teradataml 20.0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +2762 -0
- teradataml/__init__.py +78 -0
- teradataml/_version.py +11 -0
- teradataml/analytics/Transformations.py +2996 -0
- teradataml/analytics/__init__.py +82 -0
- teradataml/analytics/analytic_function_executor.py +2416 -0
- teradataml/analytics/analytic_query_generator.py +1050 -0
- teradataml/analytics/byom/H2OPredict.py +514 -0
- teradataml/analytics/byom/PMMLPredict.py +437 -0
- teradataml/analytics/byom/__init__.py +16 -0
- teradataml/analytics/json_parser/__init__.py +133 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
- teradataml/analytics/json_parser/json_store.py +191 -0
- teradataml/analytics/json_parser/metadata.py +1666 -0
- teradataml/analytics/json_parser/utils.py +805 -0
- teradataml/analytics/meta_class.py +236 -0
- teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
- teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
- teradataml/analytics/sqle/__init__.py +128 -0
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
- teradataml/analytics/table_operator/__init__.py +11 -0
- teradataml/analytics/uaf/__init__.py +82 -0
- teradataml/analytics/utils.py +828 -0
- teradataml/analytics/valib.py +1617 -0
- teradataml/automl/__init__.py +5835 -0
- teradataml/automl/autodataprep/__init__.py +493 -0
- teradataml/automl/custom_json_utils.py +1625 -0
- teradataml/automl/data_preparation.py +1384 -0
- teradataml/automl/data_transformation.py +1254 -0
- teradataml/automl/feature_engineering.py +2273 -0
- teradataml/automl/feature_exploration.py +1873 -0
- teradataml/automl/model_evaluation.py +488 -0
- teradataml/automl/model_training.py +1407 -0
- teradataml/catalog/__init__.py +2 -0
- teradataml/catalog/byom.py +1759 -0
- teradataml/catalog/function_argument_mapper.py +859 -0
- teradataml/catalog/model_cataloging_utils.py +491 -0
- teradataml/clients/__init__.py +0 -0
- teradataml/clients/auth_client.py +137 -0
- teradataml/clients/keycloak_client.py +165 -0
- teradataml/clients/pkce_client.py +481 -0
- teradataml/common/__init__.py +1 -0
- teradataml/common/aed_utils.py +2078 -0
- teradataml/common/bulk_exposed_utils.py +113 -0
- teradataml/common/constants.py +1669 -0
- teradataml/common/deprecations.py +166 -0
- teradataml/common/exceptions.py +147 -0
- teradataml/common/formula.py +743 -0
- teradataml/common/garbagecollector.py +666 -0
- teradataml/common/logger.py +1261 -0
- teradataml/common/messagecodes.py +518 -0
- teradataml/common/messages.py +262 -0
- teradataml/common/pylogger.py +67 -0
- teradataml/common/sqlbundle.py +764 -0
- teradataml/common/td_coltype_code_to_tdtype.py +48 -0
- teradataml/common/utils.py +3166 -0
- teradataml/common/warnings.py +36 -0
- teradataml/common/wrapper_utils.py +625 -0
- teradataml/config/__init__.py +0 -0
- teradataml/config/dummy_file1.cfg +5 -0
- teradataml/config/dummy_file2.cfg +3 -0
- teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
- teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
- teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
- teradataml/context/__init__.py +0 -0
- teradataml/context/aed_context.py +223 -0
- teradataml/context/context.py +1462 -0
- teradataml/data/A_loan.csv +19 -0
- teradataml/data/BINARY_REALS_LEFT.csv +11 -0
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
- teradataml/data/B_loan.csv +49 -0
- teradataml/data/BuoyData2.csv +17 -0
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
- teradataml/data/Convolve2RealsLeft.csv +5 -0
- teradataml/data/Convolve2RealsRight.csv +5 -0
- teradataml/data/Convolve2ValidLeft.csv +11 -0
- teradataml/data/Convolve2ValidRight.csv +11 -0
- teradataml/data/DFFTConv_Real_8_8.csv +65 -0
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/Mall_customer_data.csv +201 -0
- teradataml/data/Orders1_12mf.csv +25 -0
- teradataml/data/Pi_loan.csv +7 -0
- teradataml/data/SMOOTHED_DATA.csv +7 -0
- teradataml/data/TestDFFT8.csv +9 -0
- teradataml/data/TestRiver.csv +109 -0
- teradataml/data/Traindata.csv +28 -0
- teradataml/data/__init__.py +0 -0
- teradataml/data/acf.csv +17 -0
- teradataml/data/adaboost_example.json +34 -0
- teradataml/data/adaboostpredict_example.json +24 -0
- teradataml/data/additional_table.csv +11 -0
- teradataml/data/admissions_test.csv +21 -0
- teradataml/data/admissions_train.csv +41 -0
- teradataml/data/admissions_train_nulls.csv +41 -0
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -0
- teradataml/data/ageandpressure.csv +31 -0
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/antiselect_example.json +36 -0
- teradataml/data/antiselect_input.csv +8 -0
- teradataml/data/antiselect_input_mixed_case.csv +8 -0
- teradataml/data/applicant_external.csv +7 -0
- teradataml/data/applicant_reference.csv +7 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/arima_example.json +9 -0
- teradataml/data/assortedtext_input.csv +8 -0
- teradataml/data/attribution_example.json +34 -0
- teradataml/data/attribution_sample_table.csv +27 -0
- teradataml/data/attribution_sample_table1.csv +6 -0
- teradataml/data/attribution_sample_table2.csv +11 -0
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +43 -0
- teradataml/data/bank_web_clicks2.csv +91 -0
- teradataml/data/bank_web_url.csv +85 -0
- teradataml/data/barrier.csv +2 -0
- teradataml/data/barrier_new.csv +3 -0
- teradataml/data/betweenness_example.json +14 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -0
- teradataml/data/bin_fit_ip.csv +4 -0
- teradataml/data/binary_complex_left.csv +11 -0
- teradataml/data/binary_complex_right.csv +11 -0
- teradataml/data/binary_matrix_complex_left.csv +21 -0
- teradataml/data/binary_matrix_complex_right.csv +21 -0
- teradataml/data/binary_matrix_real_left.csv +21 -0
- teradataml/data/binary_matrix_real_right.csv +21 -0
- teradataml/data/blood2ageandweight.csv +26 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -0
- teradataml/data/burst_data.csv +5 -0
- teradataml/data/burst_example.json +21 -0
- teradataml/data/byom_example.json +34 -0
- teradataml/data/bytes_table.csv +4 -0
- teradataml/data/cal_housing_ex_raw.csv +70 -0
- teradataml/data/callers.csv +7 -0
- teradataml/data/calls.csv +10 -0
- teradataml/data/cars_hist.csv +33 -0
- teradataml/data/cat_table.csv +25 -0
- teradataml/data/ccm_example.json +32 -0
- teradataml/data/ccm_input.csv +91 -0
- teradataml/data/ccm_input2.csv +13 -0
- teradataml/data/ccmexample.csv +101 -0
- teradataml/data/ccmprepare_example.json +9 -0
- teradataml/data/ccmprepare_input.csv +91 -0
- teradataml/data/cfilter_example.json +12 -0
- teradataml/data/changepointdetection_example.json +18 -0
- teradataml/data/changepointdetectionrt_example.json +8 -0
- teradataml/data/chi_sq.csv +3 -0
- teradataml/data/churn_data.csv +14 -0
- teradataml/data/churn_emission.csv +35 -0
- teradataml/data/churn_initial.csv +3 -0
- teradataml/data/churn_state_transition.csv +5 -0
- teradataml/data/citedges_2.csv +745 -0
- teradataml/data/citvertices_2.csv +1210 -0
- teradataml/data/clicks2.csv +16 -0
- teradataml/data/clickstream.csv +13 -0
- teradataml/data/clickstream1.csv +11 -0
- teradataml/data/closeness_example.json +16 -0
- teradataml/data/complaints.csv +21 -0
- teradataml/data/complaints_mini.csv +3 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_testtoken.csv +224 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/complaints_tokens_test.csv +353 -0
- teradataml/data/complaints_traintoken.csv +472 -0
- teradataml/data/computers_category.csv +1001 -0
- teradataml/data/computers_test1.csv +1252 -0
- teradataml/data/computers_train1.csv +5009 -0
- teradataml/data/computers_train1_clustered.csv +5009 -0
- teradataml/data/confusionmatrix_example.json +9 -0
- teradataml/data/conversion_event_table.csv +3 -0
- teradataml/data/corr_input.csv +17 -0
- teradataml/data/correlation_example.json +11 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/coxhazardratio_example.json +39 -0
- teradataml/data/coxph_example.json +15 -0
- teradataml/data/coxsurvival_example.json +28 -0
- teradataml/data/cpt.csv +41 -0
- teradataml/data/credit_ex_merged.csv +45 -0
- teradataml/data/creditcard_data.csv +1001 -0
- teradataml/data/customer_loyalty.csv +301 -0
- teradataml/data/customer_loyalty_newseq.csv +31 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +173 -0
- teradataml/data/decisionforest_example.json +37 -0
- teradataml/data/decisionforestpredict_example.json +38 -0
- teradataml/data/decisiontree_example.json +21 -0
- teradataml/data/decisiontreepredict_example.json +45 -0
- teradataml/data/dfft2_size4_real.csv +17 -0
- teradataml/data/dfft2_test_matrix16.csv +17 -0
- teradataml/data/dfft2conv_real_4_4.csv +65 -0
- teradataml/data/diabetes.csv +443 -0
- teradataml/data/diabetes_test.csv +89 -0
- teradataml/data/dict_table.csv +5 -0
- teradataml/data/docperterm_table.csv +4 -0
- teradataml/data/docs/__init__.py +1 -0
- teradataml/data/docs/byom/__init__.py +0 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
- teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
- teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
- teradataml/data/docs/byom/docs/__init__.py +0 -0
- teradataml/data/docs/sqle/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
- teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
- teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/tableoperator/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/uaf/__init__.py +0 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
- teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
- teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
- teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
- teradataml/data/dtw_example.json +18 -0
- teradataml/data/dtw_t1.csv +11 -0
- teradataml/data/dtw_t2.csv +4 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt2d_example.json +16 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_example.json +15 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/dwt_filter_dim.csv +5 -0
- teradataml/data/emission.csv +9 -0
- teradataml/data/emp_table_by_dept.csv +19 -0
- teradataml/data/employee_info.csv +4 -0
- teradataml/data/employee_table.csv +6 -0
- teradataml/data/excluding_event_table.csv +2 -0
- teradataml/data/finance_data.csv +6 -0
- teradataml/data/finance_data2.csv +61 -0
- teradataml/data/finance_data3.csv +93 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -0
- teradataml/data/fmeasure_example.json +12 -0
- teradataml/data/followers_leaders.csv +10 -0
- teradataml/data/fpgrowth_example.json +12 -0
- teradataml/data/frequentpaths_example.json +29 -0
- teradataml/data/friends.csv +9 -0
- teradataml/data/fs_input.csv +33 -0
- teradataml/data/fs_input1.csv +33 -0
- teradataml/data/genData.csv +513 -0
- teradataml/data/geodataframe_example.json +40 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -0
- teradataml/data/glm_example.json +56 -0
- teradataml/data/glml1l2_example.json +28 -0
- teradataml/data/glml1l2predict_example.json +54 -0
- teradataml/data/glmpredict_example.json +54 -0
- teradataml/data/gq_t1.csv +21 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/hconvolve_complex_right.csv +5 -0
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
- teradataml/data/histogram_example.json +12 -0
- teradataml/data/hmmdecoder_example.json +79 -0
- teradataml/data/hmmevaluator_example.json +25 -0
- teradataml/data/hmmsupervised_example.json +10 -0
- teradataml/data/hmmunsupervised_example.json +8 -0
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/house_values.csv +12 -0
- teradataml/data/house_values2.csv +13 -0
- teradataml/data/housing_cat.csv +7 -0
- teradataml/data/housing_data.csv +9 -0
- teradataml/data/housing_test.csv +47 -0
- teradataml/data/housing_test_binary.csv +47 -0
- teradataml/data/housing_train.csv +493 -0
- teradataml/data/housing_train_attribute.csv +5 -0
- teradataml/data/housing_train_binary.csv +437 -0
- teradataml/data/housing_train_parameter.csv +2 -0
- teradataml/data/housing_train_response.csv +493 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -0
- teradataml/data/ibm_stock1.csv +370 -0
- teradataml/data/identitymatch_example.json +22 -0
- teradataml/data/idf_table.csv +4 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/impressions.csv +101 -0
- teradataml/data/inflation.csv +21 -0
- teradataml/data/initial.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +13 -0
- teradataml/data/insurance.csv +1339 -0
- teradataml/data/interpolator_example.json +13 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/iris_altinput.csv +481 -0
- teradataml/data/iris_attribute_output.csv +8 -0
- teradataml/data/iris_attribute_test.csv +121 -0
- teradataml/data/iris_attribute_train.csv +481 -0
- teradataml/data/iris_category_expect_predict.csv +31 -0
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -0
- teradataml/data/iris_response_train.csv +121 -0
- teradataml/data/iris_test.csv +31 -0
- teradataml/data/iris_train.csv +121 -0
- teradataml/data/join_table1.csv +4 -0
- teradataml/data/join_table2.csv +4 -0
- teradataml/data/jsons/anly_function_name.json +7 -0
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/byom/dataikupredict.json +148 -0
- teradataml/data/jsons/byom/datarobotpredict.json +147 -0
- teradataml/data/jsons/byom/h2opredict.json +195 -0
- teradataml/data/jsons/byom/onnxembeddings.json +267 -0
- teradataml/data/jsons/byom/onnxpredict.json +187 -0
- teradataml/data/jsons/byom/pmmlpredict.json +147 -0
- teradataml/data/jsons/paired_functions.json +450 -0
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/kmeans_example.json +23 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +51 -0
- teradataml/data/knn_example.json +19 -0
- teradataml/data/knnrecommender_example.json +7 -0
- teradataml/data/knnrecommenderpredict_example.json +12 -0
- teradataml/data/lar_example.json +17 -0
- teradataml/data/larpredict_example.json +30 -0
- teradataml/data/lc_new_predictors.csv +5 -0
- teradataml/data/lc_new_reference.csv +9 -0
- teradataml/data/lda_example.json +9 -0
- teradataml/data/ldainference_example.json +15 -0
- teradataml/data/ldatopicsummary_example.json +9 -0
- teradataml/data/levendist_input.csv +13 -0
- teradataml/data/levenshteindistance_example.json +10 -0
- teradataml/data/linreg_example.json +10 -0
- teradataml/data/load_example_data.py +350 -0
- teradataml/data/loan_prediction.csv +295 -0
- teradataml/data/lungcancer.csv +138 -0
- teradataml/data/mappingdata.csv +12 -0
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/milk_timeseries.csv +157 -0
- teradataml/data/min_max_titanic.csv +4 -0
- teradataml/data/minhash_example.json +6 -0
- teradataml/data/ml_ratings.csv +7547 -0
- teradataml/data/ml_ratings_10.csv +2445 -0
- teradataml/data/mobile_data.csv +13 -0
- teradataml/data/model1_table.csv +5 -0
- teradataml/data/model2_table.csv +5 -0
- teradataml/data/models/License_file.txt +1 -0
- teradataml/data/models/License_file_empty.txt +0 -0
- teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
- teradataml/data/models/dr_iris_rf +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
- teradataml/data/models/iris_db_glm_model.pmml +57 -0
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
- teradataml/data/models/iris_kmeans_model +0 -0
- teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
- teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
- teradataml/data/modularity_example.json +12 -0
- teradataml/data/movavg_example.json +8 -0
- teradataml/data/mtx1.csv +7 -0
- teradataml/data/mtx2.csv +13 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -0
- teradataml/data/naivebayes_example.json +10 -0
- teradataml/data/naivebayespredict_example.json +19 -0
- teradataml/data/naivebayestextclassifier2_example.json +7 -0
- teradataml/data/naivebayestextclassifier_example.json +8 -0
- teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
- teradataml/data/name_Find_configure.csv +10 -0
- teradataml/data/namedentityfinder_example.json +14 -0
- teradataml/data/namedentityfinderevaluator_example.json +10 -0
- teradataml/data/namedentityfindertrainer_example.json +6 -0
- teradataml/data/nb_iris_input_test.csv +31 -0
- teradataml/data/nb_iris_input_train.csv +121 -0
- teradataml/data/nbp_iris_model.csv +13 -0
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_extractor_text.csv +2 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/ner_sports_test2.csv +29 -0
- teradataml/data/ner_sports_train.csv +501 -0
- teradataml/data/nerevaluator_example.json +6 -0
- teradataml/data/nerextractor_example.json +18 -0
- teradataml/data/nermem_sports_test.csv +18 -0
- teradataml/data/nermem_sports_train.csv +51 -0
- teradataml/data/nertrainer_example.json +7 -0
- teradataml/data/ngrams_example.json +7 -0
- teradataml/data/notebooks/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
- teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
- teradataml/data/npath_example.json +23 -0
- teradataml/data/ntree_example.json +14 -0
- teradataml/data/numeric_strings.csv +5 -0
- teradataml/data/numerics.csv +4 -0
- teradataml/data/ocean_buoy.csv +17 -0
- teradataml/data/ocean_buoy2.csv +17 -0
- teradataml/data/ocean_buoys.csv +28 -0
- teradataml/data/ocean_buoys2.csv +10 -0
- teradataml/data/ocean_buoys_nonpti.csv +28 -0
- teradataml/data/ocean_buoys_seq.csv +29 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -0
- teradataml/data/orders1.csv +11 -0
- teradataml/data/orders1_12.csv +13 -0
- teradataml/data/orders_ex.csv +4 -0
- teradataml/data/pack_example.json +9 -0
- teradataml/data/package_tracking.csv +19 -0
- teradataml/data/package_tracking_pti.csv +19 -0
- teradataml/data/pagerank_example.json +13 -0
- teradataml/data/paragraphs_input.csv +6 -0
- teradataml/data/pathanalyzer_example.json +8 -0
- teradataml/data/pathgenerator_example.json +8 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/pattern_matching_data.csv +11 -0
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/phrases.csv +7 -0
- teradataml/data/pivot_example.json +9 -0
- teradataml/data/pivot_input.csv +22 -0
- teradataml/data/playerRating.csv +31 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/postagger_example.json +7 -0
- teradataml/data/posttagger_output.csv +44 -0
- teradataml/data/production_data.csv +17 -0
- teradataml/data/production_data2.csv +7 -0
- teradataml/data/randomsample_example.json +32 -0
- teradataml/data/randomwalksample_example.json +9 -0
- teradataml/data/rank_table.csv +6 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/ref_mobile_data.csv +4 -0
- teradataml/data/ref_mobile_data_dense.csv +2 -0
- teradataml/data/ref_url.csv +17 -0
- teradataml/data/restaurant_reviews.csv +7 -0
- teradataml/data/retail_churn_table.csv +27772 -0
- teradataml/data/river_data.csv +145 -0
- teradataml/data/roc_example.json +8 -0
- teradataml/data/roc_input.csv +101 -0
- teradataml/data/rule_inputs.csv +6 -0
- teradataml/data/rule_table.csv +2 -0
- teradataml/data/sales.csv +7 -0
- teradataml/data/sales_transaction.csv +501 -0
- teradataml/data/salesdata.csv +342 -0
- teradataml/data/sample_cities.csv +3 -0
- teradataml/data/sample_shapes.csv +11 -0
- teradataml/data/sample_streets.csv +3 -0
