teradataml 20.0.0.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1208) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +2762 -0
  4. teradataml/__init__.py +78 -0
  5. teradataml/_version.py +11 -0
  6. teradataml/analytics/Transformations.py +2996 -0
  7. teradataml/analytics/__init__.py +82 -0
  8. teradataml/analytics/analytic_function_executor.py +2416 -0
  9. teradataml/analytics/analytic_query_generator.py +1050 -0
  10. teradataml/analytics/byom/H2OPredict.py +514 -0
  11. teradataml/analytics/byom/PMMLPredict.py +437 -0
  12. teradataml/analytics/byom/__init__.py +16 -0
  13. teradataml/analytics/json_parser/__init__.py +133 -0
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
  15. teradataml/analytics/json_parser/json_store.py +191 -0
  16. teradataml/analytics/json_parser/metadata.py +1666 -0
  17. teradataml/analytics/json_parser/utils.py +805 -0
  18. teradataml/analytics/meta_class.py +236 -0
  19. teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
  21. teradataml/analytics/sqle/__init__.py +128 -0
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
  24. teradataml/analytics/table_operator/__init__.py +11 -0
  25. teradataml/analytics/uaf/__init__.py +82 -0
  26. teradataml/analytics/utils.py +828 -0
  27. teradataml/analytics/valib.py +1617 -0
  28. teradataml/automl/__init__.py +5835 -0
  29. teradataml/automl/autodataprep/__init__.py +493 -0
  30. teradataml/automl/custom_json_utils.py +1625 -0
  31. teradataml/automl/data_preparation.py +1384 -0
  32. teradataml/automl/data_transformation.py +1254 -0
  33. teradataml/automl/feature_engineering.py +2273 -0
  34. teradataml/automl/feature_exploration.py +1873 -0
  35. teradataml/automl/model_evaluation.py +488 -0
  36. teradataml/automl/model_training.py +1407 -0
  37. teradataml/catalog/__init__.py +2 -0
  38. teradataml/catalog/byom.py +1759 -0
  39. teradataml/catalog/function_argument_mapper.py +859 -0
  40. teradataml/catalog/model_cataloging_utils.py +491 -0
  41. teradataml/clients/__init__.py +0 -0
  42. teradataml/clients/auth_client.py +137 -0
  43. teradataml/clients/keycloak_client.py +165 -0
  44. teradataml/clients/pkce_client.py +481 -0
  45. teradataml/common/__init__.py +1 -0
  46. teradataml/common/aed_utils.py +2078 -0
  47. teradataml/common/bulk_exposed_utils.py +113 -0
  48. teradataml/common/constants.py +1669 -0
  49. teradataml/common/deprecations.py +166 -0
  50. teradataml/common/exceptions.py +147 -0
  51. teradataml/common/formula.py +743 -0
  52. teradataml/common/garbagecollector.py +666 -0
  53. teradataml/common/logger.py +1261 -0
  54. teradataml/common/messagecodes.py +518 -0
  55. teradataml/common/messages.py +262 -0
  56. teradataml/common/pylogger.py +67 -0
  57. teradataml/common/sqlbundle.py +764 -0
  58. teradataml/common/td_coltype_code_to_tdtype.py +48 -0
  59. teradataml/common/utils.py +3166 -0
  60. teradataml/common/warnings.py +36 -0
  61. teradataml/common/wrapper_utils.py +625 -0
  62. teradataml/config/__init__.py +0 -0
  63. teradataml/config/dummy_file1.cfg +5 -0
  64. teradataml/config/dummy_file2.cfg +3 -0
  65. teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
  66. teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
  67. teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
  68. teradataml/context/__init__.py +0 -0
  69. teradataml/context/aed_context.py +223 -0
  70. teradataml/context/context.py +1462 -0
  71. teradataml/data/A_loan.csv +19 -0
  72. teradataml/data/BINARY_REALS_LEFT.csv +11 -0
  73. teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
  74. teradataml/data/B_loan.csv +49 -0
  75. teradataml/data/BuoyData2.csv +17 -0
  76. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
  77. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
  78. teradataml/data/Convolve2RealsLeft.csv +5 -0
  79. teradataml/data/Convolve2RealsRight.csv +5 -0
  80. teradataml/data/Convolve2ValidLeft.csv +11 -0
  81. teradataml/data/Convolve2ValidRight.csv +11 -0
  82. teradataml/data/DFFTConv_Real_8_8.csv +65 -0
  83. teradataml/data/Employee.csv +5 -0
  84. teradataml/data/Employee_Address.csv +4 -0
  85. teradataml/data/Employee_roles.csv +5 -0
  86. teradataml/data/JulesBelvezeDummyData.csv +100 -0
  87. teradataml/data/Mall_customer_data.csv +201 -0
  88. teradataml/data/Orders1_12mf.csv +25 -0
  89. teradataml/data/Pi_loan.csv +7 -0
  90. teradataml/data/SMOOTHED_DATA.csv +7 -0
  91. teradataml/data/TestDFFT8.csv +9 -0
  92. teradataml/data/TestRiver.csv +109 -0
  93. teradataml/data/Traindata.csv +28 -0
  94. teradataml/data/__init__.py +0 -0
  95. teradataml/data/acf.csv +17 -0
  96. teradataml/data/adaboost_example.json +34 -0
  97. teradataml/data/adaboostpredict_example.json +24 -0
  98. teradataml/data/additional_table.csv +11 -0
  99. teradataml/data/admissions_test.csv +21 -0
  100. teradataml/data/admissions_train.csv +41 -0
  101. teradataml/data/admissions_train_nulls.csv +41 -0
  102. teradataml/data/advertising.csv +201 -0
  103. teradataml/data/ageandheight.csv +13 -0
  104. teradataml/data/ageandpressure.csv +31 -0
  105. teradataml/data/amazon_reviews_25.csv +26 -0
  106. teradataml/data/antiselect_example.json +36 -0
  107. teradataml/data/antiselect_input.csv +8 -0
  108. teradataml/data/antiselect_input_mixed_case.csv +8 -0
  109. teradataml/data/applicant_external.csv +7 -0
  110. teradataml/data/applicant_reference.csv +7 -0
  111. teradataml/data/apriori_example.json +22 -0
  112. teradataml/data/arima_example.json +9 -0
  113. teradataml/data/assortedtext_input.csv +8 -0
  114. teradataml/data/attribution_example.json +34 -0
  115. teradataml/data/attribution_sample_table.csv +27 -0
  116. teradataml/data/attribution_sample_table1.csv +6 -0
  117. teradataml/data/attribution_sample_table2.csv +11 -0
  118. teradataml/data/bank_churn.csv +10001 -0
  119. teradataml/data/bank_marketing.csv +11163 -0
  120. teradataml/data/bank_web_clicks1.csv +43 -0
  121. teradataml/data/bank_web_clicks2.csv +91 -0
  122. teradataml/data/bank_web_url.csv +85 -0
  123. teradataml/data/barrier.csv +2 -0
  124. teradataml/data/barrier_new.csv +3 -0
  125. teradataml/data/betweenness_example.json +14 -0
  126. teradataml/data/bike_sharing.csv +732 -0
  127. teradataml/data/bin_breaks.csv +8 -0
  128. teradataml/data/bin_fit_ip.csv +4 -0
  129. teradataml/data/binary_complex_left.csv +11 -0
  130. teradataml/data/binary_complex_right.csv +11 -0
  131. teradataml/data/binary_matrix_complex_left.csv +21 -0
  132. teradataml/data/binary_matrix_complex_right.csv +21 -0
  133. teradataml/data/binary_matrix_real_left.csv +21 -0
  134. teradataml/data/binary_matrix_real_right.csv +21 -0
  135. teradataml/data/blood2ageandweight.csv +26 -0
  136. teradataml/data/bmi.csv +501 -0
  137. teradataml/data/boston.csv +507 -0
  138. teradataml/data/boston2cols.csv +721 -0
  139. teradataml/data/breast_cancer.csv +570 -0
  140. teradataml/data/buoydata_mix.csv +11 -0
  141. teradataml/data/burst_data.csv +5 -0
  142. teradataml/data/burst_example.json +21 -0
  143. teradataml/data/byom_example.json +34 -0
  144. teradataml/data/bytes_table.csv +4 -0
  145. teradataml/data/cal_housing_ex_raw.csv +70 -0
  146. teradataml/data/callers.csv +7 -0
  147. teradataml/data/calls.csv +10 -0
  148. teradataml/data/cars_hist.csv +33 -0
  149. teradataml/data/cat_table.csv +25 -0
  150. teradataml/data/ccm_example.json +32 -0
  151. teradataml/data/ccm_input.csv +91 -0
  152. teradataml/data/ccm_input2.csv +13 -0
  153. teradataml/data/ccmexample.csv +101 -0
  154. teradataml/data/ccmprepare_example.json +9 -0
  155. teradataml/data/ccmprepare_input.csv +91 -0
  156. teradataml/data/cfilter_example.json +12 -0
  157. teradataml/data/changepointdetection_example.json +18 -0
  158. teradataml/data/changepointdetectionrt_example.json +8 -0
  159. teradataml/data/chi_sq.csv +3 -0
  160. teradataml/data/churn_data.csv +14 -0
  161. teradataml/data/churn_emission.csv +35 -0
  162. teradataml/data/churn_initial.csv +3 -0
  163. teradataml/data/churn_state_transition.csv +5 -0
  164. teradataml/data/citedges_2.csv +745 -0
  165. teradataml/data/citvertices_2.csv +1210 -0
  166. teradataml/data/clicks2.csv +16 -0
  167. teradataml/data/clickstream.csv +13 -0
  168. teradataml/data/clickstream1.csv +11 -0
  169. teradataml/data/closeness_example.json +16 -0
  170. teradataml/data/complaints.csv +21 -0
  171. teradataml/data/complaints_mini.csv +3 -0
  172. teradataml/data/complaints_test_tokenized.csv +353 -0
  173. teradataml/data/complaints_testtoken.csv +224 -0
  174. teradataml/data/complaints_tokens_model.csv +348 -0
  175. teradataml/data/complaints_tokens_test.csv +353 -0
  176. teradataml/data/complaints_traintoken.csv +472 -0
  177. teradataml/data/computers_category.csv +1001 -0
  178. teradataml/data/computers_test1.csv +1252 -0
  179. teradataml/data/computers_train1.csv +5009 -0
  180. teradataml/data/computers_train1_clustered.csv +5009 -0
  181. teradataml/data/confusionmatrix_example.json +9 -0
  182. teradataml/data/conversion_event_table.csv +3 -0
  183. teradataml/data/corr_input.csv +17 -0
  184. teradataml/data/correlation_example.json +11 -0
  185. teradataml/data/covid_confirm_sd.csv +83 -0
  186. teradataml/data/coxhazardratio_example.json +39 -0
  187. teradataml/data/coxph_example.json +15 -0
  188. teradataml/data/coxsurvival_example.json +28 -0
  189. teradataml/data/cpt.csv +41 -0
  190. teradataml/data/credit_ex_merged.csv +45 -0
  191. teradataml/data/creditcard_data.csv +1001 -0
  192. teradataml/data/customer_loyalty.csv +301 -0
  193. teradataml/data/customer_loyalty_newseq.csv +31 -0
  194. teradataml/data/customer_segmentation_test.csv +2628 -0
  195. teradataml/data/customer_segmentation_train.csv +8069 -0
  196. teradataml/data/dataframe_example.json +173 -0
  197. teradataml/data/decisionforest_example.json +37 -0
  198. teradataml/data/decisionforestpredict_example.json +38 -0
  199. teradataml/data/decisiontree_example.json +21 -0
  200. teradataml/data/decisiontreepredict_example.json +45 -0
  201. teradataml/data/dfft2_size4_real.csv +17 -0
  202. teradataml/data/dfft2_test_matrix16.csv +17 -0
  203. teradataml/data/dfft2conv_real_4_4.csv +65 -0
  204. teradataml/data/diabetes.csv +443 -0
  205. teradataml/data/diabetes_test.csv +89 -0
  206. teradataml/data/dict_table.csv +5 -0
  207. teradataml/data/docperterm_table.csv +4 -0
  208. teradataml/data/docs/__init__.py +1 -0
  209. teradataml/data/docs/byom/__init__.py +0 -0
  210. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
  211. teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
  212. teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
  213. teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
  214. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
  215. teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
  216. teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
  217. teradataml/data/docs/byom/docs/__init__.py +0 -0
  218. teradataml/data/docs/sqle/__init__.py +0 -0
  219. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
  220. teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
  221. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
  222. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
  223. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
  224. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
  225. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
  226. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
  227. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
  228. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
  229. teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
  230. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
  231. teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
  232. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
  233. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
  234. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
  235. teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
  236. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
  237. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
  238. teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
  239. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
  240. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
  241. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
  242. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
  243. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
  244. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
  245. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
  246. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
  247. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
  248. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
  249. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
  250. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
  251. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
  252. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
  253. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
  254. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
  255. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
  256. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
  257. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
  258. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
  259. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
  260. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
  261. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
  262. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
  263. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
  264. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
  265. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
  266. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
  267. teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
  268. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
  269. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
  270. teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
  271. teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
  272. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
  273. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
  274. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  275. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
  276. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
  277. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
  278. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
  279. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
  280. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
  281. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
  282. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
  283. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
  284. teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
  285. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
  286. teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
  287. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
  288. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
  289. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
  290. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
  291. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
  292. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
  293. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
  294. teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
  295. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
  296. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
  297. teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
  298. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
  299. teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
  300. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
  301. teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
  302. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  303. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
  304. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
  305. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
  306. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
  307. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
  308. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
  309. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
  310. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
  311. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
  312. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
  313. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
  314. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
  315. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
  316. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
  317. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
  318. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  319. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
  320. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
  321. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
  322. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
  323. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
  324. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
  325. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
  326. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
  327. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
  328. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
  329. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
  330. teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
  331. teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
  332. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
  333. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
  334. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
  335. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
  336. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
  337. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
  338. teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
  339. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
  340. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
  341. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
  342. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
  343. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
  344. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
  345. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
  346. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  347. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  348. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
  349. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
  350. teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
  351. teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
  352. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
  353. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
  354. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
  355. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
  356. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  357. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
  358. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
  359. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
  360. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
  361. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
  362. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
  363. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
  364. teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
  365. teradataml/data/docs/tableoperator/__init__.py +0 -0
  366. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
  367. teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
  368. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
  369. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
  370. teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
  371. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
  372. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
  373. teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
  374. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  375. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
  376. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
  377. teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
  378. teradataml/data/docs/uaf/__init__.py +0 -0
  379. teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
  380. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
  381. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
  382. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
  383. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  384. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  385. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
  386. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
  387. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
  388. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
  389. teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
  390. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
  391. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  392. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
  393. teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
  394. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
  395. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
  396. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
  397. teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
  398. teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
  399. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  400. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
  401. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
  402. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
  403. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
  404. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  405. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
  406. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
  407. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
  408. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
  409. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
  410. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
  411. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
  412. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  413. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  414. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  415. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
  416. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
  417. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
  418. teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
  419. teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
  420. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  421. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
  422. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
  423. teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
  424. teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
  425. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
  426. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
  427. teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
  428. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  429. teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
  430. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
  431. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
  432. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
  433. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
  434. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
  435. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
  436. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
  437. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
  438. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
  439. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
  440. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  441. teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
  442. teradataml/data/dtw_example.json +18 -0
  443. teradataml/data/dtw_t1.csv +11 -0
  444. teradataml/data/dtw_t2.csv +4 -0
  445. teradataml/data/dwt2d_dataTable.csv +65 -0
  446. teradataml/data/dwt2d_example.json +16 -0
