teradataml 20.0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +2762 -0
- teradataml/__init__.py +78 -0
- teradataml/_version.py +11 -0
- teradataml/analytics/Transformations.py +2996 -0
- teradataml/analytics/__init__.py +82 -0
- teradataml/analytics/analytic_function_executor.py +2416 -0
- teradataml/analytics/analytic_query_generator.py +1050 -0
- teradataml/analytics/byom/H2OPredict.py +514 -0
- teradataml/analytics/byom/PMMLPredict.py +437 -0
- teradataml/analytics/byom/__init__.py +16 -0
- teradataml/analytics/json_parser/__init__.py +133 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
- teradataml/analytics/json_parser/json_store.py +191 -0
- teradataml/analytics/json_parser/metadata.py +1666 -0
- teradataml/analytics/json_parser/utils.py +805 -0
- teradataml/analytics/meta_class.py +236 -0
- teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
- teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
- teradataml/analytics/sqle/__init__.py +128 -0
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
- teradataml/analytics/table_operator/__init__.py +11 -0
- teradataml/analytics/uaf/__init__.py +82 -0
- teradataml/analytics/utils.py +828 -0
- teradataml/analytics/valib.py +1617 -0
- teradataml/automl/__init__.py +5835 -0
- teradataml/automl/autodataprep/__init__.py +493 -0
- teradataml/automl/custom_json_utils.py +1625 -0
- teradataml/automl/data_preparation.py +1384 -0
- teradataml/automl/data_transformation.py +1254 -0
- teradataml/automl/feature_engineering.py +2273 -0
- teradataml/automl/feature_exploration.py +1873 -0
- teradataml/automl/model_evaluation.py +488 -0
- teradataml/automl/model_training.py +1407 -0
- teradataml/catalog/__init__.py +2 -0
- teradataml/catalog/byom.py +1759 -0
- teradataml/catalog/function_argument_mapper.py +859 -0
- teradataml/catalog/model_cataloging_utils.py +491 -0
- teradataml/clients/__init__.py +0 -0
- teradataml/clients/auth_client.py +137 -0
- teradataml/clients/keycloak_client.py +165 -0
- teradataml/clients/pkce_client.py +481 -0
- teradataml/common/__init__.py +1 -0
- teradataml/common/aed_utils.py +2078 -0
- teradataml/common/bulk_exposed_utils.py +113 -0
- teradataml/common/constants.py +1669 -0
- teradataml/common/deprecations.py +166 -0
- teradataml/common/exceptions.py +147 -0
- teradataml/common/formula.py +743 -0
- teradataml/common/garbagecollector.py +666 -0
- teradataml/common/logger.py +1261 -0
- teradataml/common/messagecodes.py +518 -0
- teradataml/common/messages.py +262 -0
- teradataml/common/pylogger.py +67 -0
- teradataml/common/sqlbundle.py +764 -0
- teradataml/common/td_coltype_code_to_tdtype.py +48 -0
- teradataml/common/utils.py +3166 -0
- teradataml/common/warnings.py +36 -0
- teradataml/common/wrapper_utils.py +625 -0
- teradataml/config/__init__.py +0 -0
- teradataml/config/dummy_file1.cfg +5 -0
- teradataml/config/dummy_file2.cfg +3 -0
- teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
- teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
- teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
- teradataml/context/__init__.py +0 -0
- teradataml/context/aed_context.py +223 -0
- teradataml/context/context.py +1462 -0
- teradataml/data/A_loan.csv +19 -0
- teradataml/data/BINARY_REALS_LEFT.csv +11 -0
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
- teradataml/data/B_loan.csv +49 -0
- teradataml/data/BuoyData2.csv +17 -0
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
- teradataml/data/Convolve2RealsLeft.csv +5 -0
- teradataml/data/Convolve2RealsRight.csv +5 -0
- teradataml/data/Convolve2ValidLeft.csv +11 -0
- teradataml/data/Convolve2ValidRight.csv +11 -0
- teradataml/data/DFFTConv_Real_8_8.csv +65 -0
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/Mall_customer_data.csv +201 -0
- teradataml/data/Orders1_12mf.csv +25 -0
- teradataml/data/Pi_loan.csv +7 -0
- teradataml/data/SMOOTHED_DATA.csv +7 -0
- teradataml/data/TestDFFT8.csv +9 -0
- teradataml/data/TestRiver.csv +109 -0
- teradataml/data/Traindata.csv +28 -0
- teradataml/data/__init__.py +0 -0
- teradataml/data/acf.csv +17 -0
- teradataml/data/adaboost_example.json +34 -0
- teradataml/data/adaboostpredict_example.json +24 -0
- teradataml/data/additional_table.csv +11 -0
- teradataml/data/admissions_test.csv +21 -0
- teradataml/data/admissions_train.csv +41 -0
- teradataml/data/admissions_train_nulls.csv +41 -0
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -0
- teradataml/data/ageandpressure.csv +31 -0
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/antiselect_example.json +36 -0
- teradataml/data/antiselect_input.csv +8 -0
- teradataml/data/antiselect_input_mixed_case.csv +8 -0
- teradataml/data/applicant_external.csv +7 -0
- teradataml/data/applicant_reference.csv +7 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/arima_example.json +9 -0
- teradataml/data/assortedtext_input.csv +8 -0
- teradataml/data/attribution_example.json +34 -0
- teradataml/data/attribution_sample_table.csv +27 -0
- teradataml/data/attribution_sample_table1.csv +6 -0
- teradataml/data/attribution_sample_table2.csv +11 -0
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +43 -0
- teradataml/data/bank_web_clicks2.csv +91 -0
- teradataml/data/bank_web_url.csv +85 -0
- teradataml/data/barrier.csv +2 -0
- teradataml/data/barrier_new.csv +3 -0
- teradataml/data/betweenness_example.json +14 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -0
- teradataml/data/bin_fit_ip.csv +4 -0
- teradataml/data/binary_complex_left.csv +11 -0
- teradataml/data/binary_complex_right.csv +11 -0
- teradataml/data/binary_matrix_complex_left.csv +21 -0
- teradataml/data/binary_matrix_complex_right.csv +21 -0
- teradataml/data/binary_matrix_real_left.csv +21 -0
- teradataml/data/binary_matrix_real_right.csv +21 -0
- teradataml/data/blood2ageandweight.csv +26 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -0
- teradataml/data/burst_data.csv +5 -0
- teradataml/data/burst_example.json +21 -0
- teradataml/data/byom_example.json +34 -0
- teradataml/data/bytes_table.csv +4 -0
- teradataml/data/cal_housing_ex_raw.csv +70 -0
- teradataml/data/callers.csv +7 -0
- teradataml/data/calls.csv +10 -0
- teradataml/data/cars_hist.csv +33 -0
- teradataml/data/cat_table.csv +25 -0
- teradataml/data/ccm_example.json +32 -0
- teradataml/data/ccm_input.csv +91 -0
- teradataml/data/ccm_input2.csv +13 -0
- teradataml/data/ccmexample.csv +101 -0
- teradataml/data/ccmprepare_example.json +9 -0
- teradataml/data/ccmprepare_input.csv +91 -0
- teradataml/data/cfilter_example.json +12 -0
- teradataml/data/changepointdetection_example.json +18 -0
- teradataml/data/changepointdetectionrt_example.json +8 -0
- teradataml/data/chi_sq.csv +3 -0
- teradataml/data/churn_data.csv +14 -0
- teradataml/data/churn_emission.csv +35 -0
- teradataml/data/churn_initial.csv +3 -0
- teradataml/data/churn_state_transition.csv +5 -0
- teradataml/data/citedges_2.csv +745 -0
- teradataml/data/citvertices_2.csv +1210 -0
- teradataml/data/clicks2.csv +16 -0
- teradataml/data/clickstream.csv +13 -0
- teradataml/data/clickstream1.csv +11 -0
- teradataml/data/closeness_example.json +16 -0
- teradataml/data/complaints.csv +21 -0
- teradataml/data/complaints_mini.csv +3 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_testtoken.csv +224 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/complaints_tokens_test.csv +353 -0
- teradataml/data/complaints_traintoken.csv +472 -0
- teradataml/data/computers_category.csv +1001 -0
- teradataml/data/computers_test1.csv +1252 -0
- teradataml/data/computers_train1.csv +5009 -0
- teradataml/data/computers_train1_clustered.csv +5009 -0
- teradataml/data/confusionmatrix_example.json +9 -0
- teradataml/data/conversion_event_table.csv +3 -0
- teradataml/data/corr_input.csv +17 -0
- teradataml/data/correlation_example.json +11 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/coxhazardratio_example.json +39 -0
- teradataml/data/coxph_example.json +15 -0
- teradataml/data/coxsurvival_example.json +28 -0
- teradataml/data/cpt.csv +41 -0
- teradataml/data/credit_ex_merged.csv +45 -0
- teradataml/data/creditcard_data.csv +1001 -0
- teradataml/data/customer_loyalty.csv +301 -0
- teradataml/data/customer_loyalty_newseq.csv +31 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +173 -0
- teradataml/data/decisionforest_example.json +37 -0
- teradataml/data/decisionforestpredict_example.json +38 -0
- teradataml/data/decisiontree_example.json +21 -0
- teradataml/data/decisiontreepredict_example.json +45 -0
- teradataml/data/dfft2_size4_real.csv +17 -0
- teradataml/data/dfft2_test_matrix16.csv +17 -0
- teradataml/data/dfft2conv_real_4_4.csv +65 -0
- teradataml/data/diabetes.csv +443 -0
- teradataml/data/diabetes_test.csv +89 -0
- teradataml/data/dict_table.csv +5 -0
- teradataml/data/docperterm_table.csv +4 -0
- teradataml/data/docs/__init__.py +1 -0
- teradataml/data/docs/byom/__init__.py +0 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
- teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
- teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
- teradataml/data/docs/byom/docs/__init__.py +0 -0
- teradataml/data/docs/sqle/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
- teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
- teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/tableoperator/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/uaf/__init__.py +0 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
- teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
- teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
- teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
- teradataml/data/dtw_example.json +18 -0
- teradataml/data/dtw_t1.csv +11 -0
- teradataml/data/dtw_t2.csv +4 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt2d_example.json +16 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_example.json +15 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/dwt_filter_dim.csv +5 -0
- teradataml/data/emission.csv +9 -0
- teradataml/data/emp_table_by_dept.csv +19 -0
- teradataml/data/employee_info.csv +4 -0
- teradataml/data/employee_table.csv +6 -0
- teradataml/data/excluding_event_table.csv +2 -0
- teradataml/data/finance_data.csv +6 -0
- teradataml/data/finance_data2.csv +61 -0
- teradataml/data/finance_data3.csv +93 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -0
- teradataml/data/fmeasure_example.json +12 -0
- teradataml/data/followers_leaders.csv +10 -0
- teradataml/data/fpgrowth_example.json +12 -0
- teradataml/data/frequentpaths_example.json +29 -0
- teradataml/data/friends.csv +9 -0
- teradataml/data/fs_input.csv +33 -0
- teradataml/data/fs_input1.csv +33 -0
- teradataml/data/genData.csv +513 -0
- teradataml/data/geodataframe_example.json +40 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -0
- teradataml/data/glm_example.json +56 -0
- teradataml/data/glml1l2_example.json +28 -0
- teradataml/data/glml1l2predict_example.json +54 -0
- teradataml/data/glmpredict_example.json +54 -0
- teradataml/data/gq_t1.csv +21 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/hconvolve_complex_right.csv +5 -0
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
- teradataml/data/histogram_example.json +12 -0
- teradataml/data/hmmdecoder_example.json +79 -0
- teradataml/data/hmmevaluator_example.json +25 -0
- teradataml/data/hmmsupervised_example.json +10 -0
- teradataml/data/hmmunsupervised_example.json +8 -0
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/house_values.csv +12 -0
- teradataml/data/house_values2.csv +13 -0
- teradataml/data/housing_cat.csv +7 -0
- teradataml/data/housing_data.csv +9 -0
- teradataml/data/housing_test.csv +47 -0
- teradataml/data/housing_test_binary.csv +47 -0
- teradataml/data/housing_train.csv +493 -0
- teradataml/data/housing_train_attribute.csv +5 -0
- teradataml/data/housing_train_binary.csv +437 -0
- teradataml/data/housing_train_parameter.csv +2 -0
- teradataml/data/housing_train_response.csv +493 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -0
- teradataml/data/ibm_stock1.csv +370 -0
- teradataml/data/identitymatch_example.json +22 -0
- teradataml/data/idf_table.csv +4 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/impressions.csv +101 -0
- teradataml/data/inflation.csv +21 -0
- teradataml/data/initial.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +13 -0
- teradataml/data/insurance.csv +1339 -0
- teradataml/data/interpolator_example.json +13 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/iris_altinput.csv +481 -0