- teradataml/data/sampling_example.json +16 -0
- teradataml/data/sax_example.json +17 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -0
- teradataml/data/scale_housing.csv +11 -0
- teradataml/data/scale_housing_test.csv +6 -0
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -0
- teradataml/data/scalebypartition_example.json +13 -0
- teradataml/data/scalemap_example.json +13 -0
- teradataml/data/scalesummary_example.json +12 -0
- teradataml/data/score_category.csv +101 -0
- teradataml/data/score_summary.csv +4 -0
- teradataml/data/script_example.json +10 -0
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/lightgbm/dataset.template +175 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +16 -0
- teradataml/data/scripts/mapper_replace.py +16 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
- teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
- teradataml/data/seeds.csv +10 -0
- teradataml/data/sentenceextractor_example.json +7 -0
- teradataml/data/sentiment_extract_input.csv +11 -0
- teradataml/data/sentiment_train.csv +16 -0
- teradataml/data/sentiment_word.csv +20 -0
- teradataml/data/sentiment_word_input.csv +20 -0
- teradataml/data/sentimentextractor_example.json +24 -0
- teradataml/data/sentimenttrainer_example.json +8 -0
- teradataml/data/sequence_table.csv +10 -0
- teradataml/data/seriessplitter_example.json +8 -0
- teradataml/data/sessionize_example.json +17 -0
- teradataml/data/sessionize_table.csv +116 -0
- teradataml/data/setop_test1.csv +24 -0
- teradataml/data/setop_test2.csv +22 -0
- teradataml/data/soc_nw_edges.csv +11 -0
- teradataml/data/soc_nw_vertices.csv +8 -0
- teradataml/data/souvenir_timeseries.csv +168 -0
- teradataml/data/sparse_iris_attribute.csv +5 -0
- teradataml/data/sparse_iris_test.csv +121 -0
- teradataml/data/sparse_iris_train.csv +601 -0
- teradataml/data/star1.csv +6 -0
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/state_transition.csv +5 -0
- teradataml/data/stock_data.csv +53 -0
- teradataml/data/stock_movement.csv +11 -0
- teradataml/data/stock_vol.csv +76 -0
- teradataml/data/stop_words.csv +8 -0
- teradataml/data/store_sales.csv +37 -0
- teradataml/data/stringsimilarity_example.json +8 -0
- teradataml/data/strsimilarity_input.csv +13 -0
- teradataml/data/students.csv +101 -0
- teradataml/data/svm_iris_input_test.csv +121 -0
- teradataml/data/svm_iris_input_train.csv +481 -0
- teradataml/data/svm_iris_model.csv +7 -0
- teradataml/data/svmdense_example.json +10 -0
- teradataml/data/svmdensepredict_example.json +19 -0
- teradataml/data/svmsparse_example.json +8 -0
- teradataml/data/svmsparsepredict_example.json +14 -0
- teradataml/data/svmsparsesummary_example.json +8 -0
- teradataml/data/target_mobile_data.csv +13 -0
- teradataml/data/target_mobile_data_dense.csv +5 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/templatedata.csv +1201 -0
- teradataml/data/templates/open_source_ml.json +11 -0
- teradataml/data/teradata_icon.ico +0 -0
- teradataml/data/teradataml_example.json +1473 -0
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -0
- teradataml/data/test_pacf_12.csv +37 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -0
- teradataml/data/text_inputs.csv +6 -0
- teradataml/data/textchunker_example.json +8 -0
- teradataml/data/textclassifier_example.json +7 -0
- teradataml/data/textclassifier_input.csv +7 -0
- teradataml/data/textclassifiertrainer_example.json +7 -0
- teradataml/data/textmorph_example.json +11 -0
- teradataml/data/textparser_example.json +15 -0
- teradataml/data/texttagger_example.json +12 -0
- teradataml/data/texttokenizer_example.json +7 -0
- teradataml/data/texttrainer_input.csv +11 -0
- teradataml/data/tf_example.json +7 -0
- teradataml/data/tfidf_example.json +14 -0
- teradataml/data/tfidf_input1.csv +201 -0
- teradataml/data/tfidf_train.csv +6 -0
- teradataml/data/time_table1.csv +535 -0
- teradataml/data/time_table2.csv +14 -0
- teradataml/data/timeseriesdata.csv +1601 -0
- teradataml/data/timeseriesdatasetsd4.csv +105 -0
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic.csv +892 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/token_table.csv +696 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +28 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/transformation_table.csv +6 -0
- teradataml/data/transformation_table_new.csv +2 -0
- teradataml/data/tv_spots.csv +16 -0
- teradataml/data/twod_climate_data.csv +117 -0
- teradataml/data/uaf_example.json +529 -0
- teradataml/data/univariatestatistics_example.json +9 -0
- teradataml/data/unpack_example.json +10 -0
- teradataml/data/unpivot_example.json +25 -0
- teradataml/data/unpivot_input.csv +8 -0
- teradataml/data/url_data.csv +10 -0
- teradataml/data/us_air_pass.csv +37 -0
- teradataml/data/us_population.csv +624 -0
- teradataml/data/us_states_shapes.csv +52 -0
- teradataml/data/varmax_example.json +18 -0
- teradataml/data/vectordistance_example.json +30 -0
- teradataml/data/ville_climatedata.csv +121 -0
- teradataml/data/ville_tempdata.csv +12 -0
- teradataml/data/ville_tempdata1.csv +12 -0
- teradataml/data/ville_temperature.csv +11 -0
- teradataml/data/waveletTable.csv +1605 -0
- teradataml/data/waveletTable2.csv +1605 -0
- teradataml/data/weightedmovavg_example.json +9 -0
- teradataml/data/wft_testing.csv +5 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +6 -0
- teradataml/data/word_embed_input_table2.csv +5 -0
- teradataml/data/word_embed_model.csv +23 -0
- teradataml/data/words_input.csv +13 -0
- teradataml/data/xconvolve_complex_left.csv +6 -0
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
- teradataml/data/xgboost_example.json +36 -0
- teradataml/data/xgboostpredict_example.json +32 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/__init__.py +0 -0
- teradataml/dataframe/copy_to.py +2446 -0
- teradataml/dataframe/data_transfer.py +2840 -0
- teradataml/dataframe/dataframe.py +20908 -0
- teradataml/dataframe/dataframe_utils.py +2114 -0
- teradataml/dataframe/fastload.py +794 -0
- teradataml/dataframe/functions.py +2110 -0
- teradataml/dataframe/indexer.py +424 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +1171 -0
- teradataml/dataframe/sql.py +10904 -0
- teradataml/dataframe/sql_function_parameters.py +440 -0
- teradataml/dataframe/sql_functions.py +652 -0
- teradataml/dataframe/sql_interfaces.py +220 -0
- teradataml/dataframe/vantage_function_types.py +675 -0
- teradataml/dataframe/window.py +694 -0
- teradataml/dbutils/__init__.py +3 -0
- teradataml/dbutils/dbutils.py +2871 -0
- teradataml/dbutils/filemgr.py +318 -0
- teradataml/gen_ai/__init__.py +2 -0
- teradataml/gen_ai/convAI.py +473 -0
- teradataml/geospatial/__init__.py +4 -0
- teradataml/geospatial/geodataframe.py +1105 -0
- teradataml/geospatial/geodataframecolumn.py +392 -0
- teradataml/geospatial/geometry_types.py +926 -0
- teradataml/hyperparameter_tuner/__init__.py +1 -0
- teradataml/hyperparameter_tuner/optimizer.py +4115 -0
- teradataml/hyperparameter_tuner/utils.py +303 -0
- teradataml/lib/__init__.py +0 -0
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/lib/libaed_0_1_ppc64le.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/_base.py +1321 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/_constants.py +61 -0
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +267 -0
- teradataml/options/__init__.py +148 -0
- teradataml/options/configure.py +489 -0
- teradataml/options/display.py +187 -0
- teradataml/plot/__init__.py +3 -0
- teradataml/plot/axis.py +1427 -0
- teradataml/plot/constants.py +15 -0
- teradataml/plot/figure.py +431 -0
- teradataml/plot/plot.py +810 -0
- teradataml/plot/query_generator.py +83 -0
- teradataml/plot/subplot.py +216 -0
- teradataml/scriptmgmt/UserEnv.py +4273 -0
- teradataml/scriptmgmt/__init__.py +3 -0
- teradataml/scriptmgmt/lls_utils.py +2157 -0
- teradataml/sdk/README.md +79 -0
- teradataml/sdk/__init__.py +4 -0
- teradataml/sdk/_auth_modes.py +422 -0
- teradataml/sdk/_func_params.py +487 -0
- teradataml/sdk/_json_parser.py +453 -0
- teradataml/sdk/_openapi_spec_constants.py +249 -0
- teradataml/sdk/_utils.py +236 -0
- teradataml/sdk/api_client.py +900 -0
- teradataml/sdk/constants.py +62 -0
- teradataml/sdk/modelops/__init__.py +98 -0
- teradataml/sdk/modelops/_client.py +409 -0
- teradataml/sdk/modelops/_constants.py +304 -0
- teradataml/sdk/modelops/models.py +2308 -0
- teradataml/sdk/spinner.py +107 -0
- teradataml/series/__init__.py +0 -0
- teradataml/series/series.py +537 -0
- teradataml/series/series_utils.py +71 -0
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +658 -0
- teradataml/store/feature_store/feature_store.py +4814 -0
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +7330 -0
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/Apply.py +979 -0
- teradataml/table_operators/Script.py +1739 -0
- teradataml/table_operators/TableOperator.py +1343 -0
- teradataml/table_operators/__init__.py +2 -0
- teradataml/table_operators/apply_query_generator.py +262 -0
- teradataml/table_operators/query_generator.py +493 -0
- teradataml/table_operators/table_operator_query_generator.py +462 -0
- teradataml/table_operators/table_operator_util.py +726 -0
- teradataml/table_operators/templates/dataframe_apply.template +184 -0
- teradataml/table_operators/templates/dataframe_map.template +176 -0
- teradataml/table_operators/templates/dataframe_register.template +73 -0
- teradataml/table_operators/templates/dataframe_udf.template +67 -0
- teradataml/table_operators/templates/script_executor.template +170 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +53 -0