  447. teradataml/data/dwt_dataTable.csv +8 -0
  448. teradataml/data/dwt_example.json +15 -0
  449. teradataml/data/dwt_filterTable.csv +3 -0
  450. teradataml/data/dwt_filter_dim.csv +5 -0
  451. teradataml/data/emission.csv +9 -0
  452. teradataml/data/emp_table_by_dept.csv +19 -0
  453. teradataml/data/employee_info.csv +4 -0
  454. teradataml/data/employee_table.csv +6 -0
  455. teradataml/data/excluding_event_table.csv +2 -0
  456. teradataml/data/finance_data.csv +6 -0
  457. teradataml/data/finance_data2.csv +61 -0
  458. teradataml/data/finance_data3.csv +93 -0
  459. teradataml/data/finance_data4.csv +13 -0
  460. teradataml/data/fish.csv +160 -0
  461. teradataml/data/fm_blood2ageandweight.csv +26 -0
  462. teradataml/data/fmeasure_example.json +12 -0
  463. teradataml/data/followers_leaders.csv +10 -0
  464. teradataml/data/fpgrowth_example.json +12 -0
  465. teradataml/data/frequentpaths_example.json +29 -0
  466. teradataml/data/friends.csv +9 -0
  467. teradataml/data/fs_input.csv +33 -0
  468. teradataml/data/fs_input1.csv +33 -0
  469. teradataml/data/genData.csv +513 -0
  470. teradataml/data/geodataframe_example.json +40 -0
  471. teradataml/data/glass_types.csv +215 -0
  472. teradataml/data/glm_admissions_model.csv +12 -0
  473. teradataml/data/glm_example.json +56 -0
  474. teradataml/data/glml1l2_example.json +28 -0
  475. teradataml/data/glml1l2predict_example.json +54 -0
  476. teradataml/data/glmpredict_example.json +54 -0
  477. teradataml/data/gq_t1.csv +21 -0
  478. teradataml/data/grocery_transaction.csv +19 -0
  479. teradataml/data/hconvolve_complex_right.csv +5 -0
  480. teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
  481. teradataml/data/histogram_example.json +12 -0
  482. teradataml/data/hmmdecoder_example.json +79 -0
  483. teradataml/data/hmmevaluator_example.json +25 -0
  484. teradataml/data/hmmsupervised_example.json +10 -0
  485. teradataml/data/hmmunsupervised_example.json +8 -0
  486. teradataml/data/hnsw_alter_data.csv +5 -0
  487. teradataml/data/hnsw_data.csv +10 -0
  488. teradataml/data/house_values.csv +12 -0
  489. teradataml/data/house_values2.csv +13 -0
  490. teradataml/data/housing_cat.csv +7 -0
  491. teradataml/data/housing_data.csv +9 -0
  492. teradataml/data/housing_test.csv +47 -0
  493. teradataml/data/housing_test_binary.csv +47 -0
  494. teradataml/data/housing_train.csv +493 -0
  495. teradataml/data/housing_train_attribute.csv +5 -0
  496. teradataml/data/housing_train_binary.csv +437 -0
  497. teradataml/data/housing_train_parameter.csv +2 -0
  498. teradataml/data/housing_train_response.csv +493 -0
  499. teradataml/data/housing_train_segment.csv +201 -0
  500. teradataml/data/ibm_stock.csv +370 -0
  501. teradataml/data/ibm_stock1.csv +370 -0
  502. teradataml/data/identitymatch_example.json +22 -0
  503. teradataml/data/idf_table.csv +4 -0
  504. teradataml/data/idwt2d_dataTable.csv +5 -0
  505. teradataml/data/idwt_dataTable.csv +8 -0
  506. teradataml/data/idwt_filterTable.csv +3 -0
  507. teradataml/data/impressions.csv +101 -0
  508. teradataml/data/inflation.csv +21 -0
  509. teradataml/data/initial.csv +3 -0
  510. teradataml/data/insect2Cols.csv +61 -0
  511. teradataml/data/insect_sprays.csv +13 -0
  512. teradataml/data/insurance.csv +1339 -0
  513. teradataml/data/interpolator_example.json +13 -0
  514. teradataml/data/interval_data.csv +5 -0
  515. teradataml/data/iris_altinput.csv +481 -0
  516. teradataml/data/iris_attribute_output.csv +8 -0
  517. teradataml/data/iris_attribute_test.csv +121 -0
  518. teradataml/data/iris_attribute_train.csv +481 -0
  519. teradataml/data/iris_category_expect_predict.csv +31 -0
  520. teradataml/data/iris_data.csv +151 -0
  521. teradataml/data/iris_input.csv +151 -0
  522. teradataml/data/iris_response_train.csv +121 -0
  523. teradataml/data/iris_test.csv +31 -0
  524. teradataml/data/iris_train.csv +121 -0
  525. teradataml/data/join_table1.csv +4 -0
  526. teradataml/data/join_table2.csv +4 -0
  527. teradataml/data/jsons/anly_function_name.json +7 -0
  528. teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
  529. teradataml/data/jsons/byom/dataikupredict.json +148 -0
  530. teradataml/data/jsons/byom/datarobotpredict.json +147 -0
  531. teradataml/data/jsons/byom/h2opredict.json +195 -0
  532. teradataml/data/jsons/byom/onnxembeddings.json +267 -0
  533. teradataml/data/jsons/byom/onnxpredict.json +187 -0
  534. teradataml/data/jsons/byom/pmmlpredict.json +147 -0
  535. teradataml/data/jsons/paired_functions.json +450 -0
  536. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
  537. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
  538. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
  539. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
  540. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
  541. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
  542. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
  543. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
  544. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
  545. teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
  546. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
  547. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
  548. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
  549. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
  550. teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
  551. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
  552. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
  553. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
  554. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
  555. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
  556. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
  557. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
  558. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
  559. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
  560. teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
  561. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
  562. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
  563. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
  564. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
  565. teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
  566. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
  567. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
  568. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
  569. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
  570. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
  571. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
  572. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
  573. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
  574. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
  575. teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
  576. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
  577. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
  578. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
  579. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
  580. teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
  581. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
  582. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
  583. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
  584. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
  585. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
  586. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
  587. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
  588. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
  589. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
  590. teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
  591. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
  592. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
  593. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
  594. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
  595. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
  596. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
  597. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
  598. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
  599. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
  600. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
  601. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
  602. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
  603. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
  604. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
  605. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
  606. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
  607. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
  608. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
  609. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
  610. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
  611. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
  612. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
  613. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
  614. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
  615. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
  616. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
  617. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
  618. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
  619. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
  620. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
  621. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
  622. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
  623. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
  624. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
  625. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
  626. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
  627. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
  628. teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
  629. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
  630. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
  631. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
  632. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
  633. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
  634. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
  635. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
  636. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
  637. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
  638. teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
  639. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
  640. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
  641. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
  642. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
  643. teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
  644. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
  645. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
  646. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  647. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
  648. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
  649. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
  650. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
  651. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
  652. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
  653. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
  654. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
  655. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
  656. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
  657. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
  658. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
  659. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
  660. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
  661. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
  662. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
  663. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
  664. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
  665. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
  666. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
  667. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
  668. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
  669. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
  670. teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
  671. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  672. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  673. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
  674. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
  675. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
  676. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
  677. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
  678. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
  679. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
  680. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
  681. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
  682. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
  683. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
  684. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
  685. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  686. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
  687. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
  688. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
  689. teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
  690. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
  691. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
  692. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
  693. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
  694. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
  695. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
  696. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
  697. teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
  698. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
  699. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
  700. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
  701. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
  702. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
  703. teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
  704. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
  705. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
  706. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
  707. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
  708. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  709. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
  710. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
  711. teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
  712. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
  713. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
  714. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
  715. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  716. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
  717. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
  718. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
  719. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
  720. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
  721. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
  722. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
  723. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
  724. teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
  725. teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
  726. teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
  727. teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
  728. teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
  729. teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
  730. teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
  731. teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
  732. teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
  733. teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
  734. teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
  735. teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
  736. teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
  737. teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
  738. teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
  739. teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
  740. teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
  741. teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
  742. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  743. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  744. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  745. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  746. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  747. teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
  748. teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
  749. teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
  750. teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
  751. teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
  752. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  753. teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
  754. teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
  755. teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
  756. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
  757. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
  758. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
  759. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  760. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  761. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
  762. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
  763. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
  764. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
  765. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
  766. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
  767. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
  768. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
  769. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
  770. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
  771. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
  772. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
  773. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
  774. teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
  775. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
  776. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  777. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  778. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
  779. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
  780. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
  781. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
  782. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
  783. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
  784. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
  785. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
  786. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  787. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  788. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
  789. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  790. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
  791. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
  792. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
  793. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  794. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
  795. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
  796. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
  797. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
  798. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
  799. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
  800. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
  801. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
  802. teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
  803. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
  804. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
  805. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
  806. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
  807. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
  808. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
  809. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
  810. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
  811. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
  812. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
  813. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
  814. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
  815. teradataml/data/kmeans_example.json +23 -0
  816. teradataml/data/kmeans_table.csv +10 -0
  817. teradataml/data/kmeans_us_arrests_data.csv +51 -0
  818. teradataml/data/knn_example.json +19 -0
  819. teradataml/data/knnrecommender_example.json +7 -0
  820. teradataml/data/knnrecommenderpredict_example.json +12 -0
  821. teradataml/data/lar_example.json +17 -0
  822. teradataml/data/larpredict_example.json +30 -0
  823. teradataml/data/lc_new_predictors.csv +5 -0
  824. teradataml/data/lc_new_reference.csv +9 -0
  825. teradataml/data/lda_example.json +9 -0
  826. teradataml/data/ldainference_example.json +15 -0
  827. teradataml/data/ldatopicsummary_example.json +9 -0
  828. teradataml/data/levendist_input.csv +13 -0
  829. teradataml/data/levenshteindistance_example.json +10 -0
  830. teradataml/data/linreg_example.json +10 -0
  831. teradataml/data/load_example_data.py +350 -0
  832. teradataml/data/loan_prediction.csv +295 -0
  833. teradataml/data/lungcancer.csv +138 -0
  834. teradataml/data/mappingdata.csv +12 -0
  835. teradataml/data/medical_readings.csv +101 -0
  836. teradataml/data/milk_timeseries.csv +157 -0
  837. teradataml/data/min_max_titanic.csv +4 -0
  838. teradataml/data/minhash_example.json +6 -0
  839. teradataml/data/ml_ratings.csv +7547 -0
  840. teradataml/data/ml_ratings_10.csv +2445 -0
  841. teradataml/data/mobile_data.csv +13 -0
  842. teradataml/data/model1_table.csv +5 -0
  843. teradataml/data/model2_table.csv +5 -0
  844. teradataml/data/models/License_file.txt +1 -0
  845. teradataml/data/models/License_file_empty.txt +0 -0
  846. teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
  847. teradataml/data/models/dr_iris_rf +0 -0
  848. teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
  849. teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
  850. teradataml/data/models/iris_db_glm_model.pmml +57 -0
  851. teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
  852. teradataml/data/models/iris_kmeans_model +0 -0
  853. teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
  854. teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
  855. teradataml/data/modularity_example.json +12 -0
  856. teradataml/data/movavg_example.json +8 -0
  857. teradataml/data/mtx1.csv +7 -0
  858. teradataml/data/mtx2.csv +13 -0
  859. teradataml/data/multi_model_classification.csv +401 -0
  860. teradataml/data/multi_model_regression.csv +401 -0
  861. teradataml/data/mvdfft8.csv +9 -0
  862. teradataml/data/naivebayes_example.json +10 -0
  863. teradataml/data/naivebayespredict_example.json +19 -0
  864. teradataml/data/naivebayestextclassifier2_example.json +7 -0
  865. teradataml/data/naivebayestextclassifier_example.json +8 -0
  866. teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
  867. teradataml/data/name_Find_configure.csv +10 -0
  868. teradataml/data/namedentityfinder_example.json +14 -0
  869. teradataml/data/namedentityfinderevaluator_example.json +10 -0
  870. teradataml/data/namedentityfindertrainer_example.json +6 -0
  871. teradataml/data/nb_iris_input_test.csv +31 -0
  872. teradataml/data/nb_iris_input_train.csv +121 -0
  873. teradataml/data/nbp_iris_model.csv +13 -0
  874. teradataml/data/ner_dict.csv +8 -0
  875. teradataml/data/ner_extractor_text.csv +2 -0
  876. teradataml/data/ner_input_eng.csv +7 -0
