of the \n",
782
+ "# dependent and independent variable arguments.\n",
783
+ "# Syntax:\n",
784
+ "# REGR_Intercept(dependent_value_expression, independent_value_expression)"
785
+ ]
786
+ },
787
+ {
788
+ "cell_type": "code",
789
+ "execution_count": 31,
790
+ "metadata": {},
791
+ "outputs": [
792
+ {
793
+ "name": "stdout",
794
+ "output_type": "stream",
795
+ "text": [
796
+ "Equivalent SQL: select REGR_Intercept(admitted, gpa) AS assined_col_ from \"admissions_train\"\n",
797
+ "\n",
798
+ "\n",
799
+ " ************************* DataFrame ********************* \n",
800
+ " assined_col_\n",
801
+ "0 0.724144\n",
802
+ "\n",
803
+ "\n",
804
+ "\n",
805
+ " ************************* DataFrame.dtypes ********************* \n",
806
+ "assined_col_ float\n",
807
+ "\n",
808
+ "\n",
809
+ "\n",
810
+ " 'assined_col_' Column Type: FLOAT\n"
811
+ ]
812
+ }
813
+ ],
814
+ "source": [
815
+ "df = admissions_train.assign(True, \n",
816
+ " assined_col_=func.REGR_Intercept(admissions_train.admitted.expression, \n",
817
+ " admissions_train.gpa.expression))\n",
818
+ "print_variables(df, [\"assined_col_\"])"
819
+ ]
820
+ },
821
+ {
822
+ "cell_type": "markdown",
823
+ "metadata": {},
824
+ "source": [
825
+ "## REGR_R2 Function"
826
+ ]
827
+ },
828
+ {
829
+ "cell_type": "code",
830
+ "execution_count": 32,
831
+ "metadata": {},
832
+ "outputs": [],
833
+ "source": [
834
+ "# Function returns the coefficient of determination for all non-null data pairs of the dependent and independent \n",
835
+ "# variable arguments.\n",
836
+ "# Syntax:\n",
837
+ "# REGR_R2(dependent_value_expression, independent_value_expression)"
838
+ ]
839
+ },
840
+ {
841
+ "cell_type": "code",
842
+ "execution_count": 33,
843
+ "metadata": {},
844
+ "outputs": [
845
+ {
846
+ "name": "stdout",
847
+ "output_type": "stream",
848
+ "text": [
849
+ "Equivalent SQL: select REGR_R2(admitted, gpa) AS assined_col_ from \"admissions_train\"\n",
850
+ "\n",
851
+ "\n",
852
+ " ************************* DataFrame ********************* \n",
853
+ " assined_col_\n",
854
+ "0 0.000496\n",
855
+ "\n",
856
+ "\n",
857
+ "\n",
858
+ " ************************* DataFrame.dtypes ********************* \n",
859
+ "assined_col_ float\n",
860
+ "\n",
861
+ "\n",
862
+ "\n",
863
+ " 'assined_col_' Column Type: FLOAT\n"
864
+ ]
865
+ }
866
+ ],
867
+ "source": [
868
+ "df = admissions_train.assign(True, \n",
869
+ " assined_col_=func.REGR_R2(admissions_train.admitted.expression, \n",
870
+ " admissions_train.gpa.expression))\n",
871
+ "print_variables(df, [\"assined_col_\"])"
872
+ ]
873
+ },
874
+ {
875
+ "cell_type": "markdown",
876
+ "metadata": {},
877
+ "source": [
878
+ "## REGR_SLOPE Function"
879
+ ]
880
+ },
881
+ {
882
+ "cell_type": "code",
883
+ "execution_count": 34,
884
+ "metadata": {},
885
+ "outputs": [],
886
+ "source": [
887
+ "# Function returns the slope of the univariate linear regression line through all non-null data pairs of the \n",
888
+ "# dependent and independent variable arguments.\n",
889
+ "# Syntax:\n",
890
