teradataml 20.0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +2762 -0
- teradataml/__init__.py +78 -0
- teradataml/_version.py +11 -0
- teradataml/analytics/Transformations.py +2996 -0
- teradataml/analytics/__init__.py +82 -0
- teradataml/analytics/analytic_function_executor.py +2416 -0
- teradataml/analytics/analytic_query_generator.py +1050 -0
- teradataml/analytics/byom/H2OPredict.py +514 -0
- teradataml/analytics/byom/PMMLPredict.py +437 -0
- teradataml/analytics/byom/__init__.py +16 -0
- teradataml/analytics/json_parser/__init__.py +133 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
- teradataml/analytics/json_parser/json_store.py +191 -0
- teradataml/analytics/json_parser/metadata.py +1666 -0
- teradataml/analytics/json_parser/utils.py +805 -0
- teradataml/analytics/meta_class.py +236 -0
- teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
- teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
- teradataml/analytics/sqle/__init__.py +128 -0
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
- teradataml/analytics/table_operator/__init__.py +11 -0
- teradataml/analytics/uaf/__init__.py +82 -0
- teradataml/analytics/utils.py +828 -0
- teradataml/analytics/valib.py +1617 -0
- teradataml/automl/__init__.py +5835 -0
- teradataml/automl/autodataprep/__init__.py +493 -0
- teradataml/automl/custom_json_utils.py +1625 -0
- teradataml/automl/data_preparation.py +1384 -0
- teradataml/automl/data_transformation.py +1254 -0
- teradataml/automl/feature_engineering.py +2273 -0
- teradataml/automl/feature_exploration.py +1873 -0
- teradataml/automl/model_evaluation.py +488 -0
- teradataml/automl/model_training.py +1407 -0
- teradataml/catalog/__init__.py +2 -0
- teradataml/catalog/byom.py +1759 -0
- teradataml/catalog/function_argument_mapper.py +859 -0
- teradataml/catalog/model_cataloging_utils.py +491 -0
- teradataml/clients/__init__.py +0 -0
- teradataml/clients/auth_client.py +137 -0
- teradataml/clients/keycloak_client.py +165 -0
- teradataml/clients/pkce_client.py +481 -0
- teradataml/common/__init__.py +1 -0
- teradataml/common/aed_utils.py +2078 -0
- teradataml/common/bulk_exposed_utils.py +113 -0
- teradataml/common/constants.py +1669 -0
- teradataml/common/deprecations.py +166 -0
- teradataml/common/exceptions.py +147 -0
- teradataml/common/formula.py +743 -0
- teradataml/common/garbagecollector.py +666 -0
- teradataml/common/logger.py +1261 -0
- teradataml/common/messagecodes.py +518 -0
- teradataml/common/messages.py +262 -0
- teradataml/common/pylogger.py +67 -0
- teradataml/common/sqlbundle.py +764 -0
- teradataml/common/td_coltype_code_to_tdtype.py +48 -0
- teradataml/common/utils.py +3166 -0
- teradataml/common/warnings.py +36 -0
- teradataml/common/wrapper_utils.py +625 -0
- teradataml/config/__init__.py +0 -0
- teradataml/config/dummy_file1.cfg +5 -0
- teradataml/config/dummy_file2.cfg +3 -0
- teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
- teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
- teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
- teradataml/context/__init__.py +0 -0
- teradataml/context/aed_context.py +223 -0
- teradataml/context/context.py +1462 -0
- teradataml/data/A_loan.csv +19 -0
- teradataml/data/BINARY_REALS_LEFT.csv +11 -0
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
- teradataml/data/B_loan.csv +49 -0
- teradataml/data/BuoyData2.csv +17 -0
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
- teradataml/data/Convolve2RealsLeft.csv +5 -0
- teradataml/data/Convolve2RealsRight.csv +5 -0
- teradataml/data/Convolve2ValidLeft.csv +11 -0
- teradataml/data/Convolve2ValidRight.csv +11 -0
- teradataml/data/DFFTConv_Real_8_8.csv +65 -0
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/Mall_customer_data.csv +201 -0
- teradataml/data/Orders1_12mf.csv +25 -0
- teradataml/data/Pi_loan.csv +7 -0
- teradataml/data/SMOOTHED_DATA.csv +7 -0
- teradataml/data/TestDFFT8.csv +9 -0
- teradataml/data/TestRiver.csv +109 -0
- teradataml/data/Traindata.csv +28 -0
- teradataml/data/__init__.py +0 -0
- teradataml/data/acf.csv +17 -0
- teradataml/data/adaboost_example.json +34 -0
- teradataml/data/adaboostpredict_example.json +24 -0
- teradataml/data/additional_table.csv +11 -0
- teradataml/data/admissions_test.csv +21 -0
- teradataml/data/admissions_train.csv +41 -0
- teradataml/data/admissions_train_nulls.csv +41 -0
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -0
- teradataml/data/ageandpressure.csv +31 -0
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/antiselect_example.json +36 -0
- teradataml/data/antiselect_input.csv +8 -0
- teradataml/data/antiselect_input_mixed_case.csv +8 -0
- teradataml/data/applicant_external.csv +7 -0
- teradataml/data/applicant_reference.csv +7 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/arima_example.json +9 -0
- teradataml/data/assortedtext_input.csv +8 -0
- teradataml/data/attribution_example.json +34 -0
- teradataml/data/attribution_sample_table.csv +27 -0
- teradataml/data/attribution_sample_table1.csv +6 -0
- teradataml/data/attribution_sample_table2.csv +11 -0
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +43 -0
- teradataml/data/bank_web_clicks2.csv +91 -0
- teradataml/data/bank_web_url.csv +85 -0
- teradataml/data/barrier.csv +2 -0
- teradataml/data/barrier_new.csv +3 -0
- teradataml/data/betweenness_example.json +14 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -0
- teradataml/data/bin_fit_ip.csv +4 -0
- teradataml/data/binary_complex_left.csv +11 -0
- teradataml/data/binary_complex_right.csv +11 -0
- teradataml/data/binary_matrix_complex_left.csv +21 -0
- teradataml/data/binary_matrix_complex_right.csv +21 -0
- teradataml/data/binary_matrix_real_left.csv +21 -0
- teradataml/data/binary_matrix_real_right.csv +21 -0
- teradataml/data/blood2ageandweight.csv +26 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -0
- teradataml/data/burst_data.csv +5 -0
- teradataml/data/burst_example.json +21 -0
- teradataml/data/byom_example.json +34 -0
- teradataml/data/bytes_table.csv +4 -0
- teradataml/data/cal_housing_ex_raw.csv +70 -0
- teradataml/data/callers.csv +7 -0
- teradataml/data/calls.csv +10 -0
- teradataml/data/cars_hist.csv +33 -0
- teradataml/data/cat_table.csv +25 -0
- teradataml/data/ccm_example.json +32 -0
- teradataml/data/ccm_input.csv +91 -0
- teradataml/data/ccm_input2.csv +13 -0
- teradataml/data/ccmexample.csv +101 -0
- teradataml/data/ccmprepare_example.json +9 -0
- teradataml/data/ccmprepare_input.csv +91 -0
- teradataml/data/cfilter_example.json +12 -0
- teradataml/data/changepointdetection_example.json +18 -0
- teradataml/data/changepointdetectionrt_example.json +8 -0
- teradataml/data/chi_sq.csv +3 -0
- teradataml/data/churn_data.csv +14 -0
- teradataml/data/churn_emission.csv +35 -0
- teradataml/data/churn_initial.csv +3 -0
- teradataml/data/churn_state_transition.csv +5 -0
- teradataml/data/citedges_2.csv +745 -0
- teradataml/data/citvertices_2.csv +1210 -0
- teradataml/data/clicks2.csv +16 -0
- teradataml/data/clickstream.csv +13 -0
- teradataml/data/clickstream1.csv +11 -0
- teradataml/data/closeness_example.json +16 -0
- teradataml/data/complaints.csv +21 -0
- teradataml/data/complaints_mini.csv +3 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_testtoken.csv +224 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/complaints_tokens_test.csv +353 -0
- teradataml/data/complaints_traintoken.csv +472 -0
- teradataml/data/computers_category.csv +1001 -0
- teradataml/data/computers_test1.csv +1252 -0
- teradataml/data/computers_train1.csv +5009 -0
- teradataml/data/computers_train1_clustered.csv +5009 -0
- teradataml/data/confusionmatrix_example.json +9 -0
- teradataml/data/conversion_event_table.csv +3 -0
- teradataml/data/corr_input.csv +17 -0
- teradataml/data/correlation_example.json +11 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/coxhazardratio_example.json +39 -0
- teradataml/data/coxph_example.json +15 -0
- teradataml/data/coxsurvival_example.json +28 -0
- teradataml/data/cpt.csv +41 -0
- teradataml/data/credit_ex_merged.csv +45 -0
- teradataml/data/creditcard_data.csv +1001 -0
- teradataml/data/customer_loyalty.csv +301 -0
- teradataml/data/customer_loyalty_newseq.csv +31 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +173 -0
