teradataml 20.0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +2762 -0
- teradataml/__init__.py +78 -0
- teradataml/_version.py +11 -0
- teradataml/analytics/Transformations.py +2996 -0
- teradataml/analytics/__init__.py +82 -0
- teradataml/analytics/analytic_function_executor.py +2416 -0
- teradataml/analytics/analytic_query_generator.py +1050 -0
- teradataml/analytics/byom/H2OPredict.py +514 -0
- teradataml/analytics/byom/PMMLPredict.py +437 -0
- teradataml/analytics/byom/__init__.py +16 -0
- teradataml/analytics/json_parser/__init__.py +133 -0
- teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
- teradataml/analytics/json_parser/json_store.py +191 -0
- teradataml/analytics/json_parser/metadata.py +1666 -0
- teradataml/analytics/json_parser/utils.py +805 -0
- teradataml/analytics/meta_class.py +236 -0
- teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
- teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
- teradataml/analytics/sqle/__init__.py +128 -0
- teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
- teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
- teradataml/analytics/table_operator/__init__.py +11 -0
- teradataml/analytics/uaf/__init__.py +82 -0
- teradataml/analytics/utils.py +828 -0
- teradataml/analytics/valib.py +1617 -0
- teradataml/automl/__init__.py +5835 -0
- teradataml/automl/autodataprep/__init__.py +493 -0
- teradataml/automl/custom_json_utils.py +1625 -0
- teradataml/automl/data_preparation.py +1384 -0
- teradataml/automl/data_transformation.py +1254 -0
- teradataml/automl/feature_engineering.py +2273 -0
- teradataml/automl/feature_exploration.py +1873 -0
- teradataml/automl/model_evaluation.py +488 -0
- teradataml/automl/model_training.py +1407 -0
- teradataml/catalog/__init__.py +2 -0
- teradataml/catalog/byom.py +1759 -0
- teradataml/catalog/function_argument_mapper.py +859 -0
- teradataml/catalog/model_cataloging_utils.py +491 -0
- teradataml/clients/__init__.py +0 -0
- teradataml/clients/auth_client.py +137 -0
- teradataml/clients/keycloak_client.py +165 -0
- teradataml/clients/pkce_client.py +481 -0
- teradataml/common/__init__.py +1 -0
- teradataml/common/aed_utils.py +2078 -0
- teradataml/common/bulk_exposed_utils.py +113 -0
- teradataml/common/constants.py +1669 -0
- teradataml/common/deprecations.py +166 -0
- teradataml/common/exceptions.py +147 -0
- teradataml/common/formula.py +743 -0
- teradataml/common/garbagecollector.py +666 -0
- teradataml/common/logger.py +1261 -0
- teradataml/common/messagecodes.py +518 -0
- teradataml/common/messages.py +262 -0
- teradataml/common/pylogger.py +67 -0
- teradataml/common/sqlbundle.py +764 -0
- teradataml/common/td_coltype_code_to_tdtype.py +48 -0
- teradataml/common/utils.py +3166 -0
- teradataml/common/warnings.py +36 -0
- teradataml/common/wrapper_utils.py +625 -0
- teradataml/config/__init__.py +0 -0
- teradataml/config/dummy_file1.cfg +5 -0
- teradataml/config/dummy_file2.cfg +3 -0
- teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
- teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
- teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
- teradataml/context/__init__.py +0 -0
- teradataml/context/aed_context.py +223 -0
- teradataml/context/context.py +1462 -0
- teradataml/data/A_loan.csv +19 -0
- teradataml/data/BINARY_REALS_LEFT.csv +11 -0
- teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
- teradataml/data/B_loan.csv +49 -0
- teradataml/data/BuoyData2.csv +17 -0
- teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
- teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
- teradataml/data/Convolve2RealsLeft.csv +5 -0
- teradataml/data/Convolve2RealsRight.csv +5 -0
- teradataml/data/Convolve2ValidLeft.csv +11 -0
- teradataml/data/Convolve2ValidRight.csv +11 -0
- teradataml/data/DFFTConv_Real_8_8.csv +65 -0
- teradataml/data/Employee.csv +5 -0
- teradataml/data/Employee_Address.csv +4 -0
- teradataml/data/Employee_roles.csv +5 -0
- teradataml/data/JulesBelvezeDummyData.csv +100 -0
- teradataml/data/Mall_customer_data.csv +201 -0
- teradataml/data/Orders1_12mf.csv +25 -0
- teradataml/data/Pi_loan.csv +7 -0
- teradataml/data/SMOOTHED_DATA.csv +7 -0
- teradataml/data/TestDFFT8.csv +9 -0
- teradataml/data/TestRiver.csv +109 -0
- teradataml/data/Traindata.csv +28 -0
- teradataml/data/__init__.py +0 -0
- teradataml/data/acf.csv +17 -0
- teradataml/data/adaboost_example.json +34 -0
- teradataml/data/adaboostpredict_example.json +24 -0
- teradataml/data/additional_table.csv +11 -0
- teradataml/data/admissions_test.csv +21 -0
- teradataml/data/admissions_train.csv +41 -0
- teradataml/data/admissions_train_nulls.csv +41 -0
- teradataml/data/advertising.csv +201 -0
- teradataml/data/ageandheight.csv +13 -0
- teradataml/data/ageandpressure.csv +31 -0
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/antiselect_example.json +36 -0
- teradataml/data/antiselect_input.csv +8 -0
- teradataml/data/antiselect_input_mixed_case.csv +8 -0
- teradataml/data/applicant_external.csv +7 -0
- teradataml/data/applicant_reference.csv +7 -0
- teradataml/data/apriori_example.json +22 -0
- teradataml/data/arima_example.json +9 -0
- teradataml/data/assortedtext_input.csv +8 -0
- teradataml/data/attribution_example.json +34 -0
- teradataml/data/attribution_sample_table.csv +27 -0
- teradataml/data/attribution_sample_table1.csv +6 -0
- teradataml/data/attribution_sample_table2.csv +11 -0
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bank_web_clicks1.csv +43 -0
- teradataml/data/bank_web_clicks2.csv +91 -0
- teradataml/data/bank_web_url.csv +85 -0
- teradataml/data/barrier.csv +2 -0
- teradataml/data/barrier_new.csv +3 -0
- teradataml/data/betweenness_example.json +14 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/bin_breaks.csv +8 -0
- teradataml/data/bin_fit_ip.csv +4 -0
- teradataml/data/binary_complex_left.csv +11 -0
- teradataml/data/binary_complex_right.csv +11 -0
- teradataml/data/binary_matrix_complex_left.csv +21 -0
- teradataml/data/binary_matrix_complex_right.csv +21 -0
- teradataml/data/binary_matrix_real_left.csv +21 -0
- teradataml/data/binary_matrix_real_right.csv +21 -0
- teradataml/data/blood2ageandweight.csv +26 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/boston.csv +507 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/buoydata_mix.csv +11 -0
- teradataml/data/burst_data.csv +5 -0
- teradataml/data/burst_example.json +21 -0
- teradataml/data/byom_example.json +34 -0
- teradataml/data/bytes_table.csv +4 -0
- teradataml/data/cal_housing_ex_raw.csv +70 -0
- teradataml/data/callers.csv +7 -0
- teradataml/data/calls.csv +10 -0
- teradataml/data/cars_hist.csv +33 -0
- teradataml/data/cat_table.csv +25 -0
- teradataml/data/ccm_example.json +32 -0
- teradataml/data/ccm_input.csv +91 -0
- teradataml/data/ccm_input2.csv +13 -0
- teradataml/data/ccmexample.csv +101 -0
- teradataml/data/ccmprepare_example.json +9 -0
- teradataml/data/ccmprepare_input.csv +91 -0
- teradataml/data/cfilter_example.json +12 -0
- teradataml/data/changepointdetection_example.json +18 -0
- teradataml/data/changepointdetectionrt_example.json +8 -0
- teradataml/data/chi_sq.csv +3 -0
- teradataml/data/churn_data.csv +14 -0
- teradataml/data/churn_emission.csv +35 -0
- teradataml/data/churn_initial.csv +3 -0
- teradataml/data/churn_state_transition.csv +5 -0
- teradataml/data/citedges_2.csv +745 -0
- teradataml/data/citvertices_2.csv +1210 -0
- teradataml/data/clicks2.csv +16 -0
- teradataml/data/clickstream.csv +13 -0
- teradataml/data/clickstream1.csv +11 -0
- teradataml/data/closeness_example.json +16 -0
- teradataml/data/complaints.csv +21 -0
- teradataml/data/complaints_mini.csv +3 -0
- teradataml/data/complaints_test_tokenized.csv +353 -0
- teradataml/data/complaints_testtoken.csv +224 -0
- teradataml/data/complaints_tokens_model.csv +348 -0
- teradataml/data/complaints_tokens_test.csv +353 -0
- teradataml/data/complaints_traintoken.csv +472 -0
- teradataml/data/computers_category.csv +1001 -0
- teradataml/data/computers_test1.csv +1252 -0
- teradataml/data/computers_train1.csv +5009 -0
- teradataml/data/computers_train1_clustered.csv +5009 -0
- teradataml/data/confusionmatrix_example.json +9 -0
- teradataml/data/conversion_event_table.csv +3 -0
- teradataml/data/corr_input.csv +17 -0
- teradataml/data/correlation_example.json +11 -0
- teradataml/data/covid_confirm_sd.csv +83 -0
- teradataml/data/coxhazardratio_example.json +39 -0
- teradataml/data/coxph_example.json +15 -0
- teradataml/data/coxsurvival_example.json +28 -0
- teradataml/data/cpt.csv +41 -0
- teradataml/data/credit_ex_merged.csv +45 -0
- teradataml/data/creditcard_data.csv +1001 -0
- teradataml/data/customer_loyalty.csv +301 -0
- teradataml/data/customer_loyalty_newseq.csv +31 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/dataframe_example.json +173 -0
- teradataml/data/decisionforest_example.json +37 -0
- teradataml/data/decisionforestpredict_example.json +38 -0
- teradataml/data/decisiontree_example.json +21 -0
- teradataml/data/decisiontreepredict_example.json +45 -0
- teradataml/data/dfft2_size4_real.csv +17 -0
- teradataml/data/dfft2_test_matrix16.csv +17 -0
- teradataml/data/dfft2conv_real_4_4.csv +65 -0
- teradataml/data/diabetes.csv +443 -0
- teradataml/data/diabetes_test.csv +89 -0
- teradataml/data/dict_table.csv +5 -0
- teradataml/data/docperterm_table.csv +4 -0
- teradataml/data/docs/__init__.py +1 -0
- teradataml/data/docs/byom/__init__.py +0 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
- teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
- teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
- teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
- teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
- teradataml/data/docs/byom/docs/__init__.py +0 -0
- teradataml/data/docs/sqle/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
- teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
- teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
- teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
- teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
- teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
- teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
- teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
- teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
- teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
- teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
- teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
- teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
- teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
- teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
- teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
- teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
- teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
- teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
- teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
- teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
- teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
- teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
- teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
- teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
- teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
- teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
- teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
- teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
- teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
- teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
- teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
- teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
- teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
- teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
- teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
- teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
- teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
- teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
- teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
- teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
- teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
- teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
- teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
- teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
- teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
- teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
- teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
- teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
- teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
- teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/tableoperator/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
- teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
- teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
- teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
- teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
- teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
- teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
- teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
- teradataml/data/docs/uaf/__init__.py +0 -0
- teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
- teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
- teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
- teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
- teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
- teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
- teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
- teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
- teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
- teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
- teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
- teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
- teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
- teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
- teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
- teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
- teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
- teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
- teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
- teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
- teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
- teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
- teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
- teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
- teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
- teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
- teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
- teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
- teradataml/data/dtw_example.json +18 -0
- teradataml/data/dtw_t1.csv +11 -0
- teradataml/data/dtw_t2.csv +4 -0
- teradataml/data/dwt2d_dataTable.csv +65 -0
- teradataml/data/dwt2d_example.json +16 -0
- teradataml/data/dwt_dataTable.csv +8 -0
- teradataml/data/dwt_example.json +15 -0
- teradataml/data/dwt_filterTable.csv +3 -0
- teradataml/data/dwt_filter_dim.csv +5 -0
- teradataml/data/emission.csv +9 -0
- teradataml/data/emp_table_by_dept.csv +19 -0
- teradataml/data/employee_info.csv +4 -0
- teradataml/data/employee_table.csv +6 -0
- teradataml/data/excluding_event_table.csv +2 -0
- teradataml/data/finance_data.csv +6 -0
- teradataml/data/finance_data2.csv +61 -0
- teradataml/data/finance_data3.csv +93 -0
- teradataml/data/finance_data4.csv +13 -0
- teradataml/data/fish.csv +160 -0
- teradataml/data/fm_blood2ageandweight.csv +26 -0
- teradataml/data/fmeasure_example.json +12 -0
- teradataml/data/followers_leaders.csv +10 -0
- teradataml/data/fpgrowth_example.json +12 -0
- teradataml/data/frequentpaths_example.json +29 -0
- teradataml/data/friends.csv +9 -0
- teradataml/data/fs_input.csv +33 -0
- teradataml/data/fs_input1.csv +33 -0
- teradataml/data/genData.csv +513 -0
- teradataml/data/geodataframe_example.json +40 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/glm_admissions_model.csv +12 -0
- teradataml/data/glm_example.json +56 -0
- teradataml/data/glml1l2_example.json +28 -0
- teradataml/data/glml1l2predict_example.json +54 -0
- teradataml/data/glmpredict_example.json +54 -0
- teradataml/data/gq_t1.csv +21 -0
- teradataml/data/grocery_transaction.csv +19 -0
- teradataml/data/hconvolve_complex_right.csv +5 -0
- teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
- teradataml/data/histogram_example.json +12 -0
- teradataml/data/hmmdecoder_example.json +79 -0
- teradataml/data/hmmevaluator_example.json +25 -0
- teradataml/data/hmmsupervised_example.json +10 -0
- teradataml/data/hmmunsupervised_example.json +8 -0
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/house_values.csv +12 -0
- teradataml/data/house_values2.csv +13 -0
- teradataml/data/housing_cat.csv +7 -0
- teradataml/data/housing_data.csv +9 -0
- teradataml/data/housing_test.csv +47 -0
- teradataml/data/housing_test_binary.csv +47 -0
- teradataml/data/housing_train.csv +493 -0
- teradataml/data/housing_train_attribute.csv +5 -0
- teradataml/data/housing_train_binary.csv +437 -0
- teradataml/data/housing_train_parameter.csv +2 -0
- teradataml/data/housing_train_response.csv +493 -0
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/ibm_stock.csv +370 -0
- teradataml/data/ibm_stock1.csv +370 -0
- teradataml/data/identitymatch_example.json +22 -0
- teradataml/data/idf_table.csv +4 -0
- teradataml/data/idwt2d_dataTable.csv +5 -0
- teradataml/data/idwt_dataTable.csv +8 -0
- teradataml/data/idwt_filterTable.csv +3 -0
- teradataml/data/impressions.csv +101 -0
- teradataml/data/inflation.csv +21 -0
- teradataml/data/initial.csv +3 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/insect_sprays.csv +13 -0
- teradataml/data/insurance.csv +1339 -0
- teradataml/data/interpolator_example.json +13 -0
- teradataml/data/interval_data.csv +5 -0
- teradataml/data/iris_altinput.csv +481 -0
- teradataml/data/iris_attribute_output.csv +8 -0
- teradataml/data/iris_attribute_test.csv +121 -0
- teradataml/data/iris_attribute_train.csv +481 -0
- teradataml/data/iris_category_expect_predict.csv +31 -0
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/iris_input.csv +151 -0
- teradataml/data/iris_response_train.csv +121 -0
- teradataml/data/iris_test.csv +31 -0
- teradataml/data/iris_train.csv +121 -0
- teradataml/data/join_table1.csv +4 -0
- teradataml/data/join_table2.csv +4 -0
- teradataml/data/jsons/anly_function_name.json +7 -0
- teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
- teradataml/data/jsons/byom/dataikupredict.json +148 -0
- teradataml/data/jsons/byom/datarobotpredict.json +147 -0
- teradataml/data/jsons/byom/h2opredict.json +195 -0
- teradataml/data/jsons/byom/onnxembeddings.json +267 -0
- teradataml/data/jsons/byom/onnxpredict.json +187 -0
- teradataml/data/jsons/byom/pmmlpredict.json +147 -0
- teradataml/data/jsons/paired_functions.json +450 -0
- teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
- teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
- teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
- teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
- teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
- teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
- teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
- teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
- teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
- teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
- teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
- teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
- teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
- teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
- teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
- teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
- teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
- teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
- teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
- teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
- teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
- teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
- teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
- teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
- teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
- teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
- teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
- teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
- teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
- teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
- teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
- teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
- teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
- teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
- teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
- teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
- teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
- teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
- teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
- teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
- teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
- teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
- teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
- teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
- teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
- teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
- teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
- teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
- teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
- teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
- teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
- teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
- teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
- teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
- teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
- teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
- teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
- teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
- teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
- teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
- teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
- teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
- teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
- teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
- teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
- teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
- teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
- teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
- teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
- teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
- teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
- teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
- teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
- teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
- teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
- teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
- teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
- teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
- teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
- teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
- teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
- teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
- teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
- teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
- teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
- teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
- teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
- teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
- teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
- teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
- teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
- teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
- teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
- teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
- teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
- teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
- teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
- teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
- teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
- teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
- teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
- teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
- teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
- teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
- teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
- teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
- teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
- teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
- teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
- teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
- teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
- teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
- teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
- teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
- teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
- teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
- teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
- teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
- teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
- teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
- teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
- teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
- teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
- teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
- teradataml/data/kmeans_example.json +23 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/kmeans_us_arrests_data.csv +51 -0
- teradataml/data/knn_example.json +19 -0
- teradataml/data/knnrecommender_example.json +7 -0
- teradataml/data/knnrecommenderpredict_example.json +12 -0
- teradataml/data/lar_example.json +17 -0
- teradataml/data/larpredict_example.json +30 -0
- teradataml/data/lc_new_predictors.csv +5 -0
- teradataml/data/lc_new_reference.csv +9 -0
- teradataml/data/lda_example.json +9 -0
- teradataml/data/ldainference_example.json +15 -0
- teradataml/data/ldatopicsummary_example.json +9 -0
- teradataml/data/levendist_input.csv +13 -0
- teradataml/data/levenshteindistance_example.json +10 -0
- teradataml/data/linreg_example.json +10 -0
- teradataml/data/load_example_data.py +350 -0
- teradataml/data/loan_prediction.csv +295 -0
- teradataml/data/lungcancer.csv +138 -0
- teradataml/data/mappingdata.csv +12 -0
- teradataml/data/medical_readings.csv +101 -0
- teradataml/data/milk_timeseries.csv +157 -0
- teradataml/data/min_max_titanic.csv +4 -0
- teradataml/data/minhash_example.json +6 -0
- teradataml/data/ml_ratings.csv +7547 -0
- teradataml/data/ml_ratings_10.csv +2445 -0
- teradataml/data/mobile_data.csv +13 -0
- teradataml/data/model1_table.csv +5 -0
- teradataml/data/model2_table.csv +5 -0
- teradataml/data/models/License_file.txt +1 -0
- teradataml/data/models/License_file_empty.txt +0 -0
- teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
- teradataml/data/models/dr_iris_rf +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
- teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
- teradataml/data/models/iris_db_glm_model.pmml +57 -0
- teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
- teradataml/data/models/iris_kmeans_model +0 -0
- teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
- teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
- teradataml/data/modularity_example.json +12 -0
- teradataml/data/movavg_example.json +8 -0
- teradataml/data/mtx1.csv +7 -0
- teradataml/data/mtx2.csv +13 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/mvdfft8.csv +9 -0
- teradataml/data/naivebayes_example.json +10 -0
- teradataml/data/naivebayespredict_example.json +19 -0
- teradataml/data/naivebayestextclassifier2_example.json +7 -0
- teradataml/data/naivebayestextclassifier_example.json +8 -0
- teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
- teradataml/data/name_Find_configure.csv +10 -0
- teradataml/data/namedentityfinder_example.json +14 -0
- teradataml/data/namedentityfinderevaluator_example.json +10 -0
- teradataml/data/namedentityfindertrainer_example.json +6 -0
- teradataml/data/nb_iris_input_test.csv +31 -0
- teradataml/data/nb_iris_input_train.csv +121 -0
- teradataml/data/nbp_iris_model.csv +13 -0
- teradataml/data/ner_dict.csv +8 -0
- teradataml/data/ner_extractor_text.csv +2 -0
- teradataml/data/ner_input_eng.csv +7 -0
- teradataml/data/ner_rule.csv +5 -0
- teradataml/data/ner_sports_test2.csv +29 -0
- teradataml/data/ner_sports_train.csv +501 -0
- teradataml/data/nerevaluator_example.json +6 -0
- teradataml/data/nerextractor_example.json +18 -0
- teradataml/data/nermem_sports_test.csv +18 -0
- teradataml/data/nermem_sports_train.csv +51 -0
- teradataml/data/nertrainer_example.json +7 -0
- teradataml/data/ngrams_example.json +7 -0
- teradataml/data/notebooks/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
- teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
- teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
- teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
- teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
- teradataml/data/npath_example.json +23 -0
- teradataml/data/ntree_example.json +14 -0
- teradataml/data/numeric_strings.csv +5 -0
- teradataml/data/numerics.csv +4 -0
- teradataml/data/ocean_buoy.csv +17 -0
- teradataml/data/ocean_buoy2.csv +17 -0
- teradataml/data/ocean_buoys.csv +28 -0
- teradataml/data/ocean_buoys2.csv +10 -0
- teradataml/data/ocean_buoys_nonpti.csv +28 -0
- teradataml/data/ocean_buoys_seq.csv +29 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +92 -0
- teradataml/data/optional_event_table.csv +4 -0
- teradataml/data/orders1.csv +11 -0
- teradataml/data/orders1_12.csv +13 -0
- teradataml/data/orders_ex.csv +4 -0
- teradataml/data/pack_example.json +9 -0
- teradataml/data/package_tracking.csv +19 -0
- teradataml/data/package_tracking_pti.csv +19 -0
- teradataml/data/pagerank_example.json +13 -0
- teradataml/data/paragraphs_input.csv +6 -0
- teradataml/data/pathanalyzer_example.json +8 -0
- teradataml/data/pathgenerator_example.json +8 -0
- teradataml/data/patient_profile.csv +101 -0
- teradataml/data/pattern_matching_data.csv +11 -0
- teradataml/data/payment_fraud_dataset.csv +10001 -0
- teradataml/data/peppers.png +0 -0
- teradataml/data/phrases.csv +7 -0
- teradataml/data/pivot_example.json +9 -0
- teradataml/data/pivot_input.csv +22 -0
- teradataml/data/playerRating.csv +31 -0
- teradataml/data/pos_input.csv +40 -0
- teradataml/data/postagger_example.json +7 -0
- teradataml/data/posttagger_output.csv +44 -0
- teradataml/data/production_data.csv +17 -0
- teradataml/data/production_data2.csv +7 -0
- teradataml/data/randomsample_example.json +32 -0
- teradataml/data/randomwalksample_example.json +9 -0
- teradataml/data/rank_table.csv +6 -0
- teradataml/data/real_values.csv +14 -0
- teradataml/data/ref_mobile_data.csv +4 -0
- teradataml/data/ref_mobile_data_dense.csv +2 -0
- teradataml/data/ref_url.csv +17 -0
- teradataml/data/restaurant_reviews.csv +7 -0
- teradataml/data/retail_churn_table.csv +27772 -0
- teradataml/data/river_data.csv +145 -0
- teradataml/data/roc_example.json +8 -0
- teradataml/data/roc_input.csv +101 -0
- teradataml/data/rule_inputs.csv +6 -0
- teradataml/data/rule_table.csv +2 -0
- teradataml/data/sales.csv +7 -0
- teradataml/data/sales_transaction.csv +501 -0
- teradataml/data/salesdata.csv +342 -0
- teradataml/data/sample_cities.csv +3 -0
- teradataml/data/sample_shapes.csv +11 -0
- teradataml/data/sample_streets.csv +3 -0
- teradataml/data/sampling_example.json +16 -0
- teradataml/data/sax_example.json +17 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +74 -0
- teradataml/data/scale_housing.csv +11 -0
- teradataml/data/scale_housing_test.csv +6 -0
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scale_stat.csv +11 -0
- teradataml/data/scalebypartition_example.json +13 -0
- teradataml/data/scalemap_example.json +13 -0
- teradataml/data/scalesummary_example.json +12 -0
- teradataml/data/score_category.csv +101 -0
- teradataml/data/score_summary.csv +4 -0
- teradataml/data/script_example.json +10 -0
- teradataml/data/scripts/deploy_script.py +84 -0
- teradataml/data/scripts/lightgbm/dataset.template +175 -0
- teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
- teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
- teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/mapper.py +16 -0
- teradataml/data/scripts/mapper_replace.py +16 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
- teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
- teradataml/data/seeds.csv +10 -0
- teradataml/data/sentenceextractor_example.json +7 -0
- teradataml/data/sentiment_extract_input.csv +11 -0
- teradataml/data/sentiment_train.csv +16 -0
- teradataml/data/sentiment_word.csv +20 -0
- teradataml/data/sentiment_word_input.csv +20 -0
- teradataml/data/sentimentextractor_example.json +24 -0
- teradataml/data/sentimenttrainer_example.json +8 -0
- teradataml/data/sequence_table.csv +10 -0
- teradataml/data/seriessplitter_example.json +8 -0
- teradataml/data/sessionize_example.json +17 -0
- teradataml/data/sessionize_table.csv +116 -0
- teradataml/data/setop_test1.csv +24 -0
- teradataml/data/setop_test2.csv +22 -0
- teradataml/data/soc_nw_edges.csv +11 -0
- teradataml/data/soc_nw_vertices.csv +8 -0
- teradataml/data/souvenir_timeseries.csv +168 -0
- teradataml/data/sparse_iris_attribute.csv +5 -0
- teradataml/data/sparse_iris_test.csv +121 -0
- teradataml/data/sparse_iris_train.csv +601 -0
- teradataml/data/star1.csv +6 -0
- teradataml/data/star_pivot.csv +8 -0
- teradataml/data/state_transition.csv +5 -0
- teradataml/data/stock_data.csv +53 -0
- teradataml/data/stock_movement.csv +11 -0
- teradataml/data/stock_vol.csv +76 -0
- teradataml/data/stop_words.csv +8 -0
- teradataml/data/store_sales.csv +37 -0
- teradataml/data/stringsimilarity_example.json +8 -0
- teradataml/data/strsimilarity_input.csv +13 -0
- teradataml/data/students.csv +101 -0
- teradataml/data/svm_iris_input_test.csv +121 -0
- teradataml/data/svm_iris_input_train.csv +481 -0
- teradataml/data/svm_iris_model.csv +7 -0
- teradataml/data/svmdense_example.json +10 -0
- teradataml/data/svmdensepredict_example.json +19 -0
- teradataml/data/svmsparse_example.json +8 -0
- teradataml/data/svmsparsepredict_example.json +14 -0
- teradataml/data/svmsparsesummary_example.json +8 -0
- teradataml/data/target_mobile_data.csv +13 -0
- teradataml/data/target_mobile_data_dense.csv +5 -0
- teradataml/data/target_udt_data.csv +8 -0
- teradataml/data/tdnerextractor_example.json +14 -0
- teradataml/data/templatedata.csv +1201 -0
- teradataml/data/templates/open_source_ml.json +11 -0
- teradataml/data/teradata_icon.ico +0 -0
- teradataml/data/teradataml_example.json +1473 -0
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_loan_prediction.csv +53 -0
- teradataml/data/test_pacf_12.csv +37 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/test_river2.csv +109 -0
- teradataml/data/text_inputs.csv +6 -0
- teradataml/data/textchunker_example.json +8 -0
- teradataml/data/textclassifier_example.json +7 -0
- teradataml/data/textclassifier_input.csv +7 -0
- teradataml/data/textclassifiertrainer_example.json +7 -0
- teradataml/data/textmorph_example.json +11 -0
- teradataml/data/textparser_example.json +15 -0
- teradataml/data/texttagger_example.json +12 -0
- teradataml/data/texttokenizer_example.json +7 -0
- teradataml/data/texttrainer_input.csv +11 -0
- teradataml/data/tf_example.json +7 -0
- teradataml/data/tfidf_example.json +14 -0
- teradataml/data/tfidf_input1.csv +201 -0
- teradataml/data/tfidf_train.csv +6 -0
- teradataml/data/time_table1.csv +535 -0
- teradataml/data/time_table2.csv +14 -0
- teradataml/data/timeseriesdata.csv +1601 -0
- teradataml/data/timeseriesdatasetsd4.csv +105 -0
- teradataml/data/timestamp_data.csv +4 -0
- teradataml/data/titanic.csv +892 -0
- teradataml/data/titanic_dataset_unpivoted.csv +19 -0
- teradataml/data/to_num_data.csv +4 -0
- teradataml/data/tochar_data.csv +5 -0
- teradataml/data/token_table.csv +696 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/train_tracking.csv +28 -0
- teradataml/data/trans_dense.csv +16 -0
- teradataml/data/trans_sparse.csv +55 -0