  877. teradataml/data/ner_rule.csv +5 -0
  878. teradataml/data/ner_sports_test2.csv +29 -0
  879. teradataml/data/ner_sports_train.csv +501 -0
  880. teradataml/data/nerevaluator_example.json +6 -0
  881. teradataml/data/nerextractor_example.json +18 -0
  882. teradataml/data/nermem_sports_test.csv +18 -0
  883. teradataml/data/nermem_sports_train.csv +51 -0
  884. teradataml/data/nertrainer_example.json +7 -0
  885. teradataml/data/ngrams_example.json +7 -0
  886. teradataml/data/notebooks/__init__.py +0 -0
  887. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
  888. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
  889. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
  890. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
  891. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
  892. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
  893. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
  894. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
  895. teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
  896. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
  897. teradataml/data/npath_example.json +23 -0
  898. teradataml/data/ntree_example.json +14 -0
  899. teradataml/data/numeric_strings.csv +5 -0
  900. teradataml/data/numerics.csv +4 -0
  901. teradataml/data/ocean_buoy.csv +17 -0
  902. teradataml/data/ocean_buoy2.csv +17 -0
  903. teradataml/data/ocean_buoys.csv +28 -0
  904. teradataml/data/ocean_buoys2.csv +10 -0
  905. teradataml/data/ocean_buoys_nonpti.csv +28 -0
  906. teradataml/data/ocean_buoys_seq.csv +29 -0
  907. teradataml/data/onehot_encoder_train.csv +4 -0
  908. teradataml/data/openml_example.json +92 -0
  909. teradataml/data/optional_event_table.csv +4 -0
  910. teradataml/data/orders1.csv +11 -0
  911. teradataml/data/orders1_12.csv +13 -0
  912. teradataml/data/orders_ex.csv +4 -0
  913. teradataml/data/pack_example.json +9 -0
  914. teradataml/data/package_tracking.csv +19 -0
  915. teradataml/data/package_tracking_pti.csv +19 -0
  916. teradataml/data/pagerank_example.json +13 -0
  917. teradataml/data/paragraphs_input.csv +6 -0
  918. teradataml/data/pathanalyzer_example.json +8 -0
  919. teradataml/data/pathgenerator_example.json +8 -0
  920. teradataml/data/patient_profile.csv +101 -0
  921. teradataml/data/pattern_matching_data.csv +11 -0
  922. teradataml/data/payment_fraud_dataset.csv +10001 -0
  923. teradataml/data/peppers.png +0 -0
  924. teradataml/data/phrases.csv +7 -0
  925. teradataml/data/pivot_example.json +9 -0
  926. teradataml/data/pivot_input.csv +22 -0
  927. teradataml/data/playerRating.csv +31 -0
  928. teradataml/data/pos_input.csv +40 -0
  929. teradataml/data/postagger_example.json +7 -0
  930. teradataml/data/posttagger_output.csv +44 -0
  931. teradataml/data/production_data.csv +17 -0
  932. teradataml/data/production_data2.csv +7 -0
  933. teradataml/data/randomsample_example.json +32 -0
  934. teradataml/data/randomwalksample_example.json +9 -0
  935. teradataml/data/rank_table.csv +6 -0
  936. teradataml/data/real_values.csv +14 -0
  937. teradataml/data/ref_mobile_data.csv +4 -0
  938. teradataml/data/ref_mobile_data_dense.csv +2 -0
  939. teradataml/data/ref_url.csv +17 -0
  940. teradataml/data/restaurant_reviews.csv +7 -0
  941. teradataml/data/retail_churn_table.csv +27772 -0
  942. teradataml/data/river_data.csv +145 -0
  943. teradataml/data/roc_example.json +8 -0
  944. teradataml/data/roc_input.csv +101 -0
  945. teradataml/data/rule_inputs.csv +6 -0
  946. teradataml/data/rule_table.csv +2 -0
  947. teradataml/data/sales.csv +7 -0
  948. teradataml/data/sales_transaction.csv +501 -0
  949. teradataml/data/salesdata.csv +342 -0
  950. teradataml/data/sample_cities.csv +3 -0
  951. teradataml/data/sample_shapes.csv +11 -0
  952. teradataml/data/sample_streets.csv +3 -0
  953. teradataml/data/sampling_example.json +16 -0
  954. teradataml/data/sax_example.json +17 -0
  955. teradataml/data/scale_attributes.csv +3 -0
  956. teradataml/data/scale_example.json +74 -0
  957. teradataml/data/scale_housing.csv +11 -0
  958. teradataml/data/scale_housing_test.csv +6 -0
  959. teradataml/data/scale_input_part_sparse.csv +31 -0
  960. teradataml/data/scale_input_partitioned.csv +16 -0
  961. teradataml/data/scale_input_sparse.csv +11 -0
  962. teradataml/data/scale_parameters.csv +3 -0
  963. teradataml/data/scale_stat.csv +11 -0
  964. teradataml/data/scalebypartition_example.json +13 -0
  965. teradataml/data/scalemap_example.json +13 -0
  966. teradataml/data/scalesummary_example.json +12 -0
  967. teradataml/data/score_category.csv +101 -0
  968. teradataml/data/score_summary.csv +4 -0
  969. teradataml/data/script_example.json +10 -0
  970. teradataml/data/scripts/deploy_script.py +84 -0
  971. teradataml/data/scripts/lightgbm/dataset.template +175 -0
  972. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
  973. teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
  974. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
  975. teradataml/data/scripts/mapper.R +20 -0
  976. teradataml/data/scripts/mapper.py +16 -0
  977. teradataml/data/scripts/mapper_replace.py +16 -0
  978. teradataml/data/scripts/sklearn/__init__.py +0 -0
  979. teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
  980. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
  981. teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
  982. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
  983. teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
  984. teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
  985. teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
  986. teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
  987. teradataml/data/seeds.csv +10 -0
  988. teradataml/data/sentenceextractor_example.json +7 -0
  989. teradataml/data/sentiment_extract_input.csv +11 -0
  990. teradataml/data/sentiment_train.csv +16 -0
  991. teradataml/data/sentiment_word.csv +20 -0
  992. teradataml/data/sentiment_word_input.csv +20 -0
  993. teradataml/data/sentimentextractor_example.json +24 -0
  994. teradataml/data/sentimenttrainer_example.json +8 -0
  995. teradataml/data/sequence_table.csv +10 -0
  996. teradataml/data/seriessplitter_example.json +8 -0
  997. teradataml/data/sessionize_example.json +17 -0
  998. teradataml/data/sessionize_table.csv +116 -0
  999. teradataml/data/setop_test1.csv +24 -0
  1000. teradataml/data/setop_test2.csv +22 -0
  1001. teradataml/data/soc_nw_edges.csv +11 -0
  1002. teradataml/data/soc_nw_vertices.csv +8 -0
  1003. teradataml/data/souvenir_timeseries.csv +168 -0
  1004. teradataml/data/sparse_iris_attribute.csv +5 -0
  1005. teradataml/data/sparse_iris_test.csv +121 -0
  1006. teradataml/data/sparse_iris_train.csv +601 -0
  1007. teradataml/data/star1.csv +6 -0
  1008. teradataml/data/star_pivot.csv +8 -0
  1009. teradataml/data/state_transition.csv +5 -0
  1010. teradataml/data/stock_data.csv +53 -0
  1011. teradataml/data/stock_movement.csv +11 -0
  1012. teradataml/data/stock_vol.csv +76 -0
  1013. teradataml/data/stop_words.csv +8 -0
  1014. teradataml/data/store_sales.csv +37 -0
  1015. teradataml/data/stringsimilarity_example.json +8 -0
  1016. teradataml/data/strsimilarity_input.csv +13 -0
  1017. teradataml/data/students.csv +101 -0
  1018. teradataml/data/svm_iris_input_test.csv +121 -0
  1019. teradataml/data/svm_iris_input_train.csv +481 -0
  1020. teradataml/data/svm_iris_model.csv +7 -0
  1021. teradataml/data/svmdense_example.json +10 -0
  1022. teradataml/data/svmdensepredict_example.json +19 -0
  1023. teradataml/data/svmsparse_example.json +8 -0
  1024. teradataml/data/svmsparsepredict_example.json +14 -0
  1025. teradataml/data/svmsparsesummary_example.json +8 -0
  1026. teradataml/data/target_mobile_data.csv +13 -0
  1027. teradataml/data/target_mobile_data_dense.csv +5 -0
  1028. teradataml/data/target_udt_data.csv +8 -0
  1029. teradataml/data/tdnerextractor_example.json +14 -0
  1030. teradataml/data/templatedata.csv +1201 -0
  1031. teradataml/data/templates/open_source_ml.json +11 -0
  1032. teradataml/data/teradata_icon.ico +0 -0
  1033. teradataml/data/teradataml_example.json +1473 -0
  1034. teradataml/data/test_classification.csv +101 -0
  1035. teradataml/data/test_loan_prediction.csv +53 -0
  1036. teradataml/data/test_pacf_12.csv +37 -0
  1037. teradataml/data/test_prediction.csv +101 -0
  1038. teradataml/data/test_regression.csv +101 -0
  1039. teradataml/data/test_river2.csv +109 -0
  1040. teradataml/data/text_inputs.csv +6 -0
  1041. teradataml/data/textchunker_example.json +8 -0
  1042. teradataml/data/textclassifier_example.json +7 -0
  1043. teradataml/data/textclassifier_input.csv +7 -0
  1044. teradataml/data/textclassifiertrainer_example.json +7 -0
  1045. teradataml/data/textmorph_example.json +11 -0
  1046. teradataml/data/textparser_example.json +15 -0
  1047. teradataml/data/texttagger_example.json +12 -0
  1048. teradataml/data/texttokenizer_example.json +7 -0
  1049. teradataml/data/texttrainer_input.csv +11 -0
  1050. teradataml/data/tf_example.json +7 -0
  1051. teradataml/data/tfidf_example.json +14 -0
  1052. teradataml/data/tfidf_input1.csv +201 -0
  1053. teradataml/data/tfidf_train.csv +6 -0
  1054. teradataml/data/time_table1.csv +535 -0
  1055. teradataml/data/time_table2.csv +14 -0
  1056. teradataml/data/timeseriesdata.csv +1601 -0
  1057. teradataml/data/timeseriesdatasetsd4.csv +105 -0
  1058. teradataml/data/timestamp_data.csv +4 -0
  1059. teradataml/data/titanic.csv +892 -0
  1060. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  1061. teradataml/data/to_num_data.csv +4 -0
  1062. teradataml/data/tochar_data.csv +5 -0
  1063. teradataml/data/token_table.csv +696 -0
  1064. teradataml/data/train_multiclass.csv +101 -0
  1065. teradataml/data/train_regression.csv +101 -0
  1066. teradataml/data/train_regression_multiple_labels.csv +101 -0
  1067. teradataml/data/train_tracking.csv +28 -0
  1068. teradataml/data/trans_dense.csv +16 -0
  1069. teradataml/data/trans_sparse.csv +55 -0
  1070. teradataml/data/transformation_table.csv +6 -0
  1071. teradataml/data/transformation_table_new.csv +2 -0
  1072. teradataml/data/tv_spots.csv +16 -0
  1073. teradataml/data/twod_climate_data.csv +117 -0
  1074. teradataml/data/uaf_example.json +529 -0
  1075. teradataml/data/univariatestatistics_example.json +9 -0
  1076. teradataml/data/unpack_example.json +10 -0
  1077. teradataml/data/unpivot_example.json +25 -0
  1078. teradataml/data/unpivot_input.csv +8 -0
  1079. teradataml/data/url_data.csv +10 -0
  1080. teradataml/data/us_air_pass.csv +37 -0
  1081. teradataml/data/us_population.csv +624 -0
  1082. teradataml/data/us_states_shapes.csv +52 -0
  1083. teradataml/data/varmax_example.json +18 -0
  1084. teradataml/data/vectordistance_example.json +30 -0
  1085. teradataml/data/ville_climatedata.csv +121 -0
  1086. teradataml/data/ville_tempdata.csv +12 -0
  1087. teradataml/data/ville_tempdata1.csv +12 -0
  1088. teradataml/data/ville_temperature.csv +11 -0
  1089. teradataml/data/waveletTable.csv +1605 -0
  1090. teradataml/data/waveletTable2.csv +1605 -0
  1091. teradataml/data/weightedmovavg_example.json +9 -0
  1092. teradataml/data/wft_testing.csv +5 -0
  1093. teradataml/data/windowdfft.csv +16 -0
  1094. teradataml/data/wine_data.csv +1600 -0
  1095. teradataml/data/word_embed_input_table1.csv +6 -0
  1096. teradataml/data/word_embed_input_table2.csv +5 -0
  1097. teradataml/data/word_embed_model.csv +23 -0
  1098. teradataml/data/words_input.csv +13 -0
  1099. teradataml/data/xconvolve_complex_left.csv +6 -0
  1100. teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
  1101. teradataml/data/xgboost_example.json +36 -0
  1102. teradataml/data/xgboostpredict_example.json +32 -0
  1103. teradataml/data/ztest_example.json +16 -0
  1104. teradataml/dataframe/__init__.py +0 -0
  1105. teradataml/dataframe/copy_to.py +2446 -0
  1106. teradataml/dataframe/data_transfer.py +2840 -0
  1107. teradataml/dataframe/dataframe.py +20908 -0
  1108. teradataml/dataframe/dataframe_utils.py +2114 -0
  1109. teradataml/dataframe/fastload.py +794 -0
  1110. teradataml/dataframe/functions.py +2110 -0
  1111. teradataml/dataframe/indexer.py +424 -0
  1112. teradataml/dataframe/row.py +160 -0
  1113. teradataml/dataframe/setop.py +1171 -0
  1114. teradataml/dataframe/sql.py +10904 -0
  1115. teradataml/dataframe/sql_function_parameters.py +440 -0
  1116. teradataml/dataframe/sql_functions.py +652 -0
  1117. teradataml/dataframe/sql_interfaces.py +220 -0
  1118. teradataml/dataframe/vantage_function_types.py +675 -0
  1119. teradataml/dataframe/window.py +694 -0
  1120. teradataml/dbutils/__init__.py +3 -0
  1121. teradataml/dbutils/dbutils.py +2871 -0
  1122. teradataml/dbutils/filemgr.py +318 -0
  1123. teradataml/gen_ai/__init__.py +2 -0
  1124. teradataml/gen_ai/convAI.py +473 -0
  1125. teradataml/geospatial/__init__.py +4 -0
  1126. teradataml/geospatial/geodataframe.py +1105 -0
  1127. teradataml/geospatial/geodataframecolumn.py +392 -0
  1128. teradataml/geospatial/geometry_types.py +926 -0
  1129. teradataml/hyperparameter_tuner/__init__.py +1 -0
  1130. teradataml/hyperparameter_tuner/optimizer.py +4115 -0
  1131. teradataml/hyperparameter_tuner/utils.py +303 -0
  1132. teradataml/lib/__init__.py +0 -0
  1133. teradataml/lib/aed_0_1.dll +0 -0
  1134. teradataml/lib/libaed_0_1.dylib +0 -0
  1135. teradataml/lib/libaed_0_1.so +0 -0
  1136. teradataml/lib/libaed_0_1_aarch64.so +0 -0
  1137. teradataml/lib/libaed_0_1_ppc64le.so +0 -0
  1138. teradataml/opensource/__init__.py +1 -0
  1139. teradataml/opensource/_base.py +1321 -0
  1140. teradataml/opensource/_class.py +464 -0
  1141. teradataml/opensource/_constants.py +61 -0
  1142. teradataml/opensource/_lightgbm.py +949 -0
  1143. teradataml/opensource/_sklearn.py +1008 -0
  1144. teradataml/opensource/_wrapper_utils.py +267 -0
  1145. teradataml/options/__init__.py +148 -0
  1146. teradataml/options/configure.py +489 -0
  1147. teradataml/options/display.py +187 -0
  1148. teradataml/plot/__init__.py +3 -0
  1149. teradataml/plot/axis.py +1427 -0
  1150. teradataml/plot/constants.py +15 -0
  1151. teradataml/plot/figure.py +431 -0
  1152. teradataml/plot/plot.py +810 -0
  1153. teradataml/plot/query_generator.py +83 -0
  1154. teradataml/plot/subplot.py +216 -0
  1155. teradataml/scriptmgmt/UserEnv.py +4273 -0
  1156. teradataml/scriptmgmt/__init__.py +3 -0
  1157. teradataml/scriptmgmt/lls_utils.py +2157 -0
  1158. teradataml/sdk/README.md +79 -0
  1159. teradataml/sdk/__init__.py +4 -0
  1160. teradataml/sdk/_auth_modes.py +422 -0
  1161. teradataml/sdk/_func_params.py +487 -0
  1162. teradataml/sdk/_json_parser.py +453 -0
  1163. teradataml/sdk/_openapi_spec_constants.py +249 -0
  1164. teradataml/sdk/_utils.py +236 -0
  1165. teradataml/sdk/api_client.py +900 -0
  1166. teradataml/sdk/constants.py +62 -0
  1167. teradataml/sdk/modelops/__init__.py +98 -0
  1168. teradataml/sdk/modelops/_client.py +409 -0
  1169. teradataml/sdk/modelops/_constants.py +304 -0
  1170. teradataml/sdk/modelops/models.py +2308 -0
  1171. teradataml/sdk/spinner.py +107 -0
  1172. teradataml/series/__init__.py +0 -0
  1173. teradataml/series/series.py +537 -0
  1174. teradataml/series/series_utils.py +71 -0
  1175. teradataml/store/__init__.py +12 -0
  1176. teradataml/store/feature_store/__init__.py +0 -0
  1177. teradataml/store/feature_store/constants.py +658 -0
  1178. teradataml/store/feature_store/feature_store.py +4814 -0
  1179. teradataml/store/feature_store/mind_map.py +639 -0
  1180. teradataml/store/feature_store/models.py +7330 -0
  1181. teradataml/store/feature_store/utils.py +390 -0
  1182. teradataml/table_operators/Apply.py +979 -0
  1183. teradataml/table_operators/Script.py +1739 -0
  1184. teradataml/table_operators/TableOperator.py +1343 -0
  1185. teradataml/table_operators/__init__.py +2 -0
  1186. teradataml/table_operators/apply_query_generator.py +262 -0
  1187. teradataml/table_operators/query_generator.py +493 -0
  1188. teradataml/table_operators/table_operator_query_generator.py +462 -0
  1189. teradataml/table_operators/table_operator_util.py +726 -0
  1190. teradataml/table_operators/templates/dataframe_apply.template +184 -0
  1191. teradataml/table_operators/templates/dataframe_map.template +176 -0
  1192. teradataml/table_operators/templates/dataframe_register.template +73 -0
  1193. teradataml/table_operators/templates/dataframe_udf.template +67 -0
  1194. teradataml/table_operators/templates/script_executor.template +170 -0
  1195. teradataml/telemetry_utils/__init__.py +0 -0
  1196. teradataml/telemetry_utils/queryband.py +53 -0
  1197. teradataml/utils/__init__.py +0 -0
  1198. teradataml/utils/docstring.py +527 -0
  1199. teradataml/utils/dtypes.py +943 -0
  1200. teradataml/utils/internal_buffer.py +122 -0
  1201. teradataml/utils/print_versions.py +206 -0
  1202. teradataml/utils/utils.py +451 -0
  1203. teradataml/utils/validators.py +3305 -0
  1204. teradataml-20.0.0.8.dist-info/METADATA +2804 -0
  1205. teradataml-20.0.0.8.dist-info/RECORD +1208 -0
  1206. teradataml-20.0.0.8.dist-info/WHEEL +5 -0
  1207. teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
  1208. teradataml-20.0.0.8.dist-info/zip-safe +1 -0
@@ -0,0 +1,2110 @@
1
+ import pandas as pd
2
+ from inspect import getsource
3
+ import re
4
+ from teradataml.dataframe.copy_to import copy_to_sql
5
+ from teradataml.dataframe.dataframe import DataFrame
6
+ from teradataml.dbutils.filemgr import install_file, list_files, remove_file
7
+ from teradataml.utils.utils import execute_sql
8
+ import teradatasqlalchemy as tdsqlalchemy
9
+ from teradataml.utils.validators import _Validators
10
+ from teradataml.dataframe.sql import _SQLColumnExpression
11
+ from teradatasqlalchemy import VARCHAR, CLOB, CHAR, DATE, TIMESTAMP
12
+ from teradataml.common.constants import TableOperatorConstants, TeradataConstants, TeradataTypes
13
+ from teradataml.common.utils import UtilFuncs
14
+ from teradataml.dataframe.sql_interfaces import ColumnExpression
15
+ from teradataml.table_operators.table_operator_util import _TableOperatorUtils
16
+ from teradataml.common.exceptions import TeradataMlException
17
+ from teradataml.common.messages import Messages
18
+ from teradataml.common.messagecodes import MessageCodes
19
+ from teradataml.scriptmgmt.lls_utils import get_env
20
+ from sqlalchemy import literal_column
21
+
22
+ def udf(user_function=None, returns=VARCHAR(1024), env_name = None, delimiter=',', quotechar=None, debug=False):
23
+ """
24
+ DESCRIPTION:
25
+ Creates a user defined function (UDF).
26
+
27
+ Notes:
28
+ 1. Date and time data types must be formatted to supported formats.
29
+ (See Prerequisite Input and Output Structures in Open Analytics Framework for more details.)
30
+ 2. Packages required to run the user defined function must be installed in remote user
31
+ environment using install_lib method of UserEnv class. Import statements of these
32
+ packages should be inside the user defined function itself.
33
+ 3. Do not call a regular function defined outside the udf() from the user defined function.
34
+ The function definition and call must be inside the udf(). Look at Example 9 to understand more.
35
+ 4. One can use the `td_buffer` to cache the data in the user defined function.
36
+ Look at Example 10 to understand more.
37
+
38
+ PARAMETERS:
39
+ user_function:
40
+ Required Argument.
41
+ Specifies the user defined function to create a column for
42
+ teradataml DataFrame.
43
+ Types: function
44
+ Note:
45
+ Lambda functions are not supported. Re-write the lambda function as regular Python function to use with UDF.
46
+
47
+ returns:
48
+ Optional Argument.
49
+ Specifies the output column type.
50
+ Types: teradatasqlalchemy types object
51
+ Default: VARCHAR(1024)
52
+
53
+ env_name:
54
+ Optional Argument.
55
+ Specifies the name of the remote user environment or an object of
56
+ class UserEnv for VantageCloud Lake.
57
+ Types: str or oject of class UserEnv.
58
+ Note:
59
+ * One can set up a user environment with required packages using teradataml
60
+ Open Analytics APIs. If no ``env_name`` is provided, udf use the default
61
+ ``openml_env`` user environment. This default environment has latest Python
62
+ and scikit-learn versions that are supported by Open Analytics Framework
63
+ at the time of creating environment.
64
+
65
+ delimiter:
66
+ Optional Argument.
67
+ Specifies a delimiter to use when reading columns from a row and
68
+ writing result columns.
69
+ Default value: ','
70
+ Types: str with one character
71
+ Notes:
72
+ * This argument cannot be same as "quotechar" argument.
73
+ * This argument cannot be a newline character.
74
+ * Use a different delimiter if categorial columns in the data contains
75
+ a character same as the delimiter.
76
+
77
+ quotechar:
78
+ Optional Argument.
79
+ Specifies a character that forces input of the user function
80
+ to be quoted using this specified character.
81
+ Using this argument enables the Advanced SQL Engine to
82
+ distinguish between NULL fields and empty strings.
83
+ A string with length zero is quoted, while NULL fields are not.
84
+ Default value: None
85
+ Types: str with one character
86
+ Notes:
87
+ * This argument cannot be same as "delimiter" argument.
88
+ * This argument cannot be a newline character.
89
+
90
+ debug:
91
+ Optional Argument.
92
+ Specifies whether to display the script file path generated during function execution or not. This
93
+ argument helps in debugging when there are any failures during function execution. When set
94
+ to True, function displays the path of the script and does not remove the file from local file system.
95
+ Otherwise, file is removed from the local file system.
96
+ Default Value: False
97
+ Types: bool
98
+
99
+ RETURNS:
100
+ ColumnExpression
101
+
102
+ RAISES:
103
+ TeradataMLException
104
+
105
+ EXAMPLES:
106
+ # Load the data to run the example.
107
+ >>> load_example_data("dataframe", "sales")
108
+
109
+ # Create a DataFrame on 'sales' table.
110
+ >>> df = DataFrame("sales")
111
+ >>> df
112
+ Feb Jan Mar Apr datetime
113
+ accounts
114
+ Yellow Inc 90.0 NaN NaN NaN 04/01/2017
115
+ Jones LLC 200.0 150.0 140.0 180.0 04/01/2017
116
+ Red Inc 200.0 150.0 140.0 NaN 04/01/2017
117
+ Alpha Co 210.0 200.0 215.0 250.0 04/01/2017
118
+ Blue Inc 90.0 50.0 95.0 101.0 04/01/2017
119
+ Orange Inc 210.0 NaN NaN 250.0 04/01/2017
120
+
121
+ # Example 1: Create the user defined function to get the values in 'accounts'
122
+ # to upper case without passing returns argument.
123
+ >>> from teradataml.dataframe.functions import udf
124
+ >>> @udf
125
+ ... def to_upper(s):
126
+ ... if s is not None:
127
+ ... return s.upper()
128
+ >>>
129
+ # Assign the Column Expression returned by user defined function
130
+ # to the DataFrame.
131
+ >>> res = df.assign(upper_stats = to_upper('accounts'))
132
+ >>> res
133
+ Feb Jan Mar Apr datetime upper_stats
134
+ accounts
135
+ Alpha Co 210.0 200.0 215.0 250.0 17/01/04 ALPHA CO
136
+ Blue Inc 90.0 50.0 95.0 101.0 17/01/04 BLUE INC
137
+ Yellow Inc 90.0 NaN NaN NaN 17/01/04 YELLOW INC
138
+ Jones LLC 200.0 150.0 140.0 180.0 17/01/04 JONES LLC
139
+ Orange Inc 210.0 NaN NaN 250.0 17/01/04 ORANGE INC
140
+ Red Inc 200.0 150.0 140.0 NaN 17/01/04 RED INC
141
+ >>>
142
+
143
+ # Example 2: Create a user defined function to add length of string values in column
144
+ # 'accounts' with column 'Feb' and store the result in Integer type column.
145
+ >>> from teradatasqlalchemy.types import INTEGER
146
+ >>> @udf(returns=INTEGER())
147
+ ... def sum(x, y):
148
+ ... return len(x)+y
149
+ >>>
150
+ # Assign the Column Expression returned by user defined function
151
+ # to the DataFrame.
152
+ >>> res = df.assign(len_sum = sum('accounts', 'Feb'))
153
+ >>> res
154
+ Feb Jan Mar Apr datetime len_sum
155
+ accounts
156
+ Alpha Co 210.0 200.0 215.0 250.0 17/01/04 218
157
+ Blue Inc 90.0 50.0 95.0 101.0 17/01/04 98
158
+ Yellow Inc 90.0 NaN NaN NaN 17/01/04 100
159
+ Jones LLC 200.0 150.0 140.0 180.0 17/01/04 209
160
+ Orange Inc 210.0 NaN NaN 250.0 17/01/04 220
161
+ Red Inc 200.0 150.0 140.0 NaN 17/01/04 207
162
+ >>>
163
+
164
+ # Example 3: Create a function to get the values in 'accounts' to upper case
165
+ # and pass it to udf as parameter to create a user defined function.
166
+ >>> from teradataml.dataframe.functions import udf
167
+ >>> def to_upper(s):
168
+ ... if s is not None:
169
+ ... return s.upper()
170
+ >>> upper_case = udf(to_upper)
171
+ >>>
172
+ # Assign the Column Expression returned by user defined function
173
+ # to the DataFrame.
