teradataml 20.0.0.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1208) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +2762 -0
  4. teradataml/__init__.py +78 -0
  5. teradataml/_version.py +11 -0
  6. teradataml/analytics/Transformations.py +2996 -0
  7. teradataml/analytics/__init__.py +82 -0
  8. teradataml/analytics/analytic_function_executor.py +2416 -0
  9. teradataml/analytics/analytic_query_generator.py +1050 -0
  10. teradataml/analytics/byom/H2OPredict.py +514 -0
  11. teradataml/analytics/byom/PMMLPredict.py +437 -0
  12. teradataml/analytics/byom/__init__.py +16 -0
  13. teradataml/analytics/json_parser/__init__.py +133 -0
  14. teradataml/analytics/json_parser/analytic_functions_argument.py +1805 -0
  15. teradataml/analytics/json_parser/json_store.py +191 -0
  16. teradataml/analytics/json_parser/metadata.py +1666 -0
  17. teradataml/analytics/json_parser/utils.py +805 -0
  18. teradataml/analytics/meta_class.py +236 -0
  19. teradataml/analytics/sqle/DecisionTreePredict.py +456 -0
  20. teradataml/analytics/sqle/NaiveBayesPredict.py +420 -0
  21. teradataml/analytics/sqle/__init__.py +128 -0
  22. teradataml/analytics/sqle/json/decisiontreepredict_sqle.json +78 -0
  23. teradataml/analytics/sqle/json/naivebayespredict_sqle.json +62 -0
  24. teradataml/analytics/table_operator/__init__.py +11 -0
  25. teradataml/analytics/uaf/__init__.py +82 -0
  26. teradataml/analytics/utils.py +828 -0
  27. teradataml/analytics/valib.py +1617 -0
  28. teradataml/automl/__init__.py +5835 -0
  29. teradataml/automl/autodataprep/__init__.py +493 -0
  30. teradataml/automl/custom_json_utils.py +1625 -0
  31. teradataml/automl/data_preparation.py +1384 -0
  32. teradataml/automl/data_transformation.py +1254 -0
  33. teradataml/automl/feature_engineering.py +2273 -0
  34. teradataml/automl/feature_exploration.py +1873 -0
  35. teradataml/automl/model_evaluation.py +488 -0
  36. teradataml/automl/model_training.py +1407 -0
  37. teradataml/catalog/__init__.py +2 -0
  38. teradataml/catalog/byom.py +1759 -0
  39. teradataml/catalog/function_argument_mapper.py +859 -0
  40. teradataml/catalog/model_cataloging_utils.py +491 -0
  41. teradataml/clients/__init__.py +0 -0
  42. teradataml/clients/auth_client.py +137 -0
  43. teradataml/clients/keycloak_client.py +165 -0
  44. teradataml/clients/pkce_client.py +481 -0
  45. teradataml/common/__init__.py +1 -0
  46. teradataml/common/aed_utils.py +2078 -0
  47. teradataml/common/bulk_exposed_utils.py +113 -0
  48. teradataml/common/constants.py +1669 -0
  49. teradataml/common/deprecations.py +166 -0
  50. teradataml/common/exceptions.py +147 -0
  51. teradataml/common/formula.py +743 -0
  52. teradataml/common/garbagecollector.py +666 -0
  53. teradataml/common/logger.py +1261 -0
  54. teradataml/common/messagecodes.py +518 -0
  55. teradataml/common/messages.py +262 -0
  56. teradataml/common/pylogger.py +67 -0
  57. teradataml/common/sqlbundle.py +764 -0
  58. teradataml/common/td_coltype_code_to_tdtype.py +48 -0
  59. teradataml/common/utils.py +3166 -0
  60. teradataml/common/warnings.py +36 -0
  61. teradataml/common/wrapper_utils.py +625 -0
  62. teradataml/config/__init__.py +0 -0
  63. teradataml/config/dummy_file1.cfg +5 -0
  64. teradataml/config/dummy_file2.cfg +3 -0
  65. teradataml/config/sqlengine_alias_definitions_v1.0 +14 -0
  66. teradataml/config/sqlengine_alias_definitions_v1.1 +20 -0
  67. teradataml/config/sqlengine_alias_definitions_v1.3 +19 -0
  68. teradataml/context/__init__.py +0 -0
  69. teradataml/context/aed_context.py +223 -0
  70. teradataml/context/context.py +1462 -0
  71. teradataml/data/A_loan.csv +19 -0
  72. teradataml/data/BINARY_REALS_LEFT.csv +11 -0
  73. teradataml/data/BINARY_REALS_RIGHT.csv +11 -0
  74. teradataml/data/B_loan.csv +49 -0
  75. teradataml/data/BuoyData2.csv +17 -0
  76. teradataml/data/CONVOLVE2_COMPLEX_LEFT.csv +5 -0
  77. teradataml/data/CONVOLVE2_COMPLEX_RIGHT.csv +5 -0
  78. teradataml/data/Convolve2RealsLeft.csv +5 -0
  79. teradataml/data/Convolve2RealsRight.csv +5 -0
  80. teradataml/data/Convolve2ValidLeft.csv +11 -0
  81. teradataml/data/Convolve2ValidRight.csv +11 -0
  82. teradataml/data/DFFTConv_Real_8_8.csv +65 -0
  83. teradataml/data/Employee.csv +5 -0
  84. teradataml/data/Employee_Address.csv +4 -0
  85. teradataml/data/Employee_roles.csv +5 -0
  86. teradataml/data/JulesBelvezeDummyData.csv +100 -0
  87. teradataml/data/Mall_customer_data.csv +201 -0
  88. teradataml/data/Orders1_12mf.csv +25 -0
  89. teradataml/data/Pi_loan.csv +7 -0
  90. teradataml/data/SMOOTHED_DATA.csv +7 -0
  91. teradataml/data/TestDFFT8.csv +9 -0
  92. teradataml/data/TestRiver.csv +109 -0
  93. teradataml/data/Traindata.csv +28 -0
  94. teradataml/data/__init__.py +0 -0
  95. teradataml/data/acf.csv +17 -0
  96. teradataml/data/adaboost_example.json +34 -0
  97. teradataml/data/adaboostpredict_example.json +24 -0
  98. teradataml/data/additional_table.csv +11 -0
  99. teradataml/data/admissions_test.csv +21 -0
  100. teradataml/data/admissions_train.csv +41 -0
  101. teradataml/data/admissions_train_nulls.csv +41 -0
  102. teradataml/data/advertising.csv +201 -0
  103. teradataml/data/ageandheight.csv +13 -0
  104. teradataml/data/ageandpressure.csv +31 -0
  105. teradataml/data/amazon_reviews_25.csv +26 -0
  106. teradataml/data/antiselect_example.json +36 -0
  107. teradataml/data/antiselect_input.csv +8 -0
  108. teradataml/data/antiselect_input_mixed_case.csv +8 -0
  109. teradataml/data/applicant_external.csv +7 -0
  110. teradataml/data/applicant_reference.csv +7 -0
  111. teradataml/data/apriori_example.json +22 -0
  112. teradataml/data/arima_example.json +9 -0
  113. teradataml/data/assortedtext_input.csv +8 -0
  114. teradataml/data/attribution_example.json +34 -0
  115. teradataml/data/attribution_sample_table.csv +27 -0
  116. teradataml/data/attribution_sample_table1.csv +6 -0
  117. teradataml/data/attribution_sample_table2.csv +11 -0
  118. teradataml/data/bank_churn.csv +10001 -0
  119. teradataml/data/bank_marketing.csv +11163 -0
  120. teradataml/data/bank_web_clicks1.csv +43 -0
  121. teradataml/data/bank_web_clicks2.csv +91 -0
  122. teradataml/data/bank_web_url.csv +85 -0
  123. teradataml/data/barrier.csv +2 -0
  124. teradataml/data/barrier_new.csv +3 -0
  125. teradataml/data/betweenness_example.json +14 -0
  126. teradataml/data/bike_sharing.csv +732 -0
  127. teradataml/data/bin_breaks.csv +8 -0
  128. teradataml/data/bin_fit_ip.csv +4 -0
  129. teradataml/data/binary_complex_left.csv +11 -0
  130. teradataml/data/binary_complex_right.csv +11 -0
  131. teradataml/data/binary_matrix_complex_left.csv +21 -0
  132. teradataml/data/binary_matrix_complex_right.csv +21 -0
  133. teradataml/data/binary_matrix_real_left.csv +21 -0
  134. teradataml/data/binary_matrix_real_right.csv +21 -0
  135. teradataml/data/blood2ageandweight.csv +26 -0
  136. teradataml/data/bmi.csv +501 -0
  137. teradataml/data/boston.csv +507 -0
  138. teradataml/data/boston2cols.csv +721 -0
  139. teradataml/data/breast_cancer.csv +570 -0
  140. teradataml/data/buoydata_mix.csv +11 -0
  141. teradataml/data/burst_data.csv +5 -0
  142. teradataml/data/burst_example.json +21 -0
  143. teradataml/data/byom_example.json +34 -0
  144. teradataml/data/bytes_table.csv +4 -0
  145. teradataml/data/cal_housing_ex_raw.csv +70 -0
  146. teradataml/data/callers.csv +7 -0
  147. teradataml/data/calls.csv +10 -0
  148. teradataml/data/cars_hist.csv +33 -0
  149. teradataml/data/cat_table.csv +25 -0
  150. teradataml/data/ccm_example.json +32 -0
  151. teradataml/data/ccm_input.csv +91 -0
  152. teradataml/data/ccm_input2.csv +13 -0
  153. teradataml/data/ccmexample.csv +101 -0
  154. teradataml/data/ccmprepare_example.json +9 -0
  155. teradataml/data/ccmprepare_input.csv +91 -0
  156. teradataml/data/cfilter_example.json +12 -0
  157. teradataml/data/changepointdetection_example.json +18 -0
  158. teradataml/data/changepointdetectionrt_example.json +8 -0
  159. teradataml/data/chi_sq.csv +3 -0
  160. teradataml/data/churn_data.csv +14 -0
  161. teradataml/data/churn_emission.csv +35 -0
  162. teradataml/data/churn_initial.csv +3 -0
  163. teradataml/data/churn_state_transition.csv +5 -0
  164. teradataml/data/citedges_2.csv +745 -0
  165. teradataml/data/citvertices_2.csv +1210 -0
  166. teradataml/data/clicks2.csv +16 -0
  167. teradataml/data/clickstream.csv +13 -0
  168. teradataml/data/clickstream1.csv +11 -0
  169. teradataml/data/closeness_example.json +16 -0
  170. teradataml/data/complaints.csv +21 -0
  171. teradataml/data/complaints_mini.csv +3 -0
  172. teradataml/data/complaints_test_tokenized.csv +353 -0
  173. teradataml/data/complaints_testtoken.csv +224 -0
  174. teradataml/data/complaints_tokens_model.csv +348 -0
  175. teradataml/data/complaints_tokens_test.csv +353 -0
  176. teradataml/data/complaints_traintoken.csv +472 -0
  177. teradataml/data/computers_category.csv +1001 -0
  178. teradataml/data/computers_test1.csv +1252 -0
  179. teradataml/data/computers_train1.csv +5009 -0
  180. teradataml/data/computers_train1_clustered.csv +5009 -0
  181. teradataml/data/confusionmatrix_example.json +9 -0
  182. teradataml/data/conversion_event_table.csv +3 -0
  183. teradataml/data/corr_input.csv +17 -0
  184. teradataml/data/correlation_example.json +11 -0
  185. teradataml/data/covid_confirm_sd.csv +83 -0
  186. teradataml/data/coxhazardratio_example.json +39 -0
  187. teradataml/data/coxph_example.json +15 -0
  188. teradataml/data/coxsurvival_example.json +28 -0
  189. teradataml/data/cpt.csv +41 -0
  190. teradataml/data/credit_ex_merged.csv +45 -0
  191. teradataml/data/creditcard_data.csv +1001 -0
  192. teradataml/data/customer_loyalty.csv +301 -0
  193. teradataml/data/customer_loyalty_newseq.csv +31 -0
  194. teradataml/data/customer_segmentation_test.csv +2628 -0
  195. teradataml/data/customer_segmentation_train.csv +8069 -0
  196. teradataml/data/dataframe_example.json +173 -0
  197. teradataml/data/decisionforest_example.json +37 -0
  198. teradataml/data/decisionforestpredict_example.json +38 -0
  199. teradataml/data/decisiontree_example.json +21 -0
  200. teradataml/data/decisiontreepredict_example.json +45 -0
  201. teradataml/data/dfft2_size4_real.csv +17 -0
  202. teradataml/data/dfft2_test_matrix16.csv +17 -0
  203. teradataml/data/dfft2conv_real_4_4.csv +65 -0
  204. teradataml/data/diabetes.csv +443 -0
  205. teradataml/data/diabetes_test.csv +89 -0
  206. teradataml/data/dict_table.csv +5 -0
  207. teradataml/data/docperterm_table.csv +4 -0
  208. teradataml/data/docs/__init__.py +1 -0
  209. teradataml/data/docs/byom/__init__.py +0 -0
  210. teradataml/data/docs/byom/docs/DataRobotPredict.py +180 -0
  211. teradataml/data/docs/byom/docs/DataikuPredict.py +217 -0
  212. teradataml/data/docs/byom/docs/H2OPredict.py +325 -0
  213. teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
  214. teradataml/data/docs/byom/docs/ONNXPredict.py +283 -0
  215. teradataml/data/docs/byom/docs/ONNXSeq2Seq.py +255 -0
  216. teradataml/data/docs/byom/docs/PMMLPredict.py +278 -0
  217. teradataml/data/docs/byom/docs/__init__.py +0 -0
  218. teradataml/data/docs/sqle/__init__.py +0 -0
  219. teradataml/data/docs/sqle/docs_17_10/Antiselect.py +83 -0
  220. teradataml/data/docs/sqle/docs_17_10/Attribution.py +200 -0
  221. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +172 -0
  222. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +131 -0
  223. teradataml/data/docs/sqle/docs_17_10/CategoricalSummary.py +86 -0
  224. teradataml/data/docs/sqle/docs_17_10/ChiSq.py +90 -0
  225. teradataml/data/docs/sqle/docs_17_10/ColumnSummary.py +86 -0
  226. teradataml/data/docs/sqle/docs_17_10/ConvertTo.py +96 -0
  227. teradataml/data/docs/sqle/docs_17_10/DecisionForestPredict.py +139 -0
  228. teradataml/data/docs/sqle/docs_17_10/DecisionTreePredict.py +152 -0
  229. teradataml/data/docs/sqle/docs_17_10/FTest.py +161 -0
  230. teradataml/data/docs/sqle/docs_17_10/FillRowId.py +83 -0
  231. teradataml/data/docs/sqle/docs_17_10/Fit.py +88 -0
  232. teradataml/data/docs/sqle/docs_17_10/GLMPredict.py +144 -0
  233. teradataml/data/docs/sqle/docs_17_10/GetRowsWithMissingValues.py +85 -0
  234. teradataml/data/docs/sqle/docs_17_10/GetRowsWithoutMissingValues.py +82 -0
  235. teradataml/data/docs/sqle/docs_17_10/Histogram.py +165 -0
  236. teradataml/data/docs/sqle/docs_17_10/MovingAverage.py +134 -0
  237. teradataml/data/docs/sqle/docs_17_10/NGramSplitter.py +209 -0
  238. teradataml/data/docs/sqle/docs_17_10/NPath.py +266 -0
  239. teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py +116 -0
  240. teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py +176 -0
  241. teradataml/data/docs/sqle/docs_17_10/NumApply.py +147 -0
  242. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +135 -0
  243. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +109 -0
  244. teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py +166 -0
  245. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +105 -0
  246. teradataml/data/docs/sqle/docs_17_10/Pack.py +128 -0
  247. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py +112 -0
  248. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +102 -0
  249. teradataml/data/docs/sqle/docs_17_10/QQNorm.py +105 -0
  250. teradataml/data/docs/sqle/docs_17_10/RoundColumns.py +110 -0
  251. teradataml/data/docs/sqle/docs_17_10/RowNormalizeFit.py +118 -0
  252. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +99 -0
  253. teradataml/data/docs/sqle/docs_17_10/SVMSparsePredict.py +153 -0
  254. teradataml/data/docs/sqle/docs_17_10/ScaleFit.py +197 -0
  255. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +99 -0
  256. teradataml/data/docs/sqle/docs_17_10/Sessionize.py +114 -0
  257. teradataml/data/docs/sqle/docs_17_10/SimpleImputeFit.py +116 -0
  258. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +98 -0
  259. teradataml/data/docs/sqle/docs_17_10/StrApply.py +187 -0
  260. teradataml/data/docs/sqle/docs_17_10/StringSimilarity.py +146 -0
  261. teradataml/data/docs/sqle/docs_17_10/Transform.py +105 -0
  262. teradataml/data/docs/sqle/docs_17_10/UnivariateStatistics.py +142 -0
  263. teradataml/data/docs/sqle/docs_17_10/Unpack.py +214 -0
  264. teradataml/data/docs/sqle/docs_17_10/WhichMax.py +83 -0
  265. teradataml/data/docs/sqle/docs_17_10/WhichMin.py +83 -0
  266. teradataml/data/docs/sqle/docs_17_10/ZTest.py +155 -0
  267. teradataml/data/docs/sqle/docs_17_10/__init__.py +0 -0
  268. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +186 -0
  269. teradataml/data/docs/sqle/docs_17_20/Antiselect.py +83 -0
  270. teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
  271. teradataml/data/docs/sqle/docs_17_20/Attribution.py +201 -0
  272. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +172 -0
  273. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +139 -0
  274. teradataml/data/docs/sqle/docs_17_20/CFilter.py +132 -0
  275. teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py +86 -0
