teradataml 20.0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +2762 -0
- teradataml/__init__.py +78 -0
- teradataml/_version.py +11 -0
- teradataml/analytics/Transformations.py +2996 -0
- teradataml/analytics/__init__.py +82 -0
- teradataml/analytics/analytic_function_executor.py +2416 -0
- teradataml/analytics/analytic_query_generator.py +1050 -0
- teradataml/analytics/byom/H2OPredict.py +514 -0
- teradataml/analytics/byom/PMMLPredict.py +437 -0
- teradataml/analytics/byom/__init__.py +16 -0
- teradataml/analytics/json_parser/__init__.py +133 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
- teradataml/analytics/json_parser/json_store.py +191 -0
- teradataml/analytics/json_parser/metadata.py +1666 -0
- teradataml/analytics/json_parser/utils.py +805 -0
- teradataml/analytics/meta_class.py +236 -0
- teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
- teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
- teradataml/analytics/sqle/__init__.py +128 -0
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
- teradataml/analytics/table_operator/__init__.py +11 -0
- teradataml/analytics/uaf/__init__.py +82 -0
- teradataml/analytics/utils.py +828 -0
- teradataml/analytics/valib.py +1617 -0
- teradataml/automl/__init__.py +5835 -0
- teradataml/automl/autodataprep/__init__.py +493 -0
- teradataml/automl/custom_json_utils.py +1625 -0
- teradataml/automl/data_preparation.py +1384 -0
- teradataml/automl/data_transformation.py +1254 -0
- teradataml/automl/feature_engineering.py +2273 -0
- teradataml/automl/feature_exploration.py +1873 -0
- teradataml/automl/model_evaluation.py +488 -0
- teradataml/automl/model_training.py +1407 -0
- teradataml/catalog/__init__.py +2 -0
- teradataml/catalog/byom.py +1759 -0
- teradataml/catalog/function_argument_mapper.py +859 -0
- teradataml/catalog/model_cataloging_utils.py +491 -0
- teradataml/clients/__init__.py +0 -0
- teradataml/clients/auth_client.py +137 -0
- teradataml/clients/keycloak_client.py +165 -0
- teradataml/clients/pkce_client.py +481 -0
- teradataml/common/__init__.py +1 -0
- teradataml/common/aed_utils.py +2078 -0
- teradataml/common/bulk_exposed_utils.py +113 -0
- teradataml/common/constants.py +1669 -0
- teradataml/common/deprecations.py +166 -0
- teradataml/common/exceptions.py +147 -0
- teradataml/common/formula.py +743 -0
- teradataml/common/garbagecollector.py +666 -0
- teradataml/common/logger.py +1261 -0
- teradataml/common/messagecodes.py +518 -0
- teradataml/common/messages.py +262 -0
- teradataml/common/pylogger.py +67 -0
- teradataml/common/sqlbundle.py +764 -0
- teradataml/common/td_coltype_code_to_tdtype.py +48 -0
- teradataml/common/utils.py +3166 -0
- teradataml/common/warnings.py +36 -0
- teradataml/common/wrapper_utils.py +625 -0
- teradataml/config/__init__.py +0 -0
- teradataml/config/dummy_file1.cfg +5 -0
- teradataml/config/dummy_file2.cfg +3 -0
- teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
- teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
- teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
- teradataml/context/__init__.py +0 -0
- teradataml/context/aed_context.py +223 -0
- teradataml/context/context.py +1462 -0
- teradataml/data/A_loan.csv +19 -0
- teradataml/data/BINARY_REALS_LEFT.csv +11 -0
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
- teradataml/data/B_loan.csv +49 -0
- teradataml/data/BuoyData2.csv +17 -0
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
- teradataml/data/Convolve2RealsLeft.csv +5 -0
- teradataml/data/Convolve2RealsRight.csv +5 -0
- teradataml/data/Convolve2ValidLeft.csv +11 -0
- teradataml/data/Convolve2ValidRight.csv +11 -0
- teradataml/data/DFFTConv_Real_8_8.csv +65 -0
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/Mall_customer_data.csv +201 -0
- teradataml/data/Orders1_12mf.csv +25 -0
- teradataml/data/Pi_loan.csv +7 -0
- teradataml/data/SMOOTHED_DATA.csv +7 -0
- teradataml/data/TestDFFT8.csv +9 -0
- teradataml/data/TestRiver.csv +109 -0
- teradataml/data/Traindata.csv +28 -0
- teradataml/data/__init__.py +0 -0
- teradataml/data/acf.csv +17 -0
- teradataml/data/adaboost_example.json +34 -0
- teradataml/data/adaboostpredict_example.json +24 -0
- teradataml/data/additional_table.csv +11 -0
- teradataml/data/admissions_test.csv +21 -0
- teradataml/data/admissions_train.csv +41 -0
- teradataml/data/admissions_train_nulls.csv +41 -0
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -0
- teradataml/data/ageandpressure.csv +31 -0
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/antiselect_example.json +36 -0
- teradataml/data/antiselect_input.csv +8 -0
- teradataml/data/antiselect_input_mixed_case.csv +8 -0
- teradataml/data/applicant_external.csv +7 -0
- teradataml/data/applicant_reference.csv +7 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/arima_example.json +9 -0
- teradataml/data/assortedtext_input.csv +8 -0
- teradataml/data/attribution_example.json +34 -0
- teradataml/data/attribution_sample_table.csv +27 -0
- teradataml/data/attribution_sample_table1.csv +6 -0
- teradataml/data/attribution_sample_table2.csv +11 -0
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +43 -0
- teradataml/data/bank_web_clicks2.csv +91 -0
- teradataml/data/bank_web_url.csv +85 -0
- teradataml/data/barrier.csv +2 -0
- teradataml/data/barrier_new.csv +3 -0
- teradataml/data/betweenness_example.json +14 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -0
- teradataml/data/bin_fit_ip.csv +4 -0
- teradataml/data/binary_complex_left.csv +11 -0
- teradataml/data/binary_complex_right.csv +11 -0
- teradataml/data/binary_matrix_complex_left.csv +21 -0
- teradataml/data/binary_matrix_complex_right.csv +21 -0
- teradataml/data/binary_matrix_real_left.csv +21 -0
- teradataml/data/binary_matrix_real_right.csv +21 -0
- teradataml/data/blood2ageandweight.csv +26 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -0
- teradataml/data/burst_data.csv +5 -0
- teradataml/data/burst_example.json +21 -0
- teradataml/data/byom_example.json +34 -0
- teradataml/data/bytes_table.csv +4 -0
- teradataml/data/cal_housing_ex_raw.csv +70 -0
- teradataml/data/callers.csv +7 -0
- teradataml/data/calls.csv +10 -0
- teradataml/data/cars_hist.csv +33 -0
- teradataml/data/cat_table.csv +25 -0
- teradataml/data/ccm_example.json +32 -0
- teradataml/data/ccm_input.csv +91 -0
- teradataml/data/ccm_input2.csv +13 -0
- teradataml/data/ccmexample.csv +101 -0
- teradataml/data/ccmprepare_example.json +9 -0
- teradataml/data/ccmprepare_input.csv +91 -0
- teradataml/data/cfilter_example.json +12 -0
- teradataml/data/changepointdetection_example.json +18 -0
- teradataml/data/changepointdetectionrt_example.json +8 -0
- teradataml/data/chi_sq.csv +3 -0
- teradataml/data/churn_data.csv +14 -0
- teradataml/data/churn_emission.csv +35 -0
- teradataml/data/churn_initial.csv +3 -0
- teradataml/data/churn_state_transition.csv +5 -0
- teradataml/data/citedges_2.csv +745 -0
- teradataml/data/citvertices_2.csv +1210 -0
- teradataml/data/clicks2.csv +16 -0
- teradataml/data/clickstream.csv +13 -0
- teradataml/data/clickstream1.csv +11 -0
- teradataml/data/closeness_example.json +16 -0
- teradataml/data/complaints.csv +21 -0