- teradataml/data/iris_attribute_output.csv +8 -0
- teradataml/data/iris_attribute_test.csv +121 -0
- teradataml/data/iris_attribute_train.csv +481 -0
- teradataml/data/iris_category_expect_predict.csv +31 -0
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -0
- teradataml/data/iris_response_train.csv +121 -0
- teradataml/data/iris_test.csv +31 -0
- teradataml/data/iris_train.csv +121 -0
- teradataml/data/join_table1.csv +4 -0
- teradataml/data/join_table2.csv +4 -0
- teradataml/data/jsons/anly_function_name.json +7 -0
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/byom/dataikupredict.json +148 -0
- teradataml/data/jsons/byom/datarobotpredict.json +147 -0
- teradataml/data/jsons/byom/h2opredict.json +195 -0
- teradataml/data/jsons/byom/onnxembeddings.json +267 -0
- teradataml/data/jsons/byom/onnxpredict.json +187 -0
- teradataml/data/jsons/byom/pmmlpredict.json +147 -0
- teradataml/data/jsons/paired_functions.json +450 -0
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/kmeans_example.json +23 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +51 -0
- teradataml/data/knn_example.json +19 -0
- teradataml/data/knnrecommender_example.json +7 -0
- teradataml/data/knnrecommenderpredict_example.json +12 -0
- teradataml/data/lar_example.json +17 -0
- teradataml/data/larpredict_example.json +30 -0
- teradataml/data/lc_new_predictors.csv +5 -0
- teradataml/data/lc_new_reference.csv +9 -0
- teradataml/data/lda_example.json +9 -0
- teradataml/data/ldainference_example.json +15 -0
- teradataml/data/ldatopicsummary_example.json +9 -0
- teradataml/data/levendist_input.csv +13 -0
- teradataml/data/levenshteindistance_example.json +10 -0
- teradataml/data/linreg_example.json +10 -0
- teradataml/data/load_example_data.py +350 -0
- teradataml/data/loan_prediction.csv +295 -0
- teradataml/data/lungcancer.csv +138 -0
- teradataml/data/mappingdata.csv +12 -0
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/milk_timeseries.csv +157 -0
- teradataml/data/min_max_titanic.csv +4 -0
- teradataml/data/minhash_example.json +6 -0
- teradataml/data/ml_ratings.csv +7547 -0
- teradataml/data/ml_ratings_10.csv +2445 -0
- teradataml/data/mobile_data.csv +13 -0
- teradataml/data/model1_table.csv +5 -0
- teradataml/data/model2_table.csv +5 -0
- teradataml/data/models/License_file.txt +1 -0
- teradataml/data/models/License_file_empty.txt +0 -0
- teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
- teradataml/data/models/dr_iris_rf +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
- teradataml/data/models/iris_db_glm_model.pmml +57 -0
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
- teradataml/data/models/iris_kmeans_model +0 -0
- teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
- teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
- teradataml/data/modularity_example.json +12 -0
- teradataml/data/movavg_example.json +8 -0
- teradataml/data/mtx1.csv +7 -0
- teradataml/data/mtx2.csv +13 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -0
- teradataml/data/naivebayes_example.json +10 -0
- teradataml/data/naivebayespredict_example.json +19 -0
- teradataml/data/naivebayestextclassifier2_example.json +7 -0
- teradataml/data/naivebayestextclassifier_example.json +8 -0
- teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
- teradataml/data/name_Find_configure.csv +10 -0
- teradataml/data/namedentityfinder_example.json +14 -0
- teradataml/data/namedentityfinderevaluator_example.json +10 -0
- teradataml/data/namedentityfindertrainer_example.json +6 -0
- teradataml/data/nb_iris_input_test.csv +31 -0
- teradataml/data/nb_iris_input_train.csv +121 -0
- teradataml/data/nbp_iris_model.csv +13 -0
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_extractor_text.csv +2 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/ner_sports_test2.csv +29 -0
- teradataml/data/ner_sports_train.csv +501 -0
- teradataml/data/nerevaluator_example.json +6 -0
- teradataml/data/nerextractor_example.json +18 -0
- teradataml/data/nermem_sports_test.csv +18 -0
- teradataml/data/nermem_sports_train.csv +51 -0
- teradataml/data/nertrainer_example.json +7 -0
- teradataml/data/ngrams_example.json +7 -0
- teradataml/data/notebooks/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
- teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
- teradataml/data/npath_example.json +23 -0
- teradataml/data/ntree_example.json +14 -0
- teradataml/data/numeric_strings.csv +5 -0
- teradataml/data/numerics.csv +4 -0
- teradataml/data/ocean_buoy.csv +17 -0
- teradataml/data/ocean_buoy2.csv +17 -0
- teradataml/data/ocean_buoys.csv +28 -0
- teradataml/data/ocean_buoys2.csv +10 -0
- teradataml/data/ocean_buoys_nonpti.csv +28 -0
- teradataml/data/ocean_buoys_seq.csv +29 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -0
- teradataml/data/orders1.csv +11 -0
- teradataml/data/orders1_12.csv +13 -0
- teradataml/data/orders_ex.csv +4 -0
- teradataml/data/pack_example.json +9 -0
- teradataml/data/package_tracking.csv +19 -0
- teradataml/data/package_tracking_pti.csv +19 -0
- teradataml/data/pagerank_example.json +13 -0
- teradataml/data/paragraphs_input.csv +6 -0
- teradataml/data/pathanalyzer_example.json +8 -0
- teradataml/data/pathgenerator_example.json +8 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/pattern_matching_data.csv +11 -0
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/phrases.csv +7 -0
- teradataml/data/pivot_example.json +9 -0
- teradataml/data/pivot_input.csv +22 -0
- teradataml/data/playerRating.csv +31 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/postagger_example.json +7 -0
- teradataml/data/posttagger_output.csv +44 -0
- teradataml/data/production_data.csv +17 -0
- teradataml/data/production_data2.csv +7 -0
- teradataml/data/randomsample_example.json +32 -0
- teradataml/data/randomwalksample_example.json +9 -0
- teradataml/data/rank_table.csv +6 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/ref_mobile_data.csv +4 -0
- teradataml/data/ref_mobile_data_dense.csv +2 -0
- teradataml/data/ref_url.csv +17 -0
- teradataml/data/restaurant_reviews.csv +7 -0
- teradataml/data/retail_churn_table.csv +27772 -0
- teradataml/data/river_data.csv +145 -0
- teradataml/data/roc_example.json +8 -0
- teradataml/data/roc_input.csv +101 -0
- teradataml/data/rule_inputs.csv +6 -0
- teradataml/data/rule_table.csv +2 -0
- teradataml/data/sales.csv +7 -0
- teradataml/data/sales_transaction.csv +501 -0
- teradataml/data/salesdata.csv +342 -0
- teradataml/data/sample_cities.csv +3 -0
- teradataml/data/sample_shapes.csv +11 -0
- teradataml/data/sample_streets.csv +3 -0
- teradataml/data/sampling_example.json +16 -0
- teradataml/data/sax_example.json +17 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -0
- teradataml/data/scale_housing.csv +11 -0
- teradataml/data/scale_housing_test.csv +6 -0
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -0
- teradataml/data/scalebypartition_example.json +13 -0
- teradataml/data/scalemap_example.json +13 -0
- teradataml/data/scalesummary_example.json +12 -0
- teradataml/data/score_category.csv +101 -0
- teradataml/data/score_summary.csv +4 -0
- teradataml/data/script_example.json +10 -0
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/lightgbm/dataset.template +175 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +16 -0
- teradataml/data/scripts/mapper_replace.py +16 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
- teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
- teradataml/data/seeds.csv +10 -0
- teradataml/data/sentenceextractor_example.json +7 -0
- teradataml/data/sentiment_extract_input.csv +11 -0
- teradataml/data/sentiment_train.csv +16 -0
- teradataml/data/sentiment_word.csv +20 -0
- teradataml/data/sentiment_word_input.csv +20 -0
- teradataml/data/sentimentextractor_example.json +24 -0
- teradataml/data/sentimenttrainer_example.json +8 -0
- teradataml/data/sequence_table.csv +10 -0
- teradataml/data/seriessplitter_example.json +8 -0
- teradataml/data/sessionize_example.json +17 -0
- teradataml/data/sessionize_table.csv +116 -0
- teradataml/data/setop_test1.csv +24 -0
- teradataml/data/setop_test2.csv +22 -0
- teradataml/data/soc_nw_edges.csv +11 -0
- teradataml/data/soc_nw_vertices.csv +8 -0
- teradataml/data/souvenir_timeseries.csv +168 -0
- teradataml/data/sparse_iris_attribute.csv +5 -0
- teradataml/data/sparse_iris_test.csv +121 -0
- teradataml/data/sparse_iris_train.csv +601 -0
- teradataml/data/star1.csv +6 -0
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/state_transition.csv +5 -0
- teradataml/data/stock_data.csv +53 -0
- teradataml/data/stock_movement.csv +11 -0
- teradataml/data/stock_vol.csv +76 -0
- teradataml/data/stop_words.csv +8 -0
- teradataml/data/store_sales.csv +37 -0
- teradataml/data/stringsimilarity_example.json +8 -0
- teradataml/data/strsimilarity_input.csv +13 -0
- teradataml/data/students.csv +101 -0
- teradataml/data/svm_iris_input_test.csv +121 -0
- teradataml/data/svm_iris_input_train.csv +481 -0
- teradataml/data/svm_iris_model.csv +7 -0
- teradataml/data/svmdense_example.json +10 -0
- teradataml/data/svmdensepredict_example.json +19 -0
- teradataml/data/svmsparse_example.json +8 -0
- teradataml/data/svmsparsepredict_example.json +14 -0
- teradataml/data/svmsparsesummary_example.json +8 -0
- teradataml/data/target_mobile_data.csv +13 -0
- teradataml/data/target_mobile_data_dense.csv +5 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/templatedata.csv +1201 -0
- teradataml/data/templates/open_source_ml.json +11 -0
- teradataml/data/teradata_icon.ico +0 -0
- teradataml/data/teradataml_example.json +1473 -0
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -0
- teradataml/data/test_pacf_12.csv +37 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -0
- teradataml/data/text_inputs.csv +6 -0
- teradataml/data/textchunker_example.json +8 -0
- teradataml/data/textclassifier_example.json +7 -0
- teradataml/data/textclassifier_input.csv +7 -0
- teradataml/data/textclassifiertrainer_example.json +7 -0
- teradataml/data/textmorph_example.json +11 -0
- teradataml/data/textparser_example.json +15 -0
- teradataml/data/texttagger_example.json +12 -0
- teradataml/data/texttokenizer_example.json +7 -0
- teradataml/data/texttrainer_input.csv +11 -0
- teradataml/data/tf_example.json +7 -0
- teradataml/data/tfidf_example.json +14 -0
- teradataml/data/tfidf_input1.csv +201 -0
- teradataml/data/tfidf_train.csv +6 -0
- teradataml/data/time_table1.csv +535 -0
- teradataml/data/time_table2.csv +14 -0
- teradataml/data/timeseriesdata.csv +1601 -0
- teradataml/data/timeseriesdatasetsd4.csv +105 -0
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic.csv +892 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/token_table.csv +696 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +28 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/transformation_table.csv +6 -0
- teradataml/data/transformation_table_new.csv +2 -0
- teradataml/data/tv_spots.csv +16 -0
- teradataml/data/twod_climate_data.csv +117 -0
- teradataml/data/uaf_example.json +529 -0
- teradataml/data/univariatestatistics_example.json +9 -0
- teradataml/data/unpack_example.json +10 -0
- teradataml/data/unpivot_example.json +25 -0
- teradataml/data/unpivot_input.csv +8 -0
- teradataml/data/url_data.csv +10 -0
- teradataml/data/us_air_pass.csv +37 -0
- teradataml/data/us_population.csv +624 -0
- teradataml/data/us_states_shapes.csv +52 -0
- teradataml/data/varmax_example.json +18 -0
- teradataml/data/vectordistance_example.json +30 -0
- teradataml/data/ville_climatedata.csv +121 -0
- teradataml/data/ville_tempdata.csv +12 -0
- teradataml/data/ville_tempdata1.csv +12 -0
- teradataml/data/ville_temperature.csv +11 -0
- teradataml/data/waveletTable.csv +1605 -0
- teradataml/data/waveletTable2.csv +1605 -0
- teradataml/data/weightedmovavg_example.json +9 -0
- teradataml/data/wft_testing.csv +5 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +6 -0
- teradataml/data/word_embed_input_table2.csv +5 -0
- teradataml/data/word_embed_model.csv +23 -0
- teradataml/data/words_input.csv +13 -0
- teradataml/data/xconvolve_complex_left.csv +6 -0
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
- teradataml/data/xgboost_example.json +36 -0
- teradataml/data/xgboostpredict_example.json +32 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/__init__.py +0 -0
- teradataml/dataframe/copy_to.py +2446 -0
- teradataml/dataframe/data_transfer.py +2840 -0
- teradataml/dataframe/dataframe.py +20908 -0