+ "# REGR_SLOPE(dependent_value_expression, independent_value_expression)"
891
+ ]
892
+ },
893
+ {
894
+ "cell_type": "code",
895
+ "execution_count": 35,
896
+ "metadata": {},
897
+ "outputs": [
898
+ {
899
+ "name": "stdout",
900
+ "output_type": "stream",
901
+ "text": [
902
+ "Equivalent SQL: select REGR_SLOPE(admitted, gpa) AS assined_col_ from \"admissions_train\"\n",
903
+ "\n",
904
+ "\n",
905
+ " ************************* DataFrame ********************* \n",
906
+ " assined_col_\n",
907
+ "0 -0.020934\n",
908
+ "\n",
909
+ "\n",
910
+ "\n",
911
+ " ************************* DataFrame.dtypes ********************* \n",
912
+ "assined_col_ float\n",
913
+ "\n",
914
+ "\n",
915
+ "\n",
916
+ " 'assined_col_' Column Type: FLOAT\n"
917
+ ]
918
+ }
919
+ ],
920
+ "source": [
921
+ "df = admissions_train.assign(True, \n",
922
+ " assined_col_=func.REGR_SLOPE(admissions_train.admitted.expression, \n",
923
+ " admissions_train.gpa.expression))\n",
924
+ "print_variables(df, [\"assined_col_\"])"
925
+ ]
926
+ },
927
+ {
928
+ "cell_type": "markdown",
929
+ "metadata": {},
930
+ "source": [
931
+ "## REGR_SXX Function"
932
+ ]
933
+ },
934
+ {
935
+ "cell_type": "code",
936
+ "execution_count": 36,
937
+ "metadata": {},
938
+ "outputs": [],
939
+ "source": [
940
+ "# Function returns the sum of the squares of the independent_variable_expression for all non-null data pairs of the \n",
941
+ "# dependent and independent variable arguments.\n",
942
+ "# Syntax:\n",
943
+ "# REGR_SXX(dependent_value_expression, independent_value_expression)"
944
+ ]
945
+ },
946
+ {
947
+ "cell_type": "code",
948
+ "execution_count": 37,
949
+ "metadata": {},
950
+ "outputs": [
951
+ {
952
+ "name": "stdout",
953
+ "output_type": "stream",
954
+ "text": [
955
+ "Equivalent SQL: select REGR_SXX(admitted, gpa) AS assined_col_ from \"admissions_train\"\n",
956
+ "\n",
957
+ "\n",
958
+ " ************************* DataFrame ********************* \n",
959
+ " assined_col_\n",
960
+ "0 10.294177\n",
961
+ "\n",
962
+ "\n",
963
+ "\n",
964
+ " ************************* DataFrame.dtypes ********************* \n",
965
+ "assined_col_ float\n",
966
+ "\n",
967
+ "\n",
968
+ "\n",
969
+ " 'assined_col_' Column Type: FLOAT\n"
970
+ ]
971
+ }
972
+ ],
973
+ "source": [
974
+ "df = admissions_train.assign(True, \n",
975
+ " assined_col_=func.REGR_SXX(admissions_train.admitted.expression, \n",
976
+ " admissions_train.gpa.expression))\n",
977
+ "print_variables(df, [\"assined_col_\"])"
978
+ ]
979
+ },
980
+ {
981
+ "cell_type": "markdown",
982
+ "metadata": {},
983
+ "source": [
984
+ "## REGR_SXY Function"
985
+ ]
986
+ },
987
+ {
988
+ "cell_type": "code",
989
+ "execution_count": 38,
990
+ "metadata": {},
991
+ "outputs": [],
992
+ "source": [
993
+ "# Function returns the sum of the products of the independent_variable_expression and the dependent_variable_expression \n",
994
+ "# for all non-null data pairs of the dependent and independent variable arguments.\n",
995
+ "# Syntax:\n",
996
+ "# REGR_SXY(dependent_value_expression, independent_value_expression)"