- teradataml/data/complaints_mini.csv +3 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_testtoken.csv +224 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/complaints_tokens_test.csv +353 -0
- teradataml/data/complaints_traintoken.csv +472 -0
- teradataml/data/computers_category.csv +1001 -0
- teradataml/data/computers_test1.csv +1252 -0
- teradataml/data/computers_train1.csv +5009 -0
- teradataml/data/computers_train1_clustered.csv +5009 -0
- teradataml/data/confusionmatrix_example.json +9 -0
- teradataml/data/conversion_event_table.csv +3 -0
- teradataml/data/corr_input.csv +17 -0
- teradataml/data/correlation_example.json +11 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/coxhazardratio_example.json +39 -0
- teradataml/data/coxph_example.json +15 -0
- teradataml/data/coxsurvival_example.json +28 -0
- teradataml/data/cpt.csv +41 -0
- teradataml/data/credit_ex_merged.csv +45 -0
- teradataml/data/creditcard_data.csv +1001 -0
- teradataml/data/customer_loyalty.csv +301 -0
- teradataml/data/customer_loyalty_newseq.csv +31 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +173 -0
- teradataml/data/decisionforest_example.json +37 -0
- teradataml/data/decisionforestpredict_example.json +38 -0
- teradataml/data/decisiontree_example.json +21 -0
- teradataml/data/decisiontreepredict_example.json +45 -0
- teradataml/data/dfft2_size4_real.csv +17 -0
- teradataml/data/dfft2_test_matrix16.csv +17 -0
- teradataml/data/dfft2conv_real_4_4.csv +65 -0
- teradataml/data/diabetes.csv +443 -0
- teradataml/data/diabetes_test.csv +89 -0
- teradataml/data/dict_table.csv +5 -0
- teradataml/data/docperterm_table.csv +4 -0
- teradataml/data/docs/__init__.py +1 -0
- teradataml/data/docs/byom/__init__.py +0 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
- teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
- teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
- teradataml/data/docs/byom/docs/__init__.py +0 -0
- teradataml/data/docs/sqle/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
- teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
- teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/tableoperator/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/uaf/__init__.py +0 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
- teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
- teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
- teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
- teradataml/data/dtw_example.json +18 -0
- teradataml/data/dtw_t1.csv +11 -0
- teradataml/data/dtw_t2.csv +4 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt2d_example.json +16 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_example.json +15 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/dwt_filter_dim.csv +5 -0
- teradataml/data/emission.csv +9 -0
- teradataml/data/emp_table_by_dept.csv +19 -0
- teradataml/data/employee_info.csv +4 -0
- teradataml/data/employee_table.csv +6 -0
- teradataml/data/excluding_event_table.csv +2 -0
- teradataml/data/finance_data.csv +6 -0
- teradataml/data/finance_data2.csv +61 -0
- teradataml/data/finance_data3.csv +93 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -0
- teradataml/data/fmeasure_example.json +12 -0
- teradataml/data/followers_leaders.csv +10 -0
- teradataml/data/fpgrowth_example.json +12 -0
- teradataml/data/frequentpaths_example.json +29 -0
- teradataml/data/friends.csv +9 -0
- teradataml/data/fs_input.csv +33 -0
- teradataml/data/fs_input1.csv +33 -0
- teradataml/data/genData.csv +513 -0
- teradataml/data/geodataframe_example.json +40 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -0
- teradataml/data/glm_example.json +56 -0
- teradataml/data/glml1l2_example.json +28 -0
- teradataml/data/glml1l2predict_example.json +54 -0
- teradataml/data/glmpredict_example.json +54 -0
- teradataml/data/gq_t1.csv +21 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/hconvolve_complex_right.csv +5 -0
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
- teradataml/data/histogram_example.json +12 -0
- teradataml/data/hmmdecoder_example.json +79 -0
- teradataml/data/hmmevaluator_example.json +25 -0
- teradataml/data/hmmsupervised_example.json +10 -0
- teradataml/data/hmmunsupervised_example.json +8 -0
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/house_values.csv +12 -0
- teradataml/data/house_values2.csv +13 -0
- teradataml/data/housing_cat.csv +7 -0
- teradataml/data/housing_data.csv +9 -0
- teradataml/data/housing_test.csv +47 -0
- teradataml/data/housing_test_binary.csv +47 -0
- teradataml/data/housing_train.csv +493 -0
- teradataml/data/housing_train_attribute.csv +5 -0
- teradataml/data/housing_train_binary.csv +437 -0
- teradataml/data/housing_train_parameter.csv +2 -0
- teradataml/data/housing_train_response.csv +493 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -0
- teradataml/data/ibm_stock1.csv +370 -0
- teradataml/data/identitymatch_example.json +22 -0
- teradataml/data/idf_table.csv +4 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/impressions.csv +101 -0
- teradataml/data/inflation.csv +21 -0
- teradataml/data/initial.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +13 -0
- teradataml/data/insurance.csv +1339 -0
- teradataml/data/interpolator_example.json +13 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/iris_altinput.csv +481 -0
- teradataml/data/iris_attribute_output.csv +8 -0
- teradataml/data/iris_attribute_test.csv +121 -0
- teradataml/data/iris_attribute_train.csv +481 -0
- teradataml/data/iris_category_expect_predict.csv +31 -0
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -0
- teradataml/data/iris_response_train.csv +121 -0
- teradataml/data/iris_test.csv +31 -0
- teradataml/data/iris_train.csv +121 -0
- teradataml/data/join_table1.csv +4 -0
- teradataml/data/join_table2.csv +4 -0
- teradataml/data/jsons/anly_function_name.json +7 -0
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/byom/dataikupredict.json +148 -0
- teradataml/data/jsons/byom/datarobotpredict.json +147 -0
- teradataml/data/jsons/byom/h2opredict.json +195 -0
- teradataml/data/jsons/byom/onnxembeddings.json +267 -0
- teradataml/data/jsons/byom/onnxpredict.json +187 -0
- teradataml/data/jsons/byom/pmmlpredict.json +147 -0
- teradataml/data/jsons/paired_functions.json +450 -0
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/kmeans_example.json +23 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +51 -0
- teradataml/data/knn_example.json +19 -0
- teradataml/data/knnrecommender_example.json +7 -0
- teradataml/data/knnrecommenderpredict_example.json +12 -0
- teradataml/data/lar_example.json +17 -0
- teradataml/data/larpredict_example.json +30 -0
- teradataml/data/lc_new_predictors.csv +5 -0
- teradataml/data/lc_new_reference.csv +9 -0
- teradataml/data/lda_example.json +9 -0
- teradataml/data/ldainference_example.json +15 -0
- teradataml/data/ldatopicsummary_example.json +9 -0
- teradataml/data/levendist_input.csv +13 -0
- teradataml/data/levenshteindistance_example.json +10 -0
- teradataml/data/linreg_example.json +10 -0
- teradataml/data/load_example_data.py +350 -0
- teradataml/data/loan_prediction.csv +295 -0
- teradataml/data/lungcancer.csv +138 -0
