teradataml 20.0.0.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1208) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +2762 -0
  4. teradataml/__init__.py +78 -0
  5. teradataml/_version.py +11 -0
  6. teradataml/analytics/Transformations.py +2996 -0
  7. teradataml/analytics/__init__.py +82 -0
  8. teradataml/analytics/analytic_function_executor.py +2416 -0
  9. teradataml/analytics/analytic_query_generator.py +1050 -0
  10. teradataml/analytics/byom/H2OPredict.py +514 -0
  11. teradataml/analytics/byom/PMMLPredict.py +437 -0
  12. teradataml/analytics/byom/__init__.py +16 -0
  13. teradataml/analytics/json_parser/__init__.py +133 -0
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
  15. teradataml/analytics/json_parser/json_store.py +191 -0
  16. teradataml/analytics/json_parser/metadata.py +1666 -0
  17. teradataml/analytics/json_parser/utils.py +805 -0
  18. teradataml/analytics/meta_class.py +236 -0
  19. teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
  21. teradataml/analytics/sqle/__init__.py +128 -0
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
  24. teradataml/analytics/table_operator/__init__.py +11 -0
  25. teradataml/analytics/uaf/__init__.py +82 -0
  26. teradataml/analytics/utils.py +828 -0
  27. teradataml/analytics/valib.py +1617 -0
  28. teradataml/automl/__init__.py +5835 -0
  29. teradataml/automl/autodataprep/__init__.py +493 -0
  30. teradataml/automl/custom_json_utils.py +1625 -0
  31. teradataml/automl/data_preparation.py +1384 -0
  32. teradataml/automl/data_transformation.py +1254 -0
  33. teradataml/automl/feature_engineering.py +2273 -0
  34. teradataml/automl/feature_exploration.py +1873 -0
  35. teradataml/automl/model_evaluation.py +488 -0
  36. teradataml/automl/model_training.py +1407 -0
  37. teradataml/catalog/__init__.py +2 -0
  38. teradataml/catalog/byom.py +1759 -0
  39. teradataml/catalog/function_argument_mapper.py +859 -0
  40. teradataml/catalog/model_cataloging_utils.py +491 -0
  41. teradataml/clients/__init__.py +0 -0
  42. teradataml/clients/auth_client.py +137 -0
  43. teradataml/clients/keycloak_client.py +165 -0
  44. teradataml/clients/pkce_client.py +481 -0
  45. teradataml/common/__init__.py +1 -0
  46. teradataml/common/aed_utils.py +2078 -0
  47. teradataml/common/bulk_exposed_utils.py +113 -0
  48. teradataml/common/constants.py +1669 -0
  49. teradataml/common/deprecations.py +166 -0
  50. teradataml/common/exceptions.py +147 -0
  51. teradataml/common/formula.py +743 -0
  52. teradataml/common/garbagecollector.py +666 -0
  53. teradataml/common/logger.py +1261 -0
  54. teradataml/common/messagecodes.py +518 -0
  55. teradataml/common/messages.py +262 -0
  56. teradataml/common/pylogger.py +67 -0
  57. teradataml/common/sqlbundle.py +764 -0
  58. teradataml/common/td_coltype_code_to_tdtype.py +48 -0
  59. teradataml/common/utils.py +3166 -0
  60. teradataml/common/warnings.py +36 -0
  61. teradataml/common/wrapper_utils.py +625 -0
  62. teradataml/config/__init__.py +0 -0
  63. teradataml/config/dummy_file1.cfg +5 -0
  64. teradataml/config/dummy_file2.cfg +3 -0
  65. teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
  66. teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
  67. teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
  68. teradataml/context/__init__.py +0 -0
  69. teradataml/context/aed_context.py +223 -0
  70. teradataml/context/context.py +1462 -0
  71. teradataml/data/A_loan.csv +19 -0
  72. teradataml/data/BINARY_REALS_LEFT.csv +11 -0
  73. teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
  74. teradataml/data/B_loan.csv +49 -0
  75. teradataml/data/BuoyData2.csv +17 -0
  76. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
  77. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
  78. teradataml/data/Convolve2RealsLeft.csv +5 -0
  79. teradataml/data/Convolve2RealsRight.csv +5 -0
  80. teradataml/data/Convolve2ValidLeft.csv +11 -0
  81. teradataml/data/Convolve2ValidRight.csv +11 -0
  82. teradataml/data/DFFTConv_Real_8_8.csv +65 -0
  83. teradataml/data/Employee.csv +5 -0
  84. teradataml/data/Employee_Address.csv +4 -0
  85. teradataml/data/Employee_roles.csv +5 -0
  86. teradataml/data/JulesBelvezeDummyData.csv +100 -0
  87. teradataml/data/Mall_customer_data.csv +201 -0
  88. teradataml/data/Orders1_12mf.csv +25 -0
  89. teradataml/data/Pi_loan.csv +7 -0
  90. teradataml/data/SMOOTHED_DATA.csv +7 -0
  91. teradataml/data/TestDFFT8.csv +9 -0
  92. teradataml/data/TestRiver.csv +109 -0
  93. teradataml/data/Traindata.csv +28 -0
  94. teradataml/data/__init__.py +0 -0
  95. teradataml/data/acf.csv +17 -0
  96. teradataml/data/adaboost_example.json +34 -0
  97. teradataml/data/adaboostpredict_example.json +24 -0
  98. teradataml/data/additional_table.csv +11 -0
  99. teradataml/data/admissions_test.csv +21 -0
  100. teradataml/data/admissions_train.csv +41 -0
  101. teradataml/data/admissions_train_nulls.csv +41 -0
  102. teradataml/data/advertising.csv +201 -0
  103. teradataml/data/ageandheight.csv +13 -0
  104. teradataml/data/ageandpressure.csv +31 -0
  105. teradataml/data/amazon_reviews_25.csv +26 -0
  106. teradataml/data/antiselect_example.json +36 -0
  107. teradataml/data/antiselect_input.csv +8 -0
  108. teradataml/data/antiselect_input_mixed_case.csv +8 -0
  109. teradataml/data/applicant_external.csv +7 -0
  110. teradataml/data/applicant_reference.csv +7 -0
  111. teradataml/data/apriori_example.json +22 -0
  112. teradataml/data/arima_example.json +9 -0
  113. teradataml/data/assortedtext_input.csv +8 -0
  114. teradataml/data/attribution_example.json +34 -0
  115. teradataml/data/attribution_sample_table.csv +27 -0
  116. teradataml/data/attribution_sample_table1.csv +6 -0
  117. teradataml/data/attribution_sample_table2.csv +11 -0
  118. teradataml/data/bank_churn.csv +10001 -0
  119. teradataml/data/bank_marketing.csv +11163 -0
  120. teradataml/data/bank_web_clicks1.csv +43 -0
  121. teradataml/data/bank_web_clicks2.csv +91 -0
  122. teradataml/data/bank_web_url.csv +85 -0
  123. teradataml/data/barrier.csv +2 -0
  124. teradataml/data/barrier_new.csv +3 -0
  125. teradataml/data/betweenness_example.json +14 -0
  126. teradataml/data/bike_sharing.csv +732 -0
  127. teradataml/data/bin_breaks.csv +8 -0
  128. teradataml/data/bin_fit_ip.csv +4 -0
  129. teradataml/data/binary_complex_left.csv +11 -0
  130. teradataml/data/binary_complex_right.csv +11 -0
  131. teradataml/data/binary_matrix_complex_left.csv +21 -0
  132. teradataml/data/binary_matrix_complex_right.csv +21 -0
  133. teradataml/data/binary_matrix_real_left.csv +21 -0
  134. teradataml/data/binary_matrix_real_right.csv +21 -0
  135. teradataml/data/blood2ageandweight.csv +26 -0
  136. teradataml/data/bmi.csv +501 -0
  137. teradataml/data/boston.csv +507 -0
  138. teradataml/data/boston2cols.csv +721 -0
  139. teradataml/data/breast_cancer.csv +570 -0
  140. teradataml/data/buoydata_mix.csv +11 -0
  141. teradataml/data/burst_data.csv +5 -0
  142. teradataml/data/burst_example.json +21 -0
  143. teradataml/data/byom_example.json +34 -0
  144. teradataml/data/bytes_table.csv +4 -0
  145. teradataml/data/cal_housing_ex_raw.csv +70 -0
  146. teradataml/data/callers.csv +7 -0
  147. teradataml/data/calls.csv +10 -0
  148. teradataml/data/cars_hist.csv +33 -0
  149. teradataml/data/cat_table.csv +25 -0
  150. teradataml/data/ccm_example.json +32 -0
  151. teradataml/data/ccm_input.csv +91 -0
  152. teradataml/data/ccm_input2.csv +13 -0
  153. teradataml/data/ccmexample.csv +101 -0
  154. teradataml/data/ccmprepare_example.json +9 -0
  155. teradataml/data/ccmprepare_input.csv +91 -0
  156. teradataml/data/cfilter_example.json +12 -0
  157. teradataml/data/changepointdetection_example.json +18 -0
  158. teradataml/data/changepointdetectionrt_example.json +8 -0
  159. teradataml/data/chi_sq.csv +3 -0
  160. teradataml/data/churn_data.csv +14 -0
  161. teradataml/data/churn_emission.csv +35 -0
  162. teradataml/data/churn_initial.csv +3 -0
  163. teradataml/data/churn_state_transition.csv +5 -0
  164. teradataml/data/citedges_2.csv +745 -0
  165. teradataml/data/citvertices_2.csv +1210 -0
  166. teradataml/data/clicks2.csv +16 -0
  167. teradataml/data/clickstream.csv +13 -0
  168. teradataml/data/clickstream1.csv +11 -0
  169. teradataml/data/closeness_example.json +16 -0
  170. teradataml/data/complaints.csv +21 -0
  171. teradataml/data/complaints_mini.csv +3 -0
  172. teradataml/data/complaints_test_tokenized.csv +353 -0
  173. teradataml/data/complaints_testtoken.csv +224 -0
  174. teradataml/data/complaints_tokens_model.csv +348 -0
  175. teradataml/data/complaints_tokens_test.csv +353 -0
  176. teradataml/data/complaints_traintoken.csv +472 -0
  177. teradataml/data/computers_category.csv +1001 -0
  178. teradataml/data/computers_test1.csv +1252 -0
  179. teradataml/data/computers_train1.csv +5009 -0
  180. teradataml/data/computers_train1_clustered.csv +5009 -0
  181. teradataml/data/confusionmatrix_example.json +9 -0
  182. teradataml/data/conversion_event_table.csv +3 -0
  183. teradataml/data/corr_input.csv +17 -0
  184. teradataml/data/correlation_example.json +11 -0
  185. teradataml/data/covid_confirm_sd.csv +83 -0
  186. teradataml/data/coxhazardratio_example.json +39 -0
  187. teradataml/data/coxph_example.json +15 -0
  188. teradataml/data/coxsurvival_example.json +28 -0
  189. teradataml/data/cpt.csv +41 -0
  190. teradataml/data/credit_ex_merged.csv +45 -0
  191. teradataml/data/creditcard_data.csv +1001 -0
  192. teradataml/data/customer_loyalty.csv +301 -0
  193. teradataml/data/customer_loyalty_newseq.csv +31 -0
  194. teradataml/data/customer_segmentation_test.csv +2628 -0
  195. teradataml/data/customer_segmentation_train.csv +8069 -0
  196. teradataml/data/dataframe_example.json +173 -0
  197. teradataml/data/decisionforest_example.json +37 -0
  198. teradataml/data/decisionforestpredict_example.json +38 -0
  199. teradataml/data/decisiontree_example.json +21 -0
  200. teradataml/data/decisiontreepredict_example.json +45 -0
  201. teradataml/data/dfft2_size4_real.csv +17 -0
  202. teradataml/data/dfft2_test_matrix16.csv +17 -0
  203. teradataml/data/dfft2conv_real_4_4.csv +65 -0
  204. teradataml/data/diabetes.csv +443 -0
  205. teradataml/data/diabetes_test.csv +89 -0
  206. teradataml/data/dict_table.csv +5 -0
  207. teradataml/data/docperterm_table.csv +4 -0
  208. teradataml/data/docs/__init__.py +1 -0
  209. teradataml/data/docs/byom/__init__.py +0 -0
  210. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
  211. teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
  212. teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
  213. teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
  214. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
  215. teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
  216. teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
  217. teradataml/data/docs/byom/docs/__init__.py +0 -0
  218. teradataml/data/docs/sqle/__init__.py +0 -0
  219. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
  220. teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
  221. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
  222. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
  223. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
  224. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
  225. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
  226. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
  227. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
  228. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
  229. teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
  230. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
  231. teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
  232. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
  233. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
  234. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
  235. teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
  236. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
  237. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
  238. teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
  239. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
  240. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
  241. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
  242. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
  243. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
  244. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
  245. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
  246. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
  247. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
  248. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
  249. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
  250. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
  251. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
  252. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
  253. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
  254. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
  255. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
  256. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
  257. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
  258. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
  259. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
  260. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
  261. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
  262. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
  263. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
  264. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
  265. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
  266. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
  267. teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
  268. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
  269. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
  270. teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
  271. teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
  272. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
  273. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
  274. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  275. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
  276. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
  277. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
  278. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
  279. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
  280. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
  281. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
  282. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
  283. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
  284. teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
  285. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
  286. teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
  287. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
  288. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
  289. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
  290. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
  291. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
  292. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
  293. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
  294. teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
  295. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
  296. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
  297. teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
  298. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
  299. teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
  300. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
  301. teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
  302. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  303. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
  304. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
  305. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
  306. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
  307. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