- teradataml/dataframe/dataframe_utils.py +2114 -0
- teradataml/dataframe/fastload.py +794 -0
- teradataml/dataframe/functions.py +2110 -0
- teradataml/dataframe/indexer.py +424 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +1171 -0
- teradataml/dataframe/sql.py +10904 -0
- teradataml/dataframe/sql_function_parameters.py +440 -0
- teradataml/dataframe/sql_functions.py +652 -0
- teradataml/dataframe/sql_interfaces.py +220 -0
- teradataml/dataframe/vantage_function_types.py +675 -0
- teradataml/dataframe/window.py +694 -0
- teradataml/dbutils/__init__.py +3 -0
- teradataml/dbutils/dbutils.py +2871 -0
- teradataml/dbutils/filemgr.py +318 -0
- teradataml/gen_ai/__init__.py +2 -0
- teradataml/gen_ai/convAI.py +473 -0
- teradataml/geospatial/__init__.py +4 -0
- teradataml/geospatial/geodataframe.py +1105 -0
- teradataml/geospatial/geodataframecolumn.py +392 -0
- teradataml/geospatial/geometry_types.py +926 -0
- teradataml/hyperparameter_tuner/__init__.py +1 -0
- teradataml/hyperparameter_tuner/optimizer.py +4115 -0
- teradataml/hyperparameter_tuner/utils.py +303 -0
- teradataml/lib/__init__.py +0 -0
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/lib/libaed_0_1_ppc64le.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/_base.py +1321 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/_constants.py +61 -0
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +267 -0
- teradataml/options/__init__.py +148 -0
- teradataml/options/configure.py +489 -0
- teradataml/options/display.py +187 -0
- teradataml/plot/__init__.py +3 -0
- teradataml/plot/axis.py +1427 -0
- teradataml/plot/constants.py +15 -0
- teradataml/plot/figure.py +431 -0
- teradataml/plot/plot.py +810 -0
- teradataml/plot/query_generator.py +83 -0
- teradataml/plot/subplot.py +216 -0
- teradataml/scriptmgmt/UserEnv.py +4273 -0
- teradataml/scriptmgmt/__init__.py +3 -0
- teradataml/scriptmgmt/lls_utils.py +2157 -0
- teradataml/sdk/README.md +79 -0
- teradataml/sdk/__init__.py +4 -0
- teradataml/sdk/_auth_modes.py +422 -0
- teradataml/sdk/_func_params.py +487 -0
- teradataml/sdk/_json_parser.py +453 -0
- teradataml/sdk/_openapi_spec_constants.py +249 -0
- teradataml/sdk/_utils.py +236 -0
- teradataml/sdk/api_client.py +900 -0
- teradataml/sdk/constants.py +62 -0
- teradataml/sdk/modelops/__init__.py +98 -0
- teradataml/sdk/modelops/_client.py +409 -0
- teradataml/sdk/modelops/_constants.py +304 -0
- teradataml/sdk/modelops/models.py +2308 -0
- teradataml/sdk/spinner.py +107 -0
- teradataml/series/__init__.py +0 -0
- teradataml/series/series.py +537 -0
- teradataml/series/series_utils.py +71 -0
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +658 -0
- teradataml/store/feature_store/feature_store.py +4814 -0
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +7330 -0
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/Apply.py +979 -0
- teradataml/table_operators/Script.py +1739 -0
- teradataml/table_operators/TableOperator.py +1343 -0
- teradataml/table_operators/__init__.py +2 -0
- teradataml/table_operators/apply_query_generator.py +262 -0
- teradataml/table_operators/query_generator.py +493 -0
- teradataml/table_operators/table_operator_query_generator.py +462 -0
- teradataml/table_operators/table_operator_util.py +726 -0
- teradataml/table_operators/templates/dataframe_apply.template +184 -0
- teradataml/table_operators/templates/dataframe_map.template +176 -0
- teradataml/table_operators/templates/dataframe_register.template +73 -0
- teradataml/table_operators/templates/dataframe_udf.template +67 -0
- teradataml/table_operators/templates/script_executor.template +170 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +53 -0
- teradataml/utils/__init__.py +0 -0
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +943 -0
- teradataml/utils/internal_buffer.py +122 -0
- teradataml/utils/print_versions.py +206 -0
- teradataml/utils/utils.py +451 -0
- teradataml/utils/validators.py +3305 -0
- teradataml-20.0.0.8.dist-info/METADATA +2804 -0
- teradataml-20.0.0.8.dist-info/RECORD +1208 -0
- teradataml-20.0.0.8.dist-info/WHEEL +5 -0
- teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
- teradataml-20.0.0.8.dist-info/zip-safe +1 -0
|
@@ -0,0 +1,1001 @@
|
|
|
1
|
+
"compid","price","speed","hd","ram","screen","expected_compcategory","predicted_compcategory"
|
|
2
|
+
"469","2599.0","50.0","405.0","8.0","14.0","mega","mega"
|
|
3
|
+
"265","1899.0","50.0","120.0","4.0","14.0","super","super"
|
|
4
|
+
"40","2425.0","50.0","210.0","8.0","14.0","mega","mega"
|
|
5
|
+
"387","1790.0","50.0","85.0","2.0","14.0","super","super"
|
|
6
|
+
"469","2599.0","50.0","405.0","8.0","14.0","mega","mega"
|
|
7
|
+
"265","1899.0","50.0","120.0","4.0","14.0","super","super"
|
|
8
|
+
"40","2425.0","50.0","210.0","8.0","14.0","mega","mega"
|
|
9
|
+
"387","1790.0","50.0","85.0","2.0","14.0","super","super"
|
|
10
|
+
"61","3990.0","66.0","330.0","8.0","15.0","uber","uber"
|
|
11
|
+
"530","2575.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
12
|
+
"223","2199.0","50.0","213.0","8.0","14.0","super","super"
|
|
13
|
+
"448","1590.0","33.0","107.0","2.0","15.0","special","special"
|
|
14
|
+
"61","3990.0","66.0","330.0","8.0","15.0","uber","uber"
|
|
15
|
+
"530","2575.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
16
|
+
"223","2199.0","50.0","213.0","8.0","14.0","super","super"
|
|
17
|
+
"448","1590.0","33.0","107.0","2.0","15.0","special","special"
|
|
18
|
+
"183","1899.0","25.0","120.0","4.0","14.0","super","super"
|
|
19
|
+
"244","2495.0","50.0","245.0","8.0","14.0","mega","mega"
|
|
20
|
+
"488","2599.0","50.0","405.0","4.0","15.0","mega","mega"
|
|
21
|
+
"19","2095.0","33.0","250.0","4.0","15.0","super","super"
|
|
22
|
+
"183","1899.0","25.0","120.0","4.0","14.0","super","super"
|
|
23
|
+
"244","2495.0","50.0","245.0","8.0","14.0","mega","mega"
|
|
24
|
+
"488","2599.0","50.0","405.0","4.0","15.0","mega","mega"
|
|
25
|
+
"19","2095.0","33.0","250.0","4.0","15.0","super","super"
|
|
26
|
+
"509","2690.0","50.0","340.0","8.0","14.0","mega","mega"
|
|
27
|
+
"305","2590.0","50.0","245.0","8.0","14.0","mega","mega"
|
|
28
|
+
"80","1629.0","25.0","80.0","8.0","14.0","special","special"
|
|
29
|
+
"263","2535.0","33.0","170.0","8.0","15.0","mega","mega"
|
|
30
|
+
"509","2690.0","50.0","340.0","8.0","14.0","mega","mega"
|
|
31
|
+
"305","2590.0","50.0","245.0","8.0","14.0","mega","mega"
|
|
32
|
+
"80","1629.0","25.0","80.0","8.0","14.0","special","special"
|
|
33
|
+
"263","2535.0","33.0","170.0","8.0","15.0","mega","mega"
|
|
34
|
+
"366","1599.0","25.0","170.0","4.0","14.0","special","special"
|
|
35
|
+
"101","1995.0","33.0","250.0","4.0","14.0","super","super"
|
|
36
|
+
"345","2345.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
37
|
+
"303","1895.0","33.0","170.0","4.0","14.0","super","super"
|
|
38
|
+
"366","1599.0","25.0","170.0","4.0","14.0","special","special"
|
|
39
|
+
"101","1995.0","33.0","250.0","4.0","14.0","super","super"
|
|
40
|
+
"345","2345.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
41
|
+
"303","1895.0","33.0","170.0","4.0","14.0","super","super"
|
|
42
|
+
"202","2785.0","33.0","250.0","8.0","17.0","hyper","uber"
|
|
43
|
+
"570","2290.0","25.0","340.0","8.0","14.0","mega","mega"
|
|
44
|
+
"406","2190.0","33.0","214.0","4.0","15.0","super","super"
|
|
45
|
+
"99","2595.0","25.0","340.0","16.0","14.0","mega","mega"
|
|
46
|
+
"202","2785.0","33.0","250.0","8.0","17.0","hyper","uber"
|
|
47
|
+
"570","2290.0","25.0","340.0","8.0","14.0","mega","mega"
|
|
48
|
+
"406","2190.0","33.0","214.0","4.0","15.0","super","super"
|
|
49
|
+
"99","2595.0","25.0","340.0","16.0","14.0","mega","mega"
|
|
50
|
+
"467","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
|
|
51
|
+
"427","2890.0","33.0","452.0","16.0","15.0","hyper","hyper"
|
|
52
|
+
"120","2799.0","33.0","230.0","4.0","14.0","hyper","hyper"
|
|
53
|
+
"568","1390.0","25.0","107.0","2.0","15.0","special","special"
|
|
54
|
+
"467","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
|
|
55
|
+
"427","2890.0","33.0","452.0","16.0","15.0","hyper","hyper"
|
|
56
|
+
"120","2799.0","33.0","230.0","4.0","14.0","hyper","hyper"
|
|
57
|
+
"568","1390.0","25.0","107.0","2.0","15.0","special","special"
|
|
58
|
+
"181","2195.0","50.0","170.0","4.0","14.0","super","super"
|
|
59
|
+
"284","1795.0","33.0","170.0","4.0","15.0","super","super"
|
|
60
|
+
"446","2599.0","33.0","245.0","16.0","15.0","mega","mega"
|
|
61
|
+
"160","3399.0","66.0","230.0","4.0","15.0","hyper","hyper"
|
|
62
|
+
"181","2195.0","50.0","170.0","4.0","14.0","super","super"
|
|
63
|
+
"284","1795.0","33.0","170.0","4.0","15.0","super","super"
|
|
64
|
+
"446","2599.0","33.0","245.0","16.0","15.0","mega","mega"
|
|
65
|
+
"160","3399.0","66.0","230.0","4.0","15.0","hyper","hyper"
|
|
66
|
+
"242","1895.0","25.0","130.0","4.0","14.0","super","super"
|
|
67
|
+
"549","1825.0","50.0","170.0","4.0","14.0","super","super"
|
|
68
|
+
"343","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
|
|
69
|
+
"465","1790.0","50.0","107.0","2.0","15.0","super","super"
|
|
70
|
+
"242","1895.0","25.0","130.0","4.0","14.0","super","super"
|
|
71
|
+
"549","1825.0","50.0","170.0","4.0","14.0","super","super"
|
|
72
|
+
"343","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
|
|
73
|
+
"465","1790.0","50.0","107.0","2.0","15.0","super","super"
|
|
74
|
+
"507","2490.0","33.0","340.0","8.0","15.0","mega","mega"
|
|
75
|
+
"141","2225.0","33.0","250.0","8.0","14.0","super","super"
|
|
76
|
+
"200","3220.0","66.0","340.0","8.0","15.0","hyper","super"
|
|
77
|
+
"36","2675.0","66.0","210.0","4.0","15.0","mega","special"
|
|
78
|
+
"507","2490.0","33.0","340.0","8.0","15.0","mega","mega"
|
|
79
|
+
"141","2225.0","33.0","250.0","8.0","14.0","super","super"
|
|
80
|
+
"200","3220.0","66.0","340.0","8.0","15.0","hyper","super"
|
|
81
|
+
"36","2675.0","66.0","210.0","4.0","15.0","mega","special"
|
|
82
|
+
"364","3075.0","50.0","250.0","8.0","17.0","hyper","hyper"
|
|
83
|
+
"610","1890.0","66.0","107.0","2.0","14.0","super","super"
|
|
84
|
+
"57","2045.0","66.0","130.0","4.0","14.0","super","super"
|
|
85
|
+
"97","1999.0","33.0","170.0","4.0","14.0","super","super"
|
|
86
|
+
"364","3075.0","50.0","250.0","8.0","17.0","hyper","hyper"
|
|
87
|
+
"610","1890.0","66.0","107.0","2.0","14.0","super","super"
|
|
88
|
+
"57","2045.0","66.0","130.0","4.0","14.0","super","super"
|
|
89
|
+
"97","1999.0","33.0","170.0","4.0","14.0","super","super"
|
|
90
|
+
"221","2635.0","33.0","250.0","8.0","17.0","mega","mega"
|
|
91
|
+
"589","1825.0","33.0","170.0","4.0","15.0","super","special"
|
|
92
|
+
"118","2325.0","66.0","250.0","8.0","14.0","mega","mega"
|
|
93
|
+
"566","2190.0","33.0","214.0","4.0","14.0","super","super"
|
|
94
|
+
"221","2635.0","33.0","250.0","8.0","17.0","mega","mega"
|
|
95
|
+
"589","1825.0","33.0","170.0","4.0","15.0","super","special"
|
|
96
|
+
"118","2325.0","66.0","250.0","8.0","14.0","mega","mega"
|
|
97
|
+
"566","2190.0","33.0","214.0","4.0","14.0","super","super"
|
|
98
|
+
"486","2595.0","50.0","340.0","8.0","14.0","mega","mega"
|
|
99
|
+
"17","1595.0","33.0","85.0","2.0","14.0","special","super"
|
|
100
|
+
"383","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
|
|
101
|
+
"362","2095.0","33.0","130.0","4.0","14.0","super","super"
|
|
102
|
+
"486","2595.0","50.0","340.0","8.0","14.0","mega","mega"
|
|
103
|
+
"17","1595.0","33.0","85.0","2.0","14.0","special","super"
|
|
104
|
+
"383","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
|
|
105
|
+
"362","2095.0","33.0","130.0","4.0","14.0","super","super"
|
|
106
|
+
"78","3220.0","66.0","340.0","8.0","15.0","hyper","hyper"
|
|
107
|
+
"282","1995.0","33.0","250.0","4.0","14.0","super","super"
|
|
108
|
+
"505","3149.0","66.0","230.0","8.0","14.0","hyper","hyper"
|
|
109
|
+
"280","1795.0","66.0","85.0","2.0","14.0","super","mega"
|
|
110
|
+
"78","3220.0","66.0","340.0","8.0","15.0","hyper","hyper"
|
|
111
|
+
"282","1995.0","33.0","250.0","4.0","14.0","super","super"
|
|
112
|
+
"505","3149.0","66.0","230.0","8.0","14.0","hyper","hyper"
|
|
113
|
+
"280","1795.0","66.0","85.0","2.0","14.0","super","mega"
|
|
114
|
+
"547","2095.0","33.0","214.0","4.0","14.0","super","super"
|
|
115
|
+
"139","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
|
|
116
|
+
"158","2195.0","33.0","170.0","8.0","15.0","super","super"
|
|
117
|
+
"137","2255.0","50.0","250.0","8.0","14.0","mega","mega"
|
|
118
|
+
"547","2095.0","33.0","214.0","4.0","14.0","super","super"
|
|
119
|
+