- teradataml/data/mappingdata.csv +12 -0
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/milk_timeseries.csv +157 -0
- teradataml/data/min_max_titanic.csv +4 -0
- teradataml/data/minhash_example.json +6 -0
- teradataml/data/ml_ratings.csv +7547 -0
- teradataml/data/ml_ratings_10.csv +2445 -0
- teradataml/data/mobile_data.csv +13 -0
- teradataml/data/model1_table.csv +5 -0
- teradataml/data/model2_table.csv +5 -0
- teradataml/data/models/License_file.txt +1 -0
- teradataml/data/models/License_file_empty.txt +0 -0
- teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
- teradataml/data/models/dr_iris_rf +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
- teradataml/data/models/iris_db_glm_model.pmml +57 -0
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
- teradataml/data/models/iris_kmeans_model +0 -0
- teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
- teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
- teradataml/data/modularity_example.json +12 -0
- teradataml/data/movavg_example.json +8 -0
- teradataml/data/mtx1.csv +7 -0
- teradataml/data/mtx2.csv +13 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -0
- teradataml/data/naivebayes_example.json +10 -0
- teradataml/data/naivebayespredict_example.json +19 -0
- teradataml/data/naivebayestextclassifier2_example.json +7 -0
- teradataml/data/naivebayestextclassifier_example.json +8 -0
- teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
- teradataml/data/name_Find_configure.csv +10 -0
- teradataml/data/namedentityfinder_example.json +14 -0
- teradataml/data/namedentityfinderevaluator_example.json +10 -0
- teradataml/data/namedentityfindertrainer_example.json +6 -0
- teradataml/data/nb_iris_input_test.csv +31 -0
- teradataml/data/nb_iris_input_train.csv +121 -0
- teradataml/data/nbp_iris_model.csv +13 -0
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_extractor_text.csv +2 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/ner_sports_test2.csv +29 -0
- teradataml/data/ner_sports_train.csv +501 -0
- teradataml/data/nerevaluator_example.json +6 -0
- teradataml/data/nerextractor_example.json +18 -0
- teradataml/data/nermem_sports_test.csv +18 -0
- teradataml/data/nermem_sports_train.csv +51 -0
- teradataml/data/nertrainer_example.json +7 -0
- teradataml/data/ngrams_example.json +7 -0
- teradataml/data/notebooks/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
- teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
- teradataml/data/npath_example.json +23 -0
- teradataml/data/ntree_example.json +14 -0
- teradataml/data/numeric_strings.csv +5 -0
- teradataml/data/numerics.csv +4 -0
- teradataml/data/ocean_buoy.csv +17 -0
- teradataml/data/ocean_buoy2.csv +17 -0
- teradataml/data/ocean_buoys.csv +28 -0
- teradataml/data/ocean_buoys2.csv +10 -0
- teradataml/data/ocean_buoys_nonpti.csv +28 -0
- teradataml/data/ocean_buoys_seq.csv +29 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -0
- teradataml/data/orders1.csv +11 -0
- teradataml/data/orders1_12.csv +13 -0
- teradataml/data/orders_ex.csv +4 -0
- teradataml/data/pack_example.json +9 -0
- teradataml/data/package_tracking.csv +19 -0
- teradataml/data/package_tracking_pti.csv +19 -0
- teradataml/data/pagerank_example.json +13 -0
- teradataml/data/paragraphs_input.csv +6 -0
- teradataml/data/pathanalyzer_example.json +8 -0
- teradataml/data/pathgenerator_example.json +8 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/pattern_matching_data.csv +11 -0
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/phrases.csv +7 -0
- teradataml/data/pivot_example.json +9 -0
- teradataml/data/pivot_input.csv +22 -0
- teradataml/data/playerRating.csv +31 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/postagger_example.json +7 -0
- teradataml/data/posttagger_output.csv +44 -0
- teradataml/data/production_data.csv +17 -0
- teradataml/data/production_data2.csv +7 -0
- teradataml/data/randomsample_example.json +32 -0
- teradataml/data/randomwalksample_example.json +9 -0
- teradataml/data/rank_table.csv +6 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/ref_mobile_data.csv +4 -0
- teradataml/data/ref_mobile_data_dense.csv +2 -0
- teradataml/data/ref_url.csv +17 -0
- teradataml/data/restaurant_reviews.csv +7 -0
- teradataml/data/retail_churn_table.csv +27772 -0
- teradataml/data/river_data.csv +145 -0
- teradataml/data/roc_example.json +8 -0
- teradataml/data/roc_input.csv +101 -0
- teradataml/data/rule_inputs.csv +6 -0
- teradataml/data/rule_table.csv +2 -0
- teradataml/data/sales.csv +7 -0
- teradataml/data/sales_transaction.csv +501 -0
- teradataml/data/salesdata.csv +342 -0
- teradataml/data/sample_cities.csv +3 -0
- teradataml/data/sample_shapes.csv +11 -0
- teradataml/data/sample_streets.csv +3 -0
- teradataml/data/sampling_example.json +16 -0
- teradataml/data/sax_example.json +17 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -0
- teradataml/data/scale_housing.csv +11 -0
- teradataml/data/scale_housing_test.csv +6 -0
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -0
- teradataml/data/scalebypartition_example.json +13 -0
- teradataml/data/scalemap_example.json +13 -0
- teradataml/data/scalesummary_example.json +12 -0
- teradataml/data/score_category.csv +101 -0
- teradataml/data/score_summary.csv +4 -0
- teradataml/data/script_example.json +10 -0
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/lightgbm/dataset.template +175 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +16 -0
- teradataml/data/scripts/mapper_replace.py +16 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
- teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
- teradataml/data/seeds.csv +10 -0
- teradataml/data/sentenceextractor_example.json +7 -0
- teradataml/data/sentiment_extract_input.csv +11 -0
- teradataml/data/sentiment_train.csv +16 -0
- teradataml/data/sentiment_word.csv +20 -0
- teradataml/data/sentiment_word_input.csv +20 -0
- teradataml/data/sentimentextractor_example.json +24 -0
- teradataml/data/sentimenttrainer_example.json +8 -0
- teradataml/data/sequence_table.csv +10 -0
- teradataml/data/seriessplitter_example.json +8 -0
- teradataml/data/sessionize_example.json +17 -0
- teradataml/data/sessionize_table.csv +116 -0
- teradataml/data/setop_test1.csv +24 -0
- teradataml/data/setop_test2.csv +22 -0
- teradataml/data/soc_nw_edges.csv +11 -0
- teradataml/data/soc_nw_vertices.csv +8 -0
- teradataml/data/souvenir_timeseries.csv +168 -0
- teradataml/data/sparse_iris_attribute.csv +5 -0
- teradataml/data/sparse_iris_test.csv +121 -0
- teradataml/data/sparse_iris_train.csv +601 -0
- teradataml/data/star1.csv +6 -0
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/state_transition.csv +5 -0
- teradataml/data/stock_data.csv +53 -0
- teradataml/data/stock_movement.csv +11 -0
- teradataml/data/stock_vol.csv +76 -0
- teradataml/data/stop_words.csv +8 -0
- teradataml/data/store_sales.csv +37 -0
- teradataml/data/stringsimilarity_example.json +8 -0
- teradataml/data/strsimilarity_input.csv +13 -0
- teradataml/data/students.csv +101 -0
- teradataml/data/svm_iris_input_test.csv +121 -0
- teradataml/data/svm_iris_input_train.csv +481 -0
- teradataml/data/svm_iris_model.csv +7 -0