  308. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
  309. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
  310. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
  311. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
  312. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
  313. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
  314. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
  315. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
  316. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
  317. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
  318. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  319. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
  320. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
  321. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
  322. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
  323. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
  324. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
  325. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
  326. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
  327. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
  328. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
  329. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
  330. teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
  331. teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
  332. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
  333. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
  334. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
  335. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
  336. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
  337. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
  338. teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
  339. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
  340. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
  341. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
  342. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
  343. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
  344. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
  345. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
  346. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  347. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  348. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
  349. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
  350. teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
  351. teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
  352. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
  353. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
  354. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
  355. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
  356. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  357. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
  358. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
  359. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
  360. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
  361. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
  362. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
  363. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
  364. teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
  365. teradataml/data/docs/tableoperator/__init__.py +0 -0
  366. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
  367. teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
  368. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
  369. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
  370. teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
  371. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
  372. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
  373. teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
  374. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  375. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
  376. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
  377. teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
  378. teradataml/data/docs/uaf/__init__.py +0 -0
  379. teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
  380. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
  381. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
  382. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
  383. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  384. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  385. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
  386. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
  387. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
  388. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
  389. teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
  390. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
  391. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  392. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
  393. teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
  394. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
  395. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
  396. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
  397. teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
  398. teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
  399. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  400. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
  401. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
  402. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
  403. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
  404. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  405. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
  406. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
  407. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
  408. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
  409. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
  410. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
  411. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
  412. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  413. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  414. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  415. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
  416. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
  417. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
  418. teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
  419. teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
  420. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  421. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
  422. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
  423. teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
  424. teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
  425. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
  426. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
  427. teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
  428. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  429. teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
  430. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
  431. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
  432. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
  433. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
  434. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
  435. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
  436. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
  437. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
  438. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
  439. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
  440. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  441. teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
  442. teradataml/data/dtw_example.json +18 -0
  443. teradataml/data/dtw_t1.csv +11 -0
  444. teradataml/data/dtw_t2.csv +4 -0
  445. teradataml/data/dwt2d_dataTable.csv +65 -0
  446. teradataml/data/dwt2d_example.json +16 -0
  447. teradataml/data/dwt_dataTable.csv +8 -0
  448. teradataml/data/dwt_example.json +15 -0
  449. teradataml/data/dwt_filterTable.csv +3 -0
  450. teradataml/data/dwt_filter_dim.csv +5 -0
  451. teradataml/data/emission.csv +9 -0
  452. teradataml/data/emp_table_by_dept.csv +19 -0
  453. teradataml/data/employee_info.csv +4 -0
  454. teradataml/data/employee_table.csv +6 -0
  455. teradataml/data/excluding_event_table.csv +2 -0
  456. teradataml/data/finance_data.csv +6 -0
  457. teradataml/data/finance_data2.csv +61 -0
  458. teradataml/data/finance_data3.csv +93 -0
  459. teradataml/data/finance_data4.csv +13 -0
  460. teradataml/data/fish.csv +160 -0
  461. teradataml/data/fm_blood2ageandweight.csv +26 -0
  462. teradataml/data/fmeasure_example.json +12 -0
  463. teradataml/data/followers_leaders.csv +10 -0
  464. teradataml/data/fpgrowth_example.json +12 -0
  465. teradataml/data/frequentpaths_example.json +29 -0
  466. teradataml/data/friends.csv +9 -0
  467. teradataml/data/fs_input.csv +33 -0
  468. teradataml/data/fs_input1.csv +33 -0
  469. teradataml/data/genData.csv +513 -0
  470. teradataml/data/geodataframe_example.json +40 -0
  471. teradataml/data/glass_types.csv +215 -0
  472. teradataml/data/glm_admissions_model.csv +12 -0
  473. teradataml/data/glm_example.json +56 -0
  474. teradataml/data/glml1l2_example.json +28 -0
  475. teradataml/data/glml1l2predict_example.json +54 -0
  476. teradataml/data/glmpredict_example.json +54 -0
  477. teradataml/data/gq_t1.csv +21 -0
  478. teradataml/data/grocery_transaction.csv +19 -0
  479. teradataml/data/hconvolve_complex_right.csv +5 -0
  480. teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
  481. teradataml/data/histogram_example.json +12 -0
  482. teradataml/data/hmmdecoder_example.json +79 -0
  483. teradataml/data/hmmevaluator_example.json +25 -0
  484. teradataml/data/hmmsupervised_example.json +10 -0
  485. teradataml/data/hmmunsupervised_example.json +8 -0
  486. teradataml/data/hnsw_alter_data.csv +5 -0
  487. teradataml/data/hnsw_data.csv +10 -0
  488. teradataml/data/house_values.csv +12 -0
  489. teradataml/data/house_values2.csv +13 -0
  490. teradataml/data/housing_cat.csv +7 -0
  491. teradataml/data/housing_data.csv +9 -0
  492. teradataml/data/housing_test.csv +47 -0
  493. teradataml/data/housing_test_binary.csv +47 -0
  494. teradataml/data/housing_train.csv +493 -0
  495. teradataml/data/housing_train_attribute.csv +5 -0
  496. teradataml/data/housing_train_binary.csv +437 -0
  497. teradataml/data/housing_train_parameter.csv +2 -0
  498. teradataml/data/housing_train_response.csv +493 -0
  499. teradataml/data/housing_train_segment.csv +201 -0
  500. teradataml/data/ibm_stock.csv +370 -0
  501. teradataml/data/ibm_stock1.csv +370 -0
  502. teradataml/data/identitymatch_example.json +22 -0
  503. teradataml/data/idf_table.csv +4 -0
  504. teradataml/data/idwt2d_dataTable.csv +5 -0
  505. teradataml/data/idwt_dataTable.csv +8 -0
  506. teradataml/data/idwt_filterTable.csv +3 -0
  507. teradataml/data/impressions.csv +101 -0
  508. teradataml/data/inflation.csv +21 -0
  509. teradataml/data/initial.csv +3 -0
  510. teradataml/data/insect2Cols.csv +61 -0
  511. teradataml/data/insect_sprays.csv +13 -0
  512. teradataml/data/insurance.csv +1339 -0
  513. teradataml/data/interpolator_example.json +13 -0
  514. teradataml/data/interval_data.csv +5 -0
  515. teradataml/data/iris_altinput.csv +481 -0
  516. teradataml/data/iris_attribute_output.csv +8 -0
  517. teradataml/data/iris_attribute_test.csv +121 -0
  518. teradataml/data/iris_attribute_train.csv +481 -0
  519. teradataml/data/iris_category_expect_predict.csv +31 -0
  520. teradataml/data/iris_data.csv +151 -0
  521. teradataml/data/iris_input.csv +151 -0
  522. teradataml/data/iris_response_train.csv +121 -0
  523. teradataml/data/iris_test.csv +31 -0
  524. teradataml/data/iris_train.csv +121 -0
  525. teradataml/data/join_table1.csv +4 -0
  526. teradataml/data/join_table2.csv +4 -0
  527. teradataml/data/jsons/anly_function_name.json +7 -0
  528. teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
  529. teradataml/data/jsons/byom/dataikupredict.json +148 -0
  530. teradataml/data/jsons/byom/datarobotpredict.json +147 -0
  531. teradataml/data/jsons/byom/h2opredict.json +195 -0
  532. teradataml/data/jsons/byom/onnxembeddings.json +267 -0
  533. teradataml/data/jsons/byom/onnxpredict.json +187 -0
  534. teradataml/data/jsons/byom/pmmlpredict.json +147 -0
  535. teradataml/data/jsons/paired_functions.json +450 -0
  536. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
  537. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
  538. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
  539. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
  540. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
  541. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
  542. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
  543. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
  544. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
  545. teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
  546. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
  547. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
  548. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
  549. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
  550. teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
  551. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
  552. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
  553. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
  554. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
  555. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
  556. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
  557. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
  558. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
  559. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
  560. teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
  561. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
  562. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
  563. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
  564. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
  565. teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
  566. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
  567. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
  568. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
  569. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
  570. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
  571. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
  572. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
  573. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
  574. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
  575. teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
  576. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
  577. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
  578. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
  579. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
  580. teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
  581. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
  582. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
  583. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
  584. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
  585. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
  586. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
  587. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
  588. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
  589. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
  590. teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
  591. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
  592. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
  593. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
  594. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
  595. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