- teradataml/data/transformation_table.csv +6 -0
- teradataml/data/transformation_table_new.csv +2 -0
- teradataml/data/tv_spots.csv +16 -0
- teradataml/data/twod_climate_data.csv +117 -0
- teradataml/data/uaf_example.json +529 -0
- teradataml/data/univariatestatistics_example.json +9 -0
- teradataml/data/unpack_example.json +10 -0
- teradataml/data/unpivot_example.json +25 -0
- teradataml/data/unpivot_input.csv +8 -0
- teradataml/data/url_data.csv +10 -0
- teradataml/data/us_air_pass.csv +37 -0
- teradataml/data/us_population.csv +624 -0
- teradataml/data/us_states_shapes.csv +52 -0
- teradataml/data/varmax_example.json +18 -0
- teradataml/data/vectordistance_example.json +30 -0
- teradataml/data/ville_climatedata.csv +121 -0
- teradataml/data/ville_tempdata.csv +12 -0
- teradataml/data/ville_tempdata1.csv +12 -0
- teradataml/data/ville_temperature.csv +11 -0
- teradataml/data/waveletTable.csv +1605 -0
- teradataml/data/waveletTable2.csv +1605 -0
- teradataml/data/weightedmovavg_example.json +9 -0
- teradataml/data/wft_testing.csv +5 -0
- teradataml/data/windowdfft.csv +16 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/data/word_embed_input_table1.csv +6 -0
- teradataml/data/word_embed_input_table2.csv +5 -0
- teradataml/data/word_embed_model.csv +23 -0
- teradataml/data/words_input.csv +13 -0
- teradataml/data/xconvolve_complex_left.csv +6 -0
- teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
- teradataml/data/xgboost_example.json +36 -0
- teradataml/data/xgboostpredict_example.json +32 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/__init__.py +0 -0
- teradataml/dataframe/copy_to.py +2446 -0
- teradataml/dataframe/data_transfer.py +2840 -0
- teradataml/dataframe/dataframe.py +20908 -0
- teradataml/dataframe/dataframe_utils.py +2114 -0
- teradataml/dataframe/fastload.py +794 -0
- teradataml/dataframe/functions.py +2110 -0
- teradataml/dataframe/indexer.py +424 -0
- teradataml/dataframe/row.py +160 -0
- teradataml/dataframe/setop.py +1171 -0
- teradataml/dataframe/sql.py +10904 -0
- teradataml/dataframe/sql_function_parameters.py +440 -0
- teradataml/dataframe/sql_functions.py +652 -0
- teradataml/dataframe/sql_interfaces.py +220 -0
- teradataml/dataframe/vantage_function_types.py +675 -0
- teradataml/dataframe/window.py +694 -0
- teradataml/dbutils/__init__.py +3 -0
- teradataml/dbutils/dbutils.py +2871 -0
- teradataml/dbutils/filemgr.py +318 -0
- teradataml/gen_ai/__init__.py +2 -0
- teradataml/gen_ai/convAI.py +473 -0
- teradataml/geospatial/__init__.py +4 -0
- teradataml/geospatial/geodataframe.py +1105 -0
- teradataml/geospatial/geodataframecolumn.py +392 -0
- teradataml/geospatial/geometry_types.py +926 -0
- teradataml/hyperparameter_tuner/__init__.py +1 -0
- teradataml/hyperparameter_tuner/optimizer.py +4115 -0
- teradataml/hyperparameter_tuner/utils.py +303 -0
- teradataml/lib/__init__.py +0 -0
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/lib/libaed_0_1_aarch64.so +0 -0
- teradataml/lib/libaed_0_1_ppc64le.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/_base.py +1321 -0
- teradataml/opensource/_class.py +464 -0
- teradataml/opensource/_constants.py +61 -0
- teradataml/opensource/_lightgbm.py +949 -0
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +267 -0
- teradataml/options/__init__.py +148 -0
- teradataml/options/configure.py +489 -0
- teradataml/options/display.py +187 -0
- teradataml/plot/__init__.py +3 -0
- teradataml/plot/axis.py +1427 -0
- teradataml/plot/constants.py +15 -0
- teradataml/plot/figure.py +431 -0
- teradataml/plot/plot.py +810 -0
- teradataml/plot/query_generator.py +83 -0
- teradataml/plot/subplot.py +216 -0
- teradataml/scriptmgmt/UserEnv.py +4273 -0
- teradataml/scriptmgmt/__init__.py +3 -0
- teradataml/scriptmgmt/lls_utils.py +2157 -0
- teradataml/sdk/README.md +79 -0
- teradataml/sdk/__init__.py +4 -0
- teradataml/sdk/_auth_modes.py +422 -0
- teradataml/sdk/_func_params.py +487 -0
- teradataml/sdk/_json_parser.py +453 -0
- teradataml/sdk/_openapi_spec_constants.py +249 -0
- teradataml/sdk/_utils.py +236 -0
- teradataml/sdk/api_client.py +900 -0
- teradataml/sdk/constants.py +62 -0
- teradataml/sdk/modelops/__init__.py +98 -0
- teradataml/sdk/modelops/_client.py +409 -0
- teradataml/sdk/modelops/_constants.py +304 -0
- teradataml/sdk/modelops/models.py +2308 -0
- teradataml/sdk/spinner.py +107 -0
- teradataml/series/__init__.py +0 -0
- teradataml/series/series.py +537 -0
- teradataml/series/series_utils.py +71 -0
- teradataml/store/__init__.py +12 -0
- teradataml/store/feature_store/__init__.py +0 -0
- teradataml/store/feature_store/constants.py +658 -0
- teradataml/store/feature_store/feature_store.py +4814 -0
- teradataml/store/feature_store/mind_map.py +639 -0
- teradataml/store/feature_store/models.py +7330 -0
- teradataml/store/feature_store/utils.py +390 -0
- teradataml/table_operators/Apply.py +979 -0
- teradataml/table_operators/Script.py +1739 -0
- teradataml/table_operators/TableOperator.py +1343 -0
- teradataml/table_operators/__init__.py +2 -0
- teradataml/table_operators/apply_query_generator.py +262 -0
- teradataml/table_operators/query_generator.py +493 -0
- teradataml/table_operators/table_operator_query_generator.py +462 -0
- teradataml/table_operators/table_operator_util.py +726 -0
- teradataml/table_operators/templates/dataframe_apply.template +184 -0
- teradataml/table_operators/templates/dataframe_map.template +176 -0
- teradataml/table_operators/templates/dataframe_register.template +73 -0
- teradataml/table_operators/templates/dataframe_udf.template +67 -0
- teradataml/table_operators/templates/script_executor.template +170 -0
- teradataml/telemetry_utils/__init__.py +0 -0
- teradataml/telemetry_utils/queryband.py +53 -0
- teradataml/utils/__init__.py +0 -0
- teradataml/utils/docstring.py +527 -0
- teradataml/utils/dtypes.py +943 -0
- teradataml/utils/internal_buffer.py +122 -0
- teradataml/utils/print_versions.py +206 -0
- teradataml/utils/utils.py +451 -0
- teradataml/utils/validators.py +3305 -0
- teradataml-20.0.0.8.dist-info/METADATA +2804 -0
- teradataml-20.0.0.8.dist-info/RECORD +1208 -0
- teradataml-20.0.0.8.dist-info/WHEEL +5 -0
- teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
- teradataml-20.0.0.8.dist-info/zip-safe +1 -0
|
@@ -0,0 +1,794 @@
|
|
|
1
|
+
#!/usr/bin/python
|
|
2
|
+
# ##################################################################
|
|
3
|
+
#
|
|
4
|
+
# Copyright 2019 Teradata. All rights reserved.
|
|
5
|
+
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
+
#
|
|
7
|
+
# Primary Owner: Abhinav Sahu (abhinav.sahu@teradata.com)
|
|
8
|
+
# Secondary Owner:
|
|
9
|
+
#
|
|
10
|
+
# ##################################################################
|
|
11
|
+
|
|
12
|
+
import re
|
|
13
|
+
import datetime
|
|
14
|
+
import warnings
|
|
15
|
+
import pandas as pd
|
|
16
|
+
|
|
17
|
+
from sqlalchemy import MetaData, Table, Column
|
|
18
|
+
from sqlalchemy.exc import OperationalError as sqlachemyOperationalError
|
|
19
|
+
|
|
20
|
+
from teradataml.context.context import _get_current_databasename
|
|
21
|
+
from teradataml.dataframe import dataframe
|
|
22
|
+
from teradataml.context.context import *
|
|
23
|
+
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
24
|
+
from teradataml.common.constants import TeradataConstants, DriverEscapeFunctions
|
|
25
|
+
from teradataml.common.utils import UtilFuncs
|
|
26
|
+
from teradataml.common.garbagecollector import GarbageCollector
|
|
27
|
+
from teradataml.utils.validators import _Validators
|
|
28
|
+
from teradataml.dataframe.copy_to import copy_to_sql, \
|
|
29
|
+
_validate_pti_copy_parameters, _create_table_object, \
|
|
30
|
+
_create_pti_table_object, _extract_column_info, \
|
|
31
|
+
_check_columns_insertion_compatible
|
|
32
|
+
from teradataml.dataframe.data_transfer import _DataTransferUtils
|
|
33
|
+
from teradataml.telemetry_utils.queryband import collect_queryband
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
@collect_queryband(queryband="fstLd")
|
|
37
|
+
def fastload(df, table_name, schema_name=None, if_exists='replace', index=False,
|
|
38
|
+
index_label=None, primary_index=None, types=None, batch_size=None,
|
|
39
|
+
save_errors=False, open_sessions=None, err_tbl_1_suffix=None,
|
|
40
|
+
err_tbl_2_suffix=None, err_tbl_name=None, warn_tbl_name=None,
|
|
41
|
+
err_staging_db=None):
|
|
42
|
+
"""
|
|
43
|
+
The fastload() API writes records from a Pandas DataFrame to Teradata Vantage
|
|
44
|
+
using Fastload. FastLoad API can be used to quickly load large amounts of data
|
|
45
|
+
in an empty table on Vantage.
|
|
46
|
+
1. Teradata recommends to use this API when number rows in the Pandas DataFrame
|
|
47
|
+
is greater than 100,000 to have better performance. To insert lesser rows,
|
|
48
|
+
please use copy_to_sql for optimized performance. The data is loaded in batches.
|
|
49
|
+
2. FastLoad API cannot load duplicate rows in the DataFrame if the table is a
|
|
50
|
+
MULTISET table having primary index.
|
|
51
|
+
3. FastLoad API does not support all Teradata Advanced SQL Engine data types.
|
|
52
|
+
For example, target table having BLOB and CLOB data type columns cannot be
|
|
53
|
+
loaded.
|
|
54
|
+
4. If there are any incorrect rows i.e. due to constraint violations, data type
|
|
55
|
+
conversion errors, etc., FastLoad protocol ignores those rows and inserts
|
|
56
|
+
all valid rows.
|
|
57
|
+
5. Rows in the DataFrame that failed to get inserted are categorized into errors
|
|
58
|
+
and warnings by FastLoad protocol and these errors and warnings are stored
|
|
59
|
+
into respective error and warning tables by FastLoad API.
|
|
60
|
+
6. fastload() creates 2 error tables when data is erroneous. These error tables are
|
|
61
|
+
refered as ERR_1 and ERR_2 tables.
|
|
62
|
+
* ERR_1 table is used to capture rows that violate the constraints or have format
|
|
63
|
+
errors. It typically contains information about rows that could not be inserted
|
|
64
|
+
into the target table due to data conversion errors, constraint violations, etc.
|
|
65
|
+
* ERR_2 table is used to log any duplicate rows found during the load process and
|
|
66
|
+
which are not loaded in target table, since fastLoad does not allow duplicate
|
|
67
|
+
rows to be loaded into the target table.
|
|
68
|
+
7. When "save_errors" argument is set to True, ERR_1 and ERR_2 tables are presisted.
|
|
69
|
+
The fully qualified names of ERR_1, ERR_2 and warning tables are shown once the
|
|
70
|
+
fastload operation is complete.
|
|
71
|
+
8. If user wants both error and warnings information from pandas dataframe to be
|
|
72
|
+
persisted rather than that from ERR_1 and ERR_2 tables, then "save_errors" should
|
|
73
|
+
be set to True and "err_tbl_name" must be provided.
|
|
74
|
+
|
|
75
|
+
For additional information about FastLoad protocol through teradatasql driver,
|
|
76
|
+
please refer the FASTLOAD section of https://pypi.org/project/teradatasql/#FastLoad
|
|
77
|
+
driver documentation for more information.
|
|
78
|
+
|
|
79
|
+
PARAMETERS:
|
|
80
|
+
df:
|
|
81
|
+
Required Argument.
|
|
82
|
+
Specifies the Pandas DataFrame object to be saved in Vantage.
|
|
83
|
+
Types: pandas.DataFrame
|
|
84
|
+
|
|
85
|
+
table_name:
|
|
86
|
+
Required Argument.
|
|
87
|
+
Specifies the name of the table to be created in Vantage.
|
|
88
|
+
Types: String
|
|
89
|
+
|
|
90
|
+
schema_name:
|
|
91
|
+
Optional Argument.
|
|
92
|
+
Specifies the name of the database schema in Vantage to write to.
|
|
93
|
+
Types: String
|
|
94
|
+
Default: None (Uses default database schema).
|
|
95
|
+
|
|
96
|
+
if_exists:
|
|
97
|
+
Optional Argument.
|
|
98
|
+
Specifies the action to take when table already exists in Vantage.
|
|
99
|
+
Types: String
|
|
100
|
+
Possible values: {'fail', 'replace', 'append'}
|
|
101
|
+
- fail: If table exists, raise TeradataMlException.
|
|
102
|
+
- replace: If table exists, drop it, recreate it, and insert data.
|
|
103
|
+
- append: If table exists, insert data. Create if does not exist.
|
|
104
|
+
Default: replace
|
|
105
|
+
|
|
106
|
+
index:
|
|
107
|
+
Optional Argument.
|
|
108
|
+
Specifies whether to save Pandas DataFrame index as a column or not.
|
|
109
|
+
Types: Boolean (True or False)
|
|
110
|
+
Default: False
|
|
111
|
+
|
|
112
|
+
index_label:
|
|
113
|
+
Optional Argument.