- teradataml/data/decisionforest_example.json +37 -0
- teradataml/data/decisionforestpredict_example.json +38 -0
- teradataml/data/decisiontree_example.json +21 -0
- teradataml/data/decisiontreepredict_example.json +45 -0
- teradataml/data/dfft2_size4_real.csv +17 -0
- teradataml/data/dfft2_test_matrix16.csv +17 -0
- teradataml/data/dfft2conv_real_4_4.csv +65 -0
- teradataml/data/diabetes.csv +443 -0
- teradataml/data/diabetes_test.csv +89 -0
- teradataml/data/dict_table.csv +5 -0
- teradataml/data/docperterm_table.csv +4 -0
- teradataml/data/docs/__init__.py +1 -0
- teradataml/data/docs/byom/__init__.py +0 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
- teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
- teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
- teradataml/data/docs/byom/docs/__init__.py +0 -0
- teradataml/data/docs/sqle/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
- teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
- teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/tableoperator/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/uaf/__init__.py +0 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
- teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
- teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
- teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
- teradataml/data/dtw_example.json +18 -0
- teradataml/data/dtw_t1.csv +11 -0
- teradataml/data/dtw_t2.csv +4 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt2d_example.json +16 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_example.json +15 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/dwt_filter_dim.csv +5 -0
- teradataml/data/emission.csv +9 -0
- teradataml/data/emp_table_by_dept.csv +19 -0
- teradataml/data/employee_info.csv +4 -0
- teradataml/data/employee_table.csv +6 -0
- teradataml/data/excluding_event_table.csv +2 -0
- teradataml/data/finance_data.csv +6 -0
- teradataml/data/finance_data2.csv +61 -0
- teradataml/data/finance_data3.csv +93 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -0
- teradataml/data/fmeasure_example.json +12 -0
- teradataml/data/followers_leaders.csv +10 -0
- teradataml/data/fpgrowth_example.json +12 -0
- teradataml/data/frequentpaths_example.json +29 -0
- teradataml/data/friends.csv +9 -0
- teradataml/data/fs_input.csv +33 -0
- teradataml/data/fs_input1.csv +33 -0
- teradataml/data/genData.csv +513 -0
- teradataml/data/geodataframe_example.json +40 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -0
- teradataml/data/glm_example.json +56 -0
- teradataml/data/glml1l2_example.json +28 -0
- teradataml/data/glml1l2predict_example.json +54 -0
- teradataml/data/glmpredict_example.json +54 -0
- teradataml/data/gq_t1.csv +21 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/hconvolve_complex_right.csv +5 -0
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
- teradataml/data/histogram_example.json +12 -0
- teradataml/data/hmmdecoder_example.json +79 -0
- teradataml/data/hmmevaluator_example.json +25 -0
- teradataml/data/hmmsupervised_example.json +10 -0
- teradataml/data/hmmunsupervised_example.json +8 -0
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/house_values.csv +12 -0
- teradataml/data/house_values2.csv +13 -0
- teradataml/data/housing_cat.csv +7 -0
- teradataml/data/housing_data.csv +9 -0
- teradataml/data/housing_test.csv +47 -0
- teradataml/data/housing_test_binary.csv +47 -0
- teradataml/data/housing_train.csv +493 -0
- teradataml/data/housing_train_attribute.csv +5 -0
- teradataml/data/housing_train_binary.csv +437 -0
- teradataml/data/housing_train_parameter.csv +2 -0
- teradataml/data/housing_train_response.csv +493 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -0
- teradataml/data/ibm_stock1.csv +370 -0
- teradataml/data/identitymatch_example.json +22 -0
- teradataml/data/idf_table.csv +4 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/impressions.csv +101 -0
- teradataml/data/inflation.csv +21 -0
- teradataml/data/initial.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +13 -0
- teradataml/data/insurance.csv +1339 -0
- teradataml/data/interpolator_example.json +13 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/iris_altinput.csv +481 -0
- teradataml/data/iris_attribute_output.csv +8 -0
- teradataml/data/iris_attribute_test.csv +121 -0
- teradataml/data/iris_attribute_train.csv +481 -0
- teradataml/data/iris_category_expect_predict.csv +31 -0
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -0
- teradataml/data/iris_response_train.csv +121 -0
- teradataml/data/iris_test.csv +31 -0
- teradataml/data/iris_train.csv +121 -0
- teradataml/data/join_table1.csv +4 -0
- teradataml/data/join_table2.csv +4 -0
- teradataml/data/jsons/anly_function_name.json +7 -0
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/byom/dataikupredict.json +148 -0
- teradataml/data/jsons/byom/datarobotpredict.json +147 -0
- teradataml/data/jsons/byom/h2opredict.json +195 -0
- teradataml/data/jsons/byom/onnxembeddings.json +267 -0
- teradataml/data/jsons/byom/onnxpredict.json +187 -0
- teradataml/data/jsons/byom/pmmlpredict.json +147 -0
- teradataml/data/jsons/paired_functions.json +450 -0
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/kmeans_example.json +23 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +51 -0
- teradataml/data/knn_example.json +19 -0
- teradataml/data/knnrecommender_example.json +7 -0
- teradataml/data/knnrecommenderpredict_example.json +12 -0
- teradataml/data/lar_example.json +17 -0
- teradataml/data/larpredict_example.json +30 -0
- teradataml/data/lc_new_predictors.csv +5 -0
- teradataml/data/lc_new_reference.csv +9 -0
- teradataml/data/lda_example.json +9 -0
- teradataml/data/ldainference_example.json +15 -0
- teradataml/data/ldatopicsummary_example.json +9 -0
- teradataml/data/levendist_input.csv +13 -0
- teradataml/data/levenshteindistance_example.json +10 -0
- teradataml/data/linreg_example.json +10 -0
- teradataml/data/load_example_data.py +350 -0
- teradataml/data/loan_prediction.csv +295 -0
- teradataml/data/lungcancer.csv +138 -0
- teradataml/data/mappingdata.csv +12 -0
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/milk_timeseries.csv +157 -0
- teradataml/data/min_max_titanic.csv +4 -0
- teradataml/data/minhash_example.json +6 -0
- teradataml/data/ml_ratings.csv +7547 -0
- teradataml/data/ml_ratings_10.csv +2445 -0
- teradataml/data/mobile_data.csv +13 -0
- teradataml/data/model1_table.csv +5 -0
- teradataml/data/model2_table.csv +5 -0
- teradataml/data/models/License_file.txt +1 -0
- teradataml/data/models/License_file_empty.txt +0 -0
- teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
- teradataml/data/models/dr_iris_rf +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
- teradataml/data/models/iris_db_glm_model.pmml +57 -0
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
- teradataml/data/models/iris_kmeans_model +0 -0
- teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
- teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
- teradataml/data/modularity_example.json +12 -0
- teradataml/data/movavg_example.json +8 -0
- teradataml/data/mtx1.csv +7 -0
- teradataml/data/mtx2.csv +13 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -0
- teradataml/data/naivebayes_example.json +10 -0
- teradataml/data/naivebayespredict_example.json +19 -0
- teradataml/data/naivebayestextclassifier2_example.json +7 -0
- teradataml/data/naivebayestextclassifier_example.json +8 -0
- teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
- teradataml/data/name_Find_configure.csv +10 -0
- teradataml/data/namedentityfinder_example.json +14 -0
- teradataml/data/namedentityfinderevaluator_example.json +10 -0
- teradataml/data/namedentityfindertrainer_example.json +6 -0
- teradataml/data/nb_iris_input_test.csv +31 -0
- teradataml/data/nb_iris_input_train.csv +121 -0
- teradataml/data/nbp_iris_model.csv +13 -0
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_extractor_text.csv +2 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/ner_sports_test2.csv +29 -0
- teradataml/data/ner_sports_train.csv +501 -0
- teradataml/data/nerevaluator_example.json +6 -0