  596. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
  597. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
  598. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
  599. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
  600. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
  601. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
  602. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
  603. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
  604. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
  605. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
  606. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
  607. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
  608. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
  609. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
  610. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
  611. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
  612. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
  613. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
  614. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
  615. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
  616. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
  617. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
  618. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
  619. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
  620. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
  621. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
  622. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
  623. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
  624. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
  625. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
  626. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
  627. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
  628. teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
  629. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
  630. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
  631. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
  632. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
  633. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
  634. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
  635. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
  636. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
  637. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
  638. teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
  639. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
  640. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
  641. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
  642. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
  643. teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
  644. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
  645. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
  646. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  647. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
  648. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
  649. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
  650. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
  651. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
  652. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
  653. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
  654. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
  655. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
  656. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
  657. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
  658. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
  659. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
  660. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
  661. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
  662. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
  663. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
  664. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
  665. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
  666. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
  667. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
  668. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
  669. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
  670. teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
  671. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  672. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  673. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
  674. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
  675. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
  676. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
  677. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
  678. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
  679. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
  680. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
  681. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
  682. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
  683. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
  684. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
  685. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  686. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
  687. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
  688. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
  689. teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
  690. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
  691. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
  692. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
  693. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
  694. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
  695. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
  696. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
  697. teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
  698. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
  699. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
  700. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
  701. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
  702. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
  703. teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
  704. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
  705. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
  706. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
  707. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
  708. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  709. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
  710. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
  711. teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
  712. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
  713. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
  714. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
  715. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  716. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
  717. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
  718. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
  719. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
  720. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
  721. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
  722. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
  723. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
  724. teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
  725. teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
  726. teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
  727. teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
  728. teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
  729. teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
  730. teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
  731. teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
  732. teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
  733. teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
  734. teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
  735. teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
  736. teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
  737. teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
  738. teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
  739. teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
  740. teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
  741. teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
  742. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  743. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  744. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  745. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  746. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  747. teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
  748. teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
  749. teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
  750. teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
  751. teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
  752. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  753. teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
  754. teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
  755. teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
  756. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
  757. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
  758. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
  759. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  760. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  761. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
  762. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
  763. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
  764. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
  765. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
  766. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
  767. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
  768. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
  769. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
  770. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
  771. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
  772. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
  773. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
  774. teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
  775. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
  776. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  777. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  778. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
  779. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
  780. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
  781. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
  782. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
  783. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
  784. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
  785. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
  786. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  787. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  788. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
  789. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  790. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
  791. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
  792. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
  793. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  794. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
  795. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
  796. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
  797. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
  798. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
  799. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
  800. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
  801. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
  802. teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
  803. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
  804. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
  805. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
  806. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
  807. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
  808. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
  809. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
  810. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
  811. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
  812. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
  813. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
  814. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
  815. teradataml/data/kmeans_example.json +23 -0
  816. teradataml/data/kmeans_table.csv +10 -0
  817. teradataml/data/kmeans_us_arrests_data.csv +51 -0
  818. teradataml/data/knn_example.json +19 -0
  819. teradataml/data/knnrecommender_example.json +7 -0
  820. teradataml/data/knnrecommenderpredict_example.json +12 -0
  821. teradataml/data/lar_example.json +17 -0
  822. teradataml/data/larpredict_example.json +30 -0
  823. teradataml/data/lc_new_predictors.csv +5 -0
  824. teradataml/data/lc_new_reference.csv +9 -0
  825. teradataml/data/lda_example.json +9 -0
  826. teradataml/data/ldainference_example.json +15 -0
  827. teradataml/data/ldatopicsummary_example.json +9 -0
  828. teradataml/data/levendist_input.csv +13 -0
  829. teradataml/data/levenshteindistance_example.json +10 -0
  830. teradataml/data/linreg_example.json +10 -0
  831. teradataml/data/load_example_data.py +350 -0
  832. teradataml/data/loan_prediction.csv +295 -0
  833. teradataml/data/lungcancer.csv +138 -0
  834. teradataml/data/mappingdata.csv +12 -0
  835. teradataml/data/medical_readings.csv +101 -0
  836. teradataml/data/milk_timeseries.csv +157 -0
  837. teradataml/data/min_max_titanic.csv +4 -0
  838. teradataml/data/minhash_example.json +6 -0
  839. teradataml/data/ml_ratings.csv +7547 -0
  840. teradataml/data/ml_ratings_10.csv +2445 -0
  841. teradataml/data/mobile_data.csv +13 -0
  842. teradataml/data/model1_table.csv +5 -0
  843. teradataml/data/model2_table.csv +5 -0
  844. teradataml/data/models/License_file.txt +1 -0
  845. teradataml/data/models/License_file_empty.txt +0 -0
  846. teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
  847. teradataml/data/models/dr_iris_rf +0 -0
  848. teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
  849. teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
  850. teradataml/data/models/iris_db_glm_model.pmml +57 -0
  851. teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
  852. teradataml/data/models/iris_kmeans_model +0 -0
  853. teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
  854. teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
  855. teradataml/data/modularity_example.json +12 -0
  856. teradataml/data/movavg_example.json +8 -0
  857. teradataml/data/mtx1.csv +7 -0
  858. teradataml/data/mtx2.csv +13 -0
  859. teradataml/data/multi_model_classification.csv +401 -0
  860. teradataml/data/multi_model_regression.csv +401 -0
  861. teradataml/data/mvdfft8.csv +9 -0
  862. teradataml/data/naivebayes_example.json +10 -0
  863. teradataml/data/naivebayespredict_example.json +19 -0
  864. teradataml/data/naivebayestextclassifier2_example.json +7 -0
  865. teradataml/data/naivebayestextclassifier_example.json +8 -0
  866. teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
  867. teradataml/data/name_Find_configure.csv +10 -0
  868. teradataml/data/namedentityfinder_example.json +14 -0
  869. teradataml/data/namedentityfinderevaluator_example.json +10 -0
  870. teradataml/data/namedentityfindertrainer_example.json +6 -0
  871. teradataml/data/nb_iris_input_test.csv +31 -0
  872. teradataml/data/nb_iris_input_train.csv +121 -0
  873. teradataml/data/nbp_iris_model.csv +13 -0