- teradataml/utils/__init__.py +0 -0
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +943 -0
- teradataml/utils/internal_buffer.py +122 -0
- teradataml/utils/print_versions.py +206 -0
- teradataml/utils/utils.py +451 -0
- teradataml/utils/validators.py +3305 -0
- teradataml-20.0.0.8.dist-info/METADATA +2804 -0
- teradataml-20.0.0.8.dist-info/RECORD +1208 -0
- teradataml-20.0.0.8.dist-info/WHEEL +5 -0
- teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
- teradataml-20.0.0.8.dist-info/zip-safe +1 -0
|
@@ -0,0 +1,926 @@
|
|
|
1
|
+
#!/usr/bin/python
|
|
2
|
+
# ##################################################################
|
|
3
|
+
#
|
|
4
|
+
# Copyright 2021 Teradata. All rights reserved.
|
|
5
|
+
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
+
#
|
|
7
|
+
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
+
# Secondary Owner:
|
|
9
|
+
#
|
|
10
|
+
# This file contains the implementation of Geometry types for
|
|
11
|
+
# Teradata Geospatial data types. These implementation allows user
|
|
12
|
+
# to create the singlton item like a literal that can be used in
|
|
13
|
+
# any Geospatial function call.
|
|
14
|
+
#
|
|
15
|
+
# ##################################################################
|
|
16
|
+
from teradataml.common.messagecodes import MessageCodes
|
|
17
|
+
from teradataml.common.messages import Messages
|
|
18
|
+
from teradataml.utils.dtypes import _str_list, _int_list, \
|
|
19
|
+
_int_float_list, _int_float_tuple_list
|
|
20
|
+
from teradataml.utils.validators import _Validators
|
|
21
|
+
VANTAGE_EMPTY_GEOM_FMT = "EMPTY"
|
|
22
|
+
|
|
23
|
+
class GeometryType(object):
|
|
24
|
+
""" Base class for Geospatial Geometry Types. """
|
|
25
|
+
|
|
26
|
+
def __init__(self, *args):
|
|
27
|
+
""" Constructor for Geometry object. """
|
|
28
|
+
self._is_empty = True
|
|
29
|
+
self.coordinates = VANTAGE_EMPTY_GEOM_FMT
|
|
30
|
+
self._str_fmt = "{} {}"
|
|
31
|
+
|
|
32
|
+
if args and args[0] is not None:
|
|
33
|
+
self._is_empty = False
|
|
34
|
+
self.coordinates = []
|
|
35
|
+
self._str_fmt = "{}{}"
|
|
36
|
+
|
|
37
|
+
def __str__(self):
|
|
38
|
+
""" Return String Representation for a Geometry object. """
|
|
39
|
+
return self._str_fmt.format(self.__class__.__name__,
|
|
40
|
+
self._coords_vantage_fmt)
|
|
41
|
+
|
|
42
|
+
def _vantage_str_(self):
|
|
43
|
+
""" Return Vantage String Representation for a Geometry object. """
|
|
44
|
+
return "new ST_Geometry('{}')".format(str(self))
|
|
45
|
+
|
|
46
|
+
@property
|
|
47
|
+
def coords(self):
|
|
48
|
+
""" Returns the coordinates of the Geometry object. """
|
|
49
|
+
return self.coordinates
|
|
50
|
+
|
|
51
|
+
@property
|
|
52
|
+
def geom_type(self):
|
|
53
|
+
""" Returns the type of a Geometry. """
|
|
54
|
+
return self.__class__.__name__
|
|
55
|
+
|
|
56
|
+
def __getattr__(self, item):
|
|
57
|
+
""""""
|
|
58
|
+
# TODO::
|
|
59
|
+
# Add a code to create a table with ST_Geometry column and insert
|
|
60
|
+
# the value for the Geometry object in the same, when any
|
|
61
|
+
# Geospatial function is executed.
|
|
62
|
+
# Creating table and then GeoDataFrame on top of the created table,
|
|
63
|
+
# will enable us to execute any Geospatial function on the
|
|
64
|
+
# Geometry Type Object and return the results, just like shapely
|
|
65
|
+
# library does.
|
|
66
|
+
# Doing this will not require any additional things to be implemented.
|
|
67
|
+
# This is what the workflow should look like when any function
|
|
68
|
+
# (geospatial) executed on any of the Geometry Types object:
|
|
69
|
+
# 1. We will enter this function, validate that the function being
|
|
70
|
+
# executed is Geospatial.
|
|
71
|
+
# 2. Check if self._geodf is set or not. If set go to 4.
|
|
72
|
+
# 3. If not set, then create a table with geospatial data type
|
|
73
|
+
# (ST_GEOMETRY) column.
|
|
74
|
+
# i. Get the table name from UtilFuncs get table name
|
|
75
|
+
# functionality. Should be GCed at the end.
|
|
76
|
+
# ii. Insert the User passed data in the table.
|
|
77
|
+
# iii. Set the self._geodf to the GeoDataFrame() on the created
|
|
78
|
+
# table.
|
|
79
|
+
# 4. If set, then just call the function on the self._geodf.
|
|
80
|
+
# For example, self._geodf.<func_name>(...)
|
|
81
|
+
"TODO"
|
|
82
|
+
|
|
83
|
+
class Point(GeometryType):
|
|
84
|
+
"""
|
|
85
|
+
Class Point enables end user to create an object for the single Point
|
|
86
|
+
using the coordinates. Allows user to use the same in GeoDataFrame
|
|
87
|
+
manipulation and processing.
|
|
88
|
+
"""
|
|
89
|
+
def __init__(self, *coordinates):
|
|
90
|
+
"""
|
|
91
|
+
DESCRIPTION:
|
|
92
|
+
Enables end user to create an object for the single Point
|
|
93
|
+
using the coordinates. Allows user to use the same in GeoDataFrame
|
|
94
|
+
manipulation and processing using any Geospatial function.
|
|
95
|
+
|
|
96
|
+
PARAMETERS:
|
|
97
|
+
*coordinates:
|
|
98
|
+
Optional Argument.
|
|
99
|
+
Specifies the coordinates of a Point. Coordinates must be
|
|
100
|
+
specified in positional fashion.
|
|
101
|
+
If coordinates are not passed, an object for empty point is
|
|
102
|
+
created.
|
|
103
|
+
When coordinates are passed, one must pass either 2 or 3
|
|
104
|
+
values to define a Point in 2-dimentions or 3-dimentions.
|
|
105
|
+
Types: int, float
|
|
106
|
+
|
|
107
|
+
RETURNS:
|
|
108
|
+
Point
|
|
109
|
+
|
|
110
|
+
RAISES:
|
|
111
|
+
TeradataMlException, TypeError, ValueError
|
|
112
|
+
|
|
113
|
+
EXAMPLES:
|
|
114
|
+
>>> from teradataml import Point
|
|
115
|
+
|
|
116
|
+
# Example 1: Create a Point in 2D, using x and y coordinates.
|
|
117
|
+
>>> p1 = Point(0, 20)
|
|
118
|
+
>>> # Print the coordinates.
|
|
119
|
+
>>> print(p1.coords)
|
|
120
|
+
(0, 20)
|
|
121
|
+
>>> # Print the geometry type.
|
|
122
|
+
>>> p1.geom_type
|
|
123
|
+
'Point'
|
|
124
|
+
>>>
|
|
125
|
+
|
|
126
|
+
# Example 2: Create a Point in 3D, using x, y and z coordinates.
|
|
127
|
+
>>> p2 = Point(0, 20, 30)
|
|
128
|
+
>>> # Print the coordinates.
|
|
129
|
+
>>> print(p2.coords)
|
|
130
|
+
(0, 20, 30)
|
|
131
|
+
>>>
|
|
132
|
+
|
|
133
|
+
# Example 3: Create an empty Point.
|
|
134
|
+
>>> pe = Point()
|
|
135
|
+
>>> # Print the coordinates.
|
|
136
|
+
>>> print(pe.coords)
|
|
137
|
+
EMPTY
|
|
138
|
+
>>>
|
|
139
|
+
"""
|
|
140
|
+
super(Point, self).__init__(*coordinates)
|
|
141
|
+
|
|
142
|
+
if len(coordinates) == 1 and isinstance(coordinates[0], tuple):
|
|
143
|
+
# Create a Point by directly passing a tuple.
|
|
144
|
+
coordinates = coordinates[0]
|
|
145
|
+
elif len(coordinates) > 3 or len(coordinates) == 1:
|
|
146
|
+
# TODO - Error handling.
|
|
147
|
+
raise Exception("Must pass 2 or 3 coordinates.")
|
|
148
|
+
|
|
149
|
+
if not self._is_empty:
|
|
150
|
+
for co in coordinates:
|
|
151
|
+
arg_info = [["coordinates", co, False, (int, float)]]
|
|
152
|
+
_Validators()._validate_function_arguments(arg_info)
|
|
153
|
+
|
|
154
|
+
self.x = coordinates[0]
|
|
155
|
+
self.y = coordinates[1]
|
|
156
|
+
self.z = None
|
|
157
|
+
if len(coordinates) == 3:
|
|
158
|
+
self.z = coordinates[2]
|
|
159
|
+
|
|
160
|
+
@property
|
|
161
|
+
def coords(self):
|
|
162
|
+
""" Returns the coordinates of the Point Geometry object. """
|
|
163
|
+
if self._is_empty:
|
|
164
|
+
return VANTAGE_EMPTY_GEOM_FMT
|
|
165
|
+
else:
|
|
166
|
+
return (self.x, self.y) if self.z is None else (
|
|
167
|
+
self.x, self.y, self.z)
|
|
168
|
+
|
|
169
|
+
@property
|
|
170
|
+
def _coords_vantage_fmt(self):
|
|
171
|
+
"""
|
|
172
|
+
Returns the coordinates of the Point Geometry object in Vantage format.
|
|
173
|
+
"""
|
|
174
|
+
if self._is_empty:
|
|
175
|
+
return VANTAGE_EMPTY_GEOM_FMT
|
|
176
|
+
else:
|
|
177
|
+
return "({})".format(" ".join(map(str, self.coords)))
|
|
178
|
+
|
|
179
|
+
class LineString(GeometryType):
|
|
180
|
+
"""
|
|
181
|
+
Class LineString enables end user to create an object for the single
|
|
182
|
+
LineString using the coordinates. Allows user to use the same in
|
|
183
|
+
GeoDataFrame manipulation and processing.
|
|
184
|
+
"""
|
|
185
|
+
def __init__(self, coordinates=None):
|
|
186
|
+
"""
|
|
187
|
+
DESCRIPTION:
|
|
188
|
+
Enables end user to create an object for the single LineString
|
|
189
|
+
using the coordinates. Allows user to use the same in GeoDataFrame
|
|
190
|
+
manipulation and processing using any Geospatial function.
|
|
191
|
+
|
|
192
|
+
PARAMETERS:
|
|
193
|
+
coordinates:
|
|
194
|
+
Optional Argument.
|
|
195
|
+
Specifies the coordinates of a Line. While passing coordinates
|
|
196
|
+
for a line, one must always pass coordinates in list of either
|
|
197
|
+
two-tuples for 2D or list of three-tuples for 3D.
|
|
198
|
+
Argument also accepts list of Points as well instead of tuples.
|
|
199
|
+
If coordinates are not passed, an object for empty line is
|
|
200
|
+
created.
|
|
201
|
+
Types: List of
|
|
202
|
+
a. Point geometry objects or
|
|
203
|
+
b. two-tuple of int or float or
|
|
204
|
+
c. three-tuple of int or float or
|
|
205
|
+
d. Mix of any of the above.