- teradataml/data/svmdense_example.json +10 -0
- teradataml/data/svmdensepredict_example.json +19 -0
- teradataml/data/svmsparse_example.json +8 -0
- teradataml/data/svmsparsepredict_example.json +14 -0
- teradataml/data/svmsparsesummary_example.json +8 -0
- teradataml/data/target_mobile_data.csv +13 -0
- teradataml/data/target_mobile_data_dense.csv +5 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/templatedata.csv +1201 -0
- teradataml/data/templates/open_source_ml.json +11 -0
- teradataml/data/teradata_icon.ico +0 -0
- teradataml/data/teradataml_example.json +1473 -0
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -0
- teradataml/data/test_pacf_12.csv +37 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -0
- teradataml/data/text_inputs.csv +6 -0
- teradataml/data/textchunker_example.json +8 -0
- teradataml/data/textclassifier_example.json +7 -0
- teradataml/data/textclassifier_input.csv +7 -0
- teradataml/data/textclassifiertrainer_example.json +7 -0
- teradataml/data/textmorph_example.json +11 -0
- teradataml/data/textparser_example.json +15 -0
- teradataml/data/texttagger_example.json +12 -0
- teradataml/data/texttokenizer_example.json +7 -0
- teradataml/data/texttrainer_input.csv +11 -0
- teradataml/data/tf_example.json +7 -0
- teradataml/data/tfidf_example.json +14 -0
- teradataml/data/tfidf_input1.csv +201 -0
- teradataml/data/tfidf_train.csv +6 -0
- teradataml/data/time_table1.csv +535 -0
- teradataml/data/time_table2.csv +14 -0
- teradataml/data/timeseriesdata.csv +1601 -0
- teradataml/data/timeseriesdatasetsd4.csv +105 -0
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic.csv +892 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/token_table.csv +696 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +28 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/transformation_table.csv +6 -0
- teradataml/data/transformation_table_new.csv +2 -0
- teradataml/data/tv_spots.csv +16 -0
- teradataml/data/twod_climate_data.csv +117 -0
- teradataml/data/uaf_example.json +529 -0
- teradataml/data/univariatestatistics_example.json +9 -0
- teradataml/data/unpack_example.json +10 -0
- teradataml/data/unpivot_example.json +25 -0
- teradataml/data/unpivot_input.csv +8 -0
- teradataml/data/url_data.csv +10 -0
- teradataml/data/us_air_pass.csv +37 -0
- teradataml/data/us_population.csv +624 -0
- teradataml/data/us_states_shapes.csv +52 -0
- teradataml/data/varmax_example.json +18 -0
- teradataml/data/vectordistance_example.json +30 -0
- teradataml/data/ville_climatedata.csv +121 -0
- teradataml/data/ville_tempdata.csv +12 -0
- teradataml/data/ville_tempdata1.csv +12 -0
- teradataml/data/ville_temperature.csv +11 -0
- teradataml/data/waveletTable.csv +1605 -0
- teradataml/data/waveletTable2.csv +1605 -0
- teradataml/data/weightedmovavg_example.json +9 -0
- teradataml/data/wft_testing.csv +5 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +6 -0
- teradataml/data/word_embed_input_table2.csv +5 -0
- teradataml/data/word_embed_model.csv +23 -0
- teradataml/data/words_input.csv +13 -0
- teradataml/data/xconvolve_complex_left.csv +6 -0
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
- teradataml/data/xgboost_example.json +36 -0
- teradataml/data/xgboostpredict_example.json +32 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/__init__.py +0 -0
- teradataml/dataframe/copy_to.py +2446 -0
- teradataml/dataframe/data_transfer.py +2840 -0
- teradataml/dataframe/dataframe.py +20908 -0
- teradataml/dataframe/dataframe_utils.py +2114 -0
- teradataml/dataframe/fastload.py +794 -0
- teradataml/dataframe/functions.py +2110 -0
- teradataml/dataframe/indexer.py +424 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +1171 -0
- teradataml/dataframe/sql.py +10904 -0
- teradataml/dataframe/sql_function_parameters.py +440 -0
- teradataml/dataframe/sql_functions.py +652 -0
- teradataml/dataframe/sql_interfaces.py +220 -0
- teradataml/dataframe/vantage_function_types.py +675 -0
- teradataml/dataframe/window.py +694 -0
- teradataml/dbutils/__init__.py +3 -0
- teradataml/dbutils/dbutils.py +2871 -0
- teradataml/dbutils/filemgr.py +318 -0
- teradataml/gen_ai/__init__.py +2 -0
- teradataml/gen_ai/convAI.py +473 -0
- teradataml/geospatial/__init__.py +4 -0
- teradataml/geospatial/geodataframe.py +1105 -0
- teradataml/geospatial/geodataframecolumn.py +392 -0
- teradataml/geospatial/geometry_types.py +926 -0
- teradataml/hyperparameter_tuner/__init__.py +1 -0
- teradataml/hyperparameter_tuner/optimizer.py +4115 -0
- teradataml/hyperparameter_tuner/utils.py +303 -0
- teradataml/lib/__init__.py +0 -0
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/lib/libaed_0_1_ppc64le.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/_base.py +1321 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/_constants.py +61 -0
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +267 -0
- teradataml/options/__init__.py +148 -0
- teradataml/options/configure.py +489 -0
- teradataml/options/display.py +187 -0
- teradataml/plot/__init__.py +3 -0
- teradataml/plot/axis.py +1427 -0
- teradataml/plot/constants.py +15 -0
- teradataml/plot/figure.py +431 -0
- teradataml/plot/plot.py +810 -0
- teradataml/plot/query_generator.py +83 -0
- teradataml/plot/subplot.py +216 -0
- teradataml/scriptmgmt/UserEnv.py +4273 -0
- teradataml/scriptmgmt/__init__.py +3 -0
- teradataml/scriptmgmt/lls_utils.py +2157 -0
- teradataml/sdk/README.md +79 -0
- teradataml/sdk/__init__.py +4 -0
- teradataml/sdk/_auth_modes.py +422 -0
- teradataml/sdk/_func_params.py +487 -0
- teradataml/sdk/_json_parser.py +453 -0
- teradataml/sdk/_openapi_spec_constants.py +249 -0
- teradataml/sdk/_utils.py +236 -0
- teradataml/sdk/api_client.py +900 -0
- teradataml/sdk/constants.py +62 -0
- teradataml/sdk/modelops/__init__.py +98 -0
- teradataml/sdk/modelops/_client.py +409 -0
- teradataml/sdk/modelops/_constants.py +304 -0
- teradataml/sdk/modelops/models.py +2308 -0
- teradataml/sdk/spinner.py +107 -0
- teradataml/series/__init__.py +0 -0
- teradataml/series/series.py +537 -0
- teradataml/series/series_utils.py +71 -0
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +658 -0
- teradataml/store/feature_store/feature_store.py +4814 -0
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +7330 -0
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/Apply.py +979 -0
- teradataml/table_operators/Script.py +1739 -0
- teradataml/table_operators/TableOperator.py +1343 -0
- teradataml/table_operators/__init__.py +2 -0
- teradataml/table_operators/apply_query_generator.py +262 -0
- teradataml/table_operators/query_generator.py +493 -0
- teradataml/table_operators/table_operator_query_generator.py +462 -0
- teradataml/table_operators/table_operator_util.py +726 -0
- teradataml/table_operators/templates/dataframe_apply.template +184 -0
- teradataml/table_operators/templates/dataframe_map.template +176 -0
- teradataml/table_operators/templates/dataframe_register.template +73 -0
- teradataml/table_operators/templates/dataframe_udf.template +67 -0
- teradataml/table_operators/templates/script_executor.template +170 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +53 -0
- teradataml/utils/__init__.py +0 -0