  874. teradataml/data/ner_dict.csv +8 -0
  875. teradataml/data/ner_extractor_text.csv +2 -0
  876. teradataml/data/ner_input_eng.csv +7 -0
  877. teradataml/data/ner_rule.csv +5 -0
  878. teradataml/data/ner_sports_test2.csv +29 -0
  879. teradataml/data/ner_sports_train.csv +501 -0
  880. teradataml/data/nerevaluator_example.json +6 -0
  881. teradataml/data/nerextractor_example.json +18 -0
  882. teradataml/data/nermem_sports_test.csv +18 -0
  883. teradataml/data/nermem_sports_train.csv +51 -0
  884. teradataml/data/nertrainer_example.json +7 -0
  885. teradataml/data/ngrams_example.json +7 -0
  886. teradataml/data/notebooks/__init__.py +0 -0
  887. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
  888. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
  889. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
  890. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
  891. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
  892. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
  893. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
  894. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
  895. teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
  896. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
  897. teradataml/data/npath_example.json +23 -0
  898. teradataml/data/ntree_example.json +14 -0
  899. teradataml/data/numeric_strings.csv +5 -0
  900. teradataml/data/numerics.csv +4 -0
  901. teradataml/data/ocean_buoy.csv +17 -0
  902. teradataml/data/ocean_buoy2.csv +17 -0
  903. teradataml/data/ocean_buoys.csv +28 -0
  904. teradataml/data/ocean_buoys2.csv +10 -0
  905. teradataml/data/ocean_buoys_nonpti.csv +28 -0
  906. teradataml/data/ocean_buoys_seq.csv +29 -0
  907. teradataml/data/onehot_encoder_train.csv +4 -0
  908. teradataml/data/openml_example.json +92 -0
  909. teradataml/data/optional_event_table.csv +4 -0
  910. teradataml/data/orders1.csv +11 -0
  911. teradataml/data/orders1_12.csv +13 -0
  912. teradataml/data/orders_ex.csv +4 -0
  913. teradataml/data/pack_example.json +9 -0
  914. teradataml/data/package_tracking.csv +19 -0
  915. teradataml/data/package_tracking_pti.csv +19 -0
  916. teradataml/data/pagerank_example.json +13 -0
  917. teradataml/data/paragraphs_input.csv +6 -0
  918. teradataml/data/pathanalyzer_example.json +8 -0
  919. teradataml/data/pathgenerator_example.json +8 -0
  920. teradataml/data/patient_profile.csv +101 -0
  921. teradataml/data/pattern_matching_data.csv +11 -0
  922. teradataml/data/payment_fraud_dataset.csv +10001 -0
  923. teradataml/data/peppers.png +0 -0
  924. teradataml/data/phrases.csv +7 -0
  925. teradataml/data/pivot_example.json +9 -0
  926. teradataml/data/pivot_input.csv +22 -0
  927. teradataml/data/playerRating.csv +31 -0
  928. teradataml/data/pos_input.csv +40 -0
  929. teradataml/data/postagger_example.json +7 -0
  930. teradataml/data/posttagger_output.csv +44 -0
  931. teradataml/data/production_data.csv +17 -0
  932. teradataml/data/production_data2.csv +7 -0
  933. teradataml/data/randomsample_example.json +32 -0
  934. teradataml/data/randomwalksample_example.json +9 -0
  935. teradataml/data/rank_table.csv +6 -0
  936. teradataml/data/real_values.csv +14 -0
  937. teradataml/data/ref_mobile_data.csv +4 -0
  938. teradataml/data/ref_mobile_data_dense.csv +2 -0
  939. teradataml/data/ref_url.csv +17 -0
  940. teradataml/data/restaurant_reviews.csv +7 -0
  941. teradataml/data/retail_churn_table.csv +27772 -0
  942. teradataml/data/river_data.csv +145 -0
  943. teradataml/data/roc_example.json +8 -0
  944. teradataml/data/roc_input.csv +101 -0
  945. teradataml/data/rule_inputs.csv +6 -0
  946. teradataml/data/rule_table.csv +2 -0
  947. teradataml/data/sales.csv +7 -0
  948. teradataml/data/sales_transaction.csv +501 -0
  949. teradataml/data/salesdata.csv +342 -0
  950. teradataml/data/sample_cities.csv +3 -0
  951. teradataml/data/sample_shapes.csv +11 -0
  952. teradataml/data/sample_streets.csv +3 -0
  953. teradataml/data/sampling_example.json +16 -0
  954. teradataml/data/sax_example.json +17 -0
  955. teradataml/data/scale_attributes.csv +3 -0
  956. teradataml/data/scale_example.json +74 -0
  957. teradataml/data/scale_housing.csv +11 -0
  958. teradataml/data/scale_housing_test.csv +6 -0
  959. teradataml/data/scale_input_part_sparse.csv +31 -0
  960. teradataml/data/scale_input_partitioned.csv +16 -0
  961. teradataml/data/scale_input_sparse.csv +11 -0
  962. teradataml/data/scale_parameters.csv +3 -0
  963. teradataml/data/scale_stat.csv +11 -0
  964. teradataml/data/scalebypartition_example.json +13 -0
  965. teradataml/data/scalemap_example.json +13 -0
  966. teradataml/data/scalesummary_example.json +12 -0
  967. teradataml/data/score_category.csv +101 -0
  968. teradataml/data/score_summary.csv +4 -0
  969. teradataml/data/script_example.json +10 -0
  970. teradataml/data/scripts/deploy_script.py +84 -0
  971. teradataml/data/scripts/lightgbm/dataset.template +175 -0
  972. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
  973. teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
  974. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
  975. teradataml/data/scripts/mapper.R +20 -0
  976. teradataml/data/scripts/mapper.py +16 -0
  977. teradataml/data/scripts/mapper_replace.py +16 -0
  978. teradataml/data/scripts/sklearn/__init__.py +0 -0
  979. teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
  980. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
  981. teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
  982. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
  983. teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
  984. teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
  985. teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
  986. teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
  987. teradataml/data/seeds.csv +10 -0
  988. teradataml/data/sentenceextractor_example.json +7 -0
  989. teradataml/data/sentiment_extract_input.csv +11 -0
  990. teradataml/data/sentiment_train.csv +16 -0
  991. teradataml/data/sentiment_word.csv +20 -0
  992. teradataml/data/sentiment_word_input.csv +20 -0
  993. teradataml/data/sentimentextractor_example.json +24 -0
  994. teradataml/data/sentimenttrainer_example.json +8 -0
  995. teradataml/data/sequence_table.csv +10 -0
  996. teradataml/data/seriessplitter_example.json +8 -0
  997. teradataml/data/sessionize_example.json +17 -0
  998. teradataml/data/sessionize_table.csv +116 -0
  999. teradataml/data/setop_test1.csv +24 -0
  1000. teradataml/data/setop_test2.csv +22 -0
  1001. teradataml/data/soc_nw_edges.csv +11 -0
  1002. teradataml/data/soc_nw_vertices.csv +8 -0
  1003. teradataml/data/souvenir_timeseries.csv +168 -0
  1004. teradataml/data/sparse_iris_attribute.csv +5 -0
  1005. teradataml/data/sparse_iris_test.csv +121 -0
  1006. teradataml/data/sparse_iris_train.csv +601 -0
  1007. teradataml/data/star1.csv +6 -0
  1008. teradataml/data/star_pivot.csv +8 -0
  1009. teradataml/data/state_transition.csv +5 -0
  1010. teradataml/data/stock_data.csv +53 -0
  1011. teradataml/data/stock_movement.csv +11 -0
  1012. teradataml/data/stock_vol.csv +76 -0
  1013. teradataml/data/stop_words.csv +8 -0
  1014. teradataml/data/store_sales.csv +37 -0
  1015. teradataml/data/stringsimilarity_example.json +8 -0
  1016. teradataml/data/strsimilarity_input.csv +13 -0
  1017. teradataml/data/students.csv +101 -0
  1018. teradataml/data/svm_iris_input_test.csv +121 -0
  1019. teradataml/data/svm_iris_input_train.csv +481 -0
  1020. teradataml/data/svm_iris_model.csv +7 -0
  1021. teradataml/data/svmdense_example.json +10 -0
  1022. teradataml/data/svmdensepredict_example.json +19 -0
  1023. teradataml/data/svmsparse_example.json +8 -0
  1024. teradataml/data/svmsparsepredict_example.json +14 -0
  1025. teradataml/data/svmsparsesummary_example.json +8 -0
  1026. teradataml/data/target_mobile_data.csv +13 -0
  1027. teradataml/data/target_mobile_data_dense.csv +5 -0
  1028. teradataml/data/target_udt_data.csv +8 -0
  1029. teradataml/data/tdnerextractor_example.json +14 -0
  1030. teradataml/data/templatedata.csv +1201 -0
  1031. teradataml/data/templates/open_source_ml.json +11 -0
  1032. teradataml/data/teradata_icon.ico +0 -0
  1033. teradataml/data/teradataml_example.json +1473 -0
  1034. teradataml/data/test_classification.csv +101 -0
  1035. teradataml/data/test_loan_prediction.csv +53 -0
  1036. teradataml/data/test_pacf_12.csv +37 -0
  1037. teradataml/data/test_prediction.csv +101 -0
  1038. teradataml/data/test_regression.csv +101 -0
  1039. teradataml/data/test_river2.csv +109 -0
  1040. teradataml/data/text_inputs.csv +6 -0
  1041. teradataml/data/textchunker_example.json +8 -0
  1042. teradataml/data/textclassifier_example.json +7 -0
  1043. teradataml/data/textclassifier_input.csv +7 -0
  1044. teradataml/data/textclassifiertrainer_example.json +7 -0
  1045. teradataml/data/textmorph_example.json +11 -0
  1046. teradataml/data/textparser_example.json +15 -0
  1047. teradataml/data/texttagger_example.json +12 -0
  1048. teradataml/data/texttokenizer_example.json +7 -0
  1049. teradataml/data/texttrainer_input.csv +11 -0
  1050. teradataml/data/tf_example.json +7 -0
  1051. teradataml/data/tfidf_example.json +14 -0
  1052. teradataml/data/tfidf_input1.csv +201 -0
  1053. teradataml/data/tfidf_train.csv +6 -0
  1054. teradataml/data/time_table1.csv +535 -0
  1055. teradataml/data/time_table2.csv +14 -0
  1056. teradataml/data/timeseriesdata.csv +1601 -0
  1057. teradataml/data/timeseriesdatasetsd4.csv +105 -0
  1058. teradataml/data/timestamp_data.csv +4 -0
  1059. teradataml/data/titanic.csv +892 -0
  1060. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  1061. teradataml/data/to_num_data.csv +4 -0
  1062. teradataml/data/tochar_data.csv +5 -0
  1063. teradataml/data/token_table.csv +696 -0
  1064. teradataml/data/train_multiclass.csv +101 -0
  1065. teradataml/data/train_regression.csv +101 -0
  1066. teradataml/data/train_regression_multiple_labels.csv +101 -0
  1067. teradataml/data/train_tracking.csv +28 -0
  1068. teradataml/data/trans_dense.csv +16 -0
  1069. teradataml/data/trans_sparse.csv +55 -0
  1070. teradataml/data/transformation_table.csv +6 -0
  1071. teradataml/data/transformation_table_new.csv +2 -0
  1072. teradataml/data/tv_spots.csv +16 -0
  1073. teradataml/data/twod_climate_data.csv +117 -0
  1074. teradataml/data/uaf_example.json +529 -0
  1075. teradataml/data/univariatestatistics_example.json +9 -0
  1076. teradataml/data/unpack_example.json +10 -0
  1077. teradataml/data/unpivot_example.json +25 -0
  1078. teradataml/data/unpivot_input.csv +8 -0
  1079. teradataml/data/url_data.csv +10 -0
  1080. teradataml/data/us_air_pass.csv +37 -0
  1081. teradataml/data/us_population.csv +624 -0
  1082. teradataml/data/us_states_shapes.csv +52 -0
  1083. teradataml/data/varmax_example.json +18 -0
  1084. teradataml/data/vectordistance_example.json +30 -0
  1085. teradataml/data/ville_climatedata.csv +121 -0
  1086. teradataml/data/ville_tempdata.csv +12 -0
  1087. teradataml/data/ville_tempdata1.csv +12 -0
  1088. teradataml/data/ville_temperature.csv +11 -0
  1089. teradataml/data/waveletTable.csv +1605 -0
  1090. teradataml/data/waveletTable2.csv +1605 -0
  1091. teradataml/data/weightedmovavg_example.json +9 -0
  1092. teradataml/data/wft_testing.csv +5 -0
  1093. teradataml/data/windowdfft.csv +16 -0
  1094. teradataml/data/wine_data.csv +1600 -0
  1095. teradataml/data/word_embed_input_table1.csv +6 -0
  1096. teradataml/data/word_embed_input_table2.csv +5 -0
  1097. teradataml/data/word_embed_model.csv +23 -0
  1098. teradataml/data/words_input.csv +13 -0
  1099. teradataml/data/xconvolve_complex_left.csv +6 -0
  1100. teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
  1101. teradataml/data/xgboost_example.json +36 -0
  1102. teradataml/data/xgboostpredict_example.json +32 -0
  1103. teradataml/data/ztest_example.json +16 -0
  1104. teradataml/dataframe/__init__.py +0 -0
  1105. teradataml/dataframe/copy_to.py +2446 -0
  1106. teradataml/dataframe/data_transfer.py +2840 -0
  1107. teradataml/dataframe/dataframe.py +20908 -0
  1108. teradataml/dataframe/dataframe_utils.py +2114 -0
  1109. teradataml/dataframe/fastload.py +794 -0
  1110. teradataml/dataframe/functions.py +2110 -0
  1111. teradataml/dataframe/indexer.py +424 -0
  1112. teradataml/dataframe/row.py +160 -0
  1113. teradataml/dataframe/setop.py +1171 -0
  1114. teradataml/dataframe/sql.py +10904 -0
  1115. teradataml/dataframe/sql_function_parameters.py +440 -0
  1116. teradataml/dataframe/sql_functions.py +652 -0
  1117. teradataml/dataframe/sql_interfaces.py +220 -0
  1118. teradataml/dataframe/vantage_function_types.py +675 -0
  1119. teradataml/dataframe/window.py +694 -0
  1120. teradataml/dbutils/__init__.py +3 -0
  1121. teradataml/dbutils/dbutils.py +2871 -0
  1122. teradataml/dbutils/filemgr.py +318 -0
  1123. teradataml/gen_ai/__init__.py +2 -0
  1124. teradataml/gen_ai/convAI.py +473 -0
  1125. teradataml/geospatial/__init__.py +4 -0
  1126. teradataml/geospatial/geodataframe.py +1105 -0
  1127. teradataml/geospatial/geodataframecolumn.py +392 -0
  1128. teradataml/geospatial/geometry_types.py +926 -0
  1129. teradataml/hyperparameter_tuner/__init__.py +1 -0
  1130. teradataml/hyperparameter_tuner/optimizer.py +4115 -0
  1131. teradataml/hyperparameter_tuner/utils.py +303 -0
  1132. teradataml/lib/__init__.py +0 -0
  1133. teradataml/lib/aed_0_1.dll +0 -0
  1134. teradataml/lib/libaed_0_1.dylib +0 -0
  1135. teradataml/lib/libaed_0_1.so +0 -0
  1136. teradataml/lib/libaed_0_1_aarch64.so +0 -0
  1137. teradataml/lib/libaed_0_1_ppc64le.so +0 -0
  1138. teradataml/opensource/__init__.py +1 -0
  1139. teradataml/opensource/_base.py +1321 -0
  1140. teradataml/opensource/_class.py +464 -0
  1141. teradataml/opensource/_constants.py +61 -0
  1142. teradataml/opensource/_lightgbm.py +949 -0
  1143. teradataml/opensource/_sklearn.py +1008 -0
  1144. teradataml/opensource/_wrapper_utils.py +267 -0
  1145. teradataml/options/__init__.py +148 -0
  1146. teradataml/options/configure.py +489 -0
  1147. teradataml/options/display.py +187 -0
  1148. teradataml/plot/__init__.py +3 -0
  1149. teradataml/plot/axis.py +1427 -0
  1150. teradataml/plot/constants.py +15 -0
  1151. teradataml/plot/figure.py +431 -0
  1152. teradataml/plot/plot.py +810 -0
  1153. teradataml/plot/query_generator.py +83 -0
  1154. teradataml/plot/subplot.py +216 -0
  1155. teradataml/scriptmgmt/UserEnv.py +4273 -0
  1156. teradataml/scriptmgmt/__init__.py +3 -0
  1157. teradataml/scriptmgmt/lls_utils.py +2157 -0
  1158. teradataml/sdk/README.md +79 -0
  1159. teradataml/sdk/__init__.py +4 -0
  1160. teradataml/sdk/_auth_modes.py +422 -0
  1161. teradataml/sdk/_func_params.py +487 -0
  1162. teradataml/sdk/_json_parser.py +453 -0
  1163. teradataml/sdk/_openapi_spec_constants.py +249 -0
  1164. teradataml/sdk/_utils.py +236 -0
  1165. teradataml/sdk/api_client.py +900 -0
  1166. teradataml/sdk/constants.py +62 -0
  1167. teradataml/sdk/modelops/__init__.py +98 -0
  1168. teradataml/sdk/modelops/_client.py +409 -0
  1169. teradataml/sdk/modelops/_constants.py +304 -0
  1170. teradataml/sdk/modelops/models.py +2308 -0
  1171. teradataml/sdk/spinner.py +107 -0
  1172. teradataml/series/__init__.py +0 -0
  1173. teradataml/series/series.py +537 -0
  1174. teradataml/series/series_utils.py +71 -0
  1175. teradataml/store/__init__.py +12 -0
  1176. teradataml/store/feature_store/__init__.py +0 -0
  1177. teradataml/store/feature_store/constants.py +658 -0
  1178. teradataml/store/feature_store/feature_store.py +4814 -0
  1179. teradataml/store/feature_store/mind_map.py +639 -0
  1180. teradataml/store/feature_store/models.py +7330 -0
  1181. teradataml/store/feature_store/utils.py +390 -0
  1182. teradataml/table_operators/Apply.py +979 -0
  1183. teradataml/table_operators/Script.py +1739 -0
  1184. teradataml/table_operators/TableOperator.py +1343 -0
  1185. teradataml/table_operators/__init__.py +2 -0
  1186. teradataml/table_operators/apply_query_generator.py +262 -0
  1187. teradataml/table_operators/query_generator.py +493 -0
  1188. teradataml/table_operators/table_operator_query_generator.py +462 -0
  1189. teradataml/table_operators/table_operator_util.py +726 -0
  1190. teradataml/table_operators/templates/dataframe_apply.template +184 -0