  276. teradataml/data/docs/sqle/docs_17_20/ChiSq.py +90 -0
  277. teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py +166 -0
  278. teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py +86 -0
  279. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +246 -0
  280. teradataml/data/docs/sqle/docs_17_20/ConvertTo.py +113 -0
  281. teradataml/data/docs/sqle/docs_17_20/DecisionForest.py +280 -0
  282. teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py +144 -0
  283. teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py +136 -0
  284. teradataml/data/docs/sqle/docs_17_20/FTest.py +240 -0
  285. teradataml/data/docs/sqle/docs_17_20/FillRowId.py +83 -0
  286. teradataml/data/docs/sqle/docs_17_20/Fit.py +88 -0
  287. teradataml/data/docs/sqle/docs_17_20/GLM.py +541 -0
  288. teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py +415 -0
  289. teradataml/data/docs/sqle/docs_17_20/GLMPredict.py +144 -0
  290. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +233 -0
  291. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +125 -0
  292. teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py +109 -0
  293. teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py +106 -0
  294. teradataml/data/docs/sqle/docs_17_20/Histogram.py +224 -0
  295. teradataml/data/docs/sqle/docs_17_20/KMeans.py +251 -0
  296. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +144 -0
  297. teradataml/data/docs/sqle/docs_17_20/KNN.py +215 -0
  298. teradataml/data/docs/sqle/docs_17_20/MovingAverage.py +134 -0
  299. teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
  300. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +209 -0
  301. teradataml/data/docs/sqle/docs_17_20/NPath.py +266 -0
  302. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +162 -0
  303. teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py +116 -0
  304. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +177 -0
  305. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +127 -0
  306. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +119 -0
  307. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +112 -0
  308. teradataml/data/docs/sqle/docs_17_20/NumApply.py +147 -0
  309. teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py +307 -0
  310. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +185 -0
  311. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +231 -0
  312. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +121 -0
  313. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py +220 -0
  314. teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py +127 -0
  315. teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py +191 -0
  316. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +117 -0
  317. teradataml/data/docs/sqle/docs_17_20/Pack.py +128 -0
  318. teradataml/data/docs/sqle/docs_17_20/Pivoting.py +279 -0
  319. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py +112 -0
  320. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +112 -0
  321. teradataml/data/docs/sqle/docs_17_20/QQNorm.py +105 -0
  322. teradataml/data/docs/sqle/docs_17_20/ROC.py +164 -0
  323. teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py +155 -0
  324. teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py +106 -0
  325. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +120 -0
  326. teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py +211 -0
  327. teradataml/data/docs/sqle/docs_17_20/RoundColumns.py +109 -0
  328. teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py +118 -0
  329. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +111 -0
  330. teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
  331. teradataml/data/docs/sqle/docs_17_20/SVM.py +414 -0
  332. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +213 -0
  333. teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py +153 -0
  334. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +315 -0
  335. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +202 -0
  336. teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py +206 -0
  337. teradataml/data/docs/sqle/docs_17_20/Sessionize.py +114 -0
  338. teradataml/data/docs/sqle/docs_17_20/Shap.py +225 -0
  339. teradataml/data/docs/sqle/docs_17_20/Silhouette.py +153 -0
  340. teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py +116 -0
  341. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +109 -0
  342. teradataml/data/docs/sqle/docs_17_20/StrApply.py +187 -0
  343. teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py +146 -0
  344. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +207 -0
  345. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +333 -0
  346. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +189 -0
  347. teradataml/data/docs/sqle/docs_17_20/TFIDF.py +142 -0
  348. teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py +267 -0
  349. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +141 -0
  350. teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
  351. teradataml/data/docs/sqle/docs_17_20/TextParser.py +224 -0
  352. teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py +160 -0
  353. teradataml/data/docs/sqle/docs_17_20/Transform.py +123 -0
  354. teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py +142 -0
  355. teradataml/data/docs/sqle/docs_17_20/Unpack.py +214 -0
  356. teradataml/data/docs/sqle/docs_17_20/Unpivoting.py +216 -0
  357. teradataml/data/docs/sqle/docs_17_20/VectorDistance.py +169 -0
  358. teradataml/data/docs/sqle/docs_17_20/WhichMax.py +83 -0
  359. teradataml/data/docs/sqle/docs_17_20/WhichMin.py +83 -0
  360. teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py +237 -0
  361. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +362 -0
  362. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +281 -0
  363. teradataml/data/docs/sqle/docs_17_20/ZTest.py +220 -0
  364. teradataml/data/docs/sqle/docs_17_20/__init__.py +0 -0
  365. teradataml/data/docs/tableoperator/__init__.py +0 -0
  366. teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py +430 -0
  367. teradataml/data/docs/tableoperator/docs_17_00/__init__.py +0 -0
  368. teradataml/data/docs/tableoperator/docs_17_05/ReadNOS.py +430 -0
  369. teradataml/data/docs/tableoperator/docs_17_05/WriteNOS.py +348 -0
  370. teradataml/data/docs/tableoperator/docs_17_05/__init__.py +0 -0
  371. teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py +429 -0
  372. teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py +348 -0
  373. teradataml/data/docs/tableoperator/docs_17_10/__init__.py +0 -0
  374. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  375. teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py +440 -0
  376. teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py +387 -0
  377. teradataml/data/docs/tableoperator/docs_17_20/__init__.py +0 -0
  378. teradataml/data/docs/uaf/__init__.py +0 -0
  379. teradataml/data/docs/uaf/docs_17_20/ACF.py +186 -0
  380. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +370 -0
  381. teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py +172 -0
  382. teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py +161 -0
  383. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +293 -0
  384. teradataml/data/docs/uaf/docs_17_20/AutoArima.py +354 -0
  385. teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py +248 -0
  386. teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py +252 -0
  387. teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py +178 -0
  388. teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py +175 -0
  389. teradataml/data/docs/uaf/docs_17_20/Convolve.py +230 -0
  390. teradataml/data/docs/uaf/docs_17_20/Convolve2.py +218 -0
  391. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  392. teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py +185 -0
  393. teradataml/data/docs/uaf/docs_17_20/DFFT.py +204 -0
  394. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +216 -0
  395. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +216 -0
  396. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +192 -0
  397. teradataml/data/docs/uaf/docs_17_20/DIFF.py +175 -0
  398. teradataml/data/docs/uaf/docs_17_20/DTW.py +180 -0
  399. teradataml/data/docs/uaf/docs_17_20/DWT.py +235 -0
  400. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +217 -0
  401. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +142 -0
  402. teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py +184 -0
  403. teradataml/data/docs/uaf/docs_17_20/ExtractResults.py +185 -0
  404. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +160 -0
  405. teradataml/data/docs/uaf/docs_17_20/FitMetrics.py +172 -0
  406. teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py +206 -0
  407. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +143 -0
  408. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +198 -0
  409. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +260 -0
  410. teradataml/data/docs/uaf/docs_17_20/IDFFT.py +165 -0
  411. teradataml/data/docs/uaf/docs_17_20/IDFFT2.py +191 -0
  412. teradataml/data/docs/uaf/docs_17_20/IDWT.py +236 -0
  413. teradataml/data/docs/uaf/docs_17_20/IDWT2D.py +226 -0
  414. teradataml/data/docs/uaf/docs_17_20/IQR.py +134 -0
  415. teradataml/data/docs/uaf/docs_17_20/InputValidator.py +121 -0
  416. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +156 -0
  417. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +215 -0
  418. teradataml/data/docs/uaf/docs_17_20/MAMean.py +174 -0
  419. teradataml/data/docs/uaf/docs_17_20/MInfo.py +134 -0
  420. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +297 -0
  421. teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py +145 -0
  422. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +191 -0
  423. teradataml/data/docs/uaf/docs_17_20/PACF.py +157 -0
  424. teradataml/data/docs/uaf/docs_17_20/Portman.py +217 -0
  425. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +203 -0
  426. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +155 -0
  427. teradataml/data/docs/uaf/docs_17_20/Resample.py +237 -0
  428. teradataml/data/docs/uaf/docs_17_20/SAX.py +246 -0
  429. teradataml/data/docs/uaf/docs_17_20/SInfo.py +123 -0
  430. teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py +173 -0
  431. teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py +174 -0
  432. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +171 -0
  433. teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py +164 -0
  434. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +180 -0
  435. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +208 -0
  436. teradataml/data/docs/uaf/docs_17_20/TrackingOp.py +151 -0
  437. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +171 -0
  438. teradataml/data/docs/uaf/docs_17_20/Unnormalize.py +202 -0
  439. teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py +171 -0
  440. teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py +368 -0
  441. teradataml/data/docs/uaf/docs_17_20/__init__.py +0 -0
  442. teradataml/data/dtw_example.json +18 -0
  443. teradataml/data/dtw_t1.csv +11 -0
  444. teradataml/data/dtw_t2.csv +4 -0
  445. teradataml/data/dwt2d_dataTable.csv +65 -0
  446. teradataml/data/dwt2d_example.json +16 -0
  447. teradataml/data/dwt_dataTable.csv +8 -0
  448. teradataml/data/dwt_example.json +15 -0
  449. teradataml/data/dwt_filterTable.csv +3 -0
  450. teradataml/data/dwt_filter_dim.csv +5 -0
  451. teradataml/data/emission.csv +9 -0
  452. teradataml/data/emp_table_by_dept.csv +19 -0
  453. teradataml/data/employee_info.csv +4 -0
  454. teradataml/data/employee_table.csv +6 -0
  455. teradataml/data/excluding_event_table.csv +2 -0
  456. teradataml/data/finance_data.csv +6 -0
  457. teradataml/data/finance_data2.csv +61 -0
  458. teradataml/data/finance_data3.csv +93 -0
  459. teradataml/data/finance_data4.csv +13 -0
  460. teradataml/data/fish.csv +160 -0
  461. teradataml/data/fm_blood2ageandweight.csv +26 -0
  462. teradataml/data/fmeasure_example.json +12 -0
  463. teradataml/data/followers_leaders.csv +10 -0
  464. teradataml/data/fpgrowth_example.json +12 -0
  465. teradataml/data/frequentpaths_example.json +29 -0
  466. teradataml/data/friends.csv +9 -0
  467. teradataml/data/fs_input.csv +33 -0
  468. teradataml/data/fs_input1.csv +33 -0
  469. teradataml/data/genData.csv +513 -0
  470. teradataml/data/geodataframe_example.json +40 -0
  471. teradataml/data/glass_types.csv +215 -0
  472. teradataml/data/glm_admissions_model.csv +12 -0
  473. teradataml/data/glm_example.json +56 -0
  474. teradataml/data/glml1l2_example.json +28 -0
  475. teradataml/data/glml1l2predict_example.json +54 -0
  476. teradataml/data/glmpredict_example.json +54 -0
  477. teradataml/data/gq_t1.csv +21 -0
  478. teradataml/data/grocery_transaction.csv +19 -0
  479. teradataml/data/hconvolve_complex_right.csv +5 -0
  480. teradataml/data/hconvolve_complex_rightmulti.csv +5 -0
  481. teradataml/data/histogram_example.json +12 -0
  482. teradataml/data/hmmdecoder_example.json +79 -0
  483. teradataml/data/hmmevaluator_example.json +25 -0
  484. teradataml/data/hmmsupervised_example.json +10 -0
  485. teradataml/data/hmmunsupervised_example.json +8 -0
  486. teradataml/data/hnsw_alter_data.csv +5 -0
  487. teradataml/data/hnsw_data.csv +10 -0
  488. teradataml/data/house_values.csv +12 -0
  489. teradataml/data/house_values2.csv +13 -0
  490. teradataml/data/housing_cat.csv +7 -0
  491. teradataml/data/housing_data.csv +9 -0
  492. teradataml/data/housing_test.csv +47 -0
  493. teradataml/data/housing_test_binary.csv +47 -0
  494. teradataml/data/housing_train.csv +493 -0
  495. teradataml/data/housing_train_attribute.csv +5 -0
  496. teradataml/data/housing_train_binary.csv +437 -0
  497. teradataml/data/housing_train_parameter.csv +2 -0
  498. teradataml/data/housing_train_response.csv +493 -0
  499. teradataml/data/housing_train_segment.csv +201 -0
  500. teradataml/data/ibm_stock.csv +370 -0
  501. teradataml/data/ibm_stock1.csv +370 -0
  502. teradataml/data/identitymatch_example.json +22 -0
  503. teradataml/data/idf_table.csv +4 -0
  504. teradataml/data/idwt2d_dataTable.csv +5 -0
  505. teradataml/data/idwt_dataTable.csv +8 -0
  506. teradataml/data/idwt_filterTable.csv +3 -0
  507. teradataml/data/impressions.csv +101 -0
  508. teradataml/data/inflation.csv +21 -0
  509. teradataml/data/initial.csv +3 -0
  510. teradataml/data/insect2Cols.csv +61 -0
  511. teradataml/data/insect_sprays.csv +13 -0
  512. teradataml/data/insurance.csv +1339 -0
  513. teradataml/data/interpolator_example.json +13 -0
  514. teradataml/data/interval_data.csv +5 -0
  515. teradataml/data/iris_altinput.csv +481 -0
  516. teradataml/data/iris_attribute_output.csv +8 -0
  517. teradataml/data/iris_attribute_test.csv +121 -0
  518. teradataml/data/iris_attribute_train.csv +481 -0
  519. teradataml/data/iris_category_expect_predict.csv +31 -0