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +943 -0
- teradataml/utils/internal_buffer.py +122 -0
- teradataml/utils/print_versions.py +206 -0
- teradataml/utils/utils.py +451 -0
- teradataml/utils/validators.py +3305 -0
- teradataml-20.0.0.8.dist-info/METADATA +2804 -0
- teradataml-20.0.0.8.dist-info/RECORD +1208 -0
- teradataml-20.0.0.8.dist-info/WHEEL +5 -0
- teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
- teradataml-20.0.0.8.dist-info/zip-safe +1 -0
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
"TD_TIMECODE", "buoyid", "salinity", "temperature", "oceanname", "jsoncol"
|
|
2
|
+
2016-01-06 09:08:00.000000,0,33,8.113e+01,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""125""}]}"
|
|
3
|
+
2016-01-06 09:08:02.000000,2,33,9.717e+01,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""104""}]}"
|
|
4
|
+
2016-01-06 09:08:00.000000,0,55,8.113e+01,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""125""}]}"
|
|
5
|
+
2016-01-06 09:08:02.000000,2,55,9.717e+01,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""104""}]}"
|
|
6
|
+
2016-01-06 09:08:01.000000,1,33,7.511e+01,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""113""}]}"
|
|
7
|
+
2016-01-06 09:08:03.000000,3,33,1.0419e+02,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""117""}]}"
|
|
8
|
+
2016-01-06 09:08:01.000000,1,55,7.511e+01,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""113""}]}"
|
|
9
|
+
2016-01-06 09:08:03.000000,3,55,1.0419e+02,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""117""}]}"
|
|
10
|
+
2016-01-06 09:08:04.000000,4,33,1.0721e+02,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""113""}]}"
|
|
11
|
+
2016-01-06 09:08:04.000000,4,55,1.0721e+02,"Pacific","{""air_gun"":[{""shot"":1,""line"":1}],""Measure"":[{""Temperature"":""71"",""Salinity"":""113""}]}"
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
{
|
|
2
|
+
"burst_data": {
|
|
3
|
+
"id": "integer",
|
|
4
|
+
"start_time_column": "date",
|
|
5
|
+
"end_time_column": "date",
|
|
6
|
+
"num_custs": "real"
|
|
7
|
+
},
|
|
8
|
+
"finance_data": {
|
|
9
|
+
"id": "integer",
|
|
10
|
+
"start_time_column": "date",
|
|
11
|
+
"end_time_column": "date",
|
|
12
|
+
"expenditure": "real",
|
|
13
|
+
"income": "real",
|
|
14
|
+
"investment": "real"
|
|
15
|
+
},
|
|
16
|
+
"time_table2": {
|
|
17
|
+
"id": "integer",
|
|
18
|
+
"burst_start": "date",
|
|
19
|
+
"burst_end": "date"
|
|
20
|
+
}
|
|
21
|
+
}
|
|
@@ -0,0 +1,34 @@
|
|
|
1
|
+
{
|
|
2
|
+
"iris_test": {
|
|
3
|
+
"id" : "integer",
|
|
4
|
+
"sepal_length" : "float",
|
|
5
|
+
"sepal_width" : "float",
|
|
6
|
+
"petal_length" : "float",
|
|
7
|
+
"petal_width" : "float",
|
|
8
|
+
"species": "integer"
|
|
9
|
+
},
|
|
10
|
+
"iris_input": {
|
|
11
|
+
"id" : "integer",
|
|
12
|
+
"sepal_length" : "float",
|
|
13
|
+
"sepal_width" : "float",
|
|
14
|
+
"petal_length" : "float",
|
|
15
|
+
"petal_width" : "float",
|
|
16
|
+
"species": "integer"
|
|
17
|
+
},
|
|
18
|
+
"amazon_reviews_25": {
|
|
19
|
+
"rev_id": "VARCHAR(64000)",
|
|
20
|
+
"aid": "VARCHAR(64000)",
|
|
21
|
+
"rev_name": "VARCHAR(64000)",
|
|
22
|
+
"helpful": "VARCHAR(64000)",
|
|
23
|
+
"rev_text": "VARCHAR(64000)",
|
|
24
|
+
"rating": "DECIMAL(10,2)",
|
|
25
|
+
"prodsummary": "VARCHAR(64000)",
|
|
26
|
+
"unixrevtime": "BIGINT",
|
|
27
|
+
"revtime": "VARCHAR(64000)"
|
|
28
|
+
},
|
|
29
|
+
"JulesBelvezeDummyData": {
|
|
30
|
+
"id": "integer",
|
|
31
|
+
"content": "VARCHAR(64000)",
|
|
32
|
+
"label": "VARCHAR(64000)"
|
|
33
|
+
}
|
|
34
|
+
}
|
|
@@ -0,0 +1,70 @@
|
|
|
1
|
+
"id","MedInc","HouseAge","AveRooms","AveBedrms","Population","AveOccup","Latitude","Longitude","MedHouseVal","pi"
|
|
2
|
+
18760,3.8323e+00,1.6e+01,5.9978213507625275e+00,1.0762527233115469e+00,1.414e+03,3.0806100217864922e+00,4.06e+01,-1.2225e+02,1.283e+00,61
|
|
3
|
+
244,2.3906e+00,4.4e+01,4.865573770491803e+00,1.1639344262295082e+00,2.269e+03,3.719672131147541e+00,3.778e+01,-1.2222e+02,1.117e+00,0
|
|
4
|
+
5300,1.583e+00,1.9e+01,3.1481481481481484e+00,1.0454840805718e+00,3.751e+03,2.437296946068876e+00,3.407e+01,-1.1845e+02,3.5e+00,12
|
|
5
|
+
3687,2.9028e+00,1.1e+01,4.013207547169811e+00,1.0962264150943397e+00,1.989e+03,3.7528301886792454e+00,3.422e+01,-1.1837e+02,1.741e+00,8
|
|
6
|
+
5769,2.8342e+00,3.5e+01,3.923076923076923e+00,1.0671550671550671e+00,2.401e+03,2.9316239316239314e+00,3.416e+01,-1.183e+02,2.568e+00,15
|
|
7
|
+
2833,1.3527e+00,3e+01,2.2475247524752477e+00,7.425742574257426e-01,1.69e+02,1.6732673267326732e+00,3.539e+01,-1.1902e+02,6e-01,6
|
|
8
|
+
686,3.4375e+00,3e+01,4.290322580645161e+00,9.6415770609319e-01,6.95e+02,2.4910394265232974e+00,3.769e+01,-1.2212e+02,1.578e+00,2
|
|
9
|
+
18022,6.1648e+00,3.5e+01,5.850574712643678e+00,9.712643678160919e-01,4.84e+02,2.781609195402299e+00,3.725e+01,-1.2196e+02,3.719e+00,58
|
|
10
|
+
10661,1.00757e+01,1.6e+01,6.147826086956521e+00,8.304347826086956e-01,6.35e+02,2.760869565217391e+00,3.366e+01,-1.1781e+02,3.839e+00,27
|
|
11
|
+
19839,1.5714e+00,3.9e+01,3.830357142857143e+00,1.0178571428571428e+00,1.222e+03,5.455357142857143e+00,3.652e+01,-1.1929e+02,4.3e-01,67
|
|
12
|
+
9454,1.2281e+00,2.5e+01,5.503978779840849e+00,1.1538461538461537e+00,9.91e+02,2.6286472148541113e+00,3.977e+01,-1.2323e+02,6.03e-01,26
|
|
13
|
+
15391,4.7647e+00,1.2e+01,6.241269841269841e+00,1.0603174603174603e+00,3.129e+03,3.311111111111111e+00,3.326e+01,-1.1698e+02,2.541e+00,44
|
|
14
|
+
10966,3.9219e+00,3.5e+01,4.888586956521739e+00,9.320652173913043e-01,1.239e+03,3.3668478260869565e+00,3.377e+01,-1.1789e+02,1.896e+00,28
|
|
15
|
+
20348,2.8942e+00,3.9e+01,4.333333333333333e+00,1.0909090909090908e+00,1.13e+02,3.4242424242424243e+00,3.419e+01,-1.1905e+02,2.75e+00,68
|
|
16
|
+
11246,3.1087e+00,2.4e+01,4.735015772870662e+00,1.0157728706624605e+00,1.495e+03,2.358044164037855e+00,3.382e+01,-1.18e+02,2.028e+00,31
|
|
17
|
+
14365,2.1635e+00,4.3e+01,4.533333333333333e+00,9.952380952380953e-01,3.92e+02,1.8666666666666667e+00,3.272e+01,-1.1723e+02,2.442e+00,38
|
|
18
|
+
8783,3.3958e+00,3.8e+01,5.266447368421052e+00,1.1578947368421053e+00,7.11e+02,2.338815789473684e+00,3.379e+01,-1.1831e+02,2.5e+00,23
|
|
19
|
+
8987,8.6718e+00,3.2e+01,7.073943661971831e+00,9.929577464788732e-01,1.4e+03,2.464788732394366e+00,3.399e+01,-1.1837e+02,4.391e+00,25
|
|
20
|
+
5328,2.7679e+00,2.3e+01,3.0386784850926674e+00,1.064464141821112e+00,2.031e+03,1.6365834004834812e+00,3.404e+01,-1.1845e+02,2.775e+00,13
|
|
21
|
+
15749,3.3679e+00,5.2e+01,4.613412228796844e+00,1.0808678500986193e+00,1.09e+03,2.1499013806706113e+00,3.777e+01,-1.2245e+02,3.5e+00,47
|
|
22
|
+
16102,4.2644e+00,4.6e+01,4.756410256410256e+00,1.0256410256410255e+00,1.272e+03,2.717948717948718e+00,3.776e+01,-1.225e+02,2.841e+00,50
|
|
23
|
+
5233,1.7212e+00,3.9e+01,4.584905660377358e+00,1.030188679245283e+00,1.211e+03,4.569811320754717e+00,3.394e+01,-1.1824e+02,9.55e-01,11
|
|
24
|
+
18799,2.225e+00,2.6e+01,5.742718446601942e+00,1.3398058252427185e+00,5.13e+02,2.4902912621359223e+00,4.097e+01,-1.2189e+02,5.2e-01,62
|
|
25
|
+
14870,1.858e+00,2.3e+01,3.9012048192771083e+00,1.0771084337349397e+00,1.025e+03,2.4698795180722892e+00,3.264e+01,-1.1711e+02,6.75e-01,40
|
|
26
|
+