- teradataml/data/nerextractor_example.json +18 -0
- teradataml/data/nermem_sports_test.csv +18 -0
- teradataml/data/nermem_sports_train.csv +51 -0
- teradataml/data/nertrainer_example.json +7 -0
- teradataml/data/ngrams_example.json +7 -0
- teradataml/data/notebooks/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
- teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
- teradataml/data/npath_example.json +23 -0
- teradataml/data/ntree_example.json +14 -0
- teradataml/data/numeric_strings.csv +5 -0
- teradataml/data/numerics.csv +4 -0
- teradataml/data/ocean_buoy.csv +17 -0
- teradataml/data/ocean_buoy2.csv +17 -0
- teradataml/data/ocean_buoys.csv +28 -0
- teradataml/data/ocean_buoys2.csv +10 -0
- teradataml/data/ocean_buoys_nonpti.csv +28 -0
- teradataml/data/ocean_buoys_seq.csv +29 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -0
- teradataml/data/orders1.csv +11 -0
- teradataml/data/orders1_12.csv +13 -0
- teradataml/data/orders_ex.csv +4 -0
- teradataml/data/pack_example.json +9 -0
- teradataml/data/package_tracking.csv +19 -0
- teradataml/data/package_tracking_pti.csv +19 -0
- teradataml/data/pagerank_example.json +13 -0
- teradataml/data/paragraphs_input.csv +6 -0
- teradataml/data/pathanalyzer_example.json +8 -0
- teradataml/data/pathgenerator_example.json +8 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/pattern_matching_data.csv +11 -0
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/phrases.csv +7 -0
- teradataml/data/pivot_example.json +9 -0
- teradataml/data/pivot_input.csv +22 -0
- teradataml/data/playerRating.csv +31 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/postagger_example.json +7 -0
- teradataml/data/posttagger_output.csv +44 -0
- teradataml/data/production_data.csv +17 -0
- teradataml/data/production_data2.csv +7 -0
- teradataml/data/randomsample_example.json +32 -0
- teradataml/data/randomwalksample_example.json +9 -0
- teradataml/data/rank_table.csv +6 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/ref_mobile_data.csv +4 -0
- teradataml/data/ref_mobile_data_dense.csv +2 -0
- teradataml/data/ref_url.csv +17 -0
- teradataml/data/restaurant_reviews.csv +7 -0
- teradataml/data/retail_churn_table.csv +27772 -0
- teradataml/data/river_data.csv +145 -0
- teradataml/data/roc_example.json +8 -0
- teradataml/data/roc_input.csv +101 -0
- teradataml/data/rule_inputs.csv +6 -0
- teradataml/data/rule_table.csv +2 -0
- teradataml/data/sales.csv +7 -0
- teradataml/data/sales_transaction.csv +501 -0
- teradataml/data/salesdata.csv +342 -0
- teradataml/data/sample_cities.csv +3 -0
- teradataml/data/sample_shapes.csv +11 -0
- teradataml/data/sample_streets.csv +3 -0
- teradataml/data/sampling_example.json +16 -0
- teradataml/data/sax_example.json +17 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -0
- teradataml/data/scale_housing.csv +11 -0
- teradataml/data/scale_housing_test.csv +6 -0
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -0
- teradataml/data/scalebypartition_example.json +13 -0
- teradataml/data/scalemap_example.json +13 -0
- teradataml/data/scalesummary_example.json +12 -0
- teradataml/data/score_category.csv +101 -0
- teradataml/data/score_summary.csv +4 -0
- teradataml/data/script_example.json +10 -0
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/lightgbm/dataset.template +175 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +16 -0
- teradataml/data/scripts/mapper_replace.py +16 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
- teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
- teradataml/data/seeds.csv +10 -0
- teradataml/data/sentenceextractor_example.json +7 -0
- teradataml/data/sentiment_extract_input.csv +11 -0
- teradataml/data/sentiment_train.csv +16 -0
- teradataml/data/sentiment_word.csv +20 -0
- teradataml/data/sentiment_word_input.csv +20 -0
- teradataml/data/sentimentextractor_example.json +24 -0
- teradataml/data/sentimenttrainer_example.json +8 -0
- teradataml/data/sequence_table.csv +10 -0
- teradataml/data/seriessplitter_example.json +8 -0
- teradataml/data/sessionize_example.json +17 -0
- teradataml/data/sessionize_table.csv +116 -0
- teradataml/data/setop_test1.csv +24 -0
- teradataml/data/setop_test2.csv +22 -0
- teradataml/data/soc_nw_edges.csv +11 -0
- teradataml/data/soc_nw_vertices.csv +8 -0
- teradataml/data/souvenir_timeseries.csv +168 -0
- teradataml/data/sparse_iris_attribute.csv +5 -0
- teradataml/data/sparse_iris_test.csv +121 -0
- teradataml/data/sparse_iris_train.csv +601 -0
- teradataml/data/star1.csv +6 -0
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/state_transition.csv +5 -0
- teradataml/data/stock_data.csv +53 -0
- teradataml/data/stock_movement.csv +11 -0
- teradataml/data/stock_vol.csv +76 -0
- teradataml/data/stop_words.csv +8 -0
- teradataml/data/store_sales.csv +37 -0
- teradataml/data/stringsimilarity_example.json +8 -0
- teradataml/data/strsimilarity_input.csv +13 -0
- teradataml/data/students.csv +101 -0
- teradataml/data/svm_iris_input_test.csv +121 -0
- teradataml/data/svm_iris_input_train.csv +481 -0
- teradataml/data/svm_iris_model.csv +7 -0
- teradataml/data/svmdense_example.json +10 -0
- teradataml/data/svmdensepredict_example.json +19 -0
- teradataml/data/svmsparse_example.json +8 -0
- teradataml/data/svmsparsepredict_example.json +14 -0
- teradataml/data/svmsparsesummary_example.json +8 -0
- teradataml/data/target_mobile_data.csv +13 -0
- teradataml/data/target_mobile_data_dense.csv +5 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/templatedata.csv +1201 -0
- teradataml/data/templates/open_source_ml.json +11 -0
- teradataml/data/teradata_icon.ico +0 -0
- teradataml/data/teradataml_example.json +1473 -0
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -0
- teradataml/data/test_pacf_12.csv +37 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -0
- teradataml/data/text_inputs.csv +6 -0
- teradataml/data/textchunker_example.json +8 -0
- teradataml/data/textclassifier_example.json +7 -0
- teradataml/data/textclassifier_input.csv +7 -0
- teradataml/data/textclassifiertrainer_example.json +7 -0
- teradataml/data/textmorph_example.json +11 -0
- teradataml/data/textparser_example.json +15 -0
- teradataml/data/texttagger_example.json +12 -0
- teradataml/data/texttokenizer_example.json +7 -0
- teradataml/data/texttrainer_input.csv +11 -0
- teradataml/data/tf_example.json +7 -0
- teradataml/data/tfidf_example.json +14 -0
- teradataml/data/tfidf_input1.csv +201 -0
- teradataml/data/tfidf_train.csv +6 -0
- teradataml/data/time_table1.csv +535 -0
- teradataml/data/time_table2.csv +14 -0
- teradataml/data/timeseriesdata.csv +1601 -0
- teradataml/data/timeseriesdatasetsd4.csv +105 -0
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic.csv +892 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/token_table.csv +696 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +28 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/transformation_table.csv +6 -0
- teradataml/data/transformation_table_new.csv +2 -0
- teradataml/data/tv_spots.csv +16 -0
- teradataml/data/twod_climate_data.csv +117 -0
- teradataml/data/uaf_example.json +529 -0
- teradataml/data/univariatestatistics_example.json +9 -0
- teradataml/data/unpack_example.json +10 -0
- teradataml/data/unpivot_example.json +25 -0
- teradataml/data/unpivot_input.csv +8 -0
- teradataml/data/url_data.csv +10 -0
- teradataml/data/us_air_pass.csv +37 -0
- teradataml/data/us_population.csv +624 -0
- teradataml/data/us_states_shapes.csv +52 -0
- teradataml/data/varmax_example.json +18 -0
- teradataml/data/vectordistance_example.json +30 -0
- teradataml/data/ville_climatedata.csv +121 -0
- teradataml/data/ville_tempdata.csv +12 -0
- teradataml/data/ville_tempdata1.csv +12 -0
- teradataml/data/ville_temperature.csv +11 -0
- teradataml/data/waveletTable.csv +1605 -0
- teradataml/data/waveletTable2.csv +1605 -0
- teradataml/data/weightedmovavg_example.json +9 -0
- teradataml/data/wft_testing.csv +5 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +6 -0
- teradataml/data/word_embed_input_table2.csv +5 -0
- teradataml/data/word_embed_model.csv +23 -0
- teradataml/data/words_input.csv +13 -0
- teradataml/data/xconvolve_complex_left.csv +6 -0
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