  520. teradataml/data/iris_data.csv +151 -0
  521. teradataml/data/iris_input.csv +151 -0
  522. teradataml/data/iris_response_train.csv +121 -0
  523. teradataml/data/iris_test.csv +31 -0
  524. teradataml/data/iris_train.csv +121 -0
  525. teradataml/data/join_table1.csv +4 -0
  526. teradataml/data/join_table2.csv +4 -0
  527. teradataml/data/jsons/anly_function_name.json +7 -0
  528. teradataml/data/jsons/byom/ONNXSeq2Seq.json +287 -0
  529. teradataml/data/jsons/byom/dataikupredict.json +148 -0
  530. teradataml/data/jsons/byom/datarobotpredict.json +147 -0
  531. teradataml/data/jsons/byom/h2opredict.json +195 -0
  532. teradataml/data/jsons/byom/onnxembeddings.json +267 -0
  533. teradataml/data/jsons/byom/onnxpredict.json +187 -0
  534. teradataml/data/jsons/byom/pmmlpredict.json +147 -0
  535. teradataml/data/jsons/paired_functions.json +450 -0
  536. teradataml/data/jsons/sqle/16.20/Antiselect.json +56 -0
  537. teradataml/data/jsons/sqle/16.20/Attribution.json +249 -0
  538. teradataml/data/jsons/sqle/16.20/DecisionForestPredict.json +156 -0
  539. teradataml/data/jsons/sqle/16.20/DecisionTreePredict.json +170 -0
  540. teradataml/data/jsons/sqle/16.20/GLMPredict.json +122 -0
  541. teradataml/data/jsons/sqle/16.20/MovingAverage.json +367 -0
  542. teradataml/data/jsons/sqle/16.20/NGramSplitter.json +239 -0
  543. teradataml/data/jsons/sqle/16.20/NaiveBayesPredict.json +136 -0
  544. teradataml/data/jsons/sqle/16.20/NaiveBayesTextClassifierPredict.json +235 -0
  545. teradataml/data/jsons/sqle/16.20/Pack.json +98 -0
  546. teradataml/data/jsons/sqle/16.20/SVMSparsePredict.json +162 -0
  547. teradataml/data/jsons/sqle/16.20/Sessionize.json +105 -0
  548. teradataml/data/jsons/sqle/16.20/StringSimilarity.json +86 -0
  549. teradataml/data/jsons/sqle/16.20/Unpack.json +166 -0
  550. teradataml/data/jsons/sqle/16.20/nPath.json +269 -0
  551. teradataml/data/jsons/sqle/17.00/Antiselect.json +56 -0
  552. teradataml/data/jsons/sqle/17.00/Attribution.json +249 -0
  553. teradataml/data/jsons/sqle/17.00/DecisionForestPredict.json +156 -0
  554. teradataml/data/jsons/sqle/17.00/DecisionTreePredict.json +170 -0
  555. teradataml/data/jsons/sqle/17.00/GLMPredict.json +122 -0
  556. teradataml/data/jsons/sqle/17.00/MovingAverage.json +367 -0
  557. teradataml/data/jsons/sqle/17.00/NGramSplitter.json +239 -0
  558. teradataml/data/jsons/sqle/17.00/NaiveBayesPredict.json +136 -0
  559. teradataml/data/jsons/sqle/17.00/NaiveBayesTextClassifierPredict.json +235 -0
  560. teradataml/data/jsons/sqle/17.00/Pack.json +98 -0
  561. teradataml/data/jsons/sqle/17.00/SVMSparsePredict.json +162 -0
  562. teradataml/data/jsons/sqle/17.00/Sessionize.json +105 -0
  563. teradataml/data/jsons/sqle/17.00/StringSimilarity.json +86 -0
  564. teradataml/data/jsons/sqle/17.00/Unpack.json +166 -0
  565. teradataml/data/jsons/sqle/17.00/nPath.json +269 -0
  566. teradataml/data/jsons/sqle/17.05/Antiselect.json +56 -0
  567. teradataml/data/jsons/sqle/17.05/Attribution.json +249 -0
  568. teradataml/data/jsons/sqle/17.05/DecisionForestPredict.json +156 -0
  569. teradataml/data/jsons/sqle/17.05/DecisionTreePredict.json +170 -0
  570. teradataml/data/jsons/sqle/17.05/GLMPredict.json +122 -0
  571. teradataml/data/jsons/sqle/17.05/MovingAverage.json +367 -0
  572. teradataml/data/jsons/sqle/17.05/NGramSplitter.json +239 -0
  573. teradataml/data/jsons/sqle/17.05/NaiveBayesPredict.json +136 -0
  574. teradataml/data/jsons/sqle/17.05/NaiveBayesTextClassifierPredict.json +235 -0
  575. teradataml/data/jsons/sqle/17.05/Pack.json +98 -0
  576. teradataml/data/jsons/sqle/17.05/SVMSparsePredict.json +162 -0
  577. teradataml/data/jsons/sqle/17.05/Sessionize.json +105 -0
  578. teradataml/data/jsons/sqle/17.05/StringSimilarity.json +86 -0
  579. teradataml/data/jsons/sqle/17.05/Unpack.json +166 -0
  580. teradataml/data/jsons/sqle/17.05/nPath.json +269 -0
  581. teradataml/data/jsons/sqle/17.10/Antiselect.json +56 -0
  582. teradataml/data/jsons/sqle/17.10/Attribution.json +249 -0
  583. teradataml/data/jsons/sqle/17.10/DecisionForestPredict.json +185 -0
  584. teradataml/data/jsons/sqle/17.10/DecisionTreePredict.json +172 -0
  585. teradataml/data/jsons/sqle/17.10/GLMPredict.json +151 -0
  586. teradataml/data/jsons/sqle/17.10/MovingAverage.json +368 -0
  587. teradataml/data/jsons/sqle/17.10/NGramSplitter.json +239 -0
  588. teradataml/data/jsons/sqle/17.10/NaiveBayesPredict.json +149 -0
  589. teradataml/data/jsons/sqle/17.10/NaiveBayesTextClassifierPredict.json +288 -0
  590. teradataml/data/jsons/sqle/17.10/Pack.json +133 -0
  591. teradataml/data/jsons/sqle/17.10/SVMSparsePredict.json +193 -0
  592. teradataml/data/jsons/sqle/17.10/Sessionize.json +105 -0
  593. teradataml/data/jsons/sqle/17.10/StringSimilarity.json +86 -0
  594. teradataml/data/jsons/sqle/17.10/TD_BinCodeFit.json +239 -0
  595. teradataml/data/jsons/sqle/17.10/TD_BinCodeTransform.json +70 -0
  596. teradataml/data/jsons/sqle/17.10/TD_CategoricalSummary.json +54 -0
  597. teradataml/data/jsons/sqle/17.10/TD_Chisq.json +68 -0
  598. teradataml/data/jsons/sqle/17.10/TD_ColumnSummary.json +54 -0
  599. teradataml/data/jsons/sqle/17.10/TD_ConvertTo.json +69 -0
  600. teradataml/data/jsons/sqle/17.10/TD_FTest.json +187 -0
  601. teradataml/data/jsons/sqle/17.10/TD_FillRowID.json +52 -0
  602. teradataml/data/jsons/sqle/17.10/TD_FunctionFit.json +46 -0
  603. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +72 -0
  604. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithMissingValues.json +53 -0
  605. teradataml/data/jsons/sqle/17.10/TD_GetRowsWithoutMissingValues.json +53 -0
  606. teradataml/data/jsons/sqle/17.10/TD_Histogram.json +133 -0
  607. teradataml/data/jsons/sqle/17.10/TD_NumApply.json +147 -0
  608. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingFit.json +183 -0
  609. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +66 -0
  610. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterFit.json +197 -0
  611. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +48 -0
  612. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesFit.json +114 -0
  613. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +72 -0
  614. teradataml/data/jsons/sqle/17.10/TD_QQNorm.json +112 -0
  615. teradataml/data/jsons/sqle/17.10/TD_RoundColumns.json +93 -0
  616. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeFit.json +128 -0
  617. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +71 -0
  618. teradataml/data/jsons/sqle/17.10/TD_ScaleFit.json +157 -0
  619. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +71 -0
  620. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeFit.json +148 -0
  621. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +48 -0
  622. teradataml/data/jsons/sqle/17.10/TD_StrApply.json +240 -0
  623. teradataml/data/jsons/sqle/17.10/TD_UnivariateStatistics.json +119 -0
  624. teradataml/data/jsons/sqle/17.10/TD_WhichMax.json +53 -0
  625. teradataml/data/jsons/sqle/17.10/TD_WhichMin.json +53 -0
  626. teradataml/data/jsons/sqle/17.10/TD_ZTest.json +171 -0
  627. teradataml/data/jsons/sqle/17.10/Unpack.json +188 -0
  628. teradataml/data/jsons/sqle/17.10/nPath.json +269 -0
  629. teradataml/data/jsons/sqle/17.20/Antiselect.json +56 -0
  630. teradataml/data/jsons/sqle/17.20/Attribution.json +249 -0
  631. teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json +185 -0
  632. teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json +172 -0
  633. teradataml/data/jsons/sqle/17.20/GLMPredict.json +151 -0
  634. teradataml/data/jsons/sqle/17.20/MovingAverage.json +367 -0
  635. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +239 -0
  636. teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json +149 -0
  637. teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json +287 -0
  638. teradataml/data/jsons/sqle/17.20/Pack.json +133 -0
  639. teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json +192 -0
  640. teradataml/data/jsons/sqle/17.20/Sessionize.json +105 -0
  641. teradataml/data/jsons/sqle/17.20/StringSimilarity.json +86 -0
  642. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +149 -0
  643. teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
  644. teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json +239 -0
  645. teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json +71 -0
  646. teradataml/data/jsons/sqle/17.20/TD_CFilter.json +118 -0
  647. teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json +53 -0
  648. teradataml/data/jsons/sqle/17.20/TD_Chisq.json +68 -0
  649. teradataml/data/jsons/sqle/17.20/TD_ClassificationEvaluator.json +146 -0
  650. teradataml/data/jsons/sqle/17.20/TD_ColumnSummary.json +53 -0
  651. teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json +218 -0
  652. teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json +92 -0
  653. teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json +260 -0
  654. teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json +139 -0
  655. teradataml/data/jsons/sqle/17.20/TD_FTest.json +269 -0
  656. teradataml/data/jsons/sqle/17.20/TD_FillRowID.json +52 -0
  657. teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json +46 -0
  658. teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json +72 -0
  659. teradataml/data/jsons/sqle/17.20/TD_GLM.json +507 -0
  660. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +168 -0
  661. teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json +411 -0
  662. teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json +146 -0
  663. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +93 -0
  664. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json +76 -0
  665. teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json +76 -0
  666. teradataml/data/jsons/sqle/17.20/TD_Histogram.json +152 -0
  667. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +232 -0
  668. teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json +87 -0
  669. teradataml/data/jsons/sqle/17.20/TD_KNN.json +262 -0
  670. teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
  671. teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json +193 -0
  672. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json +212 -0
  673. teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json +137 -0
  674. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +102 -0
  675. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json +71 -0
  676. teradataml/data/jsons/sqle/17.20/TD_NumApply.json +147 -0
  677. teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json +316 -0
  678. teradataml/data/jsons/sqle/17.20/TD_OneClassSVMPredict.json +124 -0
  679. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingFit.json +271 -0
  680. teradataml/data/jsons/sqle/17.20/TD_OneHotEncodingTransform.json +65 -0
  681. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingFit.json +229 -0
  682. teradataml/data/jsons/sqle/17.20/TD_OrdinalEncodingTransform.json +75 -0
  683. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterFit.json +217 -0
  684. teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json +48 -0
  685. teradataml/data/jsons/sqle/17.20/TD_Pivoting.json +280 -0
  686. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json +114 -0
  687. teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json +72 -0
  688. teradataml/data/jsons/sqle/17.20/TD_QQNorm.json +111 -0
  689. teradataml/data/jsons/sqle/17.20/TD_ROC.json +179 -0
  690. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json +179 -0
  691. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json +74 -0
  692. teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json +74 -0
  693. teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json +138 -0
  694. teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json +93 -0
  695. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json +128 -0
  696. teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json +71 -0
  697. teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
  698. teradataml/data/jsons/sqle/17.20/TD_SVM.json +389 -0
  699. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +142 -0
  700. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +310 -0
  701. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +120 -0
  702. teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json +194 -0
  703. teradataml/data/jsons/sqle/17.20/TD_Shap.json +221 -0
  704. teradataml/data/jsons/sqle/17.20/TD_Silhouette.json +143 -0
  705. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json +147 -0
  706. teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json +48 -0
  707. teradataml/data/jsons/sqle/17.20/TD_StrApply.json +240 -0
  708. teradataml/data/jsons/sqle/17.20/TD_TFIDF.json +162 -0
  709. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json +248 -0
  710. teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json +75 -0
  711. teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
  712. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +297 -0
  713. teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json +142 -0
  714. teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json +117 -0
  715. teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json +235 -0
  716. teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json +183 -0
  717. teradataml/data/jsons/sqle/17.20/TD_WhichMax.json +53 -0
  718. teradataml/data/jsons/sqle/17.20/TD_WhichMin.json +53 -0
  719. teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json +241 -0
  720. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +330 -0
  721. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +195 -0
  722. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +247 -0
  723. teradataml/data/jsons/sqle/17.20/Unpack.json +188 -0
  724. teradataml/data/jsons/sqle/17.20/nPath.json +269 -0
  725. teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +370 -0
  726. teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +460 -0
  727. teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +385 -0
  728. teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +369 -0
  729. teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +369 -0
  730. teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +369 -0
  731. teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +369 -0
  732. teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +400 -0
  733. teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +401 -0
  734. teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +384 -0
  735. teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +384 -0
  736. teradataml/data/jsons/sqle/20.00/TD_API_AzureML.json +151 -0
  737. teradataml/data/jsons/sqle/20.00/TD_API_Sagemaker.json +182 -0
  738. teradataml/data/jsons/sqle/20.00/TD_API_VertexAI.json +183 -0
  739. teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
  740. teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