174
+ >>> res = df.assign(upper_stats = upper_case('accounts'))
175
+ >>> res
176
+ Feb Jan Mar Apr datetime upper_stats
177
+ accounts
178
+ Alpha Co 210.0 200.0 215.0 250.0 17/01/04 ALPHA CO
179
+ Blue Inc 90.0 50.0 95.0 101.0 17/01/04 BLUE INC
180
+ Yellow Inc 90.0 NaN NaN NaN 17/01/04 YELLOW INC
181
+ Jones LLC 200.0 150.0 140.0 180.0 17/01/04 JONES LLC
182
+ Orange Inc 210.0 NaN NaN 250.0 17/01/04 ORANGE INC
183
+ Red Inc 200.0 150.0 140.0 NaN 17/01/04 RED INC
184
+ >>>
185
+
186
+ # Example 4: Create a user defined function to add 4 to the 'datetime' column
187
+ # and store the result in DATE type column.
188
+ >>> from teradatasqlalchemy.types import DATE
189
+ >>> import datetime
190
+ >>> @udf(returns=DATE())
191
+ ... def add_date(x, y):
192
+ ... return (datetime.datetime.strptime(x, "%y/%m/%d")+datetime.timedelta(y)).strftime("%y/%m/%d")
193
+ >>>
194
+ # Assign the Column Expression returned by user defined function
195
+ # to the DataFrame.
196
+ >>> res = df.assign(new_date = add_date('datetime', 4))
197
+ >>> res
198
+ Feb Jan Mar Apr datetime new_date
199
+ accounts
200
+ Alpha Co 210.0 200.0 215.0 250.0 17/01/04 17/01/08
201
+ Blue Inc 90.0 50.0 95.0 101.0 17/01/04 17/01/08
202
+ Jones LLC 200.0 150.0 140.0 180.0 17/01/04 17/01/08
203
+ Orange Inc 210.0 NaN NaN 250.0 17/01/04 17/01/08
204
+ Yellow Inc 90.0 NaN NaN NaN 17/01/04 17/01/08
205
+ Red Inc 200.0 150.0 140.0 NaN 17/01/04 17/01/08
206
+
207
+ # Example 5: Create a user defined function to add 4 to the 'datetime' column
208
+ # without passing returns argument.
209
+ >>> from teradatasqlalchemy.types import DATE
210
+ >>> import datetime
211
+ >>> @udf
212
+ ... def add_date(x, y):
213
+ ... return (datetime.datetime.strptime(x, "%y/%m/%d")+datetime.timedelta(y))
214
+ >>>
215
+ # Assign the Column Expression returned by user defined function
216
+ # to the DataFrame.
217
+ >>> res = df.assign(new_date = add_date('datetime', 4))
218
+ >>> res
219
+ Feb Jan Mar Apr datetime new_date
220
+ accounts
221
+ Blue Inc 90.0 50.0 95.0 101.0 17/01/04 2017-01-08 00:00:00
222
+ Red Inc 200.0 150.0 140.0 NaN 17/01/04 2017-01-08 00:00:00
223
+ Yellow Inc 90.0 NaN NaN NaN 17/01/04 2017-01-08 00:00:00
224
+ Jones LLC 200.0 150.0 140.0 180.0 17/01/04 2017-01-08 00:00:00
225
+ Orange Inc 210.0 NaN NaN 250.0 17/01/04 2017-01-08 00:00:00
226
+ Alpha Co 210.0 200.0 215.0 250.0 17/01/04 2017-01-08 00:00:00
227
+
228
+ # Example 6: Create a two user defined function to 'to_upper' and 'sum',
229
+ # 'to_upper' to get the values in 'accounts' to upper case and
230
+ # 'sum' to add length of string values in column 'accounts'
231
+ # with column 'Feb' and store the result in Integer type column.
232
+ >>> @udf
233
+ ... def to_upper(s):
234
+ ... if s is not None:
235
+ ... return s.upper()
236
+ >>>
237
+ >>> from teradatasqlalchemy.types import INTEGER
238
+ >>> @udf(returns=INTEGER())
239
+ ... def sum(x, y):
240
+ ... return len(x)+y
241
+ >>>
242
+ # Assign the both Column Expression returned by user defined functions
243
+ # to the DataFrame.
244
+ >>> res = df.assign(upper_stats = to_upper('accounts'), len_sum = sum('accounts', 'Feb'))
245
+ >>> res
246
+ Feb Jan Mar Apr datetime upper_stats len_sum
247
+ accounts
248
+ Blue Inc 90.0 50.0 95.0 101.0 17/01/04 BLUE INC 98
249
+ Red Inc 200.0 150.0 140.0 NaN 17/01/04 RED INC 207
250
+ Yellow Inc 90.0 NaN NaN NaN 17/01/04 YELLOW INC 100
251
+ Jones LLC 200.0 150.0 140.0 180.0 17/01/04 JONES LLC 209
252
+ Orange Inc 210.0 NaN NaN 250.0 17/01/04 ORANGE INC 220
253
+ Alpha Co 210.0 200.0 215.0 250.0 17/01/04 ALPHA CO 218
254
+ >>>
255
+
256
+ # Example 7: Convert the values is 'accounts' column to upper case using a user
257
+ # defined function on Vantage Cloud Lake.
258
+ # Create a Python 3.10.5 environment with given name and description in Vantage.
259
+ >>> env = create_env('test_udf', 'python_3.10.5', 'Test environment for UDF')
260
+ User environment 'test_udf' created.
261
+ >>>
262
+ # Create a user defined functions to 'to_upper' to get the values in upper case
263
+ # and pass the user env to run it on.
264
+ >>> from teradataml.dataframe.functions import udf
265
+ >>> @udf(env_name = env)
266
+ ... def to_upper(s):
267
+ ... if s is not None:
268
+ ... return s.upper()
269
+ >>>
270
+ # Assign the Column Expression returned by user defined function
271
+ # to the DataFrame.
272
+ >>> df.assign(upper_stats = to_upper('accounts'))
273
+ Feb Jan Mar Apr datetime upper_stats
274
+ accounts
275
+ Alpha Co 210.0 200.0 215.0 250.0 17/01/04 ALPHA CO
276
+ Blue Inc 90.0 50.0 95.0 101.0 17/01/04 BLUE INC
277
+ Yellow Inc 90.0 NaN NaN NaN 17/01/04 YELLOW INC
278
+ Jones LLC 200.0 150.0 140.0 180.0 17/01/04 JONES LLC
279
+ Orange Inc 210.0 NaN NaN 250.0 17/01/04 ORANGE INC
280
+ Red Inc 200.0 150.0 140.0 NaN 17/01/04 RED INC
281
+
282
+ # Example 8: Create a user defined function to add 4 to the 'datetime' column
283
+ # and store the result in DATE type column on Vantage Cloud Lake.
284
+ >>> from teradatasqlalchemy.types import DATE
285
+ >>> import datetime
286
+ >>> @udf(returns=DATE())
287
+ ... def add_date(x, y):
288
+ ... return (datetime.datetime.strptime(x, "%Y-%m-%d")+datetime.timedelta(y)).strftime("%Y-%m-%d")
289
+ >>>
290
+ # Assign the Column Expression returned by user defined function
291
+ # to the DataFrame.
292
+ >>> res = df.assign(new_date = add_date('datetime', 4))
293
+ >>> res
294
+ Feb Jan Mar Apr datetime new_date
295
+ accounts
296
+ Alpha Co 210.0 200.0 215.0 250.0 17/01/04 17/01/08
297
+ Blue Inc 90.0 50.0 95.0 101.0 17/01/04 17/01/08
298
+ Jones LLC 200.0 150.0 140.0 180.0 17/01/04 17/01/08
299
+ Orange Inc 210.0 NaN NaN 250.0 17/01/04 17/01/08
300
+ Yellow Inc 90.0 NaN NaN NaN 17/01/04 17/01/08
301
+ Red Inc 200.0 150.0 140.0 NaN 17/01/04 17/01/08
302
+ >>>
303
+
304
+ # Example 9: Define a function 'inner_add_date' inside the udf to create a
305
+ # date object by passing year, month, and day and add 1 to that date.
306
+ # Call this function inside the user defined function.
307
+ >>> @udf
308
+ ... def add_date(y,m,d):
309
+ ... import datetime
310
+ ... def inner_add_date(y,m,d):
311
+ ... return datetime.date(y,m,d) + datetime.timedelta(1)
312
+ ... return inner_add_date(y,m,d)
313
+
314
+ # Assign the Column Expression returned by user defined function
315
+ # to the DataFrame.
316
+ >>> res = df.assign(new_date = add_date(2021, 10, 5))
317
+ >>> res
318
+ Feb Jan Mar Apr datetime new_date
319
+ accounts
320
+ Jones LLC 200.0 150.0 140.0 180.0 17/01/04 2021-10-06
321
+ Blue Inc 90.0 50.0 95.0 101.0 17/01/04 2021-10-06
322
+ Yellow Inc 90.0 NaN NaN NaN 17/01/04 2021-10-06
323
+ Orange Inc 210.0 NaN NaN 250.0 17/01/04 2021-10-06
324
+ Alpha Co 210.0 200.0 215.0 250.0 17/01/04 2021-10-06
325
+ Red Inc 200.0 150.0 140.0 NaN 17/01/04 2021-10-06
326
+ >>>
327
+
328
+ # Example 10: Define a user defined function 'sentiment_analysis' to perform
329
+ # sentiment analysis on the 'review' column using VADER.
330
+ # Note - Cache the model in UDF using 'td_buffer' to avoid loading
331
+ # the model every time the UDF is called.
332
+
333
+ # Load the data to run the example.
334
+ >>> from teradataml import *
335
+ >>> load_example_data("sentimentextractor", "sentiment_extract_input")
336
+ >>> df = DataFrame("sentiment_extract_input")
337
+
338
+ # Create the environment and install the required library.
339
+ >>> env = create_env('text_analysis', 'python_3.10', 'Test environment for UDF')
340
+ >>> env.install_lib('vaderSentiment')
341
+
342
+ # Create a user defined function to perform sentiment analysis.
343
+ >>> from teradatasqlalchemy.types import VARCHAR
344
+ >>> @udf(env_name = env, returns = VARCHAR(80), delimiter='|')
345
+ ... def sentiment_analysis(txt):
346
+ ... if 'vader_model' not in td_buffer:
347
+ ... from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
348
+ ... td_buffer['vader_model'] = SentimentIntensityAnalyzer()
349
+ ... sid_obj = td_buffer['vader_model']
350
+ ...
351
+ ... sentiment_dict = sid_obj.polarity_scores(txt)
352
+ ... if sentiment_dict['compound'] >= 0.05 :
353
+ ... sentiment = "Positive"
354
+ ... elif sentiment_dict['compound'] <= - 0.05 :
355
+ ... sentiment = "Negative"
356
+ ... else :
357
+ ... sentiment = "Neutral"
358
+ ... return sentiment
359
+
360
+ # Assign the Column Expression returned by user defined function
361
+ # to the DataFrame.
362
+ >>> res = df.assign(sentiment = sentiment_analysis('review'))
363
+ >>> res = res.select(["id", "product", "sentiment"])
364
+ >>> res
365
+ id product sentiment
366
+ 0 5 gps Positive
367
+ 1 9 television Negative
368
+ 2 8 camera Negative
369
+ 3 10 camera Negative
370
+ 4 1 camera Positive
371
+ 5 4 gps Positive
372
+ 6 2 office suite Positive
373
+ 7 7 gps Negative
374
+ 8 6 gps Negative
375
+ 9 3 camera Positive
376
+ >>>
377
+ """
378
+
379
+ allowed_datatypes = TeradataTypes.TD_ALL_TYPES.value
380
+ # Validate datatypes in returns.
381
+ _Validators._validate_function_arguments([["returns", returns, False, allowed_datatypes]])
382
+
383
+ # Notation: @udf(returnType=INTEGER())
384
+ if user_function is None:
385
+ def wrapper(f):
386
+ def func_(*args):
387
+ return _SQLColumnExpression(expression=None, udf=f, udf_type=returns, udf_args=args,\
388
+ env_name=env_name, delimiter=delimiter, quotechar=quotechar, debug=debug)
389
+ return func_
390
+ return wrapper
391
+ # Notation: @udf
392
+ else:
393
+ def func_(*args):
394
+ return _SQLColumnExpression(expression=None, udf=user_function, udf_type=returns, udf_args=args,\
395
+ env_name=env_name, delimiter=delimiter, quotechar=quotechar, debug=debug)
396
+ return func_
397
+
398
+
399
+ def register(name, user_function, returns=VARCHAR(1024)):
400
+ """
401
+ DESCRIPTION:
402
+ Registers a user defined function (UDF).
403
+
404
+ Notes:
405
+ 1. Date and time data types must be formatted to supported formats.
406
+ (See Requisite Input and Output Structures in Open Analytics Framework for more details.)
407
+ 2. On VantageCloud Lake, user defined function is registered by default in the 'openml_env' environment.
408
+ User can register it in their own user environment, using the 'openml_user_env' configuration option.
409
+
410
+ PARAMETERS:
411
+ name:
412
+ Required Argument.
413
+ Specifies the name of the user defined function to register.
414
+ Types: str
415
+
416
+ user_function:
417
+ Required Argument.
418
+ Specifies the user defined function to create a column for
419
+ teradataml DataFrame.
420
+ Types: function, udf
421
+ Note:
422
+ Lambda functions are not supported. Re-write the lambda function as regular Python function to use with UDF.
423
+
424
+ returns:
425
+ Optional Argument.
426
+ Specifies the output column type used to register the user defined function.
427
+ Note:
428
+ * If 'user_function' is a udf, then return type of the udf is used as return type
429
+ of the registered user defined function.
430
+ Default Value: VARCHAR(1024)
431
+ Types: teradatasqlalchemy types object
432
+
433
+ RETURNS:
434
+ None
435
+
436
+ RAISES:
437
+ TeradataMLException, TypeError
438
+
439
+ EXAMPLES:
440
+ # Example 1: Register the user defined function to get the values upper case.
441
+ >>> from teradataml.dataframe.functions import udf, register
442
+ >>> @udf
443
+ ... def to_upper(s):
444
+ ... if s is not None:
445
+ ... return s.upper()
446
+ >>>
447
+ # Register the created user defined function.
448
+ >>> register("upper_val", to_upper)
449
+ >>>
450
+
451
+ # Example 2: Register a user defined function to get factorial of a number and
452
+ # store the result in Integer type column.
453
+ >>> from teradataml.dataframe.functions import udf, register
454
+ >>> from teradatasqlalchemy.types import INTEGER
455
+ >>> @udf
456
+ ... def factorial(n):
457
+ ... import math
458
+ ... return math.factorial(n)
459
+ >>>
460
+ # Register the created user defined function.
461
+ >>> register("fact", factorial, INTEGER())
462
+ >>>
463
+
464
+ # Example 3: Register a Python function to get the values upper case.
465
+ >>> from teradataml.dataframe.functions import register
466
+ >>> def to_upper(s):
467
+ ... return s.upper()
468
+ >>>
469
+ # Register the created Python function.
470
+ >>> register("upper_val", to_upper)
471
+ >>>
472
+ """
473
+
474
+ # Validate the arguments.
475
+ arg_matrix = []
476
+ allowed_datatypes = TeradataTypes.TD_ALL_TYPES.value
477
+ arg_matrix.append(["returns", returns, True, allowed_datatypes])
478
+ arg_matrix.append(["name", name, False, str])
479
+ _Validators._validate_function_arguments(arg_matrix)
480
+
481
+ function = []
482
+ # Check if the user_function is Python function or
483
+ # a user defined function(udf) or ColumnExpression returned by udf.
484
+ if isinstance(user_function, ColumnExpression):
485
+ function.append(user_function._udf)
486
+ returns = user_function._type
487
+ elif "udf.<locals>" not in user_function.__qualname__:
488
+ function.append(user_function)
489
+ else:
490
+ user_function = user_function.__call__()
491
+ function.append(user_function._udf)
492
+ returns = user_function._type
493
+
494
+ # Create a dictionary of user defined function name to return type.
495
+ returns = {name: _create_return_type(returns)}
496
+
497
+ exec_mode = 'REMOTE' if UtilFuncs._is_lake() else 'IN-DB'
498
+
499
+ tbl_operators = _TableOperatorUtils([],
500
+ None,
501
+ "register",
502
+ function,
503
+ exec_mode,
504
+ chunk_size=None,
505
+ num_rows=1,
506
+ delimiter=None,
507
+ quotechar=None,
508
+ data_partition_column=None,
509
+ data_hash_column=None,
510
+ style = "csv",
511
+ returns = returns,
512
+ )
513
+
514
+ # Install the file on the lake/enterprise environment.
515
+ if exec_mode == 'REMOTE':
516
+ _Validators._check_auth_token("register")
517
+ env_name = UtilFuncs._get_env_name()
518
+ tbl_operators.__env = get_env(env_name)
519
+ tbl_operators.__env.install_file(tbl_operators.script_path, suppress_output=True, replace=True)
520
+ else:
521
+ install_file(file_identifier=tbl_operators.script_base_name,
522
+ file_path=tbl_operators.script_path,
523
+ suppress_output=True, replace=True)
524
+
525
+
526
+ def call_udf(udf_name, func_args = () , **kwargs):
527
+ """
528
+ DESCRIPTION:
529
+ Call a registered user defined function (UDF).
530
+
531
+ Notes:
532
+ 1. Packages required to run the registered user defined function must be installed in remote user
533
+ environment using install_lib method of UserEnv class. Import statements of these
534
+ packages should be inside the user defined function itself.
535
+ 2. On VantageCloud Lake, user defined function runs by default in the 'openml_env' environment.
536
+ User can use their own user environment, using the 'openml_user_env' configuration option.
537
+
538
+ PARAMETERS:
539
+ udf_name:
540
+ Required Argument.
541
+ Specifies the name of the registered user defined function.
542
+ Types: str
543
+
544
+ func_args:
545
+ Optional Argument.
546
+ Specifies the arguments to pass to the registered UDF.
547
+ Default Value: ()
548
+ Types: tuple
549
+
550
+ delimiter:
551
+ Optional Argument.
552
+ Specifies a delimiter to use when reading columns from a row and
553
+ writing result columns.
554
+ Notes:
555
+ * This argument cannot be same as "quotechar" argument.
556
+ * This argument cannot be a newline character.
557
+ * Use a different delimiter if categorial columns in the data contains
558
+ a character same as the delimiter.
559
+ Default Value: ','
560
+ Types: one character string
561
+
562
+ quotechar:
563
+ Optional Argument.