|
|
114
|
+
Specifies the column label(s) for Pandas DataFrame index column(s).
|
|
115
|
+
Types: String or list of strings
|
|
116
|
+
Default: None
|
|
117
|
+
|
|
118
|
+
primary_index:
|
|
119
|
+
Optional Argument.
|
|
120
|
+
Specifies which column(s) to use as primary index while creating table
|
|
121
|
+
in Vantage. When set to None, No Primary Index (NoPI) tables are created.
|
|
122
|
+
Types: String or list of strings
|
|
123
|
+
Default: None
|
|
124
|
+
Example:
|
|
125
|
+
primary_index = 'my_primary_index'
|
|
126
|
+
primary_index = ['my_primary_index1', 'my_primary_index2', 'my_primary_index3']
|
|
127
|
+
|
|
128
|
+
types:
|
|
129
|
+
Optional Argument.
|
|
130
|
+
Specifies the data types for requested columns to be saved in Vantage.
|
|
131
|
+
Types: Python dictionary ({column_name1: type_value1, ... column_nameN: type_valueN})
|
|
132
|
+
Default: None
|
|
133
|
+
|
|
134
|
+
Note:
|
|
135
|
+
1. This argument accepts a dictionary of columns names and their required
|
|
136
|
+
teradatasqlalchemy types as key-value pairs, allowing to specify a subset
|
|
137
|
+
of the columns of a specific type.
|
|
138
|
+
i) When only a subset of all columns are provided, the column types
|
|
139
|
+
for the rest are assigned appropriately.
|
|
140
|
+
ii) When types argument is not provided, the column types are assigned
|
|
141
|
+
as listed in the following table:
|
|
142
|
+
+---------------------------+-----------------------------------------+
|
|
143
|
+
| Pandas/Numpy Type | teradatasqlalchemy Type |
|
|
144
|
+
+---------------------------+-----------------------------------------+
|
|
145
|
+
| int32 | INTEGER |
|
|
146
|
+
+---------------------------+-----------------------------------------+
|
|
147
|
+
| int64 | BIGINT |
|
|
148
|
+
+---------------------------+-----------------------------------------+
|
|
149
|
+
| bool | BYTEINT |
|
|
150
|
+
+---------------------------+-----------------------------------------+
|
|
151
|
+
| float32/float64 | FLOAT |
|
|
152
|
+
+---------------------------+-----------------------------------------+
|
|
153
|
+
| datetime64/datetime64[ns] | TIMESTAMP |
|
|
154
|
+
+---------------------------+-----------------------------------------+
|
|
155
|
+
| datetime64[ns,<time_zone>]| TIMESTAMP(timezone=True) |
|
|
156
|
+
+---------------------------+-----------------------------------------+
|
|
157
|
+
| Any other data type | VARCHAR(configure.default_varchar_size) |
|
|
158
|
+
+---------------------------+-----------------------------------------+
|
|
159
|
+
2. This argument does not have any effect when the table specified using
|
|
160
|
+
table_name and schema_name exists and if_exists = 'append'.
|
|
161
|
+
|
|
162
|
+
batch_size:
|
|
163
|
+
Optional Argument.
|
|
164
|
+
Specifies the number of rows to be loaded in a batch. For better performance,
|
|
165
|
+
recommended batch size is at least 100,000. batch_size must be a positive integer.
|
|
166
|
+
If this argument is None, there are two cases based on the number of
|
|
167
|
+
rows, say N in the dataframe 'df' as explained below:
|
|
168
|
+
If N is greater than 100,000, the rows are divided into batches of
|
|
169
|
+
equal size with each batch having at least 100,000 rows (except the
|
|
170
|
+
last batch which might have more rows). If N is less than 100,000, the
|
|
171
|
+
rows are inserted in one batch after notifying the user that insertion
|
|
172
|
+
happens with degradation of performance.
|
|
173
|
+
If this argument is not None, the rows are inserted in batches of size
|
|
174
|
+
given in the argument, irrespective of the recommended batch size.
|
|
175
|
+
The last batch will have rows less than the batch size specified, if the
|
|
176
|
+
number of rows is not an integral multiples of the argument batch_size.
|
|
177
|
+
Default Value: None
|
|
178
|
+
Types: int
|
|
179
|
+
|
|
180
|
+
save_errors:
|
|
181
|
+
Optional Argument.
|
|
182
|
+
Specifies whether to persist the error/warning information in Vantage
|
|
183
|
+
or not.
|
|
184
|
+
Notes:
|
|
185
|
+
* When "save_errors" is set to True, ERR_1 and ERR_2 tables are presisted.
|
|
186
|
+
The fully qualified names of ERR_1, ERR_2 and warning table are returned
|
|
187
|
+
in a dictionary containing keys named as "ERR_1_table", "ERR_2_table",
|
|
188
|
+
"warnings_table" respectively.
|
|
189
|
+
* When "save_errors" is set to True and "err_tbl_name" is also provided,
|
|
190
|
+
"err_tbl_name" takes precedence and error information is persisted into
|
|
191
|
+
a single table using pandas dataframe rather than in ERR_1 and ERR_2 tables.
|
|
192
|
+
* When "save_errors" is set to False, errors and warnings information is
|
|
193
|
+
not persisted as tables, but it is returned as pandas dataframes in a
|
|
194
|
+
dictionary containing keys named as "errors_dataframe" and "warnings_dataframe"
|
|
195
|
+
respectively.
|
|
196
|
+
Default Value: False
|
|
197
|
+
Types: bool
|
|
198
|
+
|
|
199
|
+
open_sessions:
|
|
200
|
+
Optional Argument.
|
|
201
|
+
Specifies the number of Teradata data transfer sessions to be opened for fastload operation.
|
|
202
|
+
Note : If "open_sessions" argument is not provided, the default value is the smaller of 8 or the
|
|
203
|
+
number of AMPs available.
|
|
204
|
+
For additional information about number of Teradata data-transfer
|
|
205
|
+
sessions opened during fastload, please refer to:
|
|
206
|
+
https://pypi.org/project/teradatasql/#FastLoad
|
|
207
|
+
Default Value: None
|
|
208
|
+
Types: int
|
|
209
|
+
|
|
210
|
+
err_tbl_1_suffix:
|
|
211
|
+
Optional Argument.
|
|
212
|
+
Specifies the suffix for error table 1 created by fastload job.
|
|
213
|
+
Default Value: "_ERR_1"
|
|
214
|
+
Types: String
|
|
215
|
+
|
|
216
|
+
err_tbl_2_suffix:
|
|
217
|
+
Optional Argument.
|
|
218
|
+
Specifies the suffix for error table 2 created by fastload job.
|
|
219
|
+
Default Value: "_ERR_2"
|
|
220
|
+
Types: String
|
|
221
|
+
|
|
222
|
+
err_tbl_name:
|
|
223
|
+
Optional Argument.
|
|
224
|
+
Specifies the name for error table. This argument takes precedence
|
|
225
|
+
over "save_errors" and saves error information in single table,
|
|
226
|
+
rather than ERR_1 and ERR_2 error tables.
|
|
227
|
+
Default value: "td_fl_<table_name>_err_<unique_id>" where table_name
|
|
228
|
+
is name of target/staging table and unique_id is logon
|
|
229
|
+
sequence number of fastload job.
|
|
230
|
+
Types: String
|
|
231
|
+
|
|
232
|
+
warn_tbl_name:
|
|
233
|
+
Optional Argument.
|
|
234
|
+
Specifies the name for warning table.
|
|
235
|
+
Default value: "td_fl_<table_name>_warn_<unique_id>" where table_name
|
|
236
|
+
is name of target/staging table and unique_id is logon
|
|
237
|
+
sequence number of fastload job.
|
|
238
|
+
Types: String
|
|
239
|
+
|
|
240
|
+
err_staging_db:
|
|
241
|
+
Optional Argument.
|
|
242
|
+
Specifies the name of the database to be used for creating staging
|
|
243
|
+
table and error/warning tables.
|
|
244
|
+
Note:
|
|
245
|
+
Current session user must have CREATE, DROP and INSERT table
|
|
246
|
+
permissions on err_staging_db database.
|
|
247
|
+
Types: String
|
|
248
|
+
|
|
249
|
+
RETURNS:
|
|
250
|
+
A dict containing the following attributes:
|
|
251
|
+
1. errors_dataframe: It is a Pandas DataFrame containing error messages
|
|
252
|
+
thrown by fastload. DataFrame is empty if there are no errors or
|
|
253
|
+
"save_errors" is set to True.
|
|
254
|
+
2. warnings_dataframe: It is a Pandas DataFrame containing warning messages
|
|
255
|
+
thrown by fastload. DataFrame is empty if there are no warnings.
|
|
256
|
+
3. errors_table: Fully qualified name of the table containing errors. It is
|
|
257
|
+
an empty string (''), if argument "save_errors" is set to False.
|
|
258
|
+
4. warnings_table: Fully qualified name of the table containing warnings. It is
|
|
259
|
+
an empty string (''), if argument "save_errors" is set to False.
|
|
260
|
+
5. ERR_1_table: Fully qualified name of the ERR 1 table created by fastload
|
|
261
|
+
job. It is an empty string (''), if argument "save_errors" is set to False.
|
|
262
|
+
6. ERR_2_table: Fully qualified name of the ERR 2 table created by fastload
|
|
263
|
+
job. It is an empty string (''), if argument "save_errors" is set to False.