"139","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
|
|
120
|
+
"158","2195.0","33.0","170.0","8.0","15.0","super","super"
|
|
121
|
+
"137","2255.0","50.0","250.0","8.0","14.0","mega","mega"
|
|
122
|
+
"219","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
|
|
123
|
+
"404","2995.0","66.0","452.0","16.0","14.0","hyper","hyper"
|
|
124
|
+
"423","1895.0","25.0","214.0","4.0","14.0","super","super"
|
|
125
|
+
"606","1490.0","33.0","107.0","2.0","15.0","special","special"
|
|
126
|
+
"219","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
|
|
127
|
+
"404","2995.0","66.0","452.0","16.0","14.0","hyper","hyper"
|
|
128
|
+
"423","1895.0","25.0","214.0","4.0","14.0","super","super"
|
|
129
|
+
"606","1490.0","33.0","107.0","2.0","15.0","special","special"
|
|
130
|
+
"76","2844.0","33.0","245.0","8.0","14.0","hyper","hyper"
|
|
131
|
+
"261","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
|
|
132
|
+
"55","2199.0","33.0","212.0","8.0","14.0","super","super"
|
|
133
|
+
"402","1595.0","33.0","170.0","4.0","14.0","special","special"
|
|
134
|
+
"76","2844.0","33.0","245.0","8.0","14.0","hyper","hyper"
|
|
135
|
+
"261","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
|
|
136
|
+
"55","2199.0","33.0","212.0","8.0","14.0","super","super"
|
|
137
|
+
"402","1595.0","33.0","170.0","4.0","14.0","special","special"
|
|
138
|
+
"341","2390.0","66.0","130.0","4.0","14.0","mega","mega"
|
|
139
|
+
"587","2890.0","33.0","452.0","16.0","14.0","hyper","hyper"
|
|
140
|
+
"503","1990.0","25.0","214.0","4.0","15.0","super","super"
|
|
141
|
+
"177","2399.0","50.0","212.0","4.0","14.0","mega","mega"
|
|
142
|
+
"341","2390.0","66.0","130.0","4.0","14.0","mega","mega"
|
|
143
|
+
"587","2890.0","33.0","452.0","16.0","14.0","hyper","hyper"
|
|
144
|
+
"503","1990.0","25.0","214.0","4.0","15.0","super","super"
|
|
145
|
+
"177","2399.0","50.0","212.0","4.0","14.0","mega","mega"
|
|
146
|
+
"198","1995.0","33.0","130.0","4.0","14.0","super","super"
|
|
147
|
+
"444","1699.0","33.0","170.0","4.0","14.0","special","special"
|
|
148
|
+
"95","2995.0","66.0","340.0","16.0","14.0","hyper","hyper"
|
|
149
|
+
"442","2125.0","33.0","250.0","8.0","15.0","super","super"
|
|
150
|
+
"198","1995.0","33.0","130.0","4.0","14.0","super","super"
|
|
151
|
+
"444","1699.0","33.0","170.0","4.0","14.0","special","special"
|
|
152
|
+
"95","2995.0","66.0","340.0","16.0","14.0","hyper","hyper"
|
|
153
|
+
"442","2125.0","33.0","250.0","8.0","15.0","super","super"
|
|
154
|
+
"259","1775.0","33.0","170.0","4.0","14.0","super","super"
|
|
155
|
+
"320","2195.0","66.0","170.0","4.0","14.0","super","super"
|
|
156
|
+
"543","2799.0","33.0","240.0","4.0","14.0","hyper","hyper"
|
|
157
|
+
"74","3044.0","50.0","245.0","8.0","14.0","hyper","hyper"
|
|
158
|
+
"259","1775.0","33.0","170.0","4.0","14.0","super","super"
|
|
159
|
+
"320","2195.0","66.0","170.0","4.0","14.0","super","super"
|
|
160
|
+
"543","2799.0","33.0","240.0","4.0","14.0","hyper","hyper"
|
|
161
|
+
"74","3044.0","50.0","245.0","8.0","14.0","hyper","hyper"
|
|
162
|
+
"524","2325.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
163
|
+
"585","3265.0","33.0","540.0","8.0","17.0","hyper","hyper"
|
|
164
|
+
"400","2395.0","33.0","340.0","8.0","14.0","mega","mega"
|
|
165
|
+
"53","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
|
|
166
|
+
"524","2325.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
167
|
+
"585","3265.0","33.0","540.0","8.0","17.0","hyper","hyper"
|
|
168
|
+
"400","2395.0","33.0","340.0","8.0","14.0","mega","mega"
|
|
169
|
+
"53","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
|
|
170
|
+
"381","2125.0","33.0","250.0","8.0","15.0","super","super"
|
|
171
|
+
"34","2475.0","50.0","210.0","4.0","15.0","mega","mega"
|
|
172
|
+
"583","3365.0","50.0","540.0","8.0","17.0","hyper","hyper"
|
|
173
|
+
"318","2605.0","33.0","250.0","8.0","17.0","mega","mega"
|
|
174
|
+
"381","2125.0","33.0","250.0","8.0","15.0","super","super"
|
|
175
|
+
"34","2475.0","50.0","210.0","4.0","15.0","mega","mega"
|
|
176
|
+
"583","3365.0","50.0","540.0","8.0","17.0","hyper","hyper"
|
|
177
|
+
"318","2605.0","33.0","250.0","8.0","17.0","mega","mega"
|
|
178
|
+
"238","1695.0","33.0","170.0","4.0","14.0","special","special"
|
|
179
|
+
"299","1899.0","33.0","170.0","4.0","14.0","super","super"
|
|
180
|
+
"175","3795.0","33.0","452.0","8.0","14.0","uber","uber"
|
|
181
|
+
"114","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
|
|
182
|
+
"238","1695.0","33.0","170.0","4.0","14.0","special","special"
|
|
183
|
+
"299","1899.0","33.0","170.0","4.0","14.0","super","super"
|
|
184
|
+
"175","3795.0","33.0","452.0","8.0","14.0","uber","uber"
|
|
185
|
+
"114","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
|
|
186
|
+
"421","3090.0","66.0","452.0","16.0","14.0","hyper","hyper"
|
|
187
|
+
"13","2045.0","50.0","130.0","4.0","14.0","super","super"
|
|
188
|
+
"501","2145.0","50.0","170.0","4.0","14.0","super","super"
|
|
189
|
+
"379","1595.0","33.0","85.0","2.0","14.0","special","special"
|
|
190
|
+
"421","3090.0","66.0","452.0","16.0","14.0","hyper","hyper"
|
|
191
|
+
"13","2045.0","50.0","130.0","4.0","14.0","super","super"
|
|
192
|
+
"501","2145.0","50.0","170.0","4.0","14.0","super","super"
|
|
193
|
+
"379","1595.0","33.0","85.0","2.0","14.0","special","special"
|
|
194
|
+
"257","3035.0","50.0","250.0","8.0","17.0","hyper","hyper"
|
|
195
|
+
"339","2905.0","66.0","250.0","8.0","17.0","hyper","super"
|
|
196
|
+
"72","2725.0","33.0","210.0","4.0","17.0","hyper","hyper"
|
|
197
|
+
"358","2645.0","66.0","250.0","8.0","15.0","mega","mega"
|
|
198
|
+
"257","3035.0","50.0","250.0","8.0","17.0","hyper","hyper"
|
|
199
|
+
"339","2905.0","66.0","250.0","8.0","17.0","hyper","super"
|
|
200
|
+
"72","2725.0","33.0","210.0","4.0","17.0","hyper","hyper"
|
|
201
|
+
"358","2645.0","66.0","250.0","8.0","15.0","mega","mega"
|
|
202
|
+
"522","2590.0","33.0","340.0","8.0","14.0","mega","mega"
|
|
203
|
+
"604","2590.0","25.0","452.0","16.0","15.0","mega","mega"
|
|
204
|
+
"398","1795.0","33.0","170.0","4.0","14.0","super","super"
|
|
205
|
+
"154","2075.0","33.0","250.0","8.0","14.0","super","super"
|
|
206
|
+
"522","2590.0","33.0","340.0","8.0","14.0","mega","mega"
|
|
207
|
+
"604","2590.0","25.0","452.0","16.0","15.0","mega","mega"
|
|
208
|
+
"398","1795.0","33.0","170.0","4.0","14.0","super","super"
|
|
209
|
+
"154","2075.0","33.0","250.0","8.0","14.0","super","super"
|
|
210
|
+
"276","2995.0","66.0","340.0","16.0","14.0","hyper","hyper"
|
|
211
|
+
"196","2055.0","33.0","250.0","8.0","14.0","super","super"
|
|
212
|
+
"173","1795.0","33.0","170.0","4.0","15.0","super","super"
|
|
213
|
+
"215","2985.0","66.0","250.0","8.0","17.0","hyper","mega"
|
|
214
|
+
"276","2995.0","66.0","340.0","16.0","14.0","hyper","hyper"
|
|
215
|
+
"196","2055.0","33.0","250.0","8.0","14.0","super","super"
|
|
216
|
+
"173","1795.0","33.0","170.0","4.0","15.0","super","super"
|
|
217
|
+
"215","2985.0","66.0","250.0","8.0","17.0","hyper","mega"
|
|
218
|
+
"541","2690.0","33.0","452.0","16.0","15.0","mega","mega"
|
|
219
|
+
"32","1995.0","25.0","130.0","4.0","14.0","super","super"
|
|
220
|
+
"438","2019.0","33.0","120.0","4.0","14.0","super","super"
|
|
221
|
+
"480","2290.0","50.0","214.0","4.0","15.0","mega","mega"
|
|
222
|
+
"541","2690.0","33.0","452.0","16.0","15.0","mega","mega"
|
|
223
|
+
"32","1995.0","25.0","130.0","4.0","14.0","super","super"
|
|
224
|
+
"438","2019.0","33.0","120.0","4.0","14.0","super","super"
|
|
225
|
+
"480","2290.0","50.0","214.0","4.0","15.0","mega","mega"
|
|
226
|
+
"133","2220.0","33.0","250.0","4.0","14.0","super","super"
|
|
227
|
+
"297","2155.0","33.0","250.0","8.0","14.0","super","super"
|
|
228
|
+
"295","2299.0","50.0","212.0","4.0","14.0","mega","mega"
|
|
229
|
+
"520","2025.0","50.0","170.0","4.0","14.0","super","super"
|
|
230
|
+
"133","2220.0","33.0","250.0","4.0","14.0","super","super"
|
|
231
|
+
"297","2155.0","33.0","250.0","8.0","14.0","super","super"
|
|
232
|
+
"295","2299.0","50.0","212.0","4.0","14.0","mega","mega"
|
|
233
|
+
"520","2025.0","50.0","170.0","4.0","14.0","super","super"
|
|
234
|
+
"581","1998.0","66.0","130.0","4.0","14.0","super","super"
|
|
235
|
+
"337","1795.0","33.0","170.0","4.0","14.0","super","super"
|
|
236
|
+
"560","2245.0","66.0","250.0","4.0","15.0","super","super"
|
|
237
|
+
"377","2695.0","33.0","340.0","16.0","14.0","mega","mega"
|
|
238
|
+
"581","1998.0","66.0","130.0","4.0","14.0","super","super"
|
|
239
|
+
"337","1795.0","33.0","170.0","4.0","14.0","super","super"
|
|
240
|
+
"560","2245.0","66.0","250.0","4.0","15.0","super","super"
|
|
241
|
+
"377","2695.0","33.0","340.0","16.0","14.0","mega","mega"
|
|
242
|
+
"234","2195.0","33.0","170.0","8.0","15.0","super","super"
|
|
243
|
+
"602","2590.0","25.0","452.0","16.0","14.0","mega","hyper"
|
|
244
|
+
"213","2420.0","33.0","170.0","8.0","15.0","mega","mega"
|
|
245
|
+
"621","2555.0","50.0","250.0","8.0","17.0","mega","mega"
|
|
246
|
+
"234","2195.0","33.0","170.0","8.0","15.0","super","super"
|
|
247
|
+
"602","2590.0","25.0","452.0","16.0","14.0","mega","hyper"
|
|
248
|
+
"213","2420.0","33.0","170.0","8.0","15.0","mega","mega"
|
|
249
|
+
"621","2555.0","50.0","250.0","8.0","17.0","mega","mega"
|
|
250
|
+
"274","2695.0","33.0","340.0","16.0","14.0","mega","mega"
|
|
251
|
+
"194","2055.0","50.0","170.0","4.0","14.0","super","super"
|
|
252
|
+
"478","1720.0","33.0","170.0","4.0","14.0","special","special"
|
|
253
|
+
"417","1995.0","33.0","250.0","8.0","14.0","super","super"
|
|
254
|
+
"274","2695.0","33.0","340.0","16.0","14.0","mega","mega"
|
|
255
|
+
"194","2055.0","50.0","170.0","4.0","14.0","super","super"
|
|
256
|
+
"478","1720.0","33.0","170.0","4.0","14.0","special","special"
|
|
257
|
+
"417","1995.0","33.0","250.0","8.0","14.0","super","super"
|
|
258
|
+
"131","2295.0","66.0","130.0","4.0","14.0","mega","mega"
|
|
259
|
+
"459","2905.0","66.0","250.0","8.0","17.0","hyper","hyper"
|
|
260
|
+
"518","2290.0","50.0","214.0","4.0","14.0","mega","mega"
|
|
261
|
+
"335","1699.0","33.0","120.0","4.0","14.0","special","special"
|
|
262
|
+
"131","2295.0","66.0","130.0","4.0","14.0","mega","mega"
|
|
263
|
+
"459","2905.0","66.0","250.0","8.0","17.0","hyper","hyper"
|
|
264
|
+
"518","2290.0","50.0","214.0","4.0","14.0","mega","mega"
|
|
265
|
+
"335","1699.0","33.0","120.0","4.0","14.0","special","special"
|
|
266
|
+
"600","1675.0","25.0","120.0","4.0","14.0","special","special"
|
|
267
|
+
"316","1995.0","50.0","170.0","4.0","14.0","super","super"
|
|
268
|
+
"110","2145.0","66.0","170.0","4.0","14.0","super","super"
|
|
269
|
+
"192","2499.0","50.0","210.0","4.0","14.0","mega","mega"
|
|
270
|
+
"600","1675.0","25.0","120.0","4.0","14.0","special","special"
|
|
271
|
+
"316","1995.0","50.0","170.0","4.0","14.0","super","super"
|
|
272
|
+
"110","2145.0","66.0","170.0","4.0","14.0","super","super"
|
|
273
|
+
"192","2499.0","50.0","210.0","4.0","14.0","mega","mega"
|
|
274
|
+
"396","2999.0","66.0","245.0","16.0","15.0","hyper","hyper"
|
|
275
|
+
"499","2190.0","33.0","214.0","4.0","14.0","super","super"
|
|
276
|
+
"558","3699.0","33.0","345.0","16.0","17.0","uber","mega"
|
|
277
|
+
"457","3105.0","66.0","250.0","8.0","17.0","hyper","hyper"
|
|
278
|
+
"396","2999.0","66.0","245.0","16.0","15.0","hyper","hyper"
|
|
279
|
+
"499","2190.0","33.0","214.0","4.0","14.0","super","super"
|
|
280
|
+
"558","3699.0","33.0","345.0","16.0","17.0","uber","mega"
|
|
281
|
+
"457","3105.0","66.0","250.0","8.0","17.0","hyper","hyper"
|
|
282
|
+
"253","2395.0","33.0","170.0","8.0","14.0","mega","mega"
|
|
283
|
+
"9","2225.0","50.0","210.0","8.0","14.0","super","super"
|
|
284
|
+
"150","3895.0","66.0","500.0","8.0","15.0","uber","uber"
|
|
285
|
+
"232","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
|
|
286
|
+
"253","2395.0","33.0","170.0","8.0","14.0","mega","mega"
|
|
287
|
+
"9","2225.0","50.0","210.0","8.0","14.0","super","super"
|
|
288
|
+
"150","3895.0","66.0","500.0","8.0","15.0","uber","uber"
|
|
289
|
+
"232","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
|
|
290
|
+
"436","1399.0","25.0","170.0","4.0","14.0","special","special"
|
|
291
|
+
"49","2399.0","50.0","212.0","4.0","14.0","mega","mega"
|
|
292
|
+
"415","3999.0","66.0","340.0","16.0","17.0","uber","uber"
|
|
293
|
+
"333","2190.0","33.0","130.0","4.0","14.0","super","super"
|
|
294
|
+
"436","1399.0","25.0","170.0","4.0","14.0","special","special"
|
|
295
|
+
"49","2399.0","50.0","212.0","4.0","14.0","mega","mega"