564
+ Specifies a character that forces input of the user function
565
+ to be quoted using this specified character.
566
+ Using this argument enables the Analytics Database to
567
+ distinguish between NULL fields and empty strings.
568
+ A string with length zero is quoted, while NULL fields are not.
569
+ Notes:
570
+ * This argument cannot be same as "delimiter" argument.
571
+ * This argument cannot be a newline character.
572
+ Default Value: None
573
+ Types: one character string
574
+
575
+ RETURNS:
576
+ ColumnExpression
577
+
578
+ RAISES:
579
+ TeradataMLException
580
+
581
+ EXAMPLES:
582
+ # Load the data to run the example.
583
+ >>> load_example_data("dataframe", "sales")
584
+
585
+ # Create a DataFrame on 'sales' table.
586
+ >>> import random
587
+ >>> dfsales = DataFrame("sales")
588
+ >>> df = dfsales.assign(id = case([(df.accounts == 'Alpha Co', random.randrange(1, 9)),
589
+ ... (df.accounts == 'Blue Inc', random.randrange(1, 9)),
590
+ ... (df.accounts == 'Jones LLC', random.randrange(1, 9)),
591
+ ... (df.accounts == 'Orange Inc', random.randrange(1, 9)),
592
+ ... (df.accounts == 'Yellow Inc', random.randrange(1, 9)),
593
+ ... (df.accounts == 'Red Inc', random.randrange(1, 9))]))
594
+
595
+ # Example 1: Register and Call the user defined function to get the values upper case.
596
+ >>> from teradataml.dataframe.functions import udf, register, call_udf
597
+ >>> @udf
598
+ ... def to_upper(s):
599
+ ... if s is not None:
600
+ ... return s.upper()
601
+ >>>
602
+ # Register the created user defined function with name "upper".
603
+ >>> register("upper", to_upper)
604
+ >>>
605
+ # Call the user defined function registered with name "upper" and assign the
606
+ # ColumnExpression returned to the DataFrame.
607
+ >>> res = df.assign(upper_col = call_udf("upper", ('accounts',)))
608
+ >>> res
609
+ Feb Jan Mar Apr datetime id upper_col
610
+ accounts
611
+ Yellow Inc 90.0 NaN NaN NaN 17/01/04 4 YELLOW INC
612
+ Alpha Co 210.0 200.0 215.0 250.0 17/01/04 2 ALPHA CO
613
+ Jones LLC 200.0 150.0 140.0 180.0 17/01/04 5 JONES LLC
614
+ Red Inc 200.0 150.0 140.0 NaN 17/01/04 3 RED INC
615
+ Blue Inc 90.0 50.0 95.0 101.0 17/01/04 1 BLUE INC
616
+ Orange Inc 210.0 NaN NaN 250.0 17/01/04 4 ORANGE INC
617
+ >>>
618
+
619
+ # Example 2: Register and Call user defined function to get factorial of a number
620
+ # and store the result in Integer type column.
621
+ >>> from teradataml.dataframe.functions import udf, register
622
+ >>> @udf(returns = INTEGER())
623
+ ... def factorial(n):
624
+ ... import math
625
+ ... return math.factorial(n)
626
+ >>>
627
+ # Register the created user defined function with name "fact".
628
+ >>> from teradatasqlalchemy.types import INTEGER
629
+ >>> register("fact", factorial)
630
+ >>>
631
+ # Call the user defined function registered with name "fact" and assign the
632
+ # ColumnExpression returned to the DataFrame.
633
+ >>> res = df.assign(fact_col = call_udf("fact", ('id',)))
634
+ >>> res
635
+ Feb Jan Mar Apr datetime id fact_col
636
+ accounts
637
+ Jones LLC 200.0 150.0 140.0 180.0 17/01/04 5 120
638
+ Yellow Inc 90.0 NaN NaN NaN 17/01/04 4 24
639
+ Red Inc 200.0 150.0 140.0 NaN 17/01/04 3 6
640
+ Blue Inc 90.0 50.0 95.0 101.0 17/01/04 1 1
641
+ Alpha Co 210.0 200.0 215.0 250.0 17/01/04 2 2
642
+ Orange Inc 210.0 NaN NaN 250.0 17/01/04 4 24
643
+ >>>
644
+
645
+ # Example 3: Register and Call the Python function to get the values upper case.
646
+ >>> from teradataml.dataframe.functions import register, call_udf
647
+ >>> def to_upper(s):
648
+ ... return s.upper()
649
+ >>>
650
+ # Register the created Python function with name "upper".
651
+ >>> register("upper", to_upper, returns = VARCHAR(1024))
652
+ >>>
653
+ # Call the Python function registered with name "upper" and assign the
654
+ # ColumnExpression returned to the DataFrame.
655
+ >>> res = df.assign(upper_col = call_udf("upper", ('accounts',)))
656
+ >>> res
657
+ Feb Jan Mar Apr datetime id upper_col
658
+ accounts
659
+ Yellow Inc 90.0 NaN NaN NaN 17/01/04 4 YELLOW INC
660
+ Alpha Co 210.0 200.0 215.0 250.0 17/01/04 2 ALPHA CO
661
+ Jones LLC 200.0 150.0 140.0 180.0 17/01/04 5 JONES LLC
662
+ Red Inc 200.0 150.0 140.0 NaN 17/01/04 3 RED INC
663
+ Blue Inc 90.0 50.0 95.0 101.0 17/01/04 1 BLUE INC
664
+ Orange Inc 210.0 NaN NaN 250.0 17/01/04 4 ORANGE INC
665
+ >>>
666
+ """
667
+ env = None
668
+ delimiter = kwargs.pop('delimiter', ',')
669
+ quotechar = kwargs.pop('quotechar', None)
670
+ unknown_args = list(kwargs.keys())
671
+ if len(unknown_args) > 0:
672
+ raise TypeError(Messages.get_message(MessageCodes.UNKNOWN_ARGUMENT,
673
+ "call_udf", unknown_args[0]))
674
+
675
+ if UtilFuncs._is_lake():
676
+ _Validators._check_auth_token("call_udf")
677
+ env = get_env(UtilFuncs._get_env_name())
678
+ file_list = env.files
679
+ if file_list is None:
680
+ raise TeradataMlException(Messages.get_message(
681
+ MessageCodes.FUNC_EXECUTION_FAILED, "'call_udf'", "No UDF is registered with the name '{}'.".format(udf_name)),
682
+ MessageCodes.FUNC_EXECUTION_FAILED)
683
+ file_column = 'File'
684
+ else:
685
+ file_list = list_files().to_pandas()
686
+ file_column = 'Files'
687
+
688
+ # Get the script name from the environment that starts with tdml_udf_name_<udf_name>_.
689
+ script_file = [file for file in file_list[file_column] if file.startswith('tdml_udf_name_{}_udf_type_'.format(udf_name))]
690
+ if len(script_file) != 1:
691
+ raise TeradataMlException(Messages.get_message(
692
+ MessageCodes.FUNC_EXECUTION_FAILED, "'call_udf'", "Multiple UDFs or no UDF is registered with the name '{}'.".format(udf_name)),
693
+ MessageCodes.FUNC_EXECUTION_FAILED)
694
+
695
+ script_name = script_file[0]
696
+ # Get the return type from the script name.
697
+ x = re.search(r"tdml_udf_name_{}_udf_type_([A-Z_]+)(\d*)_register".format(udf_name), script_name)
698
+ returns = getattr(tdsqlalchemy, x.group(1))
699
+ # If the return type has length, get the length from the script name.
700
+ returns = returns(x.group(2)) if x.group(2) else returns()
701
+
702
+ return _SQLColumnExpression(expression=None, udf_args = func_args, udf_script = script_name, udf_type=returns,\
703
+ delimiter=delimiter, quotechar=quotechar, env_name=env)
704
+
705
+
706
+ def list_udfs(show_files=False):
707
+ """
708
+ DESCRIPTION:
709
+ List all the UDFs registered using 'register()' function.
710
+
711
+ PARAMETERS:
712
+ show_files:
713
+ Optional Argument.
714
+ Specifies whether to show file names or not.
715
+ Default Value: False
716
+ Types: bool
717
+
718
+ RETURNS:
719
+ Pandas DataFrame containing files and it's details or
720
+ None if DataFrame is empty.
721
+
722
+ RAISES:
723
+ TeradataMLException.
724
+
725
+ EXAMPLES:
726
+ # Example 1: Register the user defined function to get the values in lower case,
727
+ then list all the UDFs registered.
728
+ >>> @udf
729
+ ... def to_lower(s):
730
+ ... if s is not None:
731
+ ... return s.lower()
732
+
733
+ # Register the created user defined function.
734
+ >>> register("lower", to_lower)
735
+
736
+ # List all the UDFs registered
737
+ >>> list_udfs(True)
738
+ id name return_type file_name
739
+ 0 lower VARCHAR1024 tdml_udf_name_lower_udf_type_VARCHAR1024_register.py
740
+ 1 upper VARCHAR1024 tdml_udf_name_upper_udf_type_VARCHAR1024_register.py
741
+ 2 add_date DATE tdml_udf_name_add_date_udf_type_DATE_register.py
742
+ 3 sum_cols INTEGER tdml_udf_name_sum_cols_udf_type_INTEGER_register.py
743
+ >>>
744
+ """
745
+
746
+ if UtilFuncs._is_lake():
747
+ _Validators._check_auth_token("list_udfs")
748
+ env_name = UtilFuncs._get_env_name()
749
+ _df = get_env(env_name).files
750
+ if _df is not None:
751
+ # rename the existing DataFrame Column
752
+ _df.rename(columns={'File': 'Files'}, inplace=True)
753
+ _df = _df[_df['Files'].str.startswith('tdml_udf_') & _df['Files'].str.endswith('_register.py')][['Files']]
754
+ if len(_df) == 0:
755
+ print("No files found in remote user environment {}.".format(env_name))
756
+ else:
757
+ return _create_udf_dataframe(_df, show_files)
758
+
759
+ else:
760
+ _df = list_files()
761
+ _df = _df[_df['Files'].startswith('tdml_udf_') & _df['Files'].endswith('_register.py')].to_pandas()
762
+ if len(_df) == 0:
763
+ print("No files found in Vantage")
764
+ else:
765
+ return _create_udf_dataframe(_df, show_files)
766
+
767
+ def _create_udf_dataframe(pandas_df, show_files=False):
768
+ """
769
+ DESCRIPTION:
770
+ Internal function to return pandas DataFrame with
771
+ column names "id", "name", "return_type", "filename".
772
+
773
+ PARAMETERS:
774
+ pandas_df:
775
+ Required Argument.
776
+ Specifies the pandas DataFrame containing one column 'Files'.
777
+ Types: pandas DataFrame
778
+
779
+ show_files:
780
+ Optional Argument.
781
+ Specifies whether to show file names or not.
782
+ Types: bool
783
+
784
+ RETURNS:
785
+ pandas DataFrame.
786
+
787
+ EXAMPLES:
788
+ >>> _create_udf_dataframe(pandas_dataframe)
789
+
790
+ """
791
+ _lists = pandas_df.values.tolist()
792
+ _data = {"id": [], "name": [], "return_type": []}
793
+ if show_files:
794
+ _data.update({"file_name": []})
795
+
796
+ for _counter, _list in enumerate(_lists):
797
+ # Extract udf name and type "tdml_udf_name_fact_udf_type_VARCHAR1024_register.py" -> ['fact', 'VARCHAR1024']
798
+ value = _list[0][14:-12].split('_udf_type_')
799
+ _data["id"].append(_counter)
800
+ _data["name"].append(value[0])
801
+ _data["return_type"].append(value[1])
802
+ if show_files:
803
+ _data["file_name"].append(_list[0])
804
+ return pd.DataFrame(_data)
805
+
806
+
807
+ def deregister(name, returns=None):
808
+ """
809
+ DESCRIPTION:
810
+ Deregisters a user defined function (UDF).
811
+
812
+ PARAMETERS:
813
+ name:
814
+ Required Argument.
815
+ Specifies the name of the user defined function to deregister.
816
+ Types: str
817
+
818
+ returns:
819
+ Optional Argument.
820
+ Specifies the type used to deregister the user defined function.
821
+ Types: teradatasqlalchemy types object
822
+
823
+ RETURNS:
824
+ None
825
+
826
+ RAISES:
827
+ TeradataMLException.
828
+
829
+ EXAMPLES:
830
+ # Example 1: Register the user defined function to get the values in lower case,
831
+ # then deregister it.
832
+ >>> @udf
833
+ ... def to_lower(s):
834
+ ... if s is not None:
835
+ ... return s.lower()
836
+
837
+ # Register the created user defined function.
838
+ >>> register("lower", to_lower)
839
+
840
+ # List all the UDFs registered
841
+ >>> list_udfs(True)
842
+ id name return_type file_name
843
+ 0 lower VARCHAR1024 tdml_udf_name_lower_udf_type_VARCHAR1024_register.py
844
+ 1 upper VARCHAR1024 tdml_udf_name_upper_udf_type_VARCHAR1024_register.py
845
+ 2 add_date DATE tdml_udf_name_add_date_udf_type_DATE_register.py
846
+ 3 sum_cols INTEGER tdml_udf_name_sum_cols_udf_type_INTEGER_register.py
847
+ >>>
848
+
849
+ # Deregister the created user defined function.
850
+ >>> deregister("lower")
851
+
852
+ # List all the UDFs registered
853
+ >>> list_udfs(True)
854
+ id name return_type file_name
855
+ 0 upper VARCHAR1024 tdml_udf_name_upper_udf_type_VARCHAR1024_register.py
856
+ 1 add_date DATE tdml_udf_name_add_date_udf_type_DATE_register.py
857
+ 2 sum_cols INTEGER tdml_udf_name_sum_cols_udf_type_INTEGER_register.py
858
+ >>>
859
+
860
+ # Example 2: Deregister only specified udf function with it return type.
861
+ >>> @udf(returns=FLOAT())
862
+ ... def sum(x, y):
863
+ ... return len(x) + y
864
+
865
+ # Deregister the created user defined function.
866
+ >>> register("sum", sum)
867
+
868
+ # List all the UDFs registered
869
+ >>> list_udfs(True)
870
+ id name return_type file_name
871
+ 0 sum FLOAT tdml_udf_name_sum_udf_type_FLOAT_register.py
872
+ 1 sum INTEGER tdml_udf_name_sum_udf_type_INTEGER_register.py
873
+ >>>
874
+
875
+ # Deregister the created user defined function.
876
+ >>> from teradatasqlalchemy import FLOAT
877
+ >>> deregister("sum", FLOAT())
878
+
879
+ # List all the UDFs registered
880
+ >>> list_udfs(True)
881
+ id name return_type file_name
882
+ 0 sum INTEGER tdml_udf_name_sum_udf_type_INTEGER_register.py
883
+ >>>
884
+ """
885
+ _df = list_udfs(show_files=True)
886
+ # raise Exception list_udfs when DataFrame is empty
887
+ if _df is None:
888
+ raise TeradataMlException(Messages.get_message(MessageCodes.FUNC_EXECUTION_FAILED,
889
+ "'deregister'",
890
+ f"UDF '{name}' does not exist."),
891
+ MessageCodes.FUNC_EXECUTION_FAILED)
892
+
893
+ if returns is None:
894
+ _df = _df[_df['file_name'].str.startswith(f'tdml_udf_name_{name}_udf_type_')]
895
+ else:
896
+ _df = _df[_df['file_name'].str.startswith(f'tdml_udf_name_{name}_udf_type_{_create_return_type(returns)}_register.py')]
897
+
898
+ if len(_df) == 0:
899
+ raise TeradataMlException(Messages.get_message(MessageCodes.FUNC_EXECUTION_FAILED,
900
+ "'deregister'",
901
+ f"UDF '{name}' does not exist."),
902
+ MessageCodes.FUNC_EXECUTION_FAILED)
903
+
904
+ _df = _df.values.tolist()
905
+
906
+ # Remove the file on the lake/enterprise environment.
907
+ if UtilFuncs._is_lake():
908
+ env = get_env(UtilFuncs._get_env_name())
909
+ for file_name in _df:
910
+ env.remove_file(file_name[3], suppress_output=True)
911
+ else:
912
+ for file_name in _df:
913
+ remove_file(file_name[3][:-3], force_remove = True, suppress_output = True)
914
+
915
+
916
+ def _create_return_type(returns):
917
+ """
918
+ DESCRIPTION:
919
+ Internal function to return string representation of
920
+ type "returns" in such a way it is included in file name.
921
+
922
+ PARAMETERS:
923
+ returns:
924
+ Required Argument.
925
+ Specifies the teradatasqlalchemy types object.
926
+ Types: teradatasqlalchemy types object
927
+
928
+ RETURNS:
929
+ string
930
+
931
+ EXAMPLES:
932
+ >>> _create_udf_dataframe(VARCHAR(1024))
933
+ 'VARCHAR1024'
934
+ """
935
+ if isinstance(returns, (VARCHAR, CLOB, CHAR)):
936
+ # If the length is not provided, set it to empty string.
937
+ str_len = str(returns.length) if returns.length else ""
938
+ return_str = str(returns) + str_len
939
+ else:
940
+ return_str = str(returns)
941
+ # Replace the space with underscore in the return type.
942
+ return_str = return_str.replace(" ", "_")
943
+ return return_str
944
+
945
+ def td_range(start, end=None, step=1):
946
+ """
947
+ DESCRIPTION:
948
+ Creates a DataFrame with a specified range of numbers.
949
+
950
+ Notes:
951
+ 1. The range is inclusive of the start and exclusive of the end.
952
+ 2. If only start is provided, then end is set to start and start is set to 0.
953
+
954
+ PARAMETERS:
955
+ start:
956
+ Required Argument.
957
+ Specifies the starting number of the range.
958
+ Types: int
959
+
960
+ end:
961
+ Optional Argument.
962
+ Specifies the end number of the range(exclusive).
963
+ Default Value: None
964
+ Types: int
965
+
966
+ step:
967
+ Optional Argument.
968
+ Specifies the step size of the range.
969
+ Default Value: 1
970
+ Types: int
971
+
972
+ RETURNS:
973
+ teradataml DataFrame
974
+
975
+ RAISES:
976
+ TeradataMlException
977
+
978
+ EXAMPLES:
979
+ # Example 1: Create a DataFrame with a range of numbers from 0 to 5.
980
+ >>> from teradataml.dataframe.functions import td_range
981
+ >>> df = td_range(5)
982
+ >>> df.sort('id')
983
+ id
984
+ 0 0
985
+ 1 1
986
+ 2 2
987
+ 3 3
988
+ 4 4
989
+
990
+ # Example 2: Create a DataFrame with a range of numbers from 5 to 1 with step size of -2.