|
|
264
|
+
|
|
265
|
+
RAISES:
|
|
266
|
+
TeradataMlException
|
|
267
|
+
|
|
268
|
+
EXAMPLES:
|
|
269
|
+
Saving a Pandas DataFrame using Fastload:
|
|
270
|
+
>>> from teradataml.dataframe.fastload import fastload
|
|
271
|
+
>>> from teradatasqlalchemy.types import *
|
|
272
|
+
|
|
273
|
+
>>> df = {'emp_name': ['A1', 'A2', 'A3', 'A4'],
|
|
274
|
+
'emp_sage': [100, 200, 300, 400],
|
|
275
|
+
'emp_id': [133, 144, 155, 177],
|
|
276
|
+
'marks': [99.99, 97.32, 94.67, 91.00]
|
|
277
|
+
}
|
|
278
|
+
|
|
279
|
+
>>> pandas_df = pd.DataFrame(df)
|
|
280
|
+
|
|
281
|
+
# Example 1: Default execution.
|
|
282
|
+
>>> fastload(df = pandas_df, table_name = 'my_table')
|
|
283
|
+
|
|
284
|
+
# Example 2: Save a Pandas DataFrame with primary_index.
|
|
285
|
+
>>> pandas_df = pandas_df.set_index(['emp_id'])
|
|
286
|
+
>>> fastload(df = pandas_df, table_name = 'my_table_1', primary_index='emp_id')
|
|
287
|
+
|
|
288
|
+
# Example 3: Save a Pandas DataFrame using fastload() with index and primary_index.
|
|
289
|
+
>>> fastload(df = pandas_df, table_name = 'my_table_2', index=True,
|
|
290
|
+
primary_index='index_label')
|
|
291
|
+
|
|
292
|
+
# Example 4: Save a Pandas DataFrame using types, appending to the table if it already exists.
|
|
293
|
+
>>> fastload(df = pandas_df, table_name = 'my_table_3', schema_name = 'alice',
|
|
294
|
+
index = True, index_label = 'my_index_label',
|
|
295
|
+
primary_index = ['emp_id'], if_exists = 'append',
|
|
296
|
+
types = {'emp_name': VARCHAR, 'emp_sage':INTEGER,
|
|
297
|
+
'emp_id': BIGINT, 'marks': DECIMAL})
|
|
298
|
+
|
|
299
|
+
# Example 5: Save a Pandas DataFrame using levels in index of type MultiIndex.
|
|
300
|
+
>>> pandas_df = pandas_df.set_index(['emp_id', 'emp_name'])
|
|
301
|
+
>>> fastload(df = pandas_df, table_name = 'my_table_4', schema_name = 'alice',
|
|
302
|
+
index = True, index_label = ['index1', 'index2'],
|
|
303
|
+
primary_index = ['index1'], if_exists = 'replace')
|
|
304
|
+
|
|
305
|
+
# Example 6: Save a Pandas DataFrame by opening specified number of teradata data transfer sessions.
|
|
306
|
+
>>> fastload(df = pandas_df, table_name = 'my_table_5', open_sessions = 2)
|
|
307
|
+
|
|
308
|
+
# Example 7: Save a Pandas Dataframe to a table in specified target database "schema_name".
|
|
309
|
+
# Save errors and warnings to database specified with "err_staging_db".
|
|
310
|
+
# Save errors to table named as "err_tbl_name" and warnings to "warn_tbl_name".
|
|
311
|
+
# Given that, user is connected to a database different from "schema_name"
|
|
312
|
+
# and "err_staging_db".
|
|
313
|
+
|
|
314
|
+
# Create a pandas dataframe having one duplicate and one fualty row.
|
|
315
|
+
>>>> data_dict = {"C_ID": [301, 301, 302, 303, 304, 305, 306, 307, 308],
|
|
316
|
+
"C_timestamp": ['2014-01-06 09:01:25', '2014-01-06 09:01:25',
|
|
317
|
+
'2015-01-06 09:01:25.25.122200', '2017-01-06 09:01:25.11111',
|
|
318
|
+
'2013-01-06 09:01:25', '2019-03-06 10:15:28',
|
|
319
|
+
'2014-01-06 09:01:25.1098', '2014-03-06 10:01:02',
|
|
320
|
+
'2014-03-06 10:01:20.0000']}
|
|
321
|
+
>>> my_df = pd.DataFrame(data_dict)
|
|
322
|
+
|
|
323
|
+
# Fastlaod data in non-default schema "target_db" and save erors and warnings in given tables.
|
|
324
|
+
>>> fastload(df=my_df, table_name='fastload_with_err_warn_tbl_stag_db',
|
|
325
|
+
if_exists='replace', primary_index='C_ID', schema_name='target_db',
|
|
326
|
+
types={'C_ID': INTEGER, 'C_timestamp': TIMESTAMP(6)},
|
|
327
|
+
err_tbl_name='fld_errors', warn_tbl_name='fld_warnings',
|
|
328
|
+
err_staging_db='stage_db')
|
|
329
|
+
Processed 9 rows in batch 1.
|
|
330
|
+
{'errors_dataframe': batch_no error_message
|
|
331
|
+
0 1 [Session 14527] [Teradata Database] [Error 26...,
|
|
332
|
+
'warnings_dataframe': batch_no error_message
|
|
333
|
+
0 batch_summary [Session 14526] [Teradata SQL Driver] [Warnin...,
|
|
334
|
+
'errors_table': 'stage_db.fld_errors',
|
|
335
|
+
'warnings_table': 'stage_db.fld_warnings',
|
|
336
|
+
'ERR_1_table': '',
|
|
337
|
+
'ERR_2_table': ''}
|
|
338
|
+
|
|
339
|
+
# Validate loaded data table.
|
|
340
|
+
>>> DataFrame(in_schema("target_db", "fastload_with_err_warn_tbl_stag_db"))
|
|
341
|
+
C_ID C_timestamp
|
|
342
|
+
303 2017-01-06 09:01:25.111110
|
|
343
|
+
306 2014-01-06 09:01:25.109800
|
|
344
|
+
304 2013-01-06 09:01:25.000000
|
|
345
|
+
307 2014-03-06 10:01:02.000000
|
|
346
|
+
305 2019-03-06 10:15:28.000000
|
|
347
|
+
301 2014-01-06 09:01:25.000000
|
|
348
|
+
308 2014-03-06 10:01:20.000000
|
|
349
|
+
|
|
350
|
+
# Validate error and warning tables.
|
|
351
|
+
>>> DataFrame(in_schema("stage_db", "fld_errors"))
|
|
352
|
+
batch_no error_message
|
|
353
|
+
1 [Session 14527] [Teradata Database] [Error 2673] FastLoad failed to insert 1 of 9 batched rows. Batched row 3 failed to insert because of Teradata Database error 2673 in "target_db"."fastload_with_err_warn_tbl_stag_db"."C_timestamp"
|
|
354
|
+
|
|
355
|
+
>>> DataFrame(in_schema("stage_db", "fld_warnings"))
|
|
356
|
+
batch_no error_message
|
|
357
|
+
batch_summary [Session 14526] [Teradata SQL Driver] [Warning 518] Found 1 duplicate or faulty row(s) while ending FastLoad of database table "target_db"."fastload_with_err_warn_tbl_stag_db": expected a row count of 8, got a row count of 7
|
|
358
|
+
|
|
359
|
+
# Example 8: Save a Pandas Dataframe to a table in specified target database "schema_name".
|
|
360
|
+
# Save errors in ERR_1 and ERR_2 tables having user defined suffixes provided
|
|
361
|
+
# in "err_tbl_1_suffix" and "err_tbl_2_suffix".
|
|
362
|
+
# Source Pandas dataframe is same as Example 7.
|
|
363
|
+
|
|
364
|
+
>>> fastload(df=my_df, table_name = 'fastload_with_err_warn_tbl_stag_db',
|
|
365
|
+
schema_name = 'target_db', if_exists = 'append',
|
|
366
|
+
types={'C_ID': INTEGER, 'C_timestamp': TIMESTAMP(6)},
|
|
367
|
+
err_staging_db='stage_db', save_errors=True,
|
|
368
|
+
err_tbl_1_suffix="_user_err_1", err_tbl_2_suffix="_user_err_2")
|
|
369
|
+
{'errors_dataframe': Empty DataFrame
|
|
370
|
+
Columns: []
|
|
371
|
+
Index: [],
|
|
372
|
+
'warnings_dataframe': batch_no error_message
|
|
373
|
+
0 batch_summary [Session 14699] [Teradata SQL Driver] [Warnin...,
|
|
374
|
+
'errors_table': '',
|
|
375
|
+
'warnings_table': 'stage_db.td_fl_fastload_with_err_warn_tbl_stag_db_warn_1730',
|
|
376
|
+
'ERR_1_table': 'stage_db.ml__fl_stag_1716272404181579_user_err_1',
|
|
377
|
+
'ERR_2_table': 'stage_db.ml__fl_stag_1716272404181579_user_err_2'}
|
|
378
|
+
|
|
379
|
+
# Validate ERR_1 and ERR_2 tables.
|
|
380
|
+
>>> DataFrame(in_schema("stage_db", "ml__fl_stag_1716270574550744_user_err_1"))
|
|
381
|
+
ErrorCode ErrorFieldName DataParcel
|
|
382
|
+
2673 F_C_timestamp b'12E...'
|
|
383
|
+
|
|
384
|
+
>>> DataFrame(in_schema("stage_db", "ml__fl_stag_1716270574550744_user_err_2"))
|
|
385
|
+
C_ID C_timestamp
|
|
386
|
+
|
|
387
|
+
"""
|
|
388
|
+
# Deriving global connection using get_connection()
|
|
389
|
+
con = get_connection()
|
|
390
|
+
try:
|
|
391
|
+
if con is None:
|
|
392
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.CONNECTION_FAILURE),
|
|
393
|
+
MessageCodes.CONNECTION_FAILURE)
|
|
394
|
+
|
|
395
|
+
if isinstance(df, dataframe.DataFrame):
|
|
396
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE,
|
|
397
|
+
'df', "Pandas DataFrame"), MessageCodes.UNSUPPORTED_DATATYPE)
|
|
398
|
+
|
|
399
|
+
dt_obj = _DataTransferUtils(df=df, table_name=table_name, schema_name=schema_name, if_exists=if_exists,
|
|
400
|
+
index=index, index_label=index_label, primary_index=primary_index,
|
|
401
|
+
types=types, batch_size=batch_size,
|
|
402
|
+
save_errors=save_errors, api_name='fastload',
|
|
403
|
+
use_fastload=True, open_sessions=open_sessions,
|
|
404
|
+
err_tbl_1_suffix=err_tbl_1_suffix, err_tbl_2_suffix=err_tbl_2_suffix,
|
|
405
|
+
err_tbl_name=err_tbl_name, warn_tbl_name=warn_tbl_name,
|
|
406
|
+
err_staging_db=err_staging_db)
|
|
407
|
+
# Validate DataFrame & related flags; Proceed only when True
|
|
408
|
+
dt_obj._validate()