997
+ ]
998
+ },
999
+ {
1000
+ "cell_type": "code",
1001
+ "execution_count": 39,
1002
+ "metadata": {},
1003
+ "outputs": [
1004
+ {
1005
+ "name": "stdout",
1006
+ "output_type": "stream",
1007
+ "text": [
1008
+ "Equivalent SQL: select REGR_SXY(admitted, gpa) AS assined_col_ from \"admissions_train\"\n",
1009
+ "\n",
1010
+ "\n",
1011
+ " ************************* DataFrame ********************* \n",
1012
+ " assined_col_\n",
1013
+ "0 -0.2155\n",
1014
+ "\n",
1015
+ "\n",
1016
+ "\n",
1017
+ " ************************* DataFrame.dtypes ********************* \n",
1018
+ "assined_col_ float\n",
1019
+ "\n",
1020
+ "\n",
1021
+ "\n",
1022
+ " 'assined_col_' Column Type: FLOAT\n"
1023
+ ]
1024
+ }
1025
+ ],
1026
+ "source": [
1027
+ "df = admissions_train.assign(True, \n",
1028
+ " assined_col_=func.REGR_SXY(admissions_train.admitted.expression, \n",
1029
+ " admissions_train.gpa.expression))\n",
1030
+ "print_variables(df, [\"assined_col_\"])"
1031
+ ]
1032
+ },
1033
+ {
1034
+ "cell_type": "markdown",
1035
+ "metadata": {},
1036
+ "source": [
1037
+ "## REGR_SYY Function"
1038
+ ]
1039
+ },
1040
+ {
1041
+ "cell_type": "code",
1042
+ "execution_count": 40,
1043
+ "metadata": {},
1044
+ "outputs": [],
1045
+ "source": [
1046
+ "# Function returns the sum of the squares of the dependent_variable_expression for all non-null data pairs of the \n",
1047
+ "# dependent and independent variable arguments.\n",
1048
+ "# Syntax:\n",
1049
+ "# REGR_SYY(dependent_value_expression, independent_value_expression)"
1050
+ ]
1051
+ },
1052
+ {
1053
+ "cell_type": "code",
1054
+ "execution_count": 41,
1055
+ "metadata": {},
1056
+ "outputs": [
1057
+ {
1058
+ "name": "stdout",
1059
+ "output_type": "stream",
1060
+ "text": [
1061
+ "Equivalent SQL: select REGR_SYY(admitted, gpa) AS assined_col_ from \"admissions_train\"\n",
1062
+ "\n",
1063
+ "\n",
1064
+ " ************************* DataFrame ********************* \n",
1065
+ " assined_col_\n",
1066
+ "0 9.1\n",
1067
+ "\n",
1068
+ "\n",
1069
+ "\n",
1070
+ " ************************* DataFrame.dtypes ********************* \n",
1071
+ "assined_col_ float\n",
1072
+ "\n",
1073
+ "\n",
1074
+ "\n",
1075
+ " 'assined_col_' Column Type: FLOAT\n"
1076
+ ]
1077
+ }
1078
+ ],
1079
+ "source": [
1080
+ "df = admissions_train.assign(True, \n",
1081
+ " assined_col_=func.REGR_SYY(admissions_train.admitted.expression, \n",
1082
+ " admissions_train.gpa.expression))\n",
1083
+ "print_variables(df, [\"assined_col_\"])"
1084
+ ]
1085
+ },
1086
+ {
1087
+ "cell_type": "markdown",
1088
+ "metadata": {},
1089
+ "source": [
1090
+ "## Skew Function"
1091
+ ]
1092
+ },
1093
+ {
1094
+ "cell_type": "code",
1095
+ "execution_count": 42,
1096
+ "metadata": {},
1097
+ "outputs": [],
1098
+ "source": [
1099
+ "# Function returns the skewness of the distribution of value_expression.\n",
1100
+ "# Syntax:\n",
1101
+ "# skew(value_expression)"
1102
+ ]
1103
+ },
1104
+ {
1105
+ "cell_type": "code",
1106
+ "execution_count": 43,
1107
+ "metadata": {},
1108
+ "outputs": [
1109
+ {
1110
+ "name": "stdout",