991
+ >>> from teradataml.dataframe.functions import td_range
992
+ >>> td_range(5, 1, -2)
993
+ id
994
+ 0 3
995
+ 1 5
996
+
997
+ >>> Example 3: Create a DataFrame with a range of numbers from 1 to 5 with default step size of 1.
998
+ >>> from teradataml.dataframe.functions import td_range
999
+ >>> td_range(1, 5)
1000
+ id
1001
+ 0 3
1002
+ 1 4
1003
+ 2 2
1004
+ 3 1
1005
+
1006
+ """
1007
+ # Validate the arguments.
1008
+ arg_matrix = []
1009
+ arg_matrix.append(["start", start, False, int])
1010
+ arg_matrix.append(["end", end, True, int])
1011
+ arg_matrix.append(["step", step, True, int])
1012
+ _Validators._validate_function_arguments(arg_matrix)
1013
+
1014
+ # If only start is provided, then set end to start and start to 0.
1015
+ if end is None:
1016
+ end = start
1017
+ start = 0
1018
+
1019
+ # If start is greater than end, then set the operation to "-" and operator to ">".
1020
+ # If end is less than start, then set the operation to "+" and operator to "<".
1021
+ if end < start:
1022
+ operation, operator, step = "-", ">", -step
1023
+ else:
1024
+ operation, operator = "+", "<"
1025
+
1026
+ # Create a temporary table with the start value.
1027
+ table_name = UtilFuncs._generate_temp_table_name(prefix="tdml_range_df",
1028
+ table_type=TeradataConstants.TERADATA_TABLE)
1029
+ execute_sql(f"CREATE MULTISET TABLE {table_name} AS (SELECT {start} AS id) WITH DATA;")
1030
+
1031
+ # Create a DataFrame from the range query.
1032
+ range_query = TableOperatorConstants.RANGE_QUERY.value \
1033
+ .format(table_name, step, end, operation, operator)
1034
+ df = DataFrame.from_query(range_query)
1035
+ return df
1036
+
1037
+ def current_date(time_zone='local'):
1038
+ """
1039
+ DESCRIPTION:
1040
+ Returns the current date based on the specified time zone.
1041
+
1042
+ PARAMETERS:
1043
+ time_zone:
1044
+ Optional Argument.
1045
+ Specifies the time zone to use for retrieving the current date.
1046
+ Permitted Values:
1047
+ - "local": Uses the local time zone.
1048
+ - Any valid time zone string.
1049
+ Default Value: "local"
1050
+ Types: str
1051
+
1052
+ RETURNS:
1053
+ ColumnExpression.
1054
+
1055
+ RAISES:
1056
+ None
1057
+
1058
+ EXAMPLES:
1059
+ # Example 1: Add a new column to the DataFrame that contains the
1060
+ # current date as its value. Consider system specified
1061
+ # timezone as timezone.
1062
+ >>> from teradataml.dataframe.functions import current_date
1063
+ >>> load_example_data('dataframe', 'sales')
1064
+ >>> df = DataFrame("sales")
1065
+ >>> df.assign(current_date=current_date())
1066
+ accounts Feb Jan Mar Apr datetime current_date
1067
+ Alpha Co 210.0 200.0 215 250 04/01/2017 25/05/27
1068
+ Blue Inc 90.0 50 95 101 04/01/2017 25/05/27
1069
+ Jones LLC 200.0 150 140 180 04/01/2017 25/05/27
1070
+ Orange Inc 210.0 None None 250 04/01/2017 25/05/27
1071
+ Yellow Inc 90.0 None None None 04/01/2017 25/05/27
1072
+ Red Inc 200.0 150 140 None 04/01/2017 25/05/27
1073
+
1074
+ # Example 2: Add a new column to the DataFrame that contains the
1075
+ # current date in a specific time zone as its value.
1076
+ >>> from teradataml.dataframe.functions import current_date
1077
+ >>> load_example_data('dataframe', 'sales')
1078
+ >>> df = DataFrame("sales")
1079
+ >>> df.assign(current_date=current_date("GMT"))
1080
+ accounts Feb Jan Mar Apr datetime current_date
1081
+ Alpha Co 210.0 200.0 215 250 04/01/2017 25/05/27
1082
+ Blue Inc 90.0 50 95 101 04/01/2017 25/05/27
1083
+ Jones LLC 200.0 150 140 180 04/01/2017 25/05/27
1084
+ Orange Inc 210.0 None None 250 04/01/2017 25/05/27
1085
+ Yellow Inc 90.0 None None None 04/01/2017 25/05/27
1086
+ Red Inc 200.0 150 140 None 04/01/2017 25/05/27
1087
+
1088
+ """
1089
+ if time_zone == "local":
1090
+ expr_ = "CURRENT_DATE AT LOCAL"
1091
+ else:
1092
+ expr_ = "CURRENT_DATE AT TIME ZONE '{}'".format(time_zone)
1093
+ return _SQLColumnExpression(literal_column(expr_), type = DATE())
1094
+
1095
+ def current_timestamp(time_zone='local'):
1096
+ """
1097
+ DESCRIPTION:
1098
+ Returns the current timestamp based on the specified time zone.
1099
+
1100
+ PARAMETERS:
1101
+ time_zone:
1102
+ Optional Argument.
1103
+ Specifies the time zone to use for retrieving the current timestamp.
1104
+ Permitted Values:
1105
+ - "local": Uses the local time zone.
1106
+ - Any valid time zone string.
1107
+ Default Value: "local"
1108
+ Types: str
1109
+
1110
+ RETURNS:
1111
+ ColumnExpression.
1112
+
1113
+ RAISES:
1114
+ None
1115
+
1116
+ EXAMPLES:
1117
+ # Example 1: Assign the current timestamp in the local time zone to a DataFrame column.
1118
+ >>> from teradataml.dataframe.functions import current_timestamp
1119
+ >>> load_example_data('dataframe', 'sales')
1120
+ >>> df = DataFrame("sales")
1121
+ >>> df.assign(current_timestamp = current_timestamp())
1122
+ accounts Feb Jan Mar Apr datetime current_timestamp
1123
+ Alpha Co 210.0 200 215 250 04/01/2017 2025-05-27 17:36:56.750000+00:00
1124
+ Blue Inc 90.0 50 95 101 04/01/2017 2025-05-27 17:36:56.750000+00:00
1125
+ Jones LLC 200.0 150 140 180 04/01/2017 2025-05-27 17:36:56.750000+00:00
1126
+ Orange Inc 210.0 None None 250 04/01/2017 2025-05-27 17:36:56.750000+00:00
1127
+ Yellow Inc 90.0 None None None 04/01/2017 2025-05-27 17:36:56.750000+00:00
1128
+ Red Inc 200.0 150 140 None 04/01/2017 2025-05-27 17:36:56.750000+00:00
1129
+
1130
+ # Example 2: Assign the current timestamp in a specific time zone to a DataFrame column.
1131
+ >>> from teradataml.dataframe.functions import current_timestamp
1132
+ >>> load_example_data('dataframe', 'sales')
1133
+ >>> df = DataFrame("sales")
1134
+ >>> df.assign(current_timestamp = current_timestamp("GMT+10"))
1135
+ accounts Feb Jan Mar Apr datetime current_timestamp
1136
+ Blue Inc 90.0 50 95 101 04/01/2017 2025-05-28 03:39:00.790000+10:00
1137
+ Red Inc 200.0 150 140 None 04/01/2017 2025-05-28 03:39:00.790000+10:00
1138
+ Yellow Inc 90.0 None None None 04/01/2017 2025-05-28 03:39:00.790000+10:00
1139
+ Jones LLC 200.0 150 140 180 04/01/2017 2025-05-28 03:39:00.790000+10:00
1140
+ Orange Inc 210.0 None None 250 04/01/2017 2025-05-28 03:39:00.790000+10:00
1141
+ Alpha Co 210.0 200 215 250 04/01/2017 2025-05-28 03:39:00.790000+10:00
1142
+
1143
+ """
1144
+
1145
+ if time_zone == "local":
1146
+ expr_ = "CURRENT_TIMESTAMP AT LOCAL"
1147
+ else:
1148
+ expr_ = "CURRENT_TIMESTAMP AT TIME ZONE '{}'".format(time_zone)
1149
+ return _SQLColumnExpression(literal_column(expr_), type = TIMESTAMP())
1150
+
1151
+ def get_formatters(formatter_type = None):
1152
+ """
1153
+ DESCRIPTION:
1154
+ Function to get the formatters for NUMERIC, DATE and CHAR types.
1155
+
1156
+ PARAMETERS:
1157
+ formatter_type:
1158
+ Optional Argument.
1159
+ Specifies the category of formatter to format data.
1160
+ Default Value: None
1161
+ Permitted values:
1162
+ "NUMERIC" - Formatters to convert given data to a numeric type.
1163
+ "DATE" - Formatters to convert given data to a date type.
1164
+ "CHAR" - Formatters to convert given data to a character type.
1165
+ Types: str
1166
+ RAISES:
1167
+ ValueError
1168
+
1169
+ RETURNS:
1170
+ None
1171
+
1172
+ EXAMPLES:
1173
+ # Example 1: Get the formatters for the NUMERIC type.
1174
+ >>> from teradataml.dataframe.functions import get_formatters
1175
+ >>> get_formatters("NUMERIC")
1176
+
1177
+ """
1178
+ numeric_formatters = """
1179
+ Formatters to convert given data to a Numeric type:
1180
+ +--------------------------------------------------------------------------------------------------+
1181
+ | FORMATTER DESCRIPTION |
1182
+ +--------------------------------------------------------------------------------------------------+
1183
+ | , (comma) A comma in the specified position. |
1184
+ | A comma cannot begin a number format. |
1185
+ | A comma cannot appear to the right of a decimal |
1186
+ | character or period in a number format. |
1187
+ | Example: |
1188
+ | +-------------------------------------------------+ |
1189
+ | | data formatter result | |
1190
+ | +-------------------------------------------------+ |
1191
+ | | "1,234" "9,999" 1234 | |
1192
+ | +-------------------------------------------------+ |
1193
+ +--------------------------------------------------------------------------------------------------+
1194
+ | . (period) A decimal point. Only one allowed in a format. |
1195
+ | Example: |
1196
+ | +-------------------------------------------------+ |
1197
+ | | data formatter result | |
1198
+ | +-------------------------------------------------+ |
1199
+ | | "12.34" "99.99" 12.34 | |
1200
+ | +-------------------------------------------------+ |
1201
+ +--------------------------------------------------------------------------------------------------+
1202
+ | $ A value with a leading dollar sign. |
1203
+ | Example: |
1204
+ | +-------------------------------------------------+ |
1205
+ | | data formatter result | |
1206
+ | +-------------------------------------------------+ |
1207
+ | | "$1234" "$9999" 1234 | |
1208
+ | +-------------------------------------------------+ |
1209
+ +--------------------------------------------------------------------------------------------------+
1210
+ | 0 Leading or trailing zeros. |
1211
+ | Example: |
1212
+ | +-------------------------------------------------+ |
1213
+ | | data formatter result | |
1214
+ | +-------------------------------------------------+ |
1215
+ | | "0123" "0999" 123 | |
1216
+ | | "1230" "9990" 1230 | |
1217
+ | +-------------------------------------------------+ |
1218
+ +--------------------------------------------------------------------------------------------------+
1219
+ | 9 Specified number of digits. |
1220
+ | Leading space if positive, minus if negative. |
1221
+ | Example: |
1222
+ | +-------------------------------------------------+ |
1223
+ | | data formatter result | |
1224
+ | +-------------------------------------------------+ |
1225
+ | | "1234" "9999" 1234 | |
1226
+ | | "-1234" "9999" -1234 | |
1227
+ | +-------------------------------------------------+ |
1228
+ +--------------------------------------------------------------------------------------------------+
1229
+ | B Blanks if integer part is zero. |
1230
+ | Example: |
1231
+ | +-------------------------------------------------+ |
1232
+ | | data formatter result | |
1233
+ | +-------------------------------------------------+ |
1234
+ | | "0" "B9999" 0 | |
1235
+ | +-------------------------------------------------+ |
1236
+ +--------------------------------------------------------------------------------------------------+
1237
+ | C ISO currency symbol (from SDF ISOCurrency). |
1238
+ | Example: |
1239
+ | +-------------------------------------------------+ |
1240
+ | | data formatter result | |
1241
+ | +-------------------------------------------------+ |
1242
+ | | "USD123" "C999" 123 | |
1243
+ | +-------------------------------------------------+ |
1244
+ +--------------------------------------------------------------------------------------------------+
1245
+ | D Radix separator for non-monetary values. |
1246
+ | From SDF RadixSeparator. |
1247
+ | Example: |
1248
+ | +-------------------------------------------------+ |
1249
+ | | data formatter result | |
1250
+ | +-------------------------------------------------+ |
1251
+ | | "12.34" "99D99" 12.34 | |
1252
+ | +-------------------------------------------------+ |
1253
+ +--------------------------------------------------------------------------------------------------+
1254
+ | EEEE Scientific notation. |
1255
+ | Example: |
1256
+ | +-------------------------------------------------+ |
1257
+ | | data formatter result | |
1258
+ | +-------------------------------------------------+ |
1259
+ | | "1.2E+04" "9.9EEEE" 12000 | |
1260
+ | +-------------------------------------------------+ |
1261
+ +--------------------------------------------------------------------------------------------------+
1262
+ | G Group separator for non-monetary values. |
1263
+ | From SDF GroupSeparator. |
1264
+ | Example: |
1265
+ | +-------------------------------------------------+ |
1266
+ | | data formatter result | |
1267
+ | +-------------------------------------------------+ |
1268
+ | | "1,234,567" "9G999G999" 1234567 | |
1269
+ | +-------------------------------------------------+ |
1270
+ +--------------------------------------------------------------------------------------------------+
1271
+ | L Local currency (from SDF Currency element). |
1272
+ | Example: |
1273
+ | +-------------------------------------------------+ |
1274
+ | | data formatter result | |
1275
+ | +-------------------------------------------------+ |
1276
+ | | "$123" "L999" 123 | |
1277
+ | +-------------------------------------------------+ |
1278
+ +--------------------------------------------------------------------------------------------------+
1279
+ | MI Trailing minus sign if value is negative. |
1280
+ | Can only appear in the last position. |
1281
+ | Example: |
1282
+ | +-------------------------------------------------+ |
1283
+ | | data formatter result | |
1284
+ | +-------------------------------------------------+ |
1285
+ | | "1234-" "9999MI" -1234 | |
1286
+ | +-------------------------------------------------+ |
1287
+ +--------------------------------------------------------------------------------------------------+
1288
+ | PR Negative value in angle brackets. |
1289
+ | Positive value with leading/trailing blank. |
1290
+ | Only in the last position. |
1291
+ | Example: |
1292
+ | +-------------------------------------------------+ |
1293
+ | | data formatter result | |
1294
+ | +-------------------------------------------------+ |
1295
+ | | " 123 " "9999PR" 123 | |
1296
+ | +-------------------------------------------------+ |
1297
+ +--------------------------------------------------------------------------------------------------+
1298
+ | S Sign indicator: + / - at beginning or end. |
1299
+ | Can only appear in first or last position. |
1300
+ | Example: |
1301
+ | +-------------------------------------------------+ |
1302
+ | | data formatter result | |
1303
+ | +-------------------------------------------------+ |
1304
+ | | "-1234" "S9999" -1234 | |
1305
+ | +-------------------------------------------------+ |
1306
+ +--------------------------------------------------------------------------------------------------+
1307
+ | U Dual currency (from SDF DualCurrency). |
1308
+ | Example: |
1309
+ | +-------------------------------------------------+ |
1310
+ | | data formatter result | |
1311
+ | +-------------------------------------------------+ |
1312
+ | | "$123" "U999" 123 | |
1313
+ | +-------------------------------------------------+ |
1314
+ +--------------------------------------------------------------------------------------------------+
1315
+ | X Hexadecimal format. |
1316
+ | Accepts only non-negative values. |
1317
+ | Must be preceded by 0 or FM. |
1318
+ | Example: |
1319
+ | +-------------------------------------------------+ |
1320
+ | | data formatter result | |
1321
+ | +-------------------------------------------------+ |
1322
+ | | "FF" "XX" 255 | |
1323
+ | +-------------------------------------------------+ |
1324
+ +--------------------------------------------------------------------------------------------------+
1325
+ """
1326
+
1327
+ date_formatters = """
1328
+ Formatters to convert given data to a Date type:
1329
+ +--------------------------------------------------------------------------------------------------+
1330
+ | FORMATTER DESCRIPTION |
1331
+ +--------------------------------------------------------------------------------------------------+
1332
+ | - |
1333
+ | / |
1334
+ | , Punctuation characters are ignored and text enclosed in |
1335
+ | . quotation marks is ignored. |
1336
+ | ; |
1337
+ | : |
1338
+ | "text" |
1339
+ | Example: Date with value '2003-12-10' |
1340
+ | +-------------------------------------------------+ |
1341
+ | | data formatter value | |
1342
+ | +-------------------------------------------------+ |
1343
+ | | '2003-12-10' YYYY-MM-DD 03/12/10 | |
1344
+ | +-------------------------------------------------+ |
1345
+ +--------------------------------------------------------------------------------------------------+
1346
+ | D Day of week (1-7). |
1347
+ | Example: day of week with value '2' |
1348
+ | +-------------------------------------------------+ |
1349
+ | | data formatter value | |
1350
+ | +-------------------------------------------------+ |
1351
+ | | 2 D 24/01/01 | |
1352
+ | +-------------------------------------------------+ |
1353
+ +--------------------------------------------------------------------------------------------------+
1354
+ | DAY Name of day. |
1355
+ | Example: Date with value '2024-TUESDAY-01-30' |
1356
+ | +-------------------------------------------------+ |
1357
+ | | data formatter value | |
1358
+ | +-------------------------------------------------+ |
1359
+ | | 2024-TUESDAY-01-30 YYYY-DAY-MM-DD 24/01/30 | |
1360
+ | +-------------------------------------------------+ |
1361
+ +--------------------------------------------------------------------------------------------------+
1362
+ | DD Day of month (1-31). |
1363
+ | Example: Date with value '2003-10-25' |
1364
+ | +-------------------------------------------------+ |
1365
+ | | data formatter value | |
1366
+ | +-------------------------------------------------+ |
1367
+ | | 2003-10-25 YYYY-MM-DD 03/10/25 | |
1368
+ | +-------------------------------------------------+ |
1369
+ +--------------------------------------------------------------------------------------------------+
1370
+ | DDD Day of year (1-366). |
1371
+ | Example: Date with value '2024-366' |
1372
+ | +-------------------------------------------------+ |
1373
+ | | data formatter value | |
1374
+ | +-------------------------------------------------+ |
1375
+ | | 2024-366 YYYY-DDD 24/12/31 | |
1376
+ | +-------------------------------------------------+ |
1377
+ +--------------------------------------------------------------------------------------------------+
1378
+ | DY abbreviated name of day. |
1379
+ | Example: Date with value '2024-Mon-01-29' |
1380
+ | +-------------------------------------------------+ |
1381
+ | | data formatter value | |
1382
+ | +-------------------------------------------------+ |
1383
+ | | 2024-Mon-01-29 YYYY-DY-MM-DD 24/01/29 | |
1384
+ | +-------------------------------------------------+ |
1385
+ +--------------------------------------------------------------------------------------------------+
1386
+ | HH |
1387
+ | HH12 Hour of day (1-12). |
1388
+ | Example: Date with value '2016-01-06 09:08:01' |
1389
+ | +-------------------------------------------------+ |
1390
+ | | data formatter value | |
1391
+ | +-------------------------------------------------+ |
1392
+ | | 2016-01-06 09:08:01 YYYY-MM-DD HH:MI:SS 6/01/06| |
1393
+ | +-------------------------------------------------+ |
1394
+ +--------------------------------------------------------------------------------------------------+
1395
+ | HH24 Hour of the day (0-23). |
1396
+ | Example: Date with value '2016-01-06 23:08:01' |
1397
+ | +----------------------------------------------------+ |
1398
+ | | data formatter value | |
1399
+ | +----------------------------------------------------+ |
1400
+ | | 2016-01-06 23:08:01 YYYY-MM-DD HH24:MI:SS 6/01/06 | |
1401
+ | +----------------------------------------------------+ |