|
|
409
|
+
|
|
410
|
+
# We have commented out the PTI related code for now as fastload fails to
|
|
411
|
+
# load data into PTI tables. Same has been reported to gosql team. We'll
|
|
412
|
+
# un-comment this once the issue is fixed.
|
|
413
|
+
# Check if the table to be created must be a Primary Time Index (PTI) table.
|
|
414
|
+
# If a user specifies the timecode_column parameter, and attempt to create
|
|
415
|
+
# a PTI will be made.
|
|
416
|
+
# is_pti = False
|
|
417
|
+
# if timecode_column is not None:
|
|
418
|
+
# is_pti = True
|
|
419
|
+
# if primary_index is not None:
|
|
420
|
+
# warnings.warn(Messages.get_message(MessageCodes.IGNORE_ARGS_WARN,
|
|
421
|
+
# 'primary_index',
|
|
422
|
+
# 'timecode_column',
|
|
423
|
+
# 'specified'))
|
|
424
|
+
# else:
|
|
425
|
+
# ignored = []
|
|
426
|
+
# if timezero_date is not None: ignored.append('timezero_date')
|
|
427
|
+
# if timebucket_duration is not None: ignored.append('timebucket_duration')
|
|
428
|
+
# if sequence_column is not None: ignored.append('sequence_column')
|
|
429
|
+
# if seq_max is not None: ignored.append('seq_max')
|
|
430
|
+
# if columns_list is not None and (
|
|
431
|
+
# not isinstance(columns_list, list) or len(columns_list) > 0): ignored.append('columns_list')
|
|
432
|
+
# if primary_time_index_name is not None: ignored.append('primary_time_index_name')
|
|
433
|
+
# if len(ignored) > 0:
|
|
434
|
+
# warnings.warn(Messages.get_message(MessageCodes.IGNORE_ARGS_WARN,
|
|
435
|
+
# ignored,
|
|
436
|
+
# 'timecode_column',
|
|
437
|
+
# 'missing'))
|
|
438
|
+
|
|
439
|
+
# Check and calculate batch size for optimized performance for FastLoad
|
|
440
|
+
if batch_size is None:
|
|
441
|
+
batch_size = _get_batchsize(df)
|
|
442
|
+
else:
|
|
443
|
+
# Validate argument batch_size type
|
|
444
|
+
_Validators._validate_function_arguments([["batch_size", batch_size,
|
|
445
|
+
False, (int)]])
|
|
446
|
+
if batch_size < 100000:
|
|
447
|
+
warnings.warn("The batch_size provided is less than 100000. "
|
|
448
|
+
"Teradata recommends using 100000 as minimum batch "
|
|
449
|
+
"size for improved performance.", stacklevel=2)
|
|
450
|
+
|
|
451
|
+
# If the table created must be a PTI table, then validate additional parameters
|
|
452
|
+
# Note that if the required parameters for PTI are valid, then other parameters, though being validated,
|
|
453
|
+
# will be ignored - for example, primary_index
|
|
454
|
+
# if is_pti:
|
|
455
|
+
# _validate_pti_copy_parameters(df, timecode_column, timebucket_duration,
|
|
456
|
+
# timezero_date, primary_time_index_name, columns_list,
|
|
457
|
+
# sequence_column, seq_max, types, index, index_label)
|
|
458
|
+
|
|
459
|
+
# Check if destination table exists
|
|
460
|
+
table_exists = dt_obj._table_exists(con)
|
|
461
|
+
|
|
462
|
+
# Raise an exception when the table not exists and if_exists='fail'
|
|
463
|
+
dt_obj._check_table_exists(is_table_exists=table_exists)
|
|
464
|
+
|
|
465
|
+
# Let's create the SQLAlchemy table object to recreate the table
|
|
466
|
+
if not table_exists or if_exists.lower() == 'replace':
|
|
467
|
+
dt_obj._create_or_replace_table(con, table_exists=table_exists)
|
|
468
|
+
|
|
469
|
+
# Insert data to target table using fastload.
|
|
470
|
+
fl_dict = _insert_from_pd_dataframe_with_fastload(dt_obj, table_name, batch_size)
|
|
471
|
+
|
|
472
|
+
# Check column compatibility for insertion when table exists and if_exists = 'append'
|
|
473
|
+
if table_exists and if_exists.lower() == 'append':
|
|
474
|
+
# Create table object
|
|
475
|
+
table = UtilFuncs._get_sqlalchemy_table(table_name,
|
|
476
|
+
schema_name=schema_name)
|
|
477
|
+
|
|
478
|
+
cols = _extract_column_info(df, index=index, index_label=index_label)
|
|
479
|
+
if table is not None:
|
|
480
|
+
dt_obj._check_columns_compatibility(table_obj=table, cols=cols)
|
|
481
|
+
|
|
482
|
+
stag_table_name = ''
|
|
483
|
+
try:
|
|
484
|
+
# Create staging table and use FastLoad to load data.
|
|
485
|
+
# Then copy all the rows from staging table to target table using insert_into sql.
|
|
486
|
+
# If err_staging_db is not provided, create staging table
|
|
487
|
+
# object in default connected DB.
|
|
488
|
+
if err_staging_db is None:
|
|
489
|
+
err_staging_db = _get_current_databasename()
|
|
490
|
+
stag_table_name = UtilFuncs._generate_temp_table_name(databasename=err_staging_db,
|
|
491
|
+
prefix="fl_stag",
|
|
492
|
+
gc_on_quit=False,
|
|
493
|
+
quote=False,
|
|
494
|
+
table_type=TeradataConstants.TERADATA_TABLE)
|
|
495
|
+
|
|
496
|
+
# Get the table name without schema name for further steps.
|
|
497
|
+
stag_table_name = UtilFuncs._extract_table_name(stag_table_name)
|
|
498
|
+
# Create staging table object.
|
|
499
|
+
dt_obj._create_table(con, table_name=stag_table_name,
|
|
500
|
+
schema_name=err_staging_db)
|
|
501
|
+
|
|
502
|
+
# Insert data to staging table using fastload.
|
|
503
|
+
fl_dict = _insert_from_pd_dataframe_with_fastload(dt_obj, stag_table_name, batch_size, err_staging_db)
|
|
504
|
+
|
|
505
|
+
# Insert data from staging table to target table.
|
|
506
|
+
df_utils._insert_all_from_table(table_name,
|
|
507
|
+
stag_table_name,
|
|
508
|
+
cols[0],
|
|
509
|
+
schema_name,
|
|
510
|
+
err_staging_db)
|
|
511
|
+
except:
|
|
512
|
+
raise
|
|
513
|
+
finally:
|
|
514
|
+
# Drop the staging table.
|
|
515
|
+
if stag_table_name:
|
|
516
|
+
UtilFuncs._drop_table(dt_obj._get_fully_qualified_table_name(stag_table_name, err_staging_db))
|
|
517
|
+
|
|
518
|
+
except (TeradataMlException, ValueError, TypeError):
|
|
519
|
+
raise
|
|
520
|
+
except Exception as err:
|
|
521
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.FASTLOAD_FAILS),
|
|
522
|
+
MessageCodes.FASTLOAD_FAILS) from err
|
|
523
|
+
return fl_dict
|
|
524
|
+
|
|
525
|
+
|
|
526
|
+
def _insert_from_pd_dataframe_with_fastload(dt_obj, table_name, batch_size, to_schema_name=None):
|
|
527
|
+
"""
|
|
528
|
+
This is an internal function used to sequentially extract column info from pandas DataFrame,
|
|
529
|
+
iterate rows, and insert rows manually. Used for insertions to Tables with Pandas index.
|
|
530
|
+
This uses DBAPI's escape functions for Fastload which is a batch insertion method.
|
|
531
|
+
|
|
532
|
+
PARAMETERS:
|
|
533
|
+
dt_obj:
|
|
534
|
+
Object of _DataTransferUtils class.
|
|
535
|
+
Types: object
|
|
536
|
+
|
|
537
|
+
table_name:
|
|
538
|
+
Name of the table.
|
|
539
|
+
Types: String
|
|
540
|
+
|
|
541
|
+
batch_size:
|
|
542
|
+
Specifies the number of rows to be inserted in a batch.
|
|
543
|
+
Types: Int
|
|
544
|
+
|
|
545
|
+
to_schema_name:
|
|
546
|
+
Optional Argument.
|
|
547
|
+
Specifies name of the database schema where target table needs to be created.
|
|
548
|
+
|
|
549
|
+
RETURNS:
|
|
550
|
+
dict
|
|
551
|
+
|
|
552
|
+
RAISES:
|
|
553
|
+
Exception
|
|
554
|
+
|
|
555
|
+
EXAMPLES:
|
|
556
|
+
_insert_from_pd_dataframe_with_fastload(dt_obj, table_name, batch_size=100)
|
|
557
|
+
"""
|
|
558
|
+
conn = get_connection().connection
|
|
559
|
+
# Create a cursor from connection object
|
|
560
|
+
cur = conn.cursor()
|
|
561
|
+
|
|
562
|
+
error_tablename = ""
|
|
563
|
+
warn_tablename = ""
|
|
564
|
+
|
|
565
|
+
try:
|
|
566
|
+
# if is_pti:
|
|
567
|
+
# # This if for non-index columns.
|
|
568
|
+
# col_names = _reorder_insert_list_for_pti(col_names, timecode_column, sequence_column)
|
|
569
|
+
|
|
570
|
+
is_multi_index = isinstance(dt_obj.df.index, pd.MultiIndex)
|
|
571
|
+
|
|
572
|
+
# The Fastload functionality is provided through several escape methods using
|
|
573
|
+
# teradatasql; like: {fn teradata_try_fastload}, {fn teradata_get_errors}, etc.
|
|
574
|
+
# - {fn teradata_nativesql}: This escape method is to specify to use native
|
|
575
|
+
# SQL escape calls.
|
|
576
|
+
# - {fn teradata_autocommit_off}: This escape method is to turn off auto-commit.
|
|
577
|
+
# For FastLoad it is required that it should not execute any transaction
|
|
578
|
+
# management SQL commands when auto-commit is on.
|
|
579
|
+
# - {fn teradata_try_fastload}: This escape method tries to use FastLoad
|
|
580
|
+
# for the INSERT statement, and automatically executes the INSERT as a regular
|
|
581
|
+
# SQL statement when the INSERT is not compatible with FastLoad.
|
|
582
|
+
# - {fn teradata_require_fastload}: This escape method requires FastLoad
|
|
583
|
+
# for the INSERT statement, and fails with an error when the INSERT is not
|
|
584
|
+
# compatible with FastLoad.
|
|
585
|
+
# - {fn teradata_get_errors}: This escape method returns in one string all
|
|
586
|
+
# data errors observed by FastLoad for the most recent batch. The data errors
|
|
587
|
+
# are obtained from FastLoad error table 1, for problems such as constraint
|
|
588
|
+
# violations, data type conversion errors, and unavailable AMP conditions.
|
|
589
|
+
# - {fn teradata_get_warnings}: This escape method returns in one string all
|
|
590
|
+
# warnings generated by FastLoad for the request. The warnings are obtained
|
|
591
|
+
# from FastLoad error table 2, for problems such as duplicate rows.
|
|
592
|
+
# - {fn teradata_logon_sequence_number}: This escape method returns the string
|
|
593
|
+
# form of an integer representing the Logon Sequence Number(LSN) for the
|
|
594
|
+
# FastLoad. Returns an empty string if the request is not a FastLoad.
|
|
595
|
+
|
|
596
|
+
# Quoted, schema-qualified table name.
|
|
597
|
+
table = dt_obj._get_fully_qualified_table_name(table_name, to_schema_name)
|
|
598
|
+
|
|
599
|
+
# Form the INSERT query for fastload.
|
|
600
|
+
ins = dt_obj._form_insert_query(table)
|
|
601
|
+
|
|
602
|
+
# Turn off autocommit before the Fastload insertion
|
|
603
|
+
dt_obj._process_escape_functions(cur, escape_function= \
|
|
604
|
+
DriverEscapeFunctions.AUTOCOMMIT_OFF)
|
|
605
|
+
|
|
606
|
+
# Initialize dict template for saving error/warning information
|
|
607
|
+
err_dict = {key: [] for key in ['batch_no', 'error_message']}
|
|
608
|
+
warn_dict = {key: [] for key in ['batch_no', 'error_message']}
|
|
609
|
+
|
|
610
|
+
batch_number = 1
|
|
611
|
+
num_batches = int(dt_obj.df.shape[0]/batch_size)