  741. teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
  742. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  743. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  744. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  745. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  746. teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json +150 -0
  747. teradataml/data/jsons/tableoperator/17.00/read_nos.json +198 -0
  748. teradataml/data/jsons/tableoperator/17.05/read_nos.json +198 -0
  749. teradataml/data/jsons/tableoperator/17.05/write_nos.json +195 -0
  750. teradataml/data/jsons/tableoperator/17.10/read_nos.json +184 -0
  751. teradataml/data/jsons/tableoperator/17.10/write_nos.json +195 -0
  752. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  753. teradataml/data/jsons/tableoperator/17.20/read_nos.json +183 -0
  754. teradataml/data/jsons/tableoperator/17.20/write_nos.json +224 -0
  755. teradataml/data/jsons/uaf/17.20/TD_ACF.json +132 -0
  756. teradataml/data/jsons/uaf/17.20/TD_ARIMAESTIMATE.json +396 -0
  757. teradataml/data/jsons/uaf/17.20/TD_ARIMAFORECAST.json +77 -0
  758. teradataml/data/jsons/uaf/17.20/TD_ARIMAVALIDATE.json +153 -0
  759. teradataml/data/jsons/uaf/17.20/TD_ARIMAXESTIMATE.json +362 -0
  760. teradataml/data/jsons/uaf/17.20/TD_AUTOARIMA.json +469 -0
  761. teradataml/data/jsons/uaf/17.20/TD_BINARYMATRIXOP.json +107 -0
  762. teradataml/data/jsons/uaf/17.20/TD_BINARYSERIESOP.json +106 -0
  763. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_GODFREY.json +89 -0
  764. teradataml/data/jsons/uaf/17.20/TD_BREUSCH_PAGAN_GODFREY.json +104 -0
  765. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE.json +78 -0
  766. teradataml/data/jsons/uaf/17.20/TD_CONVOLVE2.json +66 -0
  767. teradataml/data/jsons/uaf/17.20/TD_CUMUL_PERIODOGRAM.json +87 -0
  768. teradataml/data/jsons/uaf/17.20/TD_DFFT.json +134 -0
  769. teradataml/data/jsons/uaf/17.20/TD_DFFT2.json +144 -0
  770. teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json +108 -0
  771. teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json +108 -0
  772. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +78 -0
  773. teradataml/data/jsons/uaf/17.20/TD_DIFF.json +92 -0
  774. teradataml/data/jsons/uaf/17.20/TD_DTW.json +114 -0
  775. teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json +101 -0
  776. teradataml/data/jsons/uaf/17.20/TD_DWT.json +173 -0
  777. teradataml/data/jsons/uaf/17.20/TD_DWT2D.json +160 -0
  778. teradataml/data/jsons/uaf/17.20/TD_EXTRACT_RESULTS.json +39 -0
  779. teradataml/data/jsons/uaf/17.20/TD_FITMETRICS.json +101 -0
  780. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4FORMULA.json +85 -0
  781. teradataml/data/jsons/uaf/17.20/TD_GENSERIES4SINUSOIDS.json +71 -0
  782. teradataml/data/jsons/uaf/17.20/TD_GOLDFELD_QUANDT.json +139 -0
  783. teradataml/data/jsons/uaf/17.20/TD_HOLT_WINTERS_FORECASTER.json +313 -0
  784. teradataml/data/jsons/uaf/17.20/TD_IDFFT.json +58 -0
  785. teradataml/data/jsons/uaf/17.20/TD_IDFFT2.json +81 -0
  786. teradataml/data/jsons/uaf/17.20/TD_IDWT.json +162 -0
  787. teradataml/data/jsons/uaf/17.20/TD_IDWT2D.json +149 -0
  788. teradataml/data/jsons/uaf/17.20/TD_INPUTVALIDATOR.json +64 -0
  789. teradataml/data/jsons/uaf/17.20/TD_IQR.json +117 -0
  790. teradataml/data/jsons/uaf/17.20/TD_LINEAR_REGR.json +182 -0
  791. teradataml/data/jsons/uaf/17.20/TD_LINESPEC.json +103 -0
  792. teradataml/data/jsons/uaf/17.20/TD_MAMEAN.json +181 -0
  793. teradataml/data/jsons/uaf/17.20/TD_MATRIX2IMAGE.json +209 -0
  794. teradataml/data/jsons/uaf/17.20/TD_MATRIXMULTIPLY.json +68 -0
  795. teradataml/data/jsons/uaf/17.20/TD_MINFO.json +67 -0
  796. teradataml/data/jsons/uaf/17.20/TD_MULTIVAR_REGR.json +179 -0
  797. teradataml/data/jsons/uaf/17.20/TD_PACF.json +114 -0
  798. teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json +119 -0
  799. teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json +175 -0
  800. teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json +98 -0
  801. teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json +194 -0
  802. teradataml/data/jsons/uaf/17.20/TD_SAX.json +210 -0
  803. teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json +143 -0
  804. teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json +90 -0
  805. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json +80 -0
  806. teradataml/data/jsons/uaf/17.20/TD_SIGNIF_RESIDMEAN.json +68 -0
  807. teradataml/data/jsons/uaf/17.20/TD_SIMPLEEXP.json +184 -0
  808. teradataml/data/jsons/uaf/17.20/TD_SINFO.json +58 -0
  809. teradataml/data/jsons/uaf/17.20/TD_SMOOTHMA.json +163 -0
  810. teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json +101 -0
  811. teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json +112 -0
  812. teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json +95 -0
  813. teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json +78 -0
  814. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +410 -0
  815. teradataml/data/kmeans_example.json +23 -0
  816. teradataml/data/kmeans_table.csv +10 -0
  817. teradataml/data/kmeans_us_arrests_data.csv +51 -0
  818. teradataml/data/knn_example.json +19 -0
  819. teradataml/data/knnrecommender_example.json +7 -0
  820. teradataml/data/knnrecommenderpredict_example.json +12 -0
  821. teradataml/data/lar_example.json +17 -0
  822. teradataml/data/larpredict_example.json +30 -0
  823. teradataml/data/lc_new_predictors.csv +5 -0
  824. teradataml/data/lc_new_reference.csv +9 -0
  825. teradataml/data/lda_example.json +9 -0
  826. teradataml/data/ldainference_example.json +15 -0
  827. teradataml/data/ldatopicsummary_example.json +9 -0
  828. teradataml/data/levendist_input.csv +13 -0
  829. teradataml/data/levenshteindistance_example.json +10 -0
  830. teradataml/data/linreg_example.json +10 -0
  831. teradataml/data/load_example_data.py +350 -0
  832. teradataml/data/loan_prediction.csv +295 -0
  833. teradataml/data/lungcancer.csv +138 -0
  834. teradataml/data/mappingdata.csv +12 -0
  835. teradataml/data/medical_readings.csv +101 -0
  836. teradataml/data/milk_timeseries.csv +157 -0
  837. teradataml/data/min_max_titanic.csv +4 -0
  838. teradataml/data/minhash_example.json +6 -0
  839. teradataml/data/ml_ratings.csv +7547 -0
  840. teradataml/data/ml_ratings_10.csv +2445 -0
  841. teradataml/data/mobile_data.csv +13 -0
  842. teradataml/data/model1_table.csv +5 -0
  843. teradataml/data/model2_table.csv +5 -0
  844. teradataml/data/models/License_file.txt +1 -0
  845. teradataml/data/models/License_file_empty.txt +0 -0
  846. teradataml/data/models/dataiku_iris_data_ann_thin +0 -0
  847. teradataml/data/models/dr_iris_rf +0 -0
  848. teradataml/data/models/iris_db_dt_model_sklearn.onnx +0 -0
  849. teradataml/data/models/iris_db_dt_model_sklearn_floattensor.onnx +0 -0
  850. teradataml/data/models/iris_db_glm_model.pmml +57 -0
  851. teradataml/data/models/iris_db_xgb_model.pmml +4471 -0
  852. teradataml/data/models/iris_kmeans_model +0 -0
  853. teradataml/data/models/iris_mojo_glm_h2o_model +0 -0
  854. teradataml/data/models/iris_mojo_xgb_h2o_model +0 -0
  855. teradataml/data/modularity_example.json +12 -0
  856. teradataml/data/movavg_example.json +8 -0
  857. teradataml/data/mtx1.csv +7 -0
  858. teradataml/data/mtx2.csv +13 -0
  859. teradataml/data/multi_model_classification.csv +401 -0
  860. teradataml/data/multi_model_regression.csv +401 -0
  861. teradataml/data/mvdfft8.csv +9 -0
  862. teradataml/data/naivebayes_example.json +10 -0
  863. teradataml/data/naivebayespredict_example.json +19 -0
  864. teradataml/data/naivebayestextclassifier2_example.json +7 -0
  865. teradataml/data/naivebayestextclassifier_example.json +8 -0
  866. teradataml/data/naivebayestextclassifierpredict_example.json +32 -0
  867. teradataml/data/name_Find_configure.csv +10 -0
  868. teradataml/data/namedentityfinder_example.json +14 -0
  869. teradataml/data/namedentityfinderevaluator_example.json +10 -0
  870. teradataml/data/namedentityfindertrainer_example.json +6 -0
  871. teradataml/data/nb_iris_input_test.csv +31 -0
  872. teradataml/data/nb_iris_input_train.csv +121 -0
  873. teradataml/data/nbp_iris_model.csv +13 -0
  874. teradataml/data/ner_dict.csv +8 -0
  875. teradataml/data/ner_extractor_text.csv +2 -0
  876. teradataml/data/ner_input_eng.csv +7 -0
  877. teradataml/data/ner_rule.csv +5 -0
  878. teradataml/data/ner_sports_test2.csv +29 -0
  879. teradataml/data/ner_sports_train.csv +501 -0
  880. teradataml/data/nerevaluator_example.json +6 -0
  881. teradataml/data/nerextractor_example.json +18 -0
  882. teradataml/data/nermem_sports_test.csv +18 -0
  883. teradataml/data/nermem_sports_train.csv +51 -0
  884. teradataml/data/nertrainer_example.json +7 -0
  885. teradataml/data/ngrams_example.json +7 -0
  886. teradataml/data/notebooks/__init__.py +0 -0
  887. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Aggregate Functions using SQLAlchemy.ipynb +1455 -0
  888. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Arithmetic Functions Using SQLAlchemy.ipynb +1993 -0
  889. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Bit-Byte Manipulation Functions using SQLAlchemy.ipynb +1492 -0
  890. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Built-in functions using SQLAlchemy.ipynb +536 -0
  891. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Regular Expressions Using SQLAlchemy.ipynb +570 -0
  892. teradataml/data/notebooks/sqlalchemy/Teradata Vantage String Functions Using SQLAlchemy.ipynb +2559 -0
  893. teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions using SQLAlchemy.ipynb +2911 -0
  894. teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb +698 -0
  895. teradataml/data/notebooks/sqlalchemy/__init__.py +0 -0
  896. teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb +784 -0
  897. teradataml/data/npath_example.json +23 -0
  898. teradataml/data/ntree_example.json +14 -0
  899. teradataml/data/numeric_strings.csv +5 -0
  900. teradataml/data/numerics.csv +4 -0
  901. teradataml/data/ocean_buoy.csv +17 -0
  902. teradataml/data/ocean_buoy2.csv +17 -0
  903. teradataml/data/ocean_buoys.csv +28 -0
  904. teradataml/data/ocean_buoys2.csv +10 -0
  905. teradataml/data/ocean_buoys_nonpti.csv +28 -0
  906. teradataml/data/ocean_buoys_seq.csv +29 -0
  907. teradataml/data/onehot_encoder_train.csv +4 -0
  908. teradataml/data/openml_example.json +92 -0
  909. teradataml/data/optional_event_table.csv +4 -0
  910. teradataml/data/orders1.csv +11 -0
  911. teradataml/data/orders1_12.csv +13 -0
  912. teradataml/data/orders_ex.csv +4 -0
  913. teradataml/data/pack_example.json +9 -0
  914. teradataml/data/package_tracking.csv +19 -0
  915. teradataml/data/package_tracking_pti.csv +19 -0
  916. teradataml/data/pagerank_example.json +13 -0
  917. teradataml/data/paragraphs_input.csv +6 -0
  918. teradataml/data/pathanalyzer_example.json +8 -0
  919. teradataml/data/pathgenerator_example.json +8 -0
  920. teradataml/data/patient_profile.csv +101 -0
  921. teradataml/data/pattern_matching_data.csv +11 -0
  922. teradataml/data/payment_fraud_dataset.csv +10001 -0
  923. teradataml/data/peppers.png +0 -0
  924. teradataml/data/phrases.csv +7 -0
  925. teradataml/data/pivot_example.json +9 -0
  926. teradataml/data/pivot_input.csv +22 -0
  927. teradataml/data/playerRating.csv +31 -0
  928. teradataml/data/pos_input.csv +40 -0
  929. teradataml/data/postagger_example.json +7 -0
  930. teradataml/data/posttagger_output.csv +44 -0
  931. teradataml/data/production_data.csv +17 -0
  932. teradataml/data/production_data2.csv +7 -0
  933. teradataml/data/randomsample_example.json +32 -0
  934. teradataml/data/randomwalksample_example.json +9 -0
  935. teradataml/data/rank_table.csv +6 -0
  936. teradataml/data/real_values.csv +14 -0
  937. teradataml/data/ref_mobile_data.csv +4 -0
  938. teradataml/data/ref_mobile_data_dense.csv +2 -0
  939. teradataml/data/ref_url.csv +17 -0
  940. teradataml/data/restaurant_reviews.csv +7 -0
  941. teradataml/data/retail_churn_table.csv +27772 -0
  942. teradataml/data/river_data.csv +145 -0
  943. teradataml/data/roc_example.json +8 -0
  944. teradataml/data/roc_input.csv +101 -0
  945. teradataml/data/rule_inputs.csv +6 -0
  946. teradataml/data/rule_table.csv +2 -0
  947. teradataml/data/sales.csv +7 -0
  948. teradataml/data/sales_transaction.csv +501 -0
  949. teradataml/data/salesdata.csv +342 -0
  950. teradataml/data/sample_cities.csv +3 -0
  951. teradataml/data/sample_shapes.csv +11 -0
  952. teradataml/data/sample_streets.csv +3 -0
  953. teradataml/data/sampling_example.json +16 -0
  954. teradataml/data/sax_example.json +17 -0
  955. teradataml/data/scale_attributes.csv +3 -0
  956. teradataml/data/scale_example.json +74 -0
  957. teradataml/data/scale_housing.csv +11 -0
  958. teradataml/data/scale_housing_test.csv +6 -0
  959. teradataml/data/scale_input_part_sparse.csv +31 -0
  960. teradataml/data/scale_input_partitioned.csv +16 -0
  961. teradataml/data/scale_input_sparse.csv +11 -0
  962. teradataml/data/scale_parameters.csv +3 -0
  963. teradataml/data/scale_stat.csv +11 -0
  964. teradataml/data/scalebypartition_example.json +13 -0
  965. teradataml/data/scalemap_example.json +13 -0
  966. teradataml/data/scalesummary_example.json +12 -0
  967. teradataml/data/score_category.csv +101 -0
  968. teradataml/data/score_summary.csv +4 -0
  969. teradataml/data/script_example.json +10 -0
  970. teradataml/data/scripts/deploy_script.py +84 -0
  971. teradataml/data/scripts/lightgbm/dataset.template +175 -0
  972. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +264 -0
  973. teradataml/data/scripts/lightgbm/lightgbm_function.template +234 -0
  974. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +177 -0
  975. teradataml/data/scripts/mapper.R +20 -0
  976. teradataml/data/scripts/mapper.py +16 -0
  977. teradataml/data/scripts/mapper_replace.py +16 -0
  978. teradataml/data/scripts/sklearn/__init__.py +0 -0
  979. teradataml/data/scripts/sklearn/sklearn_fit.py +205 -0
  980. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +148 -0
  981. teradataml/data/scripts/sklearn/sklearn_function.template +144 -0
  982. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +166 -0
  983. teradataml/data/scripts/sklearn/sklearn_neighbors.py +161 -0
  984. teradataml/data/scripts/sklearn/sklearn_score.py +145 -0
  985. teradataml/data/scripts/sklearn/sklearn_transform.py +327 -0
  986. teradataml/data/sdk/modelops/modelops_spec.json +101737 -0
  987. teradataml/data/seeds.csv +10 -0
  988. teradataml/data/sentenceextractor_example.json +7 -0
  989. teradataml/data/sentiment_extract_input.csv +11 -0
  990. teradataml/data/sentiment_train.csv +16 -0
  991. teradataml/data/sentiment_word.csv +20 -0
  992. teradataml/data/sentiment_word_input.csv +20 -0
  993. teradataml/data/sentimentextractor_example.json +24 -0
  994. teradataml/data/sentimenttrainer_example.json +8 -0