- teradataml/data/xgboost_example.json +36 -0
- teradataml/data/xgboostpredict_example.json +32 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/__init__.py +0 -0
- teradataml/dataframe/copy_to.py +2446 -0
- teradataml/dataframe/data_transfer.py +2840 -0
- teradataml/dataframe/dataframe.py +20908 -0
- teradataml/dataframe/dataframe_utils.py +2114 -0
- teradataml/dataframe/fastload.py +794 -0
- teradataml/dataframe/functions.py +2110 -0
- teradataml/dataframe/indexer.py +424 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +1171 -0
- teradataml/dataframe/sql.py +10904 -0
- teradataml/dataframe/sql_function_parameters.py +440 -0
- teradataml/dataframe/sql_functions.py +652 -0
- teradataml/dataframe/sql_interfaces.py +220 -0
- teradataml/dataframe/vantage_function_types.py +675 -0
- teradataml/dataframe/window.py +694 -0
- teradataml/dbutils/__init__.py +3 -0
- teradataml/dbutils/dbutils.py +2871 -0
- teradataml/dbutils/filemgr.py +318 -0
- teradataml/gen_ai/__init__.py +2 -0
- teradataml/gen_ai/convAI.py +473 -0
- teradataml/geospatial/__init__.py +4 -0
- teradataml/geospatial/geodataframe.py +1105 -0
- teradataml/geospatial/geodataframecolumn.py +392 -0
- teradataml/geospatial/geometry_types.py +926 -0
- teradataml/hyperparameter_tuner/__init__.py +1 -0
- teradataml/hyperparameter_tuner/optimizer.py +4115 -0
- teradataml/hyperparameter_tuner/utils.py +303 -0
- teradataml/lib/__init__.py +0 -0
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/lib/libaed_0_1_ppc64le.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/_base.py +1321 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/_constants.py +61 -0
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +267 -0
- teradataml/options/__init__.py +148 -0
- teradataml/options/configure.py +489 -0
- teradataml/options/display.py +187 -0
- teradataml/plot/__init__.py +3 -0
- teradataml/plot/axis.py +1427 -0
- teradataml/plot/constants.py +15 -0
- teradataml/plot/figure.py +431 -0
- teradataml/plot/plot.py +810 -0
- teradataml/plot/query_generator.py +83 -0
- teradataml/plot/subplot.py +216 -0
- teradataml/scriptmgmt/UserEnv.py +4273 -0
- teradataml/scriptmgmt/__init__.py +3 -0
- teradataml/scriptmgmt/lls_utils.py +2157 -0
- teradataml/sdk/README.md +79 -0
- teradataml/sdk/__init__.py +4 -0
- teradataml/sdk/_auth_modes.py +422 -0
- teradataml/sdk/_func_params.py +487 -0
- teradataml/sdk/_json_parser.py +453 -0
- teradataml/sdk/_openapi_spec_constants.py +249 -0
- teradataml/sdk/_utils.py +236 -0
- teradataml/sdk/api_client.py +900 -0
- teradataml/sdk/constants.py +62 -0
- teradataml/sdk/modelops/__init__.py +98 -0
- teradataml/sdk/modelops/_client.py +409 -0
- teradataml/sdk/modelops/_constants.py +304 -0
- teradataml/sdk/modelops/models.py +2308 -0
- teradataml/sdk/spinner.py +107 -0
- teradataml/series/__init__.py +0 -0
- teradataml/series/series.py +537 -0
- teradataml/series/series_utils.py +71 -0
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +658 -0
- teradataml/store/feature_store/feature_store.py +4814 -0
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +7330 -0
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/Apply.py +979 -0
- teradataml/table_operators/Script.py +1739 -0
- teradataml/table_operators/TableOperator.py +1343 -0
- teradataml/table_operators/__init__.py +2 -0
- teradataml/table_operators/apply_query_generator.py +262 -0
- teradataml/table_operators/query_generator.py +493 -0
- teradataml/table_operators/table_operator_query_generator.py +462 -0
- teradataml/table_operators/table_operator_util.py +726 -0
- teradataml/table_operators/templates/dataframe_apply.template +184 -0
- teradataml/table_operators/templates/dataframe_map.template +176 -0
- teradataml/table_operators/templates/dataframe_register.template +73 -0
- teradataml/table_operators/templates/dataframe_udf.template +67 -0
- teradataml/table_operators/templates/script_executor.template +170 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +53 -0
- teradataml/utils/__init__.py +0 -0
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +943 -0
- teradataml/utils/internal_buffer.py +122 -0
- teradataml/utils/print_versions.py +206 -0
- teradataml/utils/utils.py +451 -0
- teradataml/utils/validators.py +3305 -0
- teradataml-20.0.0.8.dist-info/METADATA +2804 -0
- teradataml-20.0.0.8.dist-info/RECORD +1208 -0
- teradataml-20.0.0.8.dist-info/WHEEL +5 -0
- teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
- teradataml-20.0.0.8.dist-info/zip-safe +1 -0
|
@@ -0,0 +1,743 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Unpublished work.
|
|
3
|
+
Copyright (c) 2018 by Teradata Corporation. All rights reserved.
|
|
4
|
+
TERADATA CORPORATION CONFIDENTIAL AND TRADE SECRET
|
|
5
|
+
|
|
6
|
+
Primary Owner: mounika.kotha@teradata.com
|
|
7
|
+
Secondary Owner:
|
|
8
|
+
|
|
9
|
+
This file implements processing of formula variables that will be used
|
|
10
|
+
in Teradata Vantage Analytical function wrappers.
|
|
11
|
+
"""
|
|
12
|
+
|
|
13
|
+
import inspect
|
|
14
|
+
import re
|
|
15
|
+
from teradataml.common.exceptions import TeradataMlException
|
|
16
|
+
from teradataml.common.messagecodes import MessageCodes
|
|
17
|
+
from teradataml.common.messages import Messages
|
|
18
|
+
from teradataml.utils.validators import _Validators
|
|
19
|
+
|
|
20
|
+
def as_categorical(columns):
|
|
21
|
+
"""
|
|
22
|
+
Function to explicitly specify columns to be treated as categorical type. Sometimes, user may need to
|
|
23
|
+
treat column(s) as categorical column, when used in analytic function. User will be able to do so via
|
|
24
|
+
formula and this function. User can classify Numeric columns as categorical columns.
|
|
25
|
+
|
|
26
|
+
PARAMETERS:
|
|
27
|
+
columns:
|
|
28
|
+
Required Argument.
|
|
29
|
+
Specifies the name or names of column to be treated as categorical in formula for analytic function.
|
|
30
|
+
|
|
31
|
+
RAISES:
|
|
32
|
+
TypeError - If incorrect type of value is passed.
|
|
33
|
+
ValueError - If empty string is passed.
|
|
34
|
+
|
|
35
|
+
RETURNS:
|
|
36
|
+
A string
|
|
37
|
+
|
|
38
|
+
EXAMPLES:
|
|
39
|
+
# Let's say a DataFrame has numeric columns 'stories' and 'garagepl'. To treat these columns as categorical
|
|
40
|
+
# in analytic function execution, one can use 'as_categorical()' function and combine the output of the same
|
|
41
|
+
# with formula string to be passed to formula argument of analytic function.
|
|
42
|
+
formula = "homestyle ~ lotsize + price + fullbase + driveway + prefarea \
|
|
43
|
+
+ {}".format(as_categorical(["stories", "garagepl"]))
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
"""
|
|
47
|
+
# Validate argument types
|
|
48
|
+
_Validators._validate_function_arguments([["columns", columns, False, (str, list), True]])
|
|
49
|
+
|
|
50
|
+
if isinstance(columns, str):
|
|
51
|
+
columns = [columns]
|
|
52
|
+
|
|
53
|
+
return " + ".join(["CATEGORICAL({})".format(col) for col in columns])
|
|
54
|
+
|
|
55
|
+
def __as_numerical(columns):
|
|
56
|
+
"""
|
|
57
|
+
Function to explicitly specify columns to be treated as numeric type in a formula.
|
|
58
|
+
Currently, this is internal function, and is not exposed. It'll be exposed as and when required.
|
|
59
|
+
As of now, just passing varchar column directly to Numerical Columns argument fails with error.
|
|
60
|
+
|
|
61
|
+
Provisions for Numeric columns processing are already made as part of this Formula class.
|
|
62
|
+
:param columns:
|
|
63
|
+
:return:
|
|
64
|
+
"""
|
|
65
|
+
# Validate argument types
|
|
66
|
+
_Validators._validate_function_arguments([["columns", columns, False, (str, list), True]])
|
|
67
|
+
|
|
68
|
+
if isinstance(columns, str):
|
|
69
|
+
columns = [columns]
|
|
70
|
+
|
|
71
|
+
return " + ".join(["NUMERICAL({})".format(col) for col in columns])
|
|
72
|
+
|
|
73
|
+
class Formula(object):
|
|
74
|
+
"""
|
|
75
|
+
This class contains all the variables and datatypes of the formula input provided
|
|
76
|
+
by the user.
|
|
77
|
+
"""
|
|
78
|
+
def __init__(self, metaexpr, formula, arg_name, response_column=None,
|
|
79
|
+
all_columns=None, categorical_columns=None, numerical_columns=None):
|
|
80
|
+
"""
|
|
81
|
+
Constructor for the Formula class.