1111
+ "output_type": "stream",
1112
+ "text": [
1113
+ "Equivalent SQL: select skew(gpa) AS assined_col_float, skew(admitted) AS assined_col_int from \"admissions_train\"\n",
1114
+ "\n",
1115
+ "\n",
1116
+ " ************************* DataFrame ********************* \n",
1117
+ " assined_col_float assined_col_int\n",
1118
+ "0 -2.058969 -0.653746\n",
1119
+ "\n",
1120
+ "\n",
1121
+ "\n",
1122
+ " ************************* DataFrame.dtypes ********************* \n",
1123
+ "assined_col_float float\n",
1124
+ "assined_col_int float\n",
1125
+ "\n",
1126
+ "\n",
1127
+ "\n",
1128
+ " 'assined_col_int' Column Type: FLOAT\n",
1129
+ " 'assined_col_float' Column Type: FLOAT\n"
1130
+ ]
1131
+ }
1132
+ ],
1133
+ "source": [
1134
+ "df = admissions_train.assign(True, assined_col_int=func.skew(admissions_train.admitted.expression),\n",
1135
+ " assined_col_float=func.skew(admissions_train.gpa.expression))\n",
1136
+ "print_variables(df, [\"assined_col_int\", \"assined_col_float\"])"
1137
+ ]
1138
+ },
1139
+ {
1140
+ "cell_type": "markdown",
1141
+ "metadata": {},
1142
+ "source": [
1143
+ "## stddev_pop Function"
1144
+ ]
1145
+ },
1146
+ {
1147
+ "cell_type": "code",
1148
+ "execution_count": 44,
1149
+ "metadata": {},
1150
+ "outputs": [],
1151
+ "source": [
1152
+ "# Function returns the population standard deviation for the non-null data points in value_expression.\n",
1153
+ "# Syntax:\n",
1154
+ "# stddev_pop(value_expression)"
1155
+ ]
1156
+ },
1157
+ {
1158
+ "cell_type": "code",
1159
+ "execution_count": 45,
1160
+ "metadata": {},
1161
+ "outputs": [
1162
+ {
1163
+ "name": "stdout",
1164
+ "output_type": "stream",
1165
+ "text": [
1166
+ "Equivalent SQL: select stddev_pop(gpa) AS assined_col_ from \"admissions_train\"\n",
1167
+ "\n",
1168
+ "\n",
1169
+ " ************************* DataFrame ********************* \n",
1170
+ " assined_col_\n",
1171
+ "0 0.507301\n",
1172
+ "\n",
1173
+ "\n",
1174
+ "\n",
1175
+ " ************************* DataFrame.dtypes ********************* \n",
1176
+ "assined_col_ float\n",
1177
+ "\n",
1178
+ "\n",
1179
+ "\n",
1180
+ " 'assined_col_' Column Type: FLOAT\n"
1181
+ ]
1182
+ }
1183
+ ],
1184
+ "source": [
1185
+ "df = admissions_train.assign(True, assined_col_=func.stddev_pop(admissions_train.gpa.expression))\n",
1186
+ "print_variables(df, [\"assined_col_\"])"
1187
+ ]
1188
+ },
1189
+ {
1190
+ "cell_type": "markdown",
1191
+ "metadata": {},
1192
+ "source": [
1193
+ "## stddev_samp Function"
1194
+ ]
1195
+ },
1196
+ {
1197
+ "cell_type": "code",
1198
+ "execution_count": 46,
1199
+ "metadata": {},
1200
+ "outputs": [],
1201
+ "source": [
1202
+ "# Function returns the sample standard deviation for the non-null data points in value_expression.\n",
1203
+ "# Syntax:\n",
1204
+ "# stddev_samp(value_expression)"
1205
+ ]
1206
+ },
1207
+ {
1208
+ "cell_type": "code",
1209
+ "execution_count": 47,
1210
+ "metadata": {},
1211
+ "outputs": [
1212
+ {
1213
+ "name": "stdout",
1214
+ "output_type": "stream",
1215
+ "text": [
1216