  1191. teradataml/table_operators/templates/dataframe_map.template +176 -0
  1192. teradataml/table_operators/templates/dataframe_register.template +73 -0
  1193. teradataml/table_operators/templates/dataframe_udf.template +67 -0
  1194. teradataml/table_operators/templates/script_executor.template +170 -0
  1195. teradataml/telemetry_utils/__init__.py +0 -0
  1196. teradataml/telemetry_utils/queryband.py +53 -0
  1197. teradataml/utils/__init__.py +0 -0
  1198. teradataml/utils/docstring.py +527 -0
  1199. teradataml/utils/dtypes.py +943 -0
  1200. teradataml/utils/internal_buffer.py +122 -0
  1201. teradataml/utils/print_versions.py +206 -0
  1202. teradataml/utils/utils.py +451 -0
  1203. teradataml/utils/validators.py +3305 -0
  1204. teradataml-20.0.0.8.dist-info/METADATA +2804 -0
  1205. teradataml-20.0.0.8.dist-info/RECORD +1208 -0
  1206. teradataml-20.0.0.8.dist-info/WHEEL +5 -0
  1207. teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
  1208. teradataml-20.0.0.8.dist-info/zip-safe +1 -0
@@ -0,0 +1,1001 @@
1
+ "compid","price","speed","hd","ram","screen","expected_compcategory","predicted_compcategory"
2
+ "469","2599.0","50.0","405.0","8.0","14.0","mega","mega"
3
+ "265","1899.0","50.0","120.0","4.0","14.0","super","super"
4
+ "40","2425.0","50.0","210.0","8.0","14.0","mega","mega"
5
+ "387","1790.0","50.0","85.0","2.0","14.0","super","super"
6
+ "469","2599.0","50.0","405.0","8.0","14.0","mega","mega"
7
+ "265","1899.0","50.0","120.0","4.0","14.0","super","super"
8
+ "40","2425.0","50.0","210.0","8.0","14.0","mega","mega"
9
+ "387","1790.0","50.0","85.0","2.0","14.0","super","super"
10
+ "61","3990.0","66.0","330.0","8.0","15.0","uber","uber"
11
+ "530","2575.0","50.0","250.0","8.0","15.0","mega","mega"
12
+ "223","2199.0","50.0","213.0","8.0","14.0","super","super"
13
+ "448","1590.0","33.0","107.0","2.0","15.0","special","special"
14
+ "61","3990.0","66.0","330.0","8.0","15.0","uber","uber"
15
+ "530","2575.0","50.0","250.0","8.0","15.0","mega","mega"
16
+ "223","2199.0","50.0","213.0","8.0","14.0","super","super"
17
+ "448","1590.0","33.0","107.0","2.0","15.0","special","special"
18
+ "183","1899.0","25.0","120.0","4.0","14.0","super","super"
19
+ "244","2495.0","50.0","245.0","8.0","14.0","mega","mega"
20
+ "488","2599.0","50.0","405.0","4.0","15.0","mega","mega"
21
+ "19","2095.0","33.0","250.0","4.0","15.0","super","super"
22
+ "183","1899.0","25.0","120.0","4.0","14.0","super","super"
23
+ "244","2495.0","50.0","245.0","8.0","14.0","mega","mega"
24
+ "488","2599.0","50.0","405.0","4.0","15.0","mega","mega"
25
+ "19","2095.0","33.0","250.0","4.0","15.0","super","super"
26
+ "509","2690.0","50.0","340.0","8.0","14.0","mega","mega"
27
+ "305","2590.0","50.0","245.0","8.0","14.0","mega","mega"
28
+ "80","1629.0","25.0","80.0","8.0","14.0","special","special"
29
+ "263","2535.0","33.0","170.0","8.0","15.0","mega","mega"
30
+ "509","2690.0","50.0","340.0","8.0","14.0","mega","mega"
31
+ "305","2590.0","50.0","245.0","8.0","14.0","mega","mega"
32
+ "80","1629.0","25.0","80.0","8.0","14.0","special","special"
33
+ "263","2535.0","33.0","170.0","8.0","15.0","mega","mega"
34
+ "366","1599.0","25.0","170.0","4.0","14.0","special","special"
35
+ "101","1995.0","33.0","250.0","4.0","14.0","super","super"
36
+ "345","2345.0","33.0","250.0","8.0","15.0","mega","mega"
37
+ "303","1895.0","33.0","170.0","4.0","14.0","super","super"
38
+ "366","1599.0","25.0","170.0","4.0","14.0","special","special"
39
+ "101","1995.0","33.0","250.0","4.0","14.0","super","super"
40
+ "345","2345.0","33.0","250.0","8.0","15.0","mega","mega"
41
+ "303","1895.0","33.0","170.0","4.0","14.0","super","super"
42
+ "202","2785.0","33.0","250.0","8.0","17.0","hyper","uber"
43
+ "570","2290.0","25.0","340.0","8.0","14.0","mega","mega"
44
+ "406","2190.0","33.0","214.0","4.0","15.0","super","super"
45
+ "99","2595.0","25.0","340.0","16.0","14.0","mega","mega"
46
+ "202","2785.0","33.0","250.0","8.0","17.0","hyper","uber"
47
+ "570","2290.0","25.0","340.0","8.0","14.0","mega","mega"
48
+ "406","2190.0","33.0","214.0","4.0","15.0","super","super"
49
+ "99","2595.0","25.0","340.0","16.0","14.0","mega","mega"
50
+ "467","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
51
+ "427","2890.0","33.0","452.0","16.0","15.0","hyper","hyper"
52
+ "120","2799.0","33.0","230.0","4.0","14.0","hyper","hyper"
53
+ "568","1390.0","25.0","107.0","2.0","15.0","special","special"
54
+ "467","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
55
+ "427","2890.0","33.0","452.0","16.0","15.0","hyper","hyper"
56
+ "120","2799.0","33.0","230.0","4.0","14.0","hyper","hyper"
57
+ "568","1390.0","25.0","107.0","2.0","15.0","special","special"
58
+ "181","2195.0","50.0","170.0","4.0","14.0","super","super"
59
+ "284","1795.0","33.0","170.0","4.0","15.0","super","super"
60
+ "446","2599.0","33.0","245.0","16.0","15.0","mega","mega"
61
+ "160","3399.0","66.0","230.0","4.0","15.0","hyper","hyper"
62
+ "181","2195.0","50.0","170.0","4.0","14.0","super","super"
63
+ "284","1795.0","33.0","170.0","4.0","15.0","super","super"
64
+ "446","2599.0","33.0","245.0","16.0","15.0","mega","mega"
65
+ "160","3399.0","66.0","230.0","4.0","15.0","hyper","hyper"
66
+ "242","1895.0","25.0","130.0","4.0","14.0","super","super"
67
+ "549","1825.0","50.0","170.0","4.0","14.0","super","super"
68
+ "343","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
69
+ "465","1790.0","50.0","107.0","2.0","15.0","super","super"
70
+ "242","1895.0","25.0","130.0","4.0","14.0","super","super"
71
+ "549","1825.0","50.0","170.0","4.0","14.0","super","super"
72
+ "343","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
73
+ "465","1790.0","50.0","107.0","2.0","15.0","super","super"
74
+ "507","2490.0","33.0","340.0","8.0","15.0","mega","mega"
75
+ "141","2225.0","33.0","250.0","8.0","14.0","super","super"
76
+ "200","3220.0","66.0","340.0","8.0","15.0","hyper","super"
77
+ "36","2675.0","66.0","210.0","4.0","15.0","mega","special"
78
+ "507","2490.0","33.0","340.0","8.0","15.0","mega","mega"
79
+ "141","2225.0","33.0","250.0","8.0","14.0","super","super"
80
+ "200","3220.0","66.0","340.0","8.0","15.0","hyper","super"
81
+ "36","2675.0","66.0","210.0","4.0","15.0","mega","special"
82
+ "364","3075.0","50.0","250.0","8.0","17.0","hyper","hyper"
83
+ "610","1890.0","66.0","107.0","2.0","14.0","super","super"
84
+ "57","2045.0","66.0","130.0","4.0","14.0","super","super"
85
+ "97","1999.0","33.0","170.0","4.0","14.0","super","super"
86
+ "364","3075.0","50.0","250.0","8.0","17.0","hyper","hyper"
87
+ "610","1890.0","66.0","107.0","2.0","14.0","super","super"
88
+ "57","2045.0","66.0","130.0","4.0","14.0","super","super"
89
+ "97","1999.0","33.0","170.0","4.0","14.0","super","super"
90
+ "221","2635.0","33.0","250.0","8.0","17.0","mega","mega"
91
+ "589","1825.0","33.0","170.0","4.0","15.0","super","special"
92
+ "118","2325.0","66.0","250.0","8.0","14.0","mega","mega"
93
+ "566","2190.0","33.0","214.0","4.0","14.0","super","super"
94
+ "221","2635.0","33.0","250.0","8.0","17.0","mega","mega"
95
+ "589","1825.0","33.0","170.0","4.0","15.0","super","special"
96
+ "118","2325.0","66.0","250.0","8.0","14.0","mega","mega"
97
+ "566","2190.0","33.0","214.0","4.0","14.0","super","super"
98
+ "486","2595.0","50.0","340.0","8.0","14.0","mega","mega"
99
+ "17","1595.0","33.0","85.0","2.0","14.0","special","super"
100
+ "383","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
101
+ "362","2095.0","33.0","130.0","4.0","14.0","super","super"
102
+ "486","2595.0","50.0","340.0","8.0","14.0","mega","mega"
103
+ "17","1595.0","33.0","85.0","2.0","14.0","special","super"
104
+ "383","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
105
+ "362","2095.0","33.0","130.0","4.0","14.0","super","super"
106
+ "78","3220.0","66.0","340.0","8.0","15.0","hyper","hyper"
107
+ "282","1995.0","33.0","250.0","4.0","14.0","super","super"
108
+ "505","3149.0","66.0","230.0","8.0","14.0","hyper","hyper"
109
+ "280","1795.0","66.0","85.0","2.0","14.0","super","mega"
110
+ "78","3220.0","66.0","340.0","8.0","15.0","hyper","hyper"
111
+ "282","1995.0","33.0","250.0","4.0","14.0","super","super"
112
+ "505","3149.0","66.0","230.0","8.0","14.0","hyper","hyper"
113
+ "280","1795.0","66.0","85.0","2.0","14.0","super","mega"
114
+ "547","2095.0","33.0","214.0","4.0","14.0","super","super"
115
+ "139","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
116
+ "158","2195.0","33.0","170.0","8.0","15.0","super","super"
117
+ "137","2255.0","50.0","250.0","8.0","14.0","mega","mega"
118
+ "547","2095.0","33.0","214.0","4.0","14.0","super","super"
119
+ "139","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
120
+ "158","2195.0","33.0","170.0","8.0","15.0","super","super"
121
+ "137","2255.0","50.0","250.0","8.0","14.0","mega","mega"
122
+ "219","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
123
+ "404","2995.0","66.0","452.0","16.0","14.0","hyper","hyper"
124
+ "423","1895.0","25.0","214.0","4.0","14.0","super","super"
125
+ "606","1490.0","33.0","107.0","2.0","15.0","special","special"
126
+ "219","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
127
+ "404","2995.0","66.0","452.0","16.0","14.0","hyper","hyper"
128
+ "423","1895.0","25.0","214.0","4.0","14.0","super","super"
129
+ "606","1490.0","33.0","107.0","2.0","15.0","special","special"
130
+ "76","2844.0","33.0","245.0","8.0","14.0","hyper","hyper"
131
+ "261","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
132
+ "55","2199.0","33.0","212.0","8.0","14.0","super","super"
133
+ "402","1595.0","33.0","170.0","4.0","14.0","special","special"
134
+ "76","2844.0","33.0","245.0","8.0","14.0","hyper","hyper"
135
+ "261","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
136
+ "55","2199.0","33.0","212.0","8.0","14.0","super","super"
137
+ "402","1595.0","33.0","170.0","4.0","14.0","special","special"
138
+ "341","2390.0","66.0","130.0","4.0","14.0","mega","mega"
139
+ "587","2890.0","33.0","452.0","16.0","14.0","hyper","hyper"
140
+ "503","1990.0","25.0","214.0","4.0","15.0","super","super"
141
+ "177","2399.0","50.0","212.0","4.0","14.0","mega","mega"
142
+ "341","2390.0","66.0","130.0","4.0","14.0","mega","mega"
143
+ "587","2890.0","33.0","452.0","16.0","14.0","hyper","hyper"
144
+ "503","1990.0","25.0","214.0","4.0","15.0","super","super"
145
+ "177","2399.0","50.0","212.0","4.0","14.0","mega","mega"
146
+ "198","1995.0","33.0","130.0","4.0","14.0","super","super"
147
+ "444","1699.0","33.0","170.0","4.0","14.0","special","special"
148
+ "95","2995.0","66.0","340.0","16.0","14.0","hyper","hyper"
149
+ "442","2125.0","33.0","250.0","8.0","15.0","super","super"
150
+ "198","1995.0","33.0","130.0","4.0","14.0","super","super"
151
+ "444","1699.0","33.0","170.0","4.0","14.0","special","special"
152
+ "95","2995.0","66.0","340.0","16.0","14.0","hyper","hyper"
153
+ "442","2125.0","33.0","250.0","8.0","15.0","super","super"
154
+ "259","1775.0","33.0","170.0","4.0","14.0","super","super"
155
+ "320","2195.0","66.0","170.0","4.0","14.0","super","super"
156
+ "543","2799.0","33.0","240.0","4.0","14.0","hyper","hyper"
157
+ "74","3044.0","50.0","245.0","8.0","14.0","hyper","hyper"
158
+ "259","1775.0","33.0","170.0","4.0","14.0","super","super"
159
+ "320","2195.0","66.0","170.0","4.0","14.0","super","super"
160
+ "543","2799.0","33.0","240.0","4.0","14.0","hyper","hyper"
161
+ "74","3044.0","50.0","245.0","8.0","14.0","hyper","hyper"
162
+ "524","2325.0","33.0","250.0","8.0","15.0","mega","mega"
163
+ "585","3265.0","33.0","540.0","8.0","17.0","hyper","hyper"
164
+ "400","2395.0","33.0","340.0","8.0","14.0","mega","mega"
165
+ "53","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
166
+ "524","2325.0","33.0","250.0","8.0","15.0","mega","mega"
167
+ "585","3265.0","33.0","540.0","8.0","17.0","hyper","hyper"
168
+ "400","2395.0","33.0","340.0","8.0","14.0","mega","mega"
169
+ "53","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
170
+ "381","2125.0","33.0","250.0","8.0","15.0","super","super"
171
+ "34","2475.0","50.0","210.0","4.0","15.0","mega","mega"
172
+ "583","3365.0","50.0","540.0","8.0","17.0","hyper","hyper"
173
+ "318","2605.0","33.0","250.0","8.0","17.0","mega","mega"
174
+ "381","2125.0","33.0","250.0","8.0","15.0","super","super"
175
+ "34","2475.0","50.0","210.0","4.0","15.0","mega","mega"
176
+ "583","3365.0","50.0","540.0","8.0","17.0","hyper","hyper"
177
+ "318","2605.0","33.0","250.0","8.0","17.0","mega","mega"
178
+ "238","1695.0","33.0","170.0","4.0","14.0","special","special"
179
+ "299","1899.0","33.0","170.0","4.0","14.0","super","super"
180
+ "175","3795.0","33.0","452.0","8.0","14.0","uber","uber"
181
+ "114","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
182
+ "238","1695.0","33.0","170.0","4.0","14.0","special","special"
183
+ "299","1899.0","33.0","170.0","4.0","14.0","super","super"
184
+ "175","3795.0","33.0","452.0","8.0","14.0","uber","uber"
185
+ "114","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
186
+ "421","3090.0","66.0","452.0","16.0","14.0","hyper","hyper"
187
+ "13","2045.0","50.0","130.0","4.0","14.0","super","super"
188
+ "501","2145.0","50.0","170.0","4.0","14.0","super","super"
189
+ "379","1595.0","33.0","85.0","2.0","14.0","special","special"
190
+ "421","3090.0","66.0","452.0","16.0","14.0","hyper","hyper"
191
+ "13","2045.0","50.0","130.0","4.0","14.0","super","super"
192
+ "501","2145.0","50.0","170.0","4.0","14.0","super","super"
193
+ "379","1595.0","33.0","85.0","2.0","14.0","special","special"
194
+ "257","3035.0","50.0","250.0","8.0","17.0","hyper","hyper"
195
+ "339","2905.0","66.0","250.0","8.0","17.0","hyper","super"
196
+ "72","2725.0","33.0","210.0","4.0","17.0","hyper","hyper"
197
+ "358","2645.0","66.0","250.0","8.0","15.0","mega","mega"
198
+ "257","3035.0","50.0","250.0","8.0","17.0","hyper","hyper"
199
+ "339","2905.0","66.0","250.0","8.0","17.0","hyper","super"
200
+ "72","2725.0","33.0","210.0","4.0","17.0","hyper","hyper"
201
+ "358","2645.0","66.0","250.0","8.0","15.0","mega","mega"
202
+ "522","2590.0","33.0","340.0","8.0","14.0","mega","mega"
203
+ "604","2590.0","25.0","452.0","16.0","15.0","mega","mega"
204
+ "398","1795.0","33.0","170.0","4.0","14.0","super","super"
205
+ "154","2075.0","33.0","250.0","8.0","14.0","super","super"
206
+ "522","2590.0","33.0","340.0","8.0","14.0","mega","mega"
207
+ "604","2590.0","25.0","452.0","16.0","15.0","mega","mega"
208
+ "398","1795.0","33.0","170.0","4.0","14.0","super","super"
209
+ "154","2075.0","33.0","250.0","8.0","14.0","super","super"
210
+ "276","2995.0","66.0","340.0","16.0","14.0","hyper","hyper"
211
+ "196","2055.0","33.0","250.0","8.0","14.0","super","super"
212
+ "173","1795.0","33.0","170.0","4.0","15.0","super","super"
213
+ "215","2985.0","66.0","250.0","8.0","17.0","hyper","mega"
214
+ "276","2995.0","66.0","340.0","16.0","14.0","hyper","hyper"
215
+ "196","2055.0","33.0","250.0","8.0","14.0","super","super"
216
+ "173","1795.0","33.0","170.0","4.0","15.0","super","super"
217
+ "215","2985.0","66.0","250.0","8.0","17.0","hyper","mega"
218
+ "541","2690.0","33.0","452.0","16.0","15.0","mega","mega"
219
+ "32","1995.0","25.0","130.0","4.0","14.0","super","super"
220
+ "438","2019.0","33.0","120.0","4.0","14.0","super","super"
221
+ "480","2290.0","50.0","214.0","4.0","15.0","mega","mega"
222
+ "541","2690.0","33.0","452.0","16.0","15.0","mega","mega"
223
+ "32","1995.0","25.0","130.0","4.0","14.0","super","super"
224
+ "438","2019.0","33.0","120.0","4.0","14.0","super","super"
225
+ "480","2290.0","50.0","214.0","4.0","15.0","mega","mega"
226
+ "133","2220.0","33.0","250.0","4.0","14.0","super","super"
227
+ "297","2155.0","33.0","250.0","8.0","14.0","super","super"
228
+ "295","2299.0","50.0","212.0","4.0","14.0","mega","mega"
229
+ "520","2025.0","50.0","170.0","4.0","14.0","super","super"
230
+ "133","2220.0","33.0","250.0","4.0","14.0","super","super"
231
+ "297","2155.0","33.0","250.0","8.0","14.0","super","super"
232
+ "295","2299.0","50.0","212.0","4.0","14.0","mega","mega"
233
+ "520","2025.0","50.0","170.0","4.0","14.0","super","super"
234
+ "581","1998.0","66.0","130.0","4.0","14.0","super","super"
235
+ "337","1795.0","33.0","170.0","4.0","14.0","super","super"
236
+ "560","2245.0","66.0","250.0","4.0","15.0","super","super"
237
+ "377","2695.0","33.0","340.0","16.0","14.0","mega","mega"
238
+ "581","1998.0","66.0","130.0","4.0","14.0","super","super"
239
+ "337","1795.0","33.0","170.0","4.0","14.0","super","super"