1402
+ +--------------------------------------------------------------------------------------------------+
1403
+ | J Julian day, the number of days since January 1, 4713 BC. |
1404
+ | Number specified with J must be integers. |
1405
+ | Teradata uses the Gregorian calendar in calculations to |
1406
+ | and from Julian Days. |
1407
+ | Example: Number of julian days with value '2457394' |
1408
+ | +-------------------------------------------------+ |
1409
+ | | data formatter value | |
1410
+ | +-------------------------------------------------+ |
1411
+ | | 2457394 J 16/01/06 | |
1412
+ | +-------------------------------------------------+ |
1413
+ +--------------------------------------------------------------------------------------------------+
1414
+ | MI Minute (0-59). |
1415
+ | Example: Date with value '2016-01-06 23:08:01' |
1416
+ | +----------------------------------------------------+ |
1417
+ | | data formatter value | |
1418
+ | +----------------------------------------------------+ |
1419
+ | | 2016-01-06 23:08:01 YYYY-MM-DD HH24:MI:SS 6/01/06 | |
1420
+ | +----------------------------------------------------+ |
1421
+ +--------------------------------------------------------------------------------------------------+
1422
+ | MM Month (01-12). |
1423
+ | Example: Date with value '2016-01-06 23:08:01' |
1424
+ | +----------------------------------------------------+ |
1425
+ | | data formatter value | |
1426
+ | +----------------------------------------------------+ |
1427
+ | | 2016-01-06 23:08:01 YYYY-MM-DD HH24:MI:SS 6/01/06 | |
1428
+ | +----------------------------------------------------+ |
1429
+ +--------------------------------------------------------------------------------------------------+
1430
+ | MON Abbreviated name of month. |
1431
+ | Example: Date with value '2016-JAN-06' |
1432
+ | +----------------------------------------------------+ |
1433
+ | | data formatter value | |
1434
+ | +----------------------------------------------------+ |
1435
+ | | 2016-JAN-06 YYYY-MON-DD 16/01/06 | |
1436
+ | +----------------------------------------------------+ |
1437
+ +--------------------------------------------------------------------------------------------------+
1438
+ | MONTH Name of month. |
1439
+ | Example: Date with value '2016-JANUARY-06' |
1440
+ | +-------------------------------------------------+ |
1441
+ | | data formatter value | |
1442
+ | +-------------------------------------------------+ |
1443
+ | | 2016-JANUARY-06 YYYY-MONTH-DD 16/01/06 | |
1444
+ | +-------------------------------------------------+ |
1445
+ +--------------------------------------------------------------------------------------------------+
1446
+ | PM |
1447
+ | P.M. Meridian indicator. |
1448
+ | Example: Date with value '2016-01-06 23:08:01 PM' |
1449
+ | +---------------------------------------------------------+ |
1450
+ | | data formatter value | |
1451
+ | +---------------------------------------------------------+ |
1452
+ | | 2016-01-06 23:08:01 PM YYYY-MM-DD HH24:MI:SS PM 16/01/06| |
1453
+ | +---------------------------------------------------------+ |
1454
+ +--------------------------------------------------------------------------------------------------+
1455
+ | RM Roman numeral month (I - XII). |
1456
+ | Example: Date with value '2024-XII' |
1457
+ | +-------------------------------------------------+ |
1458
+ | | data formatter value | |
1459
+ | +-------------------------------------------------+ |
1460
+ | | 2024-XII YYYY-RM 24/12/01 | |
1461
+ | +-------------------------------------------------+ |
1462
+ +--------------------------------------------------------------------------------------------------+
1463
+ | RR Stores 20th century dates in the 21st century using only |
1464
+ | 2 digits. If the current year and the specified year are |
1465
+ | both in the range of 0-49, the date is in the current |
1466
+ | century. |
1467
+ | Example: Date with value '2024-365, 21' |
1468
+ | +-------------------------------------------------+ |
1469
+ | | data formatter value | |
1470
+ | +-------------------------------------------------+ |
1471
+ | | 2024-365, 21 YYYY-DDD, RR 21/12/31 | |
1472
+ | +-------------------------------------------------+ |
1473
+ +--------------------------------------------------------------------------------------------------+
1474
+ | RRRR Round year. Accepts either 4-digit or 2-digit input. |
1475
+ | 2-digit input provides the same return as RR. |
1476
+ | Example: Date with value '2024-365, 21' |
1477
+ | +-------------------------------------------------+ |
1478
+ | | data formatter value | |
1479
+ | +-------------------------------------------------+ |
1480
+ | | 2024-365, 21 YYYY-DDD, RRRR 24/12/31 | |
1481
+ | +-------------------------------------------------+ |
1482
+ +--------------------------------------------------------------------------------------------------+
1483
+ | SS Second (0-59). |
1484
+ | Example: Date with value '2016-01-06 23:08:01' |
1485
+ | +----------------------------------------------------+ |
1486
+ | | data formatter value | |
1487
+ | +----------------------------------------------------+ |
1488
+ | | 2016-01-06 23:08:01 YYYY-MM-DD HH24:MI:SS 6/01/06 | |
1489
+ | +----------------------------------------------------+ |
1490
+ +--------------------------------------------------------------------------------------------------+
1491
+ | SSSSS Seconds past midnight (0-86399). |
1492
+ +--------------------------------------------------------------------------------------------------+
1493
+ | TZH Time zone hour. |
1494
+ +--------------------------------------------------------------------------------------------------+
1495
+ | TZM Time zone minute. |
1496
+ +--------------------------------------------------------------------------------------------------+
1497
+ | X Local radix character. |
1498
+ | Example: Date with value '2024.366' |
1499
+ | +-------------------------------------------------+ |
1500
+ | | data formatter value | |
1501
+ | +-------------------------------------------------+ |
1502
+ | | 2024.366 YYYYXDDD 24/12/31 | |
1503
+ | +-------------------------------------------------+ |
1504
+ +--------------------------------------------------------------------------------------------------+
1505
+ | Y,YYY Year with comma in this position. |
1506
+ | Example: Date with value '2,024-366' |
1507
+ | +-------------------------------------------------+ |
1508
+ | | data formatter value | |
1509
+ | +-------------------------------------------------+ |
1510
+ | | 2,024-366 Y,YYY-DDD 24/12/31 | |
1511
+ | +-------------------------------------------------+ |
1512
+ +--------------------------------------------------------------------------------------------------+
1513
+ | YYYY |
1514
+ | SYYYY 4-digit year. S prefixes BC dates with a minus sign. |
1515
+ | Example: Date with value '2024-366' |
1516
+ | +-------------------------------------------------+ |
1517
+ | | data formatter value | |
1518
+ | +-------------------------------------------------+ |
1519
+ | | 2024-366 YYYY-DDD 24/12/31 | |
1520
+ | +-------------------------------------------------+ |
1521
+ +--------------------------------------------------------------------------------------------------+
1522
+ | YYY Last 3, 2, or 1 digit of year. |
1523
+ | YY If the current year and the specified year are both in |
1524
+ | Y the range of 0-49, the date is in the current century. |
1525
+ | Example: Date with value '24-366' |
1526
+ | +-------------------------------------------------+ |
1527
+ | | data formatter value | |
1528
+ | +-------------------------------------------------+ |
1529
+ | | 24-366 YY-DDD 24/12/31 | |
1530
+ | +-------------------------------------------------+ |
1531
+ +--------------------------------------------------------------------------------------------------+
1532
+ """
1533
+
1534
+ char_formatters = """
1535
+ Formatters to convert given data to a Char type:
1536
+ +--------------------------------------------------------------------------------------------------+
1537
+ | FORMATTER DESCRIPTION |
1538
+ +--------------------------------------------------------------------------------------------------+
1539
+ | , (comma) A comma in the specified position. |
1540
+ | A comma cannot begin a number format. |
1541
+ | A comma cannot appear to the right of a decimal |
1542
+ | character or period in a number format. |
1543
+ | Example: |
1544
+ | +-------------------------------------------------+ |
1545
+ | | data formatter result | |
1546
+ | +-------------------------------------------------+ |
1547
+ | | 1234 9,999 1,234 | |
1548
+ | +-------------------------------------------------+ |
1549
+ +--------------------------------------------------------------------------------------------------+
1550
+ | . (period) A decimal point. |
1551
+ | User can only specify one period in a number format. |
1552
+ | Example: |
1553
+ | +-------------------------------------------------+ |
1554
+ | | data formatter result | |
1555
+ | +-------------------------------------------------+ |
1556
+ | | 123.46 9999.9 123.5 | |
1557
+ | +-------------------------------------------------+ |
1558
+ +--------------------------------------------------------------------------------------------------+
1559
+ | $ A value with a leading dollar sign. |
1560
+ | Example: |
1561
+ | +-------------------------------------------------+ |
1562
+ | | data formatter result | |
1563
+ | +-------------------------------------------------+ |
1564
+ | | 1234 $9999 $1234 | |
1565
+ | +-------------------------------------------------+ |
1566
+ +--------------------------------------------------------------------------------------------------+
1567
+ | 0 Leading zeros. |
1568
+ | Trailing zeros. |
1569
+ | Example: |
1570
+ | +-------------------------------------------------+ |
1571
+ | | data formatter result | |
1572
+ | +-------------------------------------------------+ |
1573
+ | | 1234 09999 01234 | |
1574
+ | +-------------------------------------------------+ |
1575
+ +--------------------------------------------------------------------------------------------------+
1576
+ | 9 A value with the specified number of digits with a |
1577
+ | leading space if positive or with a leading minus |
1578
+ | if negative. |
1579
+ | Example: |
1580
+ | +-------------------------------------------------+ |
1581
+ | | data formatter result | |
1582
+ | +-------------------------------------------------+ |
1583
+ | | 1234 9999 1234 | |
1584
+ | | 1234 999 #### | |
1585
+ | +-------------------------------------------------+ |
1586
+ +--------------------------------------------------------------------------------------------------+
1587
+ | B Blank space for the integer part of a fixed point number|
1588
+ | when the integer part is zero. |
1589
+ | Example: |
1590
+ | +-------------------------------------------------+ |
1591
+ | | data formatter result | |
1592
+ | +-------------------------------------------------+ |
1593
+ | | 0.1234 B.999 Blank space| |
1594
+ | +-------------------------------------------------+ |
1595
+ +--------------------------------------------------------------------------------------------------+
1596
+ | C The ISO currency symbol as specified in the ISOCurrency |
1597
+ | element in the SDF file. |
1598
+ | Example: |
1599
+ | +-------------------------------------------------+ |
1600
+ | | data formatter result | |
1601
+ | +-------------------------------------------------+ |
1602
+ | | 234 C999 USD234 | |
1603
+ | +-------------------------------------------------+ |
1604
+ +--------------------------------------------------------------------------------------------------+
1605
+ | D The character that separates the integer and fractional |
1606
+ | part of non-monetary values. |
1607
+ | Example: |
1608
+ | +-------------------------------------------------+ |
1609
+ | | data formatter result | |
1610
+ | +-------------------------------------------------+ |
1611
+ | | 234.56 999D9 234.6 | |
1612
+ | +-------------------------------------------------+ |
1613
+ +--------------------------------------------------------------------------------------------------+
1614
+ | EEEE A value in scientific notation. |
1615
+ | Example: |
1616
+ | +-------------------------------------------------+ |
1617
+ | | data formatter result | |
1618
+ | +-------------------------------------------------+ |
1619
+ | | 234.56 9.9EEEE 2.3E+02 | |
1620
+ | +-------------------------------------------------+ |
1621
+ +--------------------------------------------------------------------------------------------------+
1622
+ | G The character that separates groups of digits in the |
1623
+ | integer part of non-monetary values. |
1624
+ | +-------------------------------------------------+ |
1625
+ | | data formatter result | |
1626
+ | +-------------------------------------------------+ |
1627
+ | | 123456 9G99G99 1,234,56 | |
1628
+ | +-------------------------------------------------+ |
1629
+ +--------------------------------------------------------------------------------------------------+
1630
+ | L The string representing the local currency as specified |
1631
+ | in the Currency element according to system settings. |
1632
+ | Example: |
1633
+ | +-------------------------------------------------+ |
1634
+ | | data formatter result | |
1635
+ | +-------------------------------------------------+ |
1636
+ | | 234 L999 $234 | |
1637
+ | +-------------------------------------------------+ |
1638
+ +--------------------------------------------------------------------------------------------------+
1639
+ | MI A trailing minus sign if the value is negative. |
1640
+ | The MI format element can appear only in the last |
1641
+ | position of a number format. |
1642
+ | Example: |
1643
+ | +-------------------------------------------------+ |
1644
+ | | data formatter result | |
1645
+ | +-------------------------------------------------+ |
1646
+ | | -1234 9999MI 1234- | |
1647
+ | +-------------------------------------------------+ |
1648
+ +--------------------------------------------------------------------------------------------------+
1649
+ | PR A negative value in <angle brackets>, or |
1650
+ | a positive value with a leading and trailing blank. |
1651
+ | The PR format element can appear only in the last |
1652
+ | position of a number format. |
1653
+ | Example: |
1654
+ | +-------------------------------------------------+ |
1655
+ | | data formatter result | |
1656
+ | +-------------------------------------------------+ |
1657
+ | | -1234 9999PR <1234> | |
1658
+ | +-------------------------------------------------+ |
1659
+ +--------------------------------------------------------------------------------------------------+
1660
+ | S A negative value with a leading or trailing minus sign. |
1661
+ | a positive value with a leading or trailing plus sign. |
1662
+ | The S format element can appear only in the first or |
1663
+ | last position of a number format. |
1664
+ | Example: |
1665
+ | +-------------------------------------------------+ |
1666
+ | | data formatter result | |
1667
+ | +-------------------------------------------------+ |
1668
+ | | +1234 S9999 +1234 | |
1669
+ | +-------------------------------------------------+ |
1670
+ +--------------------------------------------------------------------------------------------------+
1671
+ | TM (text minimum format) Returns the smallest number of |
1672
+ | characters possible. This element is case insensitive. |
1673
+ | TM or TM9 return the number in fixed notation unless |
1674
+ | the output exceeds 64 characters. If the output exceeds |
1675
+ | 64 characters, the number is returned in scientific |
1676
+ | notation. |
1677
+ | TME returns the number in scientific notation with the |
1678
+ | smallest number of characters. |
1679
+ | You cannot precede this element with an other element. |
1680
+ | You can follow this element only with one 9 or one E |
1681
+ | (or e), but not with any combination of these. |
1682
+ | Example: |
1683
+ | +-------------------------------------------------+ |
1684
+ | | data formatter result | |
1685
+ | +-------------------------------------------------+ |
1686
+ | | 1234 TM 1234 | |
1687
+ | +-------------------------------------------------+ |
1688
+ +--------------------------------------------------------------------------------------------------+
1689
+ | U (dual currency) The string that represents the dual |
1690
+ | currency as specified in the DualCurrency element |
1691
+ | according to system settings. |
1692
+ | Example: |
1693
+ | +-------------------------------------------------+ |
1694
+ | | data formatter result | |
1695
+ | +-------------------------------------------------+ |
1696
+ | | 1234 U9999 $1234 | |
1697
+ | +-------------------------------------------------+ |
1698
+ +--------------------------------------------------------------------------------------------------+
1699
+ | V A value multiplied by 10 to the n (and, if necessary, |
1700
+ | rounded up), where n is the number of 9's after the V. |
1701
+ | Example: |
1702
+ | +-------------------------------------------------+ |
1703
+ | | data formatter result | |
1704
+ | +-------------------------------------------------+ |
1705
+ | | 1234 9999V99 123400 | |
1706
+ | +-------------------------------------------------+ |
1707
+ +--------------------------------------------------------------------------------------------------+
1708
+ | X The hexadecimal value of the specified number of digits.|
1709
+ | If the specified number is not an integer, the function |
1710
+ | will round it to an integer. |
1711
+ | This element accepts only positive values or zero. |
1712
+ | Negative values return an error. You can precede this |
1713
+ | element only with zero (which returns leading zeros) or |
1714
+ | FM. Any other elements return an error. If you do not |
1715
+ | specify zero or FM, the return always has one leading |
1716
+ | blank. |
1717
+ | Example: |
1718
+ | +-------------------------------------------------+ |
1719
+ | | data formatter result | |
1720
+ | +-------------------------------------------------+ |
1721
+ | | 1234 XXXX 4D2 | |
1722
+ | +-------------------------------------------------+ |
1723
+ +--------------------------------------------------------------------------------------------------+
1724
+ +--------------------------------------------------------------------------------------------------+
1725
+ | FORMATTER DESCRIPTION |
1726
+ +--------------------------------------------------------------------------------------------------+
1727
+ | - |
1728
+ | / |
1729
+ | , Punctuation characters are ignored and text enclosed in |
1730
+ | . quotation marks is ignored. |
1731
+ | ; |
1732
+ | : |
1733
+ | "text" |
1734
+ | Example: |
1735
+ | +-------------------------------------------------+ |
1736
+ | | data formatter result | |
1737
+ | +-------------------------------------------------+ |
1738
+ | | 03/09/17 MM-DD 09-17 | |
1739
+ | +-------------------------------------------------+ |
1740
+ +--------------------------------------------------------------------------------------------------+
1741
+ | AD AD indicator. |
1742
+ | A.D. |
1743
+ | Example: |
1744
+ | +-------------------------------------------------+ |
1745
+ | | data formatter result | |