+ "Equivalent SQL: select stddev_samp(gpa) AS assined_col_ from \"admissions_train\"\n",
1217
+ "\n",
1218
+ "\n",
1219
+ " ************************* DataFrame ********************* \n",
1220
+ " assined_col_\n",
1221
+ "0 0.513764\n",
1222
+ "\n",
1223
+ "\n",
1224
+ "\n",
1225
+ " ************************* DataFrame.dtypes ********************* \n",
1226
+ "assined_col_ float\n",
1227
+ "\n",
1228
+ "\n",
1229
+ "\n",
1230
+ " 'assined_col_' Column Type: FLOAT\n"
1231
+ ]
1232
+ }
1233
+ ],
1234
+ "source": [
1235
+ "df = admissions_train.assign(True, assined_col_=func.stddev_samp(admissions_train.gpa.expression))\n",
1236
+ "print_variables(df, [\"assined_col_\"])"
1237
+ ]
1238
+ },
1239
+ {
1240
+ "cell_type": "markdown",
1241
+ "metadata": {},
1242
+ "source": [
1243
+ "## sum Function"
1244
+ ]
1245
+ },
1246
+ {
1247
+ "cell_type": "code",
1248
+ "execution_count": 48,
1249
+ "metadata": {},
1250
+ "outputs": [],
1251
+ "source": [
1252
+ "# Function returns a column value that is the arithmetic sum of value_expression.\n",
1253
+ "# Syntax:\n",
1254
+ "# sum(value_expression)"
1255
+ ]
1256
+ },
1257
+ {
1258
+ "cell_type": "code",
1259
+ "execution_count": 49,
1260
+ "metadata": {},
1261
+ "outputs": [
1262
+ {
1263
+ "name": "stdout",
1264
+ "output_type": "stream",
1265
+ "text": [
1266
+ "Equivalent SQL: select sum(gpa) AS assined_col_ from \"admissions_train\"\n",
1267
+ "\n",
1268
+ "\n",
1269
+ " ************************* DataFrame ********************* \n",
1270
+ " assined_col_\n",
1271
+ "0 141.67\n",
1272
+ "\n",
1273
+ "\n",
1274
+ "\n",
1275
+ " ************************* DataFrame.dtypes ********************* \n",
1276
+ "assined_col_ float\n",
1277
+ "\n",
1278
+ "\n",
1279
+ "\n",
1280
+ " 'assined_col_' Column Type: FLOAT\n"
1281
+ ]
1282
+ }
1283
+ ],
1284
+ "source": [
1285
+ "df = admissions_train.assign(True, assined_col_=func.sum(admissions_train.gpa.expression))\n",
1286
+ "print_variables(df, [\"assined_col_\"])"
1287
+ ]
1288
+ },
1289
+ {
1290
+ "cell_type": "markdown",
1291
+ "metadata": {},
1292
+ "source": [
1293
+ "## var_pop Function"
1294
+ ]
1295
+ },
1296
+ {
1297
+ "cell_type": "code",
1298
+ "execution_count": 50,
1299
+ "metadata": {},
1300
+ "outputs": [],
1301
+ "source": [
1302
+ "# Function returns the population variance for the data points in value_expression.\n",
1303
+ "# Syntax:\n",
1304
+ "# var_pop(value_expression)"
1305
+ ]
1306
+ },
1307
+ {
1308
+ "cell_type": "code",
1309
+ "execution_count": 51,
1310
+ "metadata": {},
1311
+ "outputs": [
1312
+ {
1313
+ "name": "stdout",
1314
+ "output_type": "stream",
1315
+ "text": [
1316
+ "Equivalent SQL: select var_pop(gpa) AS assined_col_ from \"admissions_train\"\n",
1317
+ "\n",
1318
+ "\n",
1319
+ " ************************* DataFrame ********************* \n",
1320
+ " assined_col_\n",
1321
+ "0 0.257354\n",
1322
+ "\n",
1323
+ "\n",
1324
+ "\n",
1325
+ " ************************* DataFrame.dtypes ********************* \n",
1326
+ "assined_col_ float\n",
1327
+ "\n",
1328
+ "\n",
1329
+ "\n",
1330
+ " 'assined_col_' Column Type: FLOAT\n"