6558,6.827e+00,3.6e+01,7.021428571428571e+00,1.0357142857142858e+00,1.897e+03,2.71e+00,3.42e+01,-1.1811e+02,3.594e+00,19
|
|
27
|
+
19789,1.125e+00,2.3e+01,6.130434782608695e+00,2.5652173913043477e+00,4.7e+01,2.0434782608695654e+00,4.099e+01,-1.2335e+02,6.6e-01,66
|
|
28
|
+
670,3.7813e+00,3.6e+01,4.9035087719298245e+00,9.605263157894737e-01,6.25e+02,2.741228070175439e+00,3.769e+01,-1.2216e+02,1.922e+00,1
|
|
29
|
+
5202,3.0788e+00,4.4e+01,4.594366197183098e+00,9.52112676056338e-01,1.197e+03,3.371830985915493e+00,3.394e+01,-1.1828e+02,1e+00,10
|
|
30
|
+
5904,3.1212e+00,3.9e+01,4.535897435897436e+00,1.0512820512820513e+00,1.499e+03,3.8435897435897437e+00,3.429e+01,-1.1843e+02,1.535e+00,16
|
|
31
|
+
16199,1.7212e+00,4.3e+01,3.8680555555555554e+00,1.1458333333333333e+00,5.73e+02,3.9791666666666665e+00,3.795e+01,-1.2127e+02,5.9e-01,51
|
|
32
|
+
16736,5.966e+00,4.8e+01,4.13986013986014e+00,8.531468531468531e-01,3.4e+02,2.3776223776223775e+00,3.769e+01,-1.2232e+02,3.152e+00,53
|
|
33
|
+
7114,3.2222e+00,3.4e+01,5.342364532019705e+00,1.0295566502463054e+00,1.169e+03,2.8793103448275863e+00,3.392e+01,-1.1802e+02,2.187e+00,20
|
|
34
|
+
17768,2.7562e+00,2.9e+01,4.529639175257732e+00,1.0399484536082475e+00,3.572e+03,4.603092783505154e+00,3.735e+01,-1.2185e+02,1.601e+00,57
|
|
35
|
+
12342,2.5885e+00,2.8e+01,6.267910447761194e+00,1.3723880597014926e+00,3.47e+03,2.58955223880597e+00,3.384e+01,-1.1653e+02,1.59e+00,34
|
|
36
|
+
4761,3.0856e+00,4.9e+01,3.717171717171717e+00,8.956228956228957e-01,6.68e+02,2.249158249158249e+00,3.404e+01,-1.1835e+02,1.516e+00,9
|
|
37
|
+
2313,2.4861e+00,1.5e+01,5.467924528301887e+00,1.0452830188679245e+00,6.49e+02,2.449056603773585e+00,3.694e+01,-1.197e+02,8.63e-01,5
|
|
38
|
+
3593,6.6537e+00,3.2e+01,6.330917874396135e+00,9.951690821256038e-01,1.285e+03,3.103864734299517e+00,3.424e+01,-1.1848e+02,2.676e+00,7
|
|
39
|
+
13312,4.9063e+00,1.5e+01,6.013363028953229e+00,1.024498886414254e+00,1.432e+03,3.1893095768374167e+00,3.408e+01,-1.176e+02,1.598e+00,37
|
|
40
|
+
12242,1.3039e+00,2.2e+01,4.538834951456311e+00,1.171116504854369e+00,2.011e+03,2.4405339805825244e+00,3.375e+01,-1.1697e+02,7.75e-01,33
|
|
41
|
+
11670,4.5e+00,2.8e+01,5.102117061021171e+00,1.0435865504358655e+00,2.112e+03,2.6301369863013697e+00,3.384e+01,-1.1801e+02,2.021e+00,32
|
|
42
|
+
19722,3.6111e+00,4.8e+01,7.297297297297297e+00,1.4864864864864864e+00,2.34e+02,3.1621621621621623e+00,3.894e+01,-1.2176e+02,6.75e-01,65
|
|
43
|
+
8090,3.0882e+00,4e+01,4.394673123486683e+00,1.036319612590799e+00,1.807e+03,4.375302663438257e+00,3.381e+01,-1.1821e+02,1.607e+00,22
|
|
44
|
+
14482,1.07721e+01,2.4e+01,8.893048128342246e+00,1.0641711229946524e+00,5.78e+02,3.090909090909091e+00,3.283e+01,-1.1726e+02,5.00001e+00,39
|
|
45
|
+
1754,3.7277e+00,3.8e+01,5.625766871165644e+00,1.0674846625766872e+00,1.39e+03,2.8425357873210633e+00,3.794e+01,-1.2232e+02,1.651e+00,3
|
|
46
|
+
8830,3.2159e+00,3.8e+01,4.365695792880259e+00,1.1132686084142396e+00,5.47e+02,1.7702265372168284e+00,3.409e+01,-1.1837e+02,3.833e+00,24
|
|
47
|
+
12433,1.7344e+00,2.4e+01,3.298342541436464e+00,1.0585635359116021e+00,4.042e+03,4.466298342541436e+00,3.351e+01,-1.1601e+02,6.64e-01,35
|
|
48
|
+
19172,4.3587e+00,2.9e+01,5.594298245614035e+00,9.824561403508771e-01,1.165e+03,2.5548245614035086e+00,3.844e+01,-1.2267e+02,1.964e+00,64
|
|
49
|
+
2018,1.0472e+00,1.5e+01,5.088e+00,1.112e+00,1.383e+03,3.688e+00,3.672e+01,-1.198e+02,5.78e-01,4
|
|
50
|
+
19018,3.89e+00,7e+00,4.689458689458689e+00,9.943019943019943e-01,1.911e+03,2.7222222222222223e+00,3.834e+01,-1.2196e+02,1.403e+00,63
|
|
51
|
+
15005,2.7014e+00,4.3e+01,5.113095238095238e+00,1.0238095238095237e+00,8.26e+02,2.4583333333333335e+00,3.275e+01,-1.1705e+02,1.337e+00,41
|
|
52
|
+
18099,5.7528e+00,2.7e+01,6.437357630979498e+00,1.0273348519362187e+00,1.259e+03,2.867881548974943e+00,3.732e+01,-1.2204e+02,4.314e+00,59
|
|
53
|
+
7581,2.1389e+00,1.6e+01,4.31665228645384e+00,1.0181190681622088e+00,4.145e+03,3.576358930112166e+00,3.389e+01,-1.1823e+02,1.334e+00,21
|
|
54
|
+
16019,1.07309e+01,5.2e+01,7.850364963503649e+00,1.0218978102189782e+00,7.62e+02,2.781021897810219e+00,3.773e+01,-1.2247e+02,5.00001e+00,49
|
|
55
|
+
18164,4.4699e+00,1.6e+01,3.7302904564315353e+00,1.1106500691562933e+00,1.369e+03,1.8934993084370677e+00,3.736e+01,-1.2203e+02,3.674e+00,60
|
|
56
|
+
13222,3.4267e+00,1.1e+01,5.128698224852071e+00,1.1079881656804733e+00,2.163e+03,3.1997041420118344e+00,3.403e+01,-1.1771e+02,1.644e+00,36
|
|
57
|
+
15630,2.8229e+00,5.2e+01,3.6897590361445785e+00,1.1159638554216869e+00,1.415e+03,2.1310240963855422e+00,3.78e+01,-1.2241e+02,3.75e+00,45
|
|
58
|
+
6044,2.1141e+00,2.7e+01,3.8552036199095023e+00,1.0723981900452488e+00,1.024e+03,4.633484162895928e+00,3.405e+01,-1.1774e+02,1.109e+00,17
|
|
59
|
+
15670,2.7717e+00,5.2e+01,3.914396887159533e+00,1.132295719844358e+00,4.45e+02,1.7315175097276265e+00,3.78e+01,-1.2244e+02,5e+00,46
|
|
60
|
+
15178,3.3724e+00,1.5e+01,5.4078711985688726e+00,1.114490161001789e+00,1.283e+03,2.295169946332737e+00,3.303e+01,-1.1708e+02,1.379e+00,42
|
|
61
|
+
11163,2.2401e+00,2.4e+01,4.873345935727788e+00,1.0964083175803403e+00,1.217e+03,2.3005671077504726e+00,3.383e+01,-1.18e+02,2.125e+00,29
|
|
62
|
+
5611,2.1447e+00,2.6e+01,3.4859504132231405e+00,1.0760330578512396e+00,2.12e+03,3.5041322314049586e+00,3.379e+01,-1.1827e+02,1.587e+00,14
|
|
63
|
+
17157,9.7796e+00,2e+01,6.678082191780822e+00,9.178082191780822e-01,3.24e+02,2.219178082191781e+00,3.743e+01,-1.2221e+02,5.00001e+00,55
|
|
64
|
+
16539,1.7228e+00,3.6e+01,4.962264150943396e+00,1.0424528301886793e+00,7.12e+02,3.358490566037736e+00,3.779e+01,-1.2122e+02,1.05e+00,52
|
|
65
|
+
15199,5.149e+00,1.6e+01,6.851258581235698e+00,1.0183066361556063e+00,1.047e+03,2.3958810068649887e+00,3.29e+01,-1.171e+02,1.843e+00,43
|
|
66
|
+
15994,4.4946e+00,4.8e+01,5.379912663755459e+00,1.002183406113537e+00,1.179e+03,2.574235807860262e+00,3.776e+01,-1.2247e+02,3.586e+00,48
|
|
67
|
+
6389,9.8098e+00,3.9e+01,8.079881656804734e+00,1.0828402366863905e+00,1.034e+03,3.059171597633136e+00,3.416e+01,-1.1803e+02,5.00001e+00,18
|
|
68
|
+
11239,3.6422e+00,1.9e+01,4.344202898550725e+00,9.094202898550725e-01,7.3e+02,2.6449275362318843e+00,3.382e+01,-1.1796e+02,2.094e+00,30
|
|
69
|
+
16804,4.125e+00,3.6e+01,5.178571428571429e+00,8.642857142857143e-01,3.35e+02,2.392857142857143e+00,3.766e+01,-1.2242e+02,3.276e+00,54
|
|
70
|
+
17538,2.925e+00,4.3e+01,4.85655737704918e+00,1.2131147540983607e+00,9.33e+02,3.8237704918032787e+00,3.735e+01,-1.2189e+02,1.708e+00,56
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
"id","name","cyl","hp"
|
|
2
|
+
26,"fiat x1-9",4,66
|
|
3
|
+
17,"chrysler imperial",8,230
|
|
4
|
+
7,"duster 360",8,245
|
|
5
|
+
19,"honda civic",4,52
|
|
6
|
+
5,"hornet sportabout",8,175
|
|
7
|
+
13,"merc 450sl",8,180
|
|
8
|
+
22,"dodge challenger",8,150
|
|
9
|
+
15,"cadillac fleetwood",8,205
|
|
10
|
+
24,"camaro z28",8,245
|
|
11
|
+
32,"volvo 142e",4,109
|
|
12
|
+
12,"merc 450se",8,180
|
|
13
|
+
30,"ferrari dino",6,175
|
|
14
|
+
3,"datsun 710",4,93
|
|
15
|
+
11,"merc 280c",6,123
|
|
16
|
+
27,"porsche 914-2",4,91
|
|
17
|
+
14,"merc 450slc",8,180
|
|
18
|
+
1,"mazda rx4",6,110