|
|
206
|
+
|
|
207
|
+
RETURNS:
|
|
208
|
+
LineString
|
|
209
|
+
|
|
210
|
+
RAISES:
|
|
211
|
+
TeradataMlException, TypeError, ValueError
|
|
212
|
+
|
|
213
|
+
EXAMPLES:
|
|
214
|
+
>>> from teradataml import Point, LineString
|
|
215
|
+
|
|
216
|
+
# Example 1: Create a LineString in 2D, using x and y coordinates.
|
|
217
|
+
>>> l1 = LineString([(0, 0), (0, 20), (20, 20)])
|
|
218
|
+
>>> # Print the coordinates.
|
|
219
|
+
>>> print(l1.coords)
|
|
220
|
+
[(0, 0), (0, 20), (20, 20)]
|
|
221
|
+
>>> # Print the geometry type.
|
|
222
|
+
>>> l1.geom_type
|
|
223
|
+
'LineString'
|
|
224
|
+
>>>
|
|
225
|
+
|
|
226
|
+
# Example 2: Create a LineString in 3D, using x, y and z coordinates.
|
|
227
|
+
>>> l2 = LineString([(0, 0, 1), (0, 1, 3), (1, 3, 6), (3, 3, 6),
|
|
228
|
+
... (3, 6, 1), (6, 3, 3), (3, 3, 0)])
|
|
229
|
+
>>> # Print the coordinates.
|
|
230
|
+
>>> print(l1.coords)
|
|
231
|
+
[(0, 0), (0, 20), (20, 20)]
|
|
232
|
+
>>>
|
|
233
|
+
|
|
234
|
+
# Example 3: Create a LineString using Point geometry objects.
|
|
235
|
+
# Create some Points in 2D, using x and y coordinates.
|
|
236
|
+
>>> p1 = Point(0, 20)
|
|
237
|
+
>>> p2 = Point(0, 0)
|
|
238
|
+
>>> p3 = Point(20, 20)
|
|
239
|
+
>>> l3 = LineString([p1, p2, p3])
|
|
240
|
+
>>> # Print the coordinates.
|
|
241
|
+
>>> print(l3.coords)
|
|
242
|
+
[(0, 20), (0, 0), (20, 20)]
|
|
243
|
+
>>>
|
|
244
|
+
|
|
245
|
+
# Example 4: Create a LineString using mix of Point geometry objects
|
|
246
|
+
# and coordinates.
|
|
247
|
+
>>> p1 = Point(0, 20)
|
|
248
|
+
>>> p2 = Point(20, 20)
|
|
249
|
+
>>> l4 = LineString([(0, 0), p1, p2, (20, 0)])
|
|
250
|
+
>>> # Print the coordinates.
|
|
251
|
+
>>> print(l4.coords)
|
|
252
|
+
[(0, 0), (0, 20), (20, 20), (20, 0)]
|
|
253
|
+
>>>
|
|
254
|
+
|
|
255
|
+
# Example 5: Create an empty LineString.
|
|
256
|
+
>>> le = LineString()
|
|
257
|
+
>>> # Print the coordinates.
|
|
258
|
+
>>> print(le.coords)
|
|
259
|
+
EMPTY
|
|
260
|
+
>>>
|
|
261
|
+
"""
|
|
262
|
+
super(LineString, self).__init__(coordinates)
|
|
263
|
+
if coordinates is not None:
|
|
264
|
+
# Argument validations.
|
|
265
|
+
arg_info = [["coordinates", coordinates, False, (list, Point, tuple)]]
|
|
266
|
+
_Validators()._validate_function_arguments(arg_info)
|
|
267
|
+
|
|
268
|
+
# List of two-tuples or three-tuples or Point or mix.
|
|
269
|
+
for co in coordinates:
|
|
270
|
+
if isinstance(co, Point):
|
|
271
|
+
self.coordinates.append(co.coords)
|
|
272
|
+
else:
|
|
273
|
+
# Validate coordinates
|
|
274
|
+
Point(*co)
|
|
275
|
+
self.coordinates.append(co)
|
|
276
|
+
|
|
277
|
+
@property
|
|
278
|
+
def _coords_vantage_fmt(self):
|
|
279
|
+
"""
|
|
280
|
+
Returns the coordinates of the LineString Geometry object in Vantage format.
|
|
281
|
+
"""
|
|
282
|
+
if self._is_empty:
|
|
283
|
+
return VANTAGE_EMPTY_GEOM_FMT
|
|
284
|
+
else:
|
|
285
|
+
return "({})".format(
|
|
286
|
+
", ".join(map(lambda x: " ".join(map(str, x)), self.coords)))
|
|
287
|
+
|
|
288
|
+
class Polygon(GeometryType):
|
|
289
|
+
"""
|
|
290
|
+
Class Polygon enables end user to create an object for the single Polygon
|
|
291
|
+
using the coordinates. Allows user to use the same in GeoDataFrame
|
|
292
|
+
manipulation and processing.
|
|
293
|
+
"""
|
|
294
|
+
def __init__(self, coordinates=None):
|
|
295
|
+
"""
|
|
296
|
+
DESCRIPTION:
|
|
297
|
+
Enables end user to create an object for the single Polygon
|
|
298
|
+
using the coordinates. Allows user to use the same in GeoDataFrame
|
|
299
|
+
manipulation and processing using any Geospatial function.
|
|
300
|
+
|
|
301
|
+
PARAMETERS:
|
|
302
|
+
coordinates:
|
|
303
|
+
Optional Argument.
|
|
304
|
+
Specifies the coordinates of a polygon. While passing coordinates
|
|
305
|
+
for a polygon, one must always pass coordinates in list of either
|
|
306
|
+
two-tuples for 2D or list of three-tuples for 3D.
|
|
307
|
+
Argument also accepts list of Point and/or LineString as well
|
|
308
|
+
instead of tuples.
|
|
309
|
+
If coordinates are not passed, an object for empty polygon is
|
|
310
|
+
created.
|
|
311
|
+
Types: List of
|
|
312
|
+
a. two-tuple of int or float or
|
|
313
|
+
b. three-tuple of int or float or
|
|
314
|
+
c. Point geometry objects or
|
|
315
|
+
d. LineString geometry objects or
|
|
316
|
+
e. Mix of any of the above.
|
|
317
|
+
|
|
318
|
+
RETURNS:
|
|
319
|
+
Polygon
|
|
320
|
+
|
|
321
|
+
RAISES:
|
|
322
|
+
TeradataMlException, TypeError, ValueError
|
|
323
|
+
|
|
324
|
+
EXAMPLES:
|
|
325
|
+
>>> from teradataml import Point, LineString, Polygon
|
|
326
|
+
|
|
327
|
+
# Example 1: Create a Polygon in 2D, using x and y coordinates.
|
|
328
|
+
>>> go1 = Polygon([(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)])
|
|
329
|
+
>>> # Print the coordinates.
|
|
330
|
+
>>> print(go1.coords)
|
|
331
|
+
[(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
|
|
332
|
+
>>> # Print the geometry type.
|
|
333
|
+
>>> go1.geom_type
|
|
334
|
+
'Polygon'
|
|
335
|
+
>>>
|
|
336
|
+
|
|
337
|
+
# Example 2: Create a Polygon in 3D, using x, y and z coordinates.
|
|
338
|
+
>>> go2 = Polygon([(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20),
|
|
339
|
+
... (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20),
|
|
340
|
+
... (0, 0, 0)])
|
|
341
|
+
>>> # Print the coordinates.
|
|
342
|
+
>>> print(go2.coords)
|
|
343
|
+
[(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20), (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20), (0, 0, 0)]
|
|
344
|
+
>>>
|
|
345
|
+
|
|
346
|
+
# Example 3: Create a Polygon using Point geometry objects.
|
|
347
|
+
# Create Point objects in 2D, using x and y coordinates.
|
|
348
|
+
>>> p1 = Point(0, 0)
|
|
349
|
+
>>> p2 = Point(0, 20)
|
|
350
|
+
>>> p3 = Point(20, 20)
|
|
351
|
+
>>> p4 = Point(20, 0)
|
|
352
|
+
>>> go3 = Polygon([p1, p2, p3, p4, p1])
|
|
353
|
+
>>> # Print the coordinates.
|
|
354
|
+
>>> print(go3.coords)
|
|
355
|
+
[(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
|
|
356
|
+
>>>
|
|
357
|
+
|
|
358
|
+
# Example 4: Create a Polygon using LineString geometry objects.
|
|
359
|
+
# Create some LineString objects in 2D, using x and y coordinates.
|
|
360
|
+
>>> l1 = LineString([(0, 0), (0, 20), (20, 20)])
|
|
361
|
+
>>> l2 = LineString([(20, 0), (0, 0)])
|
|
362
|
+
>>> go4 = Polygon([l1, l2])
|
|
363
|
+
>>> # Print the coordinates.
|
|
364
|
+
>>> print(go4.coords)
|
|
365
|
+
[(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
|
|
366
|
+
>>>
|
|
367
|
+
|
|
368
|
+
# Example 5: Create a Polygon using mix of Point, LineString
|
|
369
|
+
# geometry objects and coordinates.
|
|
370
|
+
>>> p1 = Point(0, 0)
|
|
371
|
+
>>> l1 = LineString([p1, (0, 20), (20, 20)])
|
|
372
|
+
>>> go5 = Polygon([l1, (20, 0), p1])
|
|
373
|
+
>>> # Print the coordinates.
|
|
374
|
+
>>> print(go5.coords)
|
|
375
|
+
[(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
|
|
376
|
+
>>>
|
|
377
|
+
|
|
378
|
+
# Example 6: Create an empty Polygon.
|
|
379
|
+
>>> poe = Polygon()
|
|
380
|
+
>>> # Print the coordinates.
|
|
381
|
+
>>> print(poe.coords)
|
|
382
|
+
EMPTY
|
|
383
|
+
>>>
|
|
384
|
+
"""
|
|
385
|
+
super(Polygon, self).__init__(coordinates)
|
|
386
|
+
if coordinates is not None:
|
|
387
|
+
# Argument validation.
|
|
388
|
+
acc_types = (list, Point, LineString, tuple)
|
|
389
|
+
arg_info = [["coordinates", coordinates, False, acc_types]]
|
|
390
|
+
_Validators()._validate_function_arguments(arg_info)
|
|
391
|
+
|
|
392
|
+
# List of two-tuples or three-tuples or LineString or Point or mix.
|
|
393
|
+
for co in coordinates:
|
|
394
|
+
if isinstance(co, (Point)):
|
|
395
|
+
self.coordinates.append(co.coords)
|
|
396
|
+
elif isinstance(co, LineString):
|
|
397
|
+
for lco in co.coords:
|
|
398
|
+
self.coordinates.append(lco)
|
|
399
|
+
else:
|
|
400
|
+
# Validate individual coordinates passed.
|
|
401
|
+
Point(*co)
|
|
402
|
+
self.coordinates.append(co)
|
|
403
|
+
|
|
404
|
+
@property
|
|
405
|
+
def _coords_vantage_fmt(self):
|
|
406
|
+
"""
|
|
407
|
+
Returns the coordinates of the Polygon Geometry object in Vantage format.