|
|
82
|
+
|
|
83
|
+
PARAMETERS:
|
|
84
|
+
metaexpr - Parent meta data (_MetaExpression object).
|
|
85
|
+
formula - Specifies formula string passed by the user.
|
|
86
|
+
arg_name - Specifies the argument name of the argument used to specify for formula.
|
|
87
|
+
|
|
88
|
+
RAISES:
|
|
89
|
+
TypeError - In case of incorrect type of value passed to any argument.
|
|
90
|
+
ValueError - Invalid value passed to arguments.
|
|
91
|
+
TeradataMlException - If formula is in incorrect format.
|
|
92
|
+
|
|
93
|
+
EXAMPLE:
|
|
94
|
+
formula = "admitted ~ masters + gpa + stats + programming"
|
|
95
|
+
formula_object = Formula(data._metaexpr, formula, "formula")
|
|
96
|
+
|
|
97
|
+
RETURNS:
|
|
98
|
+
A formula object.
|
|
99
|
+
"""
|
|
100
|
+
if inspect.stack()[1][3] == '_from_formula_attr':
|
|
101
|
+
self.__formula = formula
|
|
102
|
+
self._all_columns = all_columns
|
|
103
|
+
self._response_column = response_column
|
|
104
|
+
self._numeric_columns = numerical_columns
|
|
105
|
+
self._categorical_columns = categorical_columns
|
|
106
|
+
else:
|
|
107
|
+
awu_matrix = []
|
|
108
|
+
awu_matrix.append([arg_name, formula, False, (str), True])
|
|
109
|
+
awu_matrix.append(["arg_name", arg_name, False, (str), True])
|
|
110
|
+
|
|
111
|
+
# Validate argument types
|
|
112
|
+
_Validators._validate_function_arguments(awu_matrix)
|
|
113
|
+
|
|
114
|
+
# Validations for formula.
|
|
115
|
+
formula_expression = r"^(\s*\w*\s*[~]\s*)((([(\w+)|(\w+\(\w+\))|(\w+\(\.\))]\s*[+]?\s*)*\s*[(\w+)|(\w+\(\w+\))|(\w+\(\.\))]\s*)|(\.))$"
|
|
116
|
+
if bool(re.match(formula_expression,formula)) is False:
|
|
117
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.FORMULA_INVALID_FORMAT, arg_name),
|
|
118
|
+
MessageCodes.FORMULA_INVALID_FORMAT)
|
|
119
|
+
|
|
120
|
+
# Validate that dependent variables are present.
|
|
121
|
+
dependent_var, independent_vars = re.split('~', formula)
|
|
122
|
+
if ((len(dependent_var.strip()) == 0) or (len(re.sub(' ', '', dependent_var)) == 0)):
|
|
123
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.FORMULA_MISSING_DEPENDENT_VARIABLE, arg_name),
|
|
124
|
+
MessageCodes.FORMULA_MISSING_DEPENDENT_VARIABLE)
|
|
125
|
+
|
|
126
|
+
# Variables holding formula information.
|
|
127
|
+
self.__dependent_vars = dependent_var.strip()
|
|
128
|
+
self.__independent_var_str = independent_vars
|
|
129
|
+
self.__independent_vars = []
|
|
130
|
+
self.__metaexpr = metaexpr
|
|
131
|
+
self.__all_col_notation_used = False
|
|
132
|
+
self._formula_column_type_map = {}
|
|
133
|
+
self._all_columns = None
|
|
134
|
+
self._categorical_columns = None
|
|
135
|
+
self._numeric_columns = None
|
|
136
|
+
self._response_column = self.__dependent_vars
|
|
137
|
+
self.__formula = formula
|
|
138
|
+
|
|
139
|
+
# Variables used for processing explicit variables.
|
|
140
|
+
# Variables that will be classified based on their types.
|
|
141
|
+
self._default_independent_variables = []
|
|
142
|
+
# Variables that will be classified as 'Categorical' regardless of their types.
|
|
143
|
+
self._explicit_independent_categorical = []
|
|
144
|
+
# Variables that will be classified as 'Numerical' regardless of their types.
|
|
145
|
+
self._explicit_independent_numerical = []
|
|
146
|
+
|
|
147
|
+
# Patterns to identify the explicit classificatioon for some columns.
|
|
148
|
+
self.__EXPLICIT_CATEGORICAL_PATTERN = r"CATEGORICAL\((.+)\)"
|
|
149
|
+
self.__EXPLICIT_NUMERICAL_PATTERN = r"NUMERICAL\((.+)\)"
|
|
150
|
+
self.__EXPLICIT_CATEGORICAL_PATTERN_ALL_COL = r"CATEGORICAL\(\.\)"
|
|
151
|
+
self.__EXPLICIT_NUMERICAL_PATTERN_ALL_COL = r"NUMERICAL\(\.\)"
|
|
152
|
+
|
|
153
|
+
# Process independent variables.
|
|
154
|
+
self.__process_independent_vars()
|
|
155
|
+
|
|
156
|
+
# Validate columns used as independent and dependent variables exist in dataframe.
|
|
157
|
+
_Validators._validate_column_exists_in_dataframe(self.__independent_vars, self.__metaexpr)
|
|
158
|
+
_Validators._validate_column_exists_in_dataframe(self.__dependent_vars, self.__metaexpr)
|
|
159
|
+
|
|
160
|
+
# Set the column type for all variables in formula.
|
|
161
|
+
for column in self._get_independent_vars():
|
|
162
|
+
self.__set_column_type(column)
|
|
163
|
+
self.__set_column_type(self.__dependent_vars)
|
|
164
|
+
|
|
165
|
+
@classmethod
|
|
166
|
+
def _from_formula_attr(cls, formula, response_column=None, all_columns=None,
|
|
167
|
+
categorical_columns=None, numerical_columns=None):
|
|
168
|
+
|
|
169
|
+
"""
|
|
170
|
+
Classmethod which will be used by Model Cataloging, to instantiate this Formula class.
|
|
171
|
+
"""
|
|
172
|
+
return cls(metaexpr=None, formula=formula, arg_name="formula", response_column=response_column,
|
|
173
|
+
all_columns=all_columns, categorical_columns=categorical_columns,
|
|
174
|
+
numerical_columns=numerical_columns)
|
|
175
|
+
|
|
176
|
+
def __set_column_type(self, column):
|
|
177
|
+
"""
|
|
178
|
+
Internal function, to map column name to column type.
|
|
179
|
+
|
|
180
|
+
PARAMETER:
|
|
181
|
+
column:
|
|
182
|
+
Required Argument.
|
|
183
|
+
Name of the column to be added to the mapper.
|
|
184
|
+
|
|
185
|
+
RAISES:
|
|
186
|
+
None.
|
|
187
|
+
|
|
188
|
+
RETURNS:
|
|
189
|
+
None.
|
|
190
|
+
|
|
191
|
+
EXAMPLES:
|
|
192
|
+
self.__set_column_type(self.__dependent_vars)
|
|
193
|
+
"""
|
|
194
|
+
for c in self.__metaexpr.c:
|
|
195
|
+
if column == c.name:
|
|
196
|
+
self._formula_column_type_map[column] = type(c.type)
|
|
197
|
+
|
|
198
|
+
def __classify_as_categorical(self, col, all=False):
|
|
199
|
+
"""
|
|
200
|
+
Method to check whether the column provided in the string must be classified as categorical or not.
|
|
201
|
+
|
|
202
|
+
PARAMETERS:
|
|
203
|
+
col:
|
|
204
|
+
Required Argument.
|
|
205
|
+
Specifies column string from the formula.
|
|
206
|
+
Types: str
|
|
207
|
+
|
|
208
|
+
all:
|
|
209
|
+
Optional Argument.
|
|
210
|
+
Specifies boolean flag asking to validate for all columns to be classified as categorical or not.
|
|
211
|
+
Types: bool
|
|
212
|
+
|
|
213
|
+
RETURNS:
|
|
214
|
+
True, if columns is to be classified as Categorical
|
|
215
|
+
|
|
216
|
+
RAISES:
|
|
217
|
+
TeradataMlExacpetion - If multiple '.' are used in formula.