|
|
296
|
+
"415","3999.0","66.0","340.0","16.0","17.0","uber","uber"
|
|
297
|
+
"333","2190.0","33.0","130.0","4.0","14.0","super","super"
|
|
298
|
+
"293","2495.0","50.0","245.0","8.0","14.0","mega","mega"
|
|
299
|
+
"375","1890.0","66.0","85.0","2.0","14.0","super","super"
|
|
300
|
+
"7","1720.0","25.0","170.0","4.0","14.0","special","special"
|
|
301
|
+
"47","2195.0","33.0","130.0","4.0","14.0","super","super"
|
|
302
|
+
"293","2495.0","50.0","245.0","8.0","14.0","mega","mega"
|
|
303
|
+
"375","1890.0","66.0","85.0","2.0","14.0","super","super"
|
|
304
|
+
"7","1720.0","25.0","170.0","4.0","14.0","special","special"
|
|
305
|
+
"47","2195.0","33.0","130.0","4.0","14.0","super","super"
|
|
306
|
+
"619","2290.0","50.0","214.0","4.0","15.0","mega","mega"
|
|
307
|
+
"28","3995.0","33.0","452.0","8.0","14.0","uber","uber"
|
|
308
|
+
"272","4020.0","66.0","500.0","8.0","14.0","uber","uber"
|
|
309
|
+
"169","1595.0","33.0","85.0","2.0","14.0","special","mega"
|
|
310
|
+
"619","2290.0","50.0","214.0","4.0","15.0","mega","mega"
|
|
311
|
+
"28","3995.0","33.0","452.0","8.0","14.0","uber","uber"
|
|
312
|
+
"272","4020.0","66.0","500.0","8.0","14.0","uber","uber"
|
|
313
|
+
"169","1595.0","33.0","85.0","2.0","14.0","special","mega"
|
|
314
|
+
"108","1720.0","25.0","170.0","4.0","14.0","special","special"
|
|
315
|
+
"89","1395.0","25.0","85.0","2.0","14.0","special","special"
|
|
316
|
+
"598","2899.0","66.0","340.0","8.0","15.0","hyper","hyper"
|
|
317
|
+
"495","2690.0","50.0","340.0","8.0","15.0","mega","mega"
|
|
318
|
+
"108","1720.0","25.0","170.0","4.0","14.0","special","special"
|
|
319
|
+
"89","1395.0","25.0","85.0","2.0","14.0","special","special"
|
|
320
|
+
"598","2899.0","66.0","340.0","8.0","15.0","hyper","hyper"
|
|
321
|
+
"495","2690.0","50.0","340.0","8.0","15.0","mega","mega"
|
|
322
|
+
"577","2145.0","66.0","250.0","4.0","14.0","super","super"
|
|
323
|
+
"354","2090.0","33.0","130.0","4.0","14.0","super","super"
|
|
324
|
+
"190","2999.0","66.0","245.0","16.0","15.0","hyper","special"
|
|
325
|
+
"535","2090.0","33.0","214.0","4.0","14.0","super","super"
|
|
326
|
+
"577","2145.0","66.0","250.0","4.0","14.0","super","super"
|
|
327
|
+
"354","2090.0","33.0","130.0","4.0","14.0","super","super"
|
|
328
|
+
"190","2999.0","66.0","245.0","16.0","15.0","hyper","special"
|
|
329
|
+
"535","2090.0","33.0","214.0","4.0","14.0","super","super"
|
|
330
|
+
"26","1290.0","33.0","80.0","2.0","14.0","special","special"
|
|
331
|
+
"211","2395.0","33.0","245.0","8.0","14.0","mega","mega"
|
|
332
|
+
"455","2515.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
333
|
+
"85","2595.0","25.0","245.0","8.0","14.0","mega","mega"
|
|
334
|
+
"26","1290.0","33.0","80.0","2.0","14.0","special","special"
|
|
335
|
+
"211","2395.0","33.0","245.0","8.0","14.0","mega","mega"
|
|
336
|
+
"455","2515.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
337
|
+
"85","2595.0","25.0","245.0","8.0","14.0","mega","mega"
|
|
338
|
+
"291","3995.0","66.0","452.0","8.0","14.0","uber","uber"
|
|
339
|
+
"476","1490.0","25.0","107.0","2.0","15.0","special","special"
|
|
340
|
+
"516","2935.0","50.0","250.0","8.0","17.0","hyper","hyper"
|
|
341
|
+
"350","2145.0","50.0","170.0","4.0","14.0","super","super"
|
|
342
|
+
"291","3995.0","66.0","452.0","8.0","14.0","uber","uber"
|
|
343
|
+
"476","1490.0","25.0","107.0","2.0","15.0","special","special"
|
|
344
|
+
"516","2935.0","50.0","250.0","8.0","17.0","hyper","hyper"
|
|
345
|
+
"350","2145.0","50.0","170.0","4.0","14.0","super","super"
|
|
346
|
+
"148","2199.0","33.0","212.0","4.0","14.0","super","super"
|
|
347
|
+
"68","1499.0","25.0","120.0","4.0","14.0","special","special"
|
|
348
|
+
"556","1490.0","33.0","107.0","2.0","14.0","special","super"
|
|
349
|
+
"146","2595.0","66.0","245.0","8.0","14.0","mega","mega"
|
|
350
|
+
"148","2199.0","33.0","212.0","4.0","14.0","super","super"
|
|
351
|
+
"68","1499.0","25.0","120.0","4.0","14.0","special","special"
|
|
352
|
+
"556","1490.0","33.0","107.0","2.0","14.0","special","super"
|
|
353
|
+
"146","2595.0","66.0","245.0","8.0","14.0","mega","mega"
|
|
354
|
+
"617","2999.0","66.0","240.0","4.0","15.0","hyper","hyper"
|
|
355
|
+
"537","2195.0","50.0","250.0","4.0","14.0","super","super"
|
|
356
|
+
"270","2999.0","66.0","340.0","4.0","15.0","hyper","hyper"
|
|
357
|
+
"207","2885.0","66.0","170.0","8.0","15.0","hyper","hyper"
|
|
358
|
+
"617","2999.0","66.0","240.0","4.0","15.0","hyper","hyper"
|
|
359
|
+
"537","2195.0","50.0","250.0","4.0","14.0","super","super"
|
|
360
|
+
"270","2999.0","66.0","340.0","4.0","15.0","hyper","hyper"
|
|
361
|
+
"207","2885.0","66.0","170.0","8.0","15.0","hyper","hyper"
|
|
362
|
+
"413","2090.0","33.0","214.0","4.0","15.0","super","super"
|
|
363
|
+
"394","1399.0","25.0","170.0","4.0","14.0","special","special"
|
|
364
|
+
"453","2420.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
365
|
+
"390","1895.0","50.0","170.0","4.0","14.0","super","super"
|
|
366
|
+
"413","2090.0","33.0","214.0","4.0","15.0","super","super"
|
|
367
|
+
"394","1399.0","25.0","170.0","4.0","14.0","special","special"
|
|
368
|
+
"453","2420.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
369
|
+
"390","1895.0","50.0","170.0","4.0","14.0","super","super"
|
|
370
|
+
"5","3295.0","33.0","340.0","16.0","14.0","hyper","super"
|
|
371
|
+
"251","2399.0","66.0","213.0","8.0","14.0","mega","mega"
|
|
372
|
+
"310","3795.0","33.0","452.0","8.0","14.0","uber","uber"
|
|
373
|
+
"247","3299.0","66.0","245.0","16.0","15.0","hyper","hyper"
|
|
374
|
+
"5","3295.0","33.0","340.0","16.0","14.0","hyper","super"
|
|
375
|
+
"251","2399.0","66.0","213.0","8.0","14.0","mega","mega"
|
|
376
|
+
"310","3795.0","33.0","452.0","8.0","14.0","uber","uber"
|
|
377
|
+
"247","3299.0","66.0","245.0","16.0","15.0","hyper","hyper"
|
|
378
|
+
"474","2299.0","33.0","405.0","8.0","14.0","mega","mega"
|
|
379
|
+
"87","2075.0","33.0","210.0","8.0","14.0","super","super"
|
|
380
|
+
"575","2299.0","66.0","120.0","4.0","14.0","mega","mega"
|
|
381
|
+
"512","2645.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
382
|
+
"474","2299.0","33.0","405.0","8.0","14.0","mega","mega"
|
|
383
|
+
"87","2075.0","33.0","210.0","8.0","14.0","super","super"
|
|
384
|
+
"575","2299.0","66.0","120.0","4.0","14.0","mega","mega"
|
|
385
|
+
"512","2645.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
386
|
+
"331","1999.0","33.0","170.0","4.0","14.0","super","super"
|
|
387
|
+
"352","2525.0","50.0","250.0","8.0","14.0","mega","mega"
|
|
388
|
+
"167","2495.0","50.0","245.0","8.0","14.0","mega","mega"
|
|
389
|
+
"287","1399.0","25.0","170.0","4.0","14.0","special","special"
|
|
390
|
+
"331","1999.0","33.0","170.0","4.0","14.0","super","super"
|
|
391
|
+
"352","2525.0","50.0","250.0","8.0","14.0","mega","mega"
|
|
392
|
+
"167","2495.0","50.0","245.0","8.0","14.0","mega","mega"
|
|
393
|
+
"287","1399.0","25.0","170.0","4.0","14.0","special","special"
|
|
394
|
+
"596","1520.0","25.0","80.0","4.0","14.0","special","special"
|
|
395
|
+
"392","2595.0","66.0","245.0","8.0","14.0","mega","mega"
|
|
396
|
+
"228","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
|
|
397
|
+
"552","1295.0","25.0","107.0","2.0","14.0","special","mega"
|
|
398
|
+
"596","1520.0","25.0","80.0","4.0","14.0","special","special"
|
|
399
|
+
"392","2595.0","66.0","245.0","8.0","14.0","mega","mega"
|
|
400
|
+
"228","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
|
|
401
|
+
"552","1295.0","25.0","107.0","2.0","14.0","special","mega"
|
|
402
|
+
"188","2575.0","66.0","250.0","8.0","14.0","mega","mega"
|
|
403
|
+
"249","1695.0","50.0","85.0","2.0","14.0","special","special"
|
|
404
|
+
"493","2195.0","50.0","214.0","4.0","14.0","super","super"
|
|
405
|
+
"144","1975.0","50.0","170.0","4.0","14.0","super","super"
|
|
406
|
+
"188","2575.0","66.0","250.0","8.0","14.0","mega","mega"
|
|
407
|
+
"249","1695.0","50.0","85.0","2.0","14.0","special","special"
|
|
408
|
+
"493","2195.0","50.0","214.0","4.0","14.0","super","super"
|
|
409
|
+
"144","1975.0","50.0","170.0","4.0","14.0","super","super"
|
|
410
|
+
"24","2875.0","50.0","210.0","4.0","17.0","hyper","hyper"
|
|
411
|
+
"514","1890.0","66.0","107.0","2.0","15.0","super","super"
|
|
412
|
+
"615","1799.0","33.0","120.0","4.0","14.0","super","super"
|
|
413
|
+
"388","2099.0","66.0","120.0","4.0","14.0","super","super"
|
|
414
|
+
"24","2875.0","50.0","210.0","4.0","17.0","hyper","hyper"
|
|
415
|
+
"514","1890.0","66.0","107.0","2.0","15.0","super","super"
|
|
416
|
+
"615","1799.0","33.0","120.0","4.0","14.0","super","super"
|
|
417
|
+
"388","2099.0","66.0","120.0","4.0","14.0","super","super"
|
|
418
|
+
"289","2595.0","25.0","340.0","16.0","14.0","mega","mega"
|
|
419
|
+
"106","2995.0","66.0","250.0","8.0","17.0","hyper","hyper"
|
|
420
|
+
"268","2785.0","50.0","170.0","8.0","15.0","hyper","super"
|
|
421
|
+
"449","1499.0","33.0","120.0","4.0","14.0","special","special"
|
|
422
|
+
"289","2595.0","25.0","340.0","16.0","14.0","mega","mega"
|
|
423
|
+
"106","2995.0","66.0","250.0","8.0","17.0","hyper","hyper"
|
|
424
|
+
"268","2785.0","50.0","170.0","8.0","15.0","hyper","super"
|
|
425
|
+
"449","1499.0","33.0","120.0","4.0","14.0","special","special"
|
|
426
|
+
"3","1595.0","25.0","170.0","4.0","15.0","special","special"
|
|
427
|
+
"371","2490.0","33.0","245.0","8.0","14.0","mega","mega"
|
|
428
|
+
"533","2895.0","50.0","452.0","16.0","14.0","hyper","hyper"
|
|
429
|
+
"102","2195.0","25.0","245.0","8.0","14.0","super","super"
|
|
430
|
+
"3","1595.0","25.0","170.0","4.0","15.0","special","special"
|
|
431
|
+
"371","2490.0","33.0","245.0","8.0","14.0","mega","mega"
|
|
432
|
+
"533","2895.0","50.0","452.0","16.0","14.0","hyper","hyper"
|
|
433
|
+
"102","2195.0","25.0","245.0","8.0","14.0","super","super"
|
|
434
|
+
"329","3090.0","66.0","340.0","16.0","14.0","hyper","hyper"
|
|
435
|
+
"411","1495.0","33.0","170.0","4.0","14.0","special","special"
|
|
436
|
+
"165","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
|
|
437
|
+
"428","2390.0","25.0","340.0","8.0","14.0","mega","mega"
|
|
438
|
+
"329","3090.0","66.0","340.0","16.0","14.0","hyper","hyper"
|
|
439
|
+
"411","1495.0","33.0","170.0","4.0","14.0","special","special"
|
|
440
|
+
"165","2795.0","33.0","340.0","16.0","14.0","hyper","hyper"
|
|
441
|
+
"428","2390.0","25.0","340.0","8.0","14.0","mega","mega"
|
|
442
|
+
"186","2395.0","33.0","245.0","8.0","14.0","mega","mega"
|
|
443
|
+
"64","2220.0","33.0","250.0","4.0","14.0","super","super"
|
|
444
|
+
"22","2795.0","66.0","130.0","4.0","14.0","hyper","hyper"
|
|
445
|
+
"224","3895.0","50.0","452.0","8.0","14.0","uber","uber"
|
|
446
|
+
"186","2395.0","33.0","245.0","8.0","14.0","mega","mega"
|
|
447
|
+
"64","2220.0","33.0","250.0","4.0","14.0","super","super"
|
|
448
|
+
"22","2795.0","66.0","130.0","4.0","14.0","hyper","hyper"
|
|
449
|
+
"224","3895.0","50.0","452.0","8.0","14.0","uber","uber"
|
|
450
|
+
"43","2499.0","33.0","212.0","8.0","14.0","mega","mega"
|
|
451
|
+
"430","2295.0","25.0","340.0","8.0","14.0","mega","mega"
|
|
452
|
+
"613","2790.0","66.0","340.0","8.0","15.0","hyper","hyper"
|
|
453
|
+
"489","2855.0","50.0","250.0","8.0","17.0","hyper","hyper"
|
|
454
|
+
"43","2499.0","33.0","212.0","8.0","14.0","mega","mega"
|
|
455
|
+
"430","2295.0","25.0","340.0","8.0","14.0","mega","mega"
|
|
456
|
+
"613","2790.0","66.0","340.0","8.0","15.0","hyper","hyper"
|
|
457
|
+
"489","2855.0","50.0","250.0","8.0","17.0","hyper","hyper"
|
|
458
|
+
"308","2285.0","50.0","250.0","8.0","14.0","mega","mega"
|
|
459
|
+
"226","2745.0","66.0","170.0","8.0","14.0","hyper","mega"
|
|
460
|
+
"205","1595.0","33.0","85.0","2.0","14.0","special","special"
|
|
461
|
+
"264","2345.0","50.0","250.0","8.0","14.0","mega","mega"
|
|
462
|
+
"308","2285.0","50.0","250.0","8.0","14.0","mega","mega"
|
|
463
|
+
"226","2745.0","66.0","170.0","8.0","14.0","hyper","mega"
|
|
464
|
+
"205","1595.0","33.0","85.0","2.0","14.0","special","special"
|
|
465
|
+
"264","2345.0","50.0","250.0","8.0","14.0","mega","mega"
|
|
466
|
+
"491","3990.0","66.0","1000.0","16.0","14.0","uber","uber"
|
|
467
|
+
"83","2990.0","66.0","210.0","8.0","15.0","hyper","hyper"
|
|
468
|
+
"470","3720.0","66.0","500.0","8.0","14.0","uber","uber"
|
|
469
|
+
"590","2125.0","66.0","170.0","4.0","15.0","super","super"
|
|
470
|
+
"491","3990.0","66.0","1000.0","16.0","14.0","uber","uber"
|
|
471
|
+
"83","2990.0","66.0","210.0","8.0","15.0","hyper","hyper"