|
|
408
|
+
"""
|
|
409
|
+
if self._is_empty:
|
|
410
|
+
return VANTAGE_EMPTY_GEOM_FMT
|
|
411
|
+
else:
|
|
412
|
+
return "(({}))".format(
|
|
413
|
+
", ".join(map(lambda x: " ".join(map(str, x)), self.coords)))
|
|
414
|
+
|
|
415
|
+
class MultiPoint(GeometryType):
|
|
416
|
+
"""
|
|
417
|
+
Class MultiPoint enables end user to create an object holding multiple
|
|
418
|
+
Point geometry objects. Allows user to use the same in GeoDataFrame
|
|
419
|
+
manipulation and processing.
|
|
420
|
+
"""
|
|
421
|
+
def __init__(self, points=None):
|
|
422
|
+
"""
|
|
423
|
+
DESCRIPTION:
|
|
424
|
+
Enables end user to create an object holding the multiple Point
|
|
425
|
+
geometry objects. Allows user to use the same in GeoDataFrame
|
|
426
|
+
manipulation and processing using any Geospatial function.
|
|
427
|
+
|
|
428
|
+
PARAMETERS:
|
|
429
|
+
points:
|
|
430
|
+
Optional Argument.
|
|
431
|
+
Specifies the list of points. If no points are passed, an object
|
|
432
|
+
for empty MultiPoint is created.
|
|
433
|
+
Types: List of Point objects
|
|
434
|
+
|
|
435
|
+
RETURNS:
|
|
436
|
+
MultiPoint
|
|
437
|
+
|
|
438
|
+
RAISES:
|
|
439
|
+
TeradataMlException, TypeError, ValueError
|
|
440
|
+
|
|
441
|
+
EXAMPLES:
|
|
442
|
+
>>> from teradataml import Point, MultiPoint
|
|
443
|
+
|
|
444
|
+
# Example 1: Create a MultiPoint in 2D, using x and y coordinates.
|
|
445
|
+
>>> p1 = Point(0, 0)
|
|
446
|
+
>>> p2 = Point(0, 20)
|
|
447
|
+
>>> p3 = Point(20, 20)
|
|
448
|
+
>>> p4 = Point(20, 0)
|
|
449
|
+
>>> go1 = MultiPoint([p1, p2, p3, p4, p1])
|
|
450
|
+
>>> # Print the coordinates.
|
|
451
|
+
>>> print(go1.coords)
|
|
452
|
+
[(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)]
|
|
453
|
+
>>> # Print the geometry type.
|
|
454
|
+
>>> print(go1.geom_type)
|
|
455
|
+
MultiPoint
|
|
456
|
+
>>>
|
|
457
|
+
|
|
458
|
+
# Example 2: Create an empty MultiPoint.
|
|
459
|
+
>>> poe = MultiPoint()
|
|
460
|
+
>>> # Print the coordinates.
|
|
461
|
+
>>> print(poe.coords)
|
|
462
|
+
EMPTY
|
|
463
|
+
>>>
|
|
464
|
+
"""
|
|
465
|
+
super(MultiPoint, self).__init__(points)
|
|
466
|
+
if points is not None:
|
|
467
|
+
# Argument validation.
|
|
468
|
+
acc_types = (list, Point)
|
|
469
|
+
arg_info = [["points", points, False, acc_types]]
|
|
470
|
+
_Validators()._validate_function_arguments(arg_info)
|
|
471
|
+
|
|
472
|
+
self.points = points
|
|
473
|
+
for po in points:
|
|
474
|
+
self.coordinates.append(po.coords)
|
|
475
|
+
|
|
476
|
+
@property
|
|
477
|
+
def _coords_vantage_fmt(self):
|
|
478
|
+
"""
|
|
479
|
+
Returns the coordinates of the MultiPoint Geometry object in Vantage
|
|
480
|
+
format.
|
|
481
|
+
"""
|
|
482
|
+
if self._is_empty:
|
|
483
|
+
return VANTAGE_EMPTY_GEOM_FMT
|
|
484
|
+
else:
|
|
485
|
+
return "({})".format(
|
|
486
|
+
", ".join([pnt._coords_vantage_fmt for pnt in self.points]))
|
|
487
|
+
|
|
488
|
+
class MultiLineString(GeometryType):
|
|
489
|
+
"""
|
|
490
|
+
Class MultiLineString enables end user to create an object holding multiple
|
|
491
|
+
LineString geometry objects. Allows user to use the same in GeoDataFrame
|
|
492
|
+
manipulation and processing.
|
|
493
|
+
"""
|
|
494
|
+
def __init__(self, lines=None):
|
|
495
|
+
"""
|
|
496
|
+
DESCRIPTION:
|
|
497
|
+
Enables end user to create an object holding the multiple LineString
|
|
498
|
+
geometry objects. Allows user to use the same in GeoDataFrame
|
|
499
|
+
manipulation and processing using any Geospatial function.
|
|
500
|
+
|
|
501
|
+
PARAMETERS:
|
|
502
|
+
lines:
|
|
503
|
+
Optional Argument.
|
|
504
|
+
Specifies the list of lines. If no lines are passed, an object
|
|
505
|
+
for empty MultiLineString is created.
|
|
506
|
+
Types: List of LineString objects
|
|
507
|
+
|
|
508
|
+
RETURNS:
|
|
509
|
+
MultiLineString
|
|
510
|
+
|
|
511
|
+
RAISES:
|
|
512
|
+
TeradataMlException, TypeError, ValueError
|
|
513
|
+
|
|
514
|
+
EXAMPLES:
|
|
515
|
+
>>> from teradataml import LineString, MultiLineString
|
|
516
|
+
|
|
517
|
+
# Example 1: Create a MultiLineString in 2D, using x and y coordinates.
|
|
518
|
+
>>> l1 = LineString([(1, 3), (3, 0), (0, 1)])
|
|
519
|
+
>>> l2 = LineString([(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)])
|
|
520
|
+
>>> go1 = MultiLineString([l1, l2])
|
|
521
|
+
>>> # Print the coordinates.
|
|
522
|
+
>>> print(go1.coords)
|
|
523
|
+
[[(1, 3), (3, 0), (0, 1)], [(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)]]
|
|
524
|
+
>>> # Print the geometry type.
|
|
525
|
+
>>> print(go1.geom_type)
|
|
526
|
+
MultiLineString
|
|
527
|
+
>>>
|
|
528
|
+
|
|
529
|
+
# Example 2: Create an empty MultiLineString.
|
|
530
|
+
>>> mls = MultiLineString()
|
|
531
|
+
>>> # Print the coordinates.
|
|
532
|
+
>>> print(mls.coords)
|
|
533
|
+
EMPTY
|
|
534
|
+
>>>
|
|
535
|
+
"""
|
|
536
|
+
super(MultiLineString, self).__init__(lines)
|
|
537
|
+
if lines is not None:
|
|
538
|
+
# Argument validation.
|
|
539
|
+
acc_types = (list, LineString)
|
|
540
|
+
arg_info = [["lines", lines, False, acc_types]]
|
|
541
|
+
_Validators()._validate_function_arguments(arg_info)
|
|
542
|
+
|
|
543
|
+
self.lines = lines
|
|
544
|
+
for po in lines:
|
|
545
|
+
self.coordinates.append(po.coords)
|
|
546
|
+
|
|
547
|
+
@property
|
|
548
|
+
def _coords_vantage_fmt(self):
|
|
549
|
+
"""
|
|
550
|
+
Returns the coordinates of the MultiLineString Geometry object in
|
|
551
|
+
Vantage format.
|
|
552
|
+
"""
|
|
553
|
+
if self._is_empty:
|
|
554
|
+
return VANTAGE_EMPTY_GEOM_FMT
|
|
555
|
+
else:
|
|
556
|
+
return "({})".format(
|
|
557
|
+
", ".join([line._coords_vantage_fmt for line in self.lines]))
|
|
558
|
+
|
|
559
|
+
class MultiPolygon(GeometryType):
|
|
560
|
+
"""
|
|
561
|
+
Class MultiPolygon enables end user to create an object holding multiple
|
|
562
|
+
Polygon geometry objects. Allows user to use the same in GeoDataFrame
|
|
563
|
+
manipulation and processing.
|
|
564
|
+
"""
|
|
565
|
+
def __init__(self, polygons=None):
|
|
566
|
+
"""
|
|
567
|
+
DESCRIPTION:
|
|
568
|
+
Enables end user to create an object holding the multiple Polygon
|
|
569
|
+
geometry objects. Allows user to use the same in GeoDataFrame
|
|
570
|
+
manipulation and processing using any Geospatial function.
|
|
571
|
+
|
|
572
|
+
PARAMETERS:
|
|
573
|
+
polygons:
|
|
574
|
+
Optional Argument.
|
|
575
|
+
Specifies the list of polygons. If no polygons are passed, an
|
|
576
|
+
object for empty MultiPolygon is created.
|
|
577
|
+
Types: List of Polygon objects
|
|
578
|
+
|
|
579
|
+
RETURNS:
|
|
580
|
+
MultiPolygon
|
|
581
|
+
|
|
582
|
+
RAISES:
|
|
583
|
+
TeradataMlException, TypeError, ValueError
|
|
584
|
+
|
|
585
|
+
EXAMPLES:
|
|
586
|
+
>>> from teradataml import Polygon, MultiPolygon
|
|
587
|
+
|
|
588
|
+
# Example 1: Create a MultiPolygon in 2D, using x and y coordinates.
|
|
589
|
+
>>> po1 = Polygon([(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)])
|
|
590
|
+
>>> po2 = Polygon([(0.6, 0.8), (0.6, 20.8), (20.6, 20.8), (20.6, 0.8), (0.6, 0.8)])
|
|
591
|
+
>>> go1 = MultiPolygon([po1, po2])
|
|
592
|
+
>>> # Print the coordinates.