|
|
218
|
+
|
|
219
|
+
EXAMPLES:
|
|
220
|
+
self.__classify_as_categorical(col)
|
|
221
|
+
"""
|
|
222
|
+
if all:
|
|
223
|
+
pattern_cat = re.compile(self.__EXPLICIT_CATEGORICAL_PATTERN_ALL_COL)
|
|
224
|
+
match_cat = pattern_cat.match(col)
|
|
225
|
+
if match_cat is not None:
|
|
226
|
+
self._explicit_independent_categorical = list(set([c.name for c in self.__metaexpr.c]) -
|
|
227
|
+
{self._get_dependent_vars()})
|
|
228
|
+
return True
|
|
229
|
+
|
|
230
|
+
else:
|
|
231
|
+
pattern_cat = re.compile(self.__EXPLICIT_CATEGORICAL_PATTERN)
|
|
232
|
+
match_cat = pattern_cat.match(col)
|
|
233
|
+
if match_cat is not None:
|
|
234
|
+
if match_cat.group(1).strip() == ".":
|
|
235
|
+
if self.__all_col_notation_used:
|
|
236
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.FORMULA_INVALID_FORMAT,
|
|
237
|
+
"mulitple time all column dot (.) notation is used"),
|
|
238
|
+
MessageCodes.FORMULA_INVALID_FORMAT)
|
|
239
|
+
else:
|
|
240
|
+
self.__all_col_notation_used = True
|
|
241
|
+
self._explicit_independent_categorical.append(match_cat.group(1).strip())
|
|
242
|
+
return True
|
|
243
|
+
|
|
244
|
+
return False
|
|
245
|
+
|
|
246
|
+
def __classify_as_numerical(self, col, all=False):
|
|
247
|
+
"""
|
|
248
|
+
Method to check whether the column provided in the string must be classified as numerical or not.
|
|
249
|
+
|
|
250
|
+
PARAMETERS:
|
|
251
|
+
col:
|
|
252
|
+
Required Argument.
|
|
253
|
+
Specifies column string from the formula.
|
|
254
|
+
Types: str
|
|
255
|
+
|
|
256
|
+
all:
|
|
257
|
+
Optional Argument.
|
|
258
|
+
Specifies boolean flag asking to validate for all columns to be classified as numerical or not.
|
|
259
|
+
Types: bool
|
|
260
|
+
|
|
261
|
+
RETURNS:
|
|
262
|
+
True, if columns is to be classified as Categorical
|
|
263
|
+
|
|
264
|
+
RAISES:
|
|
265
|
+
TeradataMlExacpetion - If multiple '.' are used in formula.
|
|
266
|
+
|
|
267
|
+
EXAMPLES:
|
|
268
|
+
self.__classify_as_numerical(col)
|
|
269
|
+
"""
|
|
270
|
+
if all:
|
|
271
|
+
pattern_cat = re.compile(self.__EXPLICIT_NUMERICAL_PATTERN_ALL_COL)
|
|
272
|
+
match_cat = pattern_cat.match(col)
|
|
273
|
+
if match_cat is not None:
|
|
274
|
+
self._explicit_independent_numerical = list(set([c.name for c in self.__metaexpr.c]) -
|
|
275
|
+
{self._get_dependent_vars()})
|
|
276
|
+
return True
|
|
277
|
+
|
|
278
|
+
else:
|
|
279
|
+
pattern_cat = re.compile(self.__EXPLICIT_NUMERICAL_PATTERN)
|
|
280
|
+
match_cat = pattern_cat.match(col)
|
|
281
|
+
if match_cat is not None:
|
|
282
|
+
if match_cat.group(1).strip() == ".":
|
|
283
|
+
if self.__all_col_notation_used:
|
|
284
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.FORMULA_INVALID_FORMAT,
|
|
285
|
+
"mulitple time all column dot (.) notation is used"),
|
|
286
|
+
MessageCodes.FORMULA_INVALID_FORMAT)
|
|
287
|
+
else:
|
|
288
|
+
self.__all_col_notation_used = True
|
|
289
|
+
self._explicit_independent_numerical.append(match_cat.group(1).strip())
|
|
290
|
+
return True
|
|
291
|
+
|
|
292
|
+
return False
|
|
293
|
+
|
|
294
|
+
def __process_independent_vars(self):
|
|
295
|
+
"""
|
|
296
|
+
Internal method to process variables on the RHS of the formula.
|
|
297
|
+
|
|
298
|
+
PARAMETERS:
|
|
299
|
+
None.
|
|
300
|
+
|
|
301
|
+
RAISES:
|
|
302
|
+
None.
|
|
303
|
+
|
|
304
|
+
RETURNS:
|
|
305
|
+
True on success of processing independent varaibles.
|
|
306
|
+
|
|
307
|
+
EXAMPLES:
|
|
308
|
+
self.__process_independent_vars()
|
|
309
|
+
"""
|
|
310
|
+
# If independent variable is ".", then use the same.
|
|
311
|
+
if self.__independent_var_str.strip() == ".":
|
|
312
|
+
self.__independent_vars = list(set([c.name for c in self.__metaexpr.c]) - {self.__dependent_vars})
|
|
313
|
+
self._default_independent_variables = self.__independent_vars
|
|
314
|
+
return True
|
|
315
|
+
|
|
316
|
+
# If all independent variables are needed to be classified as categorical or numerical,
|
|
317
|
+
# then update the lists accordingly.
|
|
318
|
+
if self.__classify_as_categorical(self.__independent_var_str.strip(), True):
|
|
319
|
+
# If dot '.' notation is used in as_categorical, that means,
|
|
320
|
+
# user wants to classify all columns as categorical.
|
|
321
|
+
self.__independent_vars = list(set([c.name for c in self.__metaexpr.c]) - {self.__dependent_vars})
|
|
322
|
+
self._explicit_independent_categorical = self._get_independent_vars()
|
|
323
|
+
return True
|
|
324
|
+
|
|
325
|
+
if self.__classify_as_numerical(self.__independent_var_str.strip(), True):
|
|
326
|
+
# If dot '.' notation is used in as_numerical, that means,
|
|
327
|
+
# user wants to classify all columns as numerical.
|
|
328
|
+
self.__independent_vars = list(set([c.name for c in self.__metaexpr.c]) - {self.__dependent_vars})
|
|
329
|
+
self._explicit_independent_numerical = self._get_independent_vars()
|
|
330
|
+
return True
|
|
331
|
+
|
|
332
|
+
# Check whether formula contains any column that must classified as categorical/numerical column.
|
|
333
|
+
for col in self._var_split(self.__independent_var_str):
|
|
334
|
+
# First let's check if any column, must be categorized as categorical/numerical column or not.
|
|
335
|
+
# If not add it directly to independent_vars list.
|
|
336
|
+
if not self.__classify_as_categorical(col) and not self.__classify_as_numerical(col):
|
|
337
|
+
self._default_independent_variables.append(col)
|
|
338
|
+
|
|
339
|
+
if len(self._explicit_independent_categorical) > 0:
|
|
340
|
+
# Process columns from 'explicit_independent_categorical' for explicit classification as Categorical
|
|
341
|
+
self.__process_explicit_independent_variables()
|
|
342
|
+
|
|
343
|
+
if len(self._explicit_independent_numerical) > 0:
|
|
344
|
+
# Process columns from 'explicit_independent_numerical' for explicit classification as Numerical
|
|
345
|
+
self.__process_explicit_independent_variables(True)
|
|
346
|
+
|
|
347
|
+
self.__independent_vars = self._default_independent_variables + self._explicit_independent_categorical \
|
|
348
|
+
+ self._explicit_independent_numerical
|
|
349
|
+
|
|
350
|
+
return True
|
|
351
|
+
|
|
352
|
+
def __process_explicit_independent_variables(self, numerical=False):
|
|
353
|
+
"""
|
|
354
|
+
Internal method to process independent variables, which have been asked by user to be
|
|
355
|
+
explicitly classified as either categorical or numerical.
|
|
356
|
+
|
|
357
|
+
PARAMETERS:
|
|
358
|
+
numerical:
|
|
359
|
+
Optional Argument.
|
|
360
|
+
Specifies a flag that allows us to process for numerical variables, if set to True.
|
|
361
|
+
Otherwise, processing happens for categorical variables.
|
|
362
|
+
Default Value: False
|
|
363
|
+
Types: bool
|
|
364
|
+
|
|
365
|
+
RAISES:
|
|
366
|
+
None.
|
|
367
|
+
|
|
368
|
+
RETURNS:
|
|
369
|
+
None.