|
|
612
|
+
|
|
613
|
+
# Empty queryband buffer before SQL call.
|
|
614
|
+
UtilFuncs._set_queryband()
|
|
615
|
+
|
|
616
|
+
for i in range(0, dt_obj.df.shape[0], batch_size):
|
|
617
|
+
# Add the remaining rows to last batch after second last batch
|
|
618
|
+
if (batch_number == num_batches) :
|
|
619
|
+
last_elem = dt_obj.df.shape[0]
|
|
620
|
+
else:
|
|
621
|
+
last_elem = i + batch_size
|
|
622
|
+
|
|
623
|
+
pdf = dt_obj.df.iloc[i:last_elem]
|
|
624
|
+
insert_list = []
|
|
625
|
+
# Iterate rows of DataFrame per batch size to convert it to list of lists.
|
|
626
|
+
for row_index, row in enumerate(pdf.itertuples(index=True)):
|
|
627
|
+
insert_list2 = []
|
|
628
|
+
for col_index, x in enumerate(pdf.columns):
|
|
629
|
+
insert_list2.append(row[col_index+1])
|
|
630
|
+
if dt_obj.index is True:
|
|
631
|
+
insert_list2.extend(row[0]) if is_multi_index else insert_list2.append(row[0])
|
|
632
|
+
insert_list.append(insert_list2)
|
|
633
|
+
# Execute insert statement.
|
|
634
|
+
cur.execute(ins, insert_list)
|
|
635
|
+
|
|
636
|
+
# Get error and warning information from cursor.
|
|
637
|
+
err, _ = dt_obj._process_fastexport_errors_warnings(ins)
|
|
638
|
+
if len(err) != 0:
|
|
639
|
+
err_dict['batch_no'].extend([batch_number] * len(err))
|
|
640
|
+
err_dict['error_message'].extend(err)
|
|
641
|
+
|
|
642
|
+
print("Processed {} rows in batch {}.".format(pdf.shape[0], batch_number))
|
|
643
|
+
|
|
644
|
+
# If shape of DataFrame equal to last_elem of last batch.
|
|
645
|
+
if last_elem == dt_obj.df.shape[0]:
|
|
646
|
+
break
|
|
647
|
+
|
|
648
|
+
batch_number += 1
|
|
649
|
+
|
|
650
|
+
# Get logon sequence number to be used for error/warning table names
|
|
651
|
+
logon_seq_number = dt_obj._process_escape_functions(cur, escape_function= \
|
|
652
|
+
DriverEscapeFunctions.LOGON_SEQ_NUM,
|
|
653
|
+
insert_query=ins)
|
|
654
|
+
# Commit the rows
|
|
655
|
+
conn.commit()
|
|
656
|
+
|
|
657
|
+
# Get error and warning information, if any.
|
|
658
|
+
# Errors/Warnings like duplicate rows are added here.
|
|
659
|
+
_, warn = dt_obj._process_fastexport_errors_warnings(ins)
|
|
660
|
+
if len(warn) != 0:
|
|
661
|
+
warn_dict['batch_no'].extend(['batch_summary'] * len(warn))
|
|
662
|
+
warn_dict['error_message'].extend(warn)
|
|
663
|
+
|
|
664
|
+
# Get error and warning information for error and warning tables, persist
|
|
665
|
+
# error and warning tables to Vantage if user has specified save_error as True
|
|
666
|
+
# else show it as pandas dataframe on console.
|
|
667
|
+
pd_err_df = dt_obj._get_pandas_df_from_errors_warnings(err_dict)
|
|
668
|
+
pd_warn_df = dt_obj._get_pandas_df_from_errors_warnings(warn_dict)
|
|
669
|
+
|
|
670
|
+
# Create persistent tables using pandas df if
|
|
671
|
+
# save_errors=True or
|
|
672
|
+
# tables names for errors or warning are provided by user.
|
|
673
|
+
if dt_obj.save_errors or dt_obj.err_tbl_name:
|
|
674
|
+
if not pd_err_df.empty:
|
|
675
|
+
error_tablename = dt_obj._create_error_warnings_table(pd_err_df, "err", logon_seq_number[0][0],
|
|
676
|
+
dt_obj.err_tbl_name)
|
|
677
|
+
if dt_obj.save_errors or dt_obj.warn_tbl_name:
|
|
678
|
+
if not pd_warn_df.empty:
|
|
679
|
+
warn_tablename = dt_obj._create_error_warnings_table(pd_warn_df, "warn", logon_seq_number[0][0],
|
|
680
|
+
dt_obj.warn_tbl_name)
|
|
681
|
+
|
|
682
|
+
# Generate ERR_1 and ERR_2 table names if save_errors=True and
|
|
683
|
+
# errors are not stored in user provided error table name.
|
|
684
|
+
if dt_obj.save_errors and not dt_obj.err_tbl_name:
|
|
685
|
+
err_1_table = "{}.{}{}".format(dt_obj.err_staging_db if dt_obj.err_staging_db else _get_current_databasename(),
|
|
686
|
+
table_name,
|
|
687
|
+
dt_obj.err_tbl_1_suffix if dt_obj.err_tbl_1_suffix else "_ERR_1")
|
|
688
|
+
err_2_table = "{}.{}{}".format(dt_obj.err_staging_db if dt_obj.err_staging_db else _get_current_databasename(),
|
|
689
|
+
table_name,
|
|
690
|
+
dt_obj.err_tbl_2_suffix if dt_obj.err_tbl_2_suffix else "_ERR_2")
|
|
691
|
+
|
|
692
|
+
else:
|
|
693
|
+
err_1_table = ""
|
|
694
|
+
err_2_table = ""
|
|
695
|
+
|
|
696
|
+
except Exception:
|
|
697
|
+
conn.rollback()
|
|
698
|
+
raise
|
|
699
|
+
finally:
|
|
700
|
+
# Turn on autocommit.
|
|
701
|
+
dt_obj._process_escape_functions(cur, escape_function=DriverEscapeFunctions.AUTOCOMMIT_ON)
|
|
702
|
+
cur.close()
|
|
703
|
+
|
|
704
|
+
return {"errors_dataframe": pd_err_df, "warnings_dataframe": pd_warn_df,
|
|
705
|
+
"errors_table": error_tablename, "warnings_table": warn_tablename,
|
|
706
|
+
"ERR_1_table": err_1_table, "ERR_2_table": err_2_table}
|
|
707
|
+
|
|
708
|
+
|
|
709
|
+
def _get_batchsize(df):
|
|
710
|
+
"""
|
|
711
|
+
This internal function calculates batch size which should be more than 100000
|
|
712
|
+
for better fastload performance.
|
|
713
|
+
|
|
714
|
+
PARAMETERS:
|
|
715
|
+
df:
|
|
716
|
+
The Pandas DataFrame object for which the batch size has to be calculated.
|
|
717
|
+
Types: pandas.DataFrame
|
|
718
|
+
|
|
719
|
+
RETURNS:
|
|
720
|
+
Batch size i.e. number of rows to be inserted in a batch.
|
|
721
|
+
|
|
722
|
+
RAISES:
|
|
723
|
+
N/A
|
|
724
|
+
|
|
725
|
+
EXAMPLES:
|
|
726
|
+
_get_batchsize(df)
|
|
727
|
+
"""
|
|
728
|
+
return df.shape[0] if df.shape[0] <= 100000 else round(df.shape[0]/int(df.shape[0]/100000))
|
|
729
|
+
|
|
730
|
+
|
|
731
|
+
def _create_table_for_fastload(df, con, table_name, schema_name=None, primary_index=None,
|
|
732
|
+
is_pti=False, primary_time_index_name=None, timecode_column=None,
|
|
733
|
+
timezero_date=None, timebucket_duration=None, sequence_column=None,
|
|
734
|
+
seq_max=None, columns_list=[], types=None, index=False,
|
|
735
|
+
index_label=None):
|
|
736
|
+
"""
|
|
737
|
+
PARAMETERS:
|
|
738
|
+
df:
|
|
739
|
+
Specifies the Pandas DataFrame object to be saved.
|
|
740
|
+
Types: pandas.DataFrame
|
|
741
|
+
|
|
742
|
+
con:
|
|
743
|
+
A SQLAlchemy connectable (engine/connection) object
|
|
744
|
+
Types: Teradata connection object
|
|
745
|
+
|
|
746
|
+
table_name:
|
|
747
|
+
Specifies the name of the table to be created in Vantage.
|
|
748
|
+
Types: String
|
|
749
|
+
|
|
750
|
+
schema_name:
|
|
751
|
+
Specifies the name of the database schema in Teradata Vantage to write to.
|
|
752
|
+
Types: String
|
|
753
|
+
|
|
754
|
+
index:
|
|
755
|
+
Specifies whether to save Pandas DataFrame index as a column or not.
|
|
756
|
+
Types: Boolean (True or False)
|
|
757
|
+
|
|
758
|
+
index_label:
|
|
759
|
+
Specifies the column label(s) for Pandas DataFrame index column(s).
|
|
760
|
+
Types: String or list of strings
|
|
761
|
+
|
|
762
|
+
primary_index:
|
|
763
|
+
Specifies which column(s) to use as primary index while creating Teradata
|
|
764
|
+
table in Vantage. When None, No Primary Index Teradata tables are created.
|
|
765
|
+
Types: String or list of strings
|
|
766
|
+
|
|
767
|
+
types:
|
|
768
|
+
Specifies required data-types for requested columns to be saved in Vantage.
|
|
769
|
+
Types: Python dictionary ({column_name1: type_value1, ... column_nameN: type_valueN})
|
|
770
|
+
|
|
771
|
+
RETURNS:
|
|
772
|
+
Table object
|
|
773
|
+
|
|
774
|
+
RAISES:
|
|
775
|
+
TeradataMlException, sqlalchemy.OperationalError
|
|
776
|
+
|
|
777
|
+
EXAMPLES:
|
|
778
|
+
_create_table_for_fastload(df, con, table_name, schema_name, primary_index,
|
|
779
|
+
is_pti, primary_time_index_name, timecode_column,
|
|
780
|
+
timezero_date, timebucket_duration, sequence_column,
|
|
781
|
+
seq_max, columns_list, types, index, index_label)
|
|
782
|
+
"""
|
|
783
|
+
if is_pti:
|
|
784
|
+
table = _create_pti_table_object(df=df, con=con, table_name=table_name,
|
|
785
|
+
schema_name=schema_name, temporary=False,
|
|
786
|
+
primary_time_index_name=primary_time_index_name,
|
|
787
|
+
timecode_column=timecode_column, timezero_date=timezero_date,
|
|
788
|
+
timebucket_duration=timebucket_duration,
|
|
789
|
+
sequence_column=sequence_column, seq_max=seq_max,
|
|
790
|
+
columns_list=columns_list, set_table=False,
|
|
791
|
+
types=types, index=index, index_label=index_label)
|
|
792
|
+
|
|
793
|
+
UtilFuncs._create_table_using_table_object(table)
|
|
794
|
+
|