|
|
19
|
+
9,"merc 230",4,95
|
|
20
|
+
4,"hornet 4 drive",6,110
|
|
21
|
+
31,"maserati bora",8,335
|
|
22
|
+
20,"toyota corolla",4,65
|
|
23
|
+
28,"lotus europa",4,113
|
|
24
|
+
29,"ford pantera l",8,264
|
|
25
|
+
18,"fiat 128",4,66
|
|
26
|
+
16,"lincoln continental",8,215
|
|
27
|
+
6,"valiant",6,105
|
|
28
|
+
8,"merc 240d",4,62
|
|
29
|
+
10,"merc 280",6,123
|
|
30
|
+
23,"amc javelin",8,150
|
|
31
|
+
25,"pontiac firebird",8,175
|
|
32
|
+
21,"toyota corona",4,97
|
|
33
|
+
2,"mazda rx4 wag",6,110
|
|
@@ -0,0 +1,25 @@
|
|
|
1
|
+
column_name,category,ordinal_value
|
|
2
|
+
"embarked","S",0
|
|
3
|
+
"cabin","B79",0
|
|
4
|
+
"embarked","C",1
|
|
5
|
+
"cabin","B51 B53 B55",1
|
|
6
|
+
"embarked","",2
|
|
7
|
+
"cabin","A5",2
|
|
8
|
+
"ticket","695",0
|
|
9
|
+
"cabin","A23",3
|
|
10
|
+
"ticket","11771",1
|
|
11
|
+
"cabin","B37",4
|
|
12
|
+
"ticket","PC 17754",2
|
|
13
|
+
"cabin","",5
|
|
14
|
+
"ticket","27042",3
|
|
15
|
+
"sex","female",0
|
|
16
|
+
"ticket","110152",4
|
|
17
|
+
"sex","male",1
|
|
18
|
+
"ticket","",5
|
|
19
|
+
"sex","",2
|
|
20
|
+
"name","Maioni; Miss. Roberta",0
|
|
21
|
+
"name","Carlsson; Mr. Frans Olof",1
|
|
22
|
+
"name","Goldschmidt; Mr. George B",2
|
|
23
|
+
"name","Barkworth; Mr. Algernon Henry Wilson",3
|
|
24
|
+
"name","Kent; Mr. Edward Austin",4
|
|
25
|
+
"name","",5
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
{
|
|
2
|
+
"ccmexample": {
|
|
3
|
+
"seqid": "integer",
|
|
4
|
+
"t": "integer",
|
|
5
|
+
"a": "double PRECISION",
|
|
6
|
+
"b": "double PRECISION"
|
|
7
|
+
},
|
|
8
|
+
"ccm_input": {
|
|
9
|
+
"aster_ccm_id": "integer",
|
|
10
|
+
"id": "integer",
|
|
11
|
+
"period": "integer",
|
|
12
|
+
"expenditure": "integer",
|
|
13
|
+
"income": "integer",
|
|
14
|
+
"investment": "integer"
|
|
15
|
+
},
|
|
16
|
+
"ccm_input2": {
|
|
17
|
+
"aster_ccm_id": "integer",
|
|
18
|
+
"id": "integer",
|
|
19
|
+
"period": "integer",
|
|
20
|
+
"marketindex": "varchar(30)",
|
|
21
|
+
"indexdate": "date",
|
|
22
|
+
"indexval": "real",
|
|
23
|
+
"indexchange": "real"
|
|
24
|
+
},
|
|
25
|
+
"ccmprepare_input": {
|
|
26
|
+
"id": "integer",
|
|
27
|
+
"period": "integer",
|
|
28
|
+
"expenditure": "integer",
|
|
29
|
+
"income": "integer",
|
|
30
|
+
"investment": "integer"
|
|
31
|
+
}
|
|
32
|
+
}
|
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
"aster_ccm_id","id","period","expenditure","income","investment"
|
|
2
|
+
1,2,2,525,583,237
|
|
3
|
+
0,1,9,497,548,231
|
|
4
|
+
1,2,4,538,599,250
|
|
5
|
+
0,1,7,479,521,207
|
|
6
|
+
1,2,5,546,610,259
|
|
7
|
+
0,1,6,458,520,202
|
|
8
|
+
1,2,6,555,627,263
|
|
9
|
+
0,1,5,459,509,211
|
|
10
|
+
1,2,8,574,653,280
|
|
11
|
+
0,1,3,434,485,185
|
|
12
|
+
1,2,9,586,660,282
|
|
13
|
+
0,1,2,421,465,179
|
|
14
|
+
1,4,1,709,799,273
|
|
15
|
+
0,3,10,699,799,275
|
|
16
|
+
1,4,10,1842,2132,700
|
|
17
|
+
0,3,1,617,709,286
|
|
18
|
+
1,4,9,1831,2121,675
|
|
19
|
+
0,3,2,639,734,302
|
|
20
|
+
1,4,8,1807,2070,658
|
|
21
|
+
0,3,3,653,751,304
|
|
22
|
+
1,4,7,1774,2040,635
|
|
23
|
+
0,3,4,668,763,307
|
|
24
|
+
1,4,5,758,876,303
|
|
25
|
+
0,3,6,686,779,314
|
|
26
|
+
1,4,4,746,853,289
|
|
27
|
+
0,3,7,697,808,306
|
|
28
|
+
1,4,3,724,837,280
|
|
29
|
+
0,3,8,688,785,304
|
|
30
|
+
1,4,2,715,812,301
|
|
31
|
+
0,3,9,704,794,292
|
|
32
|
+
1,6,10,1064,1256,498
|
|
33
|
+
0,5,1,1890,2199,692
|
|
34
|
+
1,6,1,837,979,364
|
|
35
|
+
0,5,2,1958,2253,759
|
|
36
|
+
1,6,2,858,988,371
|
|
37
|
+
0,5,3,1948,2276,782
|
|
38
|
+
1,6,3,881,1025,375
|
|
39
|
+
0,5,4,1994,2318,816
|
|
40
|
+
1,6,4,905,1063,432
|
|
41
|
+
0,5,5,2061,2369,844
|
|
42
|
+
1,6,5,934,1104,453
|
|
43
|
+
0,5,6,2056,2423,830
|
|
44
|
+
1,6,6,968,1131,460
|
|
45
|
+
0,5,7,2102,2457,853
|
|
46
|
+
1,6,7,983,1137,475
|
|
47
|
+
0,5,8,2121,2470,852
|
|
48
|
+
1,6,8,1013,1178,496
|
|
49
|
+
0,5,9,798,922,315
|
|
50
|
+
1,6,9,1034,1211,494
|
|
51
|
+
0,5,10,816,949,339
|
|
52
|
+
1,8,1,1355,1613,525
|
|
53
|
+
0,7,10,1317,1557,524
|
|
54
|
+
1,8,9,1588,1873,559
|
|
55
|
+
0,7,2,1102,1314,519
|
|
56
|
+
1,8,8,1567,1831,570
|
|
57
|
+
0,7,3,1145,1346,516
|
|
58
|
+
1,8,7,1549,1807,549
|
|
59
|
+
0,7,4,1173,1385,531
|
|
60
|
+
1,8,6,1516,1780,538
|
|
61
|
+
0,7,5,1216,1416,573
|
|
62
|
+
1,8,5,1485,1756,519
|
|
63
|
+
0,7,6,1229,1436,551
|
|
64
|
+
1,8,4,1452,1759,510
|
|
65
|
+
0,7,7,1242,1462,538
|
|
66
|
+
1,8,3,1402,1690,526
|
|
67
|
+
0,7,8,1267,1493,532
|
|
68
|
+
1,8,2,1371,1642,519
|
|
69
|
+
0,7,9,1295,1516,558
|
|
70
|
+
1,8,10,1631,1897,584
|
|
71
|
+
0,9,1,1650,1910,611
|
|
72
|
+
1,4,6,779,897,322
|
|
73
|
+
0,9,10,2237,2618,824
|
|
74
|
+
1,2,7,574,642,264
|
|
75
|
+
0,9,9,2235,2639,801
|
|
76
|
+
1,2,3,529,591,206
|
|
77
|
+
0,9,8,2225,2620,830
|
|
78
|
+
1,2,1,516,574,234
|
|
79
|
+
0,9,7,2206,2580,870
|
|
80
|
+
1,2,10,602,694,292
|
|
81
|
+
0,9,6,2164,2545,860
|
|
82
|
+
0,9,5,2145,2521,833
|
|
83
|
+
0,9,4,1752,2018,619
|
|
84
|
+
0,9,3,1722,1976,603
|
|
85
|
+
0,9,2,1685,1943,597
|
|
86
|
+
0,7,1,1101,1290,526
|
|
87
|
+
0,3,5,679,766,317
|
|
88
|
+
0,1,4,448,493,192
|
|
89
|
+
0,1,8,487,540,214
|
|
90
|
+
0,1,10,510,558,229
|
|
91
|
+
0,1,1,415,451,180
|
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
"aster_ccm_id","id","period","marketindex","indexdate","indexval","indexchange"
|
|
2
|
+
1,1,1,"comp",2005-01-01,4275,-10
|
|
3
|
+
1,1,2,"djia",2005-01-01,15600,-250
|
|
4
|
+
1,1,3,"ndx",2005-01-01,3900,-10
|
|
5
|
+
1,1,4,"comp",2005-01-02,4280,5
|
|
6
|
+
1,1,5,"djia",2005-01-02,15800,200
|
|
7
|
+
1,1,6,"ndx",2005-01-02,3910,10
|
|
8
|
+
1,2,1,"comp",2005-01-03,4290,10
|
|
9
|
+
1,2,2,"djia",2005-01-03,15700,-100
|
|
10
|
+
1,2,3,"ndx",2005-01-03,3920,10
|
|
11
|
+
1,2,4,"comp",2005-01-04,4280,-10
|
|
12
|
+
1,2,5,"djia",2005-01-04,15600,-100
|
|
13
|
+
1,2,6,"ndx",2005-01-04,3910,-10
|
|
@@ -0,0 +1,101 @@
|
|
|
1
|
+
"seqid","t","a","b"
|
|
2
|
+
"7","1","0.339052682","0.292714508"
|
|
3
|
+
"6","1","0.527573976","0.172459439"
|
|
4
|
+
"7","2","0.738307545","0.771392353"
|
|
5
|
+
"6","2","0.903145119","0.532716439"
|
|
6
|
+
"7","3","0.418036385","0.640725491"
|
|
7
|
+
"6","3","0.16201049","0.98174205"
|
|
8
|
+
"7","4","0.763092307","0.885448327"
|
|
9
|
+
"6","4","0.457515934","0.148844208"
|
|
10
|
+
"7","5","0.374116981","0.339659102"
|
|
11
|
+
"6","5","0.896542868","0.478524534"
|
|
12
|
+
"7","6","0.779161901","0.879845181"
|
|
13
|
+
"6","6","0.143120292","0.989591577"
|
|
14
|
+
"7","7","0.326604127","0.413135842"
|
|
15
|
+
"6","7","0.423082943","0.133886301"
|
|
16
|
+
"7","8","0.731052694","0.932967041"
|
|
17
|
+
"6","8","0.913704665","0.456568557"
|
|
18
|
+
"7","9","0.38595567","0.203078628"
|
|
19
|
+
"6","9","0.223891053","0.949648141"
|
|
20
|
+
"7","10","0.83359802","0.642186085"
|
|
21
|
+
"6","10","0.566854586","0.17013295"
|
|
22
|
+
"4","1","0.619011541","0.284492058"
|
|
23
|
+
"9","1","0.800217036","0.57502817"
|
|
24
|
+
"4","2","0.769760338","0.800478117"
|
|
25
|
+
"9","2","0.404858859","0.873049999"
|
|
26
|
+
"4","3","0.39202567","0.657211882"
|
|
27
|
+
"9","3","0.810429043","0.362704003"
|
|
28
|
+
"4","4","0.723343551","0.838687845"
|
|
29
|
+
"9","4","0.462131963","0.817605087"
|
|
30
|
+
"4","5","0.401433452","0.483538607"