|
|
370
|
+
|
|
371
|
+
EXAMPLES:
|
|
372
|
+
# To process categorical varaibles.
|
|
373
|
+
self.__process_explicit_independent_variables()
|
|
374
|
+
|
|
375
|
+
# To process numerical varaibles.
|
|
376
|
+
self.__process_explicit_independent_variables(True)
|
|
377
|
+
"""
|
|
378
|
+
if not numerical:
|
|
379
|
+
explicit_list = self._explicit_independent_categorical
|
|
380
|
+
other_explicit_list = self._explicit_independent_numerical
|
|
381
|
+
else:
|
|
382
|
+
explicit_list = self._explicit_independent_numerical
|
|
383
|
+
other_explicit_list = self._explicit_independent_categorical
|
|
384
|
+
|
|
385
|
+
if "." in explicit_list:
|
|
386
|
+
# If all column notation '.' dot is used, then we must include all columns in
|
|
387
|
+
# CATEGORICAL/NUMERICAL category, excluding following columns:
|
|
388
|
+
# 1. Dependent variable column
|
|
389
|
+
# 2. Default independent variables specified by user, i.e., variables specified without casting.
|
|
390
|
+
# 3. NUMERICAL/CATEGORICAL independent variable explicitly specified by user using
|
|
391
|
+
# 'as_numerical()/as_categorical()'.
|
|
392
|
+
explicit_list = list(set([c.name for c in self.__metaexpr.c]) - {self.__dependent_vars}
|
|
393
|
+
- set(self._default_independent_variables) - set(other_explicit_list))
|
|
394
|
+
|
|
395
|
+
if not numerical:
|
|
396
|
+
self._explicit_independent_categorical = explicit_list
|
|
397
|
+
else:
|
|
398
|
+
self._explicit_independent_numerical = explicit_list
|
|
399
|
+
|
|
400
|
+
def _get_all_vars(self):
|
|
401
|
+
"""
|
|
402
|
+
Method returns a list which contains all the variables of the formula.
|
|
403
|
+
"""
|
|
404
|
+
all_vars = self.__independent_vars
|
|
405
|
+
if self.__dependent_vars is not None:
|
|
406
|
+
all_vars.insert(0,self._get_dependent_vars())
|
|
407
|
+
return all_vars
|
|
408
|
+
|
|
409
|
+
def _get_dependent_vars(self):
|
|
410
|
+
"""
|
|
411
|
+
Method returns variable on the LHS of the formula.
|
|
412
|
+
"""
|
|
413
|
+
return self.__dependent_vars.strip()
|
|
414
|
+
|
|
415
|
+
def _get_independent_vars(self):
|
|
416
|
+
"""
|
|
417
|
+
Method returns variable on the RHS of the formula.
|
|
418
|
+
"""
|
|
419
|
+
return self.__independent_vars
|
|
420
|
+
|
|
421
|
+
def _var_split(self, var):
|
|
422
|
+
"""
|
|
423
|
+
Split string into multiple strings on + or -.
|
|
424
|
+
|
|
425
|
+
PARAMETERS:
|
|
426
|
+
string - var to split
|
|
427
|
+
|
|
428
|
+
RETURNS:
|
|
429
|
+
A list of strings
|
|
430
|
+
"""
|
|
431
|
+
split_expr = re.split(r"[+-]", var)
|
|
432
|
+
varlist = filter(None,split_expr)
|
|
433
|
+
return [col.strip() for col in list(varlist)]
|
|
434
|
+
|
|
435
|
+
def get_categorical_columns(self, data_types):
|
|
436
|
+
"""
|
|
437
|
+
Function that will return all columns that belong to categorical column types.
|
|
438
|
+
Columns present in '_explicit_independent_categorical' list are directly added as
|
|
439
|
+
categorical columns, without type checking, where as columns in _default_independent_variables
|
|
440
|
+
are type checked against 'data_types'.
|
|
441
|
+
|
|
442
|
+
PARAMETERS:
|
|
443
|
+
data_types:
|
|
444
|
+
Required Argument.
|
|
445
|
+
Specifies the list of categorical column types.
|
|
446
|
+
Types: SQLAlchemy VisitableType or List of such types.
|
|
447
|
+
|
|
448
|
+
RETURNS:
|
|
449
|
+
List of column names which are to be classified as categorical columns.
|
|
450
|
+
|
|
451
|
+
RAISES:
|
|
452
|
+
None.
|
|
453
|
+
|
|
454
|
+
EXAMPLES:
|
|
455
|
+
data_types = UtilsFunc()._get_categorical_datatypes()
|
|
456
|
+
print(str(formula_object.get_categorical_columns(data_types)))
|
|
457
|
+
"""
|
|
458
|
+
if self._categorical_columns is not None:
|
|
459
|
+
return self._categorical_columns
|
|
460
|
+
|
|
461
|
+
columns_bytype = []
|
|
462
|
+
for column in self._default_independent_variables:
|
|
463
|
+
if self._formula_column_type_map[column] in data_types:
|
|
464
|
+
columns_bytype.append(column)
|
|
465
|
+
|
|
466
|
+
for column in self._explicit_independent_categorical:
|
|
467
|
+
columns_bytype.append(column)
|
|
468
|
+
|
|
469
|
+
self._categorical_columns = columns_bytype
|
|
470
|
+
return columns_bytype
|
|
471
|
+
|
|
472
|
+
def get_numerical_columns(self, data_types, all=False):
|
|
473
|
+
"""
|
|
474
|
+
Function that will return all columns that belong to numerical column types.
|
|
475
|
+
Columns present in '_explicit_independent_numerical' list are directly added as
|
|
476
|
+
numerical columns, without type checking, where as columns in _default_independent_variables
|
|
477
|
+
are type checked against 'data_types'.
|
|
478
|
+
|
|
479
|
+
PARAMETERS:
|
|
480
|
+
data_types:
|
|
481
|
+
Required Argument.
|
|
482
|
+
Specifies the list of numerical column types.
|
|
483
|
+
Types: SQLAlchemy VisitableType or List of such types.
|
|
484
|
+
|
|
485
|
+
all:
|
|
486
|
+
Optional Argument.
|
|
487
|
+
Specifies a boolean that will decide whether to add dependent variable as well as
|
|
488
|
+
part of the returned columns or not.
|
|
489
|
+
If True, the dependent variable is also considered.
|
|
490
|
+
Default Value: False
|
|
491
|
+
Types: bool
|
|
492
|
+
|
|
493
|
+
|
|
494
|
+
RETURNS:
|
|
495
|
+
List of column names which are to be classified as numerical columns.
|
|
496
|
+
|
|
497
|
+
RAISES:
|
|
498
|
+
None.
|
|
499
|
+
|
|
500
|
+
EXAMPLES:
|
|
501
|
+
# Get "numerical" type columns
|
|
502
|
+
data_types = UtilsFunc()._get_numeric_datatypes()
|
|
503
|
+
print(str(formula_object.get_numerical_columns(data_types)))
|
|
504
|
+
|
|
505
|
+
# Get "numerical" type columns including dependent variable, if it is of type numeric.
|
|
506
|
+
data_types = UtilsFunc()._get_numeric_datatypes()
|
|
507
|
+
print(str(formula_object.get_numerical_columns(data_types, all=True)))
|
|
508
|
+
"""
|
|
509
|
+
if self._numeric_columns is not None:
|
|
510
|
+
return self._numeric_columns
|
|
511
|
+
|
|
512
|
+
columns_bytype = []
|
|
513
|
+
if all:
|
|
514
|
+
if self._formula_column_type_map[self.__dependent_vars] in data_types:
|
|
515
|
+
columns_bytype.append(self.__dependent_vars)
|
|
516
|
+
|
|
517
|
+
for column in self._default_independent_variables:
|
|
518
|
+
if self._formula_column_type_map[column] in data_types:
|
|
519
|
+
columns_bytype.append(column)
|
|
520
|
+
|
|
521
|
+
for column in self._explicit_independent_numerical:
|
|
522
|
+
columns_bytype.append(column)
|
|
523
|
+
|
|
524
|
+
self._numeric_columns = columns_bytype
|
|
525
|
+
return columns_bytype
|
|
526
|
+
|
|
527
|
+
def get_all_columns(self, data_types):
|
|
528
|
+
"""
|
|
529
|
+
Function that will return all columns that belong to types specified by data_types.
|
|
530
|
+
|
|
531
|
+
PARAMETERS:
|
|
532
|
+
data_types:
|
|
533
|
+
Required Argument.
|
|
534
|
+
Specifies the list of categorical column types.
|
|
535
|
+
Types: SQLAlchemy VisitableType or List of such types.
|
|
536
|
+
|
|
537
|
+
RETURNS:
|
|
538
|
+
List of column names which belong to types specified by data_types.
|
|
539
|
+
|
|
540
|
+
RAISES:
|
|
541
|
+
None.
|
|
542
|
+
|
|
543
|
+
EXAMPLES:
|
|
544
|
+
data_types = UtilsFunc()._get_all_datatypes()
|
|
545
|
+
print(str(formula_object.get_all_columns(data_types)))
|
|
546
|
+
"""
|
|
547
|
+
if self._all_columns is not None:
|
|
548
|
+
return self._all_columns
|
|
549
|
+
|
|
550
|
+
columns_bytype = []
|
|
551
|
+
for column in self._get_all_vars():
|
|
552
|
+
if self._formula_column_type_map[column] in data_types:
|
|
553
|
+
columns_bytype.append(column)
|
|
554
|
+
|
|
555
|
+
self._all_columns = columns_bytype
|
|
556
|
+
return columns_bytype
|
|
557
|
+
|
|
558
|
+
@property
|
|
559
|
+
def all_columns(self):
|
|
560
|
+
"""
|
|
561
|
+
DESCRIPTION:
|
|
562
|
+
Property to get the list of all columns used in formula.