|
|
472
|
+
"470","3720.0","66.0","500.0","8.0","14.0","uber","uber"
|
|
473
|
+
"590","2125.0","66.0","170.0","4.0","15.0","super","super"
|
|
474
|
+
"348","2595.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
475
|
+
"266","2195.0","50.0","130.0","4.0","14.0","super","super"
|
|
476
|
+
"62","1795.0","33.0","170.0","4.0","15.0","super","super"
|
|
477
|
+
"100","1695.0","33.0","170.0","4.0","14.0","special","special"
|
|
478
|
+
"348","2595.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
479
|
+
"266","2195.0","50.0","130.0","4.0","14.0","super","super"
|
|
480
|
+
"62","1795.0","33.0","170.0","4.0","15.0","super","super"
|
|
481
|
+
"100","1695.0","33.0","170.0","4.0","14.0","special","special"
|
|
482
|
+
"1","1499.0","25.0","80.0","4.0","14.0","special","special"
|
|
483
|
+
"531","2390.0","25.0","340.0","8.0","15.0","mega","mega"
|
|
484
|
+
"327","2395.0","33.0","250.0","8.0","14.0","mega","mega"
|
|
485
|
+
"140","2195.0","50.0","130.0","4.0","14.0","super","super"
|
|
486
|
+
"1","1499.0","25.0","80.0","4.0","14.0","special","special"
|
|
487
|
+
"531","2390.0","25.0","340.0","8.0","15.0","mega","mega"
|
|
488
|
+
"327","2395.0","33.0","250.0","8.0","14.0","mega","mega"
|
|
489
|
+
"140","2195.0","50.0","130.0","4.0","14.0","super","super"
|
|
490
|
+
"41","2895.0","50.0","245.0","8.0","14.0","hyper","hyper"
|
|
491
|
+
"81","3399.0","66.0","230.0","4.0","15.0","hyper","hyper"
|
|
492
|
+
"245","2575.0","66.0","250.0","8.0","14.0","mega","uber"
|
|
493
|
+
"201","3995.0","66.0","452.0","8.0","14.0","uber","uber"
|
|
494
|
+
"41","2895.0","50.0","245.0","8.0","14.0","hyper","hyper"
|
|
495
|
+
"81","3399.0","66.0","230.0","4.0","15.0","hyper","hyper"
|
|
496
|
+
"245","2575.0","66.0","250.0","8.0","14.0","mega","uber"
|
|
497
|
+
"201","3995.0","66.0","452.0","8.0","14.0","uber","uber"
|
|
498
|
+
"306","1499.0","25.0","170.0","4.0","14.0","special","special"
|
|
499
|
+
"142","4020.0","66.0","500.0","8.0","14.0","uber","uber"
|
|
500
|
+
"510","3195.0","66.0","540.0","8.0","15.0","hyper","hyper"
|
|
501
|
+
"262","2345.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
502
|
+
"306","1499.0","25.0","170.0","4.0","14.0","special","special"
|
|
503
|
+
"142","4020.0","66.0","500.0","8.0","14.0","uber","uber"
|
|
504
|
+
"510","3195.0","66.0","540.0","8.0","15.0","hyper","hyper"
|
|
505
|
+
"262","2345.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
506
|
+
"163","2645.0","50.0","250.0","4.0","15.0","mega","mega"
|
|
507
|
+
"407","2399.0","66.0","213.0","8.0","14.0","mega","mega"
|
|
508
|
+
"571","1720.0","33.0","170.0","4.0","14.0","special","special"
|
|
509
|
+
"527","2790.0","66.0","340.0","8.0","15.0","hyper","hyper"
|
|
510
|
+
"163","2645.0","50.0","250.0","4.0","15.0","mega","mega"
|
|
511
|
+
"407","2399.0","66.0","213.0","8.0","14.0","mega","mega"
|
|
512
|
+
"571","1720.0","33.0","170.0","4.0","14.0","special","special"
|
|
513
|
+
"527","2790.0","66.0","340.0","8.0","15.0","hyper","hyper"
|
|
514
|
+
"20","4395.0","66.0","452.0","8.0","14.0","uber","mega"
|
|
515
|
+
"121","1795.0","33.0","170.0","4.0","14.0","super","super"
|
|
516
|
+
"285","2545.0","66.0","250.0","8.0","15.0","mega","mega"
|
|
517
|
+
"445","2495.0","33.0","340.0","8.0","14.0","mega","mega"
|
|
518
|
+
"20","4395.0","66.0","452.0","8.0","14.0","uber","mega"
|
|
519
|
+
"121","1795.0","33.0","170.0","4.0","14.0","super","super"
|
|
520
|
+
"285","2545.0","66.0","250.0","8.0","15.0","mega","mega"
|
|
521
|
+
"445","2495.0","33.0","340.0","8.0","14.0","mega","mega"
|
|
522
|
+
"611","2995.0","66.0","452.0","16.0","14.0","hyper","hyper"
|
|
523
|
+
"386","2399.0","33.0","212.0","8.0","14.0","mega","mega"
|
|
524
|
+
"325","1690.0","33.0","85.0","2.0","14.0","special","special"
|
|
525
|
+
"302","1895.0","25.0","130.0","4.0","14.0","super","super"
|
|
526
|
+
"611","2995.0","66.0","452.0","16.0","14.0","hyper","hyper"
|
|
527
|
+
"386","2399.0","33.0","212.0","8.0","14.0","mega","mega"
|
|
528
|
+
"325","1690.0","33.0","85.0","2.0","14.0","special","special"
|
|
529
|
+
"302","1895.0","25.0","130.0","4.0","14.0","super","super"
|
|
530
|
+
"203","2475.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
531
|
+
"243","2335.0","50.0","250.0","8.0","14.0","mega","mega"
|
|
532
|
+
"182","2815.0","33.0","250.0","4.0","17.0","hyper","hyper"
|
|
533
|
+
"567","1690.0","33.0","107.0","2.0","14.0","special","special"
|
|
534
|
+
"203","2475.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
535
|
+
"243","2335.0","50.0","250.0","8.0","14.0","mega","mega"
|
|
536
|
+
"182","2815.0","33.0","250.0","4.0","17.0","hyper","hyper"
|
|
537
|
+
"567","1690.0","33.0","107.0","2.0","14.0","special","special"
|
|
538
|
+
"468","1995.0","50.0","170.0","4.0","14.0","super","super"
|
|
539
|
+
"569","1890.0","25.0","214.0","4.0","14.0","super","super"
|
|
540
|
+
"39","2405.0","50.0","210.0","8.0","14.0","mega","mega"
|
|
541
|
+
"607","2299.0","66.0","245.0","8.0","14.0","mega","hyper"
|
|
542
|
+
"468","1995.0","50.0","170.0","4.0","14.0","super","super"
|
|
543
|
+
"569","1890.0","25.0","214.0","4.0","14.0","super","super"
|
|
544
|
+
"39","2405.0","50.0","210.0","8.0","14.0","mega","mega"
|
|
545
|
+
"607","2299.0","66.0","245.0","8.0","14.0","mega","hyper"
|
|
546
|
+
"60","1945.0","50.0","130.0","4.0","14.0","super","super"
|
|
547
|
+
"161","1995.0","33.0","130.0","4.0","14.0","super","super"
|
|
548
|
+
"508","3599.0","33.0","340.0","16.0","17.0","uber","uber"
|
|
549
|
+
"117","2525.0","50.0","250.0","4.0","15.0","mega","mega"
|
|
550
|
+
"60","1945.0","50.0","130.0","4.0","14.0","super","super"
|
|
551
|
+
"161","1995.0","33.0","130.0","4.0","14.0","super","super"
|
|
552
|
+
"508","3599.0","33.0","340.0","16.0","17.0","uber","uber"
|
|
553
|
+
"117","2525.0","50.0","250.0","4.0","15.0","mega","mega"
|
|
554
|
+
"18","2325.0","33.0","210.0","4.0","15.0","mega","mega"
|
|
555
|
+
"426","1595.0","33.0","107.0","2.0","14.0","special","special"
|
|
556
|
+
"365","2815.0","66.0","250.0","8.0","15.0","hyper","hyper"
|
|
557
|
+
"443","1490.0","25.0","107.0","2.0","14.0","special","special"
|
|
558
|
+
"18","2325.0","33.0","210.0","4.0","15.0","mega","mega"
|
|
559
|
+
"426","1595.0","33.0","107.0","2.0","14.0","special","special"
|
|
560
|
+
"365","2815.0","66.0","250.0","8.0","15.0","hyper","hyper"
|
|
561
|
+
"443","1490.0","25.0","107.0","2.0","14.0","special","special"
|
|
562
|
+
"79","2595.0","50.0","130.0","4.0","14.0","mega","mega"
|
|
563
|
+
"609","2495.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
564
|
+
"222","2695.0","66.0","250.0","8.0","15.0","mega","mega"
|
|
565
|
+
"239","1495.0","25.0","170.0","4.0","14.0","special","special"
|
|
566
|
+
"79","2595.0","50.0","130.0","4.0","14.0","mega","mega"
|
|
567
|
+
"609","2495.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
568
|
+
"222","2695.0","66.0","250.0","8.0","15.0","mega","mega"
|
|
569
|
+
"239","1495.0","25.0","170.0","4.0","14.0","special","special"
|
|
570
|
+
"344","1590.0","33.0","85.0","2.0","14.0","special","special"
|
|
571
|
+
"466","1795.0","66.0","107.0","2.0","14.0","super","super"
|
|
572
|
+
"548","2599.0","50.0","450.0","8.0","15.0","mega","mega"
|
|
573
|
+
"157","2999.0","50.0","170.0","4.0","14.0","hyper","hyper"
|
|
574
|
+
"344","1590.0","33.0","85.0","2.0","14.0","special","special"
|
|
575
|
+
"466","1795.0","66.0","107.0","2.0","14.0","super","super"
|
|
576
|
+
"548","2599.0","50.0","450.0","8.0","15.0","mega","mega"
|
|
577
|
+
"157","2999.0","50.0","170.0","4.0","14.0","hyper","hyper"
|
|
578
|
+
"58","3075.0","66.0","210.0","4.0","17.0","hyper","hyper"
|
|
579
|
+
"119","2499.0","33.0","170.0","4.0","14.0","mega","mega"
|
|
580
|
+
"588","1599.0","25.0","170.0","4.0","14.0","special","special"
|
|
581
|
+
"14","2295.0","25.0","245.0","8.0","14.0","mega","mega"
|
|
582
|
+
"58","3075.0","66.0","210.0","4.0","17.0","hyper","hyper"
|
|
583
|
+
"119","2499.0","33.0","170.0","4.0","14.0","mega","mega"
|
|
584
|
+
"588","1599.0","25.0","170.0","4.0","14.0","special","special"
|
|
585
|
+
"14","2295.0","25.0","245.0","8.0","14.0","mega","mega"
|
|
586
|
+
"323","2599.0","33.0","245.0","16.0","15.0","mega","mega"
|
|
587
|
+
"159","3065.0","50.0","250.0","4.0","17.0","hyper","mega"
|
|
588
|
+
"37","2325.0","66.0","210.0","8.0","14.0","mega","mega"
|
|
589
|
+
"483","2249.0","50.0","230.0","4.0","14.0","super","super"
|
|
590
|
+
"323","2599.0","33.0","245.0","16.0","15.0","mega","mega"
|
|
591
|
+
"159","3065.0","50.0","250.0","4.0","17.0","hyper","mega"
|
|
592
|
+
"37","2325.0","66.0","210.0","8.0","14.0","mega","mega"
|
|
593
|
+
"483","2249.0","50.0","230.0","4.0","14.0","super","super"
|
|
594
|
+
"384","2290.0","25.0","245.0","8.0","14.0","mega","mega"
|
|
595
|
+
"424","2495.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
596
|
+
"220","1945.0","33.0","170.0","4.0","14.0","super","super"
|
|
597
|
+
"279","2405.0","66.0","250.0","8.0","14.0","mega","mega"
|
|
598
|
+
"384","2290.0","25.0","245.0","8.0","14.0","mega","mega"
|
|
599
|
+
"424","2495.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
600
|
+
"220","1945.0","33.0","170.0","4.0","14.0","super","super"
|
|
601
|
+
"279","2405.0","66.0","250.0","8.0","14.0","mega","mega"
|
|
602
|
+
"180","1695.0","50.0","85.0","2.0","14.0","special","mega"
|
|
603
|
+
"16","2225.0","50.0","130.0","4.0","14.0","super","super"
|
|
604
|
+
"485","2455.0","66.0","250.0","8.0","14.0","mega","mega"
|
|
605
|
+
"544","2698.0","66.0","245.0","8.0","14.0","mega","mega"
|
|
606
|
+
"180","1695.0","50.0","85.0","2.0","14.0","special","mega"
|
|
607
|
+
"16","2225.0","50.0","130.0","4.0","14.0","super","super"
|
|
608
|
+
"485","2455.0","66.0","250.0","8.0","14.0","mega","mega"
|
|
609
|
+
"544","2698.0","66.0","245.0","8.0","14.0","mega","mega"
|
|
610
|
+
"241","1699.0","33.0","120.0","4.0","14.0","special","special"
|
|
611
|
+
"281","2225.0","33.0","250.0","8.0","14.0","super","super"
|
|
612
|
+
"77","1975.0","33.0","210.0","8.0","14.0","super","super"
|
|
613
|
+
"605","1449.0","25.0","120.0","4.0","14.0","special","hyper"
|
|
614
|
+
"241","1699.0","33.0","120.0","4.0","14.0","special","special"
|
|
615
|
+
"281","2225.0","33.0","250.0","8.0","14.0","super","super"
|
|
616
|
+
"77","1975.0","33.0","210.0","8.0","14.0","super","super"
|
|
617
|
+
"605","1449.0","25.0","120.0","4.0","14.0","special","hyper"
|
|
618
|
+
"506","1775.0","33.0","170.0","4.0","14.0","super","super"
|
|
619
|
+
"138","2395.0","33.0","250.0","4.0","15.0","mega","mega"
|
|
620
|
+
"342","2699.0","66.0","213.0","8.0","14.0","mega","mega"
|
|
621
|
+
"319","2335.0","66.0","250.0","8.0","14.0","mega","mega"
|
|
622
|
+
"506","1775.0","33.0","170.0","4.0","14.0","super","super"
|
|
623
|
+
"138","2395.0","33.0","250.0","4.0","15.0","mega","mega"
|
|
624
|
+
"342","2699.0","66.0","213.0","8.0","14.0","mega","mega"
|
|
625
|
+
"319","2335.0","66.0","250.0","8.0","14.0","mega","mega"
|
|
626
|
+
"98","1920.0","33.0","170.0","4.0","14.0","super","super"
|
|
627
|
+
"464","2790.0","33.0","452.0","16.0","15.0","hyper","hyper"
|
|
628
|
+
"260","2599.0","33.0","245.0","16.0","15.0","mega","mega"
|
|
629
|
+
"155","2499.0","33.0","212.0","8.0","14.0","mega","super"
|
|
630
|
+
"98","1920.0","33.0","170.0","4.0","14.0","super","super"
|
|
631
|
+
"464","2790.0","33.0","452.0","16.0","15.0","hyper","hyper"
|
|
632
|
+
"260","2599.0","33.0","245.0","16.0","15.0","mega","mega"
|
|
633
|
+
"155","2499.0","33.0","212.0","8.0","14.0","mega","super"
|
|
634
|
+
"363","2155.0","50.0","250.0","8.0","14.0","super","super"
|
|
635
|
+
"321","2425.0","66.0","250.0","8.0","15.0","mega","mega"
|
|
636
|
+
"525","2099.0","66.0","120.0","4.0","14.0","super","super"
|
|
637
|
+
"216","1395.0","25.0","85.0","2.0","14.0","special","special"
|
|
638
|
+
"363","2155.0","50.0","250.0","8.0","14.0","super","super"
|
|
639
|
+
"321","2425.0","66.0","250.0","8.0","15.0","mega","mega"
|
|
640
|
+
"525","2099.0","66.0","120.0","4.0","14.0","super","super"
|
|
641
|
+
"216","1395.0","25.0","85.0","2.0","14.0","special","special"
|
|
642
|
+
"546","2695.0","66.0","340.0","8.0","14.0","mega","mega"
|
|
643
|
+
"178","2645.0","33.0","250.0","8.0","17.0","mega","mega"
|
|
644
|
+
"382","2399.0","66.0","213.0","8.0","14.0","mega","mega"
|
|
645
|
+
"542","2795.0","66.0","250.0","8.0","15.0","hyper","hyper"
|
|
646
|
+
"546","2695.0","66.0","340.0","8.0","14.0","mega","mega"
|
|
647
|
+
"178","2645.0","33.0","250.0","8.0","17.0","mega","mega"
|
|
648
|
+
"382","2399.0","66.0","213.0","8.0","14.0","mega","mega"