  995. teradataml/data/sequence_table.csv +10 -0
  996. teradataml/data/seriessplitter_example.json +8 -0
  997. teradataml/data/sessionize_example.json +17 -0
  998. teradataml/data/sessionize_table.csv +116 -0
  999. teradataml/data/setop_test1.csv +24 -0
  1000. teradataml/data/setop_test2.csv +22 -0
  1001. teradataml/data/soc_nw_edges.csv +11 -0
  1002. teradataml/data/soc_nw_vertices.csv +8 -0
  1003. teradataml/data/souvenir_timeseries.csv +168 -0
  1004. teradataml/data/sparse_iris_attribute.csv +5 -0
  1005. teradataml/data/sparse_iris_test.csv +121 -0
  1006. teradataml/data/sparse_iris_train.csv +601 -0
  1007. teradataml/data/star1.csv +6 -0
  1008. teradataml/data/star_pivot.csv +8 -0
  1009. teradataml/data/state_transition.csv +5 -0
  1010. teradataml/data/stock_data.csv +53 -0
  1011. teradataml/data/stock_movement.csv +11 -0
  1012. teradataml/data/stock_vol.csv +76 -0
  1013. teradataml/data/stop_words.csv +8 -0
  1014. teradataml/data/store_sales.csv +37 -0
  1015. teradataml/data/stringsimilarity_example.json +8 -0
  1016. teradataml/data/strsimilarity_input.csv +13 -0
  1017. teradataml/data/students.csv +101 -0
  1018. teradataml/data/svm_iris_input_test.csv +121 -0
  1019. teradataml/data/svm_iris_input_train.csv +481 -0
  1020. teradataml/data/svm_iris_model.csv +7 -0
  1021. teradataml/data/svmdense_example.json +10 -0
  1022. teradataml/data/svmdensepredict_example.json +19 -0
  1023. teradataml/data/svmsparse_example.json +8 -0
  1024. teradataml/data/svmsparsepredict_example.json +14 -0
  1025. teradataml/data/svmsparsesummary_example.json +8 -0
  1026. teradataml/data/target_mobile_data.csv +13 -0
  1027. teradataml/data/target_mobile_data_dense.csv +5 -0
  1028. teradataml/data/target_udt_data.csv +8 -0
  1029. teradataml/data/tdnerextractor_example.json +14 -0
  1030. teradataml/data/templatedata.csv +1201 -0
  1031. teradataml/data/templates/open_source_ml.json +11 -0
  1032. teradataml/data/teradata_icon.ico +0 -0
  1033. teradataml/data/teradataml_example.json +1473 -0
  1034. teradataml/data/test_classification.csv +101 -0
  1035. teradataml/data/test_loan_prediction.csv +53 -0
  1036. teradataml/data/test_pacf_12.csv +37 -0
  1037. teradataml/data/test_prediction.csv +101 -0
  1038. teradataml/data/test_regression.csv +101 -0
  1039. teradataml/data/test_river2.csv +109 -0
  1040. teradataml/data/text_inputs.csv +6 -0
  1041. teradataml/data/textchunker_example.json +8 -0
  1042. teradataml/data/textclassifier_example.json +7 -0
  1043. teradataml/data/textclassifier_input.csv +7 -0
  1044. teradataml/data/textclassifiertrainer_example.json +7 -0
  1045. teradataml/data/textmorph_example.json +11 -0
  1046. teradataml/data/textparser_example.json +15 -0
  1047. teradataml/data/texttagger_example.json +12 -0
  1048. teradataml/data/texttokenizer_example.json +7 -0
  1049. teradataml/data/texttrainer_input.csv +11 -0
  1050. teradataml/data/tf_example.json +7 -0
  1051. teradataml/data/tfidf_example.json +14 -0
  1052. teradataml/data/tfidf_input1.csv +201 -0
  1053. teradataml/data/tfidf_train.csv +6 -0
  1054. teradataml/data/time_table1.csv +535 -0
  1055. teradataml/data/time_table2.csv +14 -0
  1056. teradataml/data/timeseriesdata.csv +1601 -0
  1057. teradataml/data/timeseriesdatasetsd4.csv +105 -0
  1058. teradataml/data/timestamp_data.csv +4 -0
  1059. teradataml/data/titanic.csv +892 -0
  1060. teradataml/data/titanic_dataset_unpivoted.csv +19 -0
  1061. teradataml/data/to_num_data.csv +4 -0
  1062. teradataml/data/tochar_data.csv +5 -0
  1063. teradataml/data/token_table.csv +696 -0
  1064. teradataml/data/train_multiclass.csv +101 -0
  1065. teradataml/data/train_regression.csv +101 -0
  1066. teradataml/data/train_regression_multiple_labels.csv +101 -0
  1067. teradataml/data/train_tracking.csv +28 -0
  1068. teradataml/data/trans_dense.csv +16 -0
  1069. teradataml/data/trans_sparse.csv +55 -0
  1070. teradataml/data/transformation_table.csv +6 -0
  1071. teradataml/data/transformation_table_new.csv +2 -0
  1072. teradataml/data/tv_spots.csv +16 -0
  1073. teradataml/data/twod_climate_data.csv +117 -0
  1074. teradataml/data/uaf_example.json +529 -0
  1075. teradataml/data/univariatestatistics_example.json +9 -0
  1076. teradataml/data/unpack_example.json +10 -0
  1077. teradataml/data/unpivot_example.json +25 -0
  1078. teradataml/data/unpivot_input.csv +8 -0
  1079. teradataml/data/url_data.csv +10 -0
  1080. teradataml/data/us_air_pass.csv +37 -0
  1081. teradataml/data/us_population.csv +624 -0
  1082. teradataml/data/us_states_shapes.csv +52 -0
  1083. teradataml/data/varmax_example.json +18 -0
  1084. teradataml/data/vectordistance_example.json +30 -0
  1085. teradataml/data/ville_climatedata.csv +121 -0
  1086. teradataml/data/ville_tempdata.csv +12 -0
  1087. teradataml/data/ville_tempdata1.csv +12 -0
  1088. teradataml/data/ville_temperature.csv +11 -0
  1089. teradataml/data/waveletTable.csv +1605 -0
  1090. teradataml/data/waveletTable2.csv +1605 -0
  1091. teradataml/data/weightedmovavg_example.json +9 -0
  1092. teradataml/data/wft_testing.csv +5 -0
  1093. teradataml/data/windowdfft.csv +16 -0
  1094. teradataml/data/wine_data.csv +1600 -0
  1095. teradataml/data/word_embed_input_table1.csv +6 -0
  1096. teradataml/data/word_embed_input_table2.csv +5 -0
  1097. teradataml/data/word_embed_model.csv +23 -0
  1098. teradataml/data/words_input.csv +13 -0
  1099. teradataml/data/xconvolve_complex_left.csv +6 -0
  1100. teradataml/data/xconvolve_complex_leftmulti.csv +6 -0
  1101. teradataml/data/xgboost_example.json +36 -0
  1102. teradataml/data/xgboostpredict_example.json +32 -0
  1103. teradataml/data/ztest_example.json +16 -0
  1104. teradataml/dataframe/__init__.py +0 -0
  1105. teradataml/dataframe/copy_to.py +2446 -0
  1106. teradataml/dataframe/data_transfer.py +2840 -0
  1107. teradataml/dataframe/dataframe.py +20908 -0
  1108. teradataml/dataframe/dataframe_utils.py +2114 -0
  1109. teradataml/dataframe/fastload.py +794 -0
  1110. teradataml/dataframe/functions.py +2110 -0
  1111. teradataml/dataframe/indexer.py +424 -0
  1112. teradataml/dataframe/row.py +160 -0
  1113. teradataml/dataframe/setop.py +1171 -0
  1114. teradataml/dataframe/sql.py +10904 -0
  1115. teradataml/dataframe/sql_function_parameters.py +440 -0
  1116. teradataml/dataframe/sql_functions.py +652 -0
  1117. teradataml/dataframe/sql_interfaces.py +220 -0
  1118. teradataml/dataframe/vantage_function_types.py +675 -0
  1119. teradataml/dataframe/window.py +694 -0
  1120. teradataml/dbutils/__init__.py +3 -0
  1121. teradataml/dbutils/dbutils.py +2871 -0
  1122. teradataml/dbutils/filemgr.py +318 -0
  1123. teradataml/gen_ai/__init__.py +2 -0
  1124. teradataml/gen_ai/convAI.py +473 -0
  1125. teradataml/geospatial/__init__.py +4 -0
  1126. teradataml/geospatial/geodataframe.py +1105 -0
  1127. teradataml/geospatial/geodataframecolumn.py +392 -0
  1128. teradataml/geospatial/geometry_types.py +926 -0
  1129. teradataml/hyperparameter_tuner/__init__.py +1 -0
  1130. teradataml/hyperparameter_tuner/optimizer.py +4115 -0
  1131. teradataml/hyperparameter_tuner/utils.py +303 -0
  1132. teradataml/lib/__init__.py +0 -0
  1133. teradataml/lib/aed_0_1.dll +0 -0
  1134. teradataml/lib/libaed_0_1.dylib +0 -0
  1135. teradataml/lib/libaed_0_1.so +0 -0
  1136. teradataml/lib/libaed_0_1_aarch64.so +0 -0
  1137. teradataml/lib/libaed_0_1_ppc64le.so +0 -0
  1138. teradataml/opensource/__init__.py +1 -0
  1139. teradataml/opensource/_base.py +1321 -0
  1140. teradataml/opensource/_class.py +464 -0
  1141. teradataml/opensource/_constants.py +61 -0
  1142. teradataml/opensource/_lightgbm.py +949 -0
  1143. teradataml/opensource/_sklearn.py +1008 -0
  1144. teradataml/opensource/_wrapper_utils.py +267 -0
  1145. teradataml/options/__init__.py +148 -0
  1146. teradataml/options/configure.py +489 -0
  1147. teradataml/options/display.py +187 -0
  1148. teradataml/plot/__init__.py +3 -0
  1149. teradataml/plot/axis.py +1427 -0
  1150. teradataml/plot/constants.py +15 -0
  1151. teradataml/plot/figure.py +431 -0
  1152. teradataml/plot/plot.py +810 -0
  1153. teradataml/plot/query_generator.py +83 -0
  1154. teradataml/plot/subplot.py +216 -0
  1155. teradataml/scriptmgmt/UserEnv.py +4273 -0
  1156. teradataml/scriptmgmt/__init__.py +3 -0
  1157. teradataml/scriptmgmt/lls_utils.py +2157 -0
  1158. teradataml/sdk/README.md +79 -0
  1159. teradataml/sdk/__init__.py +4 -0
  1160. teradataml/sdk/_auth_modes.py +422 -0
  1161. teradataml/sdk/_func_params.py +487 -0
  1162. teradataml/sdk/_json_parser.py +453 -0
  1163. teradataml/sdk/_openapi_spec_constants.py +249 -0
  1164. teradataml/sdk/_utils.py +236 -0
  1165. teradataml/sdk/api_client.py +900 -0
  1166. teradataml/sdk/constants.py +62 -0
  1167. teradataml/sdk/modelops/__init__.py +98 -0
  1168. teradataml/sdk/modelops/_client.py +409 -0
  1169. teradataml/sdk/modelops/_constants.py +304 -0
  1170. teradataml/sdk/modelops/models.py +2308 -0
  1171. teradataml/sdk/spinner.py +107 -0
  1172. teradataml/series/__init__.py +0 -0
  1173. teradataml/series/series.py +537 -0
  1174. teradataml/series/series_utils.py +71 -0
  1175. teradataml/store/__init__.py +12 -0
  1176. teradataml/store/feature_store/__init__.py +0 -0
  1177. teradataml/store/feature_store/constants.py +658 -0
  1178. teradataml/store/feature_store/feature_store.py +4814 -0
  1179. teradataml/store/feature_store/mind_map.py +639 -0
  1180. teradataml/store/feature_store/models.py +7330 -0
  1181. teradataml/store/feature_store/utils.py +390 -0
  1182. teradataml/table_operators/Apply.py +979 -0
  1183. teradataml/table_operators/Script.py +1739 -0
  1184. teradataml/table_operators/TableOperator.py +1343 -0
  1185. teradataml/table_operators/__init__.py +2 -0
  1186. teradataml/table_operators/apply_query_generator.py +262 -0
  1187. teradataml/table_operators/query_generator.py +493 -0
  1188. teradataml/table_operators/table_operator_query_generator.py +462 -0
  1189. teradataml/table_operators/table_operator_util.py +726 -0
  1190. teradataml/table_operators/templates/dataframe_apply.template +184 -0
  1191. teradataml/table_operators/templates/dataframe_map.template +176 -0
  1192. teradataml/table_operators/templates/dataframe_register.template +73 -0
  1193. teradataml/table_operators/templates/dataframe_udf.template +67 -0
  1194. teradataml/table_operators/templates/script_executor.template +170 -0
  1195. teradataml/telemetry_utils/__init__.py +0 -0
  1196. teradataml/telemetry_utils/queryband.py +53 -0
  1197. teradataml/utils/__init__.py +0 -0
  1198. teradataml/utils/docstring.py +527 -0
  1199. teradataml/utils/dtypes.py +943 -0
  1200. teradataml/utils/internal_buffer.py +122 -0
  1201. teradataml/utils/print_versions.py +206 -0
  1202. teradataml/utils/utils.py +451 -0
  1203. teradataml/utils/validators.py +3305 -0
  1204. teradataml-20.0.0.8.dist-info/METADATA +2804 -0
  1205. teradataml-20.0.0.8.dist-info/RECORD +1208 -0
  1206. teradataml-20.0.0.8.dist-info/WHEEL +5 -0
  1207. teradataml-20.0.0.8.dist-info/top_level.txt +1 -0
  1208. teradataml-20.0.0.8.dist-info/zip-safe +1 -0
@@ -0,0 +1,1254 @@
1
+ # ##################################################################
2
+ #
3
+ # Copyright 2025 Teradata. All rights reserved.
4
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
5
+ #
6
+ # Primary Owner: Sweta Shaw
7
+ # Email Id: Sweta.Shaw@Teradata.com
8
+ #
9
+ # Secondary Owner: Akhil Bisht
10
+ # Email Id: AKHIL.BISHT@Teradata.com
11
+ #
12
+ # Version: 1.1
13
+ # Function Version: 1.0
14
+ # ##################################################################
15
+
16
+ # Python libraries
17
+ import pandas as pd
18
+ import warnings
19
+
20
+ # Teradata libraries
21
+ from teradataml.dataframe.dataframe import DataFrame
22
+ from teradataml.dataframe.copy_to import copy_to_sql
23
+ from teradataml import Antiselect
24
+ from teradataml import BincodeTransform
25
+ from teradataml import ConvertTo
26
+ from teradataml import execute_sql
27
+ from teradataml import FillRowId
28
+ from teradataml import NonLinearCombineTransform
29
+ from teradataml import OneHotEncodingTransform
30
+ from teradataml import OrdinalEncodingTransform
31
+ from teradataml import RoundColumns
32
+ from teradataml import ScaleTransform
33
+ from teradataml import SimpleImputeTransform
34
+ from teradataml import TargetEncodingTransform
35
+ from teradataml import Transform, UtilFuncs, TeradataConstants
36
+ from teradataml.common.garbagecollector import GarbageCollector
37
+ from teradataml.hyperparameter_tuner.utils import _ProgressBar
38
+ from teradataml.options.configure import configure
39
+ from teradataml.common.constants import TeradataConstants
40
+ from teradataml.common.logger import TeradataMlLogger, get_td_logger
41
+
42
+ # AutoML Internal libraries
43
+ from teradataml.automl.feature_exploration import _FeatureExplore
44
+ from teradataml.automl.feature_engineering import _FeatureEngineering
45
+
46
+
47
+ @TeradataMlLogger
48
+ class _DataTransformation(_FeatureExplore, _FeatureEngineering):
49
+
50
+ def __init__(self,
51
+ data,
52
+ data_transformation_params,
53
+ auto=True,
54
+ verbose=0,
55
+ target_column_ind=False,
56
+ table_name_mapping={},
57
+ cluster=False,
58
+ enable_lasso=False):
59
+ """
60
+ DESCRIPTION:
61
+ Function initializes the data, data transformation object and running mode
62
+ for data transformation.
63
+
64
+ PARAMETERS:
65
+ data:
66
+ Required Argument.
67
+ Specifies the input teradataml Dataframe for data transformation phase.
68
+ Types: teradataml Dataframe
69
+
70
+ data_transformation_params:
71
+ Required Argument.
72
+ Specifies the parameters for performing data transformation.
73
+ Types: dict
74
+
75
+ auto:
76
+ Optional Argument.
77
+ Specifies whether to run AutoML in custom mode or auto mode.
78
+ When set to False, runs in custom mode. Otherwise, by default runs in auto mode.
79
+ Default Value: True
80
+ Types: bool
81
+
82
+ verbose:
83
+ Optional Argument.
84
+ Specifies the detailed execution steps based on verbose level.
85
+ Default Value: 0
86
+ Permitted Values:
87
+ * 0: prints no details about data transformation.
88
+ * 1: prints the execution steps of data transformation.
89
+ * 2: prints the intermediate data between the each step of data transformation.
90
+ Types: int
91
+
92
+ target_column_ind:
93
+ Optional Argument.
94
+ Specifies whether target column is present in given dataset.
95
+ Default Value: False
96
+ Types: bool
97
+
98
+ table_name_mapping:
99
+ Optional Argument.
100
+ Specifies the mapping of table names for the transformed data.
101
+ Default Value: {}
102
+ Types: dict
103
+
104
+ cluster:
105
+ Optional Argument.
106
+ Specifies whether to apply clustering techniques.
107
+ Default Value: False
108
+ Types: bool
109
+
110
+ enable_lasso:
111
+ Optional Argument.
112
+ Specifies whether to use lasso regression for feature selection.
113
+ By default, only RFE and PCA are used for feature selection.