|
|
593
|
+
>>> print(go1.coords)
|
|
594
|
+
[[(0, 0), (0, 20), (20, 20), (20, 0), (0, 0)], [(0.6, 0.8), (0.6, 20.8), (20.6, 20.8), (20.6, 0.8), (0.6, 0.8)]]
|
|
595
|
+
>>> # Print the geometry type.
|
|
596
|
+
>>> print(go1.geom_type)
|
|
597
|
+
MultiPolygon
|
|
598
|
+
>>>
|
|
599
|
+
|
|
600
|
+
# Example 2: Create an empty MultiPolygon.
|
|
601
|
+
>>> poe = MultiPolygon()
|
|
602
|
+
>>> # Print the coordinates.
|
|
603
|
+
>>> print(poe.coords)
|
|
604
|
+
EMPTY
|
|
605
|
+
>>>
|
|
606
|
+
"""
|
|
607
|
+
super(MultiPolygon, self).__init__(polygons)
|
|
608
|
+
if polygons is not None:
|
|
609
|
+
# Argument validation.
|
|
610
|
+
acc_types = (list, Polygon)
|
|
611
|
+
arg_info = [["polygons", polygons, False, acc_types]]
|
|
612
|
+
_Validators()._validate_function_arguments(arg_info)
|
|
613
|
+
|
|
614
|
+
self.polygons = polygons
|
|
615
|
+
for po in polygons:
|
|
616
|
+
self.coordinates.append(po.coords)
|
|
617
|
+
|
|
618
|
+
@property
|
|
619
|
+
def _coords_vantage_fmt(self):
|
|
620
|
+
"""
|
|
621
|
+
Returns the coordinates of the MultiPolygon Geometry object in Vantage
|
|
622
|
+
format.
|
|
623
|
+
"""
|
|
624
|
+
if self._is_empty:
|
|
625
|
+
return VANTAGE_EMPTY_GEOM_FMT
|
|
626
|
+
else:
|
|
627
|
+
return "({})".format(
|
|
628
|
+
", ".join([pnt._coords_vantage_fmt for pnt in self.polygons]))
|
|
629
|
+
|
|
630
|
+
class GeometryCollection(GeometryType):
|
|
631
|
+
"""
|
|
632
|
+
Class GeometryCollection enables end user to create an object for the
|
|
633
|
+
single GeometryCollection, i.e., collection of different geometry objects
|
|
634
|
+
using the geometries. This allows user to use the same in GeoDataFrame
|
|
635
|
+
manipulation and processing.
|
|
636
|
+
"""
|
|
637
|
+
def __init__(self, geometries=None):
|
|
638
|
+
"""
|
|
639
|
+
DESCRIPTION:
|
|
640
|
+
Enables end user to create an object holding the multiple types of
|
|
641
|
+
geometry objects. Allows user to use the same in GeoDataFrame
|
|
642
|
+
manipulation and processing using any Geospatial function.
|
|
643
|
+
|
|
644
|
+
PARAMETERS:
|
|
645
|
+
geoms:
|
|
646
|
+
Optional Argument.
|
|
647
|
+
Specifies the list of different geometry types.
|
|
648
|
+
If no geometries are are passed, an object for empty
|
|
649
|
+
GeometryCollection is created.
|
|
650
|
+
Types: List of geometry objects of types:
|
|
651
|
+
1. Point
|
|
652
|
+
2. LineString
|
|
653
|
+
3. Polygon
|
|
654
|
+
4. MultiPoint
|
|
655
|
+
5. MultiLineString
|
|
656
|
+
6. MultiPolygon
|
|
657
|
+
7. GeometryCollection
|
|
658
|
+
8. Mixture of any of these.
|
|
659
|
+
|
|
660
|
+
RETURNS:
|
|
661
|
+
GeometryCollection
|
|
662
|
+
|
|
663
|
+
RAISES:
|
|
664
|
+
TeradataMlException, TypeError, ValueError
|
|
665
|
+
|
|
666
|
+
EXAMPLES:
|
|
667
|
+
>>> from teradataml import Point, LineString, Polygon, MultiPoint,
|
|
668
|
+
... MultiLineString, MultiPolygon, GeometryCollection
|
|
669
|
+
|
|
670
|
+
# Example 1: Create a GeometryCollection object with all geometries.
|
|
671
|
+
>>> # Create Point objects.
|
|
672
|
+
>>> p1 = Point(1, 1)
|
|
673
|
+
>>> p2 = Point()
|
|
674
|
+
>>> p3 = Point(6, 3)
|
|
675
|
+
>>> p4 = Point(10, 5)
|
|
676
|
+
>>> p5 = Point()
|
|
677
|
+
>>>
|
|
678
|
+
>>> # Create LineString Objects.
|
|
679
|
+
>>> l1 = LineString([(1, 3), (3, 0), (0, 1)])
|
|
680
|
+
>>> l2 = LineString([(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)])
|
|
681
|
+
>>> l3 = LineString()
|
|
682
|
+
>>>
|
|
683
|
+
>>> # Create Polygon Objects.
|
|
684
|
+
>>> po1 = Polygon([(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20),
|
|
685
|
+
... (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20),
|
|
686
|
+
... (0, 0, 0)])
|
|
687
|
+
>>> po2 = Polygon([(0, 0, 0), (0, 0, 20.435), (0, 20.435, 0),
|
|
688
|
+
... (0, 20.435, 20.435), (20.435, 0, 0), (20.435, 0, 20.435),
|
|
689
|
+
... (20.435, 20.435, 0), (20.435, 20.435, 20.435),
|
|
690
|
+
... (0, 0, 0)])
|
|
691
|
+
>>> po3 = Polygon()
|
|
692
|
+
>>>
|
|
693
|
+
>>> # Create MultiPolygon Object.
|
|
694
|
+
>>> mpol = MultiPolygon([po1, Polygon(), po2])
|
|
695
|
+
>>>
|
|
696
|
+
>>> # Create MultiLineString Object.
|
|
697
|
+
>>> mlin = MultiLineString([l1, l2, l3])
|
|
698
|
+
>>>
|
|
699
|
+
>>> # Create MultiPoint Object.
|
|
700
|
+
>>> mpnt = MultiPoint([p1, p2, p3, p4, p5])
|
|
701
|
+
>>>
|
|
702
|
+
>>> # Create a GeometryCollection object.
|
|
703
|
+
>>> gc1 = GeometryCollection([p1, p2, l1, l3, po2, po3, po1, mpol, mlin, mpnt])
|
|
704
|
+
>>> # Print the coordinates.
|
|
705
|
+
>>> print(gc1.coords)
|
|
706
|
+
[(1, 1), 'EMPTY', [(1, 3), (3, 0), (0, 1)], 'EMPTY', [(0, 0, 0), (0, 0, 20.435), (0, 20.435, 0), (0, 20.435, 20.435), (20.435, 0, 0), (20.435, 0, 20.435), (20.435, 20.435, 0), (20.435, 20.435, 20.435), (0, 0, 0)], 'EMPTY', [(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20), (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20), (0, 0, 0)], [[(0, 0, 0), (0, 0, 20), (0, 20, 0), (0, 20, 20), (20, 0, 0), (20, 0, 20), (20, 20, 0), (20, 20, 20), (0, 0, 0)], 'EMPTY', [(0, 0, 0), (0, 0, 20.435), (0, 20.435, 0), (0, 20.435, 20.435), (20.435, 0, 0), (20.435, 0, 20.435), (20.435, 20.435, 0), (20.435, 20.435, 20.435), (0, 0, 0)]], [[(1, 3), (3, 0), (0, 1)], [(1.35, 3.6456), (3.6756, 0.23), (0.345, 1.756)], 'EMPTY'], [(1, 1), 'EMPTY', (6, 3), (10, 5), 'EMPTY']]
|
|
707
|
+
>>> # Print the geometry type.
|
|
708
|
+
>>> print(gc1.geom_type)
|
|
709
|
+
GeometryCollection
|
|
710
|
+
>>>
|
|
711
|
+
|
|
712
|
+
# Example 2: Create an empty GeometryCollection.
|
|
713
|
+
>>> gc2 = GeometryCollection()
|
|
714
|
+
>>> # Print the coordinates.
|
|
715
|
+
>>> print(gc2.coords)
|
|
716
|
+
EMPTY
|
|
717
|
+
>>>
|
|
718
|
+
"""
|
|
719
|
+
super(GeometryCollection, self).__init__(geometries)
|
|
720
|
+
if geometries is not None:
|
|
721
|
+
# Argument validation.
|
|
722
|
+
acc_types = (list, Point, LineString, Polygon, MultiPoint,
|
|
723
|
+
MultiLineString, MultiPolygon, GeometryCollection)
|
|
724
|
+
arg_info = [["geometries", geometries, False, acc_types]]
|
|
725
|
+
_Validators()._validate_function_arguments(arg_info)
|
|
726
|
+
|
|
727
|
+
self.geometries = geometries
|
|
728
|
+
for geo in geometries:
|
|
729
|
+
self.coordinates.append(geo.coords)
|
|
730
|
+
|
|
731
|
+
@property
|
|
732
|
+
def _coords_vantage_fmt(self):
|
|
733
|
+
"""
|
|
734
|
+
Returns the coordinates of the GeometryCollection Geometry object in
|
|
735
|
+
Vantage format.
|
|
736
|
+
"""
|
|
737
|
+
if self._is_empty:
|
|
738
|
+
return VANTAGE_EMPTY_GEOM_FMT
|
|
739
|
+
else:
|
|
740
|
+
return "({})".format(
|
|
741
|
+
", ".join(map(str, self.geometries)))
|
|
742
|
+
|
|
743
|
+
class GeoSequence(LineString):
|
|
744
|
+
"""
|
|
745
|
+
Class GeoSequence enables end user to create an object for the
|
|
746
|
+
LineString geometry objects with tracking information such as
|
|
747
|
+
timestamp. This allows user to use the same in GeoDataFrame
|
|
748
|
+
manipulation and processing.
|
|
749
|
+
"""
|
|
750
|
+
def __init__(self, coordinates=None, timestamps=None, link_ids=None,
|
|
751
|
+
user_field_count=0, user_fields=None):
|
|
752
|
+
"""
|
|
753
|
+
DESCRIPTION:
|
|
754
|
+
Enables end user to create an object holding the LineString
|
|
755
|
+
geometry objects with tracking information such as timestamps.
|
|
756
|
+
Allows user to use the same in GeoDataFrame manipulation and
|
|
757
|
+
processing using any Geospatial function.