|
|
31
|
+
"9","5","0.863477642","0.506014762"
|
|
32
|
+
"4","6","0.773422916","0.974607436"
|
|
33
|
+
"9","6","0.350711135","0.939866728"
|
|
34
|
+
"4","7","0.328596117","0.188351813"
|
|
35
|
+
"9","7","0.818904503","0.341353033"
|
|
36
|
+
"4","8","0.738359886","0.561056472"
|
|
37
|
+
"9","8","0.54824255","0.784101116"
|
|
38
|
+
"4","9","0.45910903","0.927310745"
|
|
39
|
+
"9","9","0.83420078","0.57324348"
|
|
40
|
+
"4","10","0.704115243","0.251376632"
|
|
41
|
+
"9","10","0.412938838","0.904086031"
|
|
42
|
+
"5","1","0.074089851","0.277241731"
|
|
43
|
+
"10","1","0.503156674","0.794651776"
|
|
44
|
+
"5","2","0.258831161","0.713146229"
|
|
45
|
+
"10","2","0.823104545","0.580508316"
|
|
46
|
+
"5","3","0.719854288","0.703381955"
|
|
47
|
+
"10","3","0.384962518","0.811765075"
|
|
48
|
+
"5","4","0.65495765","0.75643731"
|
|
49
|
+
"10","4","0.801262489","0.419786857"
|
|
50
|
+
"5","5","0.717213333","0.653452725"
|
|
51
|
+
"10","5","0.528959665","0.884221499"
|
|
52
|
+
"5","6","0.590187071","0.852806653"
|
|
53
|
+
"10","6","0.806451655","0.400303835"
|
|
54
|
+
"5","7","0.751293211","0.521197443"
|
|
55
|
+
"10","7","0.489509185","0.862844416"
|
|
56
|
+
"5","8","0.532573348","0.944894832"
|
|
57
|
+
"10","8","0.775979763","0.410984145"
|
|
58
|
+
"5","9","0.787494958","0.267074668"
|
|
59
|
+
"10","9","0.483785551","0.89840286"
|
|
60
|
+
"5","10","0.580232047","0.701917839"
|
|
61
|
+
"10","10","0.812508422","0.406036663"
|
|
62
|
+
"3","1","0.813294227","0.789552227"
|
|
63
|
+
"3","2","0.247789031","0.549992501"
|
|
64
|
+
"3","3","0.653034899","0.864531662"
|
|
65
|
+
"3","4","0.651494608","0.369385507"
|
|
66
|
+
"3","5","0.777843342","0.876087603"
|
|
67
|
+
"3","6","0.425985619","0.441022345"
|
|
68
|
+
"3","7","0.823286572","0.88659478"
|
|
69
|
+
"3","8","0.178399529","0.315453296"
|
|
70
|
+
"3","9","0.559739421","0.792342386"
|
|
71
|
+
"3","10","0.793969139","0.608697646"
|
|
72
|
+
"1","1","0.439016523","0.844698604"
|
|
73
|
+
"1","2","0.79590473","0.416313404"
|
|
74
|
+
"1","3","0.457454911","0.80120226"
|
|
75
|
+
"1","4","0.83460391","0.462840003"
|
|
76
|
+
"1","5","0.453855618","0.866674285"
|
|
77
|
+
"1","6","0.847111468","0.420195438"
|
|
78
|
+
"1","7","0.464311363","0.840110673"
|
|
79
|
+
"1","8","0.854059164","0.474302962"
|
|
80
|
+
"1","9","0.440280147","0.863834294"
|
|
81
|
+
"1","10","0.809889391","0.425037187"
|
|
82
|
+
"8","1","0.826826764","0.457721159"
|
|
83
|
+
"8","2","0.404560346","0.855563073"
|
|
84
|
+
"8","3","0.815407496","0.443944584"
|
|
85
|
+
"8","4","0.419652617","0.829523395"
|
|
86
|
+
"8","5","0.814632139","0.436931696"
|
|
87
|
+
"8","6","0.397005948","0.848708479"
|
|
88
|
+
"8","7","0.831586574","0.450540587"
|
|
89
|
+
"8","8","0.434835057","0.821847374"
|
|
90
|
+
"8","9","0.861501602","0.474889304"
|
|
91
|
+
"8","10","0.392054631","0.887786951"
|
|
92
|
+
"2","1","0.773946283","0.63958518"
|
|
93
|
+
"2","2","0.508680994","0.850617675"
|
|
94
|
+
"2","3","0.750728196","0.470450144"
|
|
95
|
+
"2","4","0.540436923","0.922579815"
|
|
96
|
+
"2","5","0.715174581","0.304822134"
|
|
97
|
+
"2","6","0.643438941","0.745301932"
|
|
98
|
+
"2","7","0.672572853","0.649334765"
|
|
99
|
+
"2","8","0.660591704","0.840521688"
|
|
100
|
+
"2","9","0.593076182","0.460338301"
|
|
101
|
+
"2","10","0.766623465","0.940756652"
|
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
"id","period","expenditure","income","investment"
|
|
2
|
+
5,1,1890,2199,692
|
|
3
|
+
9,1,1650,1910,611
|
|
4
|
+
7,1,1101,1290,526
|
|
5
|
+
6,1,837,979,364
|
|
6
|
+
5,2,1958,2253,759
|
|
7
|
+
9,2,1685,1943,597
|
|
8
|
+
7,2,1102,1314,519
|
|
9
|
+
6,2,858,988,371
|
|
10
|
+
5,3,1948,2276,782
|
|
11
|
+
9,3,1722,1976,603
|
|
12
|
+
7,3,1145,1346,516
|
|
13
|
+
6,3,881,1025,375
|
|
14
|
+
5,4,1994,2318,816
|
|
15
|
+
9,4,1752,2018,619
|
|
16
|
+
7,4,1173,1385,531
|
|
17
|
+
6,4,905,1063,432
|
|
18
|
+
5,5,2061,2369,844
|
|
19
|
+
9,5,2145,2521,833
|
|
20
|
+
7,5,1216,1416,573
|
|
21
|
+
6,5,934,1104,453
|
|
22
|
+
5,6,2056,2423,830
|
|
23
|
+
9,6,2164,2545,860
|
|
24
|
+
7,6,1229,1436,551
|
|
25
|
+
6,6,968,1131,460
|
|
26
|
+
5,7,2102,2457,853
|
|
27
|
+
9,7,2206,2580,870
|
|
28
|
+
7,7,1242,1462,538
|
|
29
|
+
6,7,983,1137,475
|
|
30
|
+
5,8,2121,2470,852
|
|
31
|
+
9,8,2225,2620,830
|
|
32
|
+
7,8,1267,1493,532
|
|
33
|
+
6,8,1013,1178,496
|
|
34
|
+
5,9,798,922,315
|
|
35
|
+
9,9,2235,2639,801
|
|
36
|
+
7,9,1295,1516,558
|
|
37
|
+
6,9,1034,1211,494
|
|
38
|
+
5,10,816,949,339
|
|
39
|
+
9,10,2237,2618,824
|
|
40
|
+
7,10,1317,1557,524
|
|
41
|
+
6,10,1064,1256,498
|
|
42
|
+
3,1,617,709,286
|
|
43
|
+
4,1,709,799,273
|
|
44
|
+
3,2,639,734,302
|
|
45
|
+
4,2,715,812,301
|
|
46
|
+
3,3,653,751,304
|
|
47
|
+
4,3,724,837,280
|
|
48
|
+
3,4,668,763,307
|
|
49
|
+
4,4,746,853,289
|
|
50
|
+
3,5,679,766,317
|
|
51
|
+
4,5,758,876,303
|
|
52
|
+
3,6,686,779,314
|
|
53
|
+
4,6,779,897,322
|
|
54
|
+
3,7,697,808,306
|
|
55
|
+
4,7,1774,2040,635
|
|
56
|
+
3,8,688,785,304
|
|
57
|
+
4,8,1807,2070,658
|
|
58
|
+
3,9,704,794,292
|
|
59
|
+
4,9,1831,2121,675
|
|
60
|
+
3,10,699,799,275
|
|
61
|
+
4,10,1842,2132,700
|
|
62
|
+
1,1,415,451,180
|
|
63
|
+
1,2,421,465,179
|
|
64
|
+
1,3,434,485,185
|
|
65
|
+
1,4,448,493,192
|
|
66
|
+
1,5,459,509,211
|
|
67
|
+
1,6,458,520,202
|
|
68
|
+
1,7,479,521,207
|
|
69
|
+
1,8,487,540,214
|
|
70
|
+
1,9,497,548,231
|
|
71
|
+
1,10,510,558,229
|
|
72
|
+
8,1,1355,1613,525
|
|
73
|
+
8,2,1371,1642,519
|
|
74
|
+
8,3,1402,1690,526
|
|
75
|
+
8,4,1452,1759,510
|
|
76
|
+
8,5,1485,1756,519
|
|
77
|
+
8,6,1516,1780,538
|
|
78
|
+
8,7,1549,1807,549
|
|
79
|
+
8,8,1567,1831,570
|
|
80
|
+
8,9,1588,1873,559
|
|
81
|
+
8,10,1631,1897,584
|
|
82
|
+
2,1,516,574,234
|
|
83
|
+
2,2,525,583,237
|
|
84
|
+
2,3,529,591,206
|
|
85
|
+
2,4,538,599,250
|
|
86
|
+
2,5,546,610,259
|
|
87
|
+
2,6,555,627,263
|
|
88
|
+
2,7,574,642,264
|
|
89
|
+
2,8,574,653,280
|
|
90
|
+
2,9,586,660,282
|
|
91
|
+
2,10,602,694,292
|
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
{
|
|
2
|
+
"cpt" : {
|
|
3
|
+
|
|
4
|
+
"sid" : "integer",
|
|
5
|
+
"id" : "integer",
|
|
6
|
+
"val" : "float"
|
|
7
|
+
},
|
|
8
|
+
|
|
9
|
+
"finance_data2" :{
|
|
10
|
+
"sid" : "integer",
|
|
11
|
+
"id" : "integer",
|
|
12
|
+
"start_time_column" : "date",
|
|
13
|
+
"end_time_column" : "date",
|
|
14
|
+
"expenditure" : "float",
|
|
15
|
+
"income" : "float",
|
|
16
|
+
"investment" : "float"
|
|
17
|
+
}
|
|
18
|
+
}
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
"model","action","path_id","path_max","id","product"
|
|
2
|
+
1,"call_complaint",1,4,1,"brokerage"
|
|
3
|
+
1,"call_complaint",2,4,1,"brokerage"
|
|
4
|
+
1,"fee_reversal",3,4,1,"brokerage"
|
|
5
|
+
1,"balance_transfer",4,4,1,"brokerage"
|
|
6
|
+
1,"account_booked_online",1,4,2,"credit card"
|
|
7
|
+
1,"fee_reversal",2,4,2,"credit card"
|
|
8
|
+
1,"link_external_account",3,4,2,"credit card"
|
|
9
|
+
1,"balance_transfer",4,4,2,"credit card"
|
|
10
|
+
1,"starts_application",1,5,3,"cd"
|
|
11
|
+
1,"mortgage_calc",2,5,3,"cd"
|
|
12
|
+
1,"compare",3,5,3,"cd"
|
|
13
|
+
1,"browse",4,5,3,"cd"
|
|
14
|
+
1,"complete_application",5,5,3,"cd"
|