1746
+ | +-------------------------------------------------+ |
1747
+ | | 03/09/17 CCAD 21AD | |
1748
+ | +-------------------------------------------------+ |
1749
+ +--------------------------------------------------------------------------------------------------+
1750
+ | AM Meridian indicator. |
1751
+ | A.M. |
1752
+ | Example: |
1753
+ | +-------------------------------------------------+ |
1754
+ | | data formatter result | |
1755
+ | +-------------------------------------------------+ |
1756
+ | | 03/09/17 CCAM 21AM | |
1757
+ | +-------------------------------------------------+ |
1758
+ +--------------------------------------------------------------------------------------------------+
1759
+ | BC |
1760
+ | B.C. BC indicator. |
1761
+ | Example: |
1762
+ | +-------------------------------------------------+ |
1763
+ | | data formatter result | |
1764
+ | +-------------------------------------------------+ |
1765
+ | | 03/09/17 CCBC 21BC | |
1766
+ | +-------------------------------------------------+ |
1767
+ +--------------------------------------------------------------------------------------------------+
1768
+ | CC Century. |
1769
+ | SCC If the last 2 digits of a 4-digit year are between 01 |
1770
+ | and 99 inclusive, the century is 1 greater than the |
1771
+ | first 2 digits of that year. |
1772
+ | If the last 2 digits of a 4-digit year are 00, the |
1773
+ | century is the same as the first 2 digits of that year. |
1774
+ | Example: |
1775
+ | +-------------------------------------------------+ |
1776
+ | | data formatter result | |
1777
+ | +-------------------------------------------------+ |
1778
+ | | 03/09/17 CCBC 21BC | |
1779
+ | +-------------------------------------------------+ |
1780
+ +--------------------------------------------------------------------------------------------------+
1781
+ | D Day of week (1-7). |
1782
+ | Example: |
1783
+ | +-------------------------------------------------+ |
1784
+ | | data formatter result | |
1785
+ | +-------------------------------------------------+ |
1786
+ | | 03/09/17 D 4 | |
1787
+ | +-------------------------------------------------+ |
1788
+ +--------------------------------------------------------------------------------------------------+
1789
+ | DAY Name of day. |
1790
+ | Example: |
1791
+ | +-------------------------------------------------+ |
1792
+ | | data formatter result | |
1793
+ | +-------------------------------------------------+ |
1794
+ | | 03/09/17 DAY WEDNESDAY | |
1795
+ | +-------------------------------------------------+ |
1796
+ +--------------------------------------------------------------------------------------------------+
1797
+ | DD Day of month (1-31). |
1798
+ | Example: |
1799
+ | +-------------------------------------------------+ |
1800
+ | | data formatter result | |
1801
+ | +-------------------------------------------------+ |
1802
+ | | 03/09/17 DD 17 | |
1803
+ | +-------------------------------------------------+ |
1804
+ +--------------------------------------------------------------------------------------------------+
1805
+ | DDD Day of year (1-366). |
1806
+ | Example: |
1807
+ | +-------------------------------------------------+ |
1808
+ | | data formatter result | |
1809
+ | +-------------------------------------------------+ |
1810
+ | | 03/09/17 DDD 260 | |
1811
+ | +-------------------------------------------------+ |
1812
+ +--------------------------------------------------------------------------------------------------+
1813
+ | DL Date Long. Equivalent to the format string ‘FMDay, |
1814
+ | Month FMDD, YYYY’. |
1815
+ | Example: |
1816
+ | +-------------------------------------------------+ |
1817
+ | | data formatter result | |
1818
+ | +-------------------------------------------------+ |
1819
+ | | 03/09/17 DL Wednesday, September 17, 2003| |
1820
+ | +-------------------------------------------------+ |
1821
+ +--------------------------------------------------------------------------------------------------+
1822
+ | DS Date Short. Equivalent to the format string |
1823
+ | ‘FMMM/DD/YYYYFM’. |
1824
+ | Example: |
1825
+ | +-------------------------------------------------+ |
1826
+ | | data formatter result | |
1827
+ | +-------------------------------------------------+ |
1828
+ | | 03/09/17 DS 9/17/2003 | |
1829
+ | +-------------------------------------------------+ |
1830
+ +--------------------------------------------------------------------------------------------------+
1831
+ | DY abbreviated name of day. |
1832
+ | Example: |
1833
+ | +-------------------------------------------------+ |
1834
+ | | data formatter result | |
1835
+ | +-------------------------------------------------+ |
1836
+ | | 03/09/17 DY WED | |
1837
+ | +-------------------------------------------------+ |
1838
+ +--------------------------------------------------------------------------------------------------+
1839
+ | FF [1..9] Fractional seconds. |
1840
+ | Use [1..9] to specify the number of fractional digits. |
1841
+ | FF without any number following it prints a decimal |
1842
+ | followed by digits equal to the number of fractional |
1843
+ | seconds in the input data type. If the data type has no |
1844
+ | fractional digits, FF prints nothing. |
1845
+ | Any fractional digits beyond 6 digits are truncated. |
1846
+ | Example: |
1847
+ | +-------------------------------------------------+ |
1848
+ | | data formatter result | |
1849
+ | +-------------------------------------------------+ |
1850
+ | | 2016-01-06 09:08:01.000000 FF 000000 | |
1851
+ | +-------------------------------------------------+ |
1852
+ +--------------------------------------------------------------------------------------------------+
1853
+ | HH |
1854
+ | HH12 Hour of day (1-12). |
1855
+ | Example: |
1856
+ | +-------------------------------------------------+ |
1857
+ | | data formatter result | |
1858
+ | +-------------------------------------------------+ |
1859
+ | | 2016-01-06 09:08:01.000000 HH 09 | |
1860
+ | +-------------------------------------------------+ |
1861
+ +--------------------------------------------------------------------------------------------------+
1862
+ | HH24 Hour of the day (0-23). |
1863
+ | Example: |
1864
+ | +-------------------------------------------------+ |
1865
+ | | data formatter result | |
1866
+ | +-------------------------------------------------+ |
1867
+ | | 2016-01-06 09:08:01.000000 HH24 09 | |
1868
+ | +-------------------------------------------------+ |
1869
+ +--------------------------------------------------------------------------------------------------+
1870
+ | IW Week of year (1-52 or 1-53) based on ISO model. |
1871
+ | Example: |
1872
+ | +-------------------------------------------------+ |
1873
+ | | data formatter result | |
1874
+ | +-------------------------------------------------+ |
1875
+ | | 2016-01-06 09:08:01.000000 IW 01 | |
1876
+ | +-------------------------------------------------+ |
1877
+ +--------------------------------------------------------------------------------------------------+
1878
+ | IYY |
1879
+ | IY Last 3, 2, or 1 digits of ISO year. |
1880
+ | I |
1881
+ | Example: |
1882
+ | +-------------------------------------------------+ |
1883
+ | | data formatter result | |
1884
+ | +-------------------------------------------------+ |
1885
+ | | 2016-01-06 09:08:01.000000 IY 16 | |
1886
+ | +-------------------------------------------------+ |
1887
+ +--------------------------------------------------------------------------------------------------+
1888
+ | IYYY 4-digit year based on the ISO standard. |
1889
+ | Example: |
1890
+ | +-------------------------------------------------+ |
1891
+ | | data formatter result | |
1892
+ | +-------------------------------------------------+ |
1893
+ | | 2016-01-06 09:08:01.000000 IYYY 2016 | |
1894
+ | +-------------------------------------------------+ |
1895
+ +--------------------------------------------------------------------------------------------------+
1896
+ | J Julian day, the number of days since January 1, 4713 BC. |
1897
+ | Number specified with J must be integers. |
1898
+ | Teradata uses the Gregorian calendar in calculations to |
1899
+ | and from Julian Days. |
1900
+ | Example: |
1901
+ | +-------------------------------------------------+ |
1902
+ | | data formatter result | |
1903
+ | +-------------------------------------------------+ |
1904
+ | | 2016-01-06 09:08:01.000000 J 2457394 | |
1905
+ | +-------------------------------------------------+ |
1906
+ +--------------------------------------------------------------------------------------------------+
1907
+ | MI Minute (0-59). |
1908
+ | Example: |
1909
+ | +-------------------------------------------------+ |
1910
+ | | data formatter result | |
1911
+ | +-------------------------------------------------+ |
1912
+ | | 2016-01-06 09:08:01.000000 MI 08 | |
1913
+ | +-------------------------------------------------+ |
1914
+ +--------------------------------------------------------------------------------------------------+
1915
+ | MM Month (01-12). |
1916
+ | Example: |
1917
+ | +-------------------------------------------------+ |
1918
+ | | data formatter result | |
1919
+ | +-------------------------------------------------+ |
1920
+ | | 2016-01-06 09:08:01.000000 MM 01 | |
1921
+ | +-------------------------------------------------+ |
1922
+ +--------------------------------------------------------------------------------------------------+
1923
+ | MON Abbreviated name of month. |
1924
+ | Example: |
1925
+ | +-------------------------------------------------+ |
1926
+ | | data formatter result | |
1927
+ | +-------------------------------------------------+ |
1928
+ | | 2016-01-06 09:08:01.000000 MON JAN | |
1929
+ | +-------------------------------------------------+ |
1930
+ +--------------------------------------------------------------------------------------------------+
1931
+ | MONTH Name of month. |
1932
+ | Example: |
1933
+ | +-------------------------------------------------+ |
1934
+ | | data formatter result | |
1935
+ | +-------------------------------------------------+ |
1936
+ | | 2016-01-06 09:08:01.000000 MONTH JANUARY | |
1937
+ | +-------------------------------------------------+ |
1938
+ +--------------------------------------------------------------------------------------------------+
1939
+ | PM |
1940
+ | P.M. Meridian indicator. |
1941
+ | Example: |
1942
+ | +-------------------------------------------------+ |
1943
+ | | data formatter result | |
1944
+ | +-------------------------------------------------+ |
1945
+ | | 2016-01-06 09:08:01.000000 HHPM 09PM | |
1946
+ | +-------------------------------------------------+ |
1947
+ +--------------------------------------------------------------------------------------------------+
1948
+ | Q Quarter of year (1, 2, 3, 4). |
1949
+ | Example: |
1950
+ | +-------------------------------------------------+ |
1951
+ | | data formatter result | |
1952
+ | +-------------------------------------------------+ |
1953
+ | | 2016-01-06 09:08:01.000000 Q 1 | |
1954
+ | +-------------------------------------------------+ |
1955
+ +--------------------------------------------------------------------------------------------------+
1956
+ | RM Roman numeral month (I - XII). |
1957
+ | Example: |
1958
+ | +-------------------------------------------------+ |
1959
+ | | data formatter result | |
1960
+ | +-------------------------------------------------+ |
1961
+ | | 2016-01-06 09:08:01.000000 RM I | |
1962
+ | +-------------------------------------------------+ |
1963
+ +--------------------------------------------------------------------------------------------------+
1964
+ | SP Spelled. Any numeric element followed by SP is spelled in|
1965
+ | English words. The words are capitalized according to how|
1966
+ | the element is capitalized. |
1967
+ | For example: 'DDDSP' specifies all uppercase, 'DddSP' |
1968
+ | specifies that the first letter is capitalized, and |
1969
+ | 'dddSP' specifies all lowercase. |
1970
+ | Example: |
1971
+ | +-------------------------------------------------+ |
1972
+ | | data formatter result | |
1973
+ | +-------------------------------------------------+ |
1974
+ | | 2016-01-06 09:08:01.000000 HHSP NINE | |
1975
+ | +-------------------------------------------------+ |
1976
+ +--------------------------------------------------------------------------------------------------+
1977
+ | SS Second (0-59). |
1978
+ | Example: |
1979
+ | +-------------------------------------------------+ |
1980
+ | | data formatter result | |
1981
+ | +-------------------------------------------------+ |
1982
+ | | 2016-01-06 09:08:01.000000 SS 03 | |
1983
+ | +-------------------------------------------------+ |
1984
+ +--------------------------------------------------------------------------------------------------+
1985
+ | SSSSS Seconds past midnight (0-86399). |
1986
+ | Example: |
1987
+ | +-------------------------------------------------+ |
1988
+ | | data formatter result | |
1989
+ | +-------------------------------------------------+ |
1990
+ | | 2016-01-06 09:08:01.000000 SSSSS 32883 | |
1991
+ | +-------------------------------------------------+ |
1992
+ +--------------------------------------------------------------------------------------------------+
1993
+ | TS Time Short. Equivalent to the format string |
1994
+ | 'HH:MI:SS AM'. |
1995
+ | Example: |
1996
+ | +-------------------------------------------------+ |
1997
+ | | data formatter result | |
1998
+ | +-------------------------------------------------+ |
1999
+ | | 2016-01-06 09:08:01.000000 TS 09:08:01 AM | |
2000
+ | +-------------------------------------------------+ |
2001
+ +--------------------------------------------------------------------------------------------------+
2002
+ | TZH Time zone hour. |
2003
+ | Example: |
2004
+ | +-------------------------------------------------+ |
2005
+ | | data formatter result | |
2006
+ | +-------------------------------------------------+ |
2007
+ | | 2016-01-06 09:08:01.000000 TZH +00 | |
2008
+ | +-------------------------------------------------+ |
2009
+ +--------------------------------------------------------------------------------------------------+
2010
+ | TZM Time zone minute. |
2011
+ | Example: |
2012
+ | +-------------------------------------------------+ |
2013
+ | | data formatter result | |
2014
+ | +-------------------------------------------------+ |
2015
+ | | 2016-01-06 09:08:01.000000 TZM 00 | |
2016
+ | +-------------------------------------------------+ |
2017
+ +--------------------------------------------------------------------------------------------------+
2018
+ | TZR Time zone region. Equivalent to the format string |
2019
+ | 'TZH:TZM'. |
2020
+ | Example: |
2021
+ | +-------------------------------------------------+ |
2022
+ | | data formatter result | |
2023
+ | +-------------------------------------------------+ |
2024
+ | | 2016-01-06 09:08:01.000000 TZR +00:00 | |
2025
+ | +-------------------------------------------------+ |
2026
+ +--------------------------------------------------------------------------------------------------+
2027
+ | WW Week of year (1-53) where week 1 starts on the first day |
2028
+ | of the year and continues to the 7th day of the year. |
2029
+ | Example: |
2030
+ | +-------------------------------------------------+ |
2031
+ | | data formatter result | |
2032
+ | +-------------------------------------------------+ |
2033
+ | | 2016-01-06 09:08:01.000000 WW 01 | |
2034
+ | +-------------------------------------------------+ |
2035
+ +--------------------------------------------------------------------------------------------------+
2036
+ | W Week of month (1-5) where week 1 starts on the first day |
2037
+ | of the month and ends on the seventh. |
2038
+ | Example: |
2039
+ | +-------------------------------------------------+ |
2040
+ | | data formatter result | |
2041
+ | +-------------------------------------------------+ |
2042
+ | | 2016-01-06 09:08:01.000000 W 1 | |
2043
+ | +-------------------------------------------------+ |
2044
+ +--------------------------------------------------------------------------------------------------+
2045
+ | X Local radix character. |
2046
+ | Example: |
2047
+ | +-------------------------------------------------+ |
2048
+ | | data formatter result | |
2049
+ | +-------------------------------------------------+ |
2050
+ | | 2016-01-06 09:08:01.000000 MMXYY 01.16 | |
2051
+ | +-------------------------------------------------+ |
2052
+ +--------------------------------------------------------------------------------------------------+
2053
+ | Y,YYY Year with comma in this position. |
2054
+ | Example: |
2055
+ | +-------------------------------------------------+ |
2056
+ | | data formatter result | |
2057
+ | +-------------------------------------------------+ |
2058
+ | | 2016-01-06 09:08:01.000000 Y,YYY 2,016 | |
2059
+ | +-------------------------------------------------+ |
2060
+ +--------------------------------------------------------------------------------------------------+
2061
+ | YEAR Year, spelled out. S prefixes BC dates with a minus sign.|
2062
+ | SYEAR |
2063
+ | Example: |
2064
+ | +-------------------------------------------------+ |
2065
+ | | data formatter result | |
2066
+ | +-------------------------------------------------+ |
2067
+ | | 2016-01-06 09:08:01.000000 YEAR TWENTY SIXTEEN| |
2068
+ | +-------------------------------------------------+ |
2069
+ +--------------------------------------------------------------------------------------------------+
2070
+ | YYYY |
2071
+ | SYYYY 4-digit year. S prefixes BC dates with a minus sign. |
2072
+ | Example: |
2073
+ | +-------------------------------------------------+ |
2074
+ | | data formatter result | |
2075
+ | +-------------------------------------------------+ |
2076
+ | | 2016-01-06 09:08:01.000000 YYYY 2016 | |
2077
+ | +-------------------------------------------------+ |
2078
+ +--------------------------------------------------------------------------------------------------+
2079
+ | YYY Last 3, 2, or 1 digit of year. |
2080
+ | YY If the current year and the specified year are both in |
2081
+ | Y the range of 0-49, the date is in the current century. |
2082
+ | Example: |
2083
+ | +-------------------------------------------------+ |
2084
+ | | data formatter result | |
2085
+ | +-------------------------------------------------+ |
2086
+ | | 2016-01-06 09:08:01.000000 YY 16 | |
2087
+ | +-------------------------------------------------+ |
2088
+ +--------------------------------------------------------------------------------------------------+
2089
+ """
2090
+ # Validate formatter_type
2091
+ if formatter_type not in [None, "NUMERIC", "DATE", "CHAR"]:
2092
+ raise ValueError(
2093
+ "formatter_type must be one of 'NUMERIC', 'DATE', 'CHAR' or None."
2094
+ )
2095
+ if formatter_type is None:
2096
+ formatter = (
2097
+ numeric_formatters
2098
+ + "\n\n"
2099
+ + date_formatters
2100
+ + "\n\n"
2101
+ + char_formatters
2102
+ + "\n\n"
2103
+ )
2104
+ elif formatter_type == "NUMERIC":
2105
+ formatter = numeric_formatters
2106
+ elif formatter_type == "DATE":
2107
+ formatter = date_formatters
2108
+ elif formatter_type == "CHAR":
2109
+ formatter = char_formatters
2110
+ print(formatter)