|
|
649
|
+
"542","2795.0","66.0","250.0","8.0","15.0","hyper","hyper"
|
|
650
|
+
"403","2490.0","33.0","340.0","8.0","14.0","mega","mega"
|
|
651
|
+
"422","2690.0","25.0","452.0","16.0","14.0","mega","mega"
|
|
652
|
+
"35","1999.0","33.0","170.0","4.0","14.0","super","super"
|
|
653
|
+
"195","2065.0","50.0","170.0","4.0","14.0","super","super"
|
|
654
|
+
"403","2490.0","33.0","340.0","8.0","14.0","mega","mega"
|
|
655
|
+
"422","2690.0","25.0","452.0","16.0","14.0","mega","mega"
|
|
656
|
+
"35","1999.0","33.0","170.0","4.0","14.0","super","super"
|
|
657
|
+
"195","2065.0","50.0","170.0","4.0","14.0","super","super"
|
|
658
|
+
"56","2125.0","50.0","130.0","4.0","14.0","super","super"
|
|
659
|
+
"136","2195.0","25.0","245.0","8.0","14.0","super","super"
|
|
660
|
+
"300","1595.0","25.0","170.0","4.0","14.0","special","special"
|
|
661
|
+
"460","2690.0","25.0","452.0","16.0","15.0","mega","mega"
|
|
662
|
+
"56","2125.0","50.0","130.0","4.0","14.0","super","super"
|
|
663
|
+
"136","2195.0","25.0","245.0","8.0","14.0","super","super"
|
|
664
|
+
"300","1595.0","25.0","170.0","4.0","14.0","special","special"
|
|
665
|
+
"460","2690.0","25.0","452.0","16.0","15.0","mega","mega"
|
|
666
|
+
"96","1495.0","25.0","170.0","4.0","14.0","special","special"
|
|
667
|
+
"197","2099.0","33.0","212.0","4.0","14.0","super","super"
|
|
668
|
+
"340","2825.0","33.0","250.0","8.0","17.0","hyper","hyper"
|
|
669
|
+
"256","2399.0","66.0","120.0","4.0","14.0","mega","mega"
|
|
670
|
+
"96","1495.0","25.0","170.0","4.0","14.0","special","special"
|
|
671
|
+
"197","2099.0","33.0","212.0","4.0","14.0","super","super"
|
|
672
|
+
"340","2825.0","33.0","250.0","8.0","17.0","hyper","hyper"
|
|
673
|
+
"256","2399.0","66.0","120.0","4.0","14.0","mega","mega"
|
|
674
|
+
"361","1775.0","33.0","170.0","4.0","14.0","super","super"
|
|
675
|
+
"462","1790.0","50.0","107.0","2.0","14.0","super","super"
|
|
676
|
+
"54","2190.0","33.0","210.0","4.0","14.0","super","super"
|
|
677
|
+
"317","2399.0","66.0","120.0","4.0","14.0","mega","mega"
|
|
678
|
+
"361","1775.0","33.0","170.0","4.0","14.0","super","super"
|
|
679
|
+
"462","1790.0","50.0","107.0","2.0","14.0","super","super"
|
|
680
|
+
"54","2190.0","33.0","210.0","4.0","14.0","super","super"
|
|
681
|
+
"317","2399.0","66.0","120.0","4.0","14.0","mega","mega"
|
|
682
|
+
"218","2095.0","33.0","130.0","4.0","14.0","super","super"
|
|
683
|
+
"441","2605.0","33.0","250.0","8.0","17.0","mega","mega"
|
|
684
|
+
"380","1490.0","25.0","85.0","2.0","14.0","special","special"
|
|
685
|
+
"582","2590.0","33.0","340.0","8.0","14.0","mega","mega"
|
|
686
|
+
"218","2095.0","33.0","130.0","4.0","14.0","super","super"
|
|
687
|
+
"441","2605.0","33.0","250.0","8.0","17.0","mega","mega"
|
|
688
|
+
"380","1490.0","25.0","85.0","2.0","14.0","special","special"
|
|
689
|
+
"582","2590.0","33.0","340.0","8.0","14.0","mega","mega"
|
|
690
|
+
"75","2999.0","50.0","170.0","4.0","14.0","hyper","hyper"
|
|
691
|
+
"33","2595.0","33.0","210.0","8.0","17.0","mega","mega"
|
|
692
|
+
"563","2999.0","50.0","240.0","4.0","14.0","hyper","hyper"
|
|
693
|
+
"31","1920.0","33.0","170.0","4.0","14.0","super","super"
|
|
694
|
+
"75","2999.0","50.0","170.0","4.0","14.0","hyper","hyper"
|
|
695
|
+
"33","2595.0","33.0","210.0","8.0","17.0","mega","mega"
|
|
696
|
+
"563","2999.0","50.0","240.0","4.0","14.0","hyper","hyper"
|
|
697
|
+
"31","1920.0","33.0","170.0","4.0","14.0","super","super"
|
|
698
|
+
"401","2399.0","50.0","320.0","8.0","14.0","mega","mega"
|
|
699
|
+
"502","2295.0","66.0","214.0","4.0","14.0","mega","mega"
|
|
700
|
+
"12","2605.0","66.0","210.0","8.0","14.0","mega","uber"
|
|
701
|
+
"500","2720.0","50.0","250.0","8.0","15.0","hyper","hyper"
|
|
702
|
+
"401","2399.0","50.0","320.0","8.0","14.0","mega","mega"
|
|
703
|
+
"502","2295.0","66.0","214.0","4.0","14.0","mega","mega"
|
|
704
|
+
"12","2605.0","66.0","210.0","8.0","14.0","mega","uber"
|
|
705
|
+
"500","2720.0","50.0","250.0","8.0","15.0","hyper","hyper"
|
|
706
|
+
"258","2449.0","33.0","230.0","4.0","14.0","mega","super"
|
|
707
|
+
"298","2890.0","33.0","340.0","16.0","14.0","hyper","hyper"
|
|
708
|
+
"277","2195.0","50.0","170.0","4.0","14.0","super","super"
|
|
709
|
+
"622","2025.0","66.0","170.0","4.0","14.0","super","hyper"
|
|
710
|
+
"258","2449.0","33.0","230.0","4.0","14.0","mega","super"
|
|
711
|
+
"298","2890.0","33.0","340.0","16.0","14.0","hyper","hyper"
|
|
712
|
+
"277","2195.0","50.0","170.0","4.0","14.0","super","super"
|
|
713
|
+
"622","2025.0","66.0","170.0","4.0","14.0","super","hyper"
|
|
714
|
+
"523","1499.0","25.0","170.0","4.0","14.0","special","special"
|
|
715
|
+
"481","2455.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
716
|
+
"338","2990.0","50.0","340.0","16.0","14.0","hyper","hyper"
|
|
717
|
+
"172","2495.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
718
|
+
"523","1499.0","25.0","170.0","4.0","14.0","special","special"
|
|
719
|
+
"481","2455.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
720
|
+
"338","2990.0","50.0","340.0","16.0","14.0","hyper","hyper"
|
|
721
|
+
"172","2495.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
722
|
+
"115","1499.0","25.0","170.0","4.0","14.0","special","special"
|
|
723
|
+
"174","2744.0","66.0","245.0","8.0","14.0","hyper","special"
|
|
724
|
+
"603","1999.0","50.0","212.0","4.0","14.0","super","super"
|
|
725
|
+
"498","1890.0","66.0","107.0","2.0","14.0","super","super"
|
|
726
|
+
"115","1499.0","25.0","170.0","4.0","14.0","special","special"
|
|
727
|
+
"174","2744.0","66.0","245.0","8.0","14.0","hyper","special"
|
|
728
|
+
"603","1999.0","50.0","212.0","4.0","14.0","super","super"
|
|
729
|
+
"498","1890.0","66.0","107.0","2.0","14.0","super","super"
|
|
730
|
+
"359","3125.0","66.0","250.0","8.0","17.0","hyper","hyper"
|
|
731
|
+
"479","2595.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
732
|
+
"275","2195.0","33.0","250.0","8.0","15.0","super","super"
|
|
733
|
+
"294","2455.0","66.0","250.0","8.0","14.0","mega","mega"
|
|
734
|
+
"359","3125.0","66.0","250.0","8.0","17.0","hyper","hyper"
|
|
735
|
+
"479","2595.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
736
|
+
"275","2195.0","33.0","250.0","8.0","15.0","super","super"
|
|
737
|
+
"294","2455.0","66.0","250.0","8.0","14.0","mega","mega"
|
|
738
|
+
"73","1695.0","33.0","170.0","4.0","14.0","special","hyper"
|
|
739
|
+
"71","4020.0","66.0","500.0","8.0","14.0","uber","uber"
|
|
740
|
+
"540","2095.0","33.0","250.0","4.0","14.0","super","super"
|
|
741
|
+
"559","2690.0","33.0","452.0","16.0","14.0","mega","mega"
|
|
742
|
+
"73","1695.0","33.0","170.0","4.0","14.0","special","hyper"
|
|
743
|
+
"71","4020.0","66.0","500.0","8.0","14.0","uber","uber"
|
|
744
|
+
"540","2095.0","33.0","250.0","4.0","14.0","super","super"
|
|
745
|
+
"559","2690.0","33.0","452.0","16.0","14.0","mega","mega"
|
|
746
|
+
"134","2075.0","50.0","170.0","4.0","14.0","super","super"
|
|
747
|
+
"336","2790.0","33.0","340.0","16.0","14.0","hyper","hyper"
|
|
748
|
+
"132","1799.0","25.0","170.0","4.0","14.0","super","mega"
|
|
749
|
+
"212","3135.0","66.0","250.0","8.0","17.0","hyper","hyper"
|
|
750
|
+
"134","2075.0","50.0","170.0","4.0","14.0","super","super"
|
|
751
|
+
"336","2790.0","33.0","340.0","16.0","14.0","hyper","hyper"
|
|
752
|
+
"132","1799.0","25.0","170.0","4.0","14.0","super","mega"
|
|
753
|
+
"212","3135.0","66.0","250.0","8.0","17.0","hyper","hyper"
|
|
754
|
+
"399","1899.0","33.0","212.0","4.0","14.0","super","super"
|
|
755
|
+
"193","1999.0","33.0","213.0","8.0","14.0","super","super"
|
|
756
|
+
"397","2449.0","33.0","230.0","4.0","14.0","mega","mega"
|
|
757
|
+
"69","2199.0","33.0","212.0","4.0","14.0","super","super"
|
|
758
|
+
"399","1899.0","33.0","212.0","4.0","14.0","super","super"
|
|
759
|
+
"193","1999.0","33.0","213.0","8.0","14.0","super","super"
|
|
760
|
+
"397","2449.0","33.0","230.0","4.0","14.0","mega","mega"
|
|
761
|
+
"69","2199.0","33.0","212.0","4.0","14.0","super","super"
|
|
762
|
+
"113","3895.0","50.0","452.0","8.0","14.0","uber","uber"
|
|
763
|
+
"458","2390.0","66.0","214.0","4.0","15.0","mega","mega"
|
|
764
|
+
"50","1995.0","33.0","250.0","4.0","14.0","super","super"
|
|
765
|
+
"538","1899.0","33.0","170.0","4.0","14.0","super","super"
|
|
766
|
+
"113","3895.0","50.0","452.0","8.0","14.0","uber","uber"
|
|
767
|
+
"458","2390.0","66.0","214.0","4.0","15.0","mega","mega"
|
|
768
|
+
"50","1995.0","33.0","250.0","4.0","14.0","super","super"
|
|
769
|
+
"538","1899.0","33.0","170.0","4.0","14.0","super","super"
|
|
770
|
+
"378","2595.0","25.0","340.0","16.0","14.0","mega","mega"
|
|
771
|
+
"519","2390.0","66.0","214.0","4.0","14.0","mega","mega"
|
|
772
|
+
"315","2695.0","66.0","250.0","8.0","14.0","mega","mega"
|
|
773
|
+
"334","2025.0","50.0","170.0","4.0","14.0","super","super"
|
|
774
|
+
"378","2595.0","25.0","340.0","16.0","14.0","mega","mega"
|
|
775
|
+
"519","2390.0","66.0","214.0","4.0","14.0","mega","mega"
|
|
776
|
+
"315","2695.0","66.0","250.0","8.0","14.0","mega","mega"
|
|
777
|
+
"334","2025.0","50.0","170.0","4.0","14.0","super","super"
|
|
778
|
+
"439","3055.0","50.0","250.0","8.0","17.0","hyper","hyper"
|
|
779
|
+
"376","1995.0","33.0","130.0","4.0","14.0","super","super"
|
|
780
|
+
"580","2099.0","33.0","120.0","4.0","14.0","super","super"
|
|
781
|
+
"599","2390.0","66.0","214.0","4.0","14.0","mega","mega"
|
|
782
|
+
"439","3055.0","50.0","250.0","8.0","17.0","hyper","hyper"
|
|
783
|
+
"376","1995.0","33.0","130.0","4.0","14.0","super","super"
|
|
784
|
+
"580","2099.0","33.0","120.0","4.0","14.0","super","super"
|
|
785
|
+
"599","2390.0","66.0","214.0","4.0","14.0","mega","mega"
|
|
786
|
+
"235","2195.0","25.0","245.0","8.0","14.0","super","super"
|
|
787
|
+
"477","2035.0","33.0","250.0","8.0","14.0","super","super"
|
|
788
|
+
"437","2805.0","33.0","250.0","8.0","17.0","hyper","hyper"
|
|
789
|
+
"210","3895.0","66.0","500.0","8.0","15.0","uber","uber"
|
|
790
|
+
"235","2195.0","25.0","245.0","8.0","14.0","super","super"
|
|
791
|
+
"477","2035.0","33.0","250.0","8.0","14.0","super","super"
|
|
792
|
+
"437","2805.0","33.0","250.0","8.0","17.0","hyper","hyper"
|
|
793
|
+
"210","3895.0","66.0","500.0","8.0","15.0","uber","uber"
|
|
794
|
+
"296","2690.0","25.0","340.0","16.0","14.0","mega","mega"
|
|
795
|
+
"191","1899.0","33.0","170.0","4.0","14.0","super","super"
|
|
796
|
+
"355","2075.0","66.0","170.0","4.0","14.0","super","super"
|
|
797
|
+
"6","3695.0","66.0","340.0","16.0","14.0","uber","special"
|
|
798
|
+
"296","2690.0","25.0","340.0","16.0","14.0","mega","mega"
|
|
799
|
+
"191","1899.0","33.0","170.0","4.0","14.0","super","super"
|
|
800
|
+
"355","2075.0","66.0","170.0","4.0","14.0","super","super"
|
|
801
|
+
"6","3695.0","66.0","340.0","16.0","14.0","uber","special"
|
|
802
|
+
"561","3999.0","66.0","345.0","16.0","17.0","uber","uber"
|
|
803
|
+
"517","1990.0","25.0","214.0","4.0","14.0","super","super"
|
|
804
|
+
"620","1499.0","33.0","130.0","4.0","14.0","special","special"
|
|
805
|
+
"597","2745.0","33.0","540.0","8.0","14.0","hyper","hyper"
|
|
806
|
+
"561","3999.0","66.0","345.0","16.0","17.0","uber","uber"
|
|
807
|
+
"517","1990.0","25.0","214.0","4.0","14.0","super","super"
|
|
808
|
+
"620","1499.0","33.0","130.0","4.0","14.0","special","special"
|
|
809
|
+
"597","2745.0","33.0","540.0","8.0","14.0","hyper","hyper"
|
|
810
|
+
"418","1690.0","33.0","107.0","2.0","14.0","special","special"
|
|
811
|
+
"231","1999.0","33.0","120.0","8.0","14.0","super","super"
|
|
812
|
+
"252","1499.0","25.0","170.0","4.0","14.0","special","special"
|
|
813
|
+
"250","2999.0","66.0","170.0","4.0","14.0","hyper","hyper"
|
|
814
|
+
"418","1690.0","33.0","107.0","2.0","14.0","special","special"
|
|
815
|
+
"231","1999.0","33.0","120.0","8.0","14.0","super","super"
|
|
816
|
+
"252","1499.0","25.0","170.0","4.0","14.0","special","special"
|
|
817
|
+
"250","2999.0","66.0","170.0","4.0","14.0","hyper","hyper"
|
|
818
|
+
"601","3149.0","66.0","230.0","8.0","14.0","hyper","hyper"
|
|
819
|
+
"88","1795.0","33.0","130.0","4.0","14.0","super","super"
|
|
820
|
+
"109","2045.0","66.0","170.0","4.0","14.0","super","special"
|
|
821
|
+
"515","1999.0","33.0","170.0","4.0","14.0","super","super"
|
|
822
|
+
"601","3149.0","66.0","230.0","8.0","14.0","hyper","hyper"
|
|
823
|
+
"88","1795.0","33.0","130.0","4.0","14.0","super","super"
|
|
824
|
+
"109","2045.0","66.0","170.0","4.0","14.0","super","special"
|
|
825
|
+