114
+ Default Value: False
115
+ Types: bool
116
+
117
+ RETURNS:
118
+ None
119
+
120
+ RAISES:
121
+ None
122
+
123
+ EXAMPLES:
124
+ >>> transformer = _DataTransformation(data=processed_df,
125
+ ... data_transformation_params=transform_dict,
126
+ ... auto=True,
127
+ ... verbose=1,
128
+ ... target_column_ind=True,
129
+ ... table_name_mapping={"train": "train_table"},
130
+ ... cluster=False,
131
+ ... enable_lasso=True)
132
+ """
133
+ self.data = data
134
+ self.data_transformation_params = data_transformation_params
135
+ self.auto = auto
136
+ self.verbose = verbose
137
+ self.target_column_ind = target_column_ind
138
+ self.table_name_mapping = table_name_mapping
139
+ self.data_types = {key: value for key, value in self.data._column_names_and_types}
140
+ self.data_node_id = data._nodeid
141
+ self.table_name_mapping[self.data_node_id] = {}
142
+ self.cluster = cluster
143
+ self.enable_lasso = enable_lasso
144
+
145
+ def data_transformation(self):
146
+ """
147
+ DESCRIPTION:
148
+ Function to perform following tasks:
149
+ 1. Performs transformation carried out in feature engineering phase on the test data.
150
+ 2. Performs transformation carried out in data preparation phase on the test data.
151
+
152
+ PARAMETERS:
153
+ None
154
+
155
+ RETURNS:
156
+ dict containing table name mapping for the transformed data.
157
+
158
+ RAISES:
159
+ None
160
+
161
+ EXAMPLES:
162
+ >>> transformer = _DataTransformation(data=processed_df,
163
+ ... data_transformation_params=transform_dict,
164
+ ... auto=True,
165
+ ... verbose=1,
166
+ ... target_column_ind=True,
167
+ ... table_name_mapping={"train": "train_table"},
168
+ ... cluster=False,
169
+ ... enable_lasso=True)
170
+ >>> table_mapping = transformer.data_transformation()
171
+ """
172
+ # Extracting target column details and type whether it is classification or not
173
+ self.data_target_column = self.data_transformation_params.get("data_target_column")
174
+ self.classification_type = self.data_transformation_params.get("classification_type", False)
175
+ self.id_column = self.data_transformation_params.get("data_id_column")
176
+
177
+ # Initializing Feature Exploration
178
+ _FeatureExplore.__init__(self,
179
+ data=self.data,
180
+ target_column=self.data_target_column,
181
+ verbose=self.verbose,
182
+ cluster=self.cluster)
183
+ # Initializing Feature Engineering
184
+ _FeatureEngineering.__init__(self,
185
+ data=self.data,
186
+ target_column=self.data_target_column,
187
+ id_column=self.id_column,
188
+ model_list=None,
189
+ verbose=self.verbose,
190
+ cluster=self.cluster,
191
+ enable_lasso=self.enable_lasso)
192
+
193
+ self._display_msg(msg="Data Transformation started ...", show_data=True)
194
+ # Setting number of jobs for progress bar based on mode of execution
195
+ # Note: cluster and enable_lasso are mutually exclusive
196
+ if self.cluster:
197
+ jobs = 9
198
+ elif self.enable_lasso:
199
+ jobs = 10 if self.auto else 15
200
+ else:
201
+ jobs = 9 if self.auto else 14
202
+
203
+ self.progress_bar = _ProgressBar(jobs=jobs, verbose=2, prefix='Transformation Running:')
204
+
205
+ # Performing transformation carried out in feature engineering phase
206
+ self.feature_engineering_transformation()
207
+
208
+ # Performing transformation carried out in data preparation phase
209
+ self.data_preparation_transformation()
210
+ self._display_msg(msg="Data Transformation completed.", show_data=True)
211
+
212
+ return self.table_name_mapping
213
+
214
+ def feature_engineering_transformation(self):
215
+ """
216
+ DESCRIPTION:
217
+ Function performs transformation carried out in feature engineering phase
218
+ on test data using parameters from data_transformation_params.
219
+
220
+ PARAMETERS:
221
+ None
222
+
223
+ RETURNS:
224
+ None
225
+
226
+ RAISES:
227
+ None
228
+
229
+ EXAMPLES:
230
+ >>> transformer = _DataTransformation(data=processed_df,
231
+ ... data_transformation_params=transform_dict,
232
+ ... auto=True,
233
+ ... verbose=1,
234
+ ... target_column_ind=True,
235
+ ... table_name_mapping={"train": "train_table"},
236
+ ... cluster=False,
237
+ ... feature_selection_method="lasso")
238
+ >>> transformer.feature_engineering_transformation()
239
+ """
240
+ self._display_msg(msg="Performing transformation carried out in feature engineering phase ...",
241
+ show_data=True,
242
+ progress_bar=self.progress_bar)
243
+
244
+ # Performing default transformation for both auto and custom mode
245
+ self._preprocess_transformation()
246
+ self.progress_bar.update()
247
+
248
+ self._futile_column_handling_transformation()
249
+ self.progress_bar.update()
250
+
251
+ # Handling target column transformation
252
+ if not self.cluster:
253
+ if self.target_column_ind and self.classification_type:
254
+ self._handle_target_column_transformation()
255
+ self.progress_bar.update()
256
+
257
+ self._date_column_handling_transformation()
258
+ self.progress_bar.update()
259
+
260
+ # Performing transformation according to run mode
261
+ if self.auto:
262
+ self._missing_value_handling_transformation()
263
+ self.progress_bar.update()
264
+
265
+ self._categorical_encoding_transformation()
266
+ self.progress_bar.update()
267
+ else:
268
+ self._custom_missing_value_handling_transformation()
269
+ self.progress_bar.update()
270
+
271
+ self._custom_bincode_column_transformation()
272
+ self.progress_bar.update()
273
+
274
+ self._custom_string_column_transformation()
275
+ self.progress_bar.update()
276
+
277
+ self._custom_categorical_encoding_transformation()
278
+ self.progress_bar.update()
279
+
280
+ self._custom_mathematical_transformation()
281
+ self.progress_bar.update()
282
+
283
+ self._custom_non_linear_transformation()
284
+ self.progress_bar.update()
285
+
286
+ self._custom_anti_select_column_transformation()
287
+ self.progress_bar.update()
288
+
289
+ def data_preparation_transformation(self):
290
+ """
291
+ DESCRIPTION:
292
+ Function performs transformation carried out in data preparation phase
293
+ on test data using parameters from data_transformation_params.
294
+
295
+ RETURNS:
296
+ None
297
+
298
+ RAISES:
299
+ None
300
+
301
+ EXAMPLES:
302
+ >>> transformer = _DataTransformation(data=processed_df,
303
+ ... data_transformation_params=transform_dict,
304
+ ... auto=True,
305
+ ... verbose=1,
306
+ ... target_column_ind=True,
307
+ ... table_name_mapping={"train": "train_table"},
308
+ ... cluster=False)
309
+ >>> transformer.data_preparation_transformation()
310
+ """
311
+ self._display_msg(msg="Performing transformation carried out in data preparation phase ...",
312
+ show_data=True,
313
+ progress_bar=self.progress_bar)
314
+
315
+ # Handling features transformed from feature engineering phase
316
+ self._handle_generated_features_transformation()
317
+ self.progress_bar.update()
318
+
319
+ # Performing transformation including feature selection using lasso, rfe and pca
320
+ # followed by scaling
321
+ if not self.cluster:
322
+ if self.enable_lasso:
323
+ self._feature_selection_lasso_transformation()
324
+ self.progress_bar.update()
325
+
326
+ self._feature_selection_rfe_transformation()
327
+ self.progress_bar.update()
328
+
329
+ self._feature_selection_pca_transformation()
330
+ self.progress_bar.update()
331
+ else:
332
+ self._feature_selection_pca_transformation()
333
+ self.progress_bar.update()
334
+
335
+ self._feature_selection_non_pca_transformation()
336
+ self.progress_bar.update()
337
+
338
+ def _preprocess_transformation(self):
339
+ """
340
+ DESCRIPTION:
341
+ Function drops irrelevent columns and adds id column.
342
+
343
+ PARAMETERS:
344
+ None
345
+
346
+ RETURNS:
347
+ None
348
+
349
+ RAISES:
350
+ None
351
+
352
+ EXAMPLES:
353
+ >>> self._preprocess_transformation()
354
+ """
355
+ # Extracting irrelevant column list
356
+ columns_to_be_removed = self.data_transformation_params.get("drop_irrelevant_columns", None)
357
+ if columns_to_be_removed:
358
+ self.data = self.data.drop(columns_to_be_removed, axis=1)
359
+ self._display_msg(msg="Updated dataset after dropping irrelevant columns :",
360
+ data=self.data,
361
+ progress_bar=self.progress_bar)
362
+
363
+ # Adding id column extracted from data transformation parameters
364
+ if self.id_column == 'automl_id':
365
+ self.data = FillRowId(data=self.data, row_id_column=self.id_column).result
366
+
367
+ self.table_name_mapping[self.data_node_id]["raw_data_with_id"] = self.data._table_name
368
+
369
+ def _futile_column_handling_transformation(self):
370
+ """
371
+ DESCRIPTION:
372
+ Function drops futile columns from dataset.
373
+
374
+ PARAMETERS:
375
+ None
376
+
377
+ RETURNS:
378
+ None
379
+
380
+ RAISES:
381
+ None
382
+
383
+ EXAMPLES:
384
+ >>> self._futile_column_handling_transformation()
385
+ """
386
+ # Extracting futile column list
387
+ futile_cols = self.data_transformation_params.get("futile_columns", None)
388
+ if futile_cols:
389
+ self.data = self.data.drop(futile_cols, axis=1)
390
+ self._display_msg(msg="Updated dataset after dropping futile columns :",
391
+ data=self.data,
392
+ progress_bar=self.progress_bar)
393
+
394
+ def _date_column_handling_transformation(self):
395
+ """
396
+ DESCRIPTION:
397
+ Function performs transformation on date columns and generates new columns.
398
+
399
+ PARAMETERS:
400
+ None
401
+
402
+ RETURNS:
403
+ None
404
+
405
+ RAISES:
406
+ None
407
+
408
+ EXAMPLES:
409
+ >>> self._date_column_handling_transformation()
410
+ """
411
+ # Extracting date columns
412
+ self.date_column_list = self.data_transformation_params.get("date_columns",None)
413
+ if self.date_column_list:
414
+ # Dropping rows with null values in date columns
415
+ self.data = self.data.dropna(subset=self.date_column_list)
416
+ # Extracting unique date columns for dropping
417
+ drop_unique_date_columns = self.data_transformation_params.get("drop_unique_date_columns",None)
418
+ if drop_unique_date_columns:
419
+ self.data = self.data.drop(drop_unique_date_columns, axis=1)
420
+ # Updated date column list after dropping irrelevant date columns
421
+ self.date_column_list = [item for item in self.date_column_list if item not in drop_unique_date_columns]
422
+
423
+ if len(self.date_column_list) != 0:
424
+ # Extracting date components parameters for new columns generation
425
+ new_columns=self._fetch_date_component()
426
+
427
+ # Extracting irrelevant date component columns for dropping
428
+ drop_extract_date_columns = self.data_transformation_params.get("drop_extract_date_columns", None)
429
+ if drop_extract_date_columns:
430
+ self.data = self.data.drop(drop_extract_date_columns, axis=1)
431
+ new_columns = [item for item in new_columns if item not in drop_extract_date_columns]
432
+
433
+ self._display_msg(msg='Updated list of newly generated features from existing date features :',
434
+ col_lst=new_columns)
435
+ self._display_msg(msg="Updated dataset after transforming date columns :",
436
+ data=self.data,
437
+ progress_bar=self.progress_bar)
438
+
439
+ def _missing_value_handling_transformation(self):
440
+ """
441
+ DESCRIPTION:
442
+ Function performs missing value handling by dropping columns and imputing columns.
443
+
444
+ PARAMETERS:
445
+ None
446
+
447
+ RETURNS:
448
+ None
449
+
450
+ RAISES:
451
+ None
452
+
453
+ EXAMPLES:
454
+ >>> self._missing_value_handling_transformation()
455
+ """
456
+ # Extracting missing value containing columns to be dropped
457
+ drop_cols = self.data_transformation_params.get("drop_missing_columns", None)
458
+ if drop_cols:
459
+ self.data = self.data.drop(drop_cols, axis=1)
460
+ self._display_msg(msg="Updated dataset after dropping missing value containing columns : ",
461
+ data=self.data,
462
+ progress_bar=self.progress_bar)
463
+
464
+ # Extracting imputation columns and fit object for missing value imputation
465
+ imputation_cols = self.data_transformation_params.get("imputation_columns", None)
466
+ if imputation_cols:
467
+ sm_fit_obj = self.data_transformation_params.get("imputation_fit_object")
468
+ ## Workaround done for bug https://teradata-pe.atlassian.net/browse/TDAF-15617.
469
+ #partition_column = self.data_transformation_params.get("imputation_partition_column", None)
470
+
471
+ params = {"data" : self.data,
472
+ "object" : sm_fit_obj
473
+ }
474
+
475
+ # if partition_column is not None:
476
+ # params["data_partition_column"] = partition_column
477
+ # params["object_partition_column"] = partition_column
478
+
479
+ # imputing column using fit object
480
+ self.data = SimpleImputeTransform(**params).result
481
+
482
+ self._display_msg(msg="Updated dataset after imputing missing value containing columns :",
483
+ data=self.data,
484
+ progress_bar=self.progress_bar)
485
+
486
+ # Handling rest null, its temporary solution. It subjects to change based on input.
487
+ dropped_data = self.data.dropna()
488
+ dropped_count = self.data.shape[0] - dropped_data.shape[0]
489
+ if dropped_count > 0:
490
+ self._display_msg(msg="Found additional {} rows that contain missing values :".format(dropped_count),
491
+ data=self.data,
492
+ progress_bar=self.progress_bar)
493
+ self.data = dropped_data
494
+ self._display_msg(msg="Updated dataset after dropping additional missing value containing rows :",
495
+ data=self.data,
496
+ progress_bar=self.progress_bar)
497
+
498
+ def _custom_missing_value_handling_transformation(self):
499
+ """
500
+ DESCRIPTION:
501
+ Function performs missing value handling by dropping columns and imputing
502
+ columns based on user input.
503
+
504
+ PARAMETERS:
505
+ None
506
+
507
+ RETURNS:
508
+ None
509
+
510
+ RAISES:
511
+ None
512
+
513
+ EXAMPLES:
514
+ >>> self._custom_missing_value_handling_transformation()
515
+ """
516
+ # Extracting custom missing value containing columns to be dropped
517
+ drop_col_list = self.data_transformation_params.get("custom_drop_missing_columns", None)
518
+ if drop_col_list:
519
+ self.data = self.data.drop(drop_col_list, axis=1)
520
+ self._display_msg(msg="Updated dataset after dropping customized missing value containing columns :",
521
+ data=self.data,
522
+ progress_bar=self.progress_bar)
523
+
524
+ # Extracting custom imputation columns and fit object for missing value imputation
525
+ custom_imp_ind = self.data_transformation_params.get("custom_imputation_ind", False)
526
+ if custom_imp_ind:
527
+ sm_fit_obj = self.data_transformation_params.get("custom_imputation_fit_object")
528
+ # imputing column using fit object
529
+ self.data = SimpleImputeTransform(data=self.data,
530
+ object=sm_fit_obj).result
531
+ self._display_msg(msg="Updated dataset after imputing customized missing value containing columns :",
532
+ data=self.data,
533
+ progress_bar=self.progress_bar)
534
+ # Handling rest with default missing value handling
535
+ self._missing_value_handling_transformation()
536
+
537
+ def _custom_bincode_column_transformation(self):
538
+ """
539
+ DESCRIPTION:
540
+ Function performs bincode transformation on columns based on user input.