240
+ "560","2245.0","66.0","250.0","4.0","15.0","super","super"
241
+ "377","2695.0","33.0","340.0","16.0","14.0","mega","mega"
242
+ "234","2195.0","33.0","170.0","8.0","15.0","super","super"
243
+ "602","2590.0","25.0","452.0","16.0","14.0","mega","hyper"
244
+ "213","2420.0","33.0","170.0","8.0","15.0","mega","mega"
245
+ "621","2555.0","50.0","250.0","8.0","17.0","mega","mega"
246
+ "234","2195.0","33.0","170.0","8.0","15.0","super","super"
247
+ "602","2590.0","25.0","452.0","16.0","14.0","mega","hyper"
248
+ "213","2420.0","33.0","170.0","8.0","15.0","mega","mega"
249
+ "621","2555.0","50.0","250.0","8.0","17.0","mega","mega"
250
+ "274","2695.0","33.0","340.0","16.0","14.0","mega","mega"
251
+ "194","2055.0","50.0","170.0","4.0","14.0","super","super"
252
+ "478","1720.0","33.0","170.0","4.0","14.0","special","special"
253
+ "417","1995.0","33.0","250.0","8.0","14.0","super","super"
254
+ "274","2695.0","33.0","340.0","16.0","14.0","mega","mega"
255
+ "194","2055.0","50.0","170.0","4.0","14.0","super","super"
256
+ "478","1720.0","33.0","170.0","4.0","14.0","special","special"
257
+ "417","1995.0","33.0","250.0","8.0","14.0","super","super"
258
+ "131","2295.0","66.0","130.0","4.0","14.0","mega","mega"
259
+ "459","2905.0","66.0","250.0","8.0","17.0","hyper","hyper"
260
+ "518","2290.0","50.0","214.0","4.0","14.0","mega","mega"
261
+ "335","1699.0","33.0","120.0","4.0","14.0","special","special"
262
+ "131","2295.0","66.0","130.0","4.0","14.0","mega","mega"
263
+ "459","2905.0","66.0","250.0","8.0","17.0","hyper","hyper"
264
+ "518","2290.0","50.0","214.0","4.0","14.0","mega","mega"
265
+ "335","1699.0","33.0","120.0","4.0","14.0","special","special"
266
+ "600","1675.0","25.0","120.0","4.0","14.0","special","special"
267
+ "316","1995.0","50.0","170.0","4.0","14.0","super","super"
268
+ "110","2145.0","66.0","170.0","4.0","14.0","super","super"
269
+ "192","2499.0","50.0","210.0","4.0","14.0","mega","mega"
270
+ "600","1675.0","25.0","120.0","4.0","14.0","special","special"
271
+ "316","1995.0","50.0","170.0","4.0","14.0","super","super"
272
+ "110","2145.0","66.0","170.0","4.0","14.0","super","super"
273
+ "192","2499.0","50.0","210.0","4.0","14.0","mega","mega"
274
+ "396","2999.0","66.0","245.0","16.0","15.0","hyper","hyper"
275
+ "499","2190.0","33.0","214.0","4.0","14.0","super","super"
276
+ "558","3699.0","33.0","345.0","16.0","17.0","uber","mega"
277
+ "457","3105.0","66.0","250.0","8.0","17.0","hyper","hyper"
278
+ "396","2999.0","66.0","245.0","16.0","15.0","hyper","hyper"
279
+ "499","2190.0","33.0","214.0","4.0","14.0","super","super"
280
+ "558","3699.0","33.0","345.0","16.0","17.0","uber","mega"
281
+ "457","3105.0","66.0","250.0","8.0","17.0","hyper","hyper"
282
+ "253","2395.0","33.0","170.0","8.0","14.0","mega","mega"
283
+ "9","2225.0","50.0","210.0","8.0","14.0","super","super"
284
+ "150","3895.0","66.0","500.0","8.0","15.0","uber","uber"
285
+ "232","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
286
+ "253","2395.0","33.0","170.0","8.0","14.0","mega","mega"
287
+ "9","2225.0","50.0","210.0","8.0","14.0","super","super"
288
+ "150","3895.0","66.0","500.0","8.0","15.0","uber","uber"
289
+ "232","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
290
+ "436","1399.0","25.0","170.0","4.0","14.0","special","special"
291
+ "49","2399.0","50.0","212.0","4.0","14.0","mega","mega"
292
+ "415","3999.0","66.0","340.0","16.0","17.0","uber","uber"
293
+ "333","2190.0","33.0","130.0","4.0","14.0","super","super"
294
+ "436","1399.0","25.0","170.0","4.0","14.0","special","special"
295
+ "49","2399.0","50.0","212.0","4.0","14.0","mega","mega"
296
+ "415","3999.0","66.0","340.0","16.0","17.0","uber","uber"
297
+ "333","2190.0","33.0","130.0","4.0","14.0","super","super"
298
+ "293","2495.0","50.0","245.0","8.0","14.0","mega","mega"
299
+ "375","1890.0","66.0","85.0","2.0","14.0","super","super"
300
+ "7","1720.0","25.0","170.0","4.0","14.0","special","special"
301
+ "47","2195.0","33.0","130.0","4.0","14.0","super","super"
302
+ "293","2495.0","50.0","245.0","8.0","14.0","mega","mega"
303
+ "375","1890.0","66.0","85.0","2.0","14.0","super","super"
304
+ "7","1720.0","25.0","170.0","4.0","14.0","special","special"
305
+ "47","2195.0","33.0","130.0","4.0","14.0","super","super"
306
+ "619","2290.0","50.0","214.0","4.0","15.0","mega","mega"
307
+ "28","3995.0","33.0","452.0","8.0","14.0","uber","uber"
308
+ "272","4020.0","66.0","500.0","8.0","14.0","uber","uber"
309
+ "169","1595.0","33.0","85.0","2.0","14.0","special","mega"
310
+ "619","2290.0","50.0","214.0","4.0","15.0","mega","mega"
311
+ "28","3995.0","33.0","452.0","8.0","14.0","uber","uber"
312
+ "272","4020.0","66.0","500.0","8.0","14.0","uber","uber"
313
+ "169","1595.0","33.0","85.0","2.0","14.0","special","mega"
314
+ "108","1720.0","25.0","170.0","4.0","14.0","special","special"
315
+ "89","1395.0","25.0","85.0","2.0","14.0","special","special"
316
+ "598","2899.0","66.0","340.0","8.0","15.0","hyper","hyper"
317
+ "495","2690.0","50.0","340.0","8.0","15.0","mega","mega"
318
+ "108","1720.0","25.0","170.0","4.0","14.0","special","special"
319
+ "89","1395.0","25.0","85.0","2.0","14.0","special","special"
320
+ "598","2899.0","66.0","340.0","8.0","15.0","hyper","hyper"
321
+ "495","2690.0","50.0","340.0","8.0","15.0","mega","mega"
322
+ "577","2145.0","66.0","250.0","4.0","14.0","super","super"
323
+ "354","2090.0","33.0","130.0","4.0","14.0","super","super"
324
+ "190","2999.0","66.0","245.0","16.0","15.0","hyper","special"
325
+ "535","2090.0","33.0","214.0","4.0","14.0","super","super"
326
+ "577","2145.0","66.0","250.0","4.0","14.0","super","super"
327
+ "354","2090.0","33.0","130.0","4.0","14.0","super","super"
328
+ "190","2999.0","66.0","245.0","16.0","15.0","hyper","special"
329
+ "535","2090.0","33.0","214.0","4.0","14.0","super","super"
330
+ "26","1290.0","33.0","80.0","2.0","14.0","special","special"
331
+ "211","2395.0","33.0","245.0","8.0","14.0","mega","mega"
332
+ "455","2515.0","33.0","250.0","8.0","15.0","mega","mega"
333
+ "85","2595.0","25.0","245.0","8.0","14.0","mega","mega"
334
+ "26","1290.0","33.0","80.0","2.0","14.0","special","special"
335
+ "211","2395.0","33.0","245.0","8.0","14.0","mega","mega"
336
+ "455","2515.0","33.0","250.0","8.0","15.0","mega","mega"
337
+ "85","2595.0","25.0","245.0","8.0","14.0","mega","mega"
338
+ "291","3995.0","66.0","452.0","8.0","14.0","uber","uber"
339
+ "476","1490.0","25.0","107.0","2.0","15.0","special","special"
340
+ "516","2935.0","50.0","250.0","8.0","17.0","hyper","hyper"
341
+ "350","2145.0","50.0","170.0","4.0","14.0","super","super"
342
+ "291","3995.0","66.0","452.0","8.0","14.0","uber","uber"
343
+ "476","1490.0","25.0","107.0","2.0","15.0","special","special"
344
+ "516","2935.0","50.0","250.0","8.0","17.0","hyper","hyper"
345
+ "350","2145.0","50.0","170.0","4.0","14.0","super","super"
346
+ "148","2199.0","33.0","212.0","4.0","14.0","super","super"
347
+ "68","1499.0","25.0","120.0","4.0","14.0","special","special"
348
+ "556","1490.0","33.0","107.0","2.0","14.0","special","super"
349
+ "146","2595.0","66.0","245.0","8.0","14.0","mega","mega"
350
+ "148","2199.0","33.0","212.0","4.0","14.0","super","super"
351
+ "68","1499.0","25.0","120.0","4.0","14.0","special","special"
352
+ "556","1490.0","33.0","107.0","2.0","14.0","special","super"
353
+ "146","2595.0","66.0","245.0","8.0","14.0","mega","mega"
354
+ "617","2999.0","66.0","240.0","4.0","15.0","hyper","hyper"
355
+ "537","2195.0","50.0","250.0","4.0","14.0","super","super"
356
+ "270","2999.0","66.0","340.0","4.0","15.0","hyper","hyper"
357
+ "207","2885.0","66.0","170.0","8.0","15.0","hyper","hyper"
358
+ "617","2999.0","66.0","240.0","4.0","15.0","hyper","hyper"
359
+ "537","2195.0","50.0","250.0","4.0","14.0","super","super"
360
+ "270","2999.0","66.0","340.0","4.0","15.0","hyper","hyper"
361
+ "207","2885.0","66.0","170.0","8.0","15.0","hyper","hyper"
362
+ "413","2090.0","33.0","214.0","4.0","15.0","super","super"
363
+ "394","1399.0","25.0","170.0","4.0","14.0","special","special"
364
+ "453","2420.0","33.0","250.0","8.0","15.0","mega","mega"
365
+ "390","1895.0","50.0","170.0","4.0","14.0","super","super"
366
+ "413","2090.0","33.0","214.0","4.0","15.0","super","super"
367
+ "394","1399.0","25.0","170.0","4.0","14.0","special","special"
368
+ "453","2420.0","33.0","250.0","8.0","15.0","mega","mega"
369
+ "390","1895.0","50.0","170.0","4.0","14.0","super","super"
370
+ "5","3295.0","33.0","340.0","16.0","14.0","hyper","super"
371
+ "251","2399.0","66.0","213.0","8.0","14.0","mega","mega"
372
+ "310","3795.0","33.0","452.0","8.0","14.0","uber","uber"
373
+ "247","3299.0","66.0","245.0","16.0","15.0","hyper","hyper"
374
+ "5","3295.0","33.0","340.0","16.0","14.0","hyper","super"
375
+ "251","2399.0","66.0","213.0","8.0","14.0","mega","mega"
376
+ "310","3795.0","33.0","452.0","8.0","14.0","uber","uber"
377
+ "247","3299.0","66.0","245.0","16.0","15.0","hyper","hyper"
378
+ "474","2299.0","33.0","405.0","8.0","14.0","mega","mega"
379
+ "87","2075.0","33.0","210.0","8.0","14.0","super","super"
380
+ "575","2299.0","66.0","120.0","4.0","14.0","mega","mega"
381
+ "512","2645.0","50.0","250.0","8.0","15.0","mega","mega"
382
+ "474","2299.0","33.0","405.0","8.0","14.0","mega","mega"
383
+ "87","2075.0","33.0","210.0","8.0","14.0","super","super"
384
+ "575","2299.0","66.0","120.0","4.0","14.0","mega","mega"
385
+ "512","2645.0","50.0","250.0","8.0","15.0","mega","mega"
386
+ "331","1999.0","33.0","170.0","4.0","14.0","super","super"
387
+ "352","2525.0","50.0","250.0","8.0","14.0","mega","mega"
388
+ "167","2495.0","50.0","245.0","8.0","14.0","mega","mega"
389
+ "287","1399.0","25.0","170.0","4.0","14.0","special","special"
390
+ "331","1999.0","33.0","170.0","4.0","14.0","super","super"
391
+ "352","2525.0","50.0","250.0","8.0","14.0","mega","mega"
392
+ "167","2495.0","50.0","245.0","8.0","14.0","mega","mega"
393
+ "287","1399.0","25.0","170.0","4.0","14.0","special","special"
394
+ "596","1520.0","25.0","80.0","4.0","14.0","special","special"
395
+ "392","2595.0","66.0","245.0","8.0","14.0","mega","mega"
396
+ "228","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
397
+ "552","1295.0","25.0","107.0","2.0","14.0","special","mega"
398
+ "596","1520.0","25.0","80.0","4.0","14.0","special","special"
399
+ "392","2595.0","66.0","245.0","8.0","14.0","mega","mega"
400
+ "228","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
401
+ "552","1295.0","25.0","107.0","2.0","14.0","special","mega"
402
+ "188","2575.0","66.0","250.0","8.0","14.0","mega","mega"
403
+ "249","1695.0","50.0","85.0","2.0","14.0","special","special"
404
+ "493","2195.0","50.0","214.0","4.0","14.0","super","super"
405
+ "144","1975.0","50.0","170.0","4.0","14.0","super","super"
406
+ "188","2575.0","66.0","250.0","8.0","14.0","mega","mega"
407
+ "249","1695.0","50.0","85.0","2.0","14.0","special","special"
408
+ "493","2195.0","50.0","214.0","4.0","14.0","super","super"
409
+ "144","1975.0","50.0","170.0","4.0","14.0","super","super"
410
+ "24","2875.0","50.0","210.0","4.0","17.0","hyper","hyper"
411
+ "514","1890.0","66.0","107.0","2.0","15.0","super","super"
412
+ "615","1799.0","33.0","120.0","4.0","14.0","super","super"
413
+ "388","2099.0","66.0","120.0","4.0","14.0","super","super"
414
+ "24","2875.0","50.0","210.0","4.0","17.0","hyper","hyper"
415
+ "514","1890.0","66.0","107.0","2.0","15.0","super","super"
416
+ "615","1799.0","33.0","120.0","4.0","14.0","super","super"
417
+ "388","2099.0","66.0","120.0","4.0","14.0","super","super"
418
+ "289","2595.0","25.0","340.0","16.0","14.0","mega","mega"
419
+ "106","2995.0","66.0","250.0","8.0","17.0","hyper","hyper"
420
+ "268","2785.0","50.0","170.0","8.0","15.0","hyper","super"
421
+ "449","1499.0","33.0","120.0","4.0","14.0","special","special"
422
+ "289","2595.0","25.0","340.0","16.0","14.0","mega","mega"
423
+ "106","2995.0","66.0","250.0","8.0","17.0","hyper","hyper"
424
+ "268","2785.0","50.0","170.0","8.0","15.0","hyper","super"
425
+ "449","1499.0","33.0","120.0","4.0","14.0","special","special"
426
+ "3","1595.0","25.0","170.0","4.0","15.0","special","special"
427
+ "371","2490.0","33.0","245.0","8.0","14.0","mega","mega"
428
+ "533","2895.0","50.0","452.0","16.0","14.0","hyper","hyper"
429
+ "102","2195.0","25.0","245.0","8.0","14.0","super","super"
430
+ "3","1595.0","25.0","170.0","4.0","15.0","special","special"
431
+ "371","2490.0","33.0","245.0","8.0","14.0","mega","mega"
432
+ "533","2895.0","50.0","452.0","16.0","14.0","hyper","hyper"
433
+ "102","2195.0","25.0","245.0","8.0","14.0","super","super"
434
+ "329","3090.0","66.0","340.0","16.0","14.0","hyper","hyper"
435
+ "411","1495.0","33.0","170.0","4.0","14.0","special","special"
436
+ "165","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
437
+ "428","2390.0","25.0","340.0","8.0","14.0","mega","mega"
438
+ "329","3090.0","66.0","340.0","16.0","14.0","hyper","hyper"
439
+ "411","1495.0","33.0","170.0","4.0","14.0","special","special"
440
+ "165","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
441
+ "428","2390.0","25.0","340.0","8.0","14.0","mega","mega"
442
+ "186","2395.0","33.0","245.0","8.0","14.0","mega","mega"
443
+ "64","2220.0","33.0","250.0","4.0","14.0","super","super"
444
+ "22","2795.0","66.0","130.0","4.0","14.0","hyper","hyper"
445
+ "224","3895.0","50.0","452.0","8.0","14.0","uber","uber"
446
+ "186","2395.0","33.0","245.0","8.0","14.0","mega","mega"
447
+ "64","2220.0","33.0","250.0","4.0","14.0","super","super"
448
+ "22","2795.0","66.0","130.0","4.0","14.0","hyper","hyper"
449
+ "224","3895.0","50.0","452.0","8.0","14.0","uber","uber"
450
+ "43","2499.0","33.0","212.0","8.0","14.0","mega","mega"
451
+ "430","2295.0","25.0","340.0","8.0","14.0","mega","mega"
452
+ "613","2790.0","66.0","340.0","8.0","15.0","hyper","hyper"
453
+ "489","2855.0","50.0","250.0","8.0","17.0","hyper","hyper"
454
+ "43","2499.0","33.0","212.0","8.0","14.0","mega","mega"
455
+ "430","2295.0","25.0","340.0","8.0","14.0","mega","mega"
456
+ "613","2790.0","66.0","340.0","8.0","15.0","hyper","hyper"
457
+ "489","2855.0","50.0","250.0","8.0","17.0","hyper","hyper"
458
+ "308","2285.0","50.0","250.0","8.0","14.0","mega","mega"
459
+ "226","2745.0","66.0","170.0","8.0","14.0","hyper","mega"
460
+ "205","1595.0","33.0","85.0","2.0","14.0","special","special"
461
+ "264","2345.0","50.0","250.0","8.0","14.0","mega","mega"
462
+ "308","2285.0","50.0","250.0","8.0","14.0","mega","mega"
463
+ "226","2745.0","66.0","170.0","8.0","14.0","hyper","mega"
464
+ "205","1595.0","33.0","85.0","2.0","14.0","special","special"
465
+ "264","2345.0","50.0","250.0","8.0","14.0","mega","mega"
466
+ "491","3990.0","66.0","1000.0","16.0","14.0","uber","uber"
467
+ "83","2990.0","66.0","210.0","8.0","15.0","hyper","hyper"
468
+ "470","3720.0","66.0","500.0","8.0","14.0","uber","uber"
469
+ "590","2125.0","66.0","170.0","4.0","15.0","super","super"
470
+ "491","3990.0","66.0","1000.0","16.0","14.0","uber","uber"
471
+ "83","2990.0","66.0","210.0","8.0","15.0","hyper","hyper"
472
+ "470","3720.0","66.0","500.0","8.0","14.0","uber","uber"
473
+ "590","2125.0","66.0","170.0","4.0","15.0","super","super"
474
+ "348","2595.0","50.0","250.0","8.0","15.0","mega","mega"
475
+ "266","2195.0","50.0","130.0","4.0","14.0","super","super"
476
+ "62","1795.0","33.0","170.0","4.0","15.0","super","super"
477
+ "100","1695.0","33.0","170.0","4.0","14.0","special","special"
478
+ "348","2595.0","50.0","250.0","8.0","15.0","mega","mega"
479
+ "266","2195.0","50.0","130.0","4.0","14.0","super","super"
480
+ "62","1795.0","33.0","170.0","4.0","15.0","super","super"
481
+ "100","1695.0","33.0","170.0","4.0","14.0","special","special"
482
+ "1","1499.0","25.0","80.0","4.0","14.0","special","special"
483
+ "531","2390.0","25.0","340.0","8.0","15.0","mega","mega"
484
+ "327","2395.0","33.0","250.0","8.0","14.0","mega","mega"
485
+ "140","2195.0","50.0","130.0","4.0","14.0","super","super"
486
+ "1","1499.0","25.0","80.0","4.0","14.0","special","special"
487
+ "531","2390.0","25.0","340.0","8.0","15.0","mega","mega"
488
+ "327","2395.0","33.0","250.0","8.0","14.0","mega","mega"
489
+ "140","2195.0","50.0","130.0","4.0","14.0","super","super"
490
+ "41","2895.0","50.0","245.0","8.0","14.0","hyper","hyper"
491
+ "81","3399.0","66.0","230.0","4.0","15.0","hyper","hyper"
492
+ "245","2575.0","66.0","250.0","8.0","14.0","mega","uber"
493