"515","1999.0","33.0","170.0","4.0","14.0","super","super"
|
|
826
|
+
"111","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
|
|
827
|
+
"353","2595.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
828
|
+
"435","2049.0","33.0","405.0","4.0","14.0","super","super"
|
|
829
|
+
"311","1999.0","33.0","213.0","8.0","14.0","super","super"
|
|
830
|
+
"111","2995.0","66.0","340.0","8.0","15.0","hyper","hyper"
|
|
831
|
+
"353","2595.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
832
|
+
"435","2049.0","33.0","405.0","4.0","14.0","super","super"
|
|
833
|
+
"311","1999.0","33.0","213.0","8.0","14.0","super","super"
|
|
834
|
+
"90","3490.0","50.0","330.0","8.0","14.0","uber","uber"
|
|
835
|
+
"536","2815.0","66.0","250.0","8.0","15.0","hyper","hyper"
|
|
836
|
+
"27","1975.0","33.0","130.0","4.0","14.0","super","super"
|
|
837
|
+
"372","3225.0","66.0","212.0","4.0","15.0","hyper","hyper"
|
|
838
|
+
"90","3490.0","50.0","330.0","8.0","14.0","uber","uber"
|
|
839
|
+
"536","2815.0","66.0","250.0","8.0","15.0","hyper","hyper"
|
|
840
|
+
"27","1975.0","33.0","130.0","4.0","14.0","super","super"
|
|
841
|
+
"372","3225.0","66.0","212.0","4.0","15.0","hyper","hyper"
|
|
842
|
+
"151","2095.0","33.0","250.0","4.0","15.0","super","super"
|
|
843
|
+
"189","2695.0","33.0","340.0","16.0","14.0","mega","mega"
|
|
844
|
+
"292","2999.0","66.0","240.0","4.0","15.0","hyper","hyper"
|
|
845
|
+
"555","2595.0","33.0","452.0","16.0","14.0","mega","mega"
|
|
846
|
+
"151","2095.0","33.0","250.0","4.0","15.0","super","super"
|
|
847
|
+
"189","2695.0","33.0","340.0","16.0","14.0","mega","mega"
|
|
848
|
+
"292","2999.0","66.0","240.0","4.0","15.0","hyper","hyper"
|
|
849
|
+
"555","2595.0","33.0","452.0","16.0","14.0","mega","mega"
|
|
850
|
+
"8","1995.0","50.0","85.0","2.0","14.0","super","super"
|
|
851
|
+
"229","2199.0","33.0","210.0","4.0","14.0","super","super"
|
|
852
|
+
"557","2075.0","50.0","250.0","8.0","14.0","super","super"
|
|
853
|
+
"412","2075.0","66.0","170.0","4.0","14.0","super","super"
|
|
854
|
+
"8","1995.0","50.0","85.0","2.0","14.0","super","super"
|
|
855
|
+
"229","2199.0","33.0","210.0","4.0","14.0","super","super"
|
|
856
|
+
"557","2075.0","50.0","250.0","8.0","14.0","super","super"
|
|
857
|
+
"412","2075.0","66.0","170.0","4.0","14.0","super","super"
|
|
858
|
+
"273","2595.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
859
|
+
"494","3599.0","66.0","405.0","8.0","14.0","uber","uber"
|
|
860
|
+
"67","2325.0","66.0","130.0","4.0","14.0","mega","mega"
|
|
861
|
+
"309","2475.0","50.0","250.0","8.0","15.0","mega","special"
|
|
862
|
+
"273","2595.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
863
|
+
"494","3599.0","66.0","405.0","8.0","14.0","uber","uber"
|
|
864
|
+
"67","2325.0","66.0","130.0","4.0","14.0","mega","mega"
|
|
865
|
+
"309","2475.0","50.0","250.0","8.0","15.0","mega","special"
|
|
866
|
+
"130","2065.0","50.0","170.0","4.0","14.0","super","super"
|
|
867
|
+
"351","2405.0","50.0","250.0","8.0","14.0","mega","mega"
|
|
868
|
+
"332","2195.0","50.0","130.0","4.0","14.0","super","super"
|
|
869
|
+
"227","1920.0","33.0","170.0","4.0","14.0","super","super"
|
|
870
|
+
"130","2065.0","50.0","170.0","4.0","14.0","super","super"
|
|
871
|
+
"351","2405.0","50.0","250.0","8.0","14.0","mega","mega"
|
|
872
|
+
"332","2195.0","50.0","130.0","4.0","14.0","super","super"
|
|
873
|
+
"227","1920.0","33.0","170.0","4.0","14.0","super","super"
|
|
874
|
+
"395","2999.0","66.0","170.0","4.0","14.0","hyper","hyper"
|
|
875
|
+
"208","3795.0","33.0","452.0","8.0","14.0","uber","uber"
|
|
876
|
+
"393","1899.0","50.0","120.0","4.0","14.0","super","super"
|
|
877
|
+
"23","2895.0","25.0","340.0","16.0","14.0","hyper","hyper"
|
|
878
|
+
"395","2999.0","66.0","170.0","4.0","14.0","hyper","hyper"
|
|
879
|
+
"208","3795.0","33.0","452.0","8.0","14.0","uber","uber"
|
|
880
|
+
"393","1899.0","50.0","120.0","4.0","14.0","super","super"
|
|
881
|
+
"23","2895.0","25.0","340.0","16.0","14.0","hyper","hyper"
|
|
882
|
+
"456","2375.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
883
|
+
"269","2799.0","50.0","245.0","16.0","15.0","hyper","hyper"
|
|
884
|
+
"4","1849.0","25.0","170.0","8.0","14.0","super","hyper"
|
|
885
|
+
"84","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
|
|
886
|
+
"456","2375.0","50.0","250.0","8.0","15.0","mega","mega"
|
|
887
|
+
"269","2799.0","50.0","245.0","16.0","15.0","hyper","hyper"
|
|
888
|
+
"4","1849.0","25.0","170.0","8.0","14.0","super","hyper"
|
|
889
|
+
"84","2720.0","33.0","250.0","8.0","15.0","hyper","hyper"
|
|
890
|
+
"313","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
|
|
891
|
+
"534","2335.0","66.0","250.0","8.0","14.0","mega","mega"
|
|
892
|
+
"595","2295.0","66.0","214.0","4.0","14.0","mega","mega"
|
|
893
|
+
"553","2990.0","50.0","452.0","16.0","14.0","hyper","hyper"
|
|
894
|
+
"313","2895.0","50.0","340.0","16.0","14.0","hyper","hyper"
|
|
895
|
+
"534","2335.0","66.0","250.0","8.0","14.0","mega","mega"
|
|
896
|
+
"595","2295.0","66.0","214.0","4.0","14.0","mega","mega"
|
|
897
|
+
"553","2990.0","50.0","452.0","16.0","14.0","hyper","hyper"
|
|
898
|
+
"578","3090.0","66.0","452.0","16.0","14.0","hyper","hyper"
|
|
899
|
+
"248","2699.0","66.0","213.0","8.0","14.0","mega","mega"
|
|
900
|
+
"187","1695.0","33.0","170.0","4.0","14.0","special","special"
|
|
901
|
+
"349","2515.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
902
|
+
"578","3090.0","66.0","452.0","16.0","14.0","hyper","hyper"
|
|
903
|
+
"248","2699.0","66.0","213.0","8.0","14.0","mega","mega"
|
|
904
|
+
"187","1695.0","33.0","170.0","4.0","14.0","special","special"
|
|
905
|
+
"349","2515.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
906
|
+
"170","1999.0","33.0","120.0","8.0","14.0","super","super"
|
|
907
|
+
"513","3090.0","66.0","452.0","16.0","15.0","hyper","hyper"
|
|
908
|
+
"452","2395.0","33.0","250.0","8.0","14.0","mega","mega"
|
|
909
|
+
"124","3220.0","66.0","340.0","8.0","15.0","hyper","special"
|
|
910
|
+
"170","1999.0","33.0","120.0","8.0","14.0","super","super"
|
|
911
|
+
"513","3090.0","66.0","452.0","16.0","15.0","hyper","hyper"
|
|
912
|
+
"452","2395.0","33.0","250.0","8.0","14.0","mega","mega"
|
|
913
|
+
"124","3220.0","66.0","340.0","8.0","15.0","hyper","special"
|
|
914
|
+
"414","2195.0","33.0","250.0","8.0","15.0","super","super"
|
|
915
|
+
"574","2045.0","50.0","250.0","4.0","15.0","super","super"
|
|
916
|
+
"44","2255.0","33.0","210.0","8.0","14.0","super","super"
|
|
917
|
+
"389","1395.0","25.0","85.0","2.0","14.0","special","special"
|
|
918
|
+
"414","2195.0","33.0","250.0","8.0","15.0","super","super"
|
|
919
|
+
"574","2045.0","50.0","250.0","4.0","15.0","super","super"
|
|
920
|
+
"44","2255.0","33.0","210.0","8.0","14.0","super","super"
|
|
921
|
+
"389","1395.0","25.0","85.0","2.0","14.0","special","special"
|
|
922
|
+
"454","2425.0","66.0","250.0","8.0","15.0","mega","mega"
|
|
923
|
+
"63","2495.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
924
|
+
"105","1395.0","25.0","85.0","2.0","14.0","special","special"
|
|
925
|
+
"429","1690.0","33.0","107.0","2.0","15.0","special","special"
|
|
926
|
+
"454","2425.0","66.0","250.0","8.0","15.0","mega","mega"
|
|
927
|
+
"63","2495.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
928
|
+
"105","1395.0","25.0","85.0","2.0","14.0","special","special"
|
|
929
|
+
"429","1690.0","33.0","107.0","2.0","15.0","special","special"
|
|
930
|
+
"168","2599.0","50.0","210.0","4.0","14.0","mega","mega"
|
|
931
|
+
"246","2495.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
932
|
+
"370","2035.0","33.0","250.0","8.0","14.0","super","super"
|
|
933
|
+
"21","1695.0","33.0","130.0","4.0","14.0","special","special"
|
|
934
|
+
"168","2599.0","50.0","210.0","4.0","14.0","mega","mega"
|
|
935
|
+
"246","2495.0","33.0","250.0","8.0","15.0","mega","mega"
|
|
936
|
+
"370","2035.0","33.0","250.0","8.0","14.0","super","super"
|
|
937
|
+
"21","1695.0","33.0","130.0","4.0","14.0","special","special"
|
|
938
|
+
"433","2595.0","25.0","452.0","16.0","14.0","mega","mega"
|
|
939
|
+
"103","1795.0","66.0","85.0","2.0","14.0","super","super"
|
|
940
|
+
"492","3595.0","50.0","452.0","8.0","14.0","uber","uber"
|
|
941
|
+
"433","2595.0","25.0","452.0","16.0","14.0","mega","mega"
|
|
942
|
+
"103","1795.0","66.0","85.0","2.0","14.0","super","super"
|
|
943
|
+
"492","3595.0","50.0","452.0","8.0","14.0","uber","uber"
|
|
944
|
+
"25","4195.0","50.0","452.0","8.0","14.0","uber","mega"
|
|
945
|
+
"572","2325.0","66.0","250.0","8.0","15.0","mega","mega"
|
|
946
|
+
"410","2795.0","33.0","452.0","16.0","14.0","hyper","hyper"
|
|
947
|
+
"25","4195.0","50.0","452.0","8.0","14.0","uber","mega"
|
|
948
|
+
"572","2325.0","66.0","250.0","8.0","15.0","mega","mega"
|
|
949
|
+
"410","2795.0","33.0","452.0","16.0","14.0","hyper","hyper"
|
|
950
|
+
"290","1695.0","50.0","85.0","2.0","14.0","special","special"
|
|
951
|
+
"225","2599.0","50.0","212.0","8.0","14.0","mega","mega"
|
|
952
|
+
"42","3895.0","66.0","500.0","8.0","15.0","uber","super"
|
|
953
|
+
"290","1695.0","50.0","85.0","2.0","14.0","special","special"
|
|
954
|
+
"225","2599.0","50.0","212.0","8.0","14.0","mega","mega"
|
|
955
|
+
"42","3895.0","66.0","500.0","8.0","15.0","uber","super"
|
|
956
|
+
"616","3990.0","66.0","1000.0","16.0","14.0","uber","uber"
|
|
957
|
+
"551","2720.0","66.0","340.0","8.0","14.0","hyper","hyper"
|
|
958
|
+
"307","2955.0","50.0","250.0","8.0","17.0","hyper","hyper"
|
|
959
|
+
"616","3990.0","66.0","1000.0","16.0","14.0","uber","uber"
|
|
960
|
+
"551","2720.0","66.0","340.0","8.0","14.0","hyper","hyper"
|
|
961
|
+
"307","2955.0","50.0","250.0","8.0","17.0","hyper","hyper"
|
|
962
|
+
"126","2544.0","33.0","245.0","8.0","14.0","mega","mega"
|
|
963
|
+
"143","2475.0","50.0","250.0","8.0","14.0","mega","mega"
|
|
964
|
+
"164","2345.0","50.0","250.0","8.0","14.0","mega","mega"
|
|
965
|
+
"126","2544.0","33.0","245.0","8.0","14.0","mega","mega"
|
|
966
|
+
"143","2475.0","50.0","250.0","8.0","14.0","mega","mega"
|
|
967
|
+
"164","2345.0","50.0","250.0","8.0","14.0","mega","mega"
|
|
968
|
+
"166","1895.0","25.0","130.0","4.0","14.0","super","super"
|
|
969
|
+
"408","2285.0","50.0","250.0","8.0","14.0","mega","mega"
|
|
970
|
+
"490","2790.0","66.0","340.0","8.0","14.0","hyper","hyper"
|
|
971
|
+
"166","1895.0","25.0","130.0","4.0","14.0","super","super"
|
|
972
|
+
"408","2285.0","50.0","250.0","8.0","14.0","mega","mega"
|
|
973
|
+
"490","2790.0","66.0","340.0","8.0","14.0","hyper","hyper"
|
|
974
|
+
"431","2790.0","33.0","452.0","16.0","14.0","hyper","hyper"
|
|
975
|
+
"82","2495.0","33.0","245.0","8.0","14.0","mega","special"
|
|
976
|
+
"431","2790.0","33.0","452.0","16.0","14.0","hyper","hyper"
|
|
977
|
+
"82","2495.0","33.0","245.0","8.0","14.0","mega","special"
|
|
978
|
+
"288","2475.0","50.0","250.0","8.0","14.0","mega","special"
|
|
979
|
+
"347","2290.0","50.0","130.0","4.0","14.0","mega","mega"
|
|
980
|
+
"288","2475.0","50.0","250.0","8.0","14.0","mega","special"
|
|
981
|
+
"347","2290.0","50.0","130.0","4.0","14.0","mega","mega"
|
|
982
|
+
"145","3995.0","66.0","452.0","8.0","14.0","uber","uber"
|
|
983
|
+
"612","3609.0","66.0","527.0","4.0","15.0","uber","uber"
|
|
984
|
+
"145","3995.0","66.0","452.0","8.0","14.0","uber","uber"
|
|
985
|
+
"612","3609.0","66.0","527.0","4.0","15.0","uber","uber"
|
|
986
|
+
"206","2099.0","66.0","120.0","4.0","14.0","super","super"
|
|
987
|
+
"206","2099.0","66.0","120.0","4.0","14.0","super","super"
|
|
988
|
+
"2","1795.0","33.0","85.0","2.0","14.0","super","super"
|
|
989
|
+
"2","1795.0","33.0","85.0","2.0","14.0","super","super"
|
|
990
|
+
"471","2155.0","33.0","250.0","8.0","14.0","super","super"
|
|
991
|
+
"471","2155.0","33.0","250.0","8.0","14.0","super","super"
|
|
992
|
+
"328","2099.0","33.0","212.0","4.0","14.0","super","mega"
|
|
993
|
+
"328","2099.0","33.0","212.0","4.0","14.0","super","mega"
|
|
994
|
+
"593","2890.0","33.0","452.0","16.0","15.0","hyper","hyper"
|
|
995
|
+
"593","2890.0","33.0","452.0","16.0","15.0","hyper","hyper"
|
|
996
|
+
"185","3795.0","66.0","500.0","8.0","14.0","uber","super"
|
|
997
|
+
"185","3795.0","66.0","500.0","8.0","14.0","uber","super"
|
|
998
|
+
"450","2625.0","66.0","250.0","8.0","15.0","mega","mega"
|
|
999
|
+
"450","2625.0","66.0","250.0","8.0","15.0","mega","mega"
|
|
1000
|
+
"511","3695.0","66.0","452.0","8.0","14.0","uber","uber"
|
|
1001
|
+
"511","3695.0","66.0","452.0","8.0","14.0","uber","uber"
|