|
|
758
|
+
|
|
759
|
+
PARAMETERS:
|
|
760
|
+
coordinates:
|
|
761
|
+
Optional Argument.
|
|
762
|
+
Specifies the list of coordinates of a Point. While passing
|
|
763
|
+
coordinates, one must always pass coordinates in list of either
|
|
764
|
+
two-tuples for 2D or list of three-tuples for 3D.
|
|
765
|
+
Argument also accepts list of Points as well instead of tuples.
|
|
766
|
+
If coordinates are not passed, an object for empty line is
|
|
767
|
+
created.
|
|
768
|
+
Types: List of
|
|
769
|
+
a. Point geometry objects or
|
|
770
|
+
b. two-tuple of int or float or
|
|
771
|
+
c. three-tuple of int or float or
|
|
772
|
+
d. Mix of any of the above.
|
|
773
|
+
|
|
774
|
+
timestamps:
|
|
775
|
+
Optional Argument.
|
|
776
|
+
Specifies the list of timestamp values for each coordinate with
|
|
777
|
+
the following format:
|
|
778
|
+
yyyy-mm-dd hh:mi:ss.ms
|
|
779
|
+
The first timestamp value is associated with the first point, the
|
|
780
|
+
second timestamp value is associated with the second point, and
|
|
781
|
+
so forth.
|
|
782
|
+
Note:
|
|
783
|
+
You must specify n timestamp values, where n is the number of
|
|
784
|
+
points in the geosequence.
|
|
785
|
+
Types: list of strings
|
|
786
|
+
|
|
787
|
+
link_ids:
|
|
788
|
+
Optional Argument.
|
|
789
|
+
Specifies the list of values for the ID of the link on the road
|
|
790
|
+
network for a point in the geosequence.
|
|
791
|
+
This value is reserved for a future release.
|
|
792
|
+
The first link ID value is associated with the first point, the
|
|
793
|
+
second link ID value is associated with the second point, and
|
|
794
|
+
so forth.
|
|
795
|
+
Note:
|
|
796
|
+
You must specify n link ID values, where n is the number of
|
|
797
|
+
points in the geosequence.
|
|
798
|
+
Types: list of ints
|
|
799
|
+
|
|
800
|
+
user_field_count:
|
|
801
|
+
Optional Argument.
|
|
802
|
+
Specifies the value that represents the number of user field
|
|
803
|
+
elements for each point in the geosequence.
|
|
804
|
+
A value of 0 indicates that no user field elements appear after
|
|
805
|
+
count in the character string.
|
|
806
|
+
Default Value: 0
|
|
807
|
+
Types: int
|
|
808
|
+
|
|
809
|
+
user_fields:
|
|
810
|
+
Optional Argument.
|
|
811
|
+
Specifies the list of user field tuples that represents a value to
|
|
812
|
+
associated with a point. For example, certain tracking systems may
|
|
813
|
+
associate velocity, direction, and acceleration values with each point.
|
|
814
|
+
Note:
|
|
815
|
+
1. You must specify count groups of n user field values (where n is
|
|
816
|
+
the number of points in the geosequence).
|
|
817
|
+
2. The first group provides the first user field values for each point,
|
|
818
|
+
the second group provides the second user field values for each point,
|
|
819
|
+
and so forth.
|
|
820
|
+
3. Each group can be formed using a tuple.
|
|
821
|
+
Types: list of tuples of ints or floats
|
|
822
|
+
|
|
823
|
+
RETURNS:
|
|
824
|
+
GeoSequence
|
|
825
|
+
|
|
826
|
+
RAISES:
|
|
827
|
+
TeradataMlException, TypeError, ValueError
|
|
828
|
+
|
|
829
|
+
EXAMPLES:
|
|
830
|
+
>>> from teradataml import Point, GeoSequence
|
|
831
|
+
|
|
832
|
+
# Example 1: Create a GeoSequence with 2D points and no user fields.
|
|
833
|
+
>>> coordinates = [(1, 3), (3, 0), (0, 1)]
|
|
834
|
+
>>> timestamps = ["2008-03-17 10:34:03.53", "2008-03-17 10:38:25.21", "2008-03-17 10:41:41.48"]
|
|
835
|
+
>>> link_ids = [1001, 1002, 1003]
|
|
836
|
+
>>> gs1 = GeoSequence(coordinates=coordinates, timestamps=timestamps, link_ids=link_ids)
|
|
837
|
+
>>> gs1.coords
|
|
838
|
+
[(1, 3), (3, 0), (0, 1)]
|
|
839
|
+
>>> str(gs1)
|
|
840
|
+
'GeoSequence((1 3, 3 0, 0 1), (2008-03-17 10:34:03.53, 2008-03-17 10:38:25.21, 2008-03-17 10:41:41.48), (1001, 1002, 1003), (0))'
|
|
841
|
+
>>>
|
|
842
|
+
|
|
843
|
+
# Example 2: Create a GeoSequence with 3D points and 2 user fields.
|
|
844
|
+
# Note that coordinates can be provided as tuple of ints/floats
|
|
845
|
+
# or Point objects.
|
|
846
|
+
>>> p1 = (3, 0, 6)
|
|
847
|
+
>>> coordinates = [(1, 3, 6), p1, (6, 0, 1)]
|
|
848
|
+
>>> timestamps = ["2008-03-17 10:34:03.53", "2008-03-17 10:38:25.21", "2008-03-17 10:41:41.48"]
|
|
849
|
+
>>> link_ids = [1001, 1002, 1003]
|
|
850
|
+
>>> user_fields = [(1, 2), (3, 4), (5, 6)]
|
|
851
|
+
>>> gs2 = GeoSequence(coordinates=coordinates, timestamps=timestamps, link_ids=link_ids,
|
|
852
|
+
... user_field_count=2, user_fields=user_fields)
|
|
853
|
+
>>> gs2.coords
|
|
854
|
+
[(1, 3, 6), (3, 0, 6), (6, 0, 1)]
|
|
855
|
+
>>> str(gs2)
|
|
856
|
+
'GeoSequence((1 3 6, 3 0 6, 6 0 1), (2008-03-17 10:34:03.53, 2008-03-17 10:38:25.21, 2008-03-17 10:41:41.48), (1001, 1002, 1003), (2, 1, 2, 3, 4, 5, 6))'
|
|
857
|
+
>>>
|
|
858
|
+
|
|
859
|
+
# Example 3: Create an empty GeoSequence.
|
|
860
|
+
>>> gs3 = GeoSequence()
|
|
861
|
+
>>> # Print the coordinates.
|
|
862
|
+
>>> print(gc3.coords)
|
|
863
|
+
EMPTY
|
|
864
|
+
>>>
|
|
865
|
+
"""
|
|
866
|
+
self.timestamps = timestamps
|
|
867
|
+
self.user_field_count = user_field_count
|
|
868
|
+
self.link_ids = link_ids
|
|
869
|
+
self.user_fields = user_fields
|
|
870
|
+
|
|
871
|
+
super(GeoSequence, self).__init__(coordinates)
|
|
872
|
+
all_args_provided = all([coordinates, self.timestamps, self.link_ids])
|
|
873
|
+
any_args_provided = any([coordinates, self.timestamps, self.link_ids])
|
|
874
|
+
|
|
875
|
+
if any_args_provided:
|
|
876
|
+
if not all_args_provided:
|
|
877
|
+
raise ValueError("Either provide all (coordinates, timestamps, link_ids) or None.")
|
|
878
|
+
|
|
879
|
+
if all_args_provided:
|
|
880
|
+
arg_info = []
|
|
881
|
+
arg_info.append(["timestamps", self.timestamps, True, _str_list])
|
|
882
|
+
arg_info.append(["link_ids", self.link_ids, True, _int_list])
|
|
883
|
+
arg_info.append(["user_field_count", self.user_field_count, True, int])
|
|
884
|
+
arg_info.append(["user_fields", self.user_fields, True,
|
|
885
|
+
(_int_float_tuple_list, _int_float_list)])
|
|
886
|
+
_Validators()._validate_function_arguments(arg_info)
|
|
887
|
+
|
|
888
|
+
_Validators._validate_list_lengths_equal(self.coordinates, "coordinates",
|
|
889
|
+
self.timestamps, "timestamps")
|
|
890
|
+
_Validators._validate_list_lengths_equal(self.coordinates, "coordinates",
|
|
891
|
+
self.link_ids, "link_ids")
|
|
892
|
+
if self.user_fields is not None:
|
|
893
|
+
_Validators._validate_list_lengths_equal(self.coordinates, "coordinates",
|
|
894
|
+
self.user_fields, "user_fields")
|
|
895
|
+
|
|
896
|
+
for uf in self.user_fields:
|
|
897
|
+
if isinstance(uf, tuple):
|
|
898
|
+
if len(uf) != self.user_field_count:
|
|
899
|
+
err_ = Messages.get_message(MessageCodes.GEOSEQ_USER_FIELD_NUM)
|
|
900
|
+
raise ValueError(err_)
|
|
901
|
+
|
|
902
|
+
@property
|
|
903
|
+
def _coords_vantage_fmt(self):
|
|
904
|
+
"""
|
|
905
|
+
Returns the coordinates of the GeometryCollection Geometry object in
|
|
906
|
+
Vantage format.
|
|
907
|
+
"""
|
|
908
|
+
if self._is_empty:
|
|
909
|
+
return VANTAGE_EMPTY_GEOM_FMT
|
|
910
|
+
else:
|
|
911
|
+
coords = "({})".format(
|
|
912
|
+
", ".join(map(lambda x: " ".join(map(str, x)),
|
|
913
|
+
self.coords)))
|
|
914
|
+
ts = "({})".format(", ".join(self.timestamps))
|
|
915
|
+
ids = "({})".format(", ".join(map(str, self.link_ids)))
|
|
916
|
+
ufs = [self.user_field_count]
|
|
917
|
+
if self.user_fields is not None:
|
|
918
|
+
for uf in self.user_fields:
|
|
919
|
+
if not isinstance(uf, tuple):
|
|
920
|
+
ufs.append(uf)
|
|
921
|
+
else:
|
|
922
|
+
ufs.append(", ".join(map(str, list(uf))))
|
|
923
|
+
|
|
924
|
+
uf = "({})".format(", ".join(map(str, ufs)))
|
|
925
|
+
return "({}, {}, {}, {})".format(coords, ts, ids, uf)
|
|
926
|
+
|