+ "201","3995.0","66.0","452.0","8.0","14.0","uber","uber"
494
+ "41","2895.0","50.0","245.0","8.0","14.0","hyper","hyper"
495
+ "81","3399.0","66.0","230.0","4.0","15.0","hyper","hyper"
496
+ "245","2575.0","66.0","250.0","8.0","14.0","mega","uber"
497
+ "201","3995.0","66.0","452.0","8.0","14.0","uber","uber"
498
+ "306","1499.0","25.0","170.0","4.0","14.0","special","special"
499
+ "142","4020.0","66.0","500.0","8.0","14.0","uber","uber"
500
+ "510","3195.0","66.0","540.0","8.0","15.0","hyper","hyper"
501
+ "262","2345.0","33.0","250.0","8.0","15.0","mega","mega"
502
+ "306","1499.0","25.0","170.0","4.0","14.0","special","special"
503
+ "142","4020.0","66.0","500.0","8.0","14.0","uber","uber"
504
+ "510","3195.0","66.0","540.0","8.0","15.0","hyper","hyper"
505
+ "262","2345.0","33.0","250.0","8.0","15.0","mega","mega"
506
+ "163","2645.0","50.0","250.0","4.0","15.0","mega","mega"
507
+ "407","2399.0","66.0","213.0","8.0","14.0","mega","mega"
508
+ "571","1720.0","33.0","170.0","4.0","14.0","special","special"
509
+ "527","2790.0","66.0","340.0","8.0","15.0","hyper","hyper"
510
+ "163","2645.0","50.0","250.0","4.0","15.0","mega","mega"
511
+ "407","2399.0","66.0","213.0","8.0","14.0","mega","mega"
512
+ "571","1720.0","33.0","170.0","4.0","14.0","special","special"
513
+ "527","2790.0","66.0","340.0","8.0","15.0","hyper","hyper"
514
+ "20","4395.0","66.0","452.0","8.0","14.0","uber","mega"
515
+ "121","1795.0","33.0","170.0","4.0","14.0","super","super"
516
+ "285","2545.0","66.0","250.0","8.0","15.0","mega","mega"
517
+ "445","2495.0","33.0","340.0","8.0","14.0","mega","mega"
518
+ "20","4395.0","66.0","452.0","8.0","14.0","uber","mega"
519
+ "121","1795.0","33.0","170.0","4.0","14.0","super","super"
520
+ "285","2545.0","66.0","250.0","8.0","15.0","mega","mega"
521
+ "445","2495.0","33.0","340.0","8.0","14.0","mega","mega"
522
+ "611","2995.0","66.0","452.0","16.0","14.0","hyper","hyper"
523
+ "386","2399.0","33.0","212.0","8.0","14.0","mega","mega"
524
+ "325","1690.0","33.0","85.0","2.0","14.0","special","special"
525
+ "302","1895.0","25.0","130.0","4.0","14.0","super","super"
526
+ "611","2995.0","66.0","452.0","16.0","14.0","hyper","hyper"
527
+ "386","2399.0","33.0","212.0","8.0","14.0","mega","mega"
528
+ "325","1690.0","33.0","85.0","2.0","14.0","special","special"
529
+ "302","1895.0","25.0","130.0","4.0","14.0","super","super"
530
+ "203","2475.0","50.0","250.0","8.0","15.0","mega","mega"
531
+ "243","2335.0","50.0","250.0","8.0","14.0","mega","mega"
532
+ "182","2815.0","33.0","250.0","4.0","17.0","hyper","hyper"
533
+ "567","1690.0","33.0","107.0","2.0","14.0","special","special"
534
+ "203","2475.0","50.0","250.0","8.0","15.0","mega","mega"
535
+ "243","2335.0","50.0","250.0","8.0","14.0","mega","mega"
536
+ "182","2815.0","33.0","250.0","4.0","17.0","hyper","hyper"
537
+ "567","1690.0","33.0","107.0","2.0","14.0","special","special"
538
+ "468","1995.0","50.0","170.0","4.0","14.0","super","super"
539
+ "569","1890.0","25.0","214.0","4.0","14.0","super","super"
540
+ "39","2405.0","50.0","210.0","8.0","14.0","mega","mega"
541
+ "607","2299.0","66.0","245.0","8.0","14.0","mega","hyper"
542
+ "468","1995.0","50.0","170.0","4.0","14.0","super","super"
543
+ "569","1890.0","25.0","214.0","4.0","14.0","super","super"
544
+ "39","2405.0","50.0","210.0","8.0","14.0","mega","mega"
545
+ "607","2299.0","66.0","245.0","8.0","14.0","mega","hyper"
546
+ "60","1945.0","50.0","130.0","4.0","14.0","super","super"
547
+ "161","1995.0","33.0","130.0","4.0","14.0","super","super"
548
+ "508","3599.0","33.0","340.0","16.0","17.0","uber","uber"
549
+ "117","2525.0","50.0","250.0","4.0","15.0","mega","mega"
550
+ "60","1945.0","50.0","130.0","4.0","14.0","super","super"
551
+ "161","1995.0","33.0","130.0","4.0","14.0","super","super"
552
+ "508","3599.0","33.0","340.0","16.0","17.0","uber","uber"
553
+ "117","2525.0","50.0","250.0","4.0","15.0","mega","mega"
554
+ "18","2325.0","33.0","210.0","4.0","15.0","mega","mega"
555
+ "426","1595.0","33.0","107.0","2.0","14.0","special","special"
556
+ "365","2815.0","66.0","250.0","8.0","15.0","hyper","hyper"
557
+ "443","1490.0","25.0","107.0","2.0","14.0","special","special"
558
+ "18","2325.0","33.0","210.0","4.0","15.0","mega","mega"
559
+ "426","1595.0","33.0","107.0","2.0","14.0","special","special"
560
+ "365","2815.0","66.0","250.0","8.0","15.0","hyper","hyper"
561
+ "443","1490.0","25.0","107.0","2.0","14.0","special","special"
562
+ "79","2595.0","50.0","130.0","4.0","14.0","mega","mega"
563
+ "609","2495.0","33.0","250.0","8.0","15.0","mega","mega"
564
+ "222","2695.0","66.0","250.0","8.0","15.0","mega","mega"
565
+ "239","1495.0","25.0","170.0","4.0","14.0","special","special"
566
+ "79","2595.0","50.0","130.0","4.0","14.0","mega","mega"
567
+ "609","2495.0","33.0","250.0","8.0","15.0","mega","mega"
568
+ "222","2695.0","66.0","250.0","8.0","15.0","mega","mega"
569
+ "239","1495.0","25.0","170.0","4.0","14.0","special","special"
570
+ "344","1590.0","33.0","85.0","2.0","14.0","special","special"
571
+ "466","1795.0","66.0","107.0","2.0","14.0","super","super"
572
+ "548","2599.0","50.0","450.0","8.0","15.0","mega","mega"
573
+ "157","2999.0","50.0","170.0","4.0","14.0","hyper","hyper"
574
+ "344","1590.0","33.0","85.0","2.0","14.0","special","special"
575
+ "466","1795.0","66.0","107.0","2.0","14.0","super","super"
576
+ "548","2599.0","50.0","450.0","8.0","15.0","mega","mega"
577
+ "157","2999.0","50.0","170.0","4.0","14.0","hyper","hyper"
578
+ "58","3075.0","66.0","210.0","4.0","17.0","hyper","hyper"
579
+ "119","2499.0","33.0","170.0","4.0","14.0","mega","mega"
580
+ "588","1599.0","25.0","170.0","4.0","14.0","special","special"
581
+ "14","2295.0","25.0","245.0","8.0","14.0","mega","mega"
582
+ "58","3075.0","66.0","210.0","4.0","17.0","hyper","hyper"
583
+ "119","2499.0","33.0","170.0","4.0","14.0","mega","mega"
584
+ "588","1599.0","25.0","170.0","4.0","14.0","special","special"
585
+ "14","2295.0","25.0","245.0","8.0","14.0","mega","mega"
586
+ "323","2599.0","33.0","245.0","16.0","15.0","mega","mega"
587
+ "159","3065.0","50.0","250.0","4.0","17.0","hyper","mega"
588
+ "37","2325.0","66.0","210.0","8.0","14.0","mega","mega"
589
+ "483","2249.0","50.0","230.0","4.0","14.0","super","super"
590
+ "323","2599.0","33.0","245.0","16.0","15.0","mega","mega"
591
+ "159","3065.0","50.0","250.0","4.0","17.0","hyper","mega"
592
+ "37","2325.0","66.0","210.0","8.0","14.0","mega","mega"
593
+ "483","2249.0","50.0","230.0","4.0","14.0","super","super"
594
+ "384","2290.0","25.0","245.0","8.0","14.0","mega","mega"
595
+ "424","2495.0","50.0","250.0","8.0","15.0","mega","mega"
596
+ "220","1945.0","33.0","170.0","4.0","14.0","super","super"
597
+ "279","2405.0","66.0","250.0","8.0","14.0","mega","mega"
598
+ "384","2290.0","25.0","245.0","8.0","14.0","mega","mega"
599
+ "424","2495.0","50.0","250.0","8.0","15.0","mega","mega"
600
+ "220","1945.0","33.0","170.0","4.0","14.0","super","super"
601
+ "279","2405.0","66.0","250.0","8.0","14.0","mega","mega"
602
+ "180","1695.0","50.0","85.0","2.0","14.0","special","mega"
603
+ "16","2225.0","50.0","130.0","4.0","14.0","super","super"
604
+ "485","2455.0","66.0","250.0","8.0","14.0","mega","mega"
605
+ "544","2698.0","66.0","245.0","8.0","14.0","mega","mega"
606
+ "180","1695.0","50.0","85.0","2.0","14.0","special","mega"
607
+ "16","2225.0","50.0","130.0","4.0","14.0","super","super"
608
+ "485","2455.0","66.0","250.0","8.0","14.0","mega","mega"
609
+ "544","2698.0","66.0","245.0","8.0","14.0","mega","mega"
610
+ "241","1699.0","33.0","120.0","4.0","14.0","special","special"
611
+ "281","2225.0","33.0","250.0","8.0","14.0","super","super"
612
+ "77","1975.0","33.0","210.0","8.0","14.0","super","super"
613
+ "605","1449.0","25.0","120.0","4.0","14.0","special","hyper"
614
+ "241","1699.0","33.0","120.0","4.0","14.0","special","special"
615
+ "281","2225.0","33.0","250.0","8.0","14.0","super","super"
616
+ "77","1975.0","33.0","210.0","8.0","14.0","super","super"
617
+ "605","1449.0","25.0","120.0","4.0","14.0","special","hyper"
618
+ "506","1775.0","33.0","170.0","4.0","14.0","super","super"
619
+ "138","2395.0","33.0","250.0","4.0","15.0","mega","mega"
620
+ "342","2699.0","66.0","213.0","8.0","14.0","mega","mega"
621
+ "319","2335.0","66.0","250.0","8.0","14.0","mega","mega"
622
+ "506","1775.0","33.0","170.0","4.0","14.0","super","super"
623
+ "138","2395.0","33.0","250.0","4.0","15.0","mega","mega"
624
+ "342","2699.0","66.0","213.0","8.0","14.0","mega","mega"
625
+ "319","2335.0","66.0","250.0","8.0","14.0","mega","mega"
626
+ "98","1920.0","33.0","170.0","4.0","14.0","super","super"
627
+ "464","2790.0","33.0","452.0","16.0","15.0","hyper","hyper"
628
+ "260","2599.0","33.0","245.0","16.0","15.0","mega","mega"
629
+ "155","2499.0","33.0","212.0","8.0","14.0","mega","super"
630
+ "98","1920.0","33.0","170.0","4.0","14.0","super","super"
631
+ "464","2790.0","33.0","452.0","16.0","15.0","hyper","hyper"
632
+ "260","2599.0","33.0","245.0","16.0","15.0","mega","mega"
633
+ "155","2499.0","33.0","212.0","8.0","14.0","mega","super"
634
+ "363","2155.0","50.0","250.0","8.0","14.0","super","super"
635
+ "321","2425.0","66.0","250.0","8.0","15.0","mega","mega"
636
+ "525","2099.0","66.0","120.0","4.0","14.0","super","super"
637
+ "216","1395.0","25.0","85.0","2.0","14.0","special","special"
638
+ "363","2155.0","50.0","250.0","8.0","14.0","super","super"
639
+ "321","2425.0","66.0","250.0","8.0","15.0","mega","mega"
640
+ "525","2099.0","66.0","120.0","4.0","14.0","super","super"
641
+ "216","1395.0","25.0","85.0","2.0","14.0","special","special"
642
+ "546","2695.0","66.0","340.0","8.0","14.0","mega","mega"
643
+ "178","2645.0","33.0","250.0","8.0","17.0","mega","mega"
644
+ "382","2399.0","66.0","213.0","8.0","14.0","mega","mega"
645
+ "542","2795.0","66.0","250.0","8.0","15.0","hyper","hyper"
646
+ "546","2695.0","66.0","340.0","8.0","14.0","mega","mega"
647
+ "178","2645.0","33.0","250.0","8.0","17.0","mega","mega"
648
+ "382","2399.0","66.0","213.0","8.0","14.0","mega","mega"
649
+ "542","2795.0","66.0","250.0","8.0","15.0","hyper","hyper"
650
+ "403","2490.0","33.0","340.0","8.0","14.0","mega","mega"
651
+ "422","2690.0","25.0","452.0","16.0","14.0","mega","mega"
652
+ "35","1999.0","33.0","170.0","4.0","14.0","super","super"
653
+ "195","2065.0","50.0","170.0","4.0","14.0","super","super"
654
+ "403","2490.0","33.0","340.0","8.0","14.0","mega","mega"
655
+ "422","2690.0","25.0","452.0","16.0","14.0","mega","mega"
656
+ "35","1999.0","33.0","170.0","4.0","14.0","super","super"
657
+ "195","2065.0","50.0","170.0","4.0","14.0","super","super"
658
+ "56","2125.0","50.0","130.0","4.0","14.0","super","super"
659
+ "136","2195.0","25.0","245.0","8.0","14.0","super","super"
660
+ "300","1595.0","25.0","170.0","4.0","14.0","special","special"
661
+ "460","2690.0","25.0","452.0","16.0","15.0","mega","mega"
662
+ "56","2125.0","50.0","130.0","4.0","14.0","super","super"
663
+ "136","2195.0","25.0","245.0","8.0","14.0","super","super"
664
+ "300","1595.0","25.0","170.0","4.0","14.0","special","special"
665
+ "460","2690.0","25.0","452.0","16.0","15.0","mega","mega"
666
+ "96","1495.0","25.0","170.0","4.0","14.0","special","special"
667
+ "197","2099.0","33.0","212.0","4.0","14.0","super","super"
668
+ "340","2825.0","33.0","250.0","8.0","17.0","hyper","hyper"
669
+ "256","2399.0","66.0","120.0","4.0","14.0","mega","mega"
670
+ "96","1495.0","25.0","170.0","4.0","14.0","special","special"
671
+ "197","2099.0","33.0","212.0","4.0","14.0","super","super"
672
+ "340","2825.0","33.0","250.0","8.0","17.0","hyper","hyper"
673
+ "256","2399.0","66.0","120.0","4.0","14.0","mega","mega"
674
+ "361","1775.0","33.0","170.0","4.0","14.0","super","super"
675
+ "462","1790.0","50.0","107.0","2.0","14.0","super","super"
676
+ "54","2190.0","33.0","210.0","4.0","14.0","super","super"
677
+ "317","2399.0","66.0","120.0","4.0","14.0","mega","mega"
678
+ "361","1775.0","33.0","170.0","4.0","14.0","super","super"
679
+ "462","1790.0","50.0","107.0","2.0","14.0","super","super"
680
+ "54","2190.0","33.0","210.0","4.0","14.0","super","super"
681
+ "317","2399.0","66.0","120.0","4.0","14.0","mega","mega"
682
+ "218","2095.0","33.0","130.0","4.0","14.0","super","super"
683
+ "441","2605.0","33.0","250.0","8.0","17.0","mega","mega"
684
+ "380","1490.0","25.0","85.0","2.0","14.0","special","special"
685
+ "582","2590.0","33.0","340.0","8.0","14.0","mega","mega"
686
+ "218","2095.0","33.0","130.0","4.0","14.0","super","super"
687
+ "441","2605.0","33.0","250.0","8.0","17.0","mega","mega"
688
+ "380","1490.0","25.0","85.0","2.0","14.0","special","special"
689
+ "582","2590.0","33.0","340.0","8.0","14.0","mega","mega"
690
+ "75","2999.0","50.0","170.0","4.0","14.0","hyper","hyper"
691
+ "33","2595.0","33.0","210.0","8.0","17.0","mega","mega"
692
+ "563","2999.0","50.0","240.0","4.0","14.0","hyper","hyper"
693
+ "31","1920.0","33.0","170.0","4.0","14.0","super","super"
694
+ "75","2999.0","50.0","170.0","4.0","14.0","hyper","hyper"
695
+ "33","2595.0","33.0","210.0","8.0","17.0","mega","mega"
696
+ "563","2999.0","50.0","240.0","4.0","14.0","hyper","hyper"
697
+ "31","1920.0","33.0","170.0","4.0","14.0","super","super"
698
+ "401","2399.0","50.0","320.0","8.0","14.0","mega","mega"
699
+ "502","2295.0","66.0","214.0","4.0","14.0","mega","mega"
700
+ "12","2605.0","66.0","210.0","8.0","14.0","mega","uber"
701
+ "500","2720.0","50.0","250.0","8.0","15.0","hyper","hyper"
702
+ "401","2399.0","50.0","320.0","8.0","14.0","mega","mega"
703
+ "502","2295.0","66.0","214.0","4.0","14.0","mega","mega"
704
+ "12","2605.0","66.0","210.0","8.0","14.0","mega","uber"
705
+ "500","2720.0","50.0","250.0","8.0","15.0","hyper","hyper"
706
+ "258","2449.0","33.0","230.0","4.0","14.0","mega","super"
707
+ "298","2890.0","33.0","340.0","16.0","14.0","hyper","hyper"
708
+ "277","2195.0","50.0","170.0","4.0","14.0","super","super"
709
+ "622","2025.0","66.0","170.0","4.0","14.0","super","hyper"
710
+ "258","2449.0","33.0","230.0","4.0","14.0","mega","super"
711
+ "298","2890.0","33.0","340.0","16.0","14.0","hyper","hyper"
712
+ "277","2195.0","50.0","170.0","4.0","14.0","super","super"
713
+ "622","2025.0","66.0","170.0","4.0","14.0","super","hyper"
714
+ "523","1499.0","25.0","170.0","4.0","14.0","special","special"
715
+ "481","2455.0","50.0","250.0","8.0","15.0","mega","mega"
716
+ "338","2990.0","50.0","340.0","16.0","14.0","hyper","hyper"
717
+ "172","2495.0","33.0","250.0","8.0","15.0","mega","mega"
718
+ "523","1499.0","25.0","170.0","4.0","14.0","special","special"
719
+ "481","2455.0","50.0","250.0","8.0","15.0","mega","mega"
720
+ "338","2990.0","50.0","340.0","16.0","14.0","hyper","hyper"
721
+ "172","2495.0","33.0","250.0","8.0","15.0","mega","mega"
722
+ "115","1499.0","25.0","170.0","4.0","14.0","special","special"
723
+ "174","2744.0","66.0","245.0","8.0","14.0","hyper","special"
724
+ "603","1999.0","50.0","212.0","4.0","14.0","super","super"
725
+ "498","1890.0","66.0","107.0","2.0","14.0","super","super"
726
+ "115","1499.0","25.0","170.0","4.0","14.0","special","special"
727
+ "174","2744.0","66.0","245.0","8.0","14.0","hyper","special"
728
+ "603","1999.0","50.0","212.0","4.0","14.0","super","super"
729
+ "498","1890.0","66.0","107.0","2.0","14.0","super","super"
730
+ "359","3125.0","66.0","250.0","8.0","17.0","hyper","hyper"
731
+ "479","2595.0","50.0","250.0","8.0","15.0","mega","mega"
732
+ "275","2195.0","33.0","250.0","8.0","15.0","super","super"
733
+ "294","2455.0","66.0","250.0","8.0","14.0","mega","mega"
734
+ "359","3125.0","66.0","250.0","8.0","17.0","hyper","hyper"
735
+ "479","2595.0","50.0","250.0","8.0","15.0","mega","mega"
736
+ "275","2195.0","33.0","250.0","8.0","15.0","super","super"
737
+ "294","2455.0","66.0","250.0","8.0","14.0","mega","mega"
738
+ "73","1695.0","33.0","170.0","4.0","14.0","special","hyper"
739
+ "71","4020.0","66.0","500.0","8.0","14.0","uber","uber"
740
+ "540","2095.0","33.0","250.0","4.0","14.0","super","super"
741
+ "559","2690.0","33.0","452.0","16.0","14.0","mega","mega"
742
+ "73","1695.0","33.0","170.0","4.0","14.0","special","hyper"
743
+ "71","4020.0","66.0","500.0","8.0","14.0","uber","uber"
744
+ "540","2095.0","33.0","250.0","4.0","14.0","super","super"
745
+ "559","2690.0","33.0","452.0","16.0","14.0","mega","mega"
746
+ "134","2075.0","50.0","170.0","4.0","14.0","super","super"
747
+ "336","2790.0","33.0","340.0","16.0","14.0","hyper","hyper"