1331
+ ]
1332
+ }
1333
+ ],
1334
+ "source": [
1335
+ "df = admissions_train.assign(True, assined_col_=func.var_pop(admissions_train.gpa.expression))\n",
1336
+ "print_variables(df, [\"assined_col_\"])"
1337
+ ]
1338
+ },
1339
+ {
1340
+ "cell_type": "markdown",
1341
+ "metadata": {},
1342
+ "source": [
1343
+ "## var_samp Function"
1344
+ ]
1345
+ },
1346
+ {
1347
+ "cell_type": "code",
1348
+ "execution_count": 52,
1349
+ "metadata": {},
1350
+ "outputs": [],
1351
+ "source": [
1352
+ "# Function returns the sample variance for the data points in value_expression.\n",
1353
+ "# Syntax:\n",
1354
+ "# var_samp(value_expression)"
1355
+ ]
1356
+ },
1357
+ {
1358
+ "cell_type": "code",
1359
+ "execution_count": 53,
1360
+ "metadata": {},
1361
+ "outputs": [
1362
+ {
1363
+ "name": "stdout",
1364
+ "output_type": "stream",
1365
+ "text": [
1366
+ "Equivalent SQL: select var_samp(gpa) AS assined_col_ from \"admissions_train\"\n",
1367
+ "\n",
1368
+ "\n",
1369
+ " ************************* DataFrame ********************* \n",
1370
+ " assined_col_\n",
1371
+ "0 0.263953\n",
1372
+ "\n",
1373
+ "\n",
1374
+ "\n",
1375
+ " ************************* DataFrame.dtypes ********************* \n",
1376
+ "assined_col_ float\n",
1377
+ "\n",
1378
+ "\n",
1379
+ "\n",
1380
+ " 'assined_col_' Column Type: FLOAT\n"
1381
+ ]
1382
+ }
1383
+ ],
1384
+ "source": [
1385
+ "df = admissions_train.assign(True, assined_col_=func.var_samp(admissions_train.gpa.expression))\n",
1386
+ "print_variables(df, [\"assined_col_\"])"
1387
+ ]
1388
+ },
1389
+ {
1390
+ "cell_type": "code",
1391
+ "execution_count": 54,
1392
+ "metadata": {},
1393
+ "outputs": [
1394
+ {
1395
+ "data": {
1396
+ "text/plain": [
1397
+ "True"
1398
+ ]
1399
+ },
1400
+ "execution_count": 54,
1401
+ "metadata": {},
1402
+ "output_type": "execute_result"
1403
+ }
1404
+ ],
1405
+ "source": [
1406
+ "# One must run remove_context() to close the connection and garbage collect internally generated objects.\n",
1407
+ "remove_context()"
1408
+ ]
1409
+ },
1410
+ {
1411
+ "cell_type": "code",
1412
+ "execution_count": 55,
1413
+ "metadata": {},
1414
+ "outputs": [],
1415
+ "source": [
1416
+ "## Grouping, pivot, unpivot - Not possible to use."
1417
+ ]
1418
+ },
1419
+ {
1420
+ "cell_type": "code",
1421
+ "execution_count": null,
1422
+ "metadata": {},
1423
+ "outputs": [],
1424
+ "source": []
1425
+ },
1426
+ {
1427
+ "cell_type": "code",
1428
+ "execution_count": null,
1429
+ "metadata": {},
1430
+ "outputs": [],
1431
+ "source": []
1432
+ }
1433
+ ],
1434
+ "metadata": {
1435
+ "kernelspec": {
1436
+ "display_name": "Python 3",
1437
+ "language": "python",
1438
+ "name": "python3"
1439
+ },
1440
+ "language_info": {
1441
+ "codemirror_mode": {
1442
+ "name": "ipython",
1443
+ "version": 3
1444
+ },
1445
+ "file_extension": ".py",
1446
+ "mimetype": "text/x-python",
1447
+ "name": "python",
1448
+ "nbconvert_exporter": "python",
1449
+ "pygments_lexer": "ipython3",
1450
+ "version": "3.7.1"
1451
+ }
1452
+ },
1453
+ "nbformat": 4,
1454
+ "nbformat_minor": 2
1455
+ }