541
+
542
+ PARAMETERS:
543
+ None
544
+
545
+ RETURNS:
546
+ None
547
+
548
+ RAISES:
549
+ None
550
+
551
+ EXAMPLES:
552
+ >>> self._custom_bincode_column_transformation()
553
+ """
554
+ # Extracting custom bincode columns and fit object for bincode transformation
555
+ custom_bincode_ind = self.data_transformation_params.get("custom_bincode_ind", False)
556
+ if custom_bincode_ind:
557
+ # Handling bincode transformation for Equal-Width
558
+ custom_eql_bincode_col = self.data_transformation_params.get("custom_eql_bincode_col", None)
559
+ custom_eql_bincode_fit_object = self.data_transformation_params.get("custom_eql_bincode_fit_object", None)
560
+ if custom_eql_bincode_col:
561
+ # Extracting accumulate columns
562
+ accumulate_columns = self._extract_list(self.data.columns, custom_eql_bincode_col)
563
+ # Adding transform parameters for performing binning with Equal-Width.
564
+ eql_transform_params={
565
+ "data" : self.data,
566
+ "object" : custom_eql_bincode_fit_object,
567
+ "accumulate" : accumulate_columns,
568
+ "persist" : True,
569
+ "display_table_name" : False
570
+ }
571
+ self.data = BincodeTransform(**eql_transform_params).result
572
+ # Adding transformed data containing table to garbage collector
573
+ GarbageCollector._add_to_garbagecollector(self.data._table_name)
574
+ self._display_msg(msg="Updated dataset after performing customized equal width bin-code transformation :",
575
+ data=self.data,
576
+ progress_bar=self.progress_bar)
577
+
578
+ # Hnadling bincode transformation for Variable-Width
579
+ custom_var_bincode_col = self.data_transformation_params.get("custom_var_bincode_col", None)
580
+ custom_var_bincode_fit_object = self.data_transformation_params.get("custom_var_bincode_fit_object", None)
581
+ if custom_var_bincode_col:
582
+ # Extracting accumulate columns
583
+ accumulate_columns = self._extract_list(self.data.columns, custom_var_bincode_col)
584
+ # Adding transform parameters for performing binning with Variable-Width.
585
+ var_transform_params = {
586
+ "data" : self.data,
587
+ "object" : custom_var_bincode_fit_object,
588
+ "object_order_column" : "TD_MinValue_BINFIT",
589
+ "accumulate" : accumulate_columns,
590
+ "persist" : True,
591
+ "display_table_name" : False
592
+ }
593
+ self.data = BincodeTransform(**var_transform_params).result
594
+ # Adding transformed data containing table to garbage collector
595
+ GarbageCollector._add_to_garbagecollector(self.data._table_name)
596
+ self._display_msg(msg="Updated dataset after performing customized variable width bin-code transformation :",
597
+ data=self.data,
598
+ progress_bar=self.progress_bar)
599
+
600
+ def _custom_string_column_transformation(self):
601
+ """
602
+ DESCRIPTION:
603
+ Function performs string column transformation on categorical columns based on user input.
604
+
605
+ PARAMETERS:
606
+ None
607
+
608
+ RETURNS:
609
+ None
610
+
611
+ RAISES:
612
+ None
613
+
614
+ EXAMPLES:
615
+ >>> self._custom_string_column_transformation()
616
+ """
617
+ # Extracting custom string manipulation columns and fit object for performing string manipulation
618
+ custom_string_manipulation_ind = self.data_transformation_params.get("custom_string_manipulation_ind", False)
619
+ if custom_string_manipulation_ind:
620
+ custom_string_manipulation_param = self.data_transformation_params.get('custom_string_manipulation_param', None)
621
+ # Performing string manipulation for each column
622
+ for target_col,transform_val in custom_string_manipulation_param.items():
623
+ self.data = self._str_method_mapping(target_col, transform_val)
624
+ self._display_msg(msg="Updated dataset after performing customized string manipulation :",
625
+ data=self.data,
626
+ progress_bar=self.progress_bar)
627
+
628
+ def _categorical_encoding_transformation(self):
629
+ """
630
+ DESCRIPTION:
631
+ Function performs default encoding transformation i.e, one-hot on categorical columns.
632
+
633
+ PARAMETERS:
634
+ None
635
+
636
+ RETURNS:
637
+ None
638
+
639
+ RAISES:
640
+ None
641
+
642
+ EXAMPLES:
643
+ >>> self._categorical_encoding_transformation()
644
+ """
645
+ # Extracting one hot encoding parameters for performing encoding
646
+ one_hot_encoding_ind = self.data_transformation_params.get("one_hot_encoding_ind", False)
647
+ one_hot_encoding_fit_obj = self.data_transformation_params.get("one_hot_encoding_fit_obj", None)
648
+ one_hot_encoding_drop_list = self.data_transformation_params.get("one_hot_encoding_drop_list", None)
649
+ if one_hot_encoding_ind:
650
+ # Adding transform parameters for performing encoding
651
+ for fit_obj in one_hot_encoding_fit_obj.values():
652
+ transform_params = {
653
+ "data" : self.data,
654
+ "object" : fit_obj,
655
+ "is_input_dense" : True,
656
+ "persist" : True,
657
+ "display_table_name" : False
658
+ }
659
+ # Performing one hot encoding transformation
660
+ self.data = OneHotEncodingTransform(**transform_params).result
661
+ # Adding transformed data containing table to garbage collector
662
+ GarbageCollector._add_to_garbagecollector(self.data._table_name)
663
+ # Dropping old columns after encoding
664
+ self.data = self.data.drop(one_hot_encoding_drop_list, axis=1)
665
+ self._display_msg(msg="Updated dataset after performing categorical encoding :",
666
+ data=self.data,
667
+ progress_bar=self.progress_bar)
668
+ return
669
+
670
+ # AutoFraud Routine
671
+ auto_target_encoding_ind = self.data_transformation_params.get("auto_target_encoding_ind", False)
672
+ auto_target_encoding_fit_obj = self.data_transformation_params.get("auto_target_encoding_fit_obj", None)
673
+ target_encoding_accumulate_columns = self.data_transformation_params.get("target_encoding_accumulate_columns")
674
+
675
+ if auto_target_encoding_ind:
676
+ # Adding transform parameters for performing encoding
677
+ transform_params = {
678
+ "data" : self.data,
679
+ "object" : auto_target_encoding_fit_obj,
680
+ "accumulate" : target_encoding_accumulate_columns,
681
+ "is_input_dense" : True,
682
+ "persist" : True,
683
+ "display_table_name" : False
684
+ }
685
+
686
+ # Performing one hot encoding transformation
687
+ self.data = TargetEncodingTransform(**transform_params).result
688
+
689
+ # Adding transformed data containing table to garbage collector
690
+ GarbageCollector._add_to_garbagecollector(self.data._table_name)
691
+
692
+ self._display_msg(msg="Updated dataset after performing categorical encoding :",
693
+ data=self.data,
694
+ progress_bar=self.progress_bar)
695
+
696
+ def _custom_categorical_encoding_transformation(self):
697
+ """
698
+ DESCRIPTION:
699
+ Function performs custom encoding transformation on categorical columns based on user input.
700
+
701
+ PARAMETERS:
702
+ None
703
+
704
+ RETURNS:
705
+ None
706
+
707
+ RAISES:
708
+ None
709
+
710
+ EXAMPLES:
711
+ >>> self._custom_categorical_encoding_transformation()
712
+ """
713
+ # Extracting custom encoding parameters for performing encoding
714
+ custom_categorical_encoding_ind = self.data_transformation_params.get("custom_categorical_encoding_ind", False)
715
+ if custom_categorical_encoding_ind:
716
+ # Extracting parameters for ordinal encoding
717
+ custom_ord_encoding_fit_obj = self.data_transformation_params.get("custom_ord_encoding_fit_obj", None)
718
+ custom_ord_encoding_col = self.data_transformation_params.get("custom_ord_encoding_col", None)
719
+ if custom_ord_encoding_col:
720
+ # Extracting accumulate columns
721
+ accumulate_columns = self._extract_list(self.data.columns, custom_ord_encoding_col)
722
+ # Adding transform parameters for performing encoding
723
+ transform_params = {
724
+ "data" : self.data,
725
+ "object" : custom_ord_encoding_fit_obj,
726
+ "accumulate" : accumulate_columns,
727
+ "persist" : True,
728
+ "display_table_name" : False
729
+ }
730
+ # Performing ordinal encoding transformation
731
+ self.data = OrdinalEncodingTransform(**transform_params).result
732
+ # Adding transformed data containing table to garbage collector
733
+ GarbageCollector._add_to_garbagecollector(self.data._table_name)
734
+ # Extracting parameters for target encoding
735
+ custom_target_encoding_ind = self.data_transformation_params.get("custom_target_encoding_ind", False)
736
+ custom_target_encoding_fit_obj = self.data_transformation_params.get("custom_target_encoding_fit_obj", None)
737
+ if custom_target_encoding_ind:
738
+ warn_cols = []
739
+ for col, tar_fit_obj in custom_target_encoding_fit_obj.items():
740
+ # Extracting accumulate columns
741
+ accumulate_columns = self._extract_list(self.data.columns, [col])
742
+ # Adding transform parameters for performing encoding
743
+ transform_params = {
744
+ "data" : self.data,
745
+ "object" : tar_fit_obj,
746
+ "accumulate" : accumulate_columns,
747
+ "persist" : True,
748
+ "display_table_name" : False
749
+ }
750
+ # Performing target encoding transformation
751
+ self.data = TargetEncodingTransform(**transform_params).result
752
+ # Adding transformed data containing table to garbage collector
753
+ GarbageCollector._add_to_garbagecollector(self.data._table_name)
754
+ if self.data[self.data[col] == -1].shape[0] > 0:
755
+ warn_cols.append(col)
756
+
757
+ # Checking for unseen values in target encoding columns
758
+ if len(warn_cols) > 0:
759
+ warnings.warn(message=f"Unseen categorical values found in test data column(s): {warn_cols}. \
760
+ This may cause inaccurate predictions. Consider retraining the model with updated data.",
761
+ stacklevel=0)
762
+
763
+ self._display_msg(msg="Updated dataset after performing customized categorical encoding :",
764
+ data=self.data,
765
+ progress_bar=self.progress_bar)
766
+
767
+ # Handling rest with default categorical encoding transformation
768
+ self._categorical_encoding_transformation()
769
+
770
+ def _custom_mathematical_transformation(self):
771
+ """
772
+ DESCRIPTION:
773
+ Function performs custom mathematical transformation on numerical columns based on user input.
774
+
775
+ PARAMETERS:
776
+ None
777
+
778
+ RETURNS:
779
+ None
780
+
781
+ RAISES:
782
+ None
783
+
784
+ EXAMPLES:
785
+ >>> self._custom_mathematical_transformation()
786
+ """
787
+ # Extracting custom mathematical transformation parameters for performing transformation
788
+ custom_mathematical_transformation_ind = self.data_transformation_params.get("custom_mathematical_transformation_ind", False)
789
+ if custom_mathematical_transformation_ind:
790
+ # Extracting parameters for performing numapply transformation
791
+ custom_numapply_transformation_param = self.data_transformation_params.get("custom_numapply_transformation_param", None)
792
+ # Checking if numapply transformation param is present
793
+ if custom_numapply_transformation_param:
794
+ # Performing transformation for each column
795
+ for col, transform_val in custom_numapply_transformation_param.items():
796
+ self.data = self._numapply_transformation(col,transform_val)
797
+
798
+ # Extracting parameters for performing numerical transformation
799
+ custom_numerical_transformation_fit_object = self.data_transformation_params.get("custom_numerical_transformation_fit_object", None)
800
+ # Checking if numerical transformation fit object is present
801
+ if custom_numerical_transformation_fit_object:
802
+ # Extracting id columns for performing transformation
803
+ custom_numerical_transformation_id_columns = self.data_transformation_params.get("custom_numerical_transformation_id_columns", None)
804
+ # Checking for target column presence and handling id columns accordingly
805
+ if not self.target_column_ind and \
806
+ self.data_target_column in custom_numerical_transformation_id_columns:
807
+ custom_numerical_transformation_id_columns = self._extract_list(
808
+ custom_numerical_transformation_id_columns,
809
+ [self.data_target_column])
810
+
811
+ # Adding transform parameters for transformation
812
+ transform_params={
813
+ "data" : self.data,
814
+ "object" : custom_numerical_transformation_fit_object,
815
+ "id_columns" : custom_numerical_transformation_id_columns,
816
+ "persist" :True,
817
+ "display_table_name" : False
818
+ }
819
+ # Peforming transformation on target columns
820
+ self.data = Transform(**transform_params).result
821
+ # Adding transformed data containing table to garbage collector
822
+ GarbageCollector._add_to_garbagecollector(self.data._table_name)
823
+ self._display_msg(msg="Updated dataset after performing customized mathematical transformation :",
824
+ data=self.data,
825
+ progress_bar=self.progress_bar)
826
+
827
+ def _custom_non_linear_transformation(self):
828
+ """
829
+ DESCRIPTION:
830
+ Function performs custom non-linear transformation on numerical columns based on user input.
831
+
832
+ PARAMETERS:
833
+ None
834
+
835
+ RETURNS:
836
+ None
837
+
838
+ RAISES:
839
+ None
840
+
841
+ EXAMPLES:
842
+ >>> self._custom_non_linear_transformation()
843
+ """
844
+ # Extracting custom non-linear transformation parameters for performing transformation
845
+ custom_non_linear_transformation_ind = self.data_transformation_params.get("custom_non_linear_transformation_ind", False)
846
+ if custom_non_linear_transformation_ind:
847
+ # Extracting fit object for non-linear transformation
848
+ fit_obj_list = self.data_transformation_params['custom_non_linear_transformation_fit_object']
849
+ for comb, fit_obj in fit_obj_list.items():
850
+ # Adding transform params for transformation
851
+ transform_params = {
852
+ "data" : self.data,
853
+ "object" : fit_obj,
854
+ "accumulate" : self.data.columns,
855
+ "persist" : True,
856
+ "display_table_name" : False
857
+ }
858
+ # Performing transformation
859
+ self.data = NonLinearCombineTransform(**transform_params).result
860
+ # Adding transformed data containing table to garbage collector
861
+ GarbageCollector._add_to_garbagecollector(self.data._table_name)
862
+ self._display_msg(msg="Updated dataset after performing customized non-linear transformation :",
863
+ data=self.data,
864
+ progress_bar=self.progress_bar)
865
+
866
+ def _custom_anti_select_column_transformation(self):
867
+ """
868
+ DESCRIPTION:
869
+ Function performs custom anti-select transformation on columns based on user input.
870
+
871
+ PARAMETERS:
872
+ None
873
+
874
+ RETURNS:
875
+ None
876
+
877
+ RAISES:
878
+ None
879
+
880
+ EXAMPLES:
881
+ >>> self._custom_anti_select_column_transformation()
882
+ """
883
+ # Extracting custom anti-select transformation parameters for performing transformation
884
+ custom_anti_select_columns_ind = self.data_transformation_params.get("custom_anti_select_columns_ind", False)
885
+ if custom_anti_select_columns_ind:
886
+ # Extracting anti-select column list
887
+ anti_select_list = self.data_transformation_params.get("custom_anti_select_columns",None)
888
+ if anti_select_list:
889
+ fit_params = {
890
+ "data" : self.data,
891
+ "exclude" : anti_select_list
892
+ }
893
+ # Performing transformation for given user input
894
+ self.data = Antiselect(**fit_params).result
895
+ self._display_msg(msg="Updated dataset after performing customized anti-selection :",
896
+ data=self.data,
897
+ progress_bar=self.progress_bar)
898
+
899
+ def _handle_generated_features_transformation(self):
900
+ """
901
+ DESCRIPTION:
902
+ Function performs rounding up transformation on generated features
903
+ from feature engineering phase.