|
|
563
|
+
|
|
564
|
+
PARAMETERS:
|
|
565
|
+
None.
|
|
566
|
+
|
|
567
|
+
RETURNS:
|
|
568
|
+
List of all columns used in formula.
|
|
569
|
+
|
|
570
|
+
RAISES:
|
|
571
|
+
None.
|
|
572
|
+
|
|
573
|
+
EXAMPLES:
|
|
574
|
+
# Load the data to run the example
|
|
575
|
+
load_example_data("decisionforest", ["housing_train"])
|
|
576
|
+
|
|
577
|
+
# Create teradataml DataFrame.
|
|
578
|
+
housing_train = DataFrame.from_table("housing_train")
|
|
579
|
+
|
|
580
|
+
# Example 1 -
|
|
581
|
+
decision_forest_out1 = DecisionForest(formula = "homestyle ~ bedrooms + lotsize + gashw + driveway + \
|
|
582
|
+
stories + recroom + price + garagepl + bathrms + fullbase + airco + \
|
|
583
|
+
prefarea",
|
|
584
|
+
data = housing_train,
|
|
585
|
+
tree_type = "classification",
|
|
586
|
+
ntree = 50,
|
|
587
|
+
nodesize = 1,
|
|
588
|
+
variance = 0.0,
|
|
589
|
+
max_depth = 12,
|
|
590
|
+
mtry = 3,
|
|
591
|
+
mtry_seed = 100,
|
|
592
|
+
seed = 100)
|
|
593
|
+
|
|
594
|
+
# Print all columns used in formula.
|
|
595
|
+
decision_forest_out1.formula.all_columns
|
|
596
|
+
"""
|
|
597
|
+
if self._all_columns is None:
|
|
598
|
+
self._all_columns = [self.response_column]
|
|
599
|
+
|
|
600
|
+
if self.categorical_columns is not None:
|
|
601
|
+
for col in self.categorical_columns:
|
|
602
|
+
if col not in self._all_columns:
|
|
603
|
+
self._all_columns.append(col)
|
|
604
|
+
|
|
605
|
+
if self.numeric_columns is not None:
|
|
606
|
+
for col in self.numeric_columns:
|
|
607
|
+
if col not in self._all_columns:
|
|
608
|
+
self._all_columns.append(col)
|
|
609
|
+
|
|
610
|
+
return self._all_columns
|
|
611
|
+
|
|
612
|
+
@property
|
|
613
|
+
def categorical_columns(self):
|
|
614
|
+
"""
|
|
615
|
+
DESCRIPTION:
|
|
616
|
+
Property to get the list of all independent categorical columns used in formula.
|
|
617
|
+
|
|
618
|
+
PARAMETERS:
|
|
619
|
+
None.
|
|
620
|
+
|
|
621
|
+
RETURNS:
|
|
622
|
+
List of categorical columns used in formula.
|
|
623
|
+
If no categorical column is used in formula, property will return None.
|
|
624
|
+
|
|
625
|
+
RAISES:
|
|
626
|
+
None.
|
|
627
|
+
|
|
628
|
+
EXAMPLES:
|
|
629
|
+
# Load the data to run the example
|
|
630
|
+
load_example_data("decisionforest", ["housing_train"])
|
|
631
|
+
|
|
632
|
+
# Create teradataml DataFrame.
|
|
633
|
+
housing_train = DataFrame.from_table("housing_train")
|
|
634
|
+
|
|
635
|
+
# Example 1 -
|
|
636
|
+
decision_forest_out1 = DecisionForest(formula = "homestyle ~ bedrooms + lotsize + gashw + driveway + \
|
|
637
|
+
stories + recroom + price + garagepl + bathrms + fullbase + airco + \
|
|
638
|
+
prefarea",
|
|
639
|
+
data = housing_train,
|
|
640
|
+
tree_type = "classification",
|
|
641
|
+
ntree = 50,
|
|
642
|
+
nodesize = 1,
|
|
643
|
+
variance = 0.0,
|
|
644
|
+
max_depth = 12,
|
|
645
|
+
mtry = 3,
|
|
646
|
+
mtry_seed = 100,
|
|
647
|
+
seed = 100)
|
|
648
|
+
|
|
649
|
+
# Print categorical columns used in formula.
|
|
650
|
+
decision_forest_out1.formula.categorical_columns
|
|
651
|
+
"""
|
|
652
|
+
return self._categorical_columns
|
|
653
|
+
|
|
654
|
+
@property
|
|
655
|
+
def numeric_columns(self):
|
|
656
|
+
"""
|
|
657
|
+
DESCRIPTION:
|
|
658
|
+
Property to get the list of all independent numerical columns used in formula.
|
|
659
|
+
|
|
660
|
+
PARAMETERS:
|
|
661
|
+
None.
|
|
662
|
+
|
|
663
|
+
RETURNS:
|
|
664
|
+
List of numerical columns used in formula.
|
|
665
|
+
If no numerical column is used in formula, property will return None.
|
|
666
|
+
|
|
667
|
+
RAISES:
|
|
668
|
+
None.
|
|
669
|
+
|
|
670
|
+
EXAMPLES:
|
|
671
|
+
# Load the data to run the example
|
|
672
|
+
load_example_data("decisionforest", ["housing_train"])
|
|
673
|
+
|
|
674
|
+
# Create teradataml DataFrame.
|
|
675
|
+
housing_train = DataFrame.from_table("housing_train")
|
|
676
|
+
|
|
677
|
+
# Example 1 -
|
|
678
|
+
decision_forest_out1 = DecisionForest(formula = "homestyle ~ bedrooms + lotsize + gashw + driveway + \
|
|
679
|
+
stories + recroom + price + garagepl + bathrms + fullbase + airco + \
|
|
680
|
+
prefarea",
|
|
681
|
+
data = housing_train,
|
|
682
|
+
tree_type = "classification",
|
|
683
|
+
ntree = 50,
|
|
684
|
+
nodesize = 1,
|
|
685
|
+
variance = 0.0,
|
|
686
|
+
max_depth = 12,
|
|
687
|
+
mtry = 3,
|
|
688
|
+
mtry_seed = 100,
|
|
689
|
+
seed = 100)
|
|
690
|
+
|
|
691
|
+
# Print numeric columns used in formula.
|
|
692
|
+
decision_forest_out1.formula.numeric_columns
|
|
693
|
+
"""
|
|
694
|
+
return self._numeric_columns
|
|
695
|
+
|
|
696
|
+
@property
|
|
697
|
+
def response_column(self):
|
|
698
|
+
"""
|
|
699
|
+
DESCRIPTION:
|
|
700
|
+
Property to get the response column used in formula.
|
|
701
|
+
|
|
702
|
+
PARAMETERS:
|
|
703
|
+
None.
|
|
704
|
+
|
|
705
|
+
RETURNS:
|
|
706
|
+
Returns response column.
|
|
707
|
+
|
|
708
|
+
RAISES:
|
|
709
|
+
None.
|
|
710
|
+
|
|
711
|
+
EXAMPLES:
|
|
712
|
+
# Load the data to run the example
|
|
713
|
+
load_example_data("decisionforest", ["housing_train"])
|
|
714
|
+
|
|
715
|
+
# Create teradataml DataFrame.
|
|
716
|
+
housing_train = DataFrame.from_table("housing_train")
|
|
717
|
+
|
|
718
|
+
# Example 1 -
|
|
719
|
+
decision_forest_out1 = DecisionForest(formula = "homestyle ~ bedrooms + lotsize + gashw + driveway + \
|
|
720
|
+
stories + recroom + price + garagepl + bathrms + fullbase + airco + \
|
|
721
|
+
prefarea",
|
|
722
|
+
data = housing_train,
|
|
723
|
+
tree_type = "classification",
|
|
724
|
+
ntree = 50,
|
|
725
|
+
nodesize = 1,
|
|
726
|
+
variance = 0.0,
|
|
727
|
+
max_depth = 12,
|
|
728
|
+
mtry = 3,
|
|
729
|
+
mtry_seed = 100,
|
|
730
|
+
seed = 100)
|
|
731
|
+
|
|
732
|
+
# Print response column used in formula.
|
|
733
|
+
decision_forest_out1.formula.response_column
|
|
734
|
+
"""
|
|
735
|
+
return self._response_column
|
|
736
|
+
|
|
737
|
+
def __repr__(self):
|
|
738
|
+
"""Returns the string representation for a 'formula' instance."""
|
|
739
|
+
return self.__formula
|
|
740
|
+
|
|
741
|
+
def __str__(self):
|
|
742
|
+
"""Returns the string representation for a 'formula' instance."""
|
|
743
|
+
return self.__formula
|