748
+ "132","1799.0","25.0","170.0","4.0","14.0","super","mega"
749
+ "212","3135.0","66.0","250.0","8.0","17.0","hyper","hyper"
750
+ "134","2075.0","50.0","170.0","4.0","14.0","super","super"
751
+ "336","2790.0","33.0","340.0","16.0","14.0","hyper","hyper"
752
+ "132","1799.0","25.0","170.0","4.0","14.0","super","mega"
753
+ "212","3135.0","66.0","250.0","8.0","17.0","hyper","hyper"
754
+ "399","1899.0","33.0","212.0","4.0","14.0","super","super"
755
+ "193","1999.0","33.0","213.0","8.0","14.0","super","super"
756
+ "397","2449.0","33.0","230.0","4.0","14.0","mega","mega"
757
+ "69","2199.0","33.0","212.0","4.0","14.0","super","super"
758
+ "399","1899.0","33.0","212.0","4.0","14.0","super","super"
759
+ "193","1999.0","33.0","213.0","8.0","14.0","super","super"
760
+ "397","2449.0","33.0","230.0","4.0","14.0","mega","mega"
761
+ "69","2199.0","33.0","212.0","4.0","14.0","super","super"
762
+ "113","3895.0","50.0","452.0","8.0","14.0","uber","uber"
763
+ "458","2390.0","66.0","214.0","4.0","15.0","mega","mega"
764
+ "50","1995.0","33.0","250.0","4.0","14.0","super","super"
765
+ "538","1899.0","33.0","170.0","4.0","14.0","super","super"
766
+ "113","3895.0","50.0","452.0","8.0","14.0","uber","uber"
767
+ "458","2390.0","66.0","214.0","4.0","15.0","mega","mega"
768
+ "50","1995.0","33.0","250.0","4.0","14.0","super","super"
769
+ "538","1899.0","33.0","170.0","4.0","14.0","super","super"
770
+ "378","2595.0","25.0","340.0","16.0","14.0","mega","mega"
771
+ "519","2390.0","66.0","214.0","4.0","14.0","mega","mega"
772
+ "315","2695.0","66.0","250.0","8.0","14.0","mega","mega"
773
+ "334","2025.0","50.0","170.0","4.0","14.0","super","super"
774
+ "378","2595.0","25.0","340.0","16.0","14.0","mega","mega"
775
+ "519","2390.0","66.0","214.0","4.0","14.0","mega","mega"
776
+ "315","2695.0","66.0","250.0","8.0","14.0","mega","mega"
777
+ "334","2025.0","50.0","170.0","4.0","14.0","super","super"
778
+ "439","3055.0","50.0","250.0","8.0","17.0","hyper","hyper"
779
+ "376","1995.0","33.0","130.0","4.0","14.0","super","super"
780
+ "580","2099.0","33.0","120.0","4.0","14.0","super","super"
781
+ "599","2390.0","66.0","214.0","4.0","14.0","mega","mega"
782
+ "439","3055.0","50.0","250.0","8.0","17.0","hyper","hyper"
783
+ "376","1995.0","33.0","130.0","4.0","14.0","super","super"
784
+ "580","2099.0","33.0","120.0","4.0","14.0","super","super"
785
+ "599","2390.0","66.0","214.0","4.0","14.0","mega","mega"
786
+ "235","2195.0","25.0","245.0","8.0","14.0","super","super"
787
+ "477","2035.0","33.0","250.0","8.0","14.0","super","super"
788
+ "437","2805.0","33.0","250.0","8.0","17.0","hyper","hyper"
789
+ "210","3895.0","66.0","500.0","8.0","15.0","uber","uber"
790
+ "235","2195.0","25.0","245.0","8.0","14.0","super","super"
791
+ "477","2035.0","33.0","250.0","8.0","14.0","super","super"
792
+ "437","2805.0","33.0","250.0","8.0","17.0","hyper","hyper"
793
+ "210","3895.0","66.0","500.0","8.0","15.0","uber","uber"
794
+ "296","2690.0","25.0","340.0","16.0","14.0","mega","mega"
795
+ "191","1899.0","33.0","170.0","4.0","14.0","super","super"
796
+ "355","2075.0","66.0","170.0","4.0","14.0","super","super"
797
+ "6","3695.0","66.0","340.0","16.0","14.0","uber","special"
798
+ "296","2690.0","25.0","340.0","16.0","14.0","mega","mega"
799
+ "191","1899.0","33.0","170.0","4.0","14.0","super","super"
800
+ "355","2075.0","66.0","170.0","4.0","14.0","super","super"
801
+ "6","3695.0","66.0","340.0","16.0","14.0","uber","special"
802
+ "561","3999.0","66.0","345.0","16.0","17.0","uber","uber"
803
+ "517","1990.0","25.0","214.0","4.0","14.0","super","super"
804
+ "620","1499.0","33.0","130.0","4.0","14.0","special","special"
805
+ "597","2745.0","33.0","540.0","8.0","14.0","hyper","hyper"
806
+ "561","3999.0","66.0","345.0","16.0","17.0","uber","uber"
807
+ "517","1990.0","25.0","214.0","4.0","14.0","super","super"
808
+ "620","1499.0","33.0","130.0","4.0","14.0","special","special"
809
+ "597","2745.0","33.0","540.0","8.0","14.0","hyper","hyper"
810
+ "418","1690.0","33.0","107.0","2.0","14.0","special","special"
811
+ "231","1999.0","33.0","120.0","8.0","14.0","super","super"
812
+ "252","1499.0","25.0","170.0","4.0","14.0","special","special"
813
+ "250","2999.0","66.0","170.0","4.0","14.0","hyper","hyper"
814
+ "418","1690.0","33.0","107.0","2.0","14.0","special","special"
815
+ "231","1999.0","33.0","120.0","8.0","14.0","super","super"
816
+ "252","1499.0","25.0","170.0","4.0","14.0","special","special"
817
+ "250","2999.0","66.0","170.0","4.0","14.0","hyper","hyper"
818
+ "601","3149.0","66.0","230.0","8.0","14.0","hyper","hyper"
819
+ "88","1795.0","33.0","130.0","4.0","14.0","super","super"
820
+ "109","2045.0","66.0","170.0","4.0","14.0","super","special"
821
+ "515","1999.0","33.0","170.0","4.0","14.0","super","super"
822
+ "601","3149.0","66.0","230.0","8.0","14.0","hyper","hyper"
823
+ "88","1795.0","33.0","130.0","4.0","14.0","super","super"
824
+ "109","2045.0","66.0","170.0","4.0","14.0","super","special"
825
+ "515","1999.0","33.0","170.0","4.0","14.0","super","super"
826
+ "111","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
827
+ "353","2595.0","50.0","250.0","8.0","15.0","mega","mega"
828
+ "435","2049.0","33.0","405.0","4.0","14.0","super","super"
829
+ "311","1999.0","33.0","213.0","8.0","14.0","super","super"
830
+ "111","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
831
+ "353","2595.0","50.0","250.0","8.0","15.0","mega","mega"
832
+ "435","2049.0","33.0","405.0","4.0","14.0","super","super"
833
+ "311","1999.0","33.0","213.0","8.0","14.0","super","super"
834
+ "90","3490.0","50.0","330.0","8.0","14.0","uber","uber"
835
+ "536","2815.0","66.0","250.0","8.0","15.0","hyper","hyper"
836
+ "27","1975.0","33.0","130.0","4.0","14.0","super","super"
837
+ "372","3225.0","66.0","212.0","4.0","15.0","hyper","hyper"
838
+ "90","3490.0","50.0","330.0","8.0","14.0","uber","uber"
839
+ "536","2815.0","66.0","250.0","8.0","15.0","hyper","hyper"
840
+ "27","1975.0","33.0","130.0","4.0","14.0","super","super"
841
+ "372","3225.0","66.0","212.0","4.0","15.0","hyper","hyper"
842
+ "151","2095.0","33.0","250.0","4.0","15.0","super","super"
843
+ "189","2695.0","33.0","340.0","16.0","14.0","mega","mega"
844
+ "292","2999.0","66.0","240.0","4.0","15.0","hyper","hyper"
845
+ "555","2595.0","33.0","452.0","16.0","14.0","mega","mega"
846
+ "151","2095.0","33.0","250.0","4.0","15.0","super","super"
847
+ "189","2695.0","33.0","340.0","16.0","14.0","mega","mega"
848
+ "292","2999.0","66.0","240.0","4.0","15.0","hyper","hyper"
849
+ "555","2595.0","33.0","452.0","16.0","14.0","mega","mega"
850
+ "8","1995.0","50.0","85.0","2.0","14.0","super","super"
851
+ "229","2199.0","33.0","210.0","4.0","14.0","super","super"
852
+ "557","2075.0","50.0","250.0","8.0","14.0","super","super"
853
+ "412","2075.0","66.0","170.0","4.0","14.0","super","super"
854
+ "8","1995.0","50.0","85.0","2.0","14.0","super","super"
855
+ "229","2199.0","33.0","210.0","4.0","14.0","super","super"
856
+ "557","2075.0","50.0","250.0","8.0","14.0","super","super"
857
+ "412","2075.0","66.0","170.0","4.0","14.0","super","super"
858
+ "273","2595.0","50.0","250.0","8.0","15.0","mega","mega"
859
+ "494","3599.0","66.0","405.0","8.0","14.0","uber","uber"
860
+ "67","2325.0","66.0","130.0","4.0","14.0","mega","mega"
861
+ "309","2475.0","50.0","250.0","8.0","15.0","mega","special"
862
+ "273","2595.0","50.0","250.0","8.0","15.0","mega","mega"
863
+ "494","3599.0","66.0","405.0","8.0","14.0","uber","uber"
864
+ "67","2325.0","66.0","130.0","4.0","14.0","mega","mega"
865
+ "309","2475.0","50.0","250.0","8.0","15.0","mega","special"
866
+ "130","2065.0","50.0","170.0","4.0","14.0","super","super"
867
+ "351","2405.0","50.0","250.0","8.0","14.0","mega","mega"
868
+ "332","2195.0","50.0","130.0","4.0","14.0","super","super"
869
+ "227","1920.0","33.0","170.0","4.0","14.0","super","super"
870
+ "130","2065.0","50.0","170.0","4.0","14.0","super","super"
871
+ "351","2405.0","50.0","250.0","8.0","14.0","mega","mega"
872
+ "332","2195.0","50.0","130.0","4.0","14.0","super","super"
873
+ "227","1920.0","33.0","170.0","4.0","14.0","super","super"
874
+ "395","2999.0","66.0","170.0","4.0","14.0","hyper","hyper"
875
+ "208","3795.0","33.0","452.0","8.0","14.0","uber","uber"
876
+ "393","1899.0","50.0","120.0","4.0","14.0","super","super"
877
+ "23","2895.0","25.0","340.0","16.0","14.0","hyper","hyper"
878
+ "395","2999.0","66.0","170.0","4.0","14.0","hyper","hyper"
879
+ "208","3795.0","33.0","452.0","8.0","14.0","uber","uber"
880
+ "393","1899.0","50.0","120.0","4.0","14.0","super","super"
881
+ "23","2895.0","25.0","340.0","16.0","14.0","hyper","hyper"
882
+ "456","2375.0","50.0","250.0","8.0","15.0","mega","mega"
883
+ "269","2799.0","50.0","245.0","16.0","15.0","hyper","hyper"
884
+ "4","1849.0","25.0","170.0","8.0","14.0","super","hyper"
885
+ "84","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
886
+ "456","2375.0","50.0","250.0","8.0","15.0","mega","mega"
887
+ "269","2799.0","50.0","245.0","16.0","15.0","hyper","hyper"
888
+ "4","1849.0","25.0","170.0","8.0","14.0","super","hyper"
889
+ "84","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
890
+ "313","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
891
+ "534","2335.0","66.0","250.0","8.0","14.0","mega","mega"
892
+ "595","2295.0","66.0","214.0","4.0","14.0","mega","mega"
893
+ "553","2990.0","50.0","452.0","16.0","14.0","hyper","hyper"
894
+ "313","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
895
+ "534","2335.0","66.0","250.0","8.0","14.0","mega","mega"
896
+ "595","2295.0","66.0","214.0","4.0","14.0","mega","mega"
897
+ "553","2990.0","50.0","452.0","16.0","14.0","hyper","hyper"
898
+ "578","3090.0","66.0","452.0","16.0","14.0","hyper","hyper"
899
+ "248","2699.0","66.0","213.0","8.0","14.0","mega","mega"
900
+ "187","1695.0","33.0","170.0","4.0","14.0","special","special"
901
+ "349","2515.0","33.0","250.0","8.0","15.0","mega","mega"
902
+ "578","3090.0","66.0","452.0","16.0","14.0","hyper","hyper"
903
+ "248","2699.0","66.0","213.0","8.0","14.0","mega","mega"
904
+ "187","1695.0","33.0","170.0","4.0","14.0","special","special"
905
+ "349","2515.0","33.0","250.0","8.0","15.0","mega","mega"
906
+ "170","1999.0","33.0","120.0","8.0","14.0","super","super"
907
+ "513","3090.0","66.0","452.0","16.0","15.0","hyper","hyper"
908
+ "452","2395.0","33.0","250.0","8.0","14.0","mega","mega"
909
+ "124","3220.0","66.0","340.0","8.0","15.0","hyper","special"
910
+ "170","1999.0","33.0","120.0","8.0","14.0","super","super"
911
+ "513","3090.0","66.0","452.0","16.0","15.0","hyper","hyper"
912
+ "452","2395.0","33.0","250.0","8.0","14.0","mega","mega"
913
+ "124","3220.0","66.0","340.0","8.0","15.0","hyper","special"
914
+ "414","2195.0","33.0","250.0","8.0","15.0","super","super"
915
+ "574","2045.0","50.0","250.0","4.0","15.0","super","super"
916
+ "44","2255.0","33.0","210.0","8.0","14.0","super","super"
917
+ "389","1395.0","25.0","85.0","2.0","14.0","special","special"
918
+ "414","2195.0","33.0","250.0","8.0","15.0","super","super"
919
+ "574","2045.0","50.0","250.0","4.0","15.0","super","super"
920
+ "44","2255.0","33.0","210.0","8.0","14.0","super","super"
921
+ "389","1395.0","25.0","85.0","2.0","14.0","special","special"
922
+ "454","2425.0","66.0","250.0","8.0","15.0","mega","mega"
923
+ "63","2495.0","33.0","250.0","8.0","15.0","mega","mega"
924
+ "105","1395.0","25.0","85.0","2.0","14.0","special","special"
925
+ "429","1690.0","33.0","107.0","2.0","15.0","special","special"
926
+ "454","2425.0","66.0","250.0","8.0","15.0","mega","mega"
927
+ "63","2495.0","33.0","250.0","8.0","15.0","mega","mega"
928
+ "105","1395.0","25.0","85.0","2.0","14.0","special","special"
929
+ "429","1690.0","33.0","107.0","2.0","15.0","special","special"
930
+ "168","2599.0","50.0","210.0","4.0","14.0","mega","mega"
931
+ "246","2495.0","33.0","250.0","8.0","15.0","mega","mega"
932
+ "370","2035.0","33.0","250.0","8.0","14.0","super","super"
933
+ "21","1695.0","33.0","130.0","4.0","14.0","special","special"
934
+ "168","2599.0","50.0","210.0","4.0","14.0","mega","mega"
935
+ "246","2495.0","33.0","250.0","8.0","15.0","mega","mega"
936
+ "370","2035.0","33.0","250.0","8.0","14.0","super","super"
937
+ "21","1695.0","33.0","130.0","4.0","14.0","special","special"
938
+ "433","2595.0","25.0","452.0","16.0","14.0","mega","mega"
939
+ "103","1795.0","66.0","85.0","2.0","14.0","super","super"
940
+ "492","3595.0","50.0","452.0","8.0","14.0","uber","uber"
941
+ "433","2595.0","25.0","452.0","16.0","14.0","mega","mega"
942
+ "103","1795.0","66.0","85.0","2.0","14.0","super","super"
943
+ "492","3595.0","50.0","452.0","8.0","14.0","uber","uber"
944
+ "25","4195.0","50.0","452.0","8.0","14.0","uber","mega"
945
+ "572","2325.0","66.0","250.0","8.0","15.0","mega","mega"
946
+ "410","2795.0","33.0","452.0","16.0","14.0","hyper","hyper"
947
+ "25","4195.0","50.0","452.0","8.0","14.0","uber","mega"
948
+ "572","2325.0","66.0","250.0","8.0","15.0","mega","mega"
949
+ "410","2795.0","33.0","452.0","16.0","14.0","hyper","hyper"
950
+ "290","1695.0","50.0","85.0","2.0","14.0","special","special"
951
+ "225","2599.0","50.0","212.0","8.0","14.0","mega","mega"
952
+ "42","3895.0","66.0","500.0","8.0","15.0","uber","super"
953
+ "290","1695.0","50.0","85.0","2.0","14.0","special","special"
954
+ "225","2599.0","50.0","212.0","8.0","14.0","mega","mega"
955
+ "42","3895.0","66.0","500.0","8.0","15.0","uber","super"
956
+ "616","3990.0","66.0","1000.0","16.0","14.0","uber","uber"
957
+ "551","2720.0","66.0","340.0","8.0","14.0","hyper","hyper"
958
+ "307","2955.0","50.0","250.0","8.0","17.0","hyper","hyper"
959
+ "616","3990.0","66.0","1000.0","16.0","14.0","uber","uber"
960
+ "551","2720.0","66.0","340.0","8.0","14.0","hyper","hyper"
961
+ "307","2955.0","50.0","250.0","8.0","17.0","hyper","hyper"
962
+ "126","2544.0","33.0","245.0","8.0","14.0","mega","mega"
963
+ "143","2475.0","50.0","250.0","8.0","14.0","mega","mega"
964
+ "164","2345.0","50.0","250.0","8.0","14.0","mega","mega"
965
+ "126","2544.0","33.0","245.0","8.0","14.0","mega","mega"
966
+ "143","2475.0","50.0","250.0","8.0","14.0","mega","mega"
967
+ "164","2345.0","50.0","250.0","8.0","14.0","mega","mega"
968
+ "166","1895.0","25.0","130.0","4.0","14.0","super","super"
969
+ "408","2285.0","50.0","250.0","8.0","14.0","mega","mega"
970
+ "490","2790.0","66.0","340.0","8.0","14.0","hyper","hyper"
971
+ "166","1895.0","25.0","130.0","4.0","14.0","super","super"
972
+ "408","2285.0","50.0","250.0","8.0","14.0","mega","mega"
973
+ "490","2790.0","66.0","340.0","8.0","14.0","hyper","hyper"
974
+ "431","2790.0","33.0","452.0","16.0","14.0","hyper","hyper"
975
+ "82","2495.0","33.0","245.0","8.0","14.0","mega","special"
976
+ "431","2790.0","33.0","452.0","16.0","14.0","hyper","hyper"
977
+ "82","2495.0","33.0","245.0","8.0","14.0","mega","special"
978
+ "288","2475.0","50.0","250.0","8.0","14.0","mega","special"
979
+ "347","2290.0","50.0","130.0","4.0","14.0","mega","mega"
980
+ "288","2475.0","50.0","250.0","8.0","14.0","mega","special"
981
+ "347","2290.0","50.0","130.0","4.0","14.0","mega","mega"
982
+ "145","3995.0","66.0","452.0","8.0","14.0","uber","uber"
983
+ "612","3609.0","66.0","527.0","4.0","15.0","uber","uber"
984
+ "145","3995.0","66.0","452.0","8.0","14.0","uber","uber"
985
+ "612","3609.0","66.0","527.0","4.0","15.0","uber","uber"
986
+ "206","2099.0","66.0","120.0","4.0","14.0","super","super"
987
+ "206","2099.0","66.0","120.0","4.0","14.0","super","super"
988
+ "2","1795.0","33.0","85.0","2.0","14.0","super","super"
989
+ "2","1795.0","33.0","85.0","2.0","14.0","super","super"
990
+ "471","2155.0","33.0","250.0","8.0","14.0","super","super"
991
+ "471","2155.0","33.0","250.0","8.0","14.0","super","super"
992
+ "328","2099.0","33.0","212.0","4.0","14.0","super","mega"
993
+ "328","2099.0","33.0","212.0","4.0","14.0","super","mega"
994
+ "593","2890.0","33.0","452.0","16.0","15.0","hyper","hyper"
995
+ "593","2890.0","33.0","452.0","16.0","15.0","hyper","hyper"
996
+ "185","3795.0","66.0","500.0","8.0","14.0","uber","super"
997
+ "185","3795.0","66.0","500.0","8.0","14.0","uber","super"
998
+ "450","2625.0","66.0","250.0","8.0","15.0","mega","mega"
999
+ "450","2625.0","66.0","250.0","8.0","15.0","mega","mega"
1000
+ "511","3695.0","66.0","452.0","8.0","14.0","uber","uber"
1001
+ "511","3695.0","66.0","452.0","8.0","14.0","uber","uber"