904
+
905
+ PARAMETERS:
906
+ None
907
+
908
+ RETURNS:
909
+ None
910
+
911
+ RAISES:
912
+ None
913
+
914
+ EXAMPLES:
915
+ >>> self._handle_generated_features_transformation()
916
+ """
917
+ # Extracting list of columns to be rounded
918
+ round_columns = self.data_transformation_params.get("round_columns", None)
919
+ if round_columns:
920
+ # Checking for target column presence and handling list accordingly
921
+ if not self.target_column_ind and self.data_target_column in round_columns:
922
+ round_columns = self._extract_list(round_columns, [self.data_target_column])
923
+
924
+ # Extracting accumulate columns
925
+ accumulate_columns = self._extract_list(self.data.columns,round_columns)
926
+ # Performing rounding up on target column upto 4 precision digit
927
+ fit_params = {
928
+ "data" : self.data,
929
+ "target_columns" : round_columns,
930
+ "precision_digit" : 4,
931
+ "accumulate" : accumulate_columns,
932
+ "persist" : True,
933
+ "display_table_name" : False}
934
+ self.data = RoundColumns(**fit_params).result
935
+ # Adding transformed data containing table to garbage collector
936
+ GarbageCollector._add_to_garbagecollector(self.data._table_name)
937
+
938
+ def _handle_target_column_transformation(self):
939
+ """
940
+ DESCRIPTION:
941
+ Function performs encoding and datatype transformation on target column
942
+ for classification problem.
943
+
944
+ PARAMETERS:
945
+ None
946
+
947
+ RETURNS:
948
+ None
949
+
950
+ RAISES:
951
+ None
952
+
953
+ EXAMPLES:
954
+ >>> self._handle_target_column_transformation()
955
+ """
956
+ # Fetching target column encoding indicator and fit object
957
+
958
+ target_col_encode_ind = self.data_transformation_params.get("target_col_encode_ind", False)
959
+
960
+ if target_col_encode_ind:
961
+ # Extracting ordinal encoding fit object for target column
962
+ target_col_ord_encoding_fit_obj = self.data_transformation_params.get("target_col_ord_encoding_fit_obj", None)
963
+ if target_col_ord_encoding_fit_obj:
964
+ # Extracting accumulate columns
965
+ accumulate_columns = self._extract_list(self.data.columns, [self.data_target_column])
966
+ # Adding transform parameters for performing encoding
967
+ transform_params = {
968
+ "data" : self.data,
969
+ "object" : target_col_ord_encoding_fit_obj,
970
+ "accumulate" : accumulate_columns,
971
+ "persist" : True,
972
+ "display_table_name" : False
973
+ }
974
+ # Performing ordinal encoding transformation
975
+ self.data = OrdinalEncodingTransform(**transform_params).result
976
+ # Adding transformed data containing table to garbage collector
977
+ GarbageCollector._add_to_garbagecollector(self.data._table_name)
978
+
979
+ self._display_msg(msg="Updated dataset after performing target column transformation :",
980
+ data=self.data,
981
+ progress_bar=self.progress_bar)
982
+
983
+ def _extract_and_display_features(self, feature_type, feature_list):
984
+ """
985
+ DESCRIPTION:
986
+ Function performs extraction of features using feature_list and target column indicator.
987
+
988
+ PARAMETERS:
989
+ feature_type:
990
+ Required Argument.
991
+ Specifies the type of feature selection.
992
+ Types: str
993
+
994
+ feature_list:
995
+ Required Argument.
996
+ Specifies the list of features to be selected.
997
+ Types: list
998
+
999
+ RETURNS:
1000
+ Teradataml dataframe with selected features.
1001
+
1002
+ RAISES:
1003
+ None
1004
+
1005
+ EXAMPLES:
1006
+ >>> feature_df = self._extract_and_display_features(feature_type="lasso", feature_list=["feature1", "feature2", "feature3"])
1007
+ """
1008
+ # Checking for target column presence and handling list accordingly
1009
+ if not self.target_column_ind and self.data_target_column in feature_list:
1010
+ feature_list = self._extract_list(feature_list, [self.data_target_column])
1011
+
1012
+ # Creating dataframe with selected features
1013
+ feature_df = self.data[feature_list]
1014
+
1015
+ # Displaying feature dataframe
1016
+ self._display_msg(msg=f"Updated dataset after performing {feature_type} feature selection:",
1017
+ data=feature_df,
1018
+ progress_bar=self.progress_bar)
1019
+
1020
+ # Returning feature dataframe
1021
+ return feature_df
1022
+
1023
+ def _feature_selection_lasso_transformation(self):
1024
+ """
1025
+ DESCRIPTION:
1026
+ Function performs feature selection using lasso followed by scaling.
1027
+
1028
+ PARAMETERS:
1029
+ None
1030
+
1031
+ RETURNS:
1032
+ None
1033
+
1034
+ RAISES:
1035
+ None
1036
+
1037
+ EXAMPLES:
1038
+ >>> self._feature_selection_lasso_transformation()
1039
+ """
1040
+ # Extracting features selected by lasso in data preparation phase
1041
+ lasso_features = self.data_transformation_params.get("lasso_features", None)
1042
+ lasso_df = self._extract_and_display_features("Lasso", lasso_features)
1043
+
1044
+ # Performing feature scaling
1045
+ # Extracting fit object and columns for scaling
1046
+ lasso_scale_fit_obj = self.data_transformation_params.get("lasso_scale_fit_obj", None)
1047
+ lasso_scale_col = self.data_transformation_params.get("lasso_scale_col", None)
1048
+ # Extracting accumulate columns
1049
+ if lasso_scale_fit_obj is not None:
1050
+ accumulate_cols = self._extract_list(lasso_df.columns, lasso_scale_col)
1051
+ # Scaling dataset
1052
+ lasso_df = ScaleTransform(data=lasso_df,
1053
+ object=lasso_scale_fit_obj,
1054
+ accumulate=accumulate_cols).result
1055
+ # Displaying scaled dataset
1056
+ self._display_msg(msg="Updated dataset after performing scaling on Lasso selected features :",
1057
+ data=lasso_df,
1058
+ progress_bar=self.progress_bar)
1059
+
1060
+ # Uploading lasso dataset to table for further use
1061
+ table_name = UtilFuncs._generate_temp_table_name(prefix="lasso_test",
1062
+ table_type = TeradataConstants.TERADATA_TABLE)
1063
+ # If configure.temp_object_type="VT", _generate_temp_table_name() retruns the
1064
+ # table name in fully qualified format.
1065
+ table_name = UtilFuncs._extract_table_name(table_name)
1066
+ # Storing table name mapping for lasso dataset
1067
+ self.table_name_mapping[self.data_node_id]["lasso_test"] = table_name
1068
+ # In the case of the VT option, the table was being persisted, so the VT condition is being checked.
1069
+ is_temporary = configure.temp_object_type == TeradataConstants.TERADATA_VOLATILE_TABLE
1070
+ copy_to_sql(df = lasso_df, table_name= table_name, if_exists="replace", temporary=is_temporary)
1071
+
1072
+ def _feature_selection_rfe_transformation(self):
1073
+ """
1074
+ DESCRIPTION:
1075
+ Function performs feature selection using rfe followed by scaling.
1076
+
1077
+ PARAMETERS:
1078
+ None
1079
+
1080
+ RETURNS:
1081
+ None
1082
+
1083
+ RAISES:
1084
+ None
1085
+
1086
+ EXAMPLES:
1087
+ >>> self._feature_selection_rfe_transformation()
1088
+ """
1089
+ # Extracting features selected by rfe in data preparation phase
1090
+ rfe_features = self.data_transformation_params.get("rfe_features", None)
1091
+ rfe_df = self._extract_and_display_features("RFE", rfe_features)
1092
+
1093
+ # Renaming rfe columns
1094
+ rfe_rename_column = self.data_transformation_params.get("rfe_rename_column", None)
1095
+ if rfe_rename_column:
1096
+ new_col_name = {f'r_{col}': rfe_df[col] for col in rfe_rename_column}
1097
+ rfe_df = rfe_df.assign(drop_columns=False, **new_col_name)
1098
+ rfe_df = rfe_df.drop(rfe_rename_column, axis=1)
1099
+
1100
+ # Performing feature scaling
1101
+ # Extracting fit object and columns for scaling
1102
+ rfe_scale_fit_obj = self.data_transformation_params.get("rfe_scale_fit_obj", None)
1103
+ rfe_scale_col = self.data_transformation_params.get("rfe_scale_col", None)
1104
+
1105
+ if rfe_scale_fit_obj is not None:
1106
+ # Extracting accumulate columns
1107
+ accumulate_cols = self._extract_list(rfe_df.columns, rfe_scale_col)
1108
+ # Scaling on rfe dataset
1109
+ rfe_df = ScaleTransform(data=rfe_df,
1110
+ object=rfe_scale_fit_obj,
1111
+ accumulate=accumulate_cols).result
1112
+ # Displaying scaled dataset
1113
+ self._display_msg(msg="Updated dataset after performing scaling on RFE selected features :",
1114
+ data=rfe_df,
1115
+ progress_bar=self.progress_bar)
1116
+
1117
+ # Uploading rfe dataset to table for further use
1118
+ table_name = UtilFuncs._generate_temp_table_name(prefix="rfe_test",
1119
+ table_type = TeradataConstants.TERADATA_TABLE)
1120
+ # If configure.temp_object_type="VT", _generate_temp_table_name() retruns the
1121
+ # table name in fully qualified format.
1122
+ table_name = UtilFuncs._extract_table_name(table_name)
1123
+ # Storing table name mapping for rfe dataset
1124
+ self.table_name_mapping[self.data_node_id]["rfe_test"] = table_name
1125
+ # In the case of the VT option, the table was being persisted, so the VT condition is being checked.
1126
+ is_temporary = configure.temp_object_type == TeradataConstants.TERADATA_VOLATILE_TABLE
1127
+ copy_to_sql(df = rfe_df, table_name= table_name, if_exists="replace", temporary=is_temporary)
1128
+
1129
+ def _feature_selection_pca_transformation(self):
1130
+ """
1131
+ DESCRIPTION:
1132
+ Function performs feature scaling followed by feature selection using pca.
1133
+
1134
+ PARAMETERS:
1135
+ None
1136
+
1137
+ RETURNS:
1138
+ None
1139
+
1140
+ RAISES:
1141
+ None
1142
+
1143
+ EXAMPLES:
1144
+ >>> self._feature_selection_pca_transformation()
1145
+ """
1146
+ # Extracting fit object and column details for perfroming feature scaling
1147
+ pca_scale_fit_obj = self.data_transformation_params.get("pca_scale_fit_obj", None)
1148
+ pca_scale_col = self.data_transformation_params.get("pca_scale_col", None)
1149
+
1150
+ pca_scaled_df = self.data
1151
+ if pca_scale_fit_obj is not None:
1152
+ # Extracting accumulate columns
1153
+ accumulate_cols = self._extract_list(self.data.columns, pca_scale_col)
1154
+ # Scaling on pca dataset
1155
+ pca_scaled_df = ScaleTransform(data=self.data,
1156
+ object=pca_scale_fit_obj,
1157
+ accumulate=accumulate_cols).result
1158
+ # Displaying scaled dataset
1159
+ self._display_msg(msg="Updated dataset after performing scaling for PCA feature selection :",
1160
+ data=pca_scaled_df,
1161
+ progress_bar=self.progress_bar)
1162
+
1163
+ # Convert to pandas dataframe for applying pca
1164
+ pca_scaled_pd = pca_scaled_df.to_pandas().reset_index()
1165
+ # Extracting pca fit instance for applying pca
1166
+ pca_fit_instance = self.data_transformation_params.get("pca_fit_instance", None)
1167
+ # Extracting columns for applying pca
1168
+ pca_fit_columns = self.data_transformation_params.get("pca_fit_columns", None)
1169
+
1170
+ # drop id column and target column if present
1171
+ drop_col = [self.id_column]
1172
+ if self.target_column_ind:
1173
+ drop_col.append(self.data_target_column)
1174
+ pca_df = pca_scaled_pd.drop(columns=drop_col, axis=1)
1175
+
1176
+ # Rearranging columns to match the order used during PCA fitting to
1177
+ # avoid issues during PCA transformation.
1178
+ pca_df = pca_df[pca_fit_columns]
1179
+
1180
+ # Applying pca on scaled dataset
1181
+ pca_df = pca_fit_instance.transform(pca_df)
1182
+ # Converting to pandas dataframe
1183
+ pca_df = pd.DataFrame(pca_df)
1184
+ # Renaming pca columns
1185
+ pca_new_column = self.data_transformation_params.get("pca_new_column", None)
1186
+ pca_df.rename(columns=pca_new_column, inplace=True)
1187
+ # Adding id column to pca dataframe
1188
+ pca_df = pd.concat([pca_scaled_pd.reset_index(drop=True)[self.id_column], pca_df.reset_index(drop=True)],
1189
+ axis=1)
1190
+ # Adding target column to pca dataframe if present
1191
+ if self.target_column_ind:
1192
+ pca_df[self.data_target_column] = pca_scaled_pd[self.data_target_column].reset_index(drop=True)
1193
+ # Displaying pca dataframe
1194
+ self._display_msg(msg="Updated dataset after performing PCA feature selection :",
1195
+ data=pca_df.head(10),
1196
+ progress_bar=self.progress_bar)
1197
+
1198
+ # Uploading pca dataset to table for further use
1199
+ table_name = UtilFuncs._generate_temp_table_name(prefix="pca_test",
1200
+ table_type = TeradataConstants.TERADATA_TABLE)
1201
+ # If configure.temp_object_type="VT", _generate_temp_table_name() retruns the
1202
+ # table name in fully qualified format.
1203
+ table_name = UtilFuncs._extract_table_name(table_name)
1204
+ # Storing table name mapping for pca dataset
1205
+ self.table_name_mapping[self.data_node_id]["pca_test"] = table_name
1206
+ # In the case of the VT option, the table was being persisted, so the VT condition is being checked.
1207
+ is_temporary = configure.temp_object_type == TeradataConstants.TERADATA_VOLATILE_TABLE
1208
+ copy_to_sql(df = pca_df, table_name=table_name, if_exists="replace", temporary=is_temporary)
1209
+
1210
+ def _feature_selection_non_pca_transformation(self):
1211
+ """
1212
+ DESCRIPTION:
1213
+ Function performs feature scaling on raw data for non-PCA clustering models.
1214
+
1215
+ PARAMETERS:
1216
+ None
1217
+
1218
+ RETURNS:
1219
+ None
1220
+
1221
+ RAISES:
1222
+ None
1223
+
1224
+ EXAMPLES:
1225
+ >>> self._feature_selection_non_pca_transformation()
1226
+ """
1227
+ self._display_msg(msg="Running Non-PCA feature selection transformation for clustering...",
1228
+ show_data=True,
1229
+ progress_bar=self.progress_bar)
1230
+
1231
+ # Extracting fit object and columns for scaling
1232
+ non_pca_scale_fit_obj = self.data_transformation_params.get("non_pca_scale_fit_obj", None)
1233
+ non_pca_scale_col = self.data_transformation_params.get("non_pca_scale_col", None)
1234
+
1235
+ if non_pca_scale_fit_obj is not None and non_pca_scale_col is not None:
1236
+ accumulate_cols = self._extract_list(self.data.columns, non_pca_scale_col)
1237
+
1238
+ # Scaling dataset
1239
+ scaled_df = ScaleTransform(data=self.data,
1240
+ object=non_pca_scale_fit_obj,
1241
+ accumulate=accumulate_cols).result
1242
+
1243
+ # Displaying scaled dataset
1244
+ self._display_msg(msg="Updated dataset after performing Non-PCA scaling for clustering:",
1245
+ data=scaled_df,
1246
+ progress_bar=self.progress_bar)
1247
+
1248
+ # Uploading non_pca dataset to SQL
1249
+ table_name = UtilFuncs._generate_temp_table_name(prefix="non_pca_test",
1250
+ table_type=TeradataConstants.TERADATA_TABLE)
1251
+ self.table_name_mapping[self.data_node_id]["non_pca_test"] = table_name
1252
+ copy_to_sql(df=scaled_df, table_name=table_name, if_exists="replace")
1253
+ else:
1254
+ self._display_msg(msg="Missing non_pca_scale_fit_obj or non_pca_scale_col